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Abstract

We investigate the tasks of deterministically condensing and extracting randomness from Online
Non-Oblivious Symbol Fixing (0NOSF) sources, a natural model of defective random sources for which
it is known that extraction is impossible in many parameter regimes [AORSV, EUROCRYPT’20]. A
(g, £)-oNOSF source is a sequence of £ blocks X = (Xi,...,X;) ~ ({0,1}")", where at least g of
the blocks are good (are independent and have some min-entropy), and the remaining bad blocks are
controlled by an online adversary where each bad block can be arbitrarily correlated with any block that
appears before it.

The existence of condensers (in regimes where extraction is impossible) was recently studied in
[CGR, FOCS’24]. They proved condensing impossibility results for various values of ¢ and ¢, and they
showed the existence of condensers matching the impossibility results in the special case when n is
exponential in £ (i.e., the setting of few blocks of large length).

In this work, not only do we construct the first explicit condensers matching the existential results
of [CGR, FOCS’24], but we make a doubly exponential improvement by handling the case when n is
only polylogarithmic in . We also obtain a much improved explicit construction for transforming low-
entropy oNOSF sources (where the good blocks only have min-entropy, as opposed to being uniform)
into uniform oNOSF sources.

As our next result, we essentially resolve the question of the existence of condensers for oNOSF
sources by showing the existence of condensers in almost all parameter regimes, even when n is a large
enough constant and ¢ is growing.

We find interesting connections and applications of our results on condensers to collective coin flip-
ping and collective sampling, problems that are well-studied in fault-tolerant distributed computing. We
use our condensers to provide very simple protocols for these problems.

Next, we turn to understanding the possibility of extraction from oNOSF sources. For proving lower
bounds, we introduce and initiate a systematic study of a new, natural notion of the influence of func-
tions, which we call online influence, and establish tight bounds on the total online influence of functions,
which imply extraction lower bounds. Lastly, we give explicit extractor constructions for o0NOSF sources
using novel connections to leader election protocols, and we further construct the required leader elec-
tion protocols. These extractor constructions achieve parameters that go beyond the standard resilient
functions of [AL, Combinatorica’93].
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1 Introduction

Randomness is extremely useful in computation with wide-ranging applications in algorithm design,
cryptography, distributed computing protocols, machine learning, error-correcting codes, and much more
[MRO5, Vad12]. Most of these applications require access to high quality randomness. However in a lot
of settings, especially arising in practice, algorithms only have access to low quality source of randomness.
This motivates the notion of condensers: functions that transform weak random sources into strong random
sources that are of better quality.

The standard way of measuring the amount of randomness is using min-entropy. Formally, for a source
(distribution) X with support 2, define its min-entropy as Ho(X) = mingecq logy(1/Pr[X = z]). We
will also need the notion of smooth min-entropy, which measures how close a distribution is to having
high entropy. Formally, for a source X, its smooth min-entropy with parameter ¢ is defined as HZ (X) =
maxy:|x—y|<e{ Hoo(Y)}, where |-| denotes the statistical distance (Definition 4.1).

With this, we are ready to formally define deterministic condensers:

Definition 1.1. A function Cond : {0,1}" — {0,1}" is a (kin, kout, €)-condenser for a family of distribu-
tions X if for all X € X with X ~ {0,1}" and Hs,(Cond(X)) > kip, we have that HS (X) > kous.

We say % is the input entropy rate, % is the output entropy rate, and m — kyy; is the entropy gap of
Cond.

The task of the condenser is to make the output entropy rate as high as possible compared to the input
entropy rate; i.e., to make the output distribution more “condensed”. Related to this, it is also desirable to
have as small entropy gap as possible. Condensers with entropy gap 0 are known as randomness extractors
and have been extensively studied in theoretical computer science.

When X is the family of all distributions, it is folklore that no non-trivial condensing is possible.!
So, we additionally assume that X is a structured family of sources.” Since extractors are the highest
quality condensers, a significant amount of work has focused on constructing extractors for many interesting
families of sources [TV00, CZ19, DGW09, KZ07]. However, for many natural family of sources, one can
provably show that no extractor can exist.

In this work, we focus on one natural family of sources where it is known that extraction is impossible
(for many interesting parameter regimes): online non-oblivious symbol fixing sources (0NOSF sources).?
Formally:

Definition 1.2. A (g, ¢, n, k)-oNOSF source X = (X1, ..., Xy) is such that each block X; is over {0,1}",
g of the blocks are independent sources with min-entropy k (“good blocks”), and each “bad block” is an
arbitrary function of the blocks with an index smaller than it. When k = n, we will call such sources uniform
(g,¢,n)-oNOSF sources.

Our results at a glance The previous work of [CGR24] gave a condenser impossibility result for
oNOSF sources and showed the existence of a condenser matching that result as long as the block length n
was exponential in the number of blocks £. We construct explicit condensers for oONOSF sources that match
the results of [CGR24]; in fact, we only require n to be polylogarithmic in #, providing a doubly exponential
improvement over the (existential) result of [CGR24]. Next, we essentially resolve the existence question
for oNOSF source condensers by showing that good condensers exist even when n is a (large) constant and
£ grows. To go with these results, we obtain an improved construction for transforming low-entropy oNOSF

'Assuming m < n (wlog this holds since |Cond({0, 1}™)| < 2™), m — kout > (n — kin) — log(1/(1 — ¢£)) and hence the
output entropy rate cannot be more than the input entropy rate without incurring extremely large error (> 0.999).

2A different route, that has been widely studied, is to assume access to a short independent seed. In this work, we will limit
ourselves to the deterministic or seedless setting.

3These sources are in contrast to non-oblivious symbol fixing (NOSF) sources where bad blocks can be arbitrary functions of
all the good blocks. NOSF sources were introduced in [CGHFRS85] with applications in leakage-resilient cryptography, and have
been well-studied.



sources into uniform oNOSF sources. Moreover, we find new applications of our results on condensers
to collective coin flipping and collective sampling, and use these connections to provide simple protocols
for these problems. In the complementary direction, we construct explicit extractors for uniform oNOSF
sources by explicitly constructing the required leader election protocols, the results of which are summarized
in Tables 1 and 2. Also in the context of extractors for oNOSF sources, we introduce the new, natural
notion of online influence for Boolean functions and show extraction lower bounds for oNOSF sources by
establishing tight bounds on the total online influence of functions.

On the Utility of Condensing for oNOSF sources

We note that condensers (and sources with high min-entropy rate) are very useful: the condensed distri-
bution can be used to efficiently simulate randomized algorithms with small overhead, perform one-shot
simulations for randomized protocols, cryptography, interactive proofs, and much more. For details on
these applications and more, see [AORSV20, DMOZ23, CGR24, DPW14].

Practical applications to blockchains and cryptography oNOSF sources are inspired by real-time
randomness generation settings such as in blockchains where the adversary has some probability of corrupt-
ing a block. Moreover, it is known that non-corrupted blocks have some amount of min-entropy [BCG15].
In fact, several works have attempted to use Bitcoin or Ethereum as a source of randomness in cryptographic
protocols [BCG15, BGZ16, PW18, BGB17]. However, the authors of [BGZ16] showed that even when the
adversary has a small, constant probability of corrupting a block, randomness extraction is impossible from
Bitcoin.* Our results show that in this setting, it is still possible to get a condensed source with a high
min-entropy rate. It is known that such sources are still useful for cryptographic protocols, such as hedged
public-key enryption [BBNRSSYO09]. Further, there are natural cryptographic settings, such as creating a
Common Reference String, that are widely used in various cryptographic protocols where oNOSF sources
naturally arise [AORSV20].

Practical applications to fault-tolerant distributed computing One common scenario in distributed
computing is that of many agents (e.g., servers in a network) attempting to collectively take a decision using
several rounds of communication over a common broadcast channel in the presence of computationally
unbounded adversarial agents, which render cryptographic primitives ineffective. Protocols for collective
coin flipping, leader election, and collective sampling are prime examples of this scenario that have been
intensively studied ([BL89, GGLI1, Dod06, AN93, Fei99] and many more). In Section 3, we explain
how condensing or extracting from oNOSF sources can be viewed as a variant of these protocols. As a
consequence, our new results on condensers provide a new protocol for collective sampling and impossibility
results for these protocols can be translated into lower bounds against extractors and condensers for oONOSF
sources.

Organization The remainder of our introduction is structured as follows. We give an overview of
previous work in Section 1.1 before presenting our main existential and explicit condenser results in Sec-
tion 1.2. In Section 1.3, we present our results on the limits of extraction from oNOSF sources. Later on,
in Section 3, we explain how our results on condensers have implications for collective coin flipping and
sampling protocols.

“This mirrors our extraction impossibility result for o0NOSF sources in Section 10



1.1 Previous Work

Extractors The study of extractors for o0NOSF sources was initiated by [AORSV20].> Their results
include the following:

* It is impossible to extract from uniform oNOSF sources when the fraction of good blocks is 0.99.

« An explicit transformation from (g,¢,n,0.9n)-oNOSF source into a source over ({0,1}9()¢-1
where g — 1 of the blocks are uniform and independent.

« An explicit transformation from (g, £,n,0.1n)-oNOSF source into a source over ({0,1}0(%))100¢
where g — 1 of the blocks are uniform and independent.

Even though the output entropy rate is only slightly more than the input-entropy rate in the second result
and smaller in the third result, the fact that a lot of the blocks are truly uniform is very useful, and they find
interesting cryptographic applications of these “somewhere-extractors”.

Before our work, the best known extractors for oNOSF sources could be obtained by using resilient
functions or equivalently, extractors for NOSF sources (non-online version of oNOSF sources) constructed

by [AL93, CZ19, Mek17, IMV23, IV24] ; these require g > ¢ — @.

Condensers oNOSF sources were further studied by [CGR24], where they obtained the following
results regarding condensers:

* When n > k > /, there exist functions that can transform a (g, ¢, n, k)-oNOSF source into a uni-
form (g — 1,¢ — 1,0(k/¥))-oNOSF source (this function can be made explicit with slightly worse
dependence on output length).

« When n > 2¢() and g > 0.5/ , there exists condenser Cond : ({0,1}")¢ — {0,1}™=0(¢/9) such
that for any uniform (g, £, n)-oNOSF source X, HE_(Cond(X)) > m — O(log(n/¢)).® Their result
is not explicit.

* It is impossible to condense from uniform (0.5¢, ¢, n)-oNOSF sources with output entropy rate more
than 0.5.7

We also mention a related family of sources, namely adversarial Chor-Goldreich sources. Uniform
oNOSF sources can be seen as a special case of adversarial Chor-Goldreich sources where the good blocks
are uniform. Constructing condensers where the output entropy rate is g/¢ for adversarial Chor-Goldreich
sources is already a challenging task, although such condensers in various parameter regimes have been
recently constructed [DMOZ23, GLZ24]. The paper of [DMOZ25] recently constructed condensers for a
related, more general model.

1.2 This Work: New Condenser Constructions

Previous works only showed the existence of condensers for oNOSF sources when n > 2<(), We vastly im-
prove on this result in two ways. First, we construct explicit condensers that work even when n > polylog(¢)
and provide an explicit transformation from low-entropy oNOSF sources to uniform oNOSF sources that
works even when the min-entropy of a block % is only polylog(n). Second, we show that condensers for

In [AORSV20], these sources were called SHELA (Somewhere Honest Entropic Look Ahead) sources.
SThey get a tradeoff for g < 0.5/ as well
"They get impossibility for other smaller g as well



oNOSF sources exist when 7 is just a large constant, only leaving open the question of the existence of such
condensers for when n is a very small constant (e.g., n = 1). We also discover surprising connections be-
tween condensers for oONOSF sources and protocols for natural problems in distributed computing, such as
collective coin flipping and collective sampling. Lastly, we initiate the study of online influence of Boolean
functions, a natural generalization of influence that captures the one-sided nature of our online adversary to
help us analyze the setting of n = 1. We now discuss our results in detail below.

1.2.1 Explicit Condensers

We construct the first explicit condensers for oONOSF sources. Our ultimate result is founded on a baseline
construction that itself is an explicit condenser for oNOSF sources that matches the existential results of
[CGR24] and works for any block length n = 280) log(1/e) as long as at least 51% of blocks are good.

Theorem 1 (Theorem 2.4 restated). For all € > 0 and n,{ € N where n > 2% log(1/¢), there exists an
explicit condenser Cond : ({0,1}™)¢ — {0, 1}™ such that for any (g = 0.51¢,¢,1n)-oNOSF source X, we
have that H:_(Cond(X)) > m — 29 log(1/¢) where m = 0.0001¢n.

Surprisingly, we are able to improve upon this baseline to obtain explicit condensers that work for
oNOSEF sources where the block length 7 is only at least poly(log(¢)/e).

Theorem 2 (Informal version of Theorem 2.1). Foralle > 0 andn,{ € N where n > poly(log(¢)/e), there
exists an explicit condenser Cond : ({0,1}")¢ — {0, 1} such that for any (g = 0.51¢, £, n)-oNOSF source
X, we have that H: (Cond(X)) > m—poly(log(¢)/e)-log(n) where m = 0.0014n—O(£log(¢) log(1/¢)).

Since condensing when g = 0.5¢ is impossible, both results are tight. We note that neither result
completely subsumes the other. Our baseline construction in Theorem 1 has an exponential dependence of
n on £ instead of the polylogarithmic dependence achieved in Theorem 2; however, the latter result requires
the dependence n > poly(1/¢) compared to n > log(1/¢) for the baseline construction.

Using our new results regarding transforming oNOSF sources to uniform oNOSF sources, we also obtain
explicit condensers for (0.51¢, ¢, n, k)-oNOSF sources for the same parameter regime:

Corollary 1.3 (Corollary 5.2, simplified). For all n,{,k € N where n > poly(¢) and k > polylog(n),
there exists an explicit condenser Cond : ({0,1}™)¢ — {0, 1}™ such that for any (g = 0.51¢,4,n, k)-
oNOSF source X, we have that H (Cond(X)) > m — polylog(¥) - log(n) where m = 0.001¢n —

O(llog(¥)loglog(¢)) and € = poly(1/log(¥)).

We can also extend our result to explicitly condense from uniform (g, ¢, n)-oNOSF sources in the same
parameter regime so that the output entropy rate is 1/ [¢/g| — o(1), which is tight according to the impos-
sibility result of [CGR24].

Previously, [CGR24] showed how to existentially condense from uniform (g, £, n)-oNOSF sources when
n = 2229 However, they relied on the existence of a very strong pseudorandom object: “output-light” low-
error two-source extractors. Such extractors, even without the output-lightness requirement, are extremely
hard to construct and it is a major open problem to obtain such extractors. We are able to construct explicit
condensers by creating new tools that allow us to use an oNOSF source to sample indices within an oNOSF
source, and stitching them together so that the base pseudorandom object we rely on are seeded extractors
that we know how to explicitly construct with near optimal parameters.



1.2.2 Transforming Low-Entropy oNOSF sources to uniform oNOSF sources

We show how to existentially, as well as explicitly, with a slight loss in parameters, transform (g, ¢, n, k)-
oNOSEF sources into uniform (0.99¢g, ¢ — 1,n)-oNOSF sources. Formally, we show:

Theorem 1.4 (Informal version of Theorem 6.1). For all ¢,n,k,c where n = poly(log(¥)),k =
O(log(€/<)), there exists a function f such that f transforms (0.51¢,¢,n, k)-oNOSF sources into uniform
(0.509¢, £, m)-oNOSF sources with error € where m = Q(k).

Our construction can also be made explicit with slightly worse dependence on m and . See Corol-
lary 6.4 for the full tradeoff.

Previously, [CGR24] provided such a transformation only for n > k& > Q(¢). Hence, our transformation
makes a major improvement on their parameters. Such an improvement allows us to obtain better condensers
for low-entropy oNOSF sources in the regime n = poly(log(¢/¢)) (see Theorem 4).

1.2.3 Existential Condensers

We show how to condense from uniform (g, ¢, n)-oNOSF sources for almost all settings of ¢ and n when
g > 0.51¢. In particular, we show:

Theorem 3 (Informal version of Theorem 7.1). For all ¢, where £ > O(log(1/¢)), and n = 10%, there
exists a condenser Cond : ({0,1}™)¢ — {0, 1}™ such that for any uniform (0.51¢, £, n)-oNOSF source X,
we have HS_(Cond(X)) > 0.99m where m = Q({ + log(1/¢)). Furthermore, when n = w(1), the output
entropy rate becomes 1 — o(1).

This is tight since [CGR24] showed it is impossible to condense uniform (0.5¢, ¢, n)-oNOSF sources
beyond output entropy rate 0.5.

Using our new results regarding transforming oNOSF sources to uniform oNOSF sources, we also obtain
condensers for (0.51¢, ¢, n, k)-oNOSF sources when n > poly(log(¥)),

Theorem 4. For all {,n,e where n = poly(log(¢/¢)), k = Q(log(¢/c)), there exists a condenser Cond :
({0,1}™)¢ — {0,1}™ such that for any (0.51¢,¢,n,k)-oNOSF source X, we have HE (Cond(X)) >
m — O(m/log(m)) — O(log(1/¢)) where m = Q(k).

We sketch the proof of both of these theorems in Section 2.1 We can also extend our result to condense
from uniform (g, ¢, n)-oNOSF sources for all g, £ and constant n where the output entropy rateis 1/ [¢/g| —
0.001. This is tight since [CGR24] showed it is impossible to condense such sources beyond output entropy
rate 1/ |¢/g].

Previously, [CGR24] showed how to existentially condense from uniform (g, ¢, n)-oNOSF sources when
g > 0.514, provided n > 29, As n gets smaller, condensing becomes harder since a uniform (g, ¢, n)-
oNOSEF source is also a uniform (g - n,/1000, £ - /1000, 1000)-oNOSF source. Hence, we greatly improve
the parameters while using different and much simpler techniques.

1.3 Extraction from oNOSF Sources

Next we discuss our positive and negative results on the limits of extraction from oNOSF sources. Our
upper bound results (explicit extractors) are based on a novel connection to leader election and coin-flipping
protocols; to instantiate this connection and give explicit extractors, we construct novel protocols for these
distributed problems. Our lower bounds are based on a new notion of influence of functions, namely online
influence, that we introduce and analyze.



Extraction Lower bounds via Online Influence

For simplicity, we focus on the case of n = 1, which leads to interesting new questions about Boolean
functions. We refer to such uniform (g, ¢, 1)-oNOSF sources as (g, ¢)-oNOBF sources; oNOBF stands for
online non-oblivious bit-fixing sources. We ask what is the exact tradeoff between g, ¢, and ¢ for extracting
from oNOBF sources. Towards this, we introduce the notion of online influence.

Definition 1.5 (Online influence). For a function f : {0,1}* — {0, 1}, the online influence of the i-th bit is

z~U; 1

oLlf]= E [

B U]~ E 0]

y~Ug_g y~Up;
and the total online influence is oI[f] = Zle oL;[f].

We establish new structural results on online influence, including a Poincaré-style inequality and use
them to obtain the following extraction lower bound.

Theorem 1.6 (Informal version of Corollary 10.21). For ¢ < 0.01, there do not exist extractors for
(0.97¢,0)-oNOBF sources with error at most €.

A similar extraction lower bound was shown in [AORSV20] using different techniques.

Explicit Extractors via Leader Election Protocols

Here we present our explicit constructions of extractors for 0ONOBF and oNOSF sources. The following are
our main results.

Theorem 5 (informal version of Theorem 8.3). There exists an explicit function Ext : {0,1}¢ — {0, 1} such
that for any (g, {)-oNOBF source X where g > £ — {/(C'log({)), we have Ext(X) ~._1 /100 U1, where C
is a large constant.

Theorem 6 (informal version of Theorem 8.4). There exists an explicit function Ext : ({0,1}™)¢ — {0,1}"
such that for any (g,¢,n)-oNOSF source X where g > ¢ — {/(Clog*({)) and n > log(¢), we have
Ext(X) ~.—1/100 Un, where C'is a large constant.

It is instructive to contrast our results with the non-online setting (where adversarial bits may depend on
any good bit), called NOSF sources and NOBF sources. For both these sources, the current best extractors
require g > £ — %@2, which is much more than what Theorem 5 and Theorem 6 require.

We contrast tile results for both settings in Tables 1 and 2. In these tables, we are providing known upper
and lower bounds on the value of b(¢), defined as the maximum number of bad symbols for which extraction
is still possible with a small constant error — so lower bounds correspond to best known constructions of
such functions and upper bounds refers to the best known limitation of such functions. We write “O(¢)” to
mean “cf for some small universal constant ¢ < 1”.

To interpret our results in terms of (online) influence of coalitions, it will be useful to extend the defini-
tion of online influence to subsets of coordinates, which we do formally in Definition 8.1. Intuitively, we’re
measuring the influence of the exact same adversary as in an oNOSF source.

In Section 10.4, we note that online-resilient functions are equivalent to extractors for uniform oNOSF
source sources (with one bit output). Thus, our explicit extractor results immediately imply explicit online-
resilient functions.



Source | Lower bound Upper bound

l l
NOBF | 0 (o ), [AL93] O(@>,[KKL88]
NOSF | Q 1%25 , [AL93] O(f), [BKKKL92]

Table 1: b(¢) bounds in the non-online setting.

Source | Lower bound Upper bound

ONOBF Q(ﬁ),[Theorem 8.3] O(f), Corollary 1021 or
[AORSV20]

ONOSF Q(@),[Theorem 8.4]8 O(¢), [AORSV20]

Table 2: b(¢) bounds in the online setting.

Our main technique for Theorems 5 and 6 is a new generic way to transform leader election and coin
flipping protocols (formally defined in Section 4.4) into extractors for oONOBF and oNOSF sources. This
is given in Lemma 8.2; the general idea of constructing an extractor is to simulate an appropriate leader
election protocol with the source at hand (0NOBF or oNOSF), and output according to the chosen leader.
To instantiate this transformation, we revisit previous leader election protocols in Section 9. Our leader
election protocols provide a slightly stronger than usual guarantee: a good player is elected as the leader
with probability close to 1 (see Lemma 9.1 and Lemma 9.5). This contrasts with the usual guarantee in
leader election protocols, where a good leader is chosen with only a non-trivial (constant) probability. We
give more connections to distributed computing in Section 3 where we delineate applications of our results
to collection coin flipping and collective sampling.

2 Proof Overview

Our proof overview begins by outlining our new explicit result for condensers in Section 2.1 that is able to
handle polylogarithmic block length. Next, we present our transformation of low-entropy oNOSF sources
to uniform oNOSF sources in Section 2.2 before discussing our existential results for condensers that can
handle constant block length in Section 2.3. We present the main ideas behind our results regarding online
influence and extractor lower bounds in Section 2.4. In Section 2.5, we overview our extractor constructions
for oONOBF and oNOSF sources that are based on a general transformation from leader election protocols.

2.1 Explicit Condensers for Uniform oNOSF Sources

We sketch here our constructions (as well as proof ideas) of explicit condensers for uniform (0.51¢, ¢, n)-
oNOSF sources.” The goal will be to construct explicit condensers that work with as few good sources as
possible while minimizing the block length n. In particular, we will show:

8Recall that this lower bound is for (g, £,n)-oNOSF sources with n > log(¥).
?Since all sources are uniform here, we will not explicitly mention this again.



Q1)
Theorem 2.1 (Theorem 5.1, simplified). For all 0 < € and n,{ € N where n > (10g(£)) , there exists

£

an explicit condenser 2Cond : ({0,1}")¢ — {0, 1}™ such that for any (g = 0.51¢,£,1)-oNOSF source X,
o)
we have that HS_ (Cond(X)) > m — (%) -log(n) where m = 0.001 - {n — O (¢log(¥) log(1/¢)).

We will require two main tools to show this. The first one uses ideas from the leader election literature
and allows us to sample a O(log(¥)) sized committee starting from ¢ players while essentially maintaining
the fraction of bad players. Formally:

Lemma 2.2 (Lemma 5.3, simplified). For all ¢, > 0, n,{ € N, and constant ¢, > 0 where
n > Qlog(¢)log(1/es)), there exists an explicit function oNOSFSamp : ({0,1}™)¢ — [P where
D < O(log(¢/es)) with the following property.'’ For all S C [{] and (g,¥,n)-oNOSF sources X, we
have that

Pr [

z~X

At a high level, to construct o0NOSFSamp, we slightly modify the committee selection procedure from
[RZ01] and instantiate it with a seeded extractor with near optimal dependence on the seed [ZucO7].

Our second tool is a seeded condenser for general min-entropy sources X that uses an oNOSF source Y
as the seed, where the bad bits in Y can depend on X.

|oNOSFSamp(z) N S| |S] <
D I

5a:| <e&s

Lemma 2.3 (Lemma 5.4, simplified). There exists a constant Cocong such that for all ng, k,n,,t € N with
e > 0and ny > (Cacond)' log(tny/c), there exists an explicit condenser Cond : {0,1}" x ({0,1}"™)" —
{0,1}™ where m = %(k — (Cacond)' log(tny/€)) so that the following holds: For all (ng, k)-sources X
and (g = 1,{ = t)-oNOSF sources Y ~ ({0,1}™)! such that the good blocks in Y are independent of X
and the bad blocks in'Y can depend on X, we have that HS,(2Cond(X,Y)) > m — (Cacond)! log(tns/¢).

We will sketch how to construct this in Section 2.1.6. Using these tools, we are ready to present our ex-
plicit condenser. In fact, we will provide sketches of five different constructions of explicit condensers with
increasingly better parameter dependence; the fifth (and final) one is the construction given by Theorem 2.1.
The parameters they will vary in are the fraction of good blocks (i.e., g/¢) and the block length n. As we
will see, each construction will build on ideas from the previous construction.

2.1.1 Construction 1: 51% good and n > 282(¢)
We here construct the following condenser:

Theorem 2.4 (Theorem 5.6, simplified). For all 0 < € and n,{ € N where n. > 249 log(1/¢), there exists
an explicit condenser Cond : ({0,1}™)¢ — {0, 1}™ such that for any (g = 0.51¢, £, n)-oNOSF source X,
we have that HZ (Cond(X)) > m — 200 log(1/e) where m = 0.0001 - n/.

Proof sketch. Let v = 0.01 and ¢/ = £/2. We decompose the input X into two equal sized parts so that
X = (X1, X3) where both X1, Xy ~ ({0,1})%? = ({0,1}")”. Since X has (0.5 + )¢ good players,
we infer that each of Xj, X5 has at least v/ = (2) - ¢’ good players. In particular, we use the fact that
Hoo(X1) > (279)-(4n/2) and that Xo is a (g = (277)¢/2,¢/2,n)-oNOSF source. With this, we let 2Cond be
the condenser from our second tool Lemma 2.3 and let out final output be 2Cond (X1, X2). Note that here
t = ¢ and so, this requires n > (Cacond)’ log(¢n/e), an inequality that we indeed satisfy. The guarantees
from Lemma 2.3 provide us with the desired claim. O

"%Even though the output domain of oNOSFSamp is a vector, we will abuse notation and often treat it as a set.
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Each of the subsequent constructions will use a similar construction idea as above. However, they will
try to decrease ¢ as much as possible, where ¢ is the number of players in the oONOSF source when applying
2Cond from Lemma 2.3. Note that any reduction results in a decrease in the block length requirement n.

2.1.2 Construction 2: 67% good and n > poly(¥)

Our next construction requires a slightly larger fraction of good blocks. However, the block length required
is exponentially improved.

Theorem 2.5 (Theorem 5.7, simplified). For all 0 < € and n,¢ € N where n > (f)Q(l), there exists an
explicit condenser Cond : ({0,1}")* — {0,1}™ such that for any (g = 0.67¢, £, 1n)-oNOSF source X, we

have that HS (Cond(X)) > m — (5)0(1) log(n) where m = 0.001 - ¢n.

Proof sketch. Lety = 0.67 — (2/3). Let ¢/ = /3. We decompose the input X into three equal sized parts
so that X = (X1, Xy, X3) where all X1, Xy, X3 ~ ({0,1}™)". Since X has ((2/3) 4 7)¢ good players,
we easily see that each X; is a (g = 3y¢', ¢',n)-oNOSF source.

We use X; to sample a O(log(¥¢)) sized committee from X3. To do so, we use oNOSFSamp,_,5 :
(10,1} = ({0,1}*)P from Lemma 2.2 with S C [#'] being the set of good players from X3, the ap-
proximation factor £, = ~ and sampling error e, = £/3. Let C3 C [¢'],|C3| < D3 = O(log(¥'/e)) =
O(log(¢/¢)) be the committee of players thus obtained. The approximation property of the sampler guar-
antees us that out of > 3¢ good players in X3, at least 27 |C3| many good players will be in C3 with
probability 1 — ¢/3. Let Y3 be the (2yDs3, D3, n)-oNOSF source obtained by restricting the players in
X3 to the committee C3. We finally use 2Cond from Lemma 2.3 and output 2Cond(X2, Y3). Here, the
parameter ¢ in Lemma 2.3 will be set to D < O(log(¢/¢)), and hence, Lemma 2.3 would only require that

n > (Caye,y)'logtn/e) = (5)0(1)’ a condition that we do meet. We carefully compute the remaining
parameters to infer the claim. 0

2.1.3 Construction 3: 76% good and n > poly(log(¥))

We build on our previous construction and show how to condense when the block length requirement is
again exponentially decreased. This comes at a cost of slightly larger fraction of good blocks.

€

an explicit condenser Cond : ({0,1}")* — {0, 1}™ such that for any (g = 0.76¢, £, n)-oNOSF source X,
o(1)
we have that HS_(Cond(X)) > m — (M> log(n) where m = 0.001 - /n.

Q(1)
Theorem 2.6 (Theorem 5.9, simplified). For all 0 < € and n,{ € N where n > <M) , there exists

£

Proof sketch. Lety = 0.01. Let ¢/ = ¢/4. We decompose the input X into four equal sized parts such that
X = (X1, X2, X3, X4) and conclude that each X; is a (g = 4v¢', ¢', n)-oNOSF source. However here, we
claim something stronger. Call ¢ € [¢'] a totally good index if it corresponds to a good player across each of
the four blocks. Since X has (3/4 4 ) - (4¢) good players, there must be > 4+’ totally good indices.

We first use X; to sample a Do = O(log(¢/¢)) sized committee Co C [¢] using the sampler
from Lemma 2.2 such that Co will have at least 3~ fraction of totally good indices. We let Yo be the
(g = 3vD3, D2, n)-oNOSF source obtained by restricting X to indices from Cs.

Second, we use Yo to sample a Dy = O(log(log(¢)/)) sized committee C4 C C such that C4 has at
least 2y fraction of totally good indices. We let Y4 be the (g = 2vDy, D4, n)-oNOSF source obtained by
restricting X4 to indices from Cy.



Third and last, we use 2Cond from Lemma 2.3 and output 2Cond(X3,Y,). Here, the parameter ¢
in Lemma 2.3 will be set to Dy < O(log(log(¢)/e)), and hence, Lemma 2.3 would only require that

o)
n > (Cayeyny ) log(tn/e) = (@) , a condition that we do meet. We carefully compute the remaining

parameters to infer the claim. O
2.14 Construction 4: 67% good and n > poly(log(¥))

Our next construction maintains a similar guarantee as before on the block length and decreases the require-
ment on the fraction of good blocks.

£

an explicit condenser Cond : ({0,1}")¢ — {0,1}™ such that for any (g = 0.67¢, ¢, n)-oNOSF source X,
o(1)
we have that HS_ (Cond(X)) > m — (M> log(n) where m = 0.001 - /n.

Q(1)
Theorem 2.7 (Theorem 5.10, simplified). For all 0 < ¢ and n,{ € N where n > <M> , there exists

£

Proof sketch. Lety = 0.67 — (2/3). Let ¢/ = ¢/3. We decompose X = (X, X2, X3) so that each X; is a
(g = 3¢, ¢',n)-oNOSF source with 37/ totally good indices.

For the first step, we again use X; along with a sampler from Lemma 2.2 to obtain Co C [¢'] with
Dy = |Ca] < O(log(¢/e) and a subsource of X, restricted to Cy - Y3 that is a (g = 2yDs, Do, n)-oNOSF
source. For the second step, we again use Y3 to sample a D3 = O(log(log(¢)/¢)) sized committee C3 C C
such that C3 has > - fraction of totally good indices. We let Y3 be the (¢ = vDs3, D3, n)-oNOSF source
obtained by restricting X3 to indices from Cs. Third and last, we use 2Cond from Lemma 2.3 and output
2Cond(X2,Y3). Again the parameter ¢ in Lemma 2.3 will be set to D3 < O(log(log(¢)/c)) and would

only require that n > (@ O(l).

Analyzing this construction requires more care since we use X to both sample from X3 and as a source
for 2Cond. We use the chain rule for min-entropy (Lemma 4.3) to argue that most fixings of Yo = 4o
will leave X with lot of entropy (since sampler requires few random bits) and observe that such a fixing
still leaves X3 as oNOSF source with the same parameters. Also since for most fixings of Yo = ys9, the

committee Cs3 has -y fraction of good players, we obtain our claim. O

2.1.5 Construction 5: 51% good and n > poly(log(¥))

We lastly construct the condenser promised in our main result - Theorem 2.1.

Proof sketch of Theorem 2.1. Let v = 0.01. Let ¢/ = £/2. We decompose X = (X1, X32) so that each X;
isa (g =2y, ¢, n)-oNOSF source with 27/ totally good indices.

For the first step, we let X} be the (2v¢',¢',n})-oNOSF source obtained by taking a prefix of
length n) from each source where we set nj < n but also n} is long enough to be used by the
sampler from Lemma 2.2. We use X/ with such a sampler to obtain a committee C;_,o C [¢'] with
Di9 = |Ci2| < O(log(¢/e) and a subsource of Xy restricted to Ci_2, which we call Y;_,9, that is
a (g = (3/2)yD1-2, D1_,2,n)-0NOSF source.

We argue that: 1) most fixings of X/ are such that they leave X; with high entropy, and 2) that the
committee C;_,o obtained will have 3~/2 fraction of good players. We obtain this using the chain rule for
min-entropy and by guarantees of the sampler. We condition on such a fixing from here on.

For the second step, we use Y12 to sample a Do_,o = O(log(log(¢)/e)) sized committee Co—o C
C1—,2 such that Cy_,5 has > ~y fraction of totally good indices. We let Ya_,2 be the (g9 = vDa—,2, Da_s2,n)-
oNOSEF source obtained by restricting X5 to indices from Co_,o.
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Lastly, we use 2Cond from Lemma 2.3 and output 2Cond(X;, Y2_,2). The parameter ¢ in Lemma 2.3

o(1
will be set so that it would only require that n > (@) . We must be a bit careful about the error

parameter £xcond for 2Cond and we will choose it to be extremely small.

Analyzing this construction requires care since we use Xy both to sample from within Xy itself and
also as a seed for 2Cond. We cannot use the chain rule since a fixing of Y1_,o will destroy the structure
of the source X5. We first see that the sampler guarantees that no matter how the adversary behaves, with
probability 1 — /4, the sampler will succeed in selecting a committee Co_,o with ~y fraction of good players.
We pay €/4 in error and now assume that the sampler always succeeds in doing so. We then compare two
scenarios: one scenario Opt where the bits in Y;_,9 are all uniform and independent of all other bits and
another scenario Adv where the bits in Y;_,9 are all controlled by an adversary (guarantees on this latter
scenario suffice for our claim). Let the total number of bits in Y;_,2 be equal to b;_2. Under scenario
Opt, we easily see that we succeed and with error e2cong Will have high entropy - say k. To compare this
to scenario Adv, we use Lemma 7.9 that lets us conclude that in scenario Adv, with error excong - 2012,
the output will have entropy k& — b1_,2. Since we carefully chose excong to be small enough and b1_,5 is
small since we only use Y1_,2 as source for the sampler, the output will still have small error and will have
high-entropy as desired. O

2.1.6 Construction of 2Cond

We now sketch how to construct our desired 2Cond.

Proof sketch of Lemma 2.3. Let X and Y = (Y1,...,Y:) be the two sources. For i € [t], let n; ~
Ct="1og(tn, /c) where C is a large constant. For i € [t], let Z; be the length n; prefix of the block Y.
Our final construction will be the parity of the outputs of seeded extractors applied with source X and seeds
Z;. More formally, we output

t
@ sExt; (X, Zl),
=1

where sExt; is any explicit near optimal seeded extractor (such as the extractor from Theorem 4.6).

We proceed to sketch the analysis. We are guaranteed that there exists at least one j € [¢] from Y that
is good. We first condition on fixing blocks Z, ..., Z; 1. Since these blocks can depend on X, we apply
the chain rule for min-entropy (Lemma 4.3) and conclude X will only lose some small amounts of entropy
(the amount will be very small since these blocks are tiny compared to the amount entropy in X). Moreover,
since the adversary is online, Z; remains uniform even after this fixing. We now view our construction as

9(X) ® @) sExti(X, Z;)

=7

where g is the fixed function obtained by fixing Y1,...,Y;_;.

We now compare two scenarios: (1) Where all of Z;, ..., Z; are uniform (2) Only Z; is uniform and
Zji1,...,7; are arbitrarily controlled by an adversary and can even depend on X:
In the first scenario, we further condition on fixing Z; 1, ..., Z;. Since in this scenario Z; are indepen-

dent and random, X retains the same entropy and Y ; remains uniform. So our overall output is of the form
h(X) @ sExt;(X, Z;) for some fixed function . We condition on fixing output 2(X). Since the number of
output bits m < Ho(X), we apply the chain rule to infer that X still has lots of entropy when we do this
fixing. Now the output is just z & sExt;(X, Z;) where z is a fixed string, and hence is uniform.

11



The second scenario is more realistic and, in the worst case, this is what can actually happen. We then
use the result that if an adversary controls few bits in the input distribution, then they cannot make the
output of the condenser too bad (see Lemma 7.9 for the full statement). With this, since we carefully chose
geometrically decreasing lengths of Z; to help control the error, we indeed obtain that the output will be
condensed. O

2.2 Converting Low-Entropy oNOSF Sources to Uniform oNOSF Sources

They key part of our proof for condensing from low-entropy oNOSF sources is a transformation from low-
entropy oNOSF sources to uniform oNOSF sources. Here, we sketch the proof for our transformation in
Theorem 1.4 and compare it to that of [CGR24]. Both these transformations rely on two-source extractors
(see Definition 4.7 for definition) as a basic primitive.

Given a (g,¢,n, k)-oNOSF source X = Xi,..., Xy, [CGR24] uses excellent existential two-source
extractors (such as from Lemma 6.6) to define output blocks O; = 2Ext(X; o -+ 0 X;_1,X;) fori €
{2,...,¢} and define their transformation as f(X) = Oa, ..., Oy. They show that O; is a good block if:
(1) X is a good block and (2) at least one block amongst X1,...,X;_1 is a good block. They showed
that such a good block will be uniform and independent of the blocks Os, ..., O;_; and argued there will
be g — 1 such good output blocks. This indeed shows their output is a uniform (g — 1,¢ — 1,m)-oNOSF
source. However, each of their output blocks has length m = O (£) < O (%), and so they were not able to
handle the case of n = o(¢). We improve on their construction by using a “sliding window” based technique
to obtain a much better transformation that can even handle n = poly(log(¢)).

Theorem 2.8 (Theorem 6.1 restated). Let d, g, gout, £, n, m, k, € be such that gour < g — HTH, n>k>
log(nd — k) + md + 210g(2gout/€). Then, there exists a function f : ({0,1}")* — ({0,1}™)*! such
that for any (g, £, n, k)-oNOSF source X, there exists uniform (gout, ¢ — 1, m)-oNOSF source Y for which
f(X)-Y|<e

The parameter d in our theorem statement above is the width of our sliding window. When we set d = ¢
we recover the analysis of [CGR24]. The true advantage of our transformation emerges when d is very small
compared to ¢. For instance, when g = 0.51¢,n = poly(log(¢)) and k& = poly(log(¢)), we set d to be a
large constant and conclude that the output distribution is a uniform (0.509¢, ¢, poly (log(¢))-NOSF source.

Proof sketch of Theorem 2.8. Define O; = 2Ext(X;_4 0 --- 0 X;_1,X;). We call O; to be a good output
block when X; is good and there’s at least one good block amongst {X;_4, ..., X;_1}.

We first compute the number of good output blocks g,.¢. Let j1, .. ., j, be the indices of the good input
blocks in X and d; = j;11 — j; be the gap between the ¢-th good block and the next (i + 1)-th good block. If
the gap d; is at most d, then O, 1 must be a good output block. So, g, is the number of ¢ such that d; < d.
Since g > 0.514, such large gaps can’t appear too often and we compute that g+ > g — @Tﬁ as desired.

Next, we show that the good output blocks are indeed uniform conditioned on all previous output blocks.
With this, we will obtain that the output distribution will be uniform (gou:, ¢ — 1,m)-oNOSF source as
desired. Let ¢ be the index of a good output block. We want to show that O; is uniform conditioned
on Oy,...,0;_1. To do this, we first observe that any input block contributes to at most d + 1 good
output blocks. This means that(X;_4 o --- o X;_1), which has min-entropy at least k, loses at most d - m
min-entropy conditioned on fixing Oy, ..., O;_;. Moreover, X; still remains uniform and independent of
(Xj_go---0X;_1) when fixing these previous output blocks. Hence, the output of the two-source extractor
will indeed be uniform as desired. O

We can make Theorem 2.8 explicit by using the explicit two-source extractors of Theorem 6.7 at a slight
cost of dependence on m and ¢ as seen in Corollary 6.4.
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2.3 Existence of oNOSF Condensers for All ¢/ and n

Here we sketch the proof of Theorem 3. This result states that when g = 0.51¢ and n = 1000, there exists a
condenser Cond for uniform (g, ¢, n)-oNOSF sources so that the output entropy rate is 0.99, the number of
output bits is m = O(£ + log(1/¢)), and the error of the condenser is ¢ where £ < 2~%() is arbitrary.

Our construction uses amazing seeded condensers (see Definition 4.4) with 1 - log(1/¢) dependence on
seed length. We slightly modify our source and then apply such seeded condenser. Here is a proof sketch:

Proof sketch for Theorem 3. Let X = (X4, ...,X,) be such a source. Let Y1 ~ ({0, 1})%% be the source
obtained by concatenating the first 0.5¢ blocks of X. Since 0.51¢ blocks are good, there exist at least 0.01¢
uniform blocks in Y. We treat Y as a single distribution over n¢ bits with min-entropy > 0.01¢n. Let
Y2 ~ {0,1}%5¢ be the source obtained by concatenating 1 bit from each of the last 0.5¢ blocks of X. Once
again, since 0.51¢ blocks are good, there exist at least 0.01¢ uniform bits in Y. We will use the following
seeded condenser:

Theorem 2.9 (Theorem 7.8, simplified). For all d, e such that d > log(¢n/c) + O(1), there exists a seeded
condenser sCond : {0, 1}%" x {0,1}¢ — {0,1}™ s.1. for all X ~ {0,1}°5" with H.(X) > 0.01¢n, we
have H (sCond(X,Uy)) > 0.014n + d where m = 0.014n + d + log(1/¢) + O(1).

Our condenser Cond will output sCond(Y1, Y2). Observe that not only is Y5 not uniform, there could
be as many as 0.49¢ “bad bits” in Y5 that can depend on Y ;. To remedy this, we use the well known fact that
the behavior of such adversarial Yy cannot be far worse than the behavior if Yo were uniform. Concretely,
suppose if Yo were uniform and the output entropy and error were k and . Then for the actual Yo, the
output entropy will be k — 0.49¢ and error will be ¢ - 2°4%¢. See Lemma 7.9 for the formal statement.

For us, it means the following: let escond, kscond be such that HEscond(sCond(Y1, Ugse)) > kscond-
Then, it must be that Hgg‘w'sscm (sCond(Y1,Y2)) > kscond — 0.49¢. So, for our final error to be some ¢,
we need to have e4cong = €27 %49, For seeded condensers to exist, we need 0.5¢ > log(¢n/escond) +O(1)
and we check that such an inequality can indeed be satisfied if ¢ > 270-01¢,

Hence, we finally obtain that our seeded condenser will output 0.01¢n + O(¢) bits and will have output
entropy m — A where A = O(/). Hence, if n is a large enough constant, our output entropy rate, =2 will

m

be > 0.99 as desired. O

Remark 2.10. Here (in the inequality 0.5¢ > 1 - log(¢n/escond)) we crucially used the fact that there exist
seeded condensers with seed length dependence 1 - log(1/¢). Currently, we do not have explicit construc-
tions with this dependence. We also couldn’t have used a seeded extractor since for them, the seed length
dependence is 2 - log(1/¢). For that to work, we would need to assume g > 0.76/.

2.4 Online Influence and Extractor Lower Bounds

In this subsection, we provide a brief overview of our results regarding online influence and sketch how
they imply extractor lower bounds against oONOBF sources. We also contrast this with the established
notion of influence for Boolean functions. For any function f : {0,1}" — {0, 1}, define the function
e(f)(x) = (~1)7.

A Poincaré inequality and extractor lower bounds One fundamental inequality about regular in-
fluence is the Poincaré inequality which states that Var(f) < I[f]. We prove a similar result for online
influence.

Theorem 2.11 (Theorem 10.5 restated). For any f : {0,1}* — {0,1}, we have Var(e(f)) < oI[f] <
¢Var(e(f)).
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It is not hard to derive extractor lower bounds for oONOBF sources from the above result. The high level
idea is to collect bits with high online influence, which is guaranteed by the first inequality in the above
theorem (using an averaging argument) to form a coalition of coordinates that has enough online influence
to bias the claimed extractor. We refer the reader to Theorem 10.19 for more details.

The proof of Theorem 2.11 is based on techniques from the Fourier analysis of Boolean functions.
The following key result implies Theorem 2.11. We refer the reader to Section 10 for more details.

Lemma 2.12 (Lemma 10.7 restated). For any f : {0, 1}@ —{0,1} and i € [{],
2 < Z F(8)? < oL(f).

SCJi]
S3i

11

Influence vs Online Influence It is not hard to see that oL;[f] < I;[f] for all ¢ € [¢], with equality
always holding for ¢ = ¢ as an adversarial online bit in the last index can see every good bit. Moreover, we
observe that for monotone functions, the notion of online influence is equivalent to regular influence, so any
separation between the two notions must come from non-monotone functions.

We exactly exhibit such a separation via the address function Addr, : {0,1}°¢“* — {0,1} which
considers its first log ¢ bits as an index in {1, ..., ¢} and then outputs the value of the chosen index. It is
easy to show (as we do in Lemma 10.12) that the first log ¢ bits of Addr, have no online influence, while
the remaining bits have online influence of O (l) This is in contrast to the well known result of [KKL88]

showing that, for a balanced function such as Addry, there must exist a bit with influence at least 2 (logé)

2.5 Extractors via Leader Election Protocols

We sketch our main idea for constructing an extractor for oNOBF sources (Theorem 8.3). Similar ideas
work more generally for extracting from oNOSF sources (Theorem 8.4). As mentioned above, we use a
novel connection to leader election protocols to construct extractors. We refer the reader to Section 4.4 for
a quick recap of the leader election protocols.

Suppose 7 is an (r — 1)-round leader election protocol over ¢ players where in each round, each player
sends 1 bit and with the guarantee that if there are at most 6¢ bad players, then a good player is chosen as
leader with probability 1 — €. Suppose X is an (g, £r)-oNOBF source, where g > Ir — §¢. We simply
partition the bits of X into chunks X1, Xo, ..., X,, where each X is on £ bits, and simulate the protocol 7
by using the j’th bit of X; as the message of the j’th player inround ¢, forall 1 < j < fand1 <¢ <r—1.
At the end of this simulation suppose j* € [{] is the chosen leader. Then we output the j*’th bit of X, as
the output of the extractor.

Briefly, the reason that the above is a valid simulation of 7 is the fact that the value of any bad bit in
this online setting just depends on bits that appear before it, which is allowed in the leader election protocol
(where in round 7, the message of a bad player can be any function of the messages in the same round or
previous rounds). The correctness of the extractor now follows from the fact that since the number of bad
players (i.e., bad bits in X) is at most 04, the guarantee of the protocol ensures that the chosen leader j* € [¢]
is a good player with probability at least 1 — €, and in this case the j*’th bit of X, must be uniform.

We note here that in the usual definition of leader election protocols, the requirement is to select a good
leader with constant probability, which is a weaker guarantee than what we need to instantiate the above
plan. It turns out that we can combine leader election protocols from prior works, in particular from [Fei99]
and [AN93], to construct protocols with the stronger guarantee we require. We refer the reader to Section 9
for more details on the construction of our leader election protocols.

"'We give a very brief recap of necessary notions from Fourier analysis of Boolean functions in Section 10.2.
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2.6 Organization

We give some preliminaries in Section 4 before moving on to our core results. Section 5 provides proofs for
our explicit condenser constructions with small block length, and Section 6 shows how to handle converting
low-entropy oNOSF sources to uniform oNOSF source for a wider range of parameters. Next, Section 7
details our proof for the existence of seedless condensers for oNOSF sources for all regimes of ¢ and n.
In Section 8, we present our explicit constructions of extractors for oONOBF and oNOSF sources using a
connection to leader election protocols. Then, in Section 9, we explicitly construct the required leader
election protocols. Finally, we introduce the notion of online influence in Section 10 and use it to provide
an extraction lower bound for oONOBF sources. We discuss some open questions in Section 11.

In Appendix B, we consider a natural local variant of oONOSF sources and show that it is straightforward
to extract from such sources using existing extractors for small-space sources.

3 Application to Collective Coin Flipping and Collective Sampling

We now discuss applications of our results on condensers for oNOSF sources to fault-tolerant distributed
computing. Condensing from oNOSF sources can be viewed as a special case of coin flipping and collective
sampling protocols in the full information model that arise in fault-tolerant distributed computing.

3.0.1 Background

Say there are ¢ players who have a common broadcast channel and want to jointly perform a task such as
collectively flipping a coin. Some b players out of them are “bad” and want to deter the task. We assume the
bad players are computationally unbounded so cryptographic primitives are of no use. We further assume
that each player has private access to uniform randomness. [BL89] initiated the study of this model and
aptly termed this task as “collective coin flipping.”

The simplest way to collectively flip a coin would be for all the players to initially agree on a function
f :{0,1}* — {0, 1}, then synchronously broadcast one random bit r;, and to finally agree on the output
being f(r1,...,re). However, synchronizing broadcasts is hard, and it could be that the bad players set their
output as function of the bits of the good players. [KKL88] showed that no function f can handle more than

(@) (@) corruptions.

One way to allow for more corruptions (almost linear) among players is to consider “protocols” that
allow more rounds of communication. In particular, a protocol can be thought of as a tree where each vertex
represents a “round” where in every round the following happens: all good players sends their bits, then all
bad players send their bits as a function of the bits of the good players, and they jointly compute a function
of these bits. Depending on the outcome of the function, everyone branches on one branch in this tree.
Furthermore, every leaf is labeled with final outcomes (say 0 or 1) and, once a leaf is reached, that is the
outcome that everybody agrees on. [GGL98] initiated the study of protocols where the outcomes are from a
larger range and where the bad players are trying to minimize the largest probability of any outcome. They
called this problem “collective sampling.” For a formal definition, see Section 4.4.

3.0.2 Known Results

[BL89] showed that for protocols with outcomes {0, 1}, b bad players can always ensure that some outcome
occurs with probability at least % + 2%. [ANO3] first constructed a protocol that can handle a linear number of
corruptions. Follow-up works tried to reduce the number of rounds in this protocol where, in some settings,
players were allowed to send more than one bit per round [RZ01, Fei99].
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[GGLI8] showed that for all collective sampling protocols and all outcomes, there exists a way for b bad
players to coordinate and ensure that an outcome that happens without corruption with probability p, now
happens with probability pt=O/m) > p (1 + %log(l / p)) Nearly matching collective sampling protocols
were constructed by [GGL98, SV08, GVZ06]. For an overview of further results and bounds, see [Dod06].

3.0.3 Connection to oONOSF Sources

The problem of extracting or condensing from oNOSF sources can be seen as special cases or variants of
collective coin flipping and collective sampling that provide very simple protocols. For instance, suppose
one has an extractor or condenser f for uniform (g, ¢, n)-oNOSF sources. Then, consider a protocol where
all ¢ players take turns and output n random bits. The agreed final outcome is f applied on these ¢n bits.
This leads to protocols that are structurally much simpler since players don’t have to carefully compute
whose turn it is to go in various rounds and can obliviously prepare for their turn.

The above protocol can also be viewed as a relaxed version of a 1-round protocol where instead of
everyone providing their output asynchronously, they take turns and provide outputs one after another in a
simple sequential manner.

3.0.4 Previous Results Interpreted in oNOSF source context

Previous impossibility results can be interpreted in the context of extracting / condensing from uniform
oNOSF sources. For instance, collective coin flipping impossibility results of [BL89] imply extraction
impossibility results for uniform (g, ¢, n)-oNOSF sources when n = 1. They imply:

Corollary 3.1. There does not exist an %—extractor Sor uniform (g, {,1)-oNOSF sources.

Similarly, we observe that the notion of collective sampling is equivalent to O-error condensing. Hence,
lower bounds of [GGL98] imply zero-error condensing lower bounds for uniform (g, ¢, n)-oNOSF sources
when n = 1. Formally:

Corollary 3.2. There does not exist a condenser Cond : {0,1}* — {0,1}™ for uniform (g, ¢,1)-oNOSF
sources that can guarantee output smooth min-entropy (with parameter € = 0) more than k = % - m.

3.0.5 £-Collective Sampling

Since collective sampling lower bounds show that for any protocol, O-error condensing beyond rate g/ is
impossible, one can naturally ask whether condensing with small error ¢ is possible. We call this problem
e-collective sampling, where the goal is to output a distribution which is e-close to a distribution where
every output has small probability.

Interpreted this way, this is exactly what protocols arising out of our condensers for uniform oNOSF
sources provide: Using Theorem 3, when each player has access to 10* random bits, there exists a simple
protocol that can handle 0.49¢ corrupt players such that the players can collectively sample a distribution
over m = O({) bits which is 2% close to having entropy 0.99m. As far as we are aware, such a protocol
is not implied by any other previous protocol. Most previous protocols are obtained through leader election
protocols, which do not seem useful here since the leader has access to only constant number of bits.

We similarly obtain explicit protocols using Theorem 2 for the case when each player has access to
n > poly(log(¢)/e) many bits.
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3.0.6 Collective Coin Flipping and Sampling with Weak Random Sources

A natural extension to collective coin flipping and sampling in the full information model is when all play-
ers only have access to weak source of randomness (that are independent from each other) instead of true
uniform randomness. This question was first studied by [GSV05]. [KLRZO08] used network extractor pro-
tocol to transform weak random sources of each player into independent private random sources. This way,
after using the network extraction protocol, players can follow the usual collective coin flipping / sampling
protocol. [GSZ21] improved the network extraction protocol using two-source non-malleable extractors.

Using our (g, ¢, n, k)-oNOSF source condensers, we obtain alternative, simple e-collective sampling
protocols in the setting where players have access to weak sources of randomness. We obtain such an
existential protocol using Theorem 4, and explicit protocol using Corollary 1.3.

4 Preliminaries

In this section we give some basic background and facts used throughout our paper. We use boldfaced font
to indicate a random variable such as X. Often we will use o or , to indicate concatenation of blocks. So if
X; ~ {0,1}" and Xz ~ {0, 1}", then X1, X2 will be the concatenated random variable over {0, 1}2". We
will use the notation [n] as shorthand for {1,...,n}. All logs in this paper will have base 2 unless stated
otherwise.

4.1 Basic Probability Notions

‘We measure the distance between two distributions via statistical distance:

Definition 4.1 (Statistical Distance). For any two distributions X, Y over (), we define the statistical dis-
tance or total-variation distance (TV) distance as:

1
[X = Y| = max|Pr[X € §] - Pr[Y € §]| = 28;2&[)(: s] — Pr[Y = s]|

We use the notation X ~. Y to denote the fact that | X — Y| < e.
We also state the useful folklore result of the data processing inequality.
Fact 4.2. For any two distributions X,Y over () and function f : Q@ — R,
(X =Y[=[f(X) = f(Y)].
We will utilize the very useful min-entropy chain rule in our constructions.
Lemma 4.3 (Min-entropy chain rule, [MW97]). For any random variables X ~ X and’Y ~ Y and e > 0,

P [Hoo(X[Y =y) > Hoo(X) —log| Supp(Y)| —log(1/e)] 21 —e.

4.2 Condensers and Extractors

We recall the definition of a seeded condenser.
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Definition 4.4. A (k;y, kout, €)-seeded condenser sCond : {0,1}" x {0,1}¢ — {0, 1} satisfies the follow-
ing: for every source X ~ {0, 1}" with Ho(X) > kipn, and Y = Uy,

HZ (Cond(X,Y)) > kout-
Here, d is called the seed length of sCond.

A seeded extractor is the special case of seeded condenser where k,,,; = m. We record the full definition
for completeness sake:

Definition 4.5. A (k, ¢)-seeded extractor sExt : {0,1}" x {0,1}¢ — {0,1}™ satisfies the following: for
every source X ~ {0,1}" with Hy(X) > k, and Y = Uy,

sExt(X,Y) ~. U,,.
Here, d is called the seed length of sExt. sExt is called strong if
sExt(X,Y),Y =. U,,Y.
We will use the following near optimal explicit construction of seeded extractors:

Theorem 4.6 (Theorem 1.5 in [GUV09)). For all constant 0 < « < 1, there exists a constant C' such
that for all n, k, ¢, there exists an explicit (k, )-seeded extractor sExt : {0,1}" x {0,1}¢ — {0, 1}™ with
d = Clog(n/e) and m > (1 — a)k.

Next, we recall the definition of two-source extractors.

Definition 4.7. A function 2Ext : {0, 1} x {0,1}"2 — {0, 1} is a (k1, k2, €)-two-source extractor if for
every source X1 ~ {0,1}™ with Hyo(X1) > k1 and Xo ~ {0,1}"2 with Hoo(X2) > ko where X1 and

Xy are independent of each other, we have
2Ext(X1, Xs9) ~. Uy,.
It is said to be strong in the first argument if

2EXt(X1, Xg), X ~: Uy, Xj.

4.3 Averaging Samplers
Recall the definition of an averaging sampler

Definition 4.8. A (k, §, )-averaging sampler is a function Samp : {0,1}"™ — ({0, 1}™)P such that for any
function f : {0,1}™ — [0, 1] and any (n, k)-source X, we have that

1 D
Pr ”D;f(xi)— E [f(z)]

(z1,...,x p)~Samp(X) x~Up,

25] <.

It was shown in [Zuc97] that strong extractors and averaging samplers are equivalent. We reproduce the
proof here for completeness.

Lemma 4.9. Let Ext : {0,1}" x {0,1}¢ — {0,1}™ be a (k,¢)-extractor. Define Samp : {0,1}" —
({0,1}™)P, where D = 2% as Samp(x) = (Ext(z, 1), ..., Ext(z, D)) where we identify [D] with {0, 1}
Then Samp is a (k + log(1/4), 0, €)-averaging sampler.
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Proof. Let X be an (n, k 4 log(1/0))-source. For € Supp(X), call z bad if |Ext(x, Ug) — U,,| > € and
let B C {0,1}" be the subset of bad x’s. Now, suppose for the sake of contradiction that Pr[X € B] > 0.
Then, letting X5 = X | (X € B), we can compute the min-entropy of X p as

Hoo(Xp) > Hoo(X) — log (Pr[XleB]>

>k +log(1/0) —log(1/90)
=k.

Therefore, we can apply Ext to Xp and obtain that |[Ext(Xp,Uy) — U,| < . However, by assumption
we know that for all x € B, |Ext(z, Ug) — U,,| > ¢, meaning that |Ext(X;, Ug) — Uy, | > &, giving us a
contradiction. Thus, we have that Pr[X € B] < ¢.

Now, we turn our attention to the good = ¢ B. Using Fact 4.2, we know that for any = ¢ B,

|f(Ext(z, Ug)) — f(Unm)| < [Ext(z, Uq) — Un|
<e.

This is equivalent to saying that, for all good = € {0,1}", |} > seqoayd f(Ext(z,s)) — f(Up)| < e. This

is exactly the requirement of our sampler, and we have shown that this happens with probability Pr[X ¢
B] > 1 -4, as required. O

In particular, we will use the following strong extractor from [Zuc07] to instantiate an averaging sampler.

Theorem 4.10 ([ZucO7]). For all constant o, d,e > 0, there is an efficient family of strong (k = dn,¢)-
extractors Ext : {0,1}" x {0,1}¢ — {0, 1}™ withm < (1 — a)én and D = 2¢ = O(n).

Using Lemma 4.9, we get the following averaging sampler that we shall use later.

Lemma 4.11. For all constant o, 5, > 0, we can construct an explicit sampler Samp : {0,1}! —
({0, 1}™)P with m < (1 — a)dt and D = O(t) such that for all sets S C [M], where M = 2™, and
all (t, k)-sources X, we have that

[Samp(z) N S| [S] 5t—k
py ||22MPLITIOT DI s ] < itk
X H D M| ==

Proof. Simply apply Lemma 4.9 to Theorem 4.10 and consider the indicator function f(x) = 1,¢cg of .S for
the resulting sampler. O

4.4 Leader Election, Collective Coin Flipping, and Sampling Protocols

We formalize the definition of protocols in the full information model. Collective coin flipping protocols,
leader election protocols, and collective sampling protocols are special cases of such protocols where the
output domain is [¢] and {0, 1} and {0, 1}"" for some m respectively.

Definition 4.12 (Protocol in the full information model). A k-round protocol with output domain Y over ¢
players where each player sends n random bits per round is a function

e (({0, 1}")5)k Sy
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that takes in the input of each of the players during each round and outputs an element from set Y which is
the outcome of the protocol.

Here is how the protocol operates in the presence of a set B C [{] of bad players: In round i, each of
the players from [(| \ B independently output a uniformly random element from {0, 1}"™. Let their collective
outputs be «; € ({0, 1}")[4\3 . Then, depending on a1, . .., o, the players in B together output an element
of ({0, 1}”)3. Hence, we model the strategy of the bad players as a sequence of functions o = (o1, ...,0%),
where

i+ ({0,119 5 ({0, 14m)”,

where o; takes in the inputs of the good players from the first i rounds and maps it to the output of the bad
players for round i. For a fixed strategy o, the outcome of the protocol can be modeled as follows: uniform
random strings o, . . ., oy € ({0, 1}”)[“\3 are chosen, and the outcome of the protocol is

(o s o(an), s og(ar, ), ... ap t og(ag,. .. o).
We now specialize this definition to define collective coin flipping protocols

Definition 4.13 (Collective coin flipping protocol). A collective coin flipping protocol 7 is a protocol in the
full information model with output domain Y = {0, 1}. Furthermore, we say 7 is (b,~) resilient if in the
presence of any set B of bad players with | B| < b, we have that max,eo 1y Pr[m|p = 0] <1 —1.

Note that when & = 1, the protocol 7 just becomes a function over {0, 1}¢; such 1-round coin flipping
protocols which cannot be biased by any small set of bad players are also known as resilient functions.
We also specialize the definition of protocols to define leader election protocols:

Definition 4.14 (Leader election protocol). A leader election protocol 7 is a protocol in the full information
model with output domain Y = [{], the number of players the protocol is operating on. Furthermore,
we say m is (b,7) resilient if in the presence of any set B of bad players with |B| < b, we have that
Prir|p € B]<1—~.

Remark 4.15. The definition of resilience that we use, which is standard in the leader election and collective
coin flipping literature, requires only that bad players can be elected as a leader with probability at most
1 — . Our leader election protocols satisfy (and need) the stronger measure of quality that is standard in
the pseudorandomness literature: that bad players are chosen with probability at most € for small e.

We lastly define collective sampling protocols:

Definition 4.16 (Collective sampling protocol). A collective sampling protocol 7 is a protocol in the full
information model, typically with output domain' Y = {0,1}™ for some m which is a function of ¢ and n.
The goal of collective sampling protocols is to ensure that for every output set S C {0, 1}"™ with density p,
in the presence of b bad players, the probability that the output lies in S is at most €, with the goal to make
€ as close to | as possible.

5 Explicit Condensers for oNOSFs with Small Block Length

In this section we will give an explicit construction of condensers for uniform oNOSF sources with small
block length. Our main theorem shows that, given an oNOSF source'? with slightly more than a half fraction

2Unless stated otherwise, in this section we will use oNOSF source to refer to uniform oNOSF source

20



of good players, the block length only needs to be polylogarithmic in the length of the source to condense
from it. This nearly matches the lower bound that it is impossible to condense above entropy rate 1/2 when
the fraction of good players is at most 1/2.

Theorem 5.1. There exists a universal constant C such that for any constant v > 0 the following holds. For

C
all0 < e < 1/2andn,t € Nwheren > M) , there exists an explicit condenser Cond : ({0,1}")* —

)

{0, 1}™ satisfying: For any (g = (1/2 + )¢, £,n)-oNOSF source X, we have that HS (Cond(X)) > m —
C
<M) log(n) where m = % - vfn — Cllog(¢)log(1/e).

&€

We will prove this result in Section 5.5.

Using the transformation of low-entropy oNOSF sources to uniform oNOSF sources from Corollary 6.4,
we get an explicit condenser for low-entropy oNOSF sources.

Corollary 5.2. There exists universal constants C, C' such that for any constant v > 0 the following holds.
Forall n, 0,k € Nwheren > (€, k > (log(n))Y, there exists an explicit condenser Cond : ({0,1}")¢ —
{0,1}™ satisfying: For any (g = (1/2 4+ )¢, ¢, n, k)-oNOSF source X, we have that HS_(Cond(X)) >
m — (log(¢))¢ log(n) where m = 1 - vln — Cllog(¢)log(log(¢)) and e = (1og(1£))0"

Proof. To do this, we apply Corollary 6.4 with d as a very large universal constant, and its number of output
bits m = (log(¥))“° for some large universal constant Cy. We obtain that with error at most £/2, the
resultant distribution is uniform (g = (1/2 4 0.997)¢', ¢, (log(¢'))" )-oNOSF source where ¢’ = ¢—1 and
(' is a large universal constant. On that resultant source, we apply Theorem 5.1 with error £/2 to obtain the
desired result. O

We will need two main tools to prove Theorem 5.1. The first one will allow us to use an oNOSF source
to sample a logarithmically sized ‘committee’ from any given subset of players that still has approximately
the same fraction of good players.

Lemma 5.3. There exists a universal constant C' such that for all constant 0 < ~v,e, < 1, the following
holds. Forall 0 < €5 < 1/2, and n,{ € N where n > 6log(¢) log(1/es)/~, there exists an explicit function
oNOSFSamp : ({0,1}™)¢ — [€]P where D < C'log(£/ss) with the following property.> For all S C [/]
and (¢, ¢, n)-oNOSF sources X, we have that

[oNOSFSamp(z) N S| “j" > &4

D :|<5s

T
z~X |:
We will prove this in Section 5.6.
Our second tool is a seeded condenser that works even when the seed is an oNOSF source. In fact, the
bad bits in the seed are allowed to depend on the general min-entropy source that the condenser is acting on.

Lemma 5.4. There exists a universal constant C such that for all ng, k,n,,t € N withe > 0 and ny, >
(C)tlog(tny/e), there exists an explicit condenser 2Cond : {0,1}" x ({0,1}™)! — {0,1}™ where
m = 3(k — (C)'log(tns /<)) so that the following holds: For all (ng, k)-sources X and (g = 1,0 = t)-
oNOSF sources Y ~ ({0,1}™)! such that the good blocks in Y are independent of X and the bad blocks
in'Y can depend on X, we have that HS (2Cond(X,Y)) > m — (C)*log(tn,/c).

We prove this in Section 5.7.

*Even though the output domain of oNOSFSamp is a vector, we will abuse notation and often treat it as a set
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Remark 5.5. In Lemma 5.4, we have the requirement that n, > (C)!log(tny/€) so that both m > 0 and
Cond outputs non-zero min-entropy. Therefore, decreasing t will give a smaller bound on the length of each
block of Y and, ultimately, the block length of the o0NOSF source we are condensing from. Our trick here
will be to get t down to t =~ O(loglog(¢)) when starting from a (g, ¢, n)-oNOSF source so that the block
length of this source only needs to be at least polylog(?).

To give some intuition behind our explicit construction in Theorem 5.1, this section is organized in parts
that each provide a step towards the proof. For base line construction, we observe that Lemma 5.13 already
yields an explicit condenser for (g, ¢)-oNOSF sources where g > ¢/2 with block length n > exp(¢). This
is formally proven in Section 5.1. In Section 5.2, we will first see how we use both of these main tools from
above to handle the easier setting of condensing from a (g, £)-oNOSF source with the number of good blocks
g > %E and we have polynomial block length n > poly(¢), an exponential improvement over the base line
construction. We build upon these ideas to further exponentially decrease our block length requirement in
Section 5.3 to handle oNOSF sources with g > %E and n > polylog(¢). To then decrease the fraction
of good blocks that we require, we introduce a correlated sampling trick in Section 5.4 so that we only
require g > 2¢ while retaining the requirement n > poly(log(¢)). Finally, we obtain Theorem 5.1, which
only requires g > %Z and n > poly(log(¢)) in Section 5.5 by repeating such a correlated sampling trick,
carefully handling the fact that our sources lose some structure each time we do so. Each of these 4 sections
is self contained and only depends only on Lemma 5.3 and Lemma 5.4.

5.1 Condensing from 51% good oNOSF sources with n > exp(€2(())

We first construction our baseline condenser that requires at least 51% good blocks but requires the block
length n > exp(§2(¢)). This construction solely relies on Lemma 5.4:

Theorem 5.6. There exists a universal constant C' such that for any constant v > 0, the following holds.
Forall n,{ € N, and 0 < & < 1/2 where n > (C)%log(1/¢), there exists an explicit condenser
Cond : ({0,1}™)¢ — {0,1}™ satisfying: for any uniform (g = (1/2 + ), £)-oNOSF source X, we have
HE, (Cond(X)) > m — (C)*log(¢n/e) where m = % - vIn.

Proof. If £ is odd, then we split each block of X into two contiguous blocks of length n/2 each and view X
as ((1/2 + ~)2¢, £)-oNOSF source. This allows us to without loss of generality assume ¢ is even since this
transformation preserves the output guarantees required by our condenser.

We begin by decomposing X = (Xj, X3) where in this decomposition we are simply splitting X into
two parts, so that each X; is a (g = (2v) - (¢/2), (£/2),n)-oNOSF source. We use 2Cond from Lemma 5.4
with n, = ¢n/2,k = ~fn,n, = n, error parameter equal to ¢ and output 2Cond (X1, X3). Let Cacong be
the universal constant from Lemma 5.4. We let our universal constant C' be much larger than Chcgng S0 that
we satisfy n > (Cacond)’ log(¢£2n/e) as required by Lemma 5.4 and also so that in odd ¢ cases, n/2 is also
sufficiently large. O

5.2 Condensing from 67 % good oNOSF sources with n > poly (/)

We begin by constructing condenser that requires at least 67% good blocks instead of just 51%, but allows
for the block length n to be polynomial instead of super-exponential in . Formally, we will show that:

Theorem 5.7. There exists a universal constant C' such that for any constant v > 0 the following holds.

Forall0 < e <1/2andn,l € N wheren > (g)c, there exists an explicit condenser Cond : ({0,1}")" —
{0, 1}™ satisfying: For any (g = (2/3 4+ )¢, {,n)-oNOSF source X, we have that HS_ (Cond(X)) > m —

(g)c log(n) where m = % -l
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The key idea here will be to sample a few blocks in the last third of the source to take short prefixes from
and then use these as the seed of a particular two source condenser. With this, we present the proof.

Proof of Theorem 5.7. Let ¢/ = £/3. We begin by decomposing X = (X, X9, X3) where in this decom-
position we are simply splitting X into thirds, so each X; is a (¢ = 3v¢', ¢',n)-oNOSF source.

Our first step is to use X; to sample a logarithmically sized committee of players from X3. We do so
by using oNOSFSamp : ({0,1}™")¢ — [¢']P from Lemma 5.3 with £, = £/2, £, = ~, the corresponding
~ equal to 3+, and the S of Lemma 5.3 corresponding to the indices B C [¢] of the bad players in X3, so
% < 1 — 3v. Note that D < Cplog(¢/es) < Cylog(¢/e)) where Cp, Cy are some universal constants.
Lemma 5.3 then allows us to conclude that

|oNOSFSamp(z) N B| |B]
P Pl s ol <
xN)Ii‘Ll |: D V20 c =€
. pr |oNOSFSamp(z) N B| §8a+@ S1_e,
z~Xq D A
= P)r( HoNOSFSamp(m) HE‘ >2y-D]>1- %
T AL

Let Y = (X3)onosFsamp(x;) be the D < Clog(¢'/e)-sized committee of players from X3 chosen by
oNOSFSamp(X). The above can then be interpreted as saying that, with at least a 1 — /2 probability over
X1, we have that Y isa (¢ = 2D, D, n)-oNOSF source (we will only need the fact that Y contains at least
one good block, though).

Our second step is to apply the condenser from Lemma 5.4 to X5 and Y. We instantiate Lemma 5.4 with
ngy = 'n, ny = (g)Cl log(n),t = D < Cylog('/e), k = 3v{'n, and error equal to 5 where C” is a large
enough constant. One can verify that this setting of parameters along with our assumption that n > (g)c
for a universal constant C (by setting it to be large enough) satisfies the requirements of Lemma 5.4. This
yields a condenser that we shall call 2Cond : ({0,1}™)¢ x ({0,1}")” — {0,1}™ (so as to avoid confusion
with our ultimate condenser Cond).

Lastly, we let Z = 2Cond (X, (X3)0NOSFSamp(X1)) and let m, be the length of Z. If m, < m = %,

then we output Z followed by m, — m many zeros. Otherwise, we output a prefix of Z of length m = 7‘%.
We now analyze the guarantees of this condenser. We first observe that
(Cacona)' 10g(2tny/€) < (Cacona) 11 /* ) log(4 - Cy log(¢/e)en e)
AN
< (%) tosto )
€

where Ccong i the universal constant from Lemma 5.4 (we will use this notation in subsequent proofs) and
(5 is a large enough universal constant. With this, we are guaranteed that the length of Z = m, is such that

my = % (k - (C2Cond)t log(2tnz/€))

= 1 ('7&1 - (C2Cond)t log(2tnx/€))

3
ven AN -
> 5 - (E> log(n) (by Equation (x))
AN
=m— <8> log(n)

23



Moreover, conditioned on the fact that Y has at least one good block, Lemma 5.4 guarantees that

HE/%(Z) = H/?(2Cond (X3, Y))
> my, — (C2Cond)t IOg(QtHI/E)

0\
>m; — (8> log(n) (by Equation (%))

Thus, adding up the two €/2 errors from both our steps, we see that H_(Z) > m, — (f)c2 log(n).

If m, > m, then our final output inherits the smooth min-entropy gap of Z which is (f)CQ log(n). If
m, < m, then our output inherits not only the entropy gap of Z but also an entropy gap of m — m,. Since

m, > m — (f)c2 log(n), our output will have smooth min-entropy gap at most 2 (f)c2 log(n). In either

case, our gap will be at most 2 (f)c2 log(n). We let our final universal constant C' be much larger than C5
to obtain our claim. O

Remark 5.8. The padding or truncating trick at the end of all our steps to meet the desired output length is
standard and for next subsections and proofs, we will omit it and use it implicitly.

5.3 Condensing from 76 % good oNOSF sources with n > polylog()

To decrease our block length requirement all the way down to polylog(¢), we simply apply the idea in the
previous section twice. We split up our oNOSF source X into four blocks X = X, X, X3, Xy and use X;
to sample a logarithmically sized committee from X, use this committee to sample a doubly logarithmically
sized committee from X4, and finally apply the condenser from Lemma 5.4 to X3 and this final committee.

Theorem 5.9. There exists a universal constant C' such that for any constant v > 0 the following holds. For

C
all0 < e < 1/2andn,t € N wheren > M) , there exists an explicit condenser Cond : ({0,1}")¢ —

€

{0, 1}™ satisfying: For any (g = (3/4 4+ )¢, {,n)-oNOSF source X, we have that HS_ (Cond(X)) > m —
C
<M) log(n) where m = % -yln.

3
Proof. Let ¢/ = (/4. We decompose X into quarters as X = (Xi,Xq,X3,Xy), so each X; is a
(g = 4v¢', ¢’ ,n)-oNOSF source. We in fact claim something stronger. Call an index i € [¢'] totally good if
it is good in each of X1, Xy, X3, X4. For the rest of the i € [¢] that are not totally good, we refer to them
as somewhat bad. Since X has (3 + 4+)¢' good indices out of 4¢’, we see that there are must be at least 4v¢/
totally good indices, i.e., indices that are good across all of the 4 blocks.

Our first step is to use X; to sample a logarithmically sized committee of players from X5. We obtain
oNOSFSamp, : ({0,1}")¢ — [¢]P> from Lemma 5.3 with e, = /3, £, = 7, the corresponding  equal
to 4+, and the set S of Lemma 5.3 corresponding to the indices By C [¢] of the somewhat bad players in
X3, s0 |§,2‘ < 1 — 4. Note that Dy < Cplog(l/es) < Ci(log(¢/e)) where Cp and C are some universal
constants. Lemma 5.3 then guarantees that

|oNOSFSamp,(z) N Ba| | Ba|
P — > <
ch)r(l [ Dy Vi Z€a| X Es
NOSFS N B B
pe |l ampy () N Bs| <ent | Bz S1-e
r~X1 D2 A
= P}r{ [|oNOSFSampy(z) N By| >3y - Dy] > 1 — g.
z~X1
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Let Cy C [('] be the Dy sized-committee of indices such sampled and let Yo = (X2)onoSFSamp,(X;) D€
the induced source by restricting X to indices from Cs. The above then says that with at least a 1 — %
probability over X;, we have that Y is a (¢ = 3yD2, D2, n)-oNOSF source and Cy contains > 3vDs
totally good indices.

Our second step is to use Yo to sample from Co and obtain a subsource over those indices from X 4. We
again do this by using oNOSFSamp, : ({0,1}")P2 — [Dy]P* from Lemma 5.3 with e, = ¢/3, &, = 7,
the corresponding v equal to 3, and the set S of Lemma 5.3 corresponding to the indices B¢, C Ca of the

weakly bad indices in Cy so that % <1 — 3. Here, Dy < Cslog(Dy/es) < Ca(log(log(¢)/e)) where
Cs, Cy are some universal constants. From Lemma 5.3, once again we are guaranteed that

Pr { |oNOSFSamp4(y) mBCz’ _ |BC2| > e ] <e
y~Y2 Dy Dy | =7 =7
. P |oNOSFSamp,(y) N Be, | <e 4 | Be, | o 1—g
y~Y2 Dy - Dy | T °
—> Pr [[oNOSFSamp,(y) N Be,| > 2y- Da] > 1~ g

y~x2

If we define Y4 = (X4)oNOSFSamp,(Y-)- then the above guarantees that, with probability 1 — 5 over Yo
(conditioned on Cy containing > 3Dy totally good indices), we have that Yy is a (g = 2yDy, Dy, n)-
oNOSF source.

In our third and final step, we will use Lemma 5.4 to condense from X3 and Y,. We instantiate

C/
Lemma 5.4 with n, = ¢'n, n, = <log(é)> log(n), t = Dy < Cylog(log(¥)/e), k = 4y€'n, and er-

£

ror equal to § where (' is a large enough universal constant. Given these parameters and our assumption
that n > (log(¢)/¢)® for a universal constant C (that is large enough), as well as the fact that Y4 contains
at least one good index, the requirements of Lemma 5.4 are satisfied. Consequently, we obtain the function
2Cond : ({0,1}™)% x ({0,1}*)P+ — {0, 1}™2cend. Finally the overall output of our explicit condenser is
Z = 2Cond (Xg, Y4).

We now analyze the guarantees of this condenser. We first observe that

(Cacond)! 10g(3t1/2) < (Cacona) 41080080/ 100(3 . o - (£/£)C" /e)
Cs
< <log(€)> log(n) -

€

where Cj is a large enough universal constant. With this, we are guaranteed that the length of Z = m,
above is

Z

( (Cacond)' log(3tn, /<))

"3
1
~ 3 ('an — (Cacond)’ 10g(3tnz/5))
Cs
= ? B <10g5(€)> log(n) (by Equation (x))

Moreover, conditioned on the fact that Y4 has at least one good block, Lemma 5.4 guarantees that

HE/3(Z) = H/?(2Cond(X3,Yy4))
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> my, — (C2Cond)t log(gtn:c/f)

Cs
>m; — <log(£)> log(n) (by Equation (x))

£

Thus, adding up the three €/3 errors from both our steps, we see that HS_(Z) > m, — (f)cs log(n).
We let our final universal constant C' be much larger than C’ to obtain our desired claim. O

5.4 Condensing from 67 % good oNOSF sources with n > polylog()

We now decrease not only our block length requirement all the way down to polylog(¢) but also require that
only 67% of the blocks are good. To do this, we apply the idea in the previous section twice; but this time
at the end, we reuse one of the blocks we previously used to sample as a source. We show this by observing
that sampling requires the usage of very few bits. By using the chain rule for min-entropy, we conclude that
fixing those bits still leaves the source with lots of entropy.

Theorem 5.10. There exists a universal constant C such that for any constant v > 0 the following holds. For

£

{0,1}™ éatisfying: For any (g = (2/3 + )¢, £,n)-oNOSF source X, we have that H_(Cond(X)) > m —
(M) log(n) where m = % -yln.

€

C
all0 < e < 1/2andn,t € N wheren > M) , there exists an explicit condenser Cond : ({0,1}")¢ —

Proof. Let ¢ = (/3. We decompose X into three parts as X = (X, Xy, X3), so each X; is a
(g = 3¢, ¢',n)-oNOSF source. We in fact claim something stronger. Call an index i € [¢'] totally good if
it is good in each of Xy, Xy, X3. For the rest of the indices i € [¢] that are not totally good, we refer to
them as somewhat bad. Since X has (2+ 3v)¢' good indices out of 3¢, we see that there are must be at least
3¢’ totally good indices, i.e., indices that are good across each of the 3 blocks.

Our first step is to use X; to sample a logarithmically sized committee of players from Xo. We use
oNOSFSamp, : ({0,1}")¢ — [¢']P2 from Lemma 5.3 with ¢, = /4, e, = 7, the corresponding -y equal
to 3, and the set S of Lemma 5.3 corresponding to the indices By C [¢'] of the somewhat bad indices in
X3, S0 Uzz‘ < 1 — 3. Note that Dy < Cplog(¢/es) < Ci(log(¢/e)) where C and C are some universal
constants. Lemma 5.3 then guarantees that

pp ||1ONOSFSampy () 1 B[ | By >eq| <€
z~X1 Dy v
. |oNOSFSamp, () N Bo| <e,+ | Ba| >1—es
r~Xq D2 v
— P)r( HoNOSFSampg(x) QE‘ =2y DQ] z1- Z
T~ AL

Let Co C [¢] be the Dy < Cy(log(¢/e)) sized-committee of indices thus sampled and let Yo =
(XZ)ONOSFSame(Xl) be the source obtained by restricting X» to indices from Co. However, when we do
this, instead of each player in Y holding n bits, we take a prefix of length ny = C5-log(log(¢) /) -log(1/¢)
from each where (% is a sufficiently large universal constant. The above then says that with at leasta 1 — 5
probability over X, we have that Y5 is a (g = 2yD2, D2, n2)-oNOSF source and Cy contains > 2yD,
totally good indices.

Our second step is to use Yo to sample from C, and obtain a subsource over those indices from X3. We

again do this by using oONOSFSamp; : ({0,1}")P2 — [D5]"3 from Lemma 5.3 with 5 = /4, &, = 1,
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the corresponding ~y equal to 2+, and the set S of Lemma 5.3 corresponding to the indices B¢, C Cs of the

weakly bad indices in Cy so that % <1 —27. Here, D3 < Cslog(D2/cs) < Cy(log(log(f)/e)) where
Cs, Cy are some universal constants. From Lemma 5.3, once again we are guaranteed that

Pr |: ]oNOSFSampg(y) N Bc2’ _ ’B@’ > Ea:| <.,
y~Yo D3 D2
|oNOSFSamp3(y) N BC2| ‘BC2|
= P < —= | >1-
y~3rfz [ D3 =Gt Dy | — ©
= P{( [|oNOSFSamps(y) N Be,| > v - D3] > 1 — Z
y~Y2

If we define Y3 = (X3)0NOSFSamp3(Y2)a then the above guarantees that, with probability 1 — § over Y5
(conditioned on Cy containing > 2D totally good indices), we have that Y isa (¢ = vDs3, D3, n)-oNOSF
source.

We will show that X, has entropy conditioned on most fixings of Y,. Recall that X5 is a
(g = 3¢, ¢',n)-oNOSF source. We use the min-entropy chain rule (Lemma 4.3) to conclude that with
probability 1 — /4 over y ~ Y2, we have that

Hoo(X2|(Y2 = y)) > 37y0'n —log(4/e) — D2 - ny
> 3y'n — log(4/e) — C1log(¢/e) - Calog(log(¢)/e) - log(1/e)
> 3y'n — Cs (log(¢/¢))?

where C5 is a large enough universal constant.

With this, we apply union bound to conclude that conditioned on Cy containing > 2vD» totally good
indices, with probability 1 — £/2 over y ~ Yo, we have that Y3 is a (9 = vDs3, D3, n)-oNOSF source and
Hoo(X3) > ~vfn — Cs (log(£/€))?. We refer to such a fixing of Yo = y5 as ‘good.”

In our third and final step, we use Lemma 5.4 to condense from X, and Y3. We instantiate Lemma 5.4

C/
with ng = 0'n, n, = (M) log(n), t = D3 < Cglog(log(¢)/e), k = 3y¢'n — Cs (log(¢/¢))?, and

g
error equal to £ where C' is a large enough universal constant. Using our assumption that n > (log(¢)/e)“
for a universal constant C' (that is large enough), these parameters satisfy the requirements of Lemma 5.4,,
and the lemma gives us the explicit condenser 2Cond : ({0,1})¢ x ({0,1}™)Ps — {0,1}™2cend, Let
Z = 2Cond (X2, Y3) and let this be the final output of our own condenser.
We now analyze the guarantees of this condenser. We first observe that

(Cacond)! 1og(4tny /e) < (Cacong) 61081080/ 10g(4 - Cg(log(log(£) /€)) - tn /<)
Cr
< (log(ﬁ) > log(n) ()

€

where C7 is a large enough universal constant.
Let m, be the length of the source Z. With this, we are guaranteed from Lemma 5.4 the following lower
bound on m,:

(k — (Cacond)" log(4tn$/5))

(vn — C5(log(t/€))* — (Cacona)" log(4tna /€))

m, =

Wl Wl
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AV
W =

Cr
<’y€n — Cs(log(£/e)) — (10i(£)> log(n)) (by Equation (x))

> (10%5(6))08 log(n)

3

where (g is a large enough universal constant.
We condition on both Cy containing 2 D5 totally good indices and a ‘good’ fixing of Ys. Under this
conditioning, Lemma 5.4 guarantees that

HE/*(Z) = H/*(2Cond(Xa, Y3))
> my, — (CZCond)t log(4tnx/€)

log(¢)\ <
>m, — (og()) log(n) (by Equation (x))
€
log(£)\“®
s (0 g,
€
. log(0)
Thus, adding up the four £/4 errors from both our steps, we see that HS (Z) > m, — (T) log(n).
We let our final universal constant C' be much larger than C's to obtain our final claim. O

5.5 Condensing from 51% good oNOSF sources with n > polylog(¢)

We now decrease not only our block length requirement all the way down to polylog(¢) but also require that
only 51% of the blocks are good. To do this, we build upon the previous ideas with one more ‘self-sampling’
idea - where we sample from within the blocks in the same source. This introduces correlations between
the bits that are being used to sample and the source itself, in a way that makes us lose the structure of our
sources. Nevertheless we rely on the fact that very few bits are required to do sampling, and that sampling
succeeds regardless of the behavior of the bad players. To handle this situation, we use Lemma 7.9 that
states if an adversary is allowed to arbitrarily control few bits of the source (that were previously uniform),
then the damage they can do is not too much.

Proof of Theorem 5.1. Let ¢' = £/2. We begin by decomposing X into two parts as X = (X1, X3), so each
X;isa (g =29, ¢, n)-oNOSF source. We in fact claim something stronger. Call an index i € [¢'] totally
good if it is good in both of X;, X5. For the rest of the indices i € [¢] that are not totally good, we refer
to them as somewhat bad. Since X has (1 + 2v)¢' good indices out of 2¢’, we see that there are must be at
least 2v/' totally good indices, i.e., indices that are good across both the blocks.

Let X} be the subsource obtained from X; by taking prefixes of all blocks of length n} =
C1log(¢)log(1/e) where C1 is a large enough universal constant. Hence, X/ isa (g = 2+¢', ¢/, n})-oNOSF
source.

Our first step is to use X/ to sample a logarithmically sized committee of players from Xy. We obtain
oNOSFSamp; 5 : ({0,1}™1)¢ — [¢']P2 from Lemma 5.3 with e, = £/4, &, = /2, the corresponding ~
equal to 2, and the set S of Lemma 5.3 corresponding to the indices Bs C [¢'] of the somewhat bad indices

in X, so 22l <1 — 24, Note that

D < Cylog(£/25) < Ca(log(¢/e)) (1)

28



where Cy and (' are some universal constants. Lemma 5.3 then guarantees that

Pr [ |oNOSFSamp, _5(z) N Bo| [ Bs > sa} <eg
z~ X Dy ¢
. py [loNOSFSampyu(r) Bl IBol]
z~ X)) Dy v
— P)r(/ HoNOSFSampl_)Z(x) HE’ > (3v/2) - DQ] z1- Z
TAg

Let Co C [¢'] be the Dy < Cy(log(¢/e)) sized committee of indices thus sampled and let Yo =
(XZ)ONOSFSame(Xl) be the source obtained by restricting X5 to indices from Cs. Let ;5 be the event that
the sampler oNOSFSamp;_,, above succeeds. We have that Pr[E;_,5] > 1 — /4 with the probability being
over sampling from X/. We see that when E;_,3 occurs, Yo will be an (g = (37/2) D2, D2, n)-oNOSF
source.

We will show that X; has entropy conditioned on most fixings of X}. We use the min-entropy chain

rule (Lemma 4.3) to conclude that with probability 1 — /4 over x ~ X/, we have that

Hoo(X1|(X] = 2)) > 290'n — £'n] —log(4/¢)
=2v0'n — 0" - Cylog(¢) log(1/e) — log(4/¢)
> 2v0'n — Csl log(¢') log(1/<)

where C3 is a large enough universal constant. Let
k1 = 2v0'n — C3¢' 1og(¢') log(1/¢) ()

Let E; be the event that x ~ X is such that Ho(X1[(X} = x1)) > k1. Then, we have that Pr[E;] >
1 — (e/4) with the probability being over sampling from X}.

By a union bound, we have that both E; and E;_,2 happen together with probability at least 1 — £/2.
Note that conditioning on both F/; and E_,2, the online structure of the source still remains intact, i.e., Yo
still remains an oNOSF source and the good bits in Y still are independent of X;. So, for instance we also
satisfy the required independence conditions of Lemma 5.13 and if we also satisfied the parameter conditions
for it, we could apply it. However, we do not satisfy the parameter conditions since our guarantees on n are
too small. To remedy this, we will use a subsource of Y to sample from within itself. Doing so will shrink
our source and let us satisfy the parameter conditions from Lemma 5.13. However, we will then no longer
satisfy the independence requirements to apply it. Nevertheless we do this anyways and argue that we can
so, while only sacrificing the final guarantees of the condenser by a tiny amount.

Let Y5 samp be the subsource obtained from Y5 by taking prefixes of all blocks of length

ny = Cy - log(log(£) /e) - log(1 /) 3)

where (5 is a large enough universal constant. So, when Ej o occurs, we have that Y5 samp is
(9 = (3v/2) D3, D2, n,)-oNOSF source

In the second step, we will use Yo samp to sample from Co and obtain a subsource over those indices
from Y. We again do this by using oONOSFSamp,_,, : ({0,1}")P2 — [Dg]P2.cond from Lemma 5.3 with
es = €/4, e, = /2, the corresponding -y equal to 37/2, and the set S of Lemma 5.3 corresponding to

the indices Be, C Cq of the weakly bad indices in Co so that % < 1 —(37/2). Here, Dy cond <
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Cylog(Da/es) < Cs(log(log(f)/e)) where Cy4, Cs are some universal constants. From Lemma 5.3, once
again we are guaranteed that

P |: |oNOSFSamp2H2(y) mBC2’ _ |BC2| > 5a:| < g,
y~Y2 Samp D> cond Do
|oNOSFSamp,_,5(y) N Be, | BCQ|]
= Dr <eat+ | >1-¢
Y~Y2 Samp [ D3 cond " D °
_ €
—  Pr [|[oNOSFSampy,_5(y) N Be,| > v - Dacond] > 1— —. ()
yNY2,Samp 4

For y2.samp € ({0, 1}™)P2, let C2.cond (y2,5amp) = ONOSFSamp,_,5(y2,5amp) S0 that the number of players
in the resultant committee is |C2 cond (¥2,5amp)| = D2,cond < Cs(log(log(¢)/e)). We let Y2 cond(¥2,5amp)
be the subsource obtained from Y2 by taking suffix of all blocks of length n — n/, where 7, is as above.
Then Equation (+x) guarantees that, with probability 1 — % over sampling ¥2 samp ~ Y2 5amp (conditioned
on Iy and F_,2), we have that Y cond(¥2,5amp) 1S @ (¢ = YD2 cond, D2,Cond, 1)-ONOSF source. We refer
to such a y2 samp as ‘good.’

In our third and final step, we use Lemma 5.4 to condense from X; and Y2 cond (yzsamp). We condition
on events [, and E_,5 here. We also pay additional €/4 in error and assume that all y5 samp are good, i.e.,
the sampler always succeeds. This brings the total error we have incurred so far to 3¢/4. Note that since
we used ¥ samp ~ Y2 .Samp 0 Obtain Yo cond, any fixing of the output of Y9 samp = %2,5amp Can create
correlations between X and Y cong and it may not even preserve the structure of Yo conq. Formally for
any fixed y2 samp, conditioned on Y2 samp = ¥2,5amp» 1) it is not necessarily true that Yo cong still remains
an oNOSF source, and 2) the good bits in Y3 cong may not necessarily be independent of X;. We address
these concerns by using Lemma 7.9 and paying with more error and more entropy gap at the end.

Let Opt (short for optimistic) be the assumption that all the bits (including the bad ones) in Y2 samp
were truly uniform and independent of X; and independent of all length n — n), suffices of the bits of good
players in X (these bits in the suffixes are the ones that potentially can be used to form Y5 cong above). We
use this to assume we do meet the preconditions of Lemma 5.4. Let Actual be the realistic scenario where
the above does not happen and Y3 samp is allowed to have bad bits.

Let econd = 2~Co(log(¢/2))* where Cg is a large universal constant. We then instantiate Lemma 5.4 with

ng = 'n, ny, = (@)C log(n), t = D3 < Cglog(log(¥)/e), k = k1 (from Equation (2)), and error
equal to econg Where C’ is a large enough universal constant. Given these parameters and our assumption
that n > (log(¥) /)¢ for a universal constant C' (that is large enough), we indeed satisfy the requirements
of Lemma 5.4 under Opt. Consequently, we obtain the function 2Cond : ({0,1}™)¢ x ({0, 1}")P2.cond —
{0, 1}™2cond and our final output will be 2Cond (X1, Y2 cond)-

Let Zopt = 2Cond (X1, Y2 cond) be the distribution under the assumption Opt. Let Zactyal be the actual
output distribution that we obtain. i.e., Zactual := Cond(X), the output distribution of our condenser.

We first analyze the guarantees of this condenser under the assumption Opt. We first observe that

(Cacond) 10811/ <cond) < (Cacond) P 1o5095(0/D Log(Ci g (08(0) /<) - n/econd)
= (Cacong) ¢ 198108(0/€) 166 (C (log(log(£) /€)) - In - Qcﬁ(log(Z/E))?’)

< <1°g(f)>c log(n) ()

3

where C7 is a large enough universal constant.
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Since n > (log(¢)/€)® for a very large universal constant C, our parameter setting indeed satisfies all
the requirements of Lemma 5.4 (and the independence based requirements hold because we are arguing
under the assumption Zop:.

With this, Lemma 5.4 provides us with the following guarantee on the length m_ of our final output
(recall that k; from Equation (2) is the entropy of X; conditioned on event £ occurring):

g (kl C2Cond IOg(tnx/ECond))
1 .
=3 (270'n — C3l'log(¢") log(1/2) — (Cacond)" 10g(tna /econd)) (by Equation (2))
Cr
> é (27€ n — C3l' log(¢') log(1/¢) <k)i<€)> log(n)> (by Equation (x))

Cr
- é (’yﬁn — C3(€/2)log(¢/2)log(1/e) — (k)gg(ﬁ)) log(n)> (by definition of ¢')

Cr
> T” — g (¢log(¢) log(1/e)) — (bg;% log(n)

where Cg is some large enough universal constant.
Then, Lemma 5.4 (under assumption Opt) guarantees that

Hggond(zopt) 2 m, — (C2C0nd)t log(tnx/e(:ond)

Cr
>m; — <10i(£)> log(n) (by Equation (x))

We are not yet done since in reality, the assumption Opt does not hold and we need to argue under
Actual. To handle this situation, instead of using Y3 s,mp above, we consider a distribution Xaq, ~
({0, 1}™)¢ which is same as the distribution X but the n/y, - Dy many bits in Y3 samp are instead controlled
by an adversary ; we allow those bits to depend on any other bits from X. Let Zaq4, be the resulting output
distribution when we do this. Since the adversary Adv is arbitrary, this adversarial assumption is stronger
than Actual scenario, so it suffices to argue about Zag4,. To argue regarding Z a4y, we apply Lemma 7.9 to
infer that

/ .
HEeond ™ ™ (Zipg,) > HE™ (Zopt) — 1y - Do

Cr
> () tog(m) — (Ca - toglog(0)/2) - og1/2)) - (C1 os(t/2)
(by Equation (3) and Equation (1))

> m, — (10g(€)>09 log(n)

€

where Cy is a large enough universal constant. We also see that

Econd - 2"2 P2 = 9—Ce(log(t/e))* | 9(Ca2-log(log(¢)/e)-log(1/e))-(Cy log(¢/e)) (by Equation (3) and Equation (1))
<e/4

The last inequality follows since we will pick Cg to be much larger than C; and Cs.
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We note that X, even after conditioning on E', F'1_,2 can be assumed to be a flat source. This is because
we can express X as a convex combination of sources with the same min-entropy and doing so retains the
structure of our source X. Hence, we do meet all the preconditions of Lemma 7.9.

Lastly, since we incurred 3¢ /4 error at the beginning of the fourth step, and we incur additional /4 here,

c
we obtain that our final output distribution will be e-close to having min-entropy m, — (@) ’ log(n).

By taking C' to be a large enough constant for our actual claimed parameters, we infer the claim.
O

5.6 Constructing oNOSFSamp

In this subsection, we will construct o0NOSFSamp and prove Lemma 5.3. Our construction of oONOSFSamp

itself requires two ingredients: (1) A Reduce function that reduces an oNOSF source of length ¢ to an

O(log(¢)) length source, and (2) a good averaging sampler with linear sample complexity from Lemma 4.11.
Let’s formally define this Reduce function:

Lemma 5.11. There exists a universal constant C' such that the following holds. For all 0 < v < 1,0 <
e < 1/2and all {,n € N such that n > 6log(¢)log(1/e)/~, there exists an explicit function Reduce :
({0,1}™)¢ — {0, 1}* such that for all (¢, £)-oNOSF sources X, we have that Reduce(X) is a (t, k)-source
where t < C'log(¢/e) and k > 3log({/e).

We construct this function in Section 5.6.1. Let’s see how using it we can construct oONOSFSamp.

Proof of Lemma 5.3. We use the given parameters -y, n, £ to instantiate Reduce : [N]* — {0,1}* from
Lemma 5.11 with € = 5. This gives us a constant Cy such that Reduce(X) is a (t < Cplog(¢/es), k >
6log(¢/es))-source. We then let § = % = C% and o = % which we use to instantiate Lemma 4.11 with
£ =g, to get Samp : {0, 1}* — ({0, 1}™)P.

Define oNOSFSamp(X) = Samp(Reduce(X)) : ({0,1}")* — ({0,1}™)P. Since (1 — a)6t = 2 -
3log(¢/es) > log(f), Lemma 4.11 allows us to take m = log(¢). Moreover, because k — 6t = k/2 >
3log(¢/es) > log(1/es), we have that 20*=F < ¢, giving us the desired error bound. Finally, Lemma 4.11

also gives us that D = O(t) = O(log(¢/es)), as claimed. O

5.6.1 Constructing Reduce

We here construct Reduce function as required by Lemma 5.11. Our construction is based on the construc-
tion from [RZ01] that utilizes hitting sets for combinatorial rectangles. We call their general constructed
function as Reduce’.

This function Reduce’ has the following guarantee:

Lemma 5.12 ([RZ01]). There exists a universal constant C' such that for any v > 0 and a,d € N, there
exists an efficient function Reduce’ : [a]? — {0, 1} such that for any (g = ~d, d, log(a))-oNOSF source X,
we have that Reduce’(X) is a (t, k)-source with t < C’(log(a) + loglog(d) + d/a) and k > ~d/a.

We construct our desired function Reduce’ in Appendix A. Let’s see first how by carefully choosing a
and d in Lemma 5.12, we get the Reduce function we require.

Proof of Lemma 5.11. We will consider two cases for the parameters of our oNOSF source and apply
Lemma 5.12 with different parameters in each case. Recall that, in Lemma 5.12, d represents the num-
ber of blocks in our oNOSF source and log(a) represents the number of bits in each block. However, our
given (g = £, £,n)-oNOSF source X is on [N]¢, so we must make these parameters match. We take cases
on the relative size of log(¢) and log(1/¢).
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Case 1 First, if log(1/¢) < log(¢), thenletd = ¢ and a = 6%5(5)
since we are guaranteed that n > 6log(¢) log(1/¢)/~, so N > ¢ > a, we can simply truncate each block
to log(a) bits and take X to be a (g = ¢, £)-oNOSF source on [a]?. Lemma 5.12 gives us that there exists
some C” such that

in Lemma 5.12. In this setting,

t < C'(log(a) + loglog(d) + d/a)
= (' (log(7) + log(¢) — log(6) — loglog(¢) + loglog(¢) + 6log(¢) /)
< Cylog(¥)
< Cylog(L/e)

for some constant C. Then, we compute the min-entropy of Reduce(X) as

k>~d/a

=L 6log(€)/ (L))
= 6log(¥).

Recall that the assumption in this case is that log(1/e) < log(¢), which we can rearrange into log(¢) >
log(¢/<)/2. Applying this yields that & > 6log(¢) > 3log(¢/<), as desired.

Case 2 Second, if log(1/¢) > log(¥), then let d = 6/1log(1/¢)/v and a = £ in Lemma 5.12. In order
to convert X to a source over [ 19, we split each n length block of X into length n’ = #8/6) blocks. This
gives us ¢/ = (log(1 / g) - 2 = d total blocks with ¢’ = ¢’ total good blocks. Thus, we now view X as a

source X' over [N']* where N’ = 2" To finish the conversion, we recall that n > 6log(¢) log(1/¢)/,
son’ > log(¢) = log(a), allowing us to just take a length log(a) prefix of each length n’ block to create a
new source X" over [a]?, as required. Finally, we can analyze ¢ and k in this setting. We begin with ¢ using
Lemma 5.12 to infer that there exists some C” such that

t < C'(log(a) + loglog(d) + d/a)
= C"(log(() + loglog(6¢log(1/<) /) + 61log(1/<)/7)
< Cslog(l/e)

for some constant C3. We compute £ as

k>~d/a
= 7(601og(1/¢)/7)/¢
= 6log(1/e).
showing that £ > 61og(1/¢). Finally, recall that in this case log(1/¢) > log(¥), so log(1/¢) > log(¢/e)/2,
which we can apply to get that &k > 6log(1/e) > 3log(¢/e).

Let C' = max(Cs, C3). In either case, we have that the number of output bits is ¢ < C(log(¢/¢)) and
the min-entropy & of Reduce(X) is > 3log(¢/¢), as claimed. O

5.7 Constructing 2Cond

In this subsection we will prove our remaining helper lemma - Lemma 5.4. First, we will require the
following result:
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Lemma 5.13. There exists universal constant C' such that for all n,, k., Ny 1y Ny t,m,0<ep <o <
er < 1 satisfying ny; > C"log(2ng/e;) and m = %@/El), the following holds: There exists an explicit
extractor Ext : {0,1}" x {0,1}™¢ x - x {0,1}"™t — {0,1}™ satisfying: For all 1 < j < t and
all independent sources X ~ {0,1}", Y1 ~ {0,1}™1 ... )Yy ~ {0,1}"* where Hyo(X) = kg, each
of Yi,...,Y_1 are fixed constants and all Y , . .., Y are uniform, we have that Ext(X,Y1,...,Yy) is
gj-close to Uy,.

Proof of Lemma 5.13. For 1 <1 <t,letsExt; : {0,1}" x {0,1}"+ — {0, 1} be explicit (&;/2)-seeded-
extractor guaranteed by Theorem 4.6 - where we assume the universal constant from Theorem 4.6 is C’ and
check that our parameters meet the requirements. Our extractor construction is:

t
EXt(.f, Y1, .- - 73/t) = @ SEXti(l’, yl)
i=1

Let Zgooq = sExt;j(X,Y;) and let Z, .y = @Kigt’i# sExt;(X,Y;). Notice that our final output
distribution i8 Zgooq © Zires;. We will argue that on most fixings of Z,.s, the output will be close to
uniform.

By Lemma 4.3, we have the following (where the probability below is over sampling from Z,.4;)

Pr{Hoo(X|Zrest = 2rest) > ky —m —log(2/e5)] > 1 —¢;/2.

Call the fixings zrest Of Z,og that satisfy the above property of leaving X with a lot of entropy when
conditioning on them, as the “good fixings.” As Z,.s is independent of Y; and X is left with a lot of
entropy conditioning on a good fixing 2,.s¢, we have that

SEth((X|Zrest = Zrest)> (Yj‘zrest = Zrest)) %aj/Q U,,.

As 1—¢;/2 fraction of fixings of Z; s are good, we conclude that Ext(X, Y71, ..., Y}) =, U,, as desired.
O

With this, we finally proved the proof of our lemma:

Proof of Lemma 5.4. Let C’ be a universal constant that we set later. For 1 < i < ¢, let Ny; =
2C"(3C") " log(2tn, /€) and let n, = 25:1 n.;. Let Z; be the length n, ; prefix of the block Y, and
let Z = Z,,...,7Z; be the concatenation of these prefixes. Note that by our lower bound guarantee on
ny, each block is long enough to take such prefixes. We use the extractor Ext from Lemma 5.13 with
ke =k —n.—log(2/e), m = $(k— (3C")'log(2tn, /<)) as in the lemma statement, and for 1 < i < ¢, we
INt—1
sete; = ( £ )(30)

T . With this, we define our condenser as:
€T

2Cond(X,Y) = Ext(X, Z) = Ext(X, Z1, ..., Z).

We easily compute and check that our parameter settings satisfy the requirements of Lemma 5.13. We
will show that the output entropy (with error ¢) is at least m—n,. We compute thatn, < (3C”)! log(2tn./¢),
the output entropy gap. Hence if we show this, then our condenser will indeed have the claimed property.

We now show that our condenser construction is correct. Since Y is guaranteed to have at least one
good block by assumption, let j € [¢] be the index of this good block. Now, let A = Z;, ..., Z;_1 and let
B=7Z;.,...,Z;s0that Z = (A, Z;,B). We will show that H_(Cond(X,Y)) > m — n..

34



We will now consider fixings of A. We say a fixing of A = a is good if H(X|A =a) > k —n, —
log(2/e) = k;. By the min-entropy chain rule (Lemma 4.3), at least 1 — ¢/2 fraction of fixings of A are
good. Since Y is an oNOSF source, Z; remains independent and uniform of X for every fixing of A.

We will show that, conditioned on a good fixing a of A, we have HgéQ(Cond(X,Y)) > m —
Zfzj 41 Mzi = m — n;. This will prove our result as our total error will be £/2 4 /2 = ¢ and the
min-entropy guarantee will be m — n, as desired.

Consider the best case scenario when (B|A = a) = Ujg|. This is unrealistic since it is possible
that all bits in B are bad and arbitrarily depend on the remaining bits. Nevertheless, it is instructive to
see what happens in this scenario. In this case, X,Y are independent distributions, and we can infer that
Cond(X,Y) = Ext(X,Z) ~¢, Uy,. However, as alluded before, all bits in B can be adversarially set. To
overcome this, we invoke Lemma 7.9 that allows us to compare how worse off our output distribution can be
compared to the best case scenario. We conclude that even when B is completely adversarially controlled,
HE (Cond(X,Y)) >m — |B| =m — Zf:jﬂ n.; where

e’ =g . 9/B

e\ BC .
— . 221:]'4-1 Nz,i
2tn,
(3c)t
<2tnm
)i

(3C/ Qtn;p 20/ (Bcn;cl 1
2tnx €

Clepk 2n, (3C")t=7-1
< .
- Qtnx €

<
- 2tnx

<e/2

220’ log(2tna /e) St ]+1(3C’)

This proves our claim, showing that for all good fixings, our output is highly condensed. We set our final
universal constant C' to be 4 - C’ and see that doing so only weakens the promise of our condenser.

We also need to be careful when invoking Lemma 7.9 since it requires that (X, A, Z;, U|g)) should be
a flat distribution. While that may not be true, we can express X as a convex combination of flat sources
with the same min-entropy and since A is fixed and Z; and Up, are independent and uniform, we can
express the joint distribution as a convex combination of flat sources, for each of them invoke the lemma,
and conclude that the original distribution will be condensed as well. O

6 Transforming Low-Entropy oNOSF Sources to Uniform oNOSF Sources

In this section, we show how to transform low-entropy oNOSF sources into uniform oNOSF sources. Such
a transformation was also provided in [CGR24]. Here, we obtain improved bounds using a generalized
construction that allows us to obtain better tradeoffs and parameters in many more regimes of n, ¢. Our
main theorem is:
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Theorem 6.1. Let d, g, gout, £, 1, m, k, € be such that goz < g — HT+2, n >k > log(nd — k) + md +
210g(2gout/€). Then, there exists a function f : ({0,1}")¢ — ({0,1}™)=! such that for any (g, £, n, k)-
oNOSF source X, there exists uniform (gout, ¢ — 1,m)-oNOSF source Y for which |f(X) — Y| < e.

The flexibility of setting d to any desired value allows us to obtain stronger results. For instance by
setting d to be a large constant, we can get the following transformation that works even when n is very
small compared to ¢:

Corollary 6.2 (Transformation for small n). Let g,¢,n,m,k,&,0 be such that § < 0.99,g = df,n =
poly(log(6¢/e)), k = Qlog(6¢/¢)),m = Q(k). Then, we can construct a function f : ({0,1}")* —
({0,1}™) Y such that: for any (g,t,n,k)-oNOSF source X, there exists uniform (0.995¢,¢ — 1,m)-
oNOSF source Y such that | f(X) = Y| <e.

We additionally note that when we set d = ¢, we recover the same construction as in [CGR24], matching
its parameters. This is most interesting in the regime when say ¢ = O(1) and n is arbitrarily growing.

Corollary 6.3 (similar parameters as Theorem 5.2 from [CGR24]). Let g,¢,n, m,k,c be such that k >
1.01(log(nf) 4 21og(2(g — 1)/e)),m = k/200L. Then, we can construct a function f : ({0,1}")¢ —
({0, 1}™) Y such that for any (g, £, n, k)-oNOSF source X, there exists uniform (g — 1,£ — 1,m)-oNOSF
source Y such that |f(X) — Y| <e.

To obtain these transformations, we will use two-source extractors. In fact, using explicit construction
of two-source-extractors, we also obtain an explicit transformation:

Corollary 6.4 (Explicit Transformation). There exists a universal constant C such that for all
d, G, Gout, s, 0, ki, € satisfying gour < g — =42k > poly(log(n)) +md + 21og(2geut /€) + O(1),m <
poly(logn),e > n=Y) /2g,.+. the following holds: There exists an explicit function f : ({0,1}")¢ —
({0,1}™)1 such that for any (g,¢,n, k)-oNOSF source X, there exists uniform (gout, ¢ — 1,m)-oNOSF
source Y for which |f(X) — Y| <e.

We can instantiate this lemma even in the case of constant d and get an explicit transformation similar
to Corollary 6.2 with fewer output bits per block.

We will use the following main technical lemma that shows how to use two-source extractors to obtain
these transformations:

Lemma 6.5 (Main Lemma). Let d, g, gout, £, 1, M, kokxt, k, E2ext be such that k > kope + m - d +

log(1/e9Ext)s Gout < g(dﬁ#. Let 2Ext : {0,134 x {0, 1} — {0, 1}™ be (kogxt, oExt )-average-case-
strong two-source extractor. Then, we can construct a function f : ({0,1}™")¢ — ({0, 1}™)~1 such that for
any (g,4,n, k)-oNOSF source X, there exists (gout,{ — 1, m)-oNOSF source Y such that |f(X) — Y| <e
where € = 2gout * €2Ext-

Existentially, two-source-extractors with following parameters exist:

Lemma 6.6 (Lemma 5.4 from [CGR24]). Let ny,no, k1, ko, m, € be such that k1 < ni, ko <ng,m = ki +
ka—2log(1/e)—O(1), k2 > log(ni —k1)+2log(1/e)+O(1), and ky > log(na—k2)+21log(1/e)+O(1).
Then, a random function 2Ext : {0,1}™ x {0,1}"2 — {0,1}™ is a (k1, k2, €)-two source extractor with
probability 1 — o(1).

Using this, our main result follows:

Proof of Theorem 6.1. We use the two-source-extractors from Theorem 6.1 and apply it in Lemma 6.5. [
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To make this transformation explicit, we can use the following construction of a two-source-extractor:

Theorem 6.7 ([CZ19, Mek17, Lil6]). There exists a universal constant C' > 1 such that for all n, k, m, e
with k > log®(n),m < n'/€ e > n=YC the following holds: There exists an explicit (n, k) two-source-
extractor 2Ext : {0,1}" x {0,1}" — {0,1}™.

With this our explicit transformation follows:

Proof of Corollary 6.4. We use the explicit two-source-extractors from Theorem 6.7 and apply it in
Lemma 6.5. O

6.1 Low-Entropy oNOSF Source to Uniform Using Two-Source-Extractors

In this subsection, we will prove Lemma 6.5. To do this, we will use two-source-extractors and average-case
two-source-extractors. Let’s first define them:

Definition 6.8. We say that 2Ext is (k1, k2, €) average-case strong if
2Ext(X1,X2), W ~. U,,,, W
for every X1 and W such that fIOO(Xl | W) > kq with Xg independent of X1 and Ho(X2) > ko and W.
This notion of average-case two-source-extractors allows us obtain a simpler chain rule:

Lemma 6.9. [DORS08] Let A, B, and C be distributions such that Supp(B) < 2*. Then H.(A |B,C) >
Hoo(A,B|C) = \> Hoo(A | C) — A

Lemma 2.3 of [DORSO08] shows that all two-source extractors are average-case-two-source extractors
with similar parameters.

Lemma 6.10. [DORS08] For any n > 0, if 2Ext is a (k1, k2, €)-two-source extractor, then 2Ext is a (ki +
log(1/n), ka2, € 4+ n))-average-case-two-source extractor.

With this, we will finally prove our main lemma that shows how to use two-source-extractors to obtain
our transformation:

Proof of Lemma 6.5. For —d < ¢ < 0, define X; to be the random variable that always outputs 0". For
2 <i </, weoutput O; = 2Ext(X;_40---0X;_1,X;).

For 2 < ¢ < /¢, we say that O; is good if (1) X; is good and (2) there exists a block amongst
Xi—dy---,X;—1 that is good. We observe that if O; is good, then |O; — U,,| < e9gyx. Let ¢’ be the
number of such good O;. Let ji, ..., j, be the indices of the good blocks in X. For 1 < i < g — 1, let
d; = ji+1 — Ji. We observe that ¢’ equals number of 7 such that d; < d. As Zf;ll d; <fandd; > 1, we
infer that ¢’ > W. Hence, as long as gout < [¢'], we can guarantee the desired number of good
blocks in the output. This holds as long as gou: < W.

Using Lemma 6.10, we infer that 2Ext is (kopxt +10g(1/€9Ext ), 262Ext ) -average-case-two-source extrac-
tor. We will use this property below.

Now, using a hybrid argument we will show that

(O2,...,0y) ~2gout -€2Ext (Y2,...,Yy)
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where Y = (Yo,...,Yy)is auniform (gou, £, m)-oNOSF source that we will define as the proof goes. Let
YN = (0y,...,0p) and for2 < i < £,1et YO = (0s,...,0;,Y;t1,...,Y,). Hence, Y) =Y. We
proceed by induction. We will show that for 2 < 4 < /,

YO — YO < 969,

whenever O, is good and
Y@ — y(-1)

whenever O; is bad. By repeated applications of the triangle inequality, we will have shown that our output
is indeed close to some uniform oNOSF source with desired parameters.

We proceed by induction and let ¢ > 2 be arbitrary. If O; is bad, then we let Y; = O;. Then, we indeed
have that Y(? = Y1) a5 desired. Otherwise, we assume O; is good. Then, it must be that X; is good.
Let i, be the index of the good block before X; in X. Then, we know that ¢ — 7p.¢, < d. We first claim
that B

H (X |01,...,0i-1) > kopst =k —m - d

iprev
Firstly, by construction, blocks O3, O;,,., 1 are functions of blocks Xy,...,X; _ 1. As X

pendent of Xy, ..., X; ., —1, we infer that X is independent of O5, O
strong, we apply Lemma 6.9 to get that

iprev 18 IndeE-
_1. As 2Ext is average-case-

Iprev Iprev

Hoo(Xi)|02, ., 041) >k — - (i — iprey) >k —m - d = kopx + log(1/¢)
where for the second last inequality, we used the fact that ¢ — i).., < d. Moreover, as X is independent
of X1,...,X;-1 and Og,...,0;_; are solely functions of Xy, ..., X;_1, we infer that X; is independent
of Oo,...,0;_1. Hence, conditioned on fixing Os, ..., 0;_1, O; will be 2e5g,; close to U,,,. This implies

Y- R 9eop Y ®) as desired. This shows that a good block in Y is uniform conditioned on all previous
blocks, .i.e., it is independent of all the blocks before it. This shows all bad blocks can only depend on good
blocks appearing before them and that good blocks are independent of each other. This implies Y is indeed
a uniform oNOSF source as desired. O

7 Existence of Condensers for All Values of /. n

We will show that there exist condensers for uniform (g, ¢, n)-oNOSF sources for almost all settings of
¢, n, provided g > 0.5¢. Observe that a uniform (g, ¢, n)-oNOSF source is also a uniform (g - s,¢ - s,n/s)-
oNOSF source by simply dividing up all blocks into s parts. This implies that as n becomes smaller (relative
to £), it gets harder to condense with the hardest case being n = 1. Our condenser will also be able to handle
the case of n = O(1) and / arbitrarily growing:

Theorem 7.1 (Simplified version of Corollary 7.7). For all g,¢,n,e,6 where g = 0.51¢, and 0.014n >
2log(¢n/2e) + O(1), there exists a condenser Cond : ({0,1}™)¢ — {0,1}™ such that for any uniform
(g,¢,n)-oNOSF source X, we have HS_(Cond(X)) > m— A where m = 0.005¢n+200({+log(¢n/2¢))+
O(1) and A = 200(¢ 4 log(¢n/2¢)) + O(1).

Note that when n is a large enough constant, m > 100A and hence, the output entropy rate is at least
0.99.

In fact, we obtain a general result for all values of n, £ and when g = 0.5¢ + e where e € N is arbitrary.
See Lemma 7.4 for the full tradeoff; to get slightly better parameters for small n, see Corollary 7.6.
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We combine the above condenser for uniform oNOSF sources with the transformation for low-entropy
oNOSF sources to uniform oNOSF sources from Corollary 6.2 to obtain the following condenser for low-
entropy oNOSF sources:

Corollary 7.2. Let g,{,n,m,k,e be such that g = 0.51¢,n = poly(log(¢/e)),k = Q(log(¢/e)),m =
Q(¢log(¢/e)). Then, we can construct condenser Cond : ({0,1}")¢ — {0,1}™ such that for any
(g9,¢,n, k)-oNOSF source X, we have H_(Cond(X)) > m — A where A = O({ + log(1/¢)).

Remark 7.3. Previous condensers from [ CGR24] could only show that condensers exist for uniform oNOSF
sources when ¢ = o(logn). They relied on existence of low-error two source extractors equipped with an
additional “regularity” property. Our constructions are much simpler, recover all their results with even
better parameters, and work for all values of n and ¢, including the hardest case of n = O(1).

We provide our general construction of condensers in Section 7.1. To do that, we will require another
type of condenser for two uniform oNOSF sources where the bad bits of the second block are allowed to
depend on the bits of the first block. We provide this construction in Section 7.2.

7.1 Constructing Condensers for Uniform oNOSF Sources

In this subsection, we will construct the following general condenser for uniform oNOSF sources:

Lemma 7.4 (General uniform oNOSF source condensing). For all g,¢,n,e,e where g > (£/2) + e, and
en > 2log(fn/2e) +O(1), there exists a condenser Cond : ({0,1}7)¢ — {0, 1} such that for any uniform

(9,¢,n)-oNOSF source X, we have HS,(Cond(X)) > m— A where m = G+ (2{—e) [w-‘ +
log(1/¢) + O(1) and A = (2€ — 2e) [M] +log(1/€) + O(1).

To do this, we will use a condenser for two distinct uniform oNOSF sources where one source can
depend on the other:

Lemma 7.5. For all g,!,nz,ny, € where ng > n, and gn, > log(¢n./e) + O(1), there exists a condenser
Cond : ({0,1}™)¢ x ({0,1}™)* — {0,1}™ such that: For any uniform (g, !, n,)-oNOSF source X and
uniform (g, £, ny)-oNOSF source Y with the additional property that bad blocks in Y can depend on X as
well, we have that H (Cond(X,Y)) > m — A where m = gng + (2¢ — g)ny + log(1/¢) + O(1) and
A = (20 —2g)ny +log(1/e) + O(1).

We construct this condenser in Section 7.2. Using this, our main general condenser can be constructed
as follows:

Proof of Lemma 7.4. We split each block in X into 2 parts to obtain a uniform (2g, 2¢, n/2)-oNOSF source.
We call this resultant source X as well since it is the same distribution, just viewed differently. Let U =

(Uq,...,Up)and where for 1 < ¢ < ¢, U; = X;. Let V = (Vy,..., Vy) where for 1 < i < ¢, we define
log(¢n/2e)+0(1)
e

We observe that U is a uniform (e, ¢, n/2)-oNOSF source and V is a uniform (e, ¢, n, )-oNOSF source
where bad bits in 'V can depend on U and the good bits in both sources are independent. We now define our
condenser Cond to be the condenser from Lemma 7.5 applied to sources U, V. Hence, we will have that
H: (Cond(U,V)) > m — A wherem = en/2 + (2¢ — e)n, +log(1/e) + O(1) and A = (20 — 2e)n,, +
log(1/e) + O(1) as desired. O

V; to be prefix of length n,, of Xy4; where n, = [
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Our first corollary will apply to the regime that his the hardest to condense from, namely when n is very
small compared to ¢, even when n = O(1) and / is arbitrarily growing:

Corollary 7.6 (Small n). Forall g,¢,n,e,d where g > (0.5+9)¢,e > 2-0+0M) andn < 204/2 there exists
a condenser Cond : ({0,1}™)¢ — {0,1}™ such that for any uniform (g,¢,n)-oNOSF source X, we have
HE (Cond(X)) > m—A where m = 6¢n/2+(2—0)l+log(1/e)+0O(1) and A = (2—6){+1log(1/e)+O0O(1).

In/2e)4+0(1)

Proof. We observe that Pog( > —‘ = 1 and directly apply Lemma 7.4. O

We also obtain the following general tradeoft for larger n that may be growing with ¢ or even when
¢ = O(1) and n growing alone (this applies to all n but is most interesting when n is large since Corollary 7.6
provides better tradeoff for small n).

Corollary 7.7 (Larger n). Forall g,¢,n,e,0 where g > (0.5 + )¢, and 6¢n > 2log(¢n/2e) + O(1), there
exists a condenser Cond : ({0,1}™)¢ — {0,1}™ such that for any uniform (g, {,n)-oNOSF source X, we
have HE_(Cond(X)) > m—A wherem = M%+(2/5—1)(10g(€n/25)+0(1))+(2—5)€+log(1/6)—|—0(1)
and A = (2/6 — 1)(log(¢n/2e) + O(1)) +2(2 — §)¢ + log(1/e) + O(1).

Proof. We observe that {M—‘ <1+ w and apply that to the condenser from

e

Lemma 7.4. O

7.2 Condenser for Two Uniform oNOSF Sources

In this subsection, we will prove Lemma 7.5. To construct the claimed condenser, we will use the following
folklore result regarding existence of excellent seeded condensers (e.g., see Corollary 3 of [GLZ24]).

Theorem 7.8. For all n,k,d, e such that d > log(n/e) + O(1), there exists a seeded condenser sCond :
{0,1}™ x {0,1}% — {0,1}™ such that for all X ~ {0,1}" with Hoo(X) = k, we have HZ (Cond(X)) >
k + dwhere m = k + d +log(1/¢) + O(1).

We will also use the following result from [CGR24] that states an adversary can’t make things too
bad if it controls very few bits. We note that similar lemmas have been useful in previous construction of
condensers [BCDT19, BGM22, GLZ24]:

Lemma 7.9 (Lemma 6.18 in [CGR24]). Let X ~ {0,1}" be an arbitrary flat distribution and let Cond :
{0,1}™ — {0,1}™ be such that H5 (Cond(X)) > k. Let G C [n] with |G| = n — b be arbitrary. Let
X ~ {0,1}"7° be the projection of X onto G. Let X' ~ {0, 1}" be the distribution where the output bits

defined by G equal X and remaining b bits are deterministic functions of the n — b bits defined by G under
the restriction that Supp(X') € Supp(X). Then, HZ,(Cond(X')) > k — bwhere e’ = ¢ - 2",

With this, we are ready to provide the construction of condensers for two uniform oNOSF sources:

Proof of Lemma 7.5. Let sCond : ({0, 1}™)¢ x ({0,1}™)¢ — {0,1}™ be lossless condenser guaranteed
from Theorem 7.8 with esconq = € - 2~ =9y, We define Cond(z,y) = sCond(z, y).

Let Oypip = Cond(X, Uy, ) and Ogq, = Cond(X,Y). We argue that O,y will be highly condensed
and since the adversary controls so few bits in Y, O,g4, will be condensed as well.

We first see that by the property of the seeded condenser, HZ:Cd(Oy,if) > gng +£n,. Next we observe
that O4q, can be obtained from O,y by an adversary controlling b = (£ — g)n,, bits from (X, Ug,, ) to
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obtain (X,Y) and considering the output of sCond. We apply Lemma 7.9 which allows us to compare
output entropy in such scenarios and obtain that

HEr? () > H5(Ouni) — b > (gna + fny) — (€ = g)ny) = m — A.

AS €5Cond - 2° = ¢, we indeed have that HZ_(Ogq,) > m — A as desired. O

8 Extractors for oONOSF and oNOBF Sources via Leader Election Protocols

In this section, we provide a generic way to transform leader election and coin flipping protocols into ex-
tractors for oNOSF sources and oNOBF sources. To do so, we must formally define the online influence of
coalitions.

Definition 8.1. For any function f : ¢ — {0,1}, and any B C [{], where B = {i1 < iy < ... < iy},
define olp(f) as follows: an online adversary A samples a distribution X in online manner. It starts by
sampling the variables x1,x2, . . . ,x;,—1 independently and uniformly from %, then picking the value of ©;,
depending on x;,. Next, the variables z; 11, .. .,%i,—1 are sampled independently and uniformly from ¥,
and A sets the value of x;, based on all variables set so far, and so on. Define the advantage of A to be
advy g(A) = |E[f(X)]—E[f(Uy)]|. Then olp(f) is defined to be max 4{advs g(A)}, where the maximum
is taken over all online adversaries A that control the bits in B.
We say a function f is (b, €)-online-resilient if olg(f) < ¢ for every set B C [{] of size at most b.

We note that Definition 8.1 is a special case of Definition 1.5, for ¥ = {0, 1} and |B| = 1.

Now we return to our transformation from leader election and coin flipping protocols into extractors for
oNOSF sources and oNOBF sources. Conceptually, given a leader election protocol, we can use an oNOSF
source to simulate the protocol and then have the elected leader output its last block. We formalize this
below.

Lemma 8.2. For any integers r > 1,{ > 0 and any 6 > 0, let m be an (r — 1)-round protocol over {
players that send n bits per round such that for any d¢ bad players, the protocol elects a good leader with
probability 1 — ¢.

Then, there exists an explicit function Ext : ({0,1})" — {0,1}" such that for any (g, ¢r,n)-oNOSF
source X where g > {r — 6{, we have Ext(X) ~. U,,.

Instantiating our lemmas with the leader election protocols from Section 9, we construct explicit extrac-
tors for oONOBF sources and uniform oNOSF sources:

Theorem 8.3. There exists an explicit function Ext : {0,1}¢ — {0,1} such that for any § and any (g, ¢)-
ONOBF source X where g > { — 6¢/log(¢), we have Ext(X) =~. Uj where ¢ = C§ + 12 (05)3/2 +
log(¢)~'/3 where C'is a large universal constant.

Proof. This directly follows by instantiating Lemma 8.2 with the protocol guaranteed from Lemma 9.1. [

By using a the leader election protocol of Lemma 9.5 with multiple bits per round, we construct extrac-
tors for oNOSF sources:

Theorem 8.4. There exists an explicit function Ext : ({0,1}")¢ — {0, 1}" such that for any constant § and
any (g,¢,n)-oNOSF source X where g > { — 6¢/log*({) and n > log({), we have Ext(X) ~. U,, where
e=C6+13(C8)%2
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Proof. This directly follows by instantiating Lemma 8.2 with the protocol guaranteed from Lemma 9.5. [

We finally prove our lemma regarding obtaining extractors for oNOSF Sources from leader election
protocols:

Proof of Lemma 8.2. Define function Ext as follows: On input (yi,...,y,) where y; € ({0,1}")%, let
yi; € {0,1}" denote the j’th block of y;. Simulate the protocol 7 with the message of the j’th player in
round ¢ being ; j, where 1 <47 <7 —1and1 < j </ Letj* € [/] be the leader that is elected by 7; then
output ;. j+

Let us analyze Ext on some source Y ~ ({0, 1}")?". Let the bad symbols in Y be given by A C [£] x [r]
and interpret it as the distribution where X; ; denotes the random bits of player j in round ¢. Call X;; a
bad block if the corresponding index (4, j) is in A, i.e., the block is bad in Y. Since a bad block in Y can
only depend on blocks before it, the corresponding bad block in X satisfies the criteria for being bad in X;
this is because a bad block in the protocol setting is allowed to depend on all blocks in the same or previous
rounds. Thus X has at most §¢ bad blocks as well. By declaring the player corresponding to the bad block
in X as bad, we obtain that the distribution X can be simulated by at most 6¢ bad players. Formally, for
1 <i < r,let B; C [/] be the set of bad blocks in X among all blocks in round i. Let B = U]_, B;. We
declare all players in B as bad players. Finally, observe that

Bl < |Bj = 4] = ¢
=1

as desired. Thus the correctness of 7 implies that after (» — 1) rounds, the chosen leader j* does not belong
to B with probability at least 1 — . By construction, it follows that (r, j*) ¢ A whenever j* ¢ B. Thus,
the output of the extractor, Y, ;. is uniform on n bits, with probability at least 1 — €. U

9 High Probability Leader Election Protocols

We use this section to provide the leader election protocols that are used in Section 8. In Section 9.1, we
present leader protocols where each player is allowed to send one bit per round. We tackle the case where
players can send multiple bits per round in Section 9.2.

9.1 One Bit per Round
We will construct leader election protocols with the following guarantees:

Lemma 9.1. There exists a universal constant C and an explicit protocol over € players, where each player
sends n = 1 bit per round, that lasts for C'log({) rounds such that for any 6 > 0, if ¢ players are bad, then
a good leader is chosen with probability > 1 — ¢ where ¢ = § 4+ 126%/% 4 log(£) /3.

We will use the following protocol from [AN93]:

Lemma 9.2. There exists a protocol  over € players where each player sends at most 1 bit per round,
that lasts for O({) rounds such that if 6¢ players are bad for 6 < 1/4, then a good leader is chosen with

probability > 1 — € wheree = § + 126%/2. Furthermore, this protocol can be explicitly constructed in time
2000,

We will also need the Chernoff bound:
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Lemma 9.3. Let Xy, ..., X, be independent random variables taking values in {0,1}. Let X = > | X;
and let p = E[X]. Then, Pr[X < (1 —0)pu] < e—0%n/2.

Proof of Lemma 9.1. Our protocol will have two stages. In the first stage, we will use the lightest bin
protocol from [Fei99] until the number of players is small enough, and then in the second stage we use the
protocol from Lemma 9.2. Let C be a large constant that we set later. In particular, our final protocol will
be:

1. Let P, = [5]

2. Inround 7 of stage 1, all players in P; will present their value in {0, 1} and based on that, they will be
divided into P?, P!.

3. Set P;;1 equal to the smaller set among Pio, P! (breaking ties arbitrarily).

4. Repeat this until the number of players becomes at most Cylog ¢. Let this happens after  rounds.
This marks the end of the first stage.

5. In the second stage, apply the protocol from Lemma 9.2 to P,;; and output the leader from that
protocol.

We now analyze this protocol. We argue that at the end of the first stage, with high probability, the
fraction of good players in P, will be at least (1 — ) — o(1). For the second stage, the correctness of the
protocol follows from Lemma 9.2.

For 1 < i < r+ 1, let g; be the number of good players in P; and let p; = | P;|. As we always choose
the lightest bin at each stage, p;+1 < p;/2. Hence, we infer that p; < 27%*1 . £, Let g; = g. We next lower
bound g;:

Claim 9.4. With probability at least 1 — exp(—(1/10) - (g/2")), it holds that for all 1 < i < r + 1,
g 9\2/3
g9i = 3 —=5(5)""
We prove this claim using concentration bounds later. Using this claim, we see that in P, 1, the number
of good players will be at least

(1—6)¢ (1-08)e\*?
7\
outof py1 < 24 many surviving players. In particular, g,+1 > (1—90)py4+1— 5pzi31. So, in stage 2, we have
pr+1 many players remaining where the fraction of bad players is ' = 6 + 5p,. j{g Applying Lemma 9.2
with these parameters, we infer that probability of electing a good leader is at least

_ _1/3\3/2 _
1- <5+ 5p, 17+ 12 (5+ 5pr+1{3> > >1-6—126%% — 6p. 1

where the last inequality follows because p,+1 > w(1). Hence, our overall probability of electing a good
leader is at least

1—6—126%2 —6p, }1* — exp(—(1/10) - (1 = 6)py1) > 1 — 6 — 126%2 —log(£) /3 =1—¢

where the last inequality follows because we let p,1 = Cplog(¢) for a large constant Cjy. We check that
the number of rounds in the first stage is no more than log(¢) and in stage 2, as guaranteed by Lemma 9.2,
the number of rounds is no more than O(log(¢)). These together give us our universal constant C' that we
use in the claim.
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Proof of Claim 9.4. Fix either of the two bins. We apply Lemma 9.3 with § = 1~ /3 to infer that with
probability at least 1 — exp(—(g;/2)'/3/2), it holds that the number of good players in that bin is > g; /2 —
(9i/2)*/3. Applying this to both bins, we infer that with probability at least 1 — 2 exp(—(g;/2)'/3/2), it
holds that g; 11 > g;/2 — (9:/2)%®. By unravelling this recurrence and lower bounding, we see that

_9 Z (9/2)%3

gl+1 - 2’L 21_]

7=1
Hence,

%

= (i)m >y

j=1
-4 ()" Sy
=0
25 (3" T
=55 () .

By union bound, the overall probability that the claim holds is at least

r41
1—228Xp (9:/2)'%/2) > 1 — exp(—g,41/6)

> 1 —exp(—(1/10) - (9/2")). =

9.2 Multiple Bits per Round

If the players are allowed to send O(log ¢) bits per round, then the number of rounds can be significantly
improved.

Lemma 9.5. There exists a universal constant C and an explicit protocol over € players where each player
sends n. = log ¢ bits per round, that lasts for C -log™* £ rounds such that for any constant 6 > 0, if ¢ players
are bad, then a good leader is chosen with probability 1 — ¢ where ¢ = § + 136°/2.

Proof. Our protocol and proof is similar to Lemma 9.1 with the key difference being that the larger value
of n allows us to increase the number of bins and simplify our analysis. Here, we end up being verbose and
repeating ourselves for clarity. Just like earlier, our protocol will have two stages, one using the lightest bin
protocol from [Fei99] until the number of players is small enough and then resorting to the protocol from
Lemma 9.2. Let Cy, C be large constants that we set later. Our final protocol will be:

1. Let P, = [E]

2. In round i of stage 1, all players in P; will present a number between 1 and b; = |P;| /log(|P;])“®
Based on this value, they will be divided into setsP; where j € [b;].
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3. Set P41 equal to the smallest set amongst Pil, ey Pibi (breaking ties arbitrarily).

4. Repeat this until the number of players becomes at most exp ((log(l /6 ))Cl> (stop right before it goes
below this value). Let this happens after » rounds. This marks the end of the first stage.

5. In the second stage, apply the protocol from Lemma 9.2 to P4 ; and output the leader from that
protocol.

We now analyze this protocol. We argue that at the end of the first stage, with high probability, the
fraction of good players in P, will be at least (1 — &) — o(1). For the second stage, the correctness of the
protocol follows from Lemma 9.2.

For 1 < i < r+ 1, let g; be the number of good players in P; and let p; = | P;|. As we always choose
the lightest bin at each stage, p;+1 < p;/b;. Hence, we infer that p, 1 < ¢/]]'_; b;. Let g = g1. We first
bound g;:

Claim 9.6. For any constant C\, with probability at least 1 — exp(—log(p,41)"/?), it holds that for all

2/3
1<i< 1,9 > =% -2 =54 )
stsr4lgiz 1210 (H;llbj>

We prove this claim using concentration bounds later, and we remark that Cjy will be a growing function
of C. Using this claim, we see that in P, 1, the number of good players will be at least

(-0 (-0 2
H::1bi H;:l bi
¢ /3

out of pry1 < T 5 many surviving players. In particular, g,+1 > (1 — §)pry1 — 2p§ .
=17

So, in stage 2, we have p,,; many players remaining where the fraction of bad players is ' = 0+2p,._ i{s

Applying Lemma 9.2 with these parameters, we infer that probability of electing a good leader is at least
~1/3 —1/3)3/2 3/2 ~1/3
1—1d0+2p, 1" +12(d+2p, ) >1-0-126"%—3p, 1

where the last inequality follows because p,+1 > w(1). Hence, our overall probability of electing a good
leader is at least

1—5—1253/2—3p;i{3—exp(—log(pr+1)1/5) > 1-0—126%%—exp(—log(py41)"/%) > 1-6—136%2 = 1—¢

where the first inequality follows because C1 is a large enough universal constant, and § < 1/4. We check
that the number of rounds in the first stage is no more than O(log*(¢)) and in stage 2, as guaranteed by
Lemma 9.2, the number of rounds is no more than clog™(¢), where c is a constant that just depends on ¢ and
C} (and is independent of ¢). These together give us our universal constant C' of Lemma 9.5.

Proof of Claim 9.6. Fix any of the b; bins in round i. We apply Lemma 9.3 with § = ;~/3 to infer that with
probability at least 1 — exp(—(g;/b;)'/3/2), it holds that the number of good players in that bin is > g; /b; —
(gi/b;)?/3. Applying this to all b; bins, we infer that with probability at least 1 — b; exp(—(g;/b;)*/3/2), it
holds that g; .1 > g;/bi — (gi/bi)?/3. By unraveling this recurrence and lower bounding, we see that

T ~ (9/ Ty 08)*?
_H;:lbj j=1 H;c:j—i-lbk
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For ease of notation, let a(u, v) = [[;_, b;. Hence,

2/32 1/a (1,5)) 2/3

Jit Z Jj+1,9)
_ g < g )2/3 ~ (oL i)/a(1, )
a(l,1) a(l,1) - a(j+1,4)
__9 g V% ; N—1/3
= o] <a(1,i)) jZ::la(j—&-l,z) ) O

We observe that each term in the summand is exponentially decreasing. Hence, we can upper bound the

2/3
the sum by 2 (a(l l)> .
2/3
g g
> —2( L) .
It = 51,9 (a(l,i))

This means
By union bound, the overall probability that the claim holds is at least

r+1 r—+1

1= brexp(—(gi/5)/*/2) = 1= 3 exp(—(gs/bi)/* /2 + log(by)).
i=1 =1

By our choice of parameters, in particular by letting C to be a large enough constant, we can ensure that
9i/b; > poly(b;). Thus, we can ensure that the probability that the claim holds is at least

r+1 r+1
1= exp(—(gi/b:)"/?/2 +log(bi)) > 1 = exp(—log(pi)'/*)
=1 =1

where we get the constant 1/4 by appropriately increasing Cyp and we used the fact that 6 < 1/4. As p; is
exponentially decreasing, we infer that the overall probability that the desired conclusion holds is at least

1 — exp(—log(pr11)'/?). O

10 Online Influence and Extraction Lower Bounds

Towards proving lower bounds on the possiblity of extraction from oNOSF sources, we introduce a new,
natural notion of influence of Boolean functions, which we call online influence. For simplicity, we first start
by considering the class of oNOBF sources, which corresponds to uniform (g, ¢, n = 1)-oNOSF sources.

We believe this is an interesting new measure and is worth studying in its own right, and we refer the
reader to Example 10.6 for a couple of interesting examples. For monotone functions (and more gener-
ally, unate functions), it is not hard to see that online influence equals the usual notion of influence (see
Lemma 10.4 for a proof). Thus, to find interesting properties of online influence (compared to standard
influence, Definition 10.1), one must look at non-monotone (in fact, non-unate) Boolean functions.

The following natural question arises towards our goal of proving extractor lower bounds: for a function
f, what is the maximum online influence out of all n bits? For the usual notion of influence, this question
was resolved by the well-known theorem of [KKL88], who showed there always exists a bit with influence

at least Var(f) - Q (%).
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We show that surprisingly, there exists a balanced function, namely the address function, where every
bit has online influence at most O (%) (see Lemma 10.12 for a proof). This provides a separation between
the usual notion of influence and online influence.

Organization We formally define the notion for Boolean functions and discuss some basic properties
in Section 10.1. We establish tight bounds on the online influence for general functions, including a Poincaré
style inequality, in Section 10.2. We provide an example exhibiting a separation between maximum (stan-
dard) influence and online influence in Section 10.3. Finally, in Section 10.4, we extend the definition of
online influence to subsets of coordinates (and functions from X" — {0, 1}, for arbitrary alphabet X).
This allows us to prove the required lower bounds on extraction (and condensing) from oNOSF sources.

Notation For convenience, we introduce some notation that we use for the rest of this section. For
any bit b € {0, 1}, let e(b) = (—1)°. For any Boolean function f : {0,1}* — {0, 1}, let e(f) denote the
function e(f)(z) = (—1)7®).

10.1 Basic Properties

In this section, for a function f : {0,1}* — {0, 1}, we will freely use commas to indicate concatenation in
its input. For example, for z € {0,1}~! and y € {0,1}*~%, we write f(z, 1,y) to indicate f applied to the
tuple (1,...,zi—1,1,y1,. .. ,yg,».

When asking about the influence of a single bit, such as the ¢-th bit, previous work has specifically
looked at whether the i-th bit still has the ability to change the output of some function f : {0,1}* — {0, 1}
after all other £ — 1 bits have been set. In other words, if the ¢-th bit is a non-oblivious adversary (that is, it
can look at the values of all the other bits before setting its own value), how much power does it have? This
has led to a standard notion of influence defined below.

Definition 10.1 (Influence). For a function f : {0,1}¢ — {0, 1}, the influence of the i-th bit is

x~U;_1
yNUnfi

and the total influence is

However, in our setting of oNOSF sources and oNOBF sources, an adversarial bit can only depend on
the bits that come before it. This motivates our new definition of online influence, where we prevent the i-th
bit from depending on bits that come after it by independently sampling subsequent bits.

Definition 10.2 (Online influence). For a function f : {0,1}* — {0, 1}, the online influence of the i-th bit

[A)

oLL[f] = E[

z~U; 1

B U]~ E @0

y~Up_; y~Up_;

and the total online influence is

L

oI[f] = > oL[f].

i=1
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Remark 10.3. I7 is easy to see that for any f : {0,1}* — {0,1}, and any i € £, we have oL;(f) < L;(f).
Further, they are the same for the last bit: 1, f] = oI[f].

Many results for the influence of a function are based on working with monotone functions. In contrast,
it turns out that monotone functions are not very interesting for online influence as the definition collapses
to that of regular influence.

Lemma 10.4. If f : {0,1}¢ — {0, 1} is monotone, then oL;[f] = L;[f] for all i € [€].

Proof. Using the monotonicity of f, note that for any = € {0,1}*"! and any y € {0,1}*7%, f(z,1,5) >
f(a:, 07 Z/) Thus, OIz[f] = Ewai,l,yNszi [f(xa 17 y) - f(IL’, 07 y)] = Iz(f) O

Thus, any difference between influence and online influence can only be demonstrated by non-monotone
functions.

10.2 A Poincaré Inequality for Online Influence

Similar to regular influence, we prove a Poincaré-style inequality holds for online influence, and also provide
an upper bound on online influence. The following is the main result of this subsection.

Theorem 10.5. For any f : {0,1}* — {0,1}, we have Var(e(f)) < oI[f] < /¢ Var(e(f)).

Before proving the above result, we observe that the MAJORITY and PARITY functions provide tight
examples for the upper and lower bound respectively for Theorem 10.5.

Example 10.6. The majority function on { bits Maj, : {0,1}* — {0,1}, is monotone, and hence by by
Lemma 10.4, has total online influence ol[Maj,] = I[Maj,] = /2¢/7 4+ O(1//¥), achieving the upper
bound (up to constants).

The PARITY function on € bits @, : {0,1}* — {0, 1} for i € [¢ — 1] has online influence oI;[®,] = 0,
while oly[@,] = 1. Thus, PARITY meets the lower bound of Theorem 10.5. We note that this is starkly
different from regular influence where L;[@@,] = 1 for all i.

To prove Theorem 10.5, we will use Boolean Fourier analysis. For any f : {0,1}" — {0,1}, e(f)
has a unique Fourier expansion given by: e(f(z)) = > gcig f(S)xs(x), where xg(z) = (—1)2ies @i

~ ~

and f(S) = Eyou,le(f))xsy)]."*  Also recall that f(0) = Eowu,le(f)()], Var(e(f)) =

>_5Ci, 540 f(S)?, and for any S # T, E,wu,[xs(z)xr(x)] = 0. For more background, we refer the
reader to the excellent book by O’Donnell [ODo14].
The following is our key lemma, from which Theorem 10.5 is easy to derive.

Lemma 10.7. Forany f : {0,1}¢ = {0,1} and i € [f], oLi(f)? < Y scp F(S)? < oLi(f).
S3i

We first derive Theorem 10.5 using Lemma 10.7.

Proof of Theorem 10.5. We start with the lower bound. We have,

"*For simplicity of notation, we use f(S ) for e/(\f) (S).
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where the inequality uses Lemma 10.7.
The upper bound is easy to derive as well.

(Cauchy-Schwarz inequality)

IN

.?\
(]
2
=
o

IN

ez > s (Lemma 10.7)
1=1 SC[{]

\ S3i

¢Var(e(f)).

This completes the proof. O

We now focus on proving Lemma 10.7. We need the following useful characterization of oI;( f).

Claim 10.8. Forany f : {0,1}* — {0, 1}, we can write the online influence of its i-th bit as

ol;[f|]= E Zf )X\ {3} ()

z~U;—q

TBZ

Assuming the above claim, let us prove Lemma 10.7. We supply the proof of Claim 10.8 below.

Proof of Lemma 10.7. We first prove the inequality oL;(f) > > gcp ]?(S )2. Since for any z € {0,1}"~!
531

we have [E,u,_,[e(/1o1) (1)) — Eyou, [e(f10) )] = 2]2Tcm Py (@)| by Claim 103,
and the fact that E,yu, ,[e(flz5)(y)] is in [-1,1] for all z € {0,1}*"1,b € {0,1}, it follows that
> TCli] f(T)XT\{i}(x)' is in [0, 1].

T>i

T}alus,

~

ol;[f] = IN%H (T)x7\qiy ()
7!

r 2

E > FDxn o ()

z~U;
i—1 Tg[l]
Tai

=> > AT N%iil[XT\{i}(x)XS\{i}(x)]

TC[é SCJi]
T3i S>3

Vv
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Next, we prove oI;(f)? < >SC[i] f(S)Q. We have,
S2i

oli[f]* = x~£l§i,1 Z f IXT\{i} (T (Claim 10.8)
TC[Z
TCB[Z

< E Zf )XT\{i (

z~U;—y

Taz

— Z f( 5)? (derived above). O
SCli]
531
Next, we show how to rewrite oI;[f] in terms of the Fourier coefficients of f.

Proof of Claim 10.8. We begin by defining the restriction fl,,(y) = f(z,b,y) for x € {0,1}""1, b €
{0,1}, and y € {0,1}*~%. Thus, we can rewrite oI;[f] as

o=t B [

2 z~U;_1

E [e(flo)@)]— E [e(f\x,o)(y)]H- @

y~Uyp_; y~Uy_;

We would like to put the above expression in terms of Fourier coefficients of f. This motivates us to find
the Fourier coefficients of f|; ;(y) in terms of those of f, which we do via computation. We manipulate the
Fourier expansion of f(z) for z = (x,b,y) € {0,1}* to get

=> (s
SCle)

= Z fA(S)Xs(.I‘,b,y)

Scle)

— Z f(S)Xsmm (z,0)xs\5) (%)

SCle]
= > (Z FSUT)xr(a, b)) Xs(y)- (5)
SC{i+1,...4} \TC[]
We also have that
e(f)(2) = e(f)(z,b,y)
= e(flap)(y)
= 3> Jles(S)xs®). (6)

SC{i+1,...,0}
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Therefore, Equation (5) and Equation (6) allow us to conclude that

flon(S) = 3= F(S UT)xr(a,b).

TCli]

Thus, we have

We now plug this in to our definition of oI;[f] in Equation (4) to get a simplified expression. Recalling
the fact that for any « € {0,1}", f(z) = (1 — e(f)(x))/2, we have

E-fe(fle)®)] = E e

y~Uyp_; y~Uyp_;

ol =3, E |

, ><y>1H

:;xﬁ_l = T @@+ Y FOxr@) | = | D F @@+ D f(Dxr(e)

C TCli—1] TCli] TC[i—1]
T>i T>i
= E > F(T)xr\ay ()
ot TCJ9
T3i
O

10.3 A Tight Example for Maximum Online Influence

The lower bound on total online influence from Theorem 10.5 allows us to conclude that for balanced
functions, there must be at least one bit with online influence 2(1/¢). We can phrase this in terms of
maximum influence.

Definition 10.9 (Maximum influence). For a function f : {0,1}* — {0, 1}, we define its maximum influ-
ence as Imax[f] = max;cp Li[f] and its maximum online influence as oLmax[f] = max;c(q oL;[f].

In terms of maximum online influence, we get the following corollary from Theorem 10.5.
Corollary 10.10. For a function f : {0,1}* — {0, 1}, we have ol ax[f] > Var(e(f))/?.

Proof. By Theorem 10.5 we have that oI[f] = Zle olL;[f] > Var(e(f)), and the conclusion follows via
an averaging argument. O

We show that the bound in Corollary 10.10 is in fact tight (up to constants), as witnessed by the address
function.
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Definition 10.11. We define the address function Addr, : {0,1}°8(0+¢ — {01} as follows: For z €
{0, 1Y+ split 2 up as =z = (x,y) with  of length log({) and y of length {. Then interpret x as
a binary number which gives us an index i(x) € [{). The output of Addr, is the i(x)-th bit of y, so
Addrﬁ(£) y) = Yi(z)-

Lemma 10.12. Let m = ¢ + log ¢ and Addr, be the function defined above. Then,
* for1 < i <log/, ol;]Addr/] = 0.
e forlogl < i <m, ol;]Addr/] = 1/¢.

Thus, ol pax(Addry) = ©(1/m).

Proof. For i € [log /], no matter what the value of the i-th bit of Addr is set to, the output bit will be
a uniform bit, so we immediately get that oI;[f] = 0. For ¢ € {log¢ + 1,...,m}, the i-th bit only has
control if it’s selected by the first log ¢ address bits, meaning it has a 1/¢ chance of controlling the output

(and otherwise the output is uniform). Hence, oI;[f] = %. d

l
between maximum (standard) influence and the online influence (of balanced functions).

Moreover, this analysis of the address function also shows us that it is an extractor for uniform (¢ — 1, ¢)-
oNOSF sources.

Compared with the result of [KKL88] that I.«[f] > Var(f) - Q (M), this exhibits a separation

Lemma 10.13. For all {,n where { > 2 and n > log(¢ — 1), there exists an explicit extractor Ext :
({0,1}™)¢ — {0,1}" such that for any uniform (¢ — 1,¢,1n)-oNOSF source X, we have Ext(X) ~. U,

_ 1
where € = ;=

Proof. Let Ext be defined as follows: From the first block, use the first log(¢ — 1) bits and interpret them as
an index j € [¢ — 1]. Then, output the block with index j + 1. For a source X with first block controlled
by an adversary, the output will be truly uniform and for a source X with adversary controlling one of the
last £ — 1 blocks, that block will be outputted with probability e—% while a uniform block will be outputted

otherwise. This makes our total error at most ﬁ as desired. O

10.4 Online Influence of Sets and Extraction Lower Bounds

For convenience we restate the definition of online influence of sets of coordinates.

Definition 10.14 (Online influence, Definition 8.1 restated). For any function f : ©¢ — {0,1}, and any
B C [{], where B = {i; < ia < ... < i}, define olg(f) as follows: an online adversary A samples
a distribution X in online manner. It starts by sampling the variables x1, %2, ..., x;, —1 independently and
uniformly from %, then picking the value of x;, depending on x;,. Next, the variables z;, 41, ...,%i,—1 are
sampled independently and uniformly from ¥, and A sets the value of x;, based on all variables set so far,
and so on. Define the advantage of A to be advy (A) = |E[f(X)] — E[f(Uy)]|. Then olg(f) is defined
to be max g{advy g(A)}, where the maximum is taken over all online adversaries A that control the bits
in B.
We say a function f is (b, €)-online-resilient if olg(f) < € for every B of size at most b.

In the special case where ¥ = {0, 1} and we are considering the online influence of a single coordinate,
the definition simplifies nicely.
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Definition 10.15. For a function f : {0,1}* — {0, 1}, the online influence of the i-th bit is

otifl= 5 |

z~U; g

E Ut -, E 0]

y~Uyp_; y~Uy—;

and the total online influence is

)4
ol[f] :Zoli[f].

Online-resilient functions are equivalent to extractors (with 1 output bit) for oNOSF sources.

Lemma 10.16 (online-resilient functions yield extractors). Let f : ©¢ — {0, 1} be a (b, €1 )-online-resilient
Sfunction with the property that | f(Uy) — U1| < 9. Then f can extract from (g = { — b, £)-oNOSF sources
with error at most €1 + €3.

Proof. Consider a (g = ¢ — b, £)-oNOSF source X. Recall that X is created by choosing some set of bad
indices B of size b, letting the symbols in B be uniform, and finally setting the symbols in B adversarially
while only depending on uniform symbols to the left of them. Using the triangle inequality for total variation
distance, we get that

|f(X) = Us| < [£(X) = f(Ue)| +[f(Ur) — Uy
<er+eg,

as claimed. O

Remark 10.17. We note that the other direction is immediate from definitions. If Ext : ¢ — {0, 1} is an
extractor with error € for (g = £ — b, £)-oNOSF sources, then Ext is a (b, 2¢)-online-resilient function.

Remark 10.18. Our results below on oNOBF extraction impossibility can be interpreted as a limit on
online-resilience of balanced Boolean functions.

For B C [/{], we use the notation f|5 to indicate the function obtained from f by letting an online
adversary control the indices in B.

Theorem 10.19. Let f : {0,1}* — {0, 1} be such that E,v,[f(x) = 1] = a. Then forany 1 > 8 > a,
there exists a coalition B C [{] such that olg(f) >  — «, where |B| < v and v = ﬁ.

Proof. We greedily collect the bits with the most online influence and add them to B until our goal of
Eiu i flg(2) = 1] > B is achieved. Our first step is as follows: let By = @, fo = f, and iy =
argmax;c(q{oL;[f]}. Corollary 10.10 tells us that oI;, > Var(e(fy))/¢. Recall thatif E;y,[f(z) = 1] =
p then Var(e(f)) = 4p(1 — p). Because we have not yet achieved our goal of E, .y, [f|5(z) = 1] = 8,
we have that Var(fo) > 4a(1 — 3). Thus, we collect i as By = {i1}, let fi = fo|g  and see that
Eq[f1(2)] = Eo[fo(@)] + oL, [fo] 2 a + 2242,

We now repeat this process ¢ times to get B; = {i1, ..., 4;} until our goal is achieved. For general , let
ft = flB, where By = By_1 U {i;} and i = argmax;cp,)\ p,_, {0Li[fi—1]}. Atthe (¢ — 1)-th step, since we
have not stopped, it means that E;[f;—1(z) = 1] < 3, but we of course have E;[f;—1(z) = 1] > « as well.
Thus, by Corollary 10.10, collecting 7, as a bad bit gives us that

E[fy(z)] = E[fi-1(2)] + oL;; [fi—1]
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2a+4a(1£_ﬁ)(t1)+

—a+ 4a(1€_ B .

da(1 - p)

We repeat this process until Pr,[f;(x) = 1] > (. Therefore, the number of steps is the smallest b such that
o+ w -b > [, meaning that the number of steps is at most b < ¢ - ﬁ. We let B = By and get

the desired coalition. O
We can also ask the dual question of how large we are able to make 5 given some budget b of bad bits.

Corollary 10.20. Let f : {0,1}¢ — {0,1} be such that Prpu,[f(z) = 1] > «a. If we are able to control
b bits in an online adversarial manner, then there exists a set B C [{] of indices of size |B| = b such that

Pr, oy, fI5(@) = 1] = B where 8 > ‘Z(fi;*?

Proof. For afixed 8, Theorem 10.19 tells us that b < £- ﬁ. Solving for 3 gives the desired bound. [

We now immediately obtain our oONOBF extraction impossibility result.

Corollary 10.21. For any balanced function f : {0,1}* — {0,1} and 0 < e < 1/3, there exists a
(g =€ —b,£)-oNOBF source X with b < 3¢l such that | f(X) — Uy| > e.

Proof. Tt is enough to find a set B of indices such that oIz (f) > . By Theorem 10.19, there exists such a
set B of size b = |B| < ¢ - 1=5-. The bound on |B| follows since & < . O

Remark 10.22. By essentially following our Fourier analytic proof, one can similarly obtain a Poincaré
inequality for functions f : X" — {0,1}, for arbitrary alphabet ¥.. To obtain extraction impossibility
for such uniform oNOSF sources with constant 0§ fraction of corrupt blocks, we do the following: Let f
be a candidate extractor for uniform ((1 — 6)¢,¢,n)-oNOSF sources. Then, f also extracts from uniform
([1/0] —1,[1/d],4n/ [1/])-oNOSF source. Since there exists an influential coordinate with influence
0(0), we let the adversary control that coordinate and infer that there exists constant ¢ = O() for which it
is impossible to extract with error less than e.

11 Open Problems
We list here some interesting open problems left by our work:

* While we obtain explicit condensers for almost all parameter regimes, it remains open to construct
them when the bock length is constant, matching the parameters of our existential results. As we
show, one way of achieving this would be to explicitly construct a seeded condenser with dependence
on seed length being 1 - log(1/¢).

* All our condensers have entropy gap much larger than a constant. It will be interesting to show there
exist condensers with constant entropy gap (for any values of n, £) for uniform oNOSF sources. A
slightly weaker but equally interesting question is to construct seeded extractors for uniform oNOSF
sources with constant seed length.

* Show that there exist non-trivial condensers for oNOBF sources or show no such condenser exists.
We conjecture that no condenser exists with output entropy rate larger than the input entropy rate for
such sources.

54



* Construct e-collective sampling protocols with fewer rounds than the ones obtained using uniform
oNOSF source condensers. It will also be interesting to explicitly construct such protocols when the
number of players are very large compared to the number of bits each player has access to. Further,
proving lower bounds for e-collective sampling protocols is a natural direction to explore.

* Determine the exact threshold for extracting from oNOBF sources and oNOSF sources. Our lower
bounds show extraction is impossible when g < 0.99¢ while our constructions using leader election

protocols require g > £ — €2 (@) for oNOBF sources and g > £ — () (ﬁ) for (g, ¢,n)-oNOSF

sources where n > log(¢). Using the connection between extractors and leader election protocols,
lower bounds for extraction imply lower bounds for leader election protocols. In particular, matching
lower bounds for extraction would imply all current leader election protocols are tight, a long standing
open problem.
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A Constructing Reduce’

In this section we construct Reduce’ which has the properties as guaranteed by Lemma 5.12. In [RZ01],
the authors use hitting sets for combinatorial rectangles to reduce ¢-length oNOSF sources to shorter min-
entropy sources. We provide a proof of their lemma for completeness here.

Let’s first define combinatorial rectangles.

Definition A.1 (Combinatorial rectangle). Let a,d € N. We say that a set R C [a]® is a combinatorial
rectangle if R = Ry X Ry X -+ X Ry for some sets R; C [a] for i € [d]. The density of R is Density(R) =
1 71

2 [Tz [ Ral.

A hitting set for a family of combinatorial rectangles is a subset of [a]? such that it has an intersection
with every combinatorial rectangle in the family. Formally:

Definition A.2 (Hitting sets for combinatorial rectangles). A set H C [a]? is a (a,d,d)-hitting set for
combinatorial rectangles if for every combinatorial rectangle R C [a]? with Density(R) > & we have that
RNH # @.

Of course, taking H = [a]? is a trivial hitting set for any combinatorial rectangle, so the difficulty lies in
decreasing the cardinality of H while keeping the density requirement § of the combinatorial rectangle low.
In [LLSZ97], the authors create a small enough hitting set for our use.

Lemma A.3 ([LLSZ97]). There exists a universal constant C' such that for any 6 > 0 and a,d € N, there
C
exists an explicit construction of an (a, d, §)-hitting set H C [a]? such that |H| < ( MOTg(d))

Let’s see how using all of these ingredients we can construct Reduce’.

Proof of Lemma 5.12. To construct Reduce’, we begin by defining a family of functions F C {f : [a]? —
{0,1}} and a hitting set H C [a]? of size |H| = 2! = T. For every x € Supp(X), we will select a
fo € F and output the smallest y € H such that f,(y) = 1, where we consider our output as an element
of [[H|] = {0,1}'. Then, for all y € H, we will show that Pr,x[f.(y) = 1] < 27%, meaning that
Reduce’(X) is a (¢, k)-source.

Formally, we let F be the following family of combinatorial rectangles on [a]?. Given an x € [a]¢, we
define the combinatorial rectangle Rect, = {y € [a]? | Vi € [d],y; # x;} and the associated function
fz ¢ [a]® — {0, 1} for this rectangle as f,(y) = 1ycRect,- Then, we let F = {f, | = € [a]?}.

Note that the density of any particular rectangle Rect, is § = Density(Rect;) = % = (1 — %)d.
We can lower bound 6 as § > (exp(—d/a))®s for some universal constant Cs. Rearranging then gives us
that log(1/6) < Cy - g. With this in mind, we set up our hitting set  for F. From [LLSZ97], we know

C
that there exists a universal constant C; and an explicit hitting set H such that 7' = |H| < (alng(d)> .

Simplifying this expression yields

T (alo§(d)>01

t < Ci(log(a) + loglog(d) + log(1/4))
t < C1(log(a) + loglog(d) + Csd/a)

t < C'(log(a) + loglog(d) + d/a), (7)
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where C' is a sufficiently large universal constant, depending only on Cy, Cs. To analyze the min-entropy
of Reduce’(X), we note that for all y € [a]?

Pl =1 < (1- 1)%

x~X a
< exp(—vyd/a) < 277d/“,

which directly implies that the min-entropy k of Reduce’(X) is > ~d/a, as desired. O

B Extracting from Local oNOSF Sources

A natural variation on our definition of oONOSF sources is to consider the case where the adversary cannot
remember the value of every good block in the past; rather, it can only remember the value of the most
recent s blocks. Arguably, this is a realistic assumption in the setting of many short blocks, where it could
be difficult to introduce long range correlation.

Definition B.1 (Local oNOSF sources). We call a (g, ¥, n, k)-oNOSF source X = (X, ..., Xy) an s-local
(g,¢,n, k)-oNOSF source if each bad block X; can only depend on at most s blocks X;_s, ..., X;_1 that
come before it.

Interestingly, weakening the adversary in this way converts our oNOSF source into a small-space source.
These sources were first studied by [KRVZ11] and we refer the reader to them for a definition and back-
ground. Since the adversarial blocks of an s-local (g, ¢, n, k)-oNOSF source can only depend on the binary
string of length at most sn to its left, we easily see that an s-local (g, ¢, n, k)-oNOSF source is samplable
by a space-sn source.

Using recent explicit extractors for low-space sources provided by [CL22, Li23] and the fact that a
(g, ¢,n, k)-oNOSF source has entropy at least gk, we get the following extraction result for these local
online sources.

Theorem B.2 (Using the explicit extractor of [CL22]). There exists a universal constant C' such that for
C

every s and k > M there is an explicit extractor Ext : ({0,1}") — {0,1}™ with error ¢ =

(n0)~*W) and output length m = (gk — 25n)* W) for every s-local (g, ¢, n, k)-oNOSF source.

A similar result with slightly better entropy requirement, but constant error, can be obtained using the
small-space extractor from [Li23].
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