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Abstract

We improve the best known upper bounds on the density of corner-free sets over quasirandom groups
from inverse poly-logarithmic to quasi-polynomial. We make similarly substantial improvements to the
best known lower bounds on the communication complexity of a large class of permutation functions in
the 3-player Number-on-Forehead model. Underpinning both results is a general combinatorial theorem
that extends the recent work of Kelley, Lovett, and Meka (STOC’24), itself a development of ideas from
the breakthrough result of Kelley and Meka on three-term arithmetic progressions (FOCS’23).

1 Introduction
In the early 1980s, Chandra, Furst, and Lipton introduced the Number-on-Forehead (NOF) model of
communication complexity [CFL83] to better capture interaction with shared information. The k-NOF model is
defined by k players communicating over a shared channel in order to compute a function f : pt0, 1unqk Ñ t0, 1u.
Each player can see the k ´ 1 inputs of every other player, but they cannot see their own. Albeit perhaps
unintuitive at first glance, the model has a number of strikingly powerful and surprising connections to other
areas of theoretical computer science and combinatorics. For example, lower bounds for k “ ωplog nq players
would imply breakthrough circuit lower bounds [BNS89, NW91, Raz00, BH12], and the communication
complexity of several natural functions is known to be equivalent to central problems in Ramsey theory
[CFL83, Shr18, LS21b].

Unfortunately, our understanding of this model is severely lacking. Only in the past year have researchers
discovered explicit functions witnessing strong separations between randomized and deterministic 3-NOF
communication complexity [KLM24], despite the fact that optimal separations were long known to exist
non-explicitly [BDPW10]. More precisely, Kelley, Lovett, and Meka exhibited an explicit 3-player function
which has a constant cost randomized protocol, but requires Ωpn1{3q bits of communication to compute
deterministically. Their primary technical tool is a combinatorial adaptation of ideas from the recent
breakthrough of Kelley and Meka on three-term arithmetic progressions (3APs) [KM23].

One of the most well-studied functions in the NOF setting is Exactly-N, where each player receives a number
in rN s :“ t1, 2, . . . , Nu, and they wish to determine if their numbers sum to N . Introduced by [CFL83], they
showed that the 3-NOF complexity of Exactly-N is at most Op

?
logNq using the Behrend construction of

3-AP free sets [Beh46]. In fact, they observed a near equivalence between Exactly-N (for three players) and
the size of sets S Ă rN s2 without corners: three points px, yq, px ` z, yq, px, y ` zq P rN s2 with z ‰ 0. The
first nontrivial bounds on the size of such sets were proven earlier by Ajtai and Szemerédi [AS74], but the
quantitative behavior was poor, since the proof relied on Szemerédi’s regularity lemma [Sze75]. The strongest
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bound to date is due to Shkredov [Shk06], who showed any corner-free set of size δN2 must satisfy

δ ď O

ˆ

1

plog logNqc

˙

for some absolute constant c ą 0 (see also [Shk05] and the exposition by Green over finite fields [Gre04,
Gre05]). Using the connection shown by [CFL83], this implies that the complexity of Exactly-N is at least
Ωplog log logNq. Unfortunately, the techniques developed in [KLM24] do not suffice to improve this lower
bound, since they only apply to much denser functions. Concretely, the number of solutions of Exactly-N
(that is, triples x, y, z P rN s that satisfy x ` y ` z “ N) is at most N2, whereas the function exhibited by
[KLM24] to have strong lower bounds for deterministic NOF communication has N3´c solutions for some
small constant c ą 0; their technique is restricted to such functions.

Observe that corners may be viewed as a multidimensional generalization of arithmetic progressions. In fact,
upper bounds on corner-free sets easily imply upper bounds on 3AP-free sets (see e.g. [Zha23, Section 2.4]).
Given their tight relationship, many researchers have suspected that the recent techniques of Kelley and
Meka [KM23] used to improve bounds for 3AP-free sets will be amenable to usage in the case of corners (see
e.g. [Mek23] and [Pel23, Section 1.2]). While there is some preliminary evidence that this direction is viable
[JLO24, Mil24], such strong bounds remain currently beyond reach.

1.1 Our results
A common strategy in additive combinatorics when working over the integers is to prove a similar result in
some model setting, such as finite fields, then port the result back to the integers using standard machinery.
One interesting setting is quasirandom groups. For now, one can think of a quasirandom group as a finite
group G enjoying the property that any two large sets A,B Ă G “mix” under convolutions. In other words, if
we take random samples a P A and b P B, then the distribution of ab is close to the uniform distribution
over G. A classic example of a quasirandom group is G “ SL2pFpq, the set of 2 ˆ 2 matrices over the finite
field Fp for p prime with determinant 1. The Exactly-N problem naturally generalizes to any finite group G
[BGG06], where the players receive inputs x, y, z P G and accept if and only if their inputs satisfy xyz “ 1G.
Note that over any group, Exactly-N has a constant cost randomized protocol by reducing to equality. We
obtain the following lower bound for computing Exactly-N over G “ SL2pFpq by either deterministic or even
non-deterministic protocols.

Theorem 1.1 (Special case of Theorem 4.3). Any non-deterministic 3-NOF protocol computing Exactly-N
over G “ SL2pFpq for prime p requires Ωplog1{4

|G|q bits of communication.

Similar to the abelian case, there exists an intimate connection between Exactly-N over a group G and
corner-free sets in G ˆ G. However, there is a slight subtlety here, as corners generalize to the non-abelian
setting in two non-equivalent ways. One option is triples of the form tpx, yq, pzx, yq, px, zyqu for z ‰ 1G, often
referred to as naïve corners. In this setting, Austin [Aus16] proved that for G “ SL2pFpq, any subset of GˆG
without naïve corners has size |G|2´ε for some small constant ε ą 0. Alternatively, one can consider triples of
the form tpx, yq, pxz, yq, px, zyqu for z ‰ 1G, sometimes called BMZ corners after the first researchers to study
them [BMZ97]. This formulation is less understood, and it corresponds to the three-player Exactly-N function
over general groups (see e.g. [Vio19, Lemma 21]). We will focus our attention on this latter generalization, and
henceforth refer to them simply as corners. Austin also showed that corner-free sets over SL2pFpq have density
at most δ ď Op1{ logc |G|q for some absolute constant c ą 0 (see [Vio19, Section 5] for a nice exposition). We
are able to substantially improve this bound.

Theorem 1.2 (Special case of Corollary 4.10). Let G “ SL2pFpq for prime p. Then, any corner-free subset
of G ˆ G has size at most δ|G|2 for

δ ď exp
´

´Ω
´

log1{4
|G|

¯¯

.
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We emphasize that Theorems 1.1 and 1.2 are only special cases of more general theorems, and we direct
readers to Sections 4.1 and 4.2, respectively, for details.

Both of our results are consequences of a general combinatorial theorem which may be of independent interest.
Before stating it, we require some definitions. A set S Ă rN s3 is called a permutation function1 if for any
fixing of two coordinates of some a P rN s3, there is precisely one choice of the other coordinate such that
a P S. For example, S “ tpx, y, zq : xyz “ 1Gu Ă G3 is an example of a permutation function (identifying rN s

with G). Given a permutation function S Ă rN s3 and a subset A Ă S, we denote by AXY , AXZ , AY Z Ă rN s2

the projections of A to the XY,XZ, Y Z-faces of rN s3, respectively.

Theorem 1.3 (Informal special case of Theorem 2.4). Let d ě 1. Suppose S Ă rN s3 is a permutation function
and A Ă S is a set of size |A| ě 2´d|S|. If S is sufficiently pseudorandom (in the sense of Definition 2.1),
then

ˇ

ˇ

␣

px, y, zq P rN s3 : px, yq P AXY , px, zq P AXZ , py, zq P AY Z

(
ˇ

ˇ ě 2´Opd3
qN3.

For now, the reader can think of the pseudorandomness condition as saying that the density of S stays
roughly the same whenever you restrict to some large cube. Theorem 1.3 should be compared with [KLM24,
Lemma 2.10], where they refer to the quantity on the left-hand side of the above inequality as the “cylinder
intersection closure of A.” The two results can be viewed as similar statements in two extreme regimes for the
set S. Our theorem holds when S is permutation function, so it must necessarily be sparse (of size |S| “ N2),
whereas their result holds in the dense case where S has size roughly N3´c for some small enough constant
c ą 0. We briefly note that our pseudorandomness notion differs from theirs to better reflect an alternative
regime of interest.

1.2 Future work
We conclude by noting a few directions for future work. The results of [KLM24] hold for sufficiently dense
functions, while our results apply only to permutation functions which are sparse. It would be interesting to
see if these results can be unified in a theorem which works in all density regimes. Another natural open
question is to extend Theorem 1.2 to give quasi-polynomial bounds for corner-free sets over the integers or
Fn
2 . Over the integers, there are constructions of corner-free sets of size 2´Ωp

?
logNqN2 [Beh46] (see also the

recent improvements [LS21a, Gre21, Hun22]). Thus, such an extension would be optimal in the “shape” of
the bound. While we are optimistic that the techniques present here may be useful in these settings, we
are not able to directly apply Theorem 1.3, since the corresponding ambient set (see Section 4.2 for more
details)

S :“ tpx, y, x ` yq P pZ{NZq3 : x, y P Z{NZu

is not sufficiently pseudorandom (in the sense of Definition 2.1). For instance, if X,Y “ t1, . . . , N{4u and
Z “ t3N{4, . . . , N ´ 1u, then the cube X ˆ Y ˆ Z is dense in pZ{NZq3 but contains no points in S. Similar
obstructions also exist if we replace Z{NZ with other abelian groups.

Along similar lines, we note the bound in Theorem 1.2 appears to essentially be the quantitative limit of our
techniques. However, it remains plausible that the strong structure imbued by quasirandomness guarantees
that the largest corner-free sets over G “ SL2pFpq have size |G|2´ε for some small constant ε ą 0. Such
bounds would imply optimal separations between randomized and deterministic 3-NOF protocols. It would
also be interesting to extend our NOF lower bounds to more than 3 players.

Paper organization. We provide a detailed proof overview of our main theorem in Section 2 with proofs
of the main technical lemmas deferred to Sections 5, 6, and 7. Section 3 contains a review of preliminary
definitions and facts. Section 4 contains applications to lower bounds in the NOF model of communication,
corners in quasirandom groups, and insights about the triangle removal lemma, respectively.

1Such sets are called 2-dimensional permutations in [LL14, LPS19], and extend graph functions studied in [BDPW10, Shr18].
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2 Proof overview
In this section, we provide a proof overview of our main theorem. Throughout, we recall various definitions
and results for the reader’s convenience. We begin with a pseudorandomness notion which will be key to our
proof.

Definition 2.1 (Pseudorandom against cubes). A set S Ă X ˆ Y ˆ Z is γ-pseudorandom against cubes if
for every cube C Ă X ˆ Y ˆ Z, we have

ˇ

ˇ

ˇ

ˇ

E
px,y,zqPS

rCpx, y, zqs ´ E
xPX,yPY,zPZ

rCpx, y, zqs

ˇ

ˇ

ˇ

ˇ

ď γ.

In other words, the density of a set S which is pseudorandom against cubes cannot change drastically by
restricting to a large cube C. Throughout the proof, we will work with S Ă rN s3 which is pseudorandom
against cubes. We will also mandate that S is very sparse; in particular, if we fix any two coordinates, there
is at most one choice for the last coordinate which produces an element of S. More formally, we define the
notion of a (weak) permutation function:

Definition 2.2 ((Weak) permutation function). Let f : rN s3 Ñ t0, 1u. We call f a permutation function
if for every fixing of any two coordinates, there is exactly one fixing of the remaining coordinate so that
fpx, y, zq “ 1. If instead there exists at most one value, we call f a weak permutation function.

Mandating that S is a (weak) permutation function is important for many of the applications that we give.
Indeed, it is one of the main challenges in extending [KLM24] where many of the results only apply when S
is relatively dense in rN s3.

We will also want to project a given set A Ă rN s3 to the faces of a given cube C in order to work with
two-dimensional sets. We notate the marginals of a set A with respect to a cube C in the following way:

Notation 2.3. For a set A Ă rN s3 and a cube C “ X ˆY ˆZ, let AXY Ă X ˆY denote the projection of A
onto its XY -face. More formally, a point px, yq P AXY if and only if there exists z P Z with px, y, zq P A X C.
The sets AXZ and AY Z are defined analogously.

We state our main result below.

Theorem 2.4. Let d, s ě 1. Suppose S Ă rN s3 is a weak permutation function of size |S| ě 2´sN2 which is
γ-pseudorandom against cubes, and A Ă S a set of size |A| ě 2´d|S|. For γ ď 2´Opd4

`dsq small enough, we
have

ˇ

ˇ

␣

px, y, zq P rN s3 : px, yq P AXY , px, zq P AXZ , py, zq P AY Z

(
ˇ

ˇ ě 2´Opd3
`sqN3.

Before we begin with the proof, we emphasize that our contribution is mostly quantitative. The overall
structure of our proof has been present in the literature studying corners for some time (e.g. see [LM05, Shk05]
and [Gre04] for an exposition). For example, much of what we will see below when working with respect to a
pseudorandom set was present in [LM05], albeit in an arithmetic setting. All of the listed prior work used the
standard “box norm” to understand rectangular structure, whereas we give an improvement by working with
a higher order variant, known as grid norms. Most of the work in proving Theorem 2.4 goes into pinning
down stronger quantitative claims when working with grid norms as opposed to box norms.

The argument proceeds in three main steps. First, we will restrict A to a large cube C where A X C
satisfies various combinatorial pseudorandom properties. Then, we will show how to efficiently convert these
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combinatorial statements to analytic conditions. Finally, we will argue that these analytic conditions are
enough to imply mixing.

2.1 Obtaining spreadness
The first step in the argument is to restrict A to a large cube C where A X C satisfies certain pseudorandom
properties. We will want to ensure two pseudorandom properties of the marginals of A to faces of C. First,
we want the marginals of A to avoid any strong rectangular structure. We will also want to avoid any rows
which are too sparse. This motivates the following definitions of spreadness and left lower-boundedness, which
were introduced in [KLM24].

Definition 2.5 (Spread). Let r ě 1 and ε P p0, 1q. A function f : X ˆ Y Ñ r0, 1s is (r, εq-spread if for any
rectangle R “ X 1 ˆ Y 1 Ă X ˆ Y of size |R| ě 2´r|X||Y |, we have

E
px,yqPR

fpx, yq ď p1 ` εqErf s.

In other words, a function which is spread admits no significant density increment when restricting to a large
rectangle.

Definition 2.6 (Left lower-bounded). Let ε P p0, 1q. A function f : X ˆ Y Ñ r0, 1s is ε-left lower-bounded
if for every x P X, we have

E
yPY

fpx, yq ě p1 ´ εqErf s.

Left lower-boundedness ensures that the rows of f are not too sparse. Traditionally, one finds the desired
cube C by an iterative process, where if one of the pseudorandom properties is violated, we can find a slightly
smaller cube on which the density of our set has increased. The process usually concludes by arguing that
the density can only increase finitely many times.

Here is a natural first attempt. Suppose A is a subset of a weak permutation function S Ă X ˆ Y ˆZ, where
we initially set X “ Y “ Z “ rN s. For now, we will not use the property that S is pseudorandom against
cubes. If the XY -marginal of A is not pr, εq-spread, then there exists a rectangle R “ X 1 ˆ Y 1 Ă X ˆ Y of
size |R| ě 2´r|X||Y | with

E
xPX1,yPY 1

AXY px, yq ě p1 ` εq E
xPX,yPY

AXY px, yq.

A logical next step is to restrict A to the cube C “ X 1 ˆ Y 1 ˆ Z so that the density of A has increased on
the X 1Y 1-face. The issue here is that the marginal of A on some other face of C can decrease significantly.
Consider some point px, y, zq P A. If y R Y 1, then px, y, zq R A X C. Therefore, the point px, zq P AXZ will
not be in the marginal AX1Z . Obtaining a density increment on one marginal might undo progress that was
obtained on some other marginal, and it seems the process may never end. This suggests that we need some
other measure of progress in our density increment strategy.

To remedy this, [KLM24] exploited the fact that A Ă S where S is pseudorandom against cubes. The
pseudorandomness of S implies that for any large cube C,

|S X C|

|C|
«

|S|

N3
.

Thus, the density of S in C will always stay roughly the same across every large cube. This indicates
that the density |A X C|{|S X C| might be a useful measure of progress. We follow the approach used in
[KLM24, Lemma 5.5] to obtain a density increment theorem. The proof of the following lemma is deferred to
Section 5.
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Lemma 2.7 (Restricting to a good cube). Let S Ă rN s3 be a weak permutation function which is γ-
pseudorandom against cubes. Let d ě 1, r ě 1, ε P p0, 1q, and assume γ ď 2´Ωpdr{εq. Let A Ă S of size
|A| ě 2´d|S|. Then there is a cube C “ X ˆ Y ˆ Z Ă rN s3 of size |C| ě 2´Opdr{εqN3 with the following
properties:

1. |A X C| ě 2´pd`1q|S X C|,

2. AXZ , AY Z are pr, εq-spread,

3. AXZ , AY Z are ε-left lower-bounded.

There are two differences worth noting between Lemma 2.7 and [KLM24, Lemma 5.5]. For one, Kelley, Lovett,
and Meka work relative to a set A Ă D where the set D is not a (weak) permutation function; in fact, it
must be much denser. Concretely, their aim is to apply the theorem with D of size at least N3´c for some
small constant c P p0, 1q. One challenge that comes with this is that the marginals of D are no longer sets,
but rather functions obtained by averaging over a fixed coordinate. For example, the XY -marginal of D is
defined by EzPZ Dpx, y, zq. To deal with this, their notion of pseudorandomness against cubes is stronger
than ours. It requires that both D is pseudorandom against cubes, and in addition that the marginals of
D to faces, when considered inside large cubes, are close to uniform: for a large cube C “ X ˆ Y ˆ Z, the
function EzPZ Dpx, y, zq is close to uniform over X ˆ Y . (Weak) permutation functions cannot satisfy this
second property, since the number of z P Z where px, y, zq P S is either 0 or 1. Thus, we have to make some
alterations to their proof to get what we need, but the overall ideas are similar.

2.2 Density increment for sparse functions
The next key step in our proof is to convert spreadness into an analytic statement that will let us guarantee
mixing. Our main tool for doing this will be the use of grid norms, which were first defined in [KLM24].

Definition 2.8 (Grid norms). For a function f : X ˆ Y Ñ R and ℓ, k P N, let

Uℓ,kpfq “ E
x1,...,xℓPX

ˆ

E
yPY

fpx1, yq ¨ ¨ ¨ fpxℓ, yq

˙k

“ E
y1,...,ykPY

ˆ

E
xPX

fpx, y1q ¨ ¨ ¨ fpx, ykq

˙ℓ

“ E
xPXℓ

yPY k

ℓ
ź

i“1

k
ź

j“1

fpxi, yjq.

The pℓ, kq-grid norm of f is given by }f}Upℓ,kq :“ |Uℓ,kpfq|1{ℓk.

The purpose of the grid norm is to measure rectangular structure. The reader may notice that the p2, 2q-grid
norm corresponds to the classical “box norm,” which has become a staple in studying corners and other
additive combinatorial problems. The reader can check that rectangles of density δ can have grid norms
much larger than δ, while random sets of density δ have grid norms roughly δ. [KLM24] showed that if the
grid norm of f is significantly larger than its expectation, then we can find a large rectangle under which f
admits a density increment.

Lemma 2.9 ([KLM24, Lemma 4.7]). Let f : X ˆ Y Ñ r0, 1s; suppose that }f}1 ě δ. Let ℓ, k P N. If

}f}Upℓ,kq ě p1 ` εq}f}1,

then there exists some rectangle R Ă X ˆ Y with

E
px,yqPR

fpx, yq ě

´

1 `
ε

2

¯

}f}1 and }R}1 ě
1

2
¨ ε ¨ δℓk`1.
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Stated in the contrapositive, the above theorem shows that if f is pr, εq-spread for

r ě pℓk ` 1q logp1{δq ` logp1{εq,

then }f}Upℓ,kq ď p1 ` 2εq}f}1. It is worth noting why pℓ, kq-grid norms give an advantage over the classical
p2, 2q-grid norm. This is a key aspect of our work which allows us to prove stronger bounds. The grid norm
arises naturally when trying to control expressions of the form

Λpf, g, hq “ E
xPX,yPY,zPZ

fpx, yqgpx, zqhpy, zq,

as is the case in Theorem 2.4 with f “ AXY , g “ AXZ , h “ AY Z . A simple application of Hölder’s inequality
gives the following claim, which is in the same spirit of results in [LM05, FHHK24].

Claim 2.10. Given an even integer k ě 2 and functions f : X ˆ Y Ñ r´1, 1s, g : X ˆ Z Ñ r´1, 1s,
h : Y ˆ Z Ñ r´1, 1s, we have

Λpf, g, hq ď }f}k{pk´1q}g}Up2,kq}h}Up2,kq.

Proof. The proof follows from Hölder’s inequality:

Λpf, g, hq “ E
x,y,z

fpx, yqgpx, zqhpy, zq

“ E
x,y

fpx, yq

ˆ

E
z
gpx, zqhpy, zq

˙

ď

ˆ

E
x,y

|fpx, yq|k{pk´1q

˙pk´1q{k

ˆ

˜

E
x,y

ˆ

E
z
gpx, zqhpy, zq

˙k
¸1{k

ď }f}k{pk´1q ˆ }g}Up2,kq ˆ }h}Up2,kq

where the last inequality follows from Lemma 3.5.

When f, g, h are indicators of sets of density δ, a common strategy is to decompose g “ δ ` g0, h “ δ ` h0,
where Erg0s “ Erh0s “ 0. By linearity, there will be a main term Λpf, δ, δq “ δ3 and various error terms.
Suppose we try to bound Λpf, g0, h0q using Claim 2.10 with k “ 2. We have

Λpf, g0, h0q ď }f}2}g0}Up2,2q}h0}Up2,2q “ δ1{2}g0}Up2,2q}h0}Up2,2q.

If this error terms exceeds Ωpδ3q, then without loss of generality we can assume }g0}Up2,2q ě Ωpδ5{4q. With
some regularity conditions on the rows of g, this can be converted to a rectangle of density Ωpδ10q where
the density of g has increased from δ to δ ` Ωpδ10q (see [Gre04, Proposition 5.7], for example). This density
increment is quite weak; it requires Ωp1{δ10q iterations before the density has increased by a constant factor,
and so we can only guarantee the rectangle we are left with has density at least δOp1{δ10q.

On the other hand, if we set k “ Ωplogp1{δqq sufficiently large, then we obtain

Λpf, g0, h0q ď δ1´1{k}g0}Up2,kq}h0}Up2,kq ď 2δ}g0}Up2,kq}h0}Up2,kq.

Now if Λpf, g0, h0q ą Ωpδ3q, then without loss of generality we can assume }g0}Up2,kq ě Ωpδq. We will later
show how to convert this2 to }g}Up2,kq ě p1 ` Ωp1qqδ, at which point Lemma 2.9 gives a rectangle of density
roughly δ2k`1 where the density of g has increased by a constant factor. This density increment process is
more efficient, and it will eventually lead to quasi-polynomial bounds in δ.

2In actuality, we use Λpf, g0, h0q ą Ωpδ3q to deduce Ezrgpx, zqhpy, zqs ´ δ2 is far from uniform, which in turn implies
}g}Up2,kq ě p1 ` Ωpεqqδ. The full details are present in Section 7, stated in the contrapositive. However, it is known how to
perform the stated conversion (with some loss in parameters) under certain conditions (e.g. [FHHK24, Lemma 2.9]).
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Despite this, applying Lemma 2.9 does not suffice to give strong enough bounds on the p2, kq-grid norms
of the marginals of A. Suppose we applied Lemma 2.7 to obtain a cube C where the marginals of A X C
are pOpd2q, εq-spread for some constant ε ą 0. Since |A| ě 2´d|S|, this would give a cube C of size
|C| ě 2´Opd3

qN3 where |A X C| ě 2´pd`1q|S X C|. If we try to apply Lemma 2.9 with these parameters,
we run into an issue: the marginals of A on faces of C can be very sparse. Since S is a weak permutation
function which is pseudorandom against cubes, the density of AXZ could scale with the density of C:

ErAXZs “
|A X C|

|X||Z|
ď

|S X C|

|X||Z|
«

|S|

N3
¨

|C|

|X||Z|
ď

|Y |

N
.

In particular, |Y | could be as small as 2´Ωpd3
qN , so at best we can only guarantee ErAXZs ě 2´Opd3

q.
Therefore, to bound

}AXY }Up2,kq ď p1 ` 2εq}AXY }1,

we would need to guarantee that AXY is pΩpd3kq, εq-spread. That is, to apply the theorem we require a
far stronger assumption than the initial pOpd2q, εq-spreadness. If we try to fix this by strengthening our
spreadness assumption, the ambient cube becomes sparser, and we end up “chasing our own tail.”

While the marginals of A to faces of C can be very sparse, they are dense inside of the marginals of S.
Additionally, the marginals of S inherit strong pseudorandomness properties since S is pseudorandom against
cubes. In particular, AXY Ă SXY , where SXY is pseudorandom against rectangles.

Definition 2.11 (Pseudorandom against rectangles). A set T Ă X ˆY is γ-pseudorandom against rectangles
if for every rectangle R Ă X ˆ Y , we have

ˇ

ˇ

ˇ

ˇ

E
px,yqPT

rRpx, yqs ´ E
xPX,yPY

rRpx, yqs

ˇ

ˇ

ˇ

ˇ

ď γ.

Similar to pseudorandomness against cubes, pseudorandomness against rectangles guarantees that the density
of T is roughly the same when restricting to any large rectangle. Now, if S Ă rN s3 is pseudorandom
against cubes, then the following claim shows that its marginals on any large cube are pseudorandom against
rectangles, with a small loss in parameters. The proof is deferred to Section 3.

Claim 2.12. Suppose S Ă rN s3 is a weak permutation function which is γ-pseudorandom against cubes.
Suppose C “ X ˆ Y ˆ Z is a cube of size |C| ě γ1{2N3. Then, the marginals SXY , SXZ , SY Z are Opγ1{2q-
pseudorandom against rectangles.

Our goal will be to exploit the fact that SXY is pseudorandom against rectangles in order to argue that AXY

shares similar properties to sets which are dense in X ˆ Y . This situation is not uncommon; oftentimes,
one can prove dense subsets of sparse pseudorandom sets satisfy similar properties to dense sets [KRSS10,
CFZ14, CFZ15, CG16].

One possible strategy to overcome this obstacle is to apply Lemma 2.9 to some globally dense set D Ď rN s3

that “models” A. In particular, one would want D’s guaranteed density increment onto a large rectangle to
imply a similar property for A, only with A’s density being measured with respect to the pseudorandom set T .
Such dense model theorems appear in various contexts throughout theoretical computer science, combinatorics,
and number theory, perhaps most notably as a central ingredient in the proof of the celebrated Green-Tao
theorem [GT08]. Unfortunately, the tradeoffs in standard formulations (see e.g. [RTTV08, Theorem 2.2])
are not quantitatively strong enough for our purposes, and we do not pursue this direction further. Instead,
we proceed with a self-contained method of proof by directly modifying the steps in [KLM24, Lemma 4.7]
to work in our pseudorandom setting. We are able to achieve a nearly identical lemma, but crucially the
size of the provided rectangle depends on the function’s density relative to a pseudorandom set rather than
globally.

We need the following definitions (see Section 3 for the formal definitions). Let µT denote the uniform
distribution over T Ă X ˆ Y . Given a non-negative function f supported on T , we have }f}1pµT q “

Epx,yqPT rfpx, yqs. The proof of the following lemma can be found in Section 6.
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Lemma 2.13 (Relative version of [KLM24, Lemma 4.7]). Let f : X ˆ Y Ñ r0, 1s be a function supported
on a set T Ă X ˆ Y of size τ |X||Y |; suppose that }f}1pµT q “ δ. Let ℓ, k P N. Additionally, assume that T is
γ-pseudorandom with respect to rectangles for γ ď ε8 ¨ pτδ{2qOpℓkq small enough. If

}f}Upℓ,kq ě p1 ` εq}f}1,

then there exists some rectangle R Ă X ˆ Y with

E
px,yqPR

fpx, yq ě

´

1 `
ε

64

¯

}f}1 and }R}1 ě
1

64
¨ ε ¨ δℓk`1.

It is essential to our argument that the density of the rectangle in the conclusion depends only on the density
of f in T , rather than }f}1.

2.3 A sparse von Neumann lemma
At this point, we have used Lemma 2.7 to obtain a cube C “ X ˆ Y ˆ Z where A X C satisfies various
pseudorandomness properties. Namely, the marginals of A on faces of C are spread. In the previous section,
we saw that Lemma 2.13 will let us efficiently convert spreadness into bounded grid norms, even if the
function is supported on a sparse pseudorandom set. The goal from here is to argue that the pseudorandom
properties we obtained on C are enough to ensure that A X C contains roughly the same number of patterns
as a random set of the same density. Such results are often called Generalized von Neumann lemmas. In
[KLM24], they prove the following:

Lemma 2.14 ([KLM24, Corollary 4.9]). Let f : X ˆ Y Ñ r0, 1s, g : X ˆ Z Ñ r0, 1s, h : Y ˆ Z Ñ r0, 1s. Let
d ě 1 and ε P p0, 1{160q, and set r “ Ωppd2 ` d logp1{εqq{εq. Assume that:

1. Erf s,Ergs,Erhs ě 2´d.

2. g, h are pr, εq-spread.

3. g, h are ε-left lower-bounded.

Then
E

xPX,yPY,zPZ
rfpx, yqgpx, zqhpy, zqs “ p1 ˘ OpεqqErf sErgsErhs.

One can view this statement as being in the “dense” setting, where 2´d is relatively large. Notice that for
constant ε, the spreadness parameter r scales like Ωpd2q. We would like to obtain a similar conclusion with
f “ AXY , g “ AXZ , h “ AY Z which are all dense inside a pseudorandom set. If we apply Lemma 2.7 directly,
we run into a similar issue as discussed in the previous section. Namely, the spreadness requirement scales
with the density of f, g, h, and so we can never find a cube C where the marginals of A are both sufficiently
spread and dense.

Thus, if we want to guarantee mixing for AXY , AXZ , AY Z , we need a version of Lemma 2.14 where the
spreadness requirement scales with the density of A X C in S X C, rather than the density of the ambient
cube C. If we look a bit into the proof of Lemma 2.14, we find where the issue lies. Define

pg ˝ hqpx, yq “ E
zPZ

gpx, zqhpy, zq.

A key step in their proof is to apply Hölder’s inequality, then try to control

}g ˝ h ´ ErgsErhs}p ď p1 ` Op1qqErgsErhs

where p depends on the Erhs. They do this by controlling the grid norms

}g}Up2,kq ď p1 ` Op1qqErgs and }h}Up2,kq ď p1 ` Op1qqErhs.
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for k “ Oplogp1{Erf sq. As we saw before, f “ AXY could be very sparse, and so controlling p2, kq-grid norms
would require spreadness which is not feasible in our setting.

The choice of k in the above approach is far too large for our purposes. To remedy this, we will use the fact
that S is pseudorandom against cubes. It follows from Claim 2.12 that the marginals of S to faces of C are
pseudorandom against rectangles with a small loss in parameters. The main observation is that for any fixed
z P Z, the function gpx, zqhpy, zq is a soft rectangle. In particular, Claim 3.2 implies g ˝ h “ Ez gpx, zqhpy, zq,
and therefore pg ˝ hqk, is a convex combination of rectangles. The pseudorandomness of SXY then gives that
the k-norm of g ˝ h as a function on X ˆ Y is within a small additive error of the k-norm of g ˝ h restricted
to SXY . Thus, it suffices to bound the k-norm of g ˝ h viewed as a function restricted to SXY . Inside of SXY ,
the function f will be considerably denser. We can then choose k to depend solely on the density of f in
SXY , rather than the global density of f in X ˆ Y . The details of this argument and proof of the following
lemma are given in Section 7.

Lemma 2.15 (Sparse von Neumann). Let T Ă X ˆ Y be a set which is γ-pseudorandom against rectangles,
and let A Ă T be a set of size |A| ě 2´d|T |. Let g : X ˆ Z Ñ r0, 1s, h : Y ˆ Z Ñ r0, 1s be functions. Let
d ě 1, ε P p0, 1{20q. For k “ Opd{εq a large enough integer, suppose that

1. }g}Up2,kq ď p1 ` εq}g}1,

2. }h}Up2,kq ď p1 ` εq}h}1,

3. g, h are ε-left lower-bounded,

4. γ ď pε}g}1}h}1qOpdq is small enough.

Then
E

xPX,yPY,zPZ
rApx, yqgpx, zqhpy, zqs “ p1 ˘ OpεqqErAsErgsErhs.

2.4 Putting everything together
We now have the tools to prove our main theorem.

Proof of Theorem 2.4. The proof consists of three main steps. First, we will apply Lemma 2.7 to restrict A to
some large cube C “ X ˆ Y ˆ Z so that the marginals AXY , AXZ , AY Z are sufficiently spread. We will then
use Lemma 2.13 to show that spreadness is sufficient to imply the marginals of A are uniform in an appropriate
grid norm. Finally, we will lower bound the number of patterns px, yq P AXY , px, zq P AXZ , py, zq P AY Z by
applying Lemma 2.15.

Obtaining spreadness. Let ε ą 0 be a small enough absolute constant, to be determined later. We first
apply Lemma 2.7 with r “ c1d

2{ε for some large enough constant c1 ą 0, which we can do since γ ď 2´Opd3
q

is sufficiently small. We find there exists some cube C “ X ˆ Y ˆ Z of density at least 2´Opd3
q with

1. |A X C| ě 2´pd`1q|S X C|.

2. The marginals AXZ , AY Z are pc1d
2{ε, ε{64q-spread.

3. The marginals AXZ , AY Z are pε{64q-left lower-bounded.

Obtaining uniformity from spreadness. We will bound the grid norm for AXZ ; the proof for AY Z is
similar. Assume for the sake of contradiction that

}AXZ}Up2,kq ą p1 ` εqErAXZs

for k “ Opd{εq a large enough integer. By Claim 2.12, we can infer that SXZ is pc2γ
1{2q-pseudorandom

against rectangles for some constant c2 ą 0. For γ ď 2´Opd4
q sufficiently small, we have c2γ

1{2 ď ε8 ¨ 2´Opd3kq,
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so we can apply Lemma 2.13 to obtain a rectangle R with

E
px,zqPR

rAXZs ą

´

1 `
ε

64

¯

ErAXZs and
|R|

|X||Z|
ě

ε

64
¨ 2´Opdkq.

Since k “ Opd{εq, this contradicts our assumption that AXZ is
`

c1d
2{ε, ε{64

˘

-spread for c1 ą 0 large enough.

Counting triples. At this point, we have established the following conditions:

1. }AXZ}Up2,kq ď p1 ` εq ¨ ErAXZs,

2. }AY Z}Up2,kq ď p1 ` εq ¨ ErAY Zs,

3. AXZ , AY Z are pε{64q-left lower-bounded.

In order to apply Lemma 2.15, it remains to check that SXY is sufficiently pseudorandom against rectangles
in terms of the density of AXZ , AY Z . By Claim 2.12, we know that SXY is pc2γ

1{2q-pseudorandom against
rectangles for some constant c2 ą 0. We already established that |A X C| ě 2´d|S X C|. Since S is
γ-pseudorandom against cubes, we have

|S X C| ě
|S||C|

N3
´ γ|S| ě

2´s

N
|C| ´ γN2 ě 2´Opd3

`sqN2,

where the inequality holds for γ ď 2´Opd3
`sq small enough. Thus, we have

ErAXY s “
|A X C|

|X||Y |
ě

2´d|S X C|

|X||Y |
ě 2´Opd3

`sq.

The same inequality holds for ErAXZs,ErAY Zs. For γ ď 2´Opd4
`dsq sufficiently small, we have c2γ

1{2 ď

εOpdq ¨ 2´Opd4
`dsq ď pε ¨ ErAXZsErAY ZsqOpdq. The conditions for Lemma 2.15 are satisfied, which gives

E
xPX,yPY,zPZ

rAXY px, yqAXZpx, zqAY Zpy, zqs “ p1 ˘ OpεqqErAXY sErAXZsErAY Zs.

We now choose ε so that the implicit Opεq term appearing on the right hand side is at most 1{2. Since
|C| ě 2´Opd3

qN3, this gives at least

p1 ´ Opεqq 2´Opd3
`sq|C| ě 2´Opd3

`sqN3

many points px, y, zq P C with the property that px, yq P AXY , px, zq P AXZ , py, zq P AY Z .

3 Preliminaries
Given positive numbers x and y, we shorthand x “ y ˘ ε for y ´ ε ď x ď y ` ε.

Sets. Let X,Y, Z, and occasionally X be finite sets throughout. We define the natural numbers to exclude
zero; that is, N “ t1, 2, . . . u.

Asymptotics. We use standard asymptotic notation of Op¨q, Ωp¨q, and Θp¨q to suppress fixed constants
that do not depend on any parameters.

Distributions. A distribution ν over X is a non-negative function ν : X Ñ Rě0 with Erνs “ 1. For
f : X Ñ Rě0 define νpfq “ ExPX νpxqfpxq to be the average of f under ν. Additionally, let µX be the
uniform distribution over X.

11



Functions. For functions f, g : X Ñ R, we define inner products and norms with the normalized counting
measure on X , namely

xf, gy “ E
xPX

fpxqgpxq and }f}p “

ˆ

E
xPX

|fpxq|p
˙1{p

for 1 ď p ă 8,

as well as }f}8 “ maxxPX |fpxq|. When }f}8 ď 1, we will refer to f as being 1-bounded. We will also want
to work with other distributions on X . For a distribution ν on X , we write

xf, gyν “ E
xPX

νpxqfpxqgpxq and }f}ppνq “

ˆ

E
xPX

νpxq|fpxq|p
˙1{p

for 1 ď p ă 8.

For convenience, we will often overload notation when working with a set S by letting Spxq denote its indicator
function 1px P Sq.

3.1 Permutation functions
Definition 2.2 ((Weak) permutation function). Let f : rN s3 Ñ t0, 1u. We call f a permutation function
if for every fixing of any two coordinates, there is exactly one fixing of the remaining coordinate so that
fpx, y, zq “ 1. If instead there exists at most one value, we call f a weak permutation function.

Occasionally, we refer to a product set as a (weak) permutation function if the corresponding indicator
functions satisfy the definition. Note that these definitions coincide with those of 2-dimensional permutations
and linjections, respectively, from [LL14, LPS19] (both of which generalize (weak) graph functions [BDPW10,
Shr18]).

We often work with sets of a particular form, where the following notation will be convenient.

Notation 2.3. For a set A Ă rN s3 and a cube C “ X ˆY ˆZ, let AXY Ă X ˆY denote the projection of A
onto its XY -face. More formally, a point px, yq P AXY if and only if there exists z P Z with px, y, zq P A X C.
The sets AXZ and AY Z are defined analogously.

Given a marginal such as AXY , it will always be clear from context what the ambient cube C “ X ˆ Y ˆ Z
is. When A is a (weak) permutation function (as will typically be the case for us), the projections satisfy
|A X C| “ |AXY | “ |AXZ | “ |AY Z |.

3.2 Rectangles and pseudorandomness
Definition 3.1 ((Soft) rectangle). A rectangle is a function of the form fpxqgpyq, where f : X Ñ t0, 1u and
g : Y Ñ t0, 1u. If we relax the codomains of f and g to be r0, 1s, we call fpxqgpyq a soft rectangle.

We will often call a product set X ˆ Y a rectangle, viewing it as the product of indicator functions XpxqY pyq.
Additionally, we extend these notions in three dimensions to cubes. Soft rectangles have the following
convenient property.

Claim 3.2 ([KLM24, Claim 4.5]). Let f : X Ñ r0, 1s and g : Y Ñ r0, 1s. The soft rectangle fpxqgpyq can be
written as a convex combination of rectangles.

A key pseudorandomness notion in this work is pseudorandomness against cubes.

Definition 2.1 (Pseudorandom against cubes). A set S Ă X ˆ Y ˆ Z is γ-pseudorandom against cubes if
for every cube C Ă X ˆ Y ˆ Z, we have

ˇ

ˇ

ˇ

ˇ

E
px,y,zqPS

rCpx, y, zqs ´ E
xPX,yPY,zPZ

rCpx, y, zqs

ˇ

ˇ

ˇ

ˇ

ď γ.
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A similar notion appeared in [KLM24] with a multiplicative error term and the condition that C is a large
enough cube. They also added a condition on the marginals of S, which becomes useful when S is a dense
function. In this work, S is always a (weak) permutation function, so this was extra condition was not
necessary.

We can also define pseudorandomness against rectanngles in a similar manner.

Definition 2.11 (Pseudorandom against rectangles). A set T Ă X ˆY is γ-pseudorandom against rectangles
if for every rectangle R Ă X ˆ Y , we have

ˇ

ˇ

ˇ

ˇ

E
px,yqPT

rRpx, yqs ´ E
xPX,yPY

rRpx, yqs

ˇ

ˇ

ˇ

ˇ

ď γ.

If S Ă rN s3 is pseudorandom against cubes, then we can show that the marginals to faces of a large cube will
be pseudorandom against rectangles with a small loss in parameters.

Claim 2.12. Suppose S Ă rN s3 is a weak permutation function which is γ-pseudorandom against cubes.
Suppose C “ X ˆ Y ˆ Z is a cube of size |C| ě γ1{2N3. Then, the marginals SXY , SXZ , SY Z are Opγ1{2q-
pseudorandom against rectangles.

Proof. We will prove the statement for T :“ SXY Ă X ˆ Y , the other marginals follow similarly. Suppose
C “ X ˆ Y ˆ Z, and let R “ X 1 ˆ Y 1 Ă X ˆ Y be some rectangle. We want to show that

ˇ

ˇ

ˇ

ˇ

E
px,yqPT

rRpx, yqs ´ E
xPX,yPY

rRpx, yqs

ˇ

ˇ

ˇ

ˇ

ď Opγ1{2q.

Let C 1 “ X 1 ˆ Y 1 ˆ Z. Since S is a weak permutation function, this is equivalent to showing
ˇ

ˇ

ˇ

ˇ

|S X C 1|

|S X C|
´

|C 1|

|C|

ˇ

ˇ

ˇ

ˇ

ď Opγ1{2q.

By the γ-pseudorandomness of S, we have

|S X C|

|S|
“

|C|

N3
˘ γ and

|S X C 1|

|S|
“

|C 1|

N3
˘ γ.

This gives
|C 1| ´ γN3

|C| ` γN3
ď

|S X C 1|

|S X C|
ď

|C 1| ` γN3

|C| ´ γN3
.

For |C| ě γ1{2N3, we have
|S X C 1|

|S X C|
“

|C 1|

|C|
˘ Opγ1{2q.

We will also want two other notions of pseudorandomness for functions on a rectangle, spreadness and left
lower-boundedness. Both were introduced in [KLM24].

Definition 2.5 (Spread). Let r ě 1 and ε P p0, 1q. A function f : X ˆ Y Ñ r0, 1s is (r, εq-spread if for any
rectangle R “ X 1 ˆ Y 1 Ă X ˆ Y of size |R| ě 2´r|X||Y |, we have

E
px,yqPR

fpx, yq ď p1 ` εqErf s.

In short, spreadness guarantees that the density of a given function cannot increase by restricting to some
large rectangle. Along similar lines, left lower-boundedness will guarantee that the rows of f are not too
sparse.

Definition 2.6 (Left lower-bounded). Let ε P p0, 1q. A function f : X ˆ Y Ñ r0, 1s is ε-left lower-bounded
if for every x P X, we have

E
yPY

fpx, yq ě p1 ´ εqErf s.
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3.3 Grid norms
The grid norm is an analytic quantity that captures captures rectangular structure.

Definition 2.8 (Grid norms). For a function f : X ˆ Y Ñ R and ℓ, k P N, let

Uℓ,kpfq “ E
x1,...,xℓPX

ˆ

E
yPY

fpx1, yq ¨ ¨ ¨ fpxℓ, yq

˙k

“ E
y1,...,ykPY

ˆ

E
xPX

fpx, y1q ¨ ¨ ¨ fpx, ykq

˙ℓ

“ E
xPXℓ

yPY k

ℓ
ź

i“1

k
ź

j“1

fpxi, yjq.

The pℓ, kq-grid norm of f is given by }f}Upℓ,kq :“ |Uℓ,kpfq|1{ℓk.

The reader will notice that the p2, 2q-grid norm is exactly the box-norm. These norms were introduced in
[KLM24] as a generalization of the classic box-norm from combinatorics. There it was shown that functions
with large grid norms admit density increments when restricting to some large rectangle.

Lemma 2.9 ([KLM24, Lemma 4.7]). Let f : X ˆ Y Ñ r0, 1s; suppose that }f}1 ě δ. Let ℓ, k P N. If

}f}Upℓ,kq ě p1 ` εq}f}1,

then there exists some rectangle R Ă X ˆ Y with

E
px,yqPR

fpx, yq ě

´

1 `
ε

2

¯

}f}1 and }R}1 ě
1

2
¨ ε ¨ δℓk`1.

The reader will notice that the contrapositive of Lemma 2.9 states that if f is spread (see Definition 2.5), then
f has a bounded grid-norm. Along these lines, the following lemma will also let us convert pseudorandomness
against rectangles into bounded grid norms.

Lemma 3.3. Let T Ă X ˆ Y be a set with size |T | “ τ |X||Y | which is γ-pseudorandom against rectangles,
and let ℓ, k P N. If γ ă 1

4 ¨ ε2 ¨ τ ℓk`1, then }T }Upℓ,kq ď p1 ` εqτ .

Proof. Assume for the sake of contradiction that }T }Upℓ,kq ě p1` εqτ . By Lemma 2.9, there exists a rectangle
R with

|R X T |

|R|
ě

´

1 `
ε

2

¯

|T |

|X ˆ Y |
and

|R|

|X ˆ Y |
ě

1

2
¨ ε ¨ τ ℓk`1.

This contradicts our assumption on γ, as pseudorandomness against rectangles of T implies

γ ě
|R X T |

|T |
´

|R|

|X ˆ Y |
ě

´

1 `
ε

2

¯

|R|

|X ˆ Y |
´

|R|

|X ˆ Y |
ě

1

4
¨ ε2 ¨ τ ℓk`1.

Before proceeding, we collect a number of useful facts about grid norms. Although technically, } ¨ }Upℓ,kq is not
a norm, it is a semi-norm in the case where ℓ and k are both even [Hat10, Theorems 2.8, 2.9]. (Thus, we may
apply a triangle inequality in that setting.) Much like standard k-norms, grid norms are monotonic.

Claim 3.4 ([KLM24, Claim 4.2]). Let ℓ, ℓ1, k, k1 P N, where ℓ ď ℓ1 and k ď k1. Additionally, let f : X ˆ Y Ñ

Rě0. Then,
}f}Upℓ,kq ď }f}Upℓ1,kq and }f}Upℓ,kq ď }f}Upℓ,k1q.

They may also be used to decouple two functions via an application of the Cauchy-Schwarz inequality.
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Lemma 3.5 ([KLM24, Lemma 4.3]). Let g : X ˆ Z Ñ R and h : Y ˆ Z Ñ R. For even k P N we have

E
xPX,yPY

ˆ

E
zPZ

gpx, zqhpy, zq

˙k

ď U2,kpgq1{2 ¨ U2,kphq1{2.

4 Applications
In this section, we present several applications of Theorem 2.4 to communication complexity and extremal
combinatorics. The applications are chosen to illustrate the flavor of results one may obtain via our techniques,
but the list is not exhaustive. Each subsection is self-contained and may be skipped according to the reader’s
preferences.

4.1 Communication complexity of permutation functions
Our first application is to communication complexity. Before providing the details, we briefly review the
necessary setup. The communication complexity of a function f is the fewest number of bits required for a
protocol to evaluate f . We will be exclusively interested in the three-player number-on-forehead (3-NOF)
model of communication, where each player’s input is viewed as being on their forehead, so that they may
see all inputs except their own.

Definition 4.1 (Cylinder intersection). A set A Ă rN s3 is a cylinder intersection if

A “
␣

px, y, zq P rN s3 : px, yq P S1, px, zq P S2, py, zq P S3

(

for some sets S1, S2, S3 Ă rN s2.

Notice that the left-hand side of Theorem 2.4’s conclusion is the size of a specific cylinder intersection.
The work of [KLM24] referred to this as the “cylinder intersection closure of A,” i.e. the smallest cylinder
intersection containing A. In particular, when A is a cylinder intersection, the cylinder intersection closure
of A is A itself, so this gives a lower bound on the size of cylinder intersections which can be contained
in a pseudorandom set. It is well known that one can translate complexity information to combinatorial
information in the form of cylinder intersections [BNS89].

Fact 4.2. If there exists a b-bit non-deterministic protocol to determine membership in a set S, then S can
be written as a union of 2b cylinder intersections.

For additional background, see, for example, the recent excellent book [RY20] on communication complex-
ity.

Communication bounds on weak permutation functions are known to have strong relationships with bounds on
a number of landmark combinatorial problems, such as corners [CFL83, LS21b], combinatorial lines (i.e. Hales-
Jewett theorems) [CFL83, Shr18], and dense Ruzsa-Szemerédi graphs [LPS19, AS20]. These functions (and
several variants) have been explicitly considered in a number of prior works [BDPW10, LL14, LPS19, AS20].
Most relevant to our results, Linial, Pitassi, and Shraibman proved the deterministic communication complexity
for permutation functions is Ωplog log logNq [LPS19]. (One may wish to contrast this with the existence of
a simple constant communication randomized protocol via reduction to equality.) The following theorem
shows that this bound can be substantially improved in the case of sufficiently pseudorandom functions. We
state the theorem for permutation functions, but it can be easily adapted to work for (dense enough) weak
permutation functions.

Theorem 4.3. Suppose S Ă rN s3 is a permutation function which is N´c-pseudorandom against cubes.
Then, any non-deterministic 3-NOF protocol for determining membership in S requires at least Ωppc logNq1{4q

bits of communication.

15



Proof. Suppose there exists a b-bit non-deterministic protocol to determine membership in S. By Fact 4.2,
S can be written as a union of 2b cylinder intersections A1, . . . , A2b Ă S. Let A be the largest one, where
|A| ě 2´bN2. Assume towards a contradiction that b “ Oppc logNq1{4q small enough. Then N´c ď 2Opb4q

and we may apply Theorem 2.4 (with d “ b, s “ 1) and deduce that

A1 “
␣

px, y, zq P rN s3 : px, yq P AXY , px, zq P AXZ , py, zq P AY Z

(

has size |A1| ě 2´Opb3qN3. However, since A is a cylinder intersection, we have A1 “ A. We thus reached a
contradiction since |A| ď |S| “ N2.

As a corollary, we get a lower bound for Exactly-N in quasirandom groups such as G “ SL2pFpq, discussed in
Section 4.2.

Theorem 1.1 (Special case of Theorem 4.3). Any non-deterministic 3-NOF protocol computing Exactly-N
over G “ SL2pFpq for prime p requires Ωplog1{4

|G|q bits of communication.

Proof. Let G “ SL2pFpq. The proof follows from Theorem 4.3 and the fact that S “ tpx, y, zq P G : xyz “ 1Gu

is D´1{2-pseudorandom against cubes for D “ pp ´ 1q{2 (see Lemma 4.8).

4.2 Corners in quasirandom groups
The notion of quasirandom groups was introduced by Gowers [Gow08] in studying product-free sets. Quasir-
andom groups enjoy the property that for any two large sets A,B Ă G, the distribution obtained by taking
uniform random samples a P A, b P B and outputting ab is close to uniform in an L2-sense. Of course, abelian
groups fail to satisfy the mixing property mentioned above. In Fn

2 for instance, a subspace V of codimension
1 is very dense, but V ` V “ V is far from being uniform. We now present the formal definition.

Definition 4.4 (D-Quasirandom group). A finite group G is D-quasirandom if every nontrivial irreducible
representation over C has dimension at least D.

One can show that every irreducible representation of a finite group G must have dimension at most
a

|G|.
We record this fact for later use, which can be found in most introductory texts on representation theory of
finite groups. For example, this follows from Proposition 5 in [Ser77, Chapter 2.4].

Fact 4.5. Every complex irreducible representation of a finite group G has dimension at most
a

|G|.

There are choices of groups G which are D-quasirandom for D “ |G|Ωp1q. Contrast this with abelian groups,
where every irreducible representation has dimension 1. A common example of a quasirandom group is

SL2pFpq “

"ˆ

a b
c d

˙

: a, b, c, d P Fp, ad ´ bc “ 1

*

,

the set of 2ˆ 2 matrices over the finite field Fp for p prime with determinant 1. A classical result of Frobenius
[Fro68] shows that every nontrivial irreducible representation of SL2pFpq has dimension at least p´1

2 „ |G|1{3.
(For exposition of these facts and additional background on quasirandom groups, see e.g. [Tao11].)

Quasirandom groups have seen various application in constructing pseudorandom objects. The Ramanujan
graphs of Lubotzky, Phillips, and Sarnak [LPS88] are built from Cayley graphs of PSL2pFpq for specific
choices of p. (The group PSL2pFpq is obtained by quotienting SL2pFpq by its center.) Bourgain and Gamburd
[BG08] showed that random Cayley graphs on SL2pFpq are expanders. The quasirandomness property was
useful for arguing about the multiplicity of eigenvalues of the Cayley graph. Outside of graph theory, ideas
from the study of quasirandom groups led to an optimal inapproximability result for k-LIN over non-abelian
groups [BK21]. A recent work of Derksen, Lee, and Viola [DLV24] building on [GV19] proved k-NOF lower
bounds for computing an “interleaved product” of elements coming from a quasirandom group. In particular,
their bounds are best understood in the regime where k is growing, and they match that of [BNS89].
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Before we can formally state the mixing property of quasirandom groups, we define the convolution of two
functions f, g : G Ñ R as

pf ˚ gqpxq “ E
yPG

“

fpyqgpy´1xq
‰

.

Notice that the arguments to the functions in the expectation y, y´1x satisfy y ¨ py´1xq “ x. When µ1, µ2

are distributions, then pµ1 ˚ µ2qpxq is the probability of independent samples z1 „ µ1 and z2 „ µ2 satisfying
x “ z1z2. The most useful property of quasirandom groups is that convolutions of large sets mix. More
formally, we have the following:

Theorem 4.6 ([Gow08, BNP08]). Let G be a D-quasirandom group and f, g : G Ñ R, and assume at least
one has mean zero. Then

}f ˚ g}2 ď D´1{2}f}2}g}2.

There are various proofs of this fact [BNP08, Gow08, Tao11] which use representation theory. Over abelian
groups, convolutions and L2-norms have pleasant interpretations when working in the Fourier basis. Many of
these statements have clean analogs over non-abelian groups which can be formulated using representation
theory.

Theorem 4.6 can be used to count solutions to equations in quasirandom groups. [Gow08] did exactly this to
argue about the size of product-free sets in quasirandom groups. Namely, we can count solutions px, yq where
x P X, y P Y, xy P Z. We have the following:

Corollary 4.7 ([Gow08, BNP08]). Let G be a D-quasirandom group, and suppose X,Y, Z Ă G are subsets.
Then,

ˇ

ˇ

ˇ

ˇ

E
x,yPG

rXpxqY pyqZpxyqs ´ ErXsErY sErZs

ˇ

ˇ

ˇ

ˇ

ď D´1{2}X}2}Y }2}Z}2.

Proof. Let f “ X ´ ErXs, g “ Y ´ ErY s, and h “ Z ´ ErZs. We have

E
x,yPG

rXpxqY pyqZpxyqs “ E
zPG

rpX ˚ Y qpzqZpzqs

“ ErXsErY sErZs ` E
zPG

rpf ˚ gqpzqhpzqs

“ ErXsErY sErZs ˘ }f ˚ g}2}h}2 (Cauchy-Schwarz)

“ ErXsErY sErZs ˘ D´1{2}f}2}g}2}h}2. (Theorem 4.6)

Since f and ErXs are orthogonal, we have }f}2 “
`

ErX2s ´ ErXs2
˘1{2

ď }X}2, and similarly for g and h.

We can essentially rephrase Corollary 4.7 as a statement about pseudorandomness against cubes.

Lemma 4.8. Let G be a D-quasirandom group. Then the set

S – tpx, y, xyq : x, y P Gu

is D´1{2-pseudorandom against cubes.

Proof. If C “ X ˆ Y ˆ Z Ă G3 is a cube, then Corollary 4.7 implies
ˇ

ˇ

ˇ

ˇ

E
px,y,zqPS

rCpx, y, zqs ´ E
x,y,zPG

rCpx, y, zqs

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

E
x,yPG

rXpxqY pyqZpxyqs ´ ErXsErY sErZs

ˇ

ˇ

ˇ

ˇ

ď D´1{2.

Note that the same proof also works to show that tpx, y, zq : xyz “ 1Gu is pseudorandom against cubes by
replacing Z in the above proof with Z´1 “ tz´1 : z P Zu. Together with Lemma 4.8, we obtain our result on
corner-free sets in quasirandom groups as a corollary of Theorem 2.4, where we define corners in the following
way:
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Definition 4.9 (Corner). Let G be a finite group. A corner is a triple tpx, yq, pxg, yq, px, gyqu Ă G ˆ G. A
corner is nontrivial if g ‰ 1G.

Corollary 4.10. Let G be a D-quasirandom group. Then, any corner-free subset of G ˆ G has size at most

exp
´

´Ω
´

log1{4 D
¯¯

¨ |G|2.

Proof. Let B Ă G ˆ G be a corner-free set of size |B| ě 2´d|G|2 for some d ě 1. Assume for the sake of
contradiction that d ď Oplog1{4 Dq for some small enough implicit constant. Define S Ă G ˆ G ˆ G to be

S :“ tpx, y, xyq : x, y P Gu.

Notice that by the group property, S is a permutation function. Additionally, Lemma 4.8 implies that S is
D´1{2-pseudorandom with respect to cubes. We will embed B as a subset of S by defining

A :“ tpx, y, xyq : px, yq P Bu Ă S.

Observe A has size |A| ě 2´d|S|. Additionally,

tpx, yq, px, x´1zq, pzy´1, yqu Ă B ðñ tpx, y, xyq, px, x´1z, zq, pzy´1, y, zqu Ă A.

(Note that tpx, yq, px, x´1zq, pzy´1, yqu corresponds to a corner by an appropriate change of variables.) This
along with the fact that A is a weak permutation function implies that the corner count in B is given by

ÿ

x,y,zPG

AXY px, yqAXZpx, zqAY Zpy, zq,

which since B has no nontrivial corners, is at most the number of trivial corners |G|2. We can use Theorem 2.4
to lower bound this count as long as we can verify that S is sufficiently pseudorandom against cubes. Indeed,
for d ď Oplog1{4 Dq small enough, we have D´1{2 ď 2´Opd4

q. By Fact 4.5, we have D ď |G|1{2. This gives a
lower bound on the corner count of

2´Opd3
q|G|3 ě 2´Oplog3{4 Dq|G|3 ą |G|2

which gives the desired contradiction.

4.3 Improved triangle removal lemma for pseudorandom graphs
An important result in extremal combinatorics is the triangle removal lemma [RS78], which says that any
N -vertex graph which is ε-far from being triangle-free3 contains at least δN3 triangles, where δ “ δpεq does
not depend on N . The original proof of Ruzsa and Szemerédi is based on Szemerédi’s regularity lemma
[Sze75], which gives very poor quantitative bounds on δ as a function of ε. Despite much effort towards
obtaining improved bounds, the best known bound [Fox11] is still quantitatively very weak - δ´1 is at most
a tower of exponentials of height about logp1{εq. To contrast that, the best known lower bound on δ is
quasi-polynomial [Alo02], and shows that δ ď εOplogp1{εqq is necessary.

Our main result can be seen as a quasi-polynomial upper bound for the triangle removal lemma in a restricted
setting, when the triangles in the graph satisfy a certain pseudorandom property. First, an equivalent
formulation of the triangle removal lemma is that any graph that contains εN2 edge disjoint triangles, must
contain at least δN3 triangles. Note that we can identify a triangle px, y, zq with a point in rN s3. We may
also assume without loss of generality that the graphs we are studying are tri-partite. Thus, we can identify
the triangles in a graph G with a subset of rN s3.

3That is, one needs to remove at least ε
`N
2

˘

edges in order to make the graph triangle free.
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Assume we are in the following special case. Let G be a tri-partite graph with N nodes on each side. Let
A Ă rN s3 denote a maximal collection of edge-disjoint triangles in G, and assume that |A| “ 2´dN2. Observe
that A is a weak permutation function. Assume that there exists a weak permutation function S Ă rN s3 which
contains A, and which is γ-pseudorandom against triangles for γ ď 2´Opd4

q. Theorem 2.4 then implies that
G contains at least 2´Opd3

qN3 many triangles. That is, in this special case we obtain δ ě εOplog2
p1{εqq.

5 Obtaining a structured cube
In this section, we prove Lemma 2.7. To recall, the setup is the following: we have some weak permutation
function S Ă rN s3 which is pseudorandom against cubes, and we have a set A Ă S which is dense in S. The
goal is to perform a density increment process which restricts A to a large cube C “ X ˆ Y ˆ Z where A
satisfies various pseudorandom properties. First, the cube C should be relatively dense in rN s3. Second, the
marginals of A X C restricted to the XY,XZ, Y Z-faces should be spread. As a technical condition, we will
also want the rows of the marginals to be left lower-bounded.

While this third condition is seemingly harmless, we were unable to obtain left lower-boundedness using the
traditional density increment process which iteratively restricts to better and better cubes. To circumvent
this obstacle, we follow [KLM24] which optimizes a carefully defined potential function. As in their work,
we first prove an intermediate result (Lemma 5.2) which only guarantees left lower-boundedness for a large
fraction of the rows. We will later follow the proof of [KLM24, Lemma 2.13] to prune out these bad rows
while maintaining the desired pseudorandom properties.

Definition 5.1 (Mostly left lower-bounded). Let ε P p0, 1q, β P r0, 1s. A function f : X ˆ Y Ñ r0, 1s is
β-mostly ε-left lower-bounded if for at least a p1 ´ βq-fraction of x P X, we have

E
yPY

fpx, yq ě p1 ´ εqErf s.

Lemma 5.2. Let S Ă rN s3 be a weak permutation function which is γ-pseudorandom against cubes. Let
d ě 1, r ě 1, ε P p0, 1q, β P p0, 1{2q, and assume γ ď 2´Ωpdr{εqβ. Let A Ă S of size |A| ě 2´d|S|. Then there
is a cube C “ X ˆ Y ˆ Z Ă rN s3 of size |C| ě 2´Opdr{εqN3 such that

1. |A X C| ě 2´d|S X C|,

2. AXY , AXZ , AY Z are pr, εq-spread,

3. AXY , AXZ , AY Z are β-mostly ε-left lower-bounded.

Proof. We make minor modifications to the proof of [KLM24, Lemma 5.5]. Let η “ Θpε{rq be sufficiently
small. Given a cube C Ă rN s3, define the potential function

ϕpCq “
|A X C|

|S X C|
¨ |C|η.

Let C “ X ˆ Y ˆ Z be a cube which maximizes ϕp¨q.

Density and Large Cube. Initially for C0 “ rN s3 we have ϕpC0q “ p|A|{|S|qN3η ě 2´dN3η, and for
C we have ϕpCq “ p|A X C|{|S X C|q|C|η. Since C maximizes ϕp¨q we can already make two deductions.
First, since |C| ď N3 we must have |A X C| ě 2´d|S X C|, and second, since |A X C| ď |S X C| we have
|C|η ě 2´dN3η, which implies |C| ě 2´d{ηN3 ě 2´Opdr{εqN3, with the last inequality holding for η “ Ωpε{rq.
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Spreadness. We will show that the marginal AXY is pr, εq-spread. Showing spreadness for AXZ and AY Z

is similar. Assume towards a contradiction that there exists a rectangle R “ X 1 ˆ Y 1 Ă X ˆ Y of size
|R| ě 2´r|X||Y | such that

E
xPX1,yPY 1

AXY px, yq ą p1 ` εq E
xPX,yPY

AXY px, yq.

Define C 1 “ X 1 ˆ Y 1 ˆ Z. We have

E
xPX1,yPY 1

AXY px, yq “
|A X C 1|

|X 1||Y 1|
and E

xPX,yPY
AXY px, yq “

|A X C|

|X||Y |

where we have critically used the property that S is a weak permutation function. This gives

|A X C 1|

|A X C|
ą p1 ` εq ¨

|X 1||Y 1|

|X||Y |
“ p1 ` εq ¨

|C 1|

|C|
.

Let |S| “ σN3, noting that σ ď 1{N . By the γ-pseudorandomness of S against cubes, we have |S X C| “

σ|C| ˘ γ|S| and |S X C 1| “ σ|C 1| ˘ γ|S|. Thus,

|S X C|

|S X C 1|
ě

σ|C| ´ γ|S|

σ|C 1| ` γ|S|
ě

1 ´
γ|S|

σ|C|

1 `
γ|S|

σ|C1|

¨
σ|C|

σ|C 1|
“

1 ´ γN3

|C|

1 ` γ N3

|C1|

¨
|C|

|C 1|
.

Recall that |C| ě 2´Opdr{εqN3. Similarly, |C 1| ě 2´r|C| ě 2´Opdr{εqN3. Therefore,

|S X C|

|S X C 1|
ě

1 ´ ε{16

1 ` ε{16
¨

|C|

|C 1|
ě p1 ´ ε{4q

|C|

|C 1|

where the penultimate inequality holds for γ ď 2´Ωpdr{εq small enough. Putting everything together, we get

ϕpC 1q

ϕpCq
“

|A X C 1|

|A X C|
¨

|S X C|

|S X C 1|
¨

ˆ

|C 1|

|C|

˙η

ą p1 ` εqp1 ´ ε{4q ¨ 2´rη ą 1

where the last inequality holds for η ď Opε{rq small enough. This contradicts the maximality of C.

Mostly left lower-bounded. We next show that the marginal AXY is β-mostly ε-left lower-bounded.
The remaining marginals follow similarly. Assume towards a contradiction that there exists X 1 Ă X of size
|X 1| “ β|X| such that

E
yPY

AXY px, yq ă p1 ´ εqErAXY s @x P X 1.

Set C 1 “ X 1 ˆ Y ˆ Z, and let C2 “ CzC 1 “ pXzX 1q ˆ Y ˆ Z. Note that |C2| “ p1 ´ βq|C|. We will show
that ϕpC2q ą ϕpCq, which is a contradiction to the maximality of C. We have

|A X C2| “ |A X C| ´ |A X C 1| ą p1 ´ p1 ´ εqβq|A X C|.

At this point, we proceed similarly to the previous paragraph. By the γ-pseudorandomness of S, we have
|S X C| “ σ|C| ˘ γ|S| and |S X C2| “ σ|C2| ˘ γ|S|. This gives

|S X C|

|S X C2|
ě

σ|C| ´ γ|S|

σ|C2| ` γ|S|
ě

1 ´ γN3

|C|

1 ` γ N3

|C2|

¨
σ|C|

σ|C2|
ě

1 ´ γ ¨ 2Opdr{εq

1 ` γ ¨ 2Opdr{εq
¨

|C|

|C2|
ě p1 ´ γ ¨ 2Opdr{εqqp1 ´ βq´1.

Putting everything together, we get

ϕpC2q

ϕpCq
“

|A X C2|

|A X C|
¨

|S X C|

|S X C2|
¨

ˆ

|C2|

|C|

˙η

ą p1 ´ β ` εβqp1 ´ γ ¨ 2Opdr{εqqp1 ´ βq´1p1 ´ βqη ą 1

where the last inequality holds for γ ď εβ ¨ 2´Ωpdr{εq and η ď Opεq small enough.
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At this point, we prune out the rows which are not left lower-bounded. Our proof is similar to [KLM24,
Lemma 2.13].

Lemma 2.7 (Restricting to a good cube). Let S Ă rN s3 be a weak permutation function which is γ-
pseudorandom against cubes. Let d ě 1, r ě 1, ε P p0, 1q, and assume γ ď 2´Ωpdr{εq. Let A Ă S of size
|A| ě 2´d|S|. Then there is a cube C “ X ˆ Y ˆ Z Ă rN s3 of size |C| ě 2´Opdr{εqN3 with the following
properties:

1. |A X C| ě 2´pd`1q|S X C|,

2. AXZ , AY Z are pr, εq-spread,

3. AXZ , AY Z are ε-left lower-bounded.

Proof. Apply Lemma 5.2 with parameters d, r ` 1, ε{2, β “ 2´Θpdr{εq small enough, which we can as we
assume γ ď 2´Ωpdr{εq. We next prune C “ X ˆ Y ˆ Z to obtain the desired cube.

Let X 1 Ă X be the set of points where AXZ is pε{2q-left lower-bounded, and Y 1 Ă Y be the set of points
y where AY Z is pε{2q-left lower-bounded, both with respect to C. Let C 1 “ X 1 ˆ Y 1 ˆ Z, and consider the
marginals AX1Z , AY 1Z with respect to C 1. The claim is that the cube C 1 satisfies the desired properties.

We already have |A X C| ě 2´d|S X C|, and we will now show that |A X C 1| ě 2´pd`1q|S X C 1|. We will do
this by arguing that the number of points in A X pCzC 1q is small. Each x P XzX 1 satisfies

E
zPZ

AXZpx, zq ď p1 ´ ε{2qErAXZs,

so the “bad” rows of AXZ account for at most p1 ´ ε{2qβ|A X C| many points, and similarly for AY Z . This
gives

|A X C 1| ě |A X C| ´ 2p1 ´ ε{2qβ|A X C| ě p1 ´ 2βq|A X C|.

Combined with |S X C 1| ď |S X C|, and assuming β ď 1{4, we obtain |A X C 1| ě 2´pd`1q|S X C 1|. Next,
observe that

ErAX1Zs “
|A X C 1|

|X 1||Z|
ě

p1 ´ 2βq|A X C|

|X||Z|
“ p1 ´ 2βqErAXZs,

and similarly

ErAX1Zs “
|A X C 1|

|X 1||Z|
ď

|A X C|

p1 ´ βq|X||Z|
“ p1 ´ βq´1 ErAXZs,

which will later be used to show left lower-boundedness.

We now show that AX1Z , AY 1Z are pr, εq-spread. We show this for AX1Z , and an analogous argument works
for AY 1Z . Assume that R Ă X 1 ˆZ is a rectangle of size |R| ě 2´r|X 1||Z|. We can also view R as a rectangle
R Ă X ˆ Z of size |R| ě p1 ´ βq2´r|X||Z| ě 2´pr`1q|X||Z|. Note that AX1Z is upper bounded by AXZ .
That is, for px, zq P X 1 ˆ Z we have

AX1Zpx, zq “ 1rDy P Y 1, px, y, zq P As ď 1rDy P Y, px, y, zq P As “ AXZpx, zq.

Next, applying the assumption that AXZ is pr ` 1, ε{2q-spread gives

E
px,zqPR

AX1Zpx, zq ď E
px,zqPR

AXZpx, zq ď p1 ` ε{2qErAXZs ď p1 ` ε{2qp1 ´ 2βq´1 ErAX1Zs.

We may assume β “ Opεq is small enough so that p1 ` ε{2qp1 ´ 2βq´1 ď 1 ` ε, which concludes the proof of
spreadness.

Finally, we show that AX1Z , AY 1Z are ε-left lower-bounded. We show this for AX1Z , and an analogous
argument works for AY 1Z . Take any x P X 1. We have by assumption

E
zPZ

AXZpx, zq ě p1 ´ ε{2qErAXZs.
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Next, since S is a weak permutation function, we have
ÿ

zPZ

AX1Zpx, zq “ |A X ptxu ˆ Y 1 ˆ Zq| ě |A X ptxu ˆ Y ˆ Zq| ´ |Y zY 1| ě
ÿ

zPZ

AXZpx, zq ´ βN.

If instead we average over Z, using the fact that |Z| ě 2´Opdr{εqN gives

E
zPZ

AX1Zpx, zq ě E
zPZ

AXZpx, zq ´ β ¨ 2Opdr{εq.

Setting β “ 2´Ωpdr{εq small enough, we can obtain

E
zPZ

AX1Zpx, zq ě p1 ´ ε{4q E
zPZ

AXZpx, zq.

We already saw that ErAXZs ě p1 ´ βqErAX1Zs. Putting this all together gives

E
zPZ

AX1Zpx, zq ě p1 ´ ε{4q E
zPZ

AXZpx, zq ě p1 ´ ε{4qp1 ´ ε{2qErAXZs ě p1 ´ ε{4qp1 ´ ε{2qp1 ´ βqErAX1Zs.

For β ď Opεq small enough, the right hand side is at least p1 ´ εqErAX1Zs. This concludes the proof of left
lower-boundedness.

6 Density increment for sparse functions
In this section, we prove Lemma 2.13, restated below.

Lemma 2.13 (Relative version of [KLM24, Lemma 4.7]). Let f : X ˆ Y Ñ r0, 1s be a function supported
on a set T Ă X ˆ Y of size τ |X||Y |; suppose that }f}1pµT q “ δ. Let ℓ, k P N. Additionally, assume that T is
γ-pseudorandom with respect to rectangles for γ ď ε8 ¨ pτδ{2qOpℓkq small enough. If

}f}Upℓ,kq ě p1 ` εq}f}1,

then there exists some rectangle R Ă X ˆ Y with

E
px,yqPR

fpx, yq ě

´

1 `
ε

64

¯

}f}1 and }R}1 ě
1

64
¨ ε ¨ δℓk`1.

One may wish to compare it directly with the original version below, where the size of the rectangle obtained
depends on the global density of f , rather than its density inside a sparse pseudorandom set.

Lemma 2.9 ([KLM24, Lemma 4.7]). Let f : X ˆ Y Ñ r0, 1s; suppose that }f}1 ě δ. Let ℓ, k P N. If

}f}Upℓ,kq ě p1 ` εq}f}1,

then there exists some rectangle R Ă X ˆ Y with

E
px,yqPR

fpx, yq ě

´

1 `
ε

2

¯

}f}1 and }R}1 ě
1

2
¨ ε ¨ δℓk`1.

Much of our proof proceeds in the same way as the proof of Lemma 4.7 in [KLM24]. They begin with a
function f defined on X ˆ Y which is dense and has a large grid norm, and obtain a convex combination of
rectangles which has high correlation with f . Then, they argue that if f has high correlation with a convex
combination of rectangles, then it must admit a density increment on some large rectangle. More precisely,
they show:
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Claim 6.1 ([KLM24, Claim 4.6]). Let f : X ˆ Y Ñ Rě0 and W be a convex combination of rectangles.
Suppose that }f}8 ď ∆ and }W }1 ě δ. If

B

W

}W }1
, f

F

ě 1 ` ε,

then there is some rectangle R with
B

R

}R}1
, f

F

ě 1 `
ε

2
and }R}1 ě

εδ

2∆
.

Our proof will follow the same outline. The major difference is that while their proof starts with a globally
dense function, we begin with a function f which is dense on a sparse pseudorandom set T . The function f
may be very sparse when viewed as a function on X ˆ Y , which is what prevents us from simply applying
the claims from [KLM24]. Much of the work that goes into proving Lemma 2.13 is proving versions of Claim
4.6 and Lemma 4.7 from [KLM24] which work in this sparse setting. We reiterate that crucially, the density
of the rectangles obtained by our analogous results will not depend on the density of T .

We will first prove a similar claim to Claim 6.1, but where the inner products and expectations in the
conclusion are taken with respect to a distribution µ. For concreteness, we will eventually apply Claim 6.2
with the uniform distribution over a sparse pseudorandom set; however, the statement holds for arbitrary
distributions. The proof follows that of [KLM24, Claim 4.6] with almost no modification.

Claim 6.2 (Relative version of [KLM24, Claim 4.6]). Let f : X ˆ Y Ñ Rě0 and W be a convex combination
of rectangles. Let µ be a distribution on X ˆ Y . Suppose that }f}8 ď ∆ and }W }1pµq ě δ. If

B

W

}W }1pµq

, f

F

µ

ě 1 ` ε,

then there is some rectangle R with
B

R

}R}1pµq

, f

F

µ

ě 1 `
ε

2
and }R}1pµq ě

εδ

2∆
.

Proof. We follow the proof of [KLM24, Claim 4.6] and edit steps to work with distributions. Write W “
ř

i ciRi where Ri are rectangles and ci ě 0,
ř

ci “ 1. We begin by pruning rectangles which are too small;
define W 1 “

ř

i c
1
iRi via c1

i “ ci if }Ri}1pµq ě κ and 0 otherwise for some threshold value κ. We note that

xW 1, fyµ

}W }1pµq

“
xW, fyµ

}W }1pµq

´
xW ´ W 1, fyµ

}W }1pµq

ě 1 ` ε ´
}W ´ W 1}1pµq}f}8

}W }1pµq

ě 1 ` ε ´
κ∆

δ
.

Setting κ “ εδ{2∆ gives
xW 1, fyµ

}W 1}1pµq

ě
xW 1, fyµ

}W }1pµq

ě 1 `
ε

2
.

In particular, we must have that xW 1, fyµ ą 0, which guarantees that W 1 is not identically zero on the
support of µ. We have

xW 1, fyµ

}W 1}1pµq

“

ř

i c
1
ixRi, fyµ

ř

i c
1
i}Ri}1pµq

.

By averaging, there is some choice of R “ Ri with
B

R

}R}1pµq

, f

F

µ

ě 1 `
ε

2
and }R}1pµq ě κ.
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We next prove a relative version of [KLM24, Lemma 4.7]. Our first adaptation requires pseudorandom
properties of T slightly different from those we have used prior, but we will later show using Lemmas 3.3 and
6.7 that they follow from our more standard assumption of T being pseudorandom against rectangles.

The proof of Lemma 2.13 goes through a special distribution before moving to the uniform distribution on T .
In order to define this distribution, we first require some new notation.

Definition 6.3 (Grid set). For a set T Ă X ˆ Y and ℓ, k P N, let the pℓ, kq-grid set be Γℓ,kpT q Ă Xℓ ˆ Y k

defined as
Γℓ,kpT q :“ tpx1, . . . , xℓ, y1, . . . , ykq : pxi, yjq P T for every i P rℓs, j P rksu .

The pℓ, kq-grid set of T gives extra information in comparison to the pℓ, kq-grid norm of T . It follows from
the definition that

Uℓ,kpT q “
|Γℓ,kpT q|

|X|ℓ|Y |k
.

Defining the pℓ, kq-grid set has the added benefit of providing combinatorial information about T . The
relationship between the pℓ, kq-grid set and pℓ, kq-grid norm will be the main focus in the proof of Lemma 6.6.
It is helpful to think of the setting where T is the edge-set of a bipartite graph with vertex sets X and Y .
For example, if the vertices tx1, . . . , xℓu Ă X and ty1, . . . , yku Ă Y form a Kℓ,k-minor, then px,yq P Γℓ,kpT q.
Note that there could be many more elements in the pℓ, kq-grid set of T than Kℓ,k-minors since the tuples
px,yq are ordered, and the entries are not required to be distinct. We will also want to define a set which
contains the tuples px,yq P Γℓ,kpT q where x1 “ a,y1 “ b. This motivates the following definition:

Definition 6.4 (Restricted grid set). For a set T Ă XˆY , pa, bq P XˆY , and ℓ, k P N, let the pa, bq-restricted
pℓ, kq-grid set be

Γ
pa,bq

ℓ,k pT q :“ tpx,yq P Γℓ,kpT q : x1 “ a,y1 “ bu.

Note that we could have used any choice of indices xi “ a,yj “ b in the definition, since the set Γℓ,kpT q

is invariant under permuting the first ℓ coordinates and the last k coordinates. If we return to the graph
analogy, it is easy to see that every Kℓ,k-minor in the graph which contains the edge pa, bq will correspond to
a tuple in Γ

pa,bq

ℓ,k pT q. If Ya, Xb denote the neighborhoods of a, b, respectively, the pa, bq-restricted pℓ, kq-grid is
equivalent to considering the set of Kℓ´1,k´1-minors contained in Xb ˆ Ya. This perspective will be especially
useful in the proof of Lemma 6.7.

Finally, we will define a distribution supported on T which captures the fraction of tuples px,yq P Γℓ,kpT q

which have x1 “ a,y1 “ b.

Definition 6.5 (Restricted grid set distribution). For a set T Ă X ˆ Y , pa, bq P X ˆ Y , and ℓ, k P N, let
the pa, bq-restricted pℓ, kq-grid set distribution νTℓ,kpa, bq be the marginal distribution of px1,y1q when picking
uniform random px,yq P Γℓ,kpT q. More precisely,

νTℓ,kpa, bq :“
|Γ

pa,bq

ℓ,k pT q|

|Γℓ,kpT q|
¨ |X||Y |.

The factor of |X||Y | is placed to ensure that ErνTℓ,ks “ 1. In the graph analogy, this corresponds to a
distribution on T which captures the fraction of Kℓ,k-minors containing a fixed edge pa, bq. If the edge set T
is chosen at random, we would expect that no edge is favored when it comes to being included in Kℓ,k-minors,
and so νTℓ,k should be close to uniform. In fact, it will suffice that T is pseudorandom against rectangles when
viewed as a subset of X ˆ Y . We will later make this intuition precise in Lemma 6.7.

Now, we can state and prove Lemma 6.6.

Lemma 6.6. Let f : X ˆ Y Ñ r0, 1s be a function supported on a set T Ă X ˆ Y of size τ |X||Y |; suppose
that }f}1pµT q “ δ. Let ℓ, k P N and λ ď Opε ¨ δℓk`1q small enough. Additionally, assume that T satisfies the
following pseudorandom properties:
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1. }T }Upℓ,kq ď p1 ` ε{2qτ ,

2. }νTℓ,k ´ µT }1 ď λ.

If }f}Upℓ,kq ě p1 ` εq}f}1, then there exists some rectangle R Ă X ˆ Y with
B

R

}R}1pµT q

, f

F

µT

ě

´

1 `
ε

32

¯

}f}1pµT q and }R}1pµT q ě
1

32
¨ ε ¨ δℓk`1.

Proof. Assume δ ą 0, as otherwise the lemma trivially holds. For ease of notation, let µ “ µT and ν “ νTℓ,k.
Since f is supported on T , we have f “ T ¨ f . Additionally, }f}1 “ }T }1}f}1pµq, which implies }f}1 “ τδ. By
our assumption that }f}Upℓ,kq ě p1 ` εq}f}1, we have

p1 ` εqℓkpτδqℓk ď }f}ℓkUpℓ,kq “ E
x1,...,xℓPX
y1,...,ykPY

«

ℓ
ź

i“1

k
ź

j“1

fpxi, yjq

ff

“ E
x1,...,xℓPX
y1,...,ykPY

«˜

ℓ
ź

i“1

k
ź

j“1

T pxi, yjq

¸˜

ℓ
ź

i“1

k
ź

j“1

fpxi, yjq

¸ff

“ Pr
xPXℓ

yPY k

rpx,yq P Γℓ,kpT qs E
px,yqPΓℓ,kpT q

«

ℓ
ź

i“1

k
ź

j“1

fpxi,yjq

ff

.

A random px,yq P Xℓ ˆ Y k is in Γℓ,kpT q with probability at most p1 ` ε{2qℓkτ ℓk by assumption (1), so

E
px,yqPΓℓ,kpT q

«

ℓ
ź

i“1

k
ź

j“1

fpxi,yjq

ff

ě p1 ` εqℓkpτδqℓk ¨ Pr
xPXℓ

yPY k

rpx,yq P Γℓ,kpT qs´1 ě

´

1 `
ε

4

¯ℓk

δℓk. (1)

Now, we will use the same telescoping sum trick as in the proof of [KLM24, Lemma 4.7]. Fix some arbitrary
ordering on tuples pi, jq P rℓs ˆ rks and consider the prefix-products

ϕďpi,jqpx,yq :“
ź

pi1,j1qďpi,jq

fpxi1 ,yj1 q and ϕăpi,jqpx,yq :“
ź

pi1,j1qăpi,jq

fpxi1 ,yj1 q

with the convention ϕăp1,1qpx,yq :“ 1. For clarity, one should view ϕďpi,jqpx,yq and ϕăpi,jqpx,yq as
functions on Xℓ ˆ Y k. This way, we can apply our functions to points px,yq P Γℓ,kpT q. Note that
ExPXℓ,yPY k rϕďp1,1qpx,yqs “ }f}1 and ExPXℓ,yPY k rϕďpℓ,kqpx,yqs “ }f}ℓkUpℓ,kq

. Consider the telescoping product

ź

pi,jqPrℓsˆrks

Epx,yqPΓℓ,kpT q ϕďpi,jqpx,yq

Epx,yqPΓℓ,kpT q ϕăpi,jqpx,yq
“ E

px,yqPΓℓ,kpT q

«

ℓ
ź

i“1

k
ź

j“1

fpxi,yjq

ff

.

By (1), this quantity is at least
`

1 ` ε
4

˘ℓk
δℓk, so we infer that for some choice of pi˚, j˚q we have

Epx,yqPΓℓ,kpT q ϕďpi˚,j˚qpx,yq

Epx,yqPΓℓ,kpT q ϕăpi˚,j˚qpx,yq
ě

´

1 `
ε

4

¯

δ. (2)

We would now like to think of ϕăpi˚,j˚qpx,yq primarily as a function of xi˚ and yj˚ . By an abuse of notation,
we think of Γpa,bq

ℓ,k pT q as the set of px,yq P Γℓ,kpT q with xi˚ “ a,yj˚ “ b. Define the function

W pa, bq “ E
px,yqPΓ

pa,bq

ℓ,k pT q

ź

pi,jqăpi˚,j˚q

fpxi,yjq.

25



We now rewrite the fraction in (2) in terms of W . For the numerator, we have

E
px,yqPΓℓ,kpT q

ϕďpi˚,j˚qpx,yq “ E
px,yqPΓℓ,kpT q

ź

pi,jqďpi˚,j˚q

fpxi,yjq

“ E
pa,bq„ν

¨

˝ E
px,yqPΓ

pa,bq

ℓ,k pT q

ź

pi,jqăpi˚,j˚q

fpxi,yjq

˛

‚¨ fpa, bq

“ E
pa,bq„ν

W pa, bqfpa, bq

“ xW, fyν .

For the denominator, we have

E
px,yqPΓℓ,kpT q

ϕăpi˚,j˚qpx,yq “ E
pa,bq„ν

E
px,yqPΓ

pa,bq

ℓ,k pT q

ϕăpi˚,j˚qpx,yq “ E
pa,bq„ν

W pa, bq “ }W }1pνq.

At this point, we have established the following inequality:

xW, fyν ě

´

1 `
ε

4

¯

δ}W }1pνq. (3)

We can additionally obtain a lower bound on }W }1pνq:

}W }1pνq “ E
pa,bq„ν

E
px,yqPΓ

pa,bq

ℓ,k pT q

ź

pi,jqăpi˚,j˚q

fpxi,yjq

“ E
px,yqPΓℓ,kpT q

ź

pi,jqăpi˚,j˚q

fpxi,yjq

ě E
px,yqPΓℓ,kpT q

«

ℓ
ź

i“1

k
ź

j“1

fpxi,yjq

ff

(since }f}8 ď 1)

ě

´

1 `
ε

4

¯ℓk

δℓk. (by (1))

Our goal is to obtain the inequalities

}W }1pµq ě δℓk and
B

W

}W }1pµq

,
f

}f}1pµq

F

µ

ě 1 `
ε

16
,

so that we may apply Claim 6.2 with W and f 1 “ f{}f}1pµq. Now, we use assumption (2) that }ν ´ µ}1 ď

λ ď pε{16q ¨ δℓk`1 along with the fact that }W }8, }f}8 ď 1 to deduce

|xW, fyν ´ xW, fyµ| ď λ and |}W }1pνq ´ }W }1pµq| ď λ. (4)

To lower bound }W }1pµq, it suffices to lower bound }W }1pνq. This gives

}W }1pµq ě }W }1pνq ´ λ ě

´

1 `
ε

4

¯ℓk

δℓk ´
ε

16
¨ δℓk`1 ě δℓk, (5)

Note that (5) implies λ ď pε{16qδ}W }1pµq. Thus,

}W }1pνq ě }W }1pµq ´ λ ě

´

1 ´
ε

16

¯

}W }1pµq. (6)

Combining (3), (4), and (6) we can lower bound the inner product by

xW, fyµ ě xW, fyν ´ λ ě

´

1 `
ε

4

¯´

1 ´
ε

16

¯

δ}W }1pµq ´
ε

16
¨ δ}W }1pµq ě

´

1 `
ε

16

¯

δ}W }1pµq.
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At this point, we have
B

W

}W }1pµq

,
f

}f}1pµq

F

µ

“
xW, fyµ

}W }1pµq}f}1pµq

ě 1 `
ε

16
.

Lastly, we will want to apply Claim 6.2. We have given a lower bound on }W }1pµq in (5), so it remains to
argue that W is a convex combination of rectangles. We have

ź

pi,jqăpi˚,j˚q

fpxi,yjq “

¨

˚

˚

˚

˚

˚

˝

ź

pi,jqăpi˚,j˚
q

i‰i˚

j‰j˚

fpxi,yjq

˛

‹

‹

‹

‹

‹

‚

¨

˚

˚

˝

ź

pi,jqăpi˚,j˚
q

i“i˚

fpxi˚ ,yjq

˛

‹

‹

‚

¨

˚

˚

˚

˝

ź

pi,jqăpi˚,j˚
q

j“j˚

fpxi,yj˚ q

˛

‹

‹

‹

‚

.

For any fixing of the variables other than xi˚ and yj˚ , each of the above factors depends on at most one of
xi˚ or yj˚ but not both. Thus, W is a convex combination of soft rectangles, so Claim 3.2 implies it is also a
convex combination of rectangles. As of now, we have following hypotheses:

1. W is a convex combination of rectangles

2. Setting f 1 :“ f{}f}1pµq, we have }f 1}8 ď 1{δ

3. }W }1pµq ě δℓk

Applying Claim 6.2 gives a rectangle R with
B

R

}R}1pµq

,
f

}f}1pµq

F

µ

ě 1 `
ε

32
and }R}1pµq ě

1

32
¨ ε ¨ δℓk`1.

It remains to show the pseudorandom assumptions of Lemma 6.6 hold when T is pseudorandom against
rectangles. The first condition is a consequence of Lemma 3.3, which says that if T is pseudorandom against
rectangles, then T has bounded grid norms. The second condition will follow from Lemma 6.7, which says
that if T is pseudorandom against rectangles, then νTℓ,k and µ are close in L1-distance.

For a moment, we return to the graph theoretic analogy. Consider a bipartite graph with vertex sets X,Y
and edge set T . For a fixed edge pa, bq P T , one can consider the fraction of Kℓ,k-minors which contain pa, bq
as an edge. If T was chosen uniformly at random, each edge should participate in roughly the same number of
Kℓ,k-minors. Equivalently, if the vertices ta, x2, . . . , xℓu Ă X and tb, y2, . . . , yku Ă Y form a Kℓ,k-minor, then
tx2, . . . , xℓu Ă Xb and ty2, . . . , yku Ă Ya form a Kℓ´1,k´1-minor. For most choices of pa, bq, the restriction of
T to Xb ˆYa should still look like a random graph, and so the number of Kℓ´1,k´1-minors will be concentrated
around its expectation. In fact, we will show that T does not need to be picked uniformly at random; it
suffices that T be pseudorandom against rectangles. In the graph setting, this is equivalent to saying that the
edge density of any subgraph is within a small additive error of the global edge density. The following lemma
formalizes this intuition.

Lemma 6.7. Let ℓ, k P N, and let T Ă X ˆ Y be a set with size |T | “ τ |X||Y | which is γ-pseudorandom
against rectangles for γ ď pτ{2qOpℓkq small enough. Then, we have }νTℓ,k ´ µT }1 ď O

`

γ1{8
˘

.

Before we begin the proof, we will need a lemma stating that if T Ă XˆY is pseudorandom against rectangles,
then the row densities of T are concentrated around the mean. We will use the following lemma along the
way.

Lemma 6.8 ([Gre05, Lemma 3.1]). Consider a bipartite graph with vertex parts X and Y and edge density
α. Let dpxq denote the degree of a vertex x, and let ε1, ε2 P p0, 1q. If there are at least ε1|X| vertices x P X
such that |dpxq ´ α|Y || ą ε2|Y | or at least ε2|Y | vertices y P Y such that |dpyq ´ α|X|| ą ε1|X|, then there
exist X 1 Ă X and Y 1 Ă Y with

|X 1| ě min
´ε1
2
,
ε2
2

¯

|X| and |Y 1| ě min
´ε1
2
,
ε2
2

¯

|Y |
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such that the edge density in the subgraph induced by X 1 and Y 1 is at least α ` ε1ε2{2.

Lemma 6.9. Let T Ă X ˆ Y be a set which is γ-pseudorandom against rectangles. For a random x P X,
with probability at least 1 ´ 2γ1{4 we have

ˇ

ˇ

ˇ

ˇ

E
yPY

T px, yq ´
|T |

|X||Y |

ˇ

ˇ

ˇ

ˇ

ď 2γ1{4,

and similarly for a random y P Y , with probability at least 1 ´ 2γ1{4 we have
ˇ

ˇ

ˇ

ˇ

E
xPX

T px, yq ´
|T |

|X||Y |

ˇ

ˇ

ˇ

ˇ

ď 2γ1{4.

Proof. We will show the first conclusion holds; the proof for the second conclusion is analogous. Assume for
the sake of contradiction that with probability at least 2γ1{4 over the choice of x P X, we have

ˇ

ˇ

ˇ

ˇ

E
yPY

T px, yq ´
|T |

|X||Y |

ˇ

ˇ

ˇ

ˇ

ą 2γ1{4.

By Lemma 6.8, there exists a rectangle R “ X 1 ˆ Y 1 Ă X ˆ Y with

E
px,yqPR

T px, yq ě
|T |

|X||Y |
` 2γ1{2 and

|R|

|X||Y |
ě γ1{2.

This gives
ˇ

ˇ

ˇ

ˇ

E
px,yqPT

rRpx, yqs ´ E
xPX,yPY

rRpx, yqs

ˇ

ˇ

ˇ

ˇ

ě
|R|

|T |
¨

ˆ

|T |

|X||Y |
` 2γ1{2

˙

´
|R|

|X||Y |
“ 2γ1{2 ¨

|R|

|T |
ě 2γ,

which contradicts the γ-pseudorandomness of T .

Proof of Lemma 6.7. For ease of notation, let µ “ µT and ν “ νTℓ,k. Recall that for pa, bq P X ˆ Y ,

Γ
pa,bq

ℓ,k pT q “ tpx,yq P Γℓ,kpT q : x1 “ a,y1 “ bu and νpa, bq “
|Γ

pa,bq

ℓ,k pT q|

|Γℓ,kpT q|
¨ |X||Y |.

Note that if pa, bq R T , then νpa, bq “ 0. We will compute νpa, bq for some fixed pa, bq P T . Define the
neighborhoods of a, b to be

Xb :“ tx P X : px, bq P T u and Ya :“ ty P Y : pa, yq P T u.

Let Ta,b “ T X pXb ˆ Yaq. The first observation is that

px1, . . . , xk, y1, . . . , ykq P Γ
pa,bq

ℓ,k pT q ðñ px2, . . . , xℓ, y2, . . . , ykq P Γℓ´1,k´1pTa,bq.

Thus, it suffices to estimate Γℓ´1,k´1pTa,bq. We have

Γℓ´1,k´1pTa,bq

|Xb|ℓ´1|Ya|k´1
“ E

x1,...,xℓ´1PXb

y1,...,yk´1PYa

«

ℓ´1
ź

i“1

k´1
ź

j“1

Ta,bpxi, yjq

ff

“ Uℓ´1,k´1pTa,bq. (7)

Since T is γ-pseudorandom, we would expect that for typical a, b, we have |Xb|, |Ya| to be roughly τ |X|, τ |Y |,
respectively. From there, to upper bound Γℓ´1,k´1pTa,bq it suffices to upper bound Uℓ´1,k´1pTa,bq. If we knew
that Ta,b is pseudorandom against rectangles, we could apply Lemma 3.3, but a priori this may not be the
case. Luckily, T Ă X ˆ Y is γ-pseudorandom against rectangles, so restricting T to a large rectangle Xb ˆ Ya

should result in a set which is also pseudorandom against rectangles with some loss in parameters. The loss
will be small as long as Xb ˆ Ya is relatively large, which as previously noted should be around τ2|X||Y | for
typical pa, bq. Combining these arguments will let us bound the upward deviations of ν from µ, ultimately
providing the desired bound on }ν ´ µ}1. The remainder of the proof is to nail down the exact quantitative
details of these statements.
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Typical pa, bq are good. By Lemma 6.9, with probability at least 1 ´ 4γ1{4 for a random a P X and b P Y ,
we have

ˇ

ˇ

ˇ

ˇ

|Xb|

|X|
´ τ

ˇ

ˇ

ˇ

ˇ

ď 2γ1{4 and
ˇ

ˇ

ˇ

ˇ

|Ya|

|Y |
´ τ

ˇ

ˇ

ˇ

ˇ

ď 2γ1{4.

We will call pa, bq good if these conditions are satisfied.

Ta,b is pseudorandom against rectangles for good pa, bq. We will show that Ta,b “ T X pXb ˆ Yaq is
γa,b-pseudorandom with respect to rectangles when viewed as a subset of Xb ˆ Ya, where

γa,b ď 2γ
|T |

|Ta,b|
.

In particular, when pa, bq is good, we will show that γa,b ď 4γτ´2. Since T is γ-pseudorandom against
rectangles, we have

ˇ

ˇ

ˇ

ˇ

|Ta,b|

|T |
´

|Xb||Ya|

|X||Y |

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

E
px,yqPT

rpXb ˆ Yaqpx, yqs ´ E
xPX,yPY

rpXb ˆ Yaqpx, yqs

ˇ

ˇ

ˇ

ˇ

ď γ.

Consider a rectangle R Ă Xb ˆ Ya. We have

E
px,yqPT

Rpx, yq “
|Ta,b|

|T |
¨ E

px,yqPTa,b

Rpx, yq

and

E
xPX,yPY

Rpx, yq “
|Xb|

|X|
¨

|Ya|

|Y |
¨ E
xPXb,yPYa

Rpx, yq.

Combining these two equations with an application of the triangle inequality gives

|Ta,b|

|T |
¨

ˇ

ˇ

ˇ

ˇ

ˇ

E
px,yqPTa,b

rRpx, yqs ´ E
xPXb,yPYa

rRpx, yqs

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

E
px,yqPT

rRpx, yqs ´
|Xb|

|X|
¨

|Ya|

|Y |
¨ E
xPXb,yPYa

rRpx, yqs

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˆ

|Xb|

|X|
¨

|Ya|

|Y |
´

|Ta,b|

|T |

˙

¨ E
xPXb,yPYa

rRpx, yqs

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

E
px,yqPT

rRpx, yqs ´ E
xPX,yPY

rRpx, yqs

ˇ

ˇ

ˇ

ˇ

` γ

ď 2γ

where the last inequality follows by γ-pseudorandomness of T . Rearranging shows that Ta,b Ă Xb ˆ Ya is
2γ |T |

|Ta,b|
-pseudorandom against rectangles. At this point, we will bound γa,b for good pa, bq. By definition,

good pa, bq satisfy
|Xb| “ pτ ˘ 2γ1{4q|X| and |Ya| “ pτ ˘ 2γ1{4q|Y |.

The γ-pseudorandomness of T gives

|Ta,b|

|T |
ě

|Xb||Ya|

|X||Y |
´ γ ě pτ ´ 2γ1{4q2 ´ γ ě τ2{2 (8)

where the last inequality holds for γ ď pτ{2qOp1q small enough. Taking inverses of both sides gives

γa,b ď 2γ
|T |

|Ta,b|
ď 4γτ´2,

and so Ta,b Ă Xb ˆ Ya is 4γτ´2-pseudorandom against rectangles for good pa, bq.
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Ta,b has small grid norms for good pa, bq. The above paragraph showed that Ta,b Ă Xb ˆ Ya is
4γτ´2-pseudorandom against rectangles for good pa, bq. By Lemma 3.3, we know that

Uℓ´1,k´1pTa,bq ď p1 ` γ1{4qpℓ´1qpk´1q

ˆ

|Ta,b|

|Xb||Ya|

˙pℓ´1qpk´1q

(9)

as long as

4γτ´2 ă
1

4
¨ γ1{2 ¨

ˆ

|Ta,b|

|Xb||Ya|

˙pℓ´1qpk´1q`1

.

We now verify the latter inequality. By the γ-pseudorandomness of T , we have

|Ta,b| “ τ |Xb||Ya| ˘ γ|T |,

and for good pa, bq, we have

|Xb| “ pτ ˘ 2γ1{4q|X| and |Ya| “ pτ ˘ 2γ1{4q|Y |.

We showed in (8) that |Ta,b|

|T |
ě τ2{2 for good pa, bq. Similarly,

|Ta,b|

|Xb||Ya|
ě

τ |Xb||Ya| ´ γ|T |

|Xb||Ya|
ě τ ´

γ|T |

|Xb||Ya|
ě τ ´

γ|T |

pτ ´ 2γ1{4q2|X||Y |
“ τ ´

γτ

pτ ´ 2γ1{4q2
ě τ{2

where the last inequality holds for γ ď pτ{2qOp1q small enough. Thus,

1

4
¨ γ1{2 ¨

ˆ

|Ta,b|

|Xb||Ya|

˙pℓ´1qpk´1q`1

ě
1

4
¨ γ1{2 ¨

´τ

2

¯pℓ´1qpk´1q`1

ě 4γτ´2,

where the last inequality holds for γ ď pτ{2qOpℓkq small enough.

Bounding upward deviations of ν. At this point, for good pa, bq, we have established the inequality

Γ
pa,bq

ℓ,k pT q “ Uℓ´1,k´1pTa,bq ¨ |Xb|ℓ´1|Ya|k´1 (by (7))

ď p1 ` γ1{4qpℓ´1qpk´1q

ˆ

|Ta,b|

|Xb||Ya|

˙pℓ´1qpk´1q

¨ |Xb|ℓ´1|Ya|k´1 (by (9))

ď

´

1 ` γ1{8
¯

ˆ

|Ta,b|

|Xb||Ya|

˙pℓ´1qpk´1q

¨ |Xb|ℓ´1|Ya|k´1 (10)

where the last inequality holds for γ ď 2´Opℓkq small enough, using the fact that p1 ` xqr ď 1 ` 2rx for
x P r0, 1s and r ě 1. We will bound the latter two factors of (10) separately. Similar to the above paragraph,
we have

|Ta,b|

|Xb||Ya|
ď

τ |Xb||Ya| ` γ|T |

|Xb||Ya|
ď τ `

γ|T |

|Xb||Ya|
ď τ `

γτ

pτ ´ 2γ1{4q2
ď

´

1 ` γ1{4
¯

τ

where the last inequality holds for γ ď pτ{2qOp1q small enough. We also have

|Xb|ℓ´1|Ya|k´1 ď

´

τ ` 2γ1{4
¯ℓ`k´2

|X|ℓ´1|Y |k´1 ď

´

1 ` γ1{8
¯

τ ℓ`k´2|X|ℓ´1|Y |k´1

where the last inequality holds for γ ď 2´Opℓ`kq ¨τOp1q small enough, again using the fact that p1`xqr ď 1`2rx
for x P r0, 1s and r ě 1. Combining the above three inequalities we obtain

Γ
pa,bq

ℓ,k pT q ď

´

1 ` γ1{8
¯´´

1 ` γ1{4
¯

τ
¯pℓ´1qpk´1q

¨

´

1 ` γ1{8
¯

τ ℓ`k´2|X|ℓ´1|Y |k´1
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ď

´

1 ` γ1{8
¯3

τ ℓk´1|X|ℓ´1|Y |k´1,

with yet again the last inequality holding for γ ď 2´Opℓkq ¨ τOp1q small enough. On the other hand, by
monotonicity of grid norms (Claim 3.4), we have

|Γℓ,kpT q| “ Uℓ,kpT q ¨ |X|ℓ|Y |k ě U1,1pT qℓk ¨ |X|ℓ|Y |k “ τ ℓk|X|ℓ|Y |k.

This gives

νpa, bq “
|Γ

pa,bq

ℓ,k pT q|

|Γℓ,kpT q|
¨ |X||Y | ď

`

1 ` γ1{8
˘3

τ ℓk´1|X|ℓ|Y |k

τ ℓk|X|ℓ|Y |k
ď

`

1 ` γ1{8
˘3

τ
ď

`

1 ` Opγ1{8q
˘

|X||Y |

|T |
.

We want to bound }ν ´ µ}1. At this point, it is helpful to recall that µ is the uniform distribution over T , so
µpx, yq “ |X||Y |{|T | for px, yq P T and 0 otherwise. Additionally, remember that if a pair px, yq P X ˆ Y is
good, it must be in T . Since Erνs,Erµs “ 1, it suffices to bound the upward deviations of ν ´ µ, as this is
within a factor of 2 of }ν ´ µ}1. With probability at least 1 ´ 4γ1{4, we pick a good pair px, yq which gives

1

2
¨ }ν ´µ}1 “ E

xPX,yPY
r1νěµ ¨ pν ´µqs ď E

xPX,yPY

„

1νěµ ¨ 1px,yq is good ¨

ˆ

ν ´
|X||Y |

|T |

˙ȷ

` 4γ1{4 ď Opγ1{8q.

To finish the proof of Lemma 2.13, we will combine Lemma 3.3 and Lemma 6.7 to argue that if T is
pseudorandom against rectangles, then T satisfies the conditions of Lemma 6.6. The conclusion of Lemma 6.6
gives a large rectangle R so that (1) f admits a density increment under µT when restricted to R and (2) R
is dense in T . To finish the proof, we use the fact that T is pseudorandom against rectangles to argue that R
must also be dense globally. From there, we can turn the density increment obtained under µT to a density
increment under the uniform distribution on the entire space. Critically, the density of R in T , and therefore
the density of R in X ˆ Y , will not depend on the density of T in X ˆ Y .

Proof of Lemma 2.13. For ease of notation, let µ “ µT and ν “ νTℓ,k. For γ ď ε2 ¨ τOpℓkq small enough, we
can apply Lemma 3.3 and Lemma 6.7 to deduce that

1. }T }Upℓ,kq ď p1 ` ε{2qErT s,

2. }ν ´ µ}1 ď Opγ1{8q.

Since the conditions of Lemma 6.6 are satisfied for γ ď ε8 ¨ pδ{2qOpℓkq sufficiently small, we obtain a rectangle
R with

E
px,yq„µ

„

Rpx, yq

}R}1pµq

fpx, yq

ȷ

“

B

R

}R}1pµq

, f

F

µ

ě

´

1 `
ε

32

¯

}f}1pµq (11)

and }R}1pµq ě 1
32 ¨ ε ¨ δℓk`1. Note that by γ-pseudorandomness of T , we have

}R}1 ě }R}1pµq ´ γ ě
1

64
¨ ε ¨ δℓk`1 (12)

for γ ď Opε ¨ δℓk`1q small enough. Rearranging terms, we obtain

E
px,yq„µ

„

Rpx, yq

}R}1pµq

fpx, yq

ȷ

“ E
xPX,yPY

„

Rpx, yq

}R}1pµq

fpx, yqµpx, yq

ȷ

“
}R}1

}R}1pµq

E
px,yqPR

rfpx, yqµpx, yqs

“
}R}1

τ}R}1pµq

E
px,yqPR

rfpx, yqs
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where the last equality uses the fact that f is supported on T and µpx, yq “ τ´1 ¨ T px, yq. Combining with
(11) gives

E
px,yqPR

fpx, yq ě

´

1 `
ε

32

¯

¨
τ}R}1pµq

}R}1
¨ }f}1pµq. (13)

Since T is γ-pseudorandom, we have

τ}R}1pµq

}R}1
“

|R X T |

|R|
ě τ ´

γ|T |

|R|
“

ˆ

1 ´
γ|T |

τ |R|

˙

τ “

ˆ

1 ´
γ

}R}1

˙

τ ě

´

1 ´
ε

128

¯

τ.

where the last inequality uses (12) and holds for γ ď Opε2 ¨ δℓk`1q small enough. Finally substituting into
(13) yields

E
px,yqPR

fpx, yq ě

´

1 `
ε

32

¯´

1 ´
ε

128

¯

τ}f}1pµq ě

´

1 `
ε

64

¯

}f}1.

7 Sparse mixing
In this section, we prove Lemma 2.15. Our main tool will be the following lemma from [KLM24].

Lemma 7.1 ([KLM24, Lemma 4.8]). Fix an even integer p P N, ε P p0, 1{20q, and set k “ rp{εs. Let
g : X ˆ Z Ñ Rě0, h : Y ˆ Z Ñ Rě0 be two (nonzero) functions, and suppose that

1. }g}Up2,kq ď p1 ` εq}g}1,

2. }h}Up2,kq ď p1 ` εq}h}1,

3. g, h are ε-left lower-bounded.

Then
›

›

›

›

E
zPZ

rgpx, zqhpy, zqs ´ ErgsErhs

›

›

›

›

p

ď 20εErgsErhs.

Lemma 2.15 (Sparse von Neumann). Let T Ă X ˆ Y be a set which is γ-pseudorandom against rectangles,
and let A Ă T be a set of size |A| ě 2´d|T |. Let g : X ˆ Z Ñ r0, 1s, h : Y ˆ Z Ñ r0, 1s be functions. Let
d ě 1, ε P p0, 1{20q. For k “ Opd{εq a large enough integer, suppose that

1. }g}Up2,kq ď p1 ` εq}g}1,

2. }h}Up2,kq ď p1 ` εq}h}1,

3. g, h are ε-left lower-bounded,

4. γ ď pε}g}1}h}1qOpdq is small enough.

Then
E

xPX,yPY,zPZ
rApx, yqgpx, zqhpy, zqs “ p1 ˘ OpεqqErAsErgsErhs.

Proof. Assume g and h are nonzero, as otherwise the result trivially holds. Let |T | “ τ |X||Y | and Dpx, yq “

EzPZ gpx, zqhpy, zq ´ ErgsErhs, and set p “ Opdq to be a large enough even integer. By Hölder’s inequality,
we have
ˇ

ˇ

ˇ

ˇ

E
xPX,yPY,zPZ

rApx, yqgpx, zqhpy, zqs ´ ErAsErgsErhs

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

E
xPX,yPY

Apx, yqDpx, yq

ˇ

ˇ

ˇ

ˇ

“ τ

ˇ

ˇ

ˇ

ˇ

E
px,yqPT

Apx, yqDpx, yq

ˇ

ˇ

ˇ

ˇ

32



ď τ

ˆ

E
px,yqPT

Apx, yqp{pp´1q

˙1´1{pˆ

E
px,yqPT

Dpx, yqp
˙1{p

ď τ

ˆ

|A|

|T |

˙1´1{pˆ

E
px,yqPT

Dpx, yqp
˙1{p

ď 2ErAs

ˆ

E
px,yqPT

Dpx, yqp
˙1{p

.

Thus, it suffices to bound the p-norm of the function D restricted to the set T . We will argue that this
quantity is within a small additive factor of }D}p. Observe that for a fixed z P Z, the function gpx, zqhpy, zq

is a soft rectangle. Trivially, ErgsErhs is also a soft rectangle. By Claim 3.2, we can write Dpx, yq “
ř

i ciRi

where Ri are rectangles and
ř

i |ci| ď 2. The product of rectangles is also a rectangle, which means we can
write Dp as a linear combination of rectangles where the coefficients’ magnitudes sum to at most 2p. Using
the assumption that T is γ-pseudorandom against rectangles for γ ď pε}g}1}h}1qp, we have

ˆ

E
px,yqPT

Dpx, yqp
˙1{p

ď

ˆ

E
xPX,yPY

Dpx, yqp ` 2pγ

˙1{p

ď }D}p ` 2γ1{p ď }D}p ` 2εErgsErhs,

where the penultimate inequality follows from concavity. We conclude by applying Lemma 7.1 to obtain
}D}p ď 20εErgsErhs.
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