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Abstract

We investigate the tasks of deterministically condensing and extracting randomness from
Online Non-Oblivious Symbol Fixing (oNOSF) sources, a natural model of defective random
sources for which it is known that extraction is impossible in many parameter regimes [AORSV,
EUROCRYPT’20]. A (g, ℓ)-oNOSF source is a sequence of ℓ blocks X = (X1, . . . ,Xℓ) ∼
({0, 1}n)ℓ, where at least g of the blocks are good (are independent and have some min-entropy),
and the remaining bad blocks are controlled by an online adversary where each bad block can
be arbitrarily correlated with any block that appears before it.

The existence of condensers (in regimes where extraction is impossible) was recently studied
in [CGR, FOCS’24]. They proved condensing impossibility results for various values of g and
ℓ, and they showed the existence of condensers matching the impossibility results in the special
case when n is extremely large compared to ℓ (i.e., the setting of few blocks of large length).

In this work, we make significant progress on proving the existence of condensers with strong
parameters in almost all parameter regimes, even when n is a large enough constant and ℓ is
growing. This almost resolves the question of the existence of condensers for oNOSF sources,
except when n is a small constant.

As our next result, we construct the first explicit condensers for oNOSF sources and achieve
parameters that match the existential results of [CGR, FOCS’24]. We also obtain a much
improved construction for transforming low-entropy oNOSF sources (where the good blocks
only have min-entropy, as opposed to being uniform) into uniform oNOSF sources.

We find interesting connections and applications of our results on condensers to collective
coin flipping and collective sampling, problems that are well-studied in fault-tolerant distributed
computing. We use our condensers to provide very simple protocols for these problems.

Next, we turn to understanding the possibility of extraction from oNOSF sources. For
proving lower bounds, we introduce and initiate a systematic study of a new, natural notion of
the influence of functions, which we call online influence, and believe is of independent interest.
Using tools from Fourier analysis, we establish tight bounds on the total online influence of
functions, which imply extraction lower bounds. Lastly, we give explicit extractor constructions
for oNOSF sources, using novel connections to leader election protocols, and further constructing
the required leader election protocols. These extractor constructions achieve parameters that
go beyond standard resilient functions [AL, Combinatorica’93].
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1 Introduction

Randomness is extremely useful in computation with wide-ranging applications in algorithm de-
sign, cryptography, distributed computing protocols, machine learning, error-correcting codes, and
much more [MR95, Vad12]. Most of these applications require access to high quality randomness.
However in a lot of settings, especially arising in practice, algorithms only have access to low qual-
ity source of randomness. This motivates the notion of condensers: functions that transform weak
random sources into strong random sources that are of better quality.

In this line of work, the standard way of measuring the amount of randomness is using min-
entropy. Formally, for a source (distribution)X with support Ω, define its min-entropy asH∞(X) =
minx∈Ω log2(1/Pr[X = x]). We will also need the notion of smooth min-entropy, which measures
how close a distribution is to having high entropy. Formally, for a source X, its smooth min-entropy
with parameter ε is defined as Hε

∞(X) = maxY:|X−Y|≤ε{H∞(Y)}, where |·| denotes the statistical
distance (Definition 3.1).

With this, we are ready to formally define deterministic condensers:

Definition 1.1. A function Cond : {0, 1}n → {0, 1}m is a (kin, kout, ε)-condenser for a family of
distributions X if for all X ∈ X with X ∼ {0, 1}n and H∞(X) ≥ kin, we have that Hε

∞(X) ≥ kout.
We say kin

n is the input entropy rate, kout
m is the output entropy rate, and m−kout is the entropy

gap of Cond.

The task of the condenser is to make the output entropy rate as high as possible compared
to the input entropy rate, or, in other words, to make the output distribution more “condensed”.
Related to this, it is also desirable to have as small entropy gap as possible. Notice that if the
entropy gap is 0, the output distribution is ε-close to the uniform distribution. Such condensers
with entropy gap 0 are known as randomness extractors—a topic that has been extensively studied
in theoretical computer science.

When X is the family of all distributions, it is folklore that no non-trivial condensing is possible.1

So, we additionally assume that X is a structured family of sources.2 Since extractors are the
highest quality condensers, a significant amount of work has focused on constructing extractors for
interesting family of sources, such as: sources generated by small circuits, two independent sources,
algebraically generated sources, sources generated by small space sources, and many more [TV00,
CZ19, DGW09, KZ07].

However, for many natural family of sources, one can provably show that no extractor can
exist. In such situations, one can still hope to show that high quality condensers exist. We
note that condensers (and sources with high min-entropy rate) are very useful: the condensed
distribution can be used to efficiently simulate randomized algorithms with small overhead, perform
one-shot simulations for randomized protocols, cryptography and interactive proofs, and much
more. [DPW14] showed these condensers are equivalent to ‘unpredictability extractors’ that can
simulate cryptographic protocols against biased distinguishers. For details on these applications
and more, see [AORSV20, DMOZ23, CGR24].

In this work, we focus on one natural family of sources where it is known that extraction is
impossible (for many interesting parameter regimes). The family we consider are known as online

1Assuming m ≤ n (wlog this holds since |Cond({0, 1}n)| ≤ 2n), m−kout ≥ (n−kin)− log(1/(1−ε)) and hence the
output entropy rate cannot be more than the input entropy rate without incurring extremely large error (> 0.999).

2A different route, that has been widely studied, is to assume access to a short independent seed. In this work,
we will limit ourselves to the deterministic or seedless setting.
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non-oblivious symbol fixing sources (oNOSF sources).3 Formally:

Definition 1.2. A (g, ℓ, n, k)-oNOSF source X = (X1, . . . ,Xℓ) is such that each block Xi is over
{0, 1}n, g of the blocks are are independent sources with min-entropy k (“good blocks”), and each
“bad block” is an arbitrary function of the blocks with an index smaller than it. When k = n, we
will call such sources uniform (g, ℓ, n)-oNOSF sources.

These sources are inspired by real-time randomness generation settings such as in blockchains.
There, each subsequent block is random or controlled by an adversary. Since these sources are
generated in real time, a bad block can only be a function of the blocks that have appeared so far,
and it is reasonable to assume that the good blocks contain entropy and are independent. Further,
there are natural cryptographic settings, such as creating a Common Reference String, that are
widely used in various cryptographic protocols where oNOSF source sources naturally arise (see
[AORSV20] for a discussion).

Our results at a glance We almost fully resolve the question of the existence of condensers for
oNOSF sources by showing that good condensers, meeting the impossibility results of [CGR24],
exist when the number of blocks ℓ is growing and n is a large constant. We also construct explicit
condensers for oNOSF sources matching the results of [CGR24] and obtain an improved construction
for transforming low-entropy oNOSF sources into uniform oNOSF sources. Moreover, we find new
applications of our results on condensers to collective coin flipping and collective sampling, and
use these connections to provide simple protocols for these problems. In the context of extractors
for oNOSF sources, we introduce the new, natural notion of online influence for Boolean functions
and show extraction lower bounds for oNOSF sources by establishing tight bounds on the total
online influence of functions. Lastly, using our novel connections to leader election protocols, we
construct explicit extractors for uniform oNOSF sources by explicitly constructing the required
leader election protocols, the results of which are summarized in Tables 1 and 2.

Organization The remainder of our introduction is structured as follows. We give an overview of
previous work in Section 1.1 before presenting our main existential and explicit condenser results in
Section 1.2. In Section 1.3, we present our results on the limits of extraction from oNOSF sources.
In Section 1.4, we show how our results on condensers have implications for collective coin flipping
and sampling protocols.

1.1 Previous Work

Extractors The study of extractors for oNOSF sources was initiated by [AORSV20].4 Their
results include the following:

• It is impossible to extract from uniform oNOSF sources when the fraction of good blocks is
0.99.

• An explicit transformation from (g, ℓ, n, 0.9n)-oNOSF source into a source over ({0, 1}O(n))ℓ−1

where g − 1 of the blocks are uniform and independent.

3These sources are in contrast to non-oblivious symbol fixing (NOSF) sources where bad blocks can be arbitrary
functions of all the good blocks. NOSF sources were introduced in [CGHFRS85] with applications in leakage-resilient
cryptography, and have been well-studied.

4In [AORSV20], these sources were called SHELA (Somewhere Honest Entropic Look Ahead) sources.
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• An explicit transformation from (g, ℓ, n, 0.1n)-oNOSF source into a source over ({0, 1}O(n))100ℓ

where g − 1 of the blocks are uniform and independent.

Even though the output entropy rate is only slightly more than the input-entropy rate in the second
result and smaller in the third result, the fact that a lot of the blocks are truly uniform is very
useful, and they find interesting cryptographic applications of these somewhere-extractors.

Before our work, the best known extractors for oNOSF sources could be obtained by using re-
silient functions or equivalently, extractors for NOSF sources (non-online version of oNOSF sources)
constructed by [AL93, CZ19, Mek17, IMV23, IV24] ; these require g ≥ ℓ− ℓ

(log ℓ)2
.

Condensers oNOSF sources were further studied by [CGR24], where they obtained the following
results regarding condensers:

• When n ≥ k ≥ ℓ, there exist functions that can transform a (g, ℓ, n, k)-oNOSF source into a
uniform (g − 1, ℓ− 1, O(k/ℓ))-oNOSF source (this function can be made explicit with slightly
worse dependence on output length).

• When n ≥ 2ω(ℓ), there exists condenser Cond : ({0, 1}n)ℓ → {0, 1}m=O(n·ℓ/g) such that for any
uniform (g, ℓ, n)-oNOSF source X, Hε

∞(Cond(X)) ≥ 1
⌊ℓ/g⌋ ·m − O(log(n/ε)). Their result is

not explicit.

• It is impossible to condense from uniform (g, ℓ, n)-oNOSF sources with output entropy rate
more than 1

⌊ℓ/g⌋ .

We also mention a related family of sources, namely adversarial Chor-Goldreich sources. Uni-
form oNOSF sources can be seen as a special case of adversarial Chor-Goldreich sources where the
good blocks are uniform. Constructing condensers where the output entropy rate is g/ℓ for ad-
versarial Chor-Goldreich sources is already a challenging task, although such condensers in various
parameter regimes have been recently constructed [DMOZ23, GLZ24]. The paper of [DMOZ24]
recently constructed condensers for a related more general model.

1.2 New Condenser Constructions

Previous works only showed the existence of condensers for oNOSF sources when n ≥ 2ω(ℓ). We
vastly improve on this result in two ways. First, we show that for almost all values of n, ℓ, even
when n is a small constant, excellent condensers exist. Second, we provide explicit condensers for
oNOSF sources when n ≥ 2ω(ℓ). We also obtain much better transformation from low-entropy
oNOSF sources to uniform oNOSF sources that work even when k ≪ ℓ. These results show
condensers always exist, except when n is a very small constant (such as n = 1). To further our
understanding of this case, we initiate the study of online influence of Boolean functions, a natural
generalization of influence that captures the one-sided nature of our online adversary. We also
discover surprising connections between condensers for oNOSF sources and protocols for natural
problems in distributed computing, such as collective coin flipping and collective sampling. We
now discuss our result in details below.

1.2.1 Existential Condensers

We show how to condense from uniform (g, ℓ, n)-oNOSF sources for almost all settings of ℓ and n
when g ≥ 0.51ℓ. In particular, we show:
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Theorem 1 (Informal version of Theorem 4.1). For all ℓ, ε where ℓ ≥ O(log(1/ε)), and n = 104,
there exists a condenser Cond : ({0, 1}n)ℓ → {0, 1}m such that for any uniform (0.51ℓ, ℓ, n)-oNOSF
source X, we have Hε

∞(Cond(X)) ≥ 0.99m where m = Ω(ℓ + log(1/ε)). Furthermore, when n =
ω(1), the output entropy rate becomes 1− o(1).

This is tight since [CGR24] showed it is impossible to condense uniform (0.5ℓ, ℓ, n)-oNOSF
sources beyond output entropy rate 0.5.

Using our new results regarding transforming oNOSF sources to uniform oNOSF sources, we
also obtain condensers for (0.51ℓ, ℓ, n, k)-oNOSF sources when n ≥ poly(log(ℓ)),

Theorem 2. For all ℓ, n, ε where n = poly(log(ℓ/ε)), k = O(log(ℓ/ε)), there exists a con-
denser Cond : ({0, 1}n)ℓ → {0, 1}m such that for any (0.51ℓ, ℓ, n, k)-oNOSF source X, we have
Hε

∞(Cond(X)) ≥ m−O(m/ log(m))−O(log(1/ε)) where m = Ω(k).

We can also extend our result to condense from uniform (g, ℓ, n)-oNOSF sources for all g, ℓ and
constant n where the output entropy rate is 1/ ⌊ℓ/g⌋ − 0.001. This is tight since [CGR24] showed
it is impossible to condense such sources beyond output entropy rate 1/ ⌊ℓ/g⌋.

Previously, [CGR24] showed how to existentially condense from uniform (g, ℓ, n)-oNOSF sources
when g ≥ 0.51ℓ, provided n ≥ 2ω(ℓ). As n gets smaller, condensing becomes harder since a uniform
(g, ℓ, n)-oNOSF source is also a uniform (g · n/1000, ℓ · n/1000, 1000)-oNOSF source. Hence, we
greatly improve the parameters while using different and much simpler techniques.

1.2.2 Explicit Condensers

We construct the first explicit condensers for oNOSF sources. Our explicit condenser construction
achieves the same parameters as the existential condenser construction of [CGR24]. We show how
to explicitly condense from uniform (g, ℓ, n)-oNOSF sources when n ≥ 2ω(ℓ) and g ≥ 0.5ℓ+ 1. We
state the results for constant ℓ since that is cleaner:

Theorem 3 (Informal version of Theorem 5.1). For all n, ε and constant ℓ, there exists an explicit
condenser Cond : ({0, 1}n)ℓ → {0, 1}m such that for any uniform (0.5ℓ+ 1, ℓ)-oNOSF source X, we
have Hε

∞(Cond(X)) ≥ m−O(log(m/ε)), where m = Ω(n).

Just like earlier, since condensing when g = 0.5ℓ is impossible, this result is also tight. Using
our new results regarding transforming oNOSF sources to uniform oNOSF sources, we also obtain
explicit condensers for (0.51ℓ, ℓ, n, k)-oNOSF sources for the same parameter regime:

Corollary 1.3 (Corollary 5.2, simplified). For all ℓ, n, ε with constant ℓ and n ≥ O(log(1/ε)),
there exists an explicit condenser Cond : ({0, 1}n)ℓ → {0, 1}m such that for any
(0.5ℓ+ 2, ℓ, n, poly(log n))-oNOSF source X, we have Hε

∞(Cond(X)) ≥ m − O(log(m/ε)) where
m = poly(log n).

Similar to earlier, we can also extend our result to explicitly condense from uniform (g, ℓ, n)-
oNOSF sources in the same parameter regime so that the output entropy rate is 1/ ⌊ℓ/g⌋ − o(1).
Just like earlier, this is tight as well.

Previously, [CGR24] showed how to existentially condense from uniform (g, ℓ, n)-oNOSF sources
in this parameter regime. However, they relied on the existence of a very strong pseudorandom
object: “output-light” low-error two-source extractors. Such extractors, even without the output-
lightness requirement, are extremely hard to construct and it is a major open problem to obtain
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such extractors. We are able to make this condenser explicit by building up on their ideas, making
interesting observations regarding oNOSF sources, and stitching them together so that the base
pseudorandom object we rely on are seeded extractors that we know how to explicitly construct
with near optimal parameters.

1.2.3 Transforming Low-Entropy oNOSF sources to uniform oNOSF sources

We show how to existentially, as well as explicitly, with a slight loss in parameters, transform
(g, ℓ, n, k)-oNOSF sources into uniform (0.99g, ℓ− 1, n)-oNOSF sources. Formally, we show:

Theorem 1.4 (Informal version of Theorem 6.1). For all ℓ, n, k, ε where n = poly(log(ℓ)), k =
O(log(ℓ/ε)), there exists a function f such that f transforms (0.51ℓ, ℓ, n, k)-oNOSF sources into
uniform (0.509ℓ, ℓ,m)-oNOSF sources with error ε where m = Ω(k).

Our construction can also be made explicit with slightly worse dependence on m and ε. See
Corollary 6.4 for the full tradeoff.

Previously, [CGR24] provided such a transformation only for n ≥ k ≥ Ω(ℓ). Hence, our trans-
formation makes a major improvement on their parameters. Such an improvement allows us to
obtain better condensers for low-entropy oNOSF sources in the regime n = poly(log(ℓ/ε)) (see
Theorem 2).

1.3 Limits on Extraction from oNOSF Sources

Next we discuss our results on the limits of extraction from oNOSF sources. Our lower bounds are
based on a new notion of influence of functions, namely online influence, that we introduce and
analyze. Our upper bound results (explicit extractors) are based on a novel connection to leader
election and coin-flipping protocols; to instantiate this connection and give explicit extractors, we
construct the necessary protocols.

Extraction Lower bounds via Online Influence

For simplicity, let’s focus on the case of n = 1, which leads to interesting new questions about
Boolean functions. We refer to such uniform (g, ℓ, 1)-oNOSF sources as (g, ℓ)-oNOBF sources;
oNOBF stands for online non-oblivious bit-fixing sources. We ask what is the exact tradeoff between
g, ℓ, and ε for extracting from oNOBF sources. Towards this, we introduce the notion of online
influence.

Definition 1.5 (Online influence). For a function f : {0, 1}ℓ → {0, 1}, the online influence of the
i-th bit is

oIi[f ] = E
x∼Ui−1

[∣∣∣∣ E
y∼Uℓ−i

[f(x, 1, y)]− E
y∼Uℓ−i

[f(x, 0, y)]

∣∣∣∣
]

and the total online influence is oI[f ] =
∑ℓ

i=1 oIi[f ].

We believe this is an interesting new measure and is worth studying in its own right. We
refer the reader to Example 7.6 for a couple of interesting examples. For monotone functions (and
more generally, unate functions), it is not hard to see that online influence equals the usual notion
of influence (see Lemma 7.4 for a proof). Thus, to find interesting properties of online influence
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(compared to standard influence, Definition 7.1), one must look at non-monotone (in fact, non-
unate) Boolean functions.

The following natural question arises towards our goal of proving extractor lower bounds: for
a function f , what is the maximum online influence out of all n bits? For the usual notion of
influence, this question was resolved by the well-known theorem of [KKL88], who showed there

always exists a bit with influence at least Var(f) · Ω
(
log ℓ
ℓ

)
.

We show that surprisingly, there exists a balanced function, namely the address function, where
every bit has online influence at most O

(
1
ℓ

)
(see Lemma 7.12 for a proof). This provides a sepa-

ration between the usual notion of influence and online influence.
We prove a Poincaré style inequality for total online influence, which shows that the above

example is tight. For any function f : {0, 1}n → {0, 1}, define the function e(f)(x) = (−1)f(x).

Theorem 4 (Theorem 7.5, restated). For any f : {0, 1}ℓ → {0, 1}, we have Var(e(f)) ≤ oI[f ] ≤√
ℓVar(e(f)).

Using the above result, we obtain the following extraction lower bound.

Theorem 1.6 (Informal version of Corollary 7.21). For ε < 0.01, there do not exist extractors for
(0.97ℓ, ℓ)-oNOBF sources with error at most ε.

A similar extraction lower bound was shown in [AORSV20] using different techniques.

Explicit Extractors via Leader Election Protocols

We now move on to presenting our explicit constructions of extractors for oNOBF and oNOSF
sources. The following are our main results.

Theorem 5 (informal version of Theorem 8.2). There exists an explicit function Ext : {0, 1}ℓ →
{0, 1} such that for any (g, ℓ)-oNOBF source X where g ≥ ℓ− ℓ/C log(ℓ), we have Ext(X) ≈ε=1/100

U1, where C is a large constant.

Theorem 6 (informal version of Theorem 8.3). There exists an explicit function Ext : ({0, 1}n)ℓ →
{0, 1}n such that for any (g, ℓ, n)-oNOSF source X where g ≥ ℓ − ℓ/C log∗(ℓ) and n ≥ log(ℓ), we
have Ext(X) ≈ε=1/100 Un, where C is a large constant.

It is instructive to contrast our results with the non-online setting (where adversarial bits may
depend on any good bit). The non-online versions of oNOSF sources and oNOBF sources are
called NOSF sources and NOBF sources. For both these sources, the current best extractors
require g ≥ ℓ− ℓ

(log ℓ)2
, which is much more than what our extractors for Theorem 5 and Theorem 6

require.
We contrast the results for both settings in Tables 1 and 2. In these tables, we are providing

known upper and lower bounds on the value of b(ℓ), defined as the maximum number of bad symbols
for which extraction is still possible with a small constant error — so lower bounds correspond to
best known constructions of such functions and upper bounds refers to best known limitation of
such functions. We write “O(ℓ)” to mean “cℓ for some small universal constant c < 1”.

To interpret our results in terms of (online) influence of coalitions, it will be useful to extend
the definition of online influence to subsets of coordinates.
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Definition 1.7. For any function f : Σℓ → {0, 1}, and any B ⊂ [ℓ], where B = {i1 < i2 < . . . <
ik}, define oIB(f) as follows: an online adversary A samples a distribution X in online manner. It
starts by sampling the variables x1, x2, . . . , xi1−1 independently and uniformly from Σ, then picking
the value of xi1 depending on x<i1. Next, the variables xi1+1, . . . , xi2−1 are sampled independently
and uniformly from Σ, and A sets the value of xi2 based on all set variables so for, and so on.
Define the advantage of A to be advf,B(A) = |E[f(X)] − E[f(Uℓ)]|. Then oIB(f) is defined to be
maxA{advf,B(A)}, where the maximum is taken over all online adversaries A that control the bits
in B.

We say a function f is (b, ε)-online-resilient if oIB(f) ≤ ε for every set B ⊂ [ℓ] of size at
most b.

We note that Definition 1.7 is a special case of Definition 1.5, for Σ = {0, 1} and |B| = 1.
In Section 7.4, we note that online-resilient functions are equivalent to extractors for uniform

oNOSF source sources (with one bit output). Thus, our explicit extractor results immediately
imply explicit online-resilient functions.

Source Lower bound Upper bound

NOBF Ω
(

ℓ
log2 ℓ

)
, [AL93] O

(
ℓ

log ℓ

)
, [KKL88]

NOSF Ω
(

ℓ
log2 ℓ

)
, [AL93] O(ℓ), [BKKKL92]

Table 1: b(ℓ) bounds in the non-online setting.

Source Lower bound Upper bound

oNOBF Ω
(

ℓ
log ℓ

)
, [Theorem 8.2] O(ℓ), Corollary 7.21 or

[AORSV20]

oNOSF Ω
(

ℓ
log∗ ℓ

)
, [Theorem 8.3]5 O(ℓ), [AORSV20]

Table 2: b(ℓ) bounds in the online setting.

Our main technique is a generic way to transform leader election and coin flipping protocols
(formally defined in Section 3.3) into extractors for oNOBF and oNOSF sources. This is proved
in Lemma 8.1; the general idea of constructing an extractor is to simulate an appropriate leader
election protocol with the source at hand (oNOBF or oNOSF), and output according to the chosen
leader. To instantiate this transformation, we revisit previous leader election protocols in Section 9.
Our leader election protocols provide a slightly stronger than usual guarantee: a good player is
elected as the leader with probability close to 1 (see Lemma 9.1 and Lemma 9.5). This contrasts
with the usual guarantee in leader election protocols, where a good leader is chosen with only a
non-trivial (constant) probability.

2Recall that this lower bound is for (g, ℓ, n)-oNOSF sources with n ≥ log(ℓ).
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1.4 Application to Collective Coin Flipping and Collective Sampling

We now discuss applications of our results on condensers for oNOSF sources to fault-tolerant
distributed computing. Condensing from oNOSF sources can be viewed as a special case of coin
flipping and collective sampling protocols in the full information model that arise in fault-tolerant
distributed computing.

1.4.1 Background

Say there are ℓ players who have a common broadcast channel and want to jointly perform a task
such as collectively flipping a coin. Some b players out of them are “bad” and want to deter the
task. We assume the bad players are computationally unbounded so cryptographic primitives are
of no use. We further assume that each player has private access to uniform randomness. [BL89]
initiated the study of this model and aptly termed this task as “collective coin flipping.”

The simplest way to collectively flip a coin would be for all the players to initially agree on a
function f : {0, 1}ℓ → {0, 1}, then synchronously broadcast one random bit ri, and to finally agree
on the output being f(r1, . . . , rℓ). However, synchronizing broadcasts is hard, and it could be that
the bad players set their output as function of the bits of the good players. [KKL88] showed that

no function f can handle more than O
(

ℓ
log ℓ

)
corruptions.

One way to allow for more corruptions (almost linear) among players is to consider “protocols”
that allow more rounds of communication. In particular, a protocol can be thought of as a tree
where each vertex represents a “round” where in every round the following happens: all good players
sends their bits, then all bad players send their bits as a function of the bits of the good players, and
they jointly compute a function of these bits. Depending on the outcome of the function, everyone
branches on one branch in this tree. Furthermore, every leaf is labeled with final outcomes (say 0
or 1) and, once a leaf is reached, that is the outcome that everybody agrees on. [GGL98] initiated
the study of protocols where the outcomes are from a larger range and where the bad players are
trying to minimize the largest probability of any outcome. They called this problem “collective
sampling.” For a formal definition, see Section 3.3.

1.4.2 Known Results

[BL89] showed that for protocols with outcomes {0, 1}, b bad players can always ensure that some
outcome occurs with probability at least 1

2 + b
2ℓ . [AN93a] first constructed a protocol that can

handle a linear number of corruptions. Follow-up works tried to reduce the number of rounds in
this protocol where, in some settings, players were allowed to send more than one bit per round
[RZ01, Fei99a].

[GGL98] showed that for all collective sampling protocols and all outcomes, there exists a
way for b bad players to coordinate and ensure that an outcome that happens without corruption
with probability p, now happens with probability p1−(b/n) ≥ p

(
1 + b

n log(1/p)
)
. Nearly matching

collective sampling protocols were constructed by [GGL98, SV08, GVZ06]. For an overview of
further results and bounds, see [Dod06].

1.4.3 Connection to oNOSF Sources

The problem of extracting or condensing from oNOSF sources can be seen as special cases or
variants of collective coin flipping and collective sampling that provide very simple protocols. For
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instance, suppose one has an extractor or condenser f for uniform (g, ℓ, n)-oNOSF sources. Then,
consider a protocol where all ℓ players take turns and output n random bits. The agreed final
outcome is f applied on these ℓn bits. This leads to protocols that are structurally much simpler
since players don’t have to carefully compute whose turn it is to go in various rounds and can
obliviously prepare for their turn.

The above protocol can also be viewed as a relaxed version of a 1-round protocol where instead
of everyone providing their output asynchronously, they take turns and provide outputs one after
another in a simple sequential manner.

1.4.4 Previous Results Interpreted in oNOSF source context

Previous impossibility results can be interpreted in the context of extracting / condensing from
uniform oNOSF sources. For instance, collective coin flipping impossibility results of [BL89] imply
extraction impossibility results for uniform (g, ℓ, n)-oNOSF sources when n = 1. They imply:

Corollary 1.8. There does not exist an b
2ℓ -extractor for uniform (g, ℓ, 1)-oNOSF sources.

Similarly, we observe that the notion of collective sampling is equivalent to 0-error condensing.
Hence, lower bounds of [GGL98] imply zero-error condensing lower bounds for uniform (g, ℓ, n)-
oNOSF sources when n = 1. Formally:

Corollary 1.9. There does not exist a condenser Cond : {0, 1}ℓ → {0, 1}m for uniform (g, ℓ, 1)-
oNOSF sources that can guarantee output smooth min-entropy (with parameter ε = 0) more than
k = g

ℓ ·m.

1.4.5 ε-Collective Sampling

Since collective sampling lower bounds show that for any protocol, 0-error condensing beyond rate
g/ℓ is impossible, one can naturally ask whether condensing with small error ε is possible. We call
this problem ε-collective sampling, where the goal is to output a distribution which is ε-close to a
distribution where every output has small probability.

Interpreted this way, this is exactly what protocols arising out of our condensers for uniform
oNOSF sources provide: Using Theorem 1, when each player has access to 104 random bits, there
exists a simple protocol that can handle 0.49ℓ corrupt players such that the players can collectively
sample a distribution over m = O(ℓ) bits which is 2−Ω(ℓ)-close to having entropy 0.99m. As far
as we are aware, such a protocol is not implied by any other previous protocol. Most previous
protocols are obtained through leader election protocols, which do not seem useful here since the
leader has access to only constant number of bits.

We similarly obtain explicit protocols using Theorem 3 for the case when each player has access
to n ≥ 2ω(ℓ) bits.

1.4.6 Collective Coin Flipping and Sampling with Weak Random Sources

A natural extension to collective coin flipping and sampling in the full information model is when
all players only have access to weak source of randomness (that are independent from each other)
instead of true uniform randomness. This question was first studied by [GSV05]. [KLRZ08] used
network extractor protocol to transform weak random sources of each player into independent
private random sources. This way, after using the network extraction protocol, players can follow
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the usual collective coin flipping / sampling protocol. [GSZ21] improved the network extraction
protocol using two-source non-malleable extractors.

Using our (g, ℓ, n, k)-oNOSF source condensers, we obtain alternative, simple ε-collective sam-
pling protocols in the setting where players have access to weak sources of randomness. We obtain
such an existential protocol using Theorem 2, and explicit protocol using Corollary 1.3.

2 Proof Overview

Our proof overview begins by outlining our new existential results for condensers in Section 2.1
that is able to handle even constant block length. Next, we present our explicit condenser results in
Section 2.2 before discussing of our low-entropy to uniform oNOSF source conversion in Section 2.3.
We present the main ideas behind our results regarding online influence and extractor lower bounds
in Section 2.4. In Section 2.5, we overview our extractor constructions for oNOBF and oNOSF
sources, that is based on a general transformation from leader election protocols.

2.1 Existence of oNOSF Condensers for All ℓ and n

Here we sketch the proof of Theorem 1. This result states that when g = 0.51ℓ and n = 1000,
there exists a condenser Cond for uniform (g, ℓ, n)-oNOSF sources so that the output entropy rate
is 0.99, the number of output bits is m = O(ℓ+log(1/ε)), and the error of the condenser is ε where
ε ≤ 2−Ω(ℓ) is arbitrary.

Our construction uses amazing seeded condensers (see Definition 3.3) with 1 · log(1/ε) depen-
dence on seed length. We slightly modify our source and then apply such seeded condenser. Here
is a proof sketch:

Proof sketch for Theorem 1. Let X = (X1, . . . ,Xℓ) be such a source. Let Y1 ∼ ({0, 1}n)0.5ℓ be
the source obtained by concatenating the first 0.5ℓ blocks of X. Since 0.51ℓ blocks are good, there
exist at least 0.01ℓ uniform blocks in Y1. We treat Y1 as a single distribution over nℓ bits with
min-entropy ≥ 0.01ℓn.

Let Y2 ∼ {0, 1}0.5ℓ be the source obtained by concatenating 1 bit from each of the last 0.5ℓ
blocks of X. Once again, since 0.51ℓ blocks are good, there exist at least 0.01ℓ uniform bits in Y1.

We will use the following seeded condenser:

Theorem 2.1 (Theorem 4.8, simplified). For all d, ε such that d ≥ log(ℓn/ε)+O(1), there exists a
seeded condenser sCond : {0, 1}0.5ℓn × {0, 1}d → {0, 1}m s.t. for all X ∼ {0, 1}0.5ℓn with H∞(X) ≥
0.01ℓn, we have Hε

∞(sCond(X,Ud)) ≥ 0.01ℓn+ d where m = 0.01ℓn+ d+ log(1/ε) +O(1).

Our condenser Cond will output sCond(Y1,Y2). Observe that not only is Y2 not uniform, there
could be as many as 0.49ℓ “bad bits” in Y2 that can depend on Y1. To remedy this, we use the
well known fact that the behavior of such adversarial Y2 cannot be far worse than the behavior if
Y2 were uniform. In particular, say if Y2 were uniform then the output entropy and error are k
and ε respectively. Then for the actual Y2, the output entropy will be k − 0.49ℓ and error will be
ε · 20.49ℓ. See Lemma 4.9 for the formal statement.

For us, it means the following: let εsCond, ksCond be such that HεsCond
∞ (sCond(Y1,U0.5ℓ)) ≥ ksCond.

Then, it must be that H20.49ℓ·εsCond
∞ (sCond(Y1,Y2)) ≥ ksCond − 0.49ℓ. So, for our final error to

be some ε, we need to have εsCond = ε · 2−0.49ℓ. For seeded condensers to exist, we need 0.5ℓ ≥
log(ℓn/εsCond) +O(1) and we check that such an inequality can indeed be satisfied if ε ≥ 2−0.01ℓ.
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Hence, we finally obtain that our seeded condenser will output 0.01ℓn+O(ℓ) bits and will have
output entropy m−∆ where ∆ = O(ℓ). Hence, if n is a large enough constant, our output entropy
rate, m−∆

m , will be ≥ 0.99 as desired.

Remark 2.2. Here (in the inequality 0.5ℓ ≥ 1 · log(ℓn/εsCond)) we crucially used the fact that there
exist seeded condensers with seed length dependence 1 · log(1/ε). Currently, we do not have explicit
constructions with this dependence. We also couldn’t have used a seeded extractor since for them,
the seed length dependence is 2 · log(1/ε). For that to work, we would need to assume g ≥ 0.76ℓ.

2.2 Explicit Condensers for Uniform oNOSF Sources

Here we sketch the proof of Theorem 3: we construct explicit condensers for uniform (0.5ℓ+ 1, ℓ, n)-
oNOSF sources where ℓ is a constant and n is arbitrarily growing.

Our construction will be similar to that of the existential construction of condensers from
[CGR24]. We will use the online nature of these sources to make more observations that will
allow us to obtain an explicit construction of such condensers using explicit seeded extractors (see
Definition 3.4 for a definition) as our primitive:

Proof sketch for Theorem 3. Let X be such a source. Let’s review the [CGR24] construction at a
high level: they take the first ⌈ℓ/2⌉ blocks and treat them as a single entity. From the remaining
blocks, they take first few bits of each of the blocks with the number of such bits geometrically
decreasing per block and concatenate them to obtain a second entity. They then pass these two
sources to an “output-light” two-source extractor to obtain their final output.

We first split each block in X into two parts of equal sizes. The resultant source is uniform
(ℓ+ 1, 2ℓ, n/2)-oNOSF source. We call this source X as well since we are just re-interpreting X as
this source. This simple trick turns out to be very useful since it allows us to only focus on the
situation where the number of blocks is an even number.

Remark 2.3. The construction of [CGR24] had to introduce the notion of “output-lightness” to
deal with the case of odd number of blocks. For instance, say ℓ = 5. Then, their first entity is
obtained by concatenating the first 3 blocks and second entity by taking careful number of bits from
the remaining 2 blocks. To handle scenarios where the first 3 blocks were uniform and last 2 were
bad, the output-lightness property was imposed on two-source extractors, something which we do
not know how to explicitly construct.

Just reducing to even cases is not enough since the construction of [CGR24] required low-error
two-source extractors with excellent parameters, and we do not know how to explicitly construct
them. We bypass this requirement by further exploiting the fact that our adversary is online.

Let W ∼ ({0, 1}n)ℓ be the concatenation of the first ℓ blocks of X. Let Y1, . . . ,Yℓ be the
sources obtained by carefully choosing the first few bits from each of the blocks Xℓ+1, . . . ,X2ℓ. Our
final construction will be the parity of the outputs of seeded extractors applied with source W and
seeds Yi. More formally, we output

ℓ⊕

i=1

sExti(W,Yi)

where sExti is any explicit near optimal seeded extractor (such as the extractor from Theorem 3.5).
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Since the number of blocks, 2ℓ, is even and number of good blocks is ℓ + 1, both W and Y

will obtain some bits from a good block. This means, H∞(W) ≥ n and that there exists j ∈ [ℓ]
such that Yj is uniform. We now condition on fixing blocks Y1, . . . ,Yj−1. Since these blocks can
depend on W, W will lose some small amounts of entropy (the amount will be very small since
these blocks are tiny compared to the amount entropy in W). Moreover, since the adversary is
online, Yj remains uniform even after doing this conditioning. We now view our construction as

g(W)⊕
ℓ⊕

i=j

sExti(W,Yi)

where g is the fixed function obtained by fixing Y1, . . . ,Yj−1.
We now compare two scenarios: (1) Where all Yj , . . . ,Yℓ are uniform (2) Only Yj is uniform

and Yj+1, . . . ,Yℓ are arbitrarily controlled by an adversary and can even depend on W:
In the first scenario, we further condition on fixing Yj+1, . . . ,Yℓ. Since in this scenario these

are independent and random, W retains the same entropy and Yj remains uniform. So our overall
output is of the form h(W) ⊕ sExtj(W,Yj) for some fixed function h. We condition on fixing
output h(W). Since m ≪ H∞(W), we infer that W still has lots of entropy when we do this
fixing. So, the output is just z ⊕ sExtj(W,Yj) where z is a fixed string, and hence the output
distribution is uniform.

The second scenario is more realistic and, in the worst case, this is what can actually happen.
We then use the result that if an adversary controls few bits in the input distribution, then they
cannot make the output of the condenser too bad (see Lemma 4.9 for full statement). With this,
and by carefully choosing geometrically decreasing lengths of Yi to help control the error, we indeed
obtain that the output will be condensed.

2.3 Converting Low-Entropy oNOSF Sources to Uniform oNOSF Sources

They key part of our proof for condensing from low-entropy oNOSF sources is a transformation
from low-entropy oNOSF sources to uniform oNOSF sources. Here, we sketch the proof for our
transformation in Theorem 1.4 and compare it to that of [CGR24]. Both these transformations
rely on two-source extractors (see Definition 3.6 for definition) as a basic primitive.

Given a (g, ℓ, n, k)-oNOSF source X = X1, . . . ,Xℓ, [CGR24] uses excellent existential two-
source extractors (such as from Lemma 6.6) to define output blocks Oi = 2Ext(X1 ◦ · · · ◦Xi−1,Xi)
for i ∈ {2, . . . , ℓ} and define their transformation as f(X) = O2, . . . ,Oℓ. They show that Oi is
a good block if: (1) Xi is a good block and (2) at least one block amongst X1, . . . ,Xi−1 is a
good block. They showed that such a good block will be uniform and independent of the blocks
O2, . . . ,Oi−1 and argued there will be g − 1 such good output blocks. This indeed shows their
output is a uniform (g − 1, ℓ− 1,m)-oNOSF source. However, each of their output blocks has
length m = O

(
k
ℓ

)
≤ O

(
n
ℓ

)
, and so they were not able to handle the case of n = o(ℓ). We

improve on their construction by using a “sliding window” based technique to obtain a much better
transformation that can even handle n = poly(log(ℓ)).

Theorem 2.4 (Theorem 6.1 restated). Let d, g, gout, ℓ, n,m, k, ε be such that gout ≤ g− ℓ−g+2
d , n ≥

k ≥ log(nd− k) +md+ 2 log(2gout/ε). Then, there exists a function f : ({0, 1}n)ℓ → ({0, 1}m)ℓ−1

such that for any (g, ℓ, n, k)-oNOSF source X, there exists uniform (gout, ℓ− 1,m)-oNOSF source
Y for which |f(X)−Y| ≤ ε.
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The parameter d in our theorem statement above is the width of our sliding window. When
we set d = ℓ we recover the analysis of [CGR24]. The true advantage of our transformation
emerges when d is very small compared to ℓ. For instance, when g = 0.51ℓ, n = poly(log(ℓ)) and
k = poly(log(ℓ)), we set d to be a large constant and conclude that the output distribution is a
uniform (0.509ℓ, ℓ, poly(log(ℓ))-NOSF source.

Proof sketch of Theorem 2.4. Define Oi = 2Ext(Xi−d ◦ · · · ◦ Xi−1,Xi). We call Oi to be a good
output block when Xi is good and there’s at least one good block amongst {Xi−d, . . . ,Xi−1}.

We first compute the number of good output blocks gout. Let j1, . . . , jg be the indices of the
good input blocks in X and di = ji+1 − ji be the gap between the i-th good block and the next
(i+ 1)-th good block. If the gap di is at most d, then Oi+1 must be a good output block. So, gout
is the number of i such that di ≤ d. Since g ≥ 0.51ℓ, such large gaps can’t appear too often and
we can calculate that gout = g − ℓ−g+2

d as desired.
Next, we show that the good output blocks are indeed uniform conditioned on all previous

output blocks. With this, we will obtain that the output distribution will be uniform (gout, ℓ− 1,m)-
oNOSF source as desired. Let i be the index of a good output block. We want to show that Oi is
uniform conditioned on O1, . . . ,Oi−1. To do this, we first observe that any input block contributes
to at most d + 1 good output blocks. This means that(Xi−d ◦ · · · ◦Xi−1), which has min-entropy
at least k, loses at most d ·m min-entropy conditioned on fixing O1, . . . ,Oi−1. Moreover, Xi still
remains uniform and independent of (Xi−d ◦ · · · ◦Xi−1) when fixing these previous output blocks.
Hence, the output of the two-source extractor will indeed be uniform as desired.

We can make Theorem 2.4 explicit by using the explicit two-source extractors of Theorem 6.7
at a slight cost of dependence on m and ε as seen in Corollary 6.4.

2.4 Online Influence and Extractor Lower Bounds

In this subsection, we provide a brief overview of our results regarding online influence and sketch
how they imply extractor lower bounds against oNOBF sources. We also contrast online with the
established notion of influence for Boolean functions. For any function f : {0, 1}n → {0, 1}, define
the function e(f)(x) = (−1)f(x).

A Poincaré inequality and extractor lower bounds One fundamental inequality about
regular influence is the Poincaré inequality which states that Var(f) ≤ I[f ]. We prove a similar
result for online influence.

Theorem 2.5 (Theorem 7.5 restated). For any f : {0, 1}ℓ → {0, 1}, we have Var(e(f)) ≤ oI[f ] ≤√
ℓVar(e(f)).

It is not hard to derive extractor lower bounds for oNOBF sources from the above result. The
high level idea is to collect bits with high online influence, which is guaranteed by the first inequality
in the above theorem (using an averaging argument) to form a coalition of coordinates that has
enough online influence to bias the claimed extractor. We refer the reader to Theorem 7.19 for
more details.

The proof of Theorem 2.5 is based on techniques from the Fourier analysis of Boolean functions.6

The following key result implies Theorem 2.5 in a straightforward way.

6We give a very brief recap of necessary notions from Fourier analysis of Boolean functions in Section 7.2.
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Lemma 2.6 (Lemma 7.7 restated). For any f : {0, 1}ℓ → {0, 1} and i ∈ [ℓ], oIi(f)
2 ≤∑

S⊆[i]
S∋i

f̂(S)2 ≤ oIi(f).

The above bound is established using the following Fourier analytic characterization of online
influence.

Claim 2.7 (Claim 7.8 restated). For any f : {0, 1}ℓ → {0, 1}, we can write the online influence of
its i-th bit as

oIi[f ] = E
x∼Ui−1




∣∣∣∣∣∣∣∣

∑

T⊆[i]
T∋i

f̂(T )χT\{i}(x)

∣∣∣∣∣∣∣∣


 .

The proof of the above result is mostly a standard Fourier analytic computation and we refer
the reader to Section 7 for more details.

Influence vs Online Influence It is not hard to see that oIi[f ] ≤ Ii[f ] for all i ∈ [ℓ], with
equality always holding for i = ℓ as an adversarial online bit in the last index can see every good
bit. Moreover, we observe that for monotone functions, the notion of online influence is equivalent
to regular influence, so any separation between the two notions must come from non-monotone
functions.

We exactly exhibit such a separation via the non-monotone address function Addrℓ :
{0, 1}log ℓ+ℓ → {0, 1} which considers its first log ℓ bits as an index in {1, . . . , ℓ} and then out-
puts the value of the chosen index. It is easy to show (as we do in Lemma 7.12) that the first log ℓ
bits of Addrℓ have no online influence, while the remaining bits have online influence of O

(
1
ℓ

)
. This

is in contrast to the well known result of [KKL88] showing that, for a balanced function such as

Addrℓ, there must exist a bit with influence at least Ω
(
log ℓ
ℓ

)
.

2.5 Extractors via Leader Election Protocols

We sketch our main idea for constructing an extractor for oNOBF sources (Theorem 8.2). Similar
ideas work more generally for extracting from oNOSF sources (Theorem 8.3). As mentioned above,
we use a novel connection to leader election protocols to construct extractors. We refer the reader
to Section 3.3 for a quick recap of the leader election protocols.

Suppose π is an (r− 1)-round leader election protocol over ℓ players where in each round, each
player sends 1 bit and with the guarantee that if there are at most δℓ bad players, then a good
player is chosen as leader with probability 1 − ǫ. Suppose X is an (g, ℓr)-oNOBF source, where
g ≥ lr − δℓ. We simply partition the bits of X into chunks X1,X2, . . . ,Xr, where each Xi is on ℓ
bits, and simulate the protocol π by using the j’th bit of Xi as the message of the j’th player in
round i, for all 1 ≤ j ≤ ℓ and 1 ≤ i ≤ r − 1. At the end of this simulation suppose j∗ ∈ [ℓ] is the
chosen leader. Then we output the j∗’th bit of Xr as the output of the extractor.

Briefly, the reason that the above is a valid simulation of π is the fact that the value of any
bad bit in this online setting just depends on bits that appear before it, which is allowed in the
leader election protocol (where in round i, the message of a bad player can be any function of the
messages in the same round or previous rounds). The correctness of the extractor now follows from
the fact that since the number of bad players (i.e., bad bits in X) is at most δℓ, it follows from the
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guarantee of the protocol that the chosen leader j∗ ∈ [ℓ] is a good player with probability at least
1− ǫ, and in this case the j∗’th bit of Xr must be uniform.

We note here that in the usual definition of leader election protocols, the requirement is to
select a good leader with constant probability, which is a weaker guarantee than what we need to
instantiate the above plan. It turns out that we can combine leader election protocols from prior
works, in particular from [Fei99a] and [AN93b], to construct protocols with the stronger guarantee
we require. We refer the reader to Section 9 for more details on the construction of our leader
election protocols.

2.6 Organization

In the remainder of our paper, we give some preliminaries in Section 3 before moving on to our core
results. Section 4 details our proofs for the existence of seedless condensers for oNOSF sources for
all regimes of ℓ and n, while Section 5 provides proofs for our explicit constructions of condensers.
Next, Section 6 shows how to handle converting low-entropy oNOSF sources to uniform oNOSF
source for a broader range of parameters. In Section 7 we introduce the notion of online influence
and use it to provide an extraction lower bound for oNOBF sources. In Section 8, we present our
explicit constructions of extractors for oNOBF and oNOSF sources using a connection to leader
election protocols. In Section 9, we explicitly construct the required leader election protocols. We
discuss some open questions in Section 10.

In Appendix A, we consider a natural local variant of oNOSF sources and show that it is
straightforward to extract from such sources using existing extractors for small-space sources.

3 Preliminaries

In this section we give some basic background and facts used throughout our paper. We use
boldfaced font to indicate a random variable such as X. Often we will use ◦ or , to indicate
concatenation of blocks. So if X1 ∼ {0, 1}n and X2 ∼ {0, 1}n, then X1,X2 will be the concatenated
random variable over {0, 1}2n. We will use the notation [n] as shorthand for {1, . . . , n}. All logs in
this paper will have base 2 unless stated otherwise.

3.1 Basic Probability Notions

We measure the distance between two distributions via statistical distance:

Definition 3.1 (Statistical Distance). For any two distributions X,Y over Ω, we define the sta-
tistical distance or total-variation distance (TV) distance as:

|X−Y| = max
S⊂Ω

|Pr[X ∈ S]− Pr[Y ∈ S]| = 1

2

∑

s∈Ω

|Pr[X = s]− Pr[Y = s]|

We use the notation X ≈ε Y to denote the fact that |X−Y| ≤ ε.

We will utilize the very useful min-entropy chain rule in our constructions.

Lemma 3.2 (Min-entropy chain rule, [MW97]). For any random variables X ∼ X and Y ∼ Y
and ε > 0,

Pr
y∼Y

[H∞(X | Y = y) ≥ H∞(X)− log | Supp(Y)| − log(1/ε)] ≥ 1− ε.
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3.2 Condensers and Extractors

We recall the definition of a seeded condenser.

Definition 3.3. A (kin, kout, ε)-seeded condenser sCond : {0, 1}n × {0, 1}d → {0, 1}m satisfies the
following: for every source X ∼ {0, 1}n with H∞(X) ≥ kin, and Y = Ud,

Hε
∞(Cond(X,Y)) ≥ kout.

Here, d is called the seed length of sCond.

Seeded extractor is the special case of seeded condenser where kout = m. We here record the
full definition for completeness sake:

Definition 3.4. A (k, ε)-seeded extractor sExt : {0, 1}n × {0, 1}d → {0, 1}m satisfies the following:
for every source X ∼ {0, 1}n with H∞(X) ≥ k, and Y = Ud,

sExt(X,Y) ≈ε Um.

Here, d is called the seed length of sExt. sExt is called strong if

sExt(X,Y),Y ≈ε Um,Y.

We will use the following near optimal explicit construction of seeded extractors:

Theorem 3.5 (Theorem 1.5 in [GUV09]). For all constant 0 < α < 1, there exists a constant C
such that for all n, k, ε, there exists an explicit (k, ε)-seeded extractor sExt : {0, 1}n × {0, 1}d →
{0, 1}m with d = C log(n/ε) and m ≥ (1− α)k.

Next, we recall the definition of two-source extractors.

Definition 3.6. A function 2Ext : {0, 1}n1×{0, 1}n2 → {0, 1}m is a (k1, k2, ε)-two-source extractor
if for every source X1 ∼ {0, 1}n1 with H∞(X1) ≥ k1 and X2 ∼ {0, 1}n2 with H∞(X2) ≥ k2 where
X1 and X2 are independent of each other, we have

2Ext(X1,X2) ≈ε Um.

It is said to be strong in the first argument if

2Ext(X1,X2),X1 ≈ε Um,X1.

3.3 Leader Election, Collective Coin Flipping and Sampling Protocols

We formalize the definition of protocols in the full information model. Collective coin flipping
protocols, leader election protocols, and collective sampling protocols are special cases of such
protocols where the output domain is [ℓ] and {0, 1} and {0, 1}m for some m respectively.

Definition 3.7 (Protocol in the full information model). A k-round protocol with output domain
Y over ℓ players where each player sends n random bits per round is a function

π :
(
({0, 1}n)ℓ

)k
→ Y
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that takes in the input of each of the players during each round and outputs an element from set Y
which is the outcome of the protocol.

Here is how the protocol operates in the presence of a set B ⊂ [ℓ] of bad players: In round i,
each of the players from [ℓ] \ B independently output a uniformly random element from {0, 1}n.
Let their collective outputs be αi ∈ ({0, 1}n)[ℓ]\B. Then, depending on α1, . . . , αi, the players in
B together output an element of ({0, 1}n)B. Hence, we model the strategy of the bad players as a
sequence of functions σ = (σ1, . . . , σk), where

σi :
(
({0, 1}n)[ℓ]\B

)i
→ ({0, 1}n)B ,

where σi takes in the inputs of the good players from the first i rounds and maps it to the output
of the bad players for round i. For a fixed strategy σ, the outcome of the protocol can be modeled
as follows: uniform random strings α1, . . . , αk ∈ ({0, 1}n)[ℓ]\B are chosen, and the outcome of the
protocol is

π(α1 : σ1(α1), α2 : σ2(α1, α2), . . . , αk : σk(α1, . . . , αk)).

We now specialize this definition to define collective coin flipping protocols

Definition 3.8 (Collective coin flipping protocol). A collective coin flipping protocol π is a protocol
in the full information model with output domain Y = {0, 1}. Furthermore, we say π is (b, γ)
resilient if in the presence of any set B of bad players with |B| ≤ b, we have that maxo∈{0,1} Pr[π|B =
o] ≤ 1− γ.

Note that when k = 1, the protocol π just becomes a function over {0, 1}ℓ; such 1-round coin
flipping protocols which cannot be biased by any small set of bad players are also known as resilient
functions.

We also specialize the definition of protocols to define leader election protocols:

Definition 3.9 (Leader election protocol). A leader election protocol π is a protocol in the full
information model with output domain Y = [ℓ], the number of players the protocol is operating on.
Furthermore, we say π is (b, γ) resilient if in the presence of any set B of bad players with |B| ≤ b,
we have that Pr[π|B ∈ B] ≤ 1− γ.

Remark 3.10. The definition of resilience that we use, which is standard in the leader election
and collective coin flipping literature, requires only that bad players can be elected as a leader with
probability at most 1 − γ. Our leader election protocols satisfy (and need) the stronger measure
of quality that is standard in the pseudorandomness literature: that bad players are chosen with
probability at most ε for small ε.

We lastly define collective sampling protocols:

Definition 3.11 (Collective sampling protocol). A collective sampling protocol π is a protocol
in the full information model, typically with output domain Y = {0, 1}m for some m which is a
function of ℓ and n. The goal of collective sampling protocols is to ensure that for every output set
S ⊂ {0, 1}m with density µ, in the presence of b bad players, the probability that the output lies in
S is at most ε, with the goal to make ε as close to µ as possible.
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4 Existence of Condensers for All Values of ℓ, n

We will show that there exist condensers for uniform (g, ℓ, n)-oNOSF sources for almost all set-
tings of ℓ, n, provided g > 0.5ℓ. Observe that a uniform (g, ℓ, n)-oNOSF source is also a uniform
(g · s, ℓ · s, n/s)-oNOSF source by simply dividing up all blocks into s parts. This implies that as n
becomes smaller (relative to ℓ), it gets harder to condense with the hardest case being n = 1. Our
condenser will also be able to handle the case of n = O(1) and ℓ arbitrarily growing:

Theorem 4.1 (Simplified version of Corollary 4.7). For all g, ℓ, n, ε, δ where g = 0.51ℓ, and
0.01ℓn ≥ 2 log(ℓn/2ε) + O(1), there exists a condenser Cond : ({0, 1}n)ℓ → {0, 1}m such
that for any uniform (g, ℓ, n)-oNOSF source X, we have Hε

∞(Cond(X)) ≥ m − ∆ where m =
0.005ℓn+ 200(ℓ+ log(ℓn/2ε)) +O(1) and ∆ = 200(ℓ+ log(ℓn/2ε)) +O(1).

Note that when n is a large enough constant, m ≥ 100∆ and hence, the output entropy rate is
at least 0.99.

In fact, we obtain a general result for all values of n, ℓ and when g = 0.5ℓ + e where e ∈ N is
arbitrary. See Lemma 4.4 for the full tradeoff; to get slightly better parameters for small n, see
Corollary 4.6.

We combine the above condenser for uniform oNOSF sources with the transformation for low-
entropy oNOSF sources to uniform oNOSF sources from Corollary 6.2 to obtain the following
condenser for low-entropy oNOSF sources:

Corollary 4.2. Let g, ℓ, n,m, k, ε be such that g = 0.51ℓ, n = poly(log(ℓ/ε)), k = Ω(log(ℓ/ε)),m =
Ω(ℓ log(ℓ/ε)). Then, we can construct condenser Cond : ({0, 1}n)ℓ → {0, 1}m such that for any
(g, ℓ, n, k)-oNOSF source X, we have Hε

∞(Cond(X)) ≥ m−∆ where ∆ = O(ℓ+ log(1/ε)).

Remark 4.3. Previous condensers from [CGR24] could only show that condensers exist for uniform
oNOSF sources when ℓ = o(logn). They relied on existence of low-error two source extractors
equipped with an additional “regularity” property. Our constructions are much simpler, recover all
their results with even better parameters, and work for all values of n and ℓ, including the hardest
case of n = O(1).

We provide our general construction of condensers in Section 4.1. To do that, we will require
another type of condenser for two uniform oNOSF sources where the bad bits of the second block
are allowed to depend on the bits of the first block. We provide this construction in Section 4.2.

4.1 Constructing Condensers for Uniform oNOSF Sources

In this subsection, we will construct the following general condenser for uniform oNOSF sources:

Lemma 4.4 (General uniform oNOSF source condensing). For all g, ℓ, n, ε, e where g ≥ (ℓ/2) + e,
and en ≥ 2 log(ℓn/2ε) + O(1), there exists a condenser Cond : ({0, 1}n)ℓ → {0, 1}m such that for
any uniform (g, ℓ, n)-oNOSF source X, we have Hε

∞(Cond(X)) ≥ m − ∆ where m = en
2 + (2ℓ −

e)
⌈
log(ℓn/2ε)+O(1)

e

⌉
+ log(1/ε) +O(1) and ∆ = (2ℓ− 2e)

⌈
log(ℓn/2ε)+O(1)

e

⌉
+ log(1/ε) +O(1).

To do this, we will use a condenser for two distinct uniform oNOSF sources where one source
can depend on the other:
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Lemma 4.5. For all g, ℓ, nx, ny, ε where nx ≥ ny and gny ≥ log(ℓnx/ε) + O(1), there exists a
condenser Cond : ({0, 1}nx)ℓ × ({0, 1}ny)ℓ → {0, 1}m such that: For any uniform (g, ℓ, nx)-oNOSF
source X and uniform (g, ℓ, ny)-oNOSF source Y with the additional property that bad blocks in Y

can depend on X as well, we have that Hε
∞(Cond(X,Y)) ≥ m−∆ where m = gnx + (2ℓ− g)ny +

log(1/ε) +O(1) and ∆ = (2ℓ− 2g)ny + log(1/ε) +O(1).

We construct this condenser in Section 4.2. Using this, our main general condenser can be
constructed as follows:

Proof of Lemma 4.4. We split each block in X into 2 parts to obtain a uniform (2g, 2ℓ, n/2)-oNOSF
source. We call this resultant source X as well since it is the same distribution, just viewed
differently. Let U = (U1, . . . ,Uℓ) and where for 1 ≤ i ≤ ℓ, Ui = Xi. Let V = (V1, . . . ,Vℓ) where

for 1 ≤ i ≤ ℓ, we define Vi to be prefix of length nv of Xℓ+i where nv =
⌈
log(ℓn/2ε)+O(1)

e

⌉
.

We observe that U is a uniform (e, ℓ, n/2)-oNOSF source and V is a uniform (e, ℓ, nv)-oNOSF
source where bad bits in V can depend on U and the good bits in both sources are independent.
We now define our condenser Cond to be the condenser from Lemma 4.5 applied to sources U,V.
Hence, we will have that Hε

∞(Cond(U,V)) ≥ m−∆ where m = en/2+(2ℓ−e)ny+log(1/ε)+O(1)
and ∆ = (2ℓ− 2e)ny + log(1/ε) +O(1) as desired.

Our first corollary will apply to the regime that his the hardest to condense from, namely when
n is very small compared to ℓ, even when n = O(1) and ℓ is arbitrarily growing:

Corollary 4.6 (Small n). For all g, ℓ, n, ε, δ where g ≥ (0.5 + δ)ℓ, ε ≥ 2−δℓ+O(1), and n ≤ 2δℓ/2,
there exists a condenser Cond : ({0, 1}n)ℓ → {0, 1}m such that for any uniform (g, ℓ, n)-oNOSF
source X, we have Hε

∞(Cond(X)) ≥ m − ∆ where m = δℓn/2 + (2 − δ)ℓ + log(1/ε) + O(1) and
∆ = (2− δ)ℓ+ log(1/ε) +O(1).

Proof. We observe that
⌈
log(ℓn/2ε)+O(1)

e

⌉
= 1 and directly apply Lemma 4.4.

We also obtain the following general tradeoff for larger n that may be growing with ℓ or even
when ℓ = O(1) and n growing alone (this applies to all n but is most interesting when n is large
since Corollary 4.6 provides better tradeoff for small n).

Corollary 4.7 (Larger n). For all g, ℓ, n, ε, δ where g ≥ (0.5+ δ)ℓ, and δℓn ≥ 2 log(ℓn/2ε)+O(1),
there exists a condenser Cond : ({0, 1}n)ℓ → {0, 1}m such that for any uniform (g, ℓ, n)-oNOSF
source X, we have Hε

∞(Cond(X)) ≥ m−∆ where m = δℓn
2 + (2/δ − 1)(log(ℓn/2ε) + O(1)) + (2−

δ)ℓ+ log(1/ε) +O(1) and ∆ = (2/δ − 1)(log(ℓn/2ε) +O(1)) + 2(2− δ)ℓ+ log(1/ε) +O(1).

Proof. We observe that
⌈
log(ℓn/2ε)+O(1)

e

⌉
≤ 1+ log(ℓn/2ε)+O(1)

e and apply that to the condenser from

Lemma 4.4.

4.2 Condenser for Two Uniform oNOSF Sources

In this subsection, we will prove Lemma 4.5. To construct the claimed condenser, we will use the
following folklore result regarding existence of excellent seeded condensers (e.g., see Corollary 3 of
[GLZ24]).
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Theorem 4.8. For all n, k, d, ε such that d ≥ log(n/ε) + O(1), there exists a seeded condenser
sCond : {0, 1}n × {0, 1}d → {0, 1}m such that for all X ∼ {0, 1}n with H∞(X) = k, we have
Hε

∞(Cond(X)) ≥ k + d where m = k + d+ log(1/ε) +O(1).

We will also use the following result from [CGR24] that states an adversary can’t make things
too bad if it controls very few bits. We note that similar lemmas have been useful in previous
construction of condensers [BCDT19, BGM22, GLZ24]:

Lemma 4.9 (Lemma 6.18 in [CGR24]). Let X ∼ {0, 1}n be an arbitrary flat distribution and let
Cond : {0, 1}n → {0, 1}m be such that Hε

∞(Cond(X)) ≥ k. Let G ⊂ [n] with |G| = n−b be arbitrary.
Let XG ∼ {0, 1}n−b be the projection of X onto G. Let X′ ∼ {0, 1}n be the distribution where the
output bits defined by G equal XG and remaining b bits are deterministic functions of the n− b bits
defined by G under the restriction that Supp(X′) ⊂ Supp(X). Then, Hε′

∞(Cond(X′)) ≥ k− b where
ε′ = ε · 2b.

With this, we are ready to provide the construction of condensers for two uniform oNOSF
sources:

Proof of Lemma 4.5. Let sCond : ({0, 1}nx)ℓ × ({0, 1}ny)ℓ → {0, 1}m be lossless condenser guaran-
teed from Theorem 4.8 with εsCond = ε · 2−(ℓ−g)ny . We define Cond(x, y) = sCond(x, y).

Let Ounif = Cond(X,Uℓny
) and Oadv = Cond(X,Y). We argue that Ounif will be highly

condensed and since the adversary controls so few bits in Y, Oadv will be condensed as well.
We first see that by the property of the seeded condenser, HεsCond

∞ (Ounif ) ≥ gnx + ℓny. Next
we observe that Oadv can be obtained from Ounif by an adversary controlling b = (ℓ − g)ny bits
from (X,Uℓny

) to obtain (X,Y) and considering the output of sCond. We apply Lemma 4.9 which
allows us to compare output entropy in such scenarios and obtain that

HεsCond·2
b

∞ (Oadv) ≥ Hε
∞(Ounif )− b ≥ (gnx + ℓny)− ((ℓ− g)ny) = m−∆.

As εsCond · 2b = ε, we indeed have that Hε
∞(Oadv) ≥ m−∆ as desired.

5 Explicit Condensers for Uniform oNOSF Sources

In this section, we will prove the following main result regarding condensing from uniform oNOSF
sources, matching the existential condenser parameters of [CGR24]. We state this for constant ℓ
but our condenser can handle any ℓ = o(logn).

Theorem 5.1 (Clean version of Theorem 5.5). For constant g, ℓ where g > ℓ/2, and all n, ε, there
exists an explicit condenser Cond : ({0, 1}n)ℓ → {0, 1}m such that for any uniform (g, ℓ)-oNOSF
source X, we have Hε

∞(Cond(X)) ≥ m−O(log(m/ε)) where m = Ω(n).

Using the transformation of low-entropy oNOSF sources to uniform oNOSF sources from
Corollary 6.4 by setting d = ℓ (for this parameter regime, such a transformation can also be ob-
tained using results from [CGR24]), we get an explicit condenser for low-entropy oNOSF sources:

Corollary 5.2. For constant g, ℓ where g > ℓ/2+1, and all n, k, ε with k ≥ poly(log(n))+log(n/ε)+
O(1), ε ≥ n−Ω(1), there exists an explicit condenser Cond : ({0, 1}n)ℓ → {0, 1}m such that for any
(g, ℓ, n, k)-oNOSF source X, we have Hε

∞(Cond(X)) = m−O(log(m/ε)) where m = kΩ(1).
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We now use a reduction from Lemma 5.12 in [CGR24]. The reduction shows how to use
condensers for g > ℓ/2 to construct condensers for all g, ℓ that condense up to rate 1/ ⌊ℓ/g⌋.7 Using
this, we construct explicit condensers for all (g, ℓ). Particularly, we get the following:

Corollary 5.3. For any constant g and ℓ and all n, ε, there exists an explicit condenser Cond :
({0, 1}n)ℓ → {0, 1}m such that for any uniform (g, ℓ)-oNOSF source X, we have Hε

∞(Cond(X)) ≥
1/ ⌊ℓ/g⌋ ·m−O(log(m/ε)) where m = Ω(n).

We again use the transformation of low-entropy oNOSF sources to uniform oNOSF sources
(Corollary 6.4) to construct a condenser for low-entropy oNOSF sources for all g and ℓ:

Corollary 5.4. For all constant g, ℓ, and all n, k, ε with k ≥ poly(log n), ε ≥ n−Ω(1), there exists
an explicit condenser Cond : ({0, 1}n)ℓ → {0, 1}m such that for any (g, ℓ, n, k)-oNOSF source X,
we have Hε

∞(Cond(X)) = 1/ ⌊(ℓ− 1)/(g − 1)⌋ ·m−O(log(m/ε)) where m = Ω(k−Ω(1)).

5.1 Proving the Main Theorem

Here we prove the following full version of Theorem 5.1:

Theorem 5.5. There exists a universal constant C such that for all n, g, ℓ, ε where g > ℓ/2,
there exists an explicit condenser Cond : ({0, 1}n)ℓ → {0, 1}m satisfying: for any uniform (g, ℓ)-
oNOSF source X with g > ℓ/2, we have Hε

∞(Cond(X)) ≥ m − (3C)ℓ log(2ℓn/ε) where m = 1
3 ·(

(n/2)− (3C)ℓ log(2ℓn/ε)
)
.

The proof of this theorem follows by explicitly constructing an extractor for multiple indepen-
dent uniform sources, where few of them are set to constant, with the error depending on the
longest source that is non-constant. Formally, we use the following:

Lemma 5.6. There exists universal constant C such that for all nk, kx, ny,1, . . . , ny,t,m, 0 < ε1 ≤
· · · ≤ εt < 1 satisfying ny,i ≥ C log(2nx/εi) and m = kx−log(2/ε1)

3 , the following holds: There
exists an explicit extractor Ext : {0, 1}nx × {0, 1}ny,i × · · · × {0, 1}ny,t → {0, 1}m satisfying: For
all 1 ≤ j ≤ t and all independent sources X ∼ {0, 1}nx ,Y1 ∼ {0, 1}ny,1 , . . . ,Yt ∼ {0, 1}ny,t where
H∞(X) = kx, each of Y1, . . . ,Yj−1 are fixed constants and all Yj , . . . ,Yt are uniform, we have
that Ext(X,Y1, . . . ,Yt) is εj-close to Um.

We will prove this lemma at the end of this section. Along with this extractor, we use the fact
that if a function f condenses any flat distribution X, then f also condenses, with a small loss
in parameters, any distribution X′ which is the same as X but with a few bits controlled by an
adversary. Lemma 4.9 elaborates and provides the result we need. Using this and our previously
stated extractor, our condenser result follows:

Proof of Theorem 5.5. First, we split each block in X into two to obtain uniform (2g, 2ℓ, n/2)-
oNOSF source. This source is still X, just with this new parameters. For 1 ≤ i ≤ ℓ, let ny,i =

2C(3C)ℓ−i log(2ℓn/ε) and let ny =
∑ℓ

i=1 ny,i. Let Yi be the length ny,i prefix of the block Xℓ+i.
Let W = (X1, . . . ,Xℓ) and let Y = (Y1, . . . ,Yℓ). We use the extractor Ext from Lemma 5.6 with

7The statement of the lemma in [CGR24] does not explicitly state it as a reduction but such a reduction easily
follows from the proof of the lemma.
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kx = n/2−ny − log(2/ε), m from the lemma statement, and for 1 ≤ i ≤ ℓ, we set εi =
(

ε
2ℓn

)(3C)ℓ−i

.
With this, we define our condenser as:

Cond(X) = Ext(W,Y1, . . . ,Yℓ).

We easily compute and check that our parameter settings satisfy the requirements of Lemma 5.6.
We will show that the output entropy (with error ε) is at least m − ny. We compute that ny ≤
(3C)ℓ log(2ℓn/ε), the output entropy gap. Hence if we show this, then our condenser will indeed
have the claimed property.

We now show that our condenser construction is correct. First, since 2g > ℓ, there exists at least
one good block amongst Xℓ+1, . . . ,X2ℓ and hence, at least one good block amongst Y1, . . . ,Yℓ.
Let this good block appear at index j ∈ [ℓ]. Similarly, there exists at least one good block amongst
X1, . . . ,Xℓ and so, H∞(W) ≥ n/2. Let A = Y1, . . . ,Yj−1 and let B = Yj+1, . . . ,Yℓ. Then,
Y = (A,Yj ,B). We will show that Hε

∞(Ext(W, (A,Yj ,B))) ≥ m− ny.
We will now consider fixings of A. We say a fixing of A = a is good if H∞(W|A = a) ≥

n/2− ny − log(2/ε) = kx. By the min-entropy chain rule (Lemma 3.2), at least 1− ε/2 fraction of
fixings of A are good. As X is an oNOSF source, Xℓ+j is independent of blocks X1, . . . ,Xℓ+j−1.
Hence, Yj remains uniform and independent of W, for every fixing of A. We will show that for

every good fixing of A = a, H
ε/2
∞ Ext(W,Y) ≥ m −∑n

i=j+1 ny,i ≥ m − ny. This will prove our
result as our total error will be ε and the min-entropy guarantee will be m− ny, as desired.

Consider the best case scenario when (B|A = a) = U|B|. This is unrealistic since it is possible
that all bits inB are bad and arbitrarily depend on the remaining bits. Nevertheless, it is instructive
to see what happens in this scenario. In this case, W,Y are independent distributions and we can
infer that Ext(W,Y) ≈εj Um. However, as alluded before, all bits in B can be adversarially
set. To overcome this, we invoke Lemma 4.9 that allows us to compare how worse off our output
distribution can be compared to the best case scenario. We conclude that even whenB is completely
adversarially controlled, Hε′

∞(Ext(W,Y)) ≥ m− |B| = m−∑i=j+1 ny,i where

ε′ = εj · 2|B|

=
( ε

2ℓn

)(3C)ℓ−j

· 2
∑ℓ

i=j+1 ny,i

=
( ε

2ℓn

)(3C)ℓ−j

· 22C log(2ℓn/ε)
∑ℓ

i=j+1(3C)ℓ−i

=
( ε

2ℓn

)(3C)ℓ−j

·
(
2ℓn

ε

)2C
(3C)ℓ−j

−1
3C−1

≤
( ε

2ℓn

)(3C)ℓ−j

·
(
2ℓn

ε

)(3C)ℓ−j−1

≤ ε

2ℓn
≤ ε/2

This proves our claim, showing that for all good fixings, our output is highly condensed.
We need to be careful when invoking Lemma 4.9 since it requires that (W,A,Yj ,U|B|) should

be a flat distribution. While that may not be true, we can express W as a convex combination
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of flat sources with same min-entropy and since A is fixed and Yj and U|B| are independent and
uniform, we can express the joint distribution as convex combination of flat sources, for each of
them invoke the lemma, and conclude that the original distribution will be condensed as well.

Lastly, we show how to construct our multi-source extractor with the desired properties. Using
various seeded extractors, we construct our final extractor as follows:

Proof of Lemma 5.6. For 1 ≤ i ≤ t, let sExti : {0, 1}nx × {0, 1}ny,i → {0, 1}m be explicit (εi/2)-
seeded-extractor guaranteed by Theorem 3.5. Our extractor construction is:

Ext(x, y1, . . . , yt) =
t⊕

i=1

sExti(x, yi).

Let Zgood = sExtj(X,Yj) and let Zrest =
⊕

1≤i≤t,i 6=j sExti(X,Yi). Notice that our final output
distribution is Zgood ⊕ Zrest. We will argue that on most fixings of Zrest, the output will be close
to uniform.

By Lemma 3.2, we have that

Pr[H∞(X|Zrest = zrest) ≥ kx −m− log(2/εj)] ≥ 1− εj/2.

Call the fixings zrest of Zrest that satisfy the above property of leaving X with a lot of entropy
when conditioning on them, as the “good fixings.” As Zrest is independent of Yj and X is left with
a lot of entropy conditioning on a good fixing zrest, we have that

sExtj((X|Zrest = zrest), (Yj |Zrest = zrest)) ≈εj/2 Um.

As 1 − εj/2 fraction of fixings of Zrest are good, we conclude that Ext(X,Y1, . . . ,Yt) ≈εj Um as
desired.

6 Transforming Low-Entropy oNOSF Sources to Uniform oNOSF

Sources

In this section, we show how to transform low-entropy oNOSF sources into uniform oNOSF sources.
Such a transformation was also provided in [CGR24]. Here, we obtain improved bounds using a
generalized construction that allows us to obtain better tradeoffs and parameters in many more
regimes of n, ℓ. Our main theorem is:

Theorem 6.1. Let d, g, gout, ℓ, n,m, k, ε be such that gout ≤ g − ℓ−g+2
d , n ≥ k ≥ log(nd − k) +

md + 2 log(2gout/ε). Then, there exists a function f : ({0, 1}n)ℓ → ({0, 1}m)ℓ−1 such that for
any (g, ℓ, n, k)-oNOSF source X, there exists uniform (gout, ℓ− 1,m)-oNOSF source Y for which
|f(X)−Y| ≤ ε.

Our construction’s power comes from the flexibility of setting d to any desired value. For
instance by setting d to be a large constant, we can get the following transformation that works
even when n is very small compared to ℓ:
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Corollary 6.2 (Transformation for small n). Let g, ℓ, n,m, k, ε, δ be such that δ ≤ 0.99, g = δℓ, n =
poly(log(δℓ/ε)), k = Ω(log(δℓ/ε)),m = Ω(k). Then, we can construct a function f : ({0, 1}n)ℓ →
({0, 1}m)ℓ−1 such that: for any (g, ℓ, n, k)-oNOSF source X, there exists uniform (0.99δℓ, ℓ− 1,m)-
oNOSF source Y such that |f(X)−Y| ≤ ε.

We additionally note that when we set d = ℓ, we recover the same construction as in [CGR24],
matching its parameters. This is most interesting in the regime when say ℓ = O(1) and n is
arbitrarily growing.

Corollary 6.3 (similar parameters as Theorem 5.2 from [CGR24]). Let g, ℓ, n,m, k, ε be such
that k ≥ 1.01(log(nℓ) + 2 log(2(g − 1)/ε)),m = k/200ℓ. Then, we can construct a function
f : ({0, 1}n)ℓ → ({0, 1}m)ℓ−1 such that for any (g, ℓ, n, k)-oNOSF source X, there exists uniform
(g − 1, ℓ− 1,m)-oNOSF source Y such that |f(X)−Y| ≤ ε.

To obtain these transformations, we will use two-source extractors. In fact, using explicit
construction of two-source-extractors, we also obtain an explicit transformation:

Corollary 6.4 (Explicit Transformation). There exists a universal constant C such that for all
d, g, gout, ℓ, n,m, k, ε satisfying gout ≤ g− ℓ−g+2

d , k ≥ poly(log(n))+md+2 log(2gout/ε)+O(1),m ≤
poly(log n), ε ≥ n−Ω(1)/2gout. the following holds: There exists an explicit function f : ({0, 1}n)ℓ →
({0, 1}m)ℓ−1 such that for any (g, ℓ, n, k)-oNOSF source X, there exists uniform (gout, ℓ− 1,m)-
oNOSF source Y for which |f(X)−Y| ≤ ε.

We can instantiate this lemma even in the case of constant d and get an explicit transformation
similar to Corollary 6.2 with fewer output bits per block.

We will use the following main technical lemma that shows how to use two-source extractors to
obtain these transformations:

Lemma 6.5 (Main Lemma). Let d, g, gout, ℓ, n,m, k2Ext, k, ε2Ext be such that k ≥ k2Ext + m · d +

log(1/ε2Ext), gout ≤ g(d+1)−ℓ−2
d . Let 2Ext : {0, 1}d·n × {0, 1}n → {0, 1}m be (k2Ext, ε2Ext)-average-

case-strong two-source extractor. Then, we can construct a function f : ({0, 1}n)ℓ → ({0, 1}m)ℓ−1

such that for any (g, ℓ, n, k)-oNOSF source X, there exists (gout, ℓ− 1,m)-oNOSF source Y such
that |f(X)−Y| ≤ ε where ε = 2gout · ε2Ext.

Existentially, two-source-extractors with following parameters exist:

Lemma 6.6 (Lemma 5.4 from [CGR24]). Let n1, n2, k1, k2,m, ε be such that k1 ≤ n1, k2 ≤ n2,m =
k1 + k2 − 2 log(1/ε) − O(1), k2 ≥ log(n1 − k1) + 2 log(1/ε) + O(1), and k1 ≥ log(n2 − k2) +
2 log(1/ε) +O(1). Then, a random function 2Ext : {0, 1}n1 ×{0, 1}n2 → {0, 1}m is a (k1, k2, ε)-two
source extractor with probability 1− o(1).

Using this, our main result follows:

Proof of Theorem 6.1. We use the two-source-extractors from Theorem 6.1 and apply it in
Lemma 6.5.

To make this transformation explicit, we can use the following construction of a two-source-
extractor:
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Theorem 6.7 ([CZ19, Mek17, Li16]). There exists a universal constant C ≥ 1 such that for all
n, k,m, ε with k ≥ logC(n),m ≤ n1/C , ε ≥ n−1/C , the following holds: There exists an explicit
(n, k) two-source-extractor 2Ext : {0, 1}n × {0, 1}n → {0, 1}m.

With this our explicit transformation follows:

Proof of Corollary 6.4. We use the explicit two-source-extractors from Theorem 6.7 and apply it
in Lemma 6.5.

6.1 Low-Entropy oNOSF Source to Uniform Using Two-Source-Extractors

In this subsection, we will prove Lemma 6.5. To do this, we will use two-source-extractors and
average-case two-source-extractors. Let’s first define them:

Definition 6.8. We say that 2Ext is (k1, k2, ε) average-case strong if

2Ext(X1,X2),W ≈ε Um,W

for every X1 and W such that H̃∞(X1 | W) ≥ k1 with X2 independent of X1 and H∞(X2) ≥ k2
and W.

This notion of average-case two-source-extractors allows us obtain a simpler chain rule:

Lemma 6.9. [DORS08] Let A, B, and C be distributions such that Supp(B) ≤ 2λ. Then H̃∞(A |
B,C) ≥ H̃∞(A,B | C)− λ ≥ H̃∞(A | C)− λ.

Lemma 2.3 of [DORS08] shows that all two-source extractors are average-case-two-source ex-
tractors with similar parameters.

Lemma 6.10. [DORS08] For any η > 0, if 2Ext is a (k1, k2, ε)-two-source extractor, then 2Ext is
a (k1 + log(1/η), k2, ε+ η))-average-case-two-source extractor.

With this, we will finally prove our main lemma that shows how to use two-source-extractors
to obtain our transformation:

Proof of Lemma 6.5. For −d ≤ i ≤ 0, define Xi to be the random variable that always outputs 0n.
For 2 ≤ i ≤ ℓ, we output Oi = 2Ext(Xi−d ◦ · · · ◦Xi−1,Xi).

For 2 ≤ i ≤ ℓ, we say that Oi is good if (1) Xi is good and (2) there exists a block amongst
Xi−d, . . . ,Xi−1 that is good. We observe that if Oi is good, then |Oi −Um| ≤ ε2Ext. Let g

′ be the
number of such good Oi. Let j1, . . . , jg be the indices of the good blocks in X. For 1 ≤ i ≤ g − 1,

let di = ji+1 − ji. We observe that g′ equals number of i such that di ≤ d. As
∑g−1

i=1 di ≤ ℓ and

di ≥ 1, we infer that g′ ≥ (g−1)(d+1)−ℓ
d . Hence, as long as gout ≤ ⌈g′⌉, we can guarantee the desired

number of good blocks in the output. This holds as long as gout ≤ g(d+1)−ℓ−2
d .

Using Lemma 6.10, we infer that 2Ext is (k2Ext + log(1/ε2Ext), 2ε2Ext)-average-case-two-source
extractor. We will use this property below.

Now, using a hybrid argument we will show that

(O2, . . . ,Oℓ) ≈2gout·ε2Ext (Y2, . . . ,Yℓ)
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where Y = (Y2, . . . ,Yℓ) is a uniform (gout, ℓ,m)-oNOSF source that we will define as the proof
goes. Let Y(1) = (O2, . . . ,Oℓ) and for 2 ≤ i ≤ ℓ, let Y(i) = (O2, . . . ,Oi,Yi+1, . . . ,Yℓ). Hence,
Y(ℓ) = Y. We proceed by induction. We will show that for 2 ≤ i ≤ ℓ,

∣∣∣Y(i) −Y(i−1)
∣∣∣ ≤ 2ε2Ext

whenever Oi is good and
Y(i) = Y(i−1)

whenever Oi is bad. By repeated applications of the triangle inequality, we will have shown that
our output is indeed close to some uniform oNOSF source with desired parameters.

We proceed by induction and let i ≥ 2 be arbitrary. If Oi is bad, then we let Yi = Oi. Then,
we indeed have that Y(i) = Y(i−1) as desired. Otherwise, we assume Oi is good. Then, it must
be that Xi is good. Let iprev be the index of the good block before Xi in X. Then, we know that
i− iprev ≤ d. We first claim that

H̃∞(Xiprev |O1, . . . ,Oi−1) ≥ k2Ext = k −m · d

Firstly, by construction, blocks O2,Oiprev−1 are functions of blocks X1, . . . ,Xiprev−1. As Xiprev is
independent of X1, . . . ,Xiprev−1, we infer that Xiprev is independent of O2,Oiprev−1. As 2Ext is
average-case-strong, we apply Lemma 6.9 to get that

H̃∞(Xiprev |O2, . . . ,Oi−1) ≥ k −m · (i− iprev) ≥ k −m · d = k2Ext + log(1/ε)

where for the second last inequality, we used the fact that i − iprev ≤ d. Moreover, as Xi is
independent of X1, . . . ,Xi−1 and O2, . . . ,Oi−1 are solely functions of X1, . . . ,Xi−1, we infer that
Xi is independent of O2, . . . ,Oi−1. Hence, conditioned on fixing O2, . . . ,Oi−1, Oi will be 2ε2Ext
close to Um. This implies Y(i−1) ≈2ε2Ext Y(i) as desired. This shows that a good block in Y is
uniform conditioned on all previous blocks, .i.e., it is independent of all the blocks before it. This
shows all bad blocks can only depend on good blocks appearing before them and that good blocks
are independent of each other. This implies Y is indeed a uniform oNOSF source as desired.

7 Online Influence and Extraction Lower Bounds

Towards proving lower bounds on the possiblity of extraction from oNOSF sources, we introduce a
new, natural notion of influence of Boolean functions, which we call online influence. For simplicity,
we first start by considering the class of oNOBF sources, which corresponds to uniform (g, ℓ, n = 1)-
oNOSF sources. We formally define the notion for Boolean functions and discuss some basic
properties in Section 7.1. We establish tight bounds on the online influence for general functions,
including a Poincaré style inequality, in Section 7.2. We provide an example exhibiting a separation
between maximum (standard) influence and online influence in Section 7.3. Finally, in Section 7.4,
we extend the definition of online influence to subsets of coordinates (and functions from Σn →
{0, 1}m, for arbitrary alphabet Σ). This allows us to prove the required lower bounds on extraction
(and condensing) from oNOSF sources.

Notation: For convenience, we introduce some notation that we use for the rest of this section.
For any bit b ∈ {0, 1}, let e(b) = (−1)b. For any Boolean function f : {0, 1}ℓ → {0, 1}, let e(f)
denote the function e(f)(x) = (−1)f(x).
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7.1 Basic Properties

In this section, for a function f : {0, 1}ℓ → {0, 1}, we will freely use commas to indicate concatena-
tion in its input. For example, for x ∈ {0, 1}i−1 and y ∈ {0, 1}ℓ−i, we write f(x, 1, y) to indicate f
applied to the tuple (x1, . . . , xi−1, 1, y1, . . . , yℓ−i).

When asking about the influence of a single bit, such as the i-th bit, previous work has specif-
ically looked at whether the i-th bit still has the ability to change the output of some function
f : {0, 1}ℓ → {0, 1} after all other ℓ − 1 bits have been set. In other words, if the i-th bit is a
non-oblivious adversary (that is, it can look at the values of all the other bits before setting its own
value), how much power does it have? This has led to a standard notion of influence defined below.

Definition 7.1 (Influence). For a function f : {0, 1}ℓ → {0, 1}, the influence of the i-th bit is

Ii[f ] = E
x∼Ui−1
y∼Un−i

[|f(x, 1, y)− f(x, 0, y)|]

and the total influence is

I[f ] =

ℓ∑

i=1

Ii[f ].

However, in our setting of oNOSF sources and oNOBF sources, an adversarial bit can only
depend on the bits that come before it. This motivates our new definition of online influence,
where we prevent the i-th bit from depending on bits that come after it by independently sampling
subsequent bits.

Definition 7.2 (Online influence). For a function f : {0, 1}ℓ → {0, 1}, the online influence of the
i-th bit is

oIi[f ] = E
x∼Ui−1

[∣∣∣∣ E
y∼Uℓ−i

[f(x, 1, y)]− E
y∼Uℓ−i

[f(x, 0, y)]

∣∣∣∣
]

and the total online influence is

oI[f ] =
ℓ∑

i=1

oIi[f ].

Remark 7.3. It is easy to see that for any f : {0, 1}ℓ → {0, 1}, and any i ∈ ℓ, we have oIi(f) ≤
Ii(f). Further, they are the same for the last bit: Iℓ[f ] = oIℓ[f ].

Many results for the influence of a function are based on working with monotone functions. In
contrast, it turns out that monotone functions are not very interesting for online influence as the
definition collapses to that of regular influence.

Lemma 7.4. If f : {0, 1}ℓ → {0, 1} is monotone, then oIi[f ] = Ii[f ] for all i ∈ [ℓ].

Proof. Using the monotonicity of f , note that for any x ∈ {0, 1}i−1 and any y ∈ {0, 1}ℓ−i,
f(x, 1, y) ≥ f(x, 0, y). Thus, oIi[f ] = Ex∼Ui−1,y∼Uℓ−i

[f(x, 1, y)− f(x, 1, y)] = Ii(f).

Thus, any difference between influence and online influence can only be demonstrated by non-
monotone functions.
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7.2 A Poincaré Inequality for Online Influence

Similar to regular influence, we prove a Poincaré-style inequality holds for online influence, and also
provide an upper bound on online influence. The following is the main result of this subsection.

Theorem 7.5. For any f : {0, 1}ℓ → {0, 1}, we have Var(e(f)) ≤ oI[f ] ≤
√
ℓVar(e(f)).

Before proving the above result, we observe that the MAJORITY and PARITY functions
provide tight examples for the upper and lower bound respectively for Theorem 7.5.

Example 7.6. The majority function on ℓ bits Majℓ : {0, 1}ℓ → {0, 1}, is monotone, and hence by
by Lemma 7.4, has total online influence oI[Majℓ] = I[Majℓ] =

√
2ℓ/π + O(1/

√
ℓ), achieving the

upper bound (up to constants).
The PARITY function on ℓ bits

⊕
ℓ : {0, 1}ℓ → {0, 1} for i ∈ [ℓ − 1] has online influence

oIi[
⊕

ℓ] = 0, while oIℓ[
⊕

ℓ] = 1. Thus, PARITY meets the lower bound of Theorem 7.5. We note
that this is starkly different from regular influence where Ii[

⊕
ℓ] = 1 for all i.

To prove Theorem 7.5, we will use Boolean Fourier analysis. For any f : {0, 1}n → {0, 1}, e(f)
has a unique Fourier expansion given by: e(f(x)) =

∑
S⊆[ℓ] f̂(S)χS(x), where χS(x) = (−1)

∑
i∈S xi

and f̂(S) = Ey∼Uℓ
[e(f)(y)χS(y)].

8 Also recall that f̂(∅) = Ex∼Un [e(f)(x)], Var(e(f)) =∑
S⊆[ℓ],S 6=∅ f̂(S)

2, and for any S 6= T , Ex∼Uℓ
[χS(x)χT (x)] = 0. For more background, we refer

the reader to the excellent book by O’Donnell [ODo14].
The following is our key lemma, from which Theorem 7.5 is easy to derive.

Lemma 7.7. For any f : {0, 1}ℓ → {0, 1} and i ∈ [ℓ], oIi(f)
2 ≤∑S⊆[i]

S∋i

f̂(S)2 ≤ oIi(f).

We first derive Theorem 7.5 using Lemma 7.7.

Proof of Theorem 7.5. We start with the lower bound. We have,

oI[f ] =

ℓ∑

i=1

oIi[f ] ≥
ℓ∑

i=1

∑

S⊆[i]
S∋i

f̂(S)2 =
∑

S⊆[ℓ]
S 6=∅

f̂(S)2 = Var(e(f)),

where the inequality uses Lemma 7.7.
The upper bound is easy to derive as well.

oI[f ] =
ℓ∑

i=1

oIi[f ]

≤

√√√√ℓ
ℓ∑

i=1

(oIi[f ])
2 (Cauchy-Schwarz inequality)

≤

√√√√√√ℓ
ℓ∑

i=1

∑

S⊆[i]
S∋i

f̂(S)2 (Lemma 7.7)

8For simplicity of notation, we use f̂(S) for ê(f)(S).
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=
√
ℓVar(e(f)).

This completes the proof.

We now focus on proving Lemma 7.7. We need the following useful characterization of oIi(f).

Claim 7.8. For any f : {0, 1}ℓ → {0, 1}, we can write the online influence of its i-th bit as

oIi[f ] = E
x∼Ui−1




∣∣∣∣∣∣∣∣

∑

T⊆[i]
T∋i

f̂(T )χT\{i}(x)

∣∣∣∣∣∣∣∣


 .

Assuming the above claim, let us prove Lemma 7.7. We supply the proof of Claim 7.8 below.

Proof of Lemma 7.7. We first prove the inequality oIi(f) ≥ ∑
S⊆[i]
S∋i

f̂(S)2. Since for any

x ∈ {0, 1}i−1 we have
∣∣Ey∼Uℓ−i

[e(f |x,1)(y)]− Ey∼Uℓ−i
[e(f |x,0)(y)]

∣∣ = 2

∣∣∣∣
∑

T⊆[i]
T∋i

f̂(T )χT\{i}(x)

∣∣∣∣ by

Claim 7.8, and the fact that Ey∼Uℓ−i
[e(f |x,b)(y)] is in [−1, 1] for all x ∈ {0, 1}i−1, b ∈ {0, 1}, it

follows that

∣∣∣∣
∑

T⊆[i]
T∋i

f̂(T )χT\{i}(x)

∣∣∣∣ is in [0, 1].

Thus,

oIi[f ] = E
x∼Ui−1




∣∣∣∣∣∣∣∣

∑

T⊆[i]
T∋i

f̂(T )χT\{i}(x)

∣∣∣∣∣∣∣∣




≥ E
x∼Ui−1






∑

T⊆[i]
T∋i

f̂(T )χT\{i}(x)




2


=
∑

T⊆[i]
T∋i

∑

S⊆[i]
S∋i

f̂(T )f̂(S) · E
x∼Ui−1

[χT\{i}(x)χS\{i}(x)]

=
∑

S⊆[i]
S∋i

f̂(S)2.

Next, we prove oIi(f)
2 ≤∑S⊆[i]

S∋i

f̂(S)2. We have,

oIi[f ]
2 =


 E

x∼Ui−1




∣∣∣∣∣∣∣∣

∑

T⊆[i]
T∋i

f̂(T )χT\{i}(x)

∣∣∣∣∣∣∣∣







2

(Claim 7.8)
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≤ E
x∼Ui−1






∑

T⊆[i]
T∋i

f̂(T )χT\{i}(x)




2


=
∑

S⊆[i]
S∋i

f̂(S)2 (derived above).

Next, we show how to rewrite oIi[f ] in terms of the Fourier coefficients of f .

Proof of Claim 7.8. We begin by defining the restriction f |x,b(y) = f(x, b, y) for x ∈ {0, 1}i−1,
b ∈ {0, 1}, and y ∈ {0, 1}ℓ−i. Thus, we can rewrite oIi[f ] as

oIi[f ] =
1

2
· E
x∼Ui−1

[∣∣∣∣ E
y∼Uℓ−i

[e(f |x,1)(y)]− E
y∼Uℓ−i

[e(f |x,0)(y)]
∣∣∣∣
]
. (1)

We would like to put the above expression in terms of Fourier coefficients of f . This motivates us
to find the Fourier coefficients of f |x,b(y) in terms of those of f , which we do via computation. We
manipulate the Fourier expansion of f(z) for z = (x, b, y) ∈ {0, 1}ℓ to get

e(f)(z) =
∑

S⊆[ℓ]

f̂(S)χS(z)

=
∑

S⊆[ℓ]

f̂(S)χS(x, b, y)

=
∑

S⊆[ℓ]

f̂(S)χS∩[i](x, b)χS\[i](y)

=
∑

S⊆{i+1,...,ℓ}


∑

T⊆[i]

f̂(S ∪ T )χT (x, b)


χS(y). (2)

We also have that

e(f)(z) = e(f)(x, b, y)

= e(f |x,b)(y)
=

∑

S⊆{i+1,...,ℓ}

f̂ |x,b(S)χS(y). (3)

Therefore, Equation (2) and Equation (3) allow us to conclude that

f̂ |x,b(S) =
∑

T⊆[i]

f̂(S ∪ T )χT (x, b).

Thus, we have

E
y∼Uℓ−i

[e(f |x,b)(y)] = f̂ |x,b(∅)

=
∑

T⊆[i]

f̂(T )χT (x, b)
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=
∑

T⊆[i]
T∋i

f̂(T )χT\{i}(x)b+
∑

T⊆[i−1]

f̂(T )χT (x).

We now plug this in to our definition of oIi[f ] in Equation (1) to get a simplified expression.
Recalling the fact that for any x ∈ {0, 1}n, f(x) = (1− e(f)(x))/2, we have

oIi[f ] =
1

2
E

x∼Ui−1

[∣∣∣∣ E
y∼Uℓ−i

[e(f |x,1)(y)]− E
y∼Uℓ−i

[e(f |x,0)(y)]
∣∣∣∣
]

=
1

2
E

x∼Ui−1




∣∣∣∣∣∣∣∣


−

∑

T⊆[i]
T∋i

f̂(T )χT\{i}(x) +
∑

T⊆[i−1]

f̂(T )χT (x)


−



∑

T⊆[i]
T∋i

f̂(T )χT\{b}(x) +
∑

T⊆[i−1]

f̂(T )χT (x)




∣∣∣∣∣∣∣∣




= E
x∼Ui−1




∣∣∣∣∣∣∣∣

∑

T⊆[i]
T∋i

f̂(T )χT\{i}(x)

∣∣∣∣∣∣∣∣


 .

7.3 A Tight Example for Maximum Online Influence

The lower bound on total online influence from Theorem 7.5 allows us to conclude that for balanced
functions, there must be at least one bit with online influence Ω(1/ℓ). We can phrase this in terms
of maximum influence.

Definition 7.9 (Maximum influence). For a function f : {0, 1}ℓ → {0, 1}, we define its maximum
influence as Imax[f ] = maxi∈[ℓ] Ii[f ] and its maximum online influence as oImax[f ] = maxi∈[ℓ] oIi[f ].

In terms of maximum online influence, we get the following corollary from Theorem 7.5.

Corollary 7.10. For a function f : {0, 1}ℓ → {0, 1}, we have oImax[f ] ≥ Var(e(f))/ℓ.

Proof. By Theorem 7.5 we have that oI[f ] =
∑ℓ

i=1 oIi[f ] ≥ Var(e(f)), and the conclusion follows
via an averaging argument.

We show that the bound in Corollary 7.10 is in fact tight (up to constants), as witnessed by
the address function.

Definition 7.11. We define the address function Addrℓ : {0, 1}log(ℓ)+ℓ → {0, 1} as follows: For
z ∈ {0, 1}log(ℓ)+ℓ, split z up as z = (x, y) with x of length log(ℓ) and y of length ℓ. Then interpret
x as a binary number which gives us an index i(x) ∈ [ℓ]. The output of Addrℓ is the i(x)-th bit of
y, so Addrℓ(x, y) = yi(x).

Lemma 7.12. Let m = ℓ+ log ℓ and Addrℓ be the function defined above. Then,

• for 1 ≤ i ≤ log ℓ, oIi[Addrℓ] = 0.

• for log ℓ < i ≤ m, oIi[Addrℓ] = 1/ℓ.

Thus, oImax(Addrℓ) = Θ(1/m).
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Proof. For i ∈ [log ℓ], no matter what the value of the i-th bit of Addrℓ is set to, the output bit
will be a uniform bit, so we immediately get that oIi[f ] = 0. For i ∈ {log ℓ + 1, . . . ,m}, the i-th
bit only has control if it’s selected by the first log ℓ address bits, meaning it has a 1/ℓ chance of
controlling the output (and otherwise the output is uniform). Hence, oIi[f ] =

1
ℓ .

Compared with the result of [KKL88] that Imax[f ] ≥ Var(f)·Ω
(
log ℓ
ℓ

)
, this exhibits a separation

between maximum (standard) influence and the online influence (of balanced functions).
Moreover, this analysis of the address function also shows us that it is an extractor for uniform

(ℓ− 1, ℓ)-oNOSF sources.

Lemma 7.13. For all ℓ, n where ℓ ≥ 2 and n ≥ log(ℓ − 1), there exists an explicit extractor Ext :
({0, 1}n)ℓ → {0, 1}n such that for any uniform (ℓ− 1, ℓ, n)-oNOSF source X, we have Ext(X) ≈ε Un

where ε = 1
ℓ−1 .

Proof. Let Ext be defined as follows: From the first block, use the first log(ℓ− 1) bits and interpret
them as an index j ∈ [ℓ − 1]. Then, output the block with index j + 1. For a source X with
first block controlled by an adversary, the output will be truly uniform and for a source X with
adversary controlling one of the last ℓ − 1 blocks, that block will be outputted with probability
1

ℓ−1 while a uniform block will be outputted otherwise. This makes our total error at most 1
ℓ−1 as

desired.

7.4 Online Influence of Sets and Extraction Lower Bounds

For convenience we restate the definition of online influence of sets of coordinates.

Definition 7.14 (Online influence, Definition 1.7 restated). For any function f : Σℓ → {0, 1}, and
any B ⊂ [ℓ], where B = {i1 < i2 < . . . < ik}, define oIB(f) as follows: an online adversary A
samples a distribution X in online manner. It starts by sampling the variables x1, x2, . . . , xi1−1

independently and uniformly from Σ, then picking the value of xi1 depending on x<i1. Next, the
variables xi1+1, . . . , xi2−1 are sampled independently and uniformly from Σ, and A sets the value
of xi2 based on all set variables so for, and so on. Define the advantage of A to be advf,B(A) =
|E[f(X)]−E[f(Uℓ)]|. Then oIB(f) is defined to be maxA{advf,B(A)}, where the maximum is taken
over all online adversaries A that control the bits in B.

We say a function f is (b, ε)-online-resilient if oIB(f) ≤ ε for every B of size at most b.

In the special case where Σ = {0, 1} and we are considering the online influence of a single
coordinate, the definition simplifies nicely.

Definition 7.15. For a function f : {0, 1}ℓ → {0, 1}, the online influence of the i-th bit is

oIi[f ] = E
x∼Ui−1

[∣∣∣∣ E
y∼Uℓ−i

[f(x, 1, y)]− E
y∼Uℓ−i

[f(x, 0, y)]

∣∣∣∣
]

and the total online influence is

oI[f ] =
ℓ∑

i=1

oIi[f ].

Online-resilient functions are equivalent to extractors (with 1 output bit) for oNOSF sources.
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Lemma 7.16 (online-resilient functions yield extractors). Let f : Σℓ → {0, 1} be a (b, ε1)-online-
resilient function with the property that |f(Uℓ)−U1| ≤ ε2. Then f can extract from (g = ℓ− b, ℓ)-
oNOSF sources with error at most ε1 + ε2.

Proof. Consider a (g = ℓ− b, ℓ)-oNOSF source X. Recall that X is created by choosing some set
of bad indices B of size b, letting the symbols in B be uniform, and finally setting the symbols in
B adversarially while only depending on uniform symbols to the left of them. Using the triangle
inequality for total variation distance, we get that

|f(X)−U1| ≤ |f(X)− f(Uℓ)|+ |f(Uℓ)−U1|
≤ ε1 + ε2,

as claimed.

Remark 7.17. We note that the other direction is immediate from definitions. If Ext : Σℓ → {0, 1}
is an extractor with error ε for (g = ℓ − b, ℓ)-oNOSF sources, then Ext is a (b, 2ε)-online-resilient
function.

Remark 7.18. Our results below on oNOBF extraction impossibility can be interpreted as a limit
on online-resilience of balanced Boolean functions.

For B ⊂ [ℓ], we use the notation f |B to indicate the function obtained from f by letting an
online adversary control the indices in B.

Theorem 7.19. Let f : {0, 1}ℓ → {0, 1} be such that Ex∼Uℓ
[f(x) = 1] = α. Then for any

1 ≥ β > α, there exists a coalition B ⊆ [ℓ] such that oIB(f) ≥ β − α, where |B| ≤ γℓ and
γ = β−α

4α(1−β) .

Proof. We greedily collect the bits with the most online influence and add them to B until our
goal of Ex∼Uℓ|B

[f |B(x) = 1] ≥ β is achieved. Our first step is as follows: let B0 = ∅, f0 = f ,
and i1 = argmaxi∈[ℓ]{oIi[f ]}. Corollary 7.10 tells us that oIi1 ≥ Var(e(f0))/ℓ. Recall that if
Ex∼Uℓ

[f(x) = 1] = p then Var(e(f)) = 4p(1 − p). Because we have not yet achieved our goal of
Ex∼Uℓ|B

[f |B(x) = 1] ≥ β, we have that Var(f0) ≥ 4α(1− β). Thus, we collect i1 as B1 = {i1}, let
f1 = f0|B1

and see that Ex[f1(x)] ≥ Ex[f0(x)] + oIi1 [f0] ≥ α+ 4α(1−β)
ℓ .

We now repeat this process t times to get Bt = {i1, . . . , it} until our goal is achieved. For
general t, let ft = f |Bt where Bt = Bt−1 ∪ {it} and it = argmaxi∈[n]\Bt−1

{oIi[ft−1]}. At the
(t − 1)-th step, since we have not stopped, it means that Ex[ft−1(x) = 1] < β, but we of course
have Ex[ft−1(x) = 1] ≥ α as well. Thus, by Corollary 7.10, collecting it as a bad bit gives us that

E
x
[ft(x)] ≥ E

x
[ft−1(x)] + oIit [ft−1]

≥ α+
4α(1− β)

ℓ
(t− 1) +

4α(1− β)

ℓ

= α+
4α(1− β)

ℓ
· t.

We repeat this process until Prx[ft(x) = 1] ≥ β. Therefore, the number of steps is the smallest b

such that α+ 4α(1−β)
ℓ · b ≥ β, meaning that the number of steps is at most b ≤ ℓ · β−α

4α(1−β) . We let
B = Bb and get the desired coalition.
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We can also ask the dual question of how large we are able to make β given some budget b of
bad bits.

Corollary 7.20. Let f : {0, 1}ℓ → {0, 1} be such that Prx∼Uℓ
[f(x) = 1] ≥ α. If we are able to

control b bits in an online adversarial manner, then there exists a set B ⊆ [ℓ] of indices of size

|B| = b such that Prx∼Uℓ|B
[f |B(x) = 1] ≥ β where β ≥ α(ℓ+4b)

ℓ+4αb .

Proof. For a fixed β, Theorem 7.19 tells us that b ≤ ℓ· β−α
4α(1−β) . Solving for β gives the desired bound.

We now immediately obtain our oNOBF extraction impossibility result.

Corollary 7.21. For any balanced function f : {0, 1}ℓ → {0, 1} and 0 < ε < 1/3, there exists a
(g = ℓ− b, ℓ)-oNOBF source X with b ≤ 3εℓ such that |f(X)−U1| ≥ ε.

Proof. It is enough to find a set B of indices such that oIB(f) ≥ β. By Theorem 7.19, there exists
such a set B of size b = |B| ≤ ℓ · ε

1−2ε . The bound on |B| follows since ε ≤ 1
3 .

Remark 7.22. By essentially following our Fourier analytic proof, one can similarly obtain a
Poincaré inequality for functions f : Σn → {0, 1}, for arbitrary alphabet Σ. To obtain extraction
impossibility for such uniform oNOSF sources with constant δ fraction of corrupt blocks, we do
the following: Let f be a candidate extractor for uniform ((1− δ)ℓ, ℓ, n)-oNOSF sources. Then,
f also extracts from uniform (⌈1/δ⌉ − 1, ⌈1/δ⌉ , ℓn/ ⌈1/δ⌉)-oNOSF source. Since there exists an
influential coordinate with influence O(δ), we let the adversary control that coordinate and infer
that there exists constant ε = O(δ) for which it is impossible to extract with error less than ε.

8 Extractors for oNOSF and oNOBF Sources via Leader Election

Protocols

In this section, we provide a generic way to transform leader election and coin flipping protocols into
extractors for oNOSF sources and oNOBF sources. Conceptually, given a leader election protocol,
we can use an oNOSF source to simulate the protocol and then have the elected leader output its
last block. We formalize this below.

Lemma 8.1. For any integers r > 1, ℓ > 0 and any δ > 0, let π be an (r−1)-round protocol over ℓ
players that send n bits per round such that for any δℓ bad players, the protocol elects a good leader
with probability 1− ε.

Then, there exists an explicit function Ext : ({0, 1}n)ℓr → {0, 1}n such that for any (g, ℓr, n)-
oNOSF source X where g ≥ ℓr − δℓ, we have Ext(X) ≈ε Un.

Instantiating our lemmas with the leader election protocols from Section 9, we construct explicit
extractors for oNOBF sources and uniform oNOSF sources:

Theorem 8.2. There exists an explicit function Ext : {0, 1}ℓ → {0, 1} such that for any δ and
any (g, ℓ)-oNOBF source X where g ≥ ℓ − δℓ/ log(ℓ), we have Ext(X) ≈ε U1 where ε = Cδ +

12 (Cδ)3/2 + log(ℓ)−1/3 where C is a large universal constant.

Proof. This directly follows by instantiating Lemma 8.1 with the protocol guaranteed from
Lemma 9.1.
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By using a the leader election protocol of Lemma 9.5 with multiple bits per round, we construct
extractors for oNOSF sources:

Theorem 8.3. There exists an explicit function Ext : ({0, 1}n)ℓ → {0, 1}n such that for any
constant δ and any (g, ℓ, n)-oNOSF source X where g ≥ ℓ − δℓ/ log∗(ℓ) and n ≥ log(ℓ), we have

Ext(X) ≈ε Un where ε = Cδ + 13 (Cδ)3/2.

Proof. This directly follows by instantiating Lemma 8.1 with the protocol guaranteed from
Lemma 9.5.

We finally prove our lemma regarding obtaining extractors for oNOSF Sources from leader
election protocols:

Proof of Lemma 8.1. Define function Ext as follows: On input (y1, . . . , yr) where yi ∈ ({0, 1}n)ℓ,
let yi,j ∈ {0, 1}n denote the j’th block of yi. Simulate the protocol π with the message of the j’th
player in round i being yi,j , where 1 ≤ i ≤ r − 1 and 1 ≤ j ≤ ℓ. Let j∗ ∈ [ℓ] be the leader that is
elected by π; then output yr,j∗

Let us analyze Ext on some source Y ∼ ({0, 1}n)ℓr. Let the bad symbols in Y be given by
A ⊂ [ℓ] × [r] where |A| ≤ δℓ. Let X ∼ (({0, 1}n)ℓ)r be the exact same source as Y. We write
X = {Xi,j}1≤i≤r,1≤j≤ℓ and interpret it as the distribution where Xi,j denotes the random bits of
player j in round i. Call Xi,j a bad block if the corresponding index (i, j) is in A, i.e., the block is
bad in Y. Since a bad block in Y can only depend on blocks before it, the corresponding bad block
in X satisfies the criteria for being bad in X; this is because a bad block in the protocol setting is
allowed to depend on all blocks in the same or previous rounds. Thus X has at most δℓ bad blocks
as well. By declaring the player corresponding to the bad block in X as bad, we obtain that the
distribution X can be simulated by at most δℓ bad players. Formally, for 1 ≤ i ≤ r, let Bi ⊂ [ℓ] be
the set of bad blocks in X among all blocks in round i. Let B = ∪r

i=1Bi. We declare all players in
B as bad players. Finally, observe that

|B| ≤
r∑

i=1

|Bi| = |A| = δℓ

as desired. Thus the correctness of π implies that after (r−1) rounds, the chosen leader j∗ does not
belong to B with probability at least 1 − ε. By construction, it follows that (r, j∗) /∈ A whenever
j∗ /∈ B. Thus, the output of the extractor, Yr,j∗ is uniform on n bits, with probability at least
1− ε.

9 High Probability Leader Election Protocols

We use this section to provide the leader election protocols that are used in Section 8. In Section 9.1,
we present leader protocols where each player is allowed to send one bit per round. We tackle the
case where players can send multiple bits per round in Section 9.2.

9.1 One Bit per Round

We will construct leader election protocols with the following guarantees:
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Lemma 9.1. There exists a universal constant C and an explicit protocol over ℓ players, where each
player sends n = 1 bit per round, that lasts for C log(ℓ) rounds such that for any δ > 0, if δℓ players
are bad, then a good leader is chosen with probability ≥ 1− ε where ε = δ + 12δ3/2 + log(ℓ)−1/3.

We will use the following protocol from [AN93a]:

Lemma 9.2. There exists a protocol π over ℓ players where each player sends at most 1 bit per
round, that lasts for O(ℓ) rounds such that if δℓ players are bad for δ ≤ 1/4, then a good leader is
chosen with probability ≥ 1 − ε where ε = δ + 12δ3/2. Furthermore, this protocol can be explicitly
constructed in time 2O(ℓ).

We will also need the Chernoff bound:

Lemma 9.3. Let X1, . . . ,Xn be independent random variables taking values in {0, 1}. Let X =∑n
i=1Xi and let µ = E[X]. Then, Pr[X ≤ (1− δ)µ] ≤ e−δ2µ/2.

Proof of Lemma 9.1. Our protocol will have two stages. In the first stage, we will use the lightest
bin protocol from [Fei99b] until the number of players is small enough, and then in the second stage
we use the protocol from Lemma 9.2. Let C0 be a large constant that we set later. In particular,
our final protocol will be:

1. Let P1 = [ℓ].

2. In round i of stage 1, all players in Pi will present their value in {0, 1} and based on that,
they will be divided into P 0

i , P
1
i .

3. Set Pi+1 equal to the smaller set among P 0
i , P

1
i (breaking ties arbitrarily).

4. Repeat this until the number of players becomes at most C0 log ℓ. Let this happens after r
rounds. This marks the end of the first stage.

5. In the second stage, apply the protocol from Lemma 9.2 to Pr+1 and output the leader from
that protocol.

We now analyze this protocol. We argue that at the end of the first stage, with high probability,
the fraction of good players in Pr+1 will be at least (1−δ)−o(1). For the second stage, the correctness
of the protocol follows from Lemma 9.2.

For 1 ≤ i ≤ r + 1, let gi be the number of good players in Pi and let pi = |Pi|. As we always
choose the lightest bin at each stage, pi+1 ≤ pi/2. Hence, we infer that pi ≤ 2−i+1 · ℓ. Let g1 = g.
We next lower bound gi:

Claim 9.4. With probability at least 1− exp(−(1/10) · (g/2r)), it holds that for all 1 ≤ i ≤ r + 1,

gi ≥ g
2i

− 5
( g
2i

)2/3
.

We prove this claim using concentration bounds later. Using this claim, we see that in Pr+1,
the number of good players will be at least

(1− δ)ℓ

2r
− 5

(
(1− δ)ℓ

2r

)2/3
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out of pr+1 ≤ ℓ
2r many surviving players. In particular, gr+1 ≥ (1− δ)pr+1 − 5p

2/3
r+1. So, in stage 2,

we have pr+1 many players remaining where the fraction of bad players is δ′ = δ+5p
−1/3
r+1 . Applying

Lemma 9.2 with these parameters, we infer that probability of electing a good leader is at least

1−
(
δ + 5p

−1/3
r+1 + 12

(
δ + 5p

−1/3
r+1

)3/2)
≥ 1− δ − 12δ3/2 − 6p

−1/3
r+1

where the last inequality follows because pr+1 ≥ ω(1). Hence, our overall probability of electing a
good leader is at least

1− δ − 12δ3/2 − 6p
−1/3
r+1 − exp(−(1/10) · (1− δ)pr+1) ≥ 1− δ − 12δ3/2 − log(ℓ)−1/3 = 1− ε

where the last inequality follows because we let pr+1 = C0 log(ℓ) for a large constant C0. We check
that the number of rounds in the first stage is no more than log(ℓ) and in stage 2, as guaranteed by
Lemma 9.2, the number of rounds is no more than O(log(ℓ)). These together give us our universal
constant C that we use in the claim.

Proof of Claim 9.4. Fix either of the two bins. We apply Lemma 9.3 with δ = µ−1/3 to infer
that with probability at least 1 − exp(−(gi/2)

1/3/2), it holds that the number of good players in
that bin is ≥ gi/2 − (gi/2)

2/3. Applying this to both bins, we infer that with probability at least
1 − 2 exp(−(gi/2)

1/3/2), it holds that gi+1 ≥ gi/2 − (gi/2)
2/3. By unravelling this recurrence and

lower bounding, we see that

gi+1 ≥
g

2i
−

i∑

j=1

(g/2j)2/3

2i−j

Hence,

gi+1 ≥
g

2i
− g2/3

i∑

j=1

2j/3−i

=
g

2i
−
( g

2i

)2/3 i∑

j=1

(21/3)j−i

=
g

2i
−
( g

2i

)2/3 i−1∑

j=0

(2−1/3)j

≥ g

2i
−
( g

2i

)2/3 1

1− 2−1/3

≥ g

2i
− 5

( g

2i

)2/3
.

By union bound, the overall probability that the claim holds is at least

1−
r+1∑

i=1

2 exp(−(gi/2)
1/3/2) ≥ 1− exp(−gr+1/6)

≥ 1− exp(−(1/10) · (g/2r)).
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9.2 Multiple Bits per Round

If the players are allowed to send O(log ℓ) bits per round, then the number of rounds can be
significantly improved.

Lemma 9.5. There exists a universal constant C and an explicit protocol over ℓ players where
each player sends n = log ℓ bits per round, that lasts for C · log∗ ℓ rounds such that for any constant
δ > 0, if δℓ players are bad, then a good leader is chosen with probability 1−ε where ε = δ+13δ3/2.

Proof. Our protocol and proof is similar to Lemma 9.1 with the key difference being that the larger
value of n allows us to increase the number of bins and simplify our analysis. Here, we end up being
verbose and repeating ourselves for clarity. Just like earlier, our protocol will have two stages, one
using the lightest bin protocol from [Fei99b] until the number of players is small enough and then
resorting to the protocol from Lemma 9.2. Let C0, C1 be large constants that we set later. Our
final protocol will be:

1. Let P1 = [ℓ].

2. In round i of stage 1, all players in Pi will present a number between 1 and bi =
|Pi| / log(|Pi|)C0 . Based on this value, they will be divided into setsP j

i where j ∈ [bi].

3. Set Pi+1 equal to the smallest set amongst P 1
i , . . . , P

bi
i (breaking ties arbitrarily).

4. Repeat this until the number of players becomes at most exp
(
(log(1/δ))C1

)
(stop right before

it goes below this value). Let this happens after r rounds. This marks the end of the first
stage.

5. In the second stage, apply the protocol from Lemma 9.2 to Pr+1 and output the leader from
that protocol.

We now analyze this protocol. We argue that at the end of the first stage, with high probability,
the fraction of good players in Pr+1 will be at least (1−δ)−o(1). For the second stage, the correctness
of the protocol follows from Lemma 9.2.

For 1 ≤ i ≤ r + 1, let gi be the number of good players in Pi and let pi = |Pi|. As we always
choose the lightest bin at each stage, pi+1 ≤ pi/bi. Hence, we infer that pr+1 ≤ ℓ/

∏r
i=1 bi. Let

g = g1. We first bound gi:

Claim 9.6. For any constant C1, with probability at least 1− exp(− log(pr+1)
1/5), it holds that for

all 1 ≤ i ≤ r + 1, gi ≥ g
∏i−1

j=1 bj
− 2

(
g

∏i−1
j=1 bj

)2/3

.

We prove this claim using concentration bounds later, and we remark that C0 will be a growing
function of C1. Using this claim, we see that in Pr+1, the number of good players will be at least

(1− δ)ℓ∏r
i=1 bi

− 2

(
(1− δ)ℓ∏r

j=1 bi

)2/3

out of pr+1 ≤ ℓ∏r
i=1 bi

many surviving players. In particular, gr+1 ≥ (1− δ)pr+1 − 2p
2/3
r+1.
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So, in stage 2, we have pr+1 many players remaining where the fraction of bad players is

δ′ = δ + 2p
−1/3
r+1 . Applying Lemma 9.2 with these parameters, we infer that probability of electing

a good leader is at least

1−
(
δ + 2p

−1/3
r+1 + 12

(
δ + 2p

−1/3
r+1

)3/2)
≥ 1− δ − 12δ3/2 − 3p

−1/3
r+1

where the last inequality follows because pr+1 ≥ ω(1). Hence, our overall probability of electing a
good leader is at least

1−δ−12δ3/2−3p
−1/3
r+1 −exp(− log(pr+1)

1/5) ≥ 1−δ−12δ3/2−exp(− log(pr+1)
1/6) ≥ 1−δ−13δ3/2 = 1−ε

where the first inequality follows because C1 is a large enough universal constant, and δ < 1/4. We
check that the number of rounds in the first stage is no more than O(log∗(ℓ)) and in stage 2, as
guaranteed by Lemma 9.2, the number of rounds is no more than c log∗(ℓ), where c is a constant
that just depends on δ and C1 (and is independent of ℓ). These together give us our universal
constant C of Lemma 9.5.

Proof of Claim 9.6. Fix any of the bi bins in round i. We apply Lemma 9.3 with δ = µ−1/3 to infer
that with probability at least 1 − exp(−(gi/bi)

1/3/2), it holds that the number of good players in
that bin is ≥ gi/bi − (gi/bi)

2/3. Applying this to all bi bins, we infer that with probability at least
1− bi exp(−(gi/bi)

1/3/2), it holds that gi+1 ≥ gi/bi − (gi/bi)
2/3. By unraveling this recurrence and

lower bounding, we see that

gi+1 ≥
g∏i

j=1 bj
−

i∑

j=1

(g/
∏j

k=1 bk)
2/3

∏i
k=j+1 bk

For ease of notation, let α(u, v) =
∏v

j=u bj . Hence,

gi+1 ≥
g

α(1, i)
− g2/3

i∑

j=1

(1/α(1, j))2/3

α(j + 1, i)

=
g

α(1, i)
−
(

g

α(1, i)

)2/3 i∑

j=1

(α(1, i)/α(1, j))2/3

α(j + 1, i)

=
g

α(1, i)
−
(

g

α(1, i)

)2/3 i∑

j=1

α(j + 1, i)−1/3.

We observe that each term in the summand is exponentially decreasing. Hence, we can upper

bound the the sum by 2
(

g
α(1,i)

)2/3
.

This means

gi+1 ≥
g

α(1, i)
− 2

(
g

α(1, i)

)2/3

.

By union bound, the overall probability that the claim holds is at least

1−
r+1∑

i=1

bi exp(−(gi/bi)
1/3/2) = 1−

r+1∑

i=1

exp(−(gi/bi)
1/3/2 + log(bi)).
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By our choice of parameters, in particular by letting C0 to be a large enough constant, we can
ensure that gi/bi ≥ poly(bi). Thus, we can ensure that the probability that the claim holds is at
least

1−
r+1∑

i=1

exp(−(gi/bi)
1/3/2 + log(bi)) ≥ 1−

r+1∑

i=1

exp(− log(pi)
1/4)

where we get the constant 1/4 by appropriately increasing C0 and we used the fact that δ < 1/4.
As pi is exponentially decreasing, we infer that the overall probability that the desired conclusion
holds is at least

1− exp(− log(pr+1)
1/5).

10 Open Problems

We list here some interesting open problems left by our work:

• Some of our condenser results are only existential and not explicit. It would be very interesting
to find explicit constructions with similar parameters. As we show, one way of achieving this
would be to explicitly construct a seeded condenser with dependence on seed length being
1 · log(1/ε).

• All our condensers have entropy gap much larger than a constant. It will be interesting to
show there exist condensers with constant entropy gap (for any values of n, ℓ) for uniform
oNOSF sources. A slightly weaker but equally interesting question is to construct seeded
extractors for uniform oNOSF sources with constant seed length.

• Show that there exist non-trivial condensers for oNOBF sources or show no such condenser
exists. We conjecture that no condenser exists with output entropy rate larger than the input
entropy rate for such sources.

• Construct ε-collective sampling protocols with fewer rounds than the ones obtained using
uniform oNOSF source condensers. It will also be interesting to explicitly construct such
protocols when the number of players are very large compared to the number of bits each
player has access to. Further, proving lower bounds for ε-collective sampling protocols is a
natural direction to explore.

• Determine the exact threshold for extracting from oNOBF sources and oNOSF sources. Our
lower bounds show extraction is impossible when g ≤ 0.99ℓ while our constructions using

leader election protocols require g ≥ ℓ−Ω
(

ℓ
log ℓ

)
for oNOBF sources and g ≥ ℓ−Ω

(
ℓ

log∗(ℓ)

)

for (g, ℓ, n)-oNOSF sources where n ≥ log(ℓ). Using the connection between extractors and
leader election protocols, lower bounds for extraction imply lower bounds for leader election
protocols. In particular, matching lower bounds for extraction would imply all current leader
election protocols are tight, a long standing open problem.
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A Extracting from Local oNOSF Sources

A natural variation on our definition of oNOSF sources is to consider the case where the adversary
cannot remember the value of every good block in the past; rather, it can only remember the value
of the most recent s blocks. Arguably, this is a realistic assumption in the setting of many short
blocks, where it could be difficult to introduce long range correlation.

Definition A.1 (Local oNOSF sources). We call a (g, ℓ, n, k)-oNOSF source X = (X1, . . . ,Xℓ)
an s-local (g, ℓ, n, k)-oNOSF source if each bad block Xi can only depend on at most s blocks
Xi−s, . . . ,Xi−1 that come before it.

Interestingly, weakening the adversary in this way converts our oNOSF source into a small-
space source. These sources were first studied by [KRVZ11] and we refer the reader to them for
a definition and background. Since the adversarial blocks of an s-local (g, ℓ, n, k)-oNOSF source
can only depend on the binary string of length at most sn to its left, we easily see that an s-local
(g, ℓ, n, k)-oNOSF source is samplable by a space-sn source.

Using recent explicit extractors for low-space sources provided by [CL22, Li23] and the fact that
a (g, ℓ, n, k)-oNOSF source has entropy at least gk, we get the following extraction result for these
local online sources.

Theorem A.2 (Using the explicit extractor of [CL22]). There exists a universal constant C such

that for every s and k ≥ 2sn+logC(nℓ)
g there is an explicit extractor Ext : ({0, 1}n)ℓ → {0, 1}m with

error ε = (nℓ)−Ω(1) and output length m = (gk−2sn)Ω(1) for every s-local (g, ℓ, n, k)-oNOSF source.

A similar result with slightly better entropy requirement, but constant error, can be obtained
using the small-space extractor from [Li23].

45

ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il

https://doi.org/10.1561/0400000010

