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Abstract

We investigate the tasks of deterministically condensing and extracting randomness from Online
Non-Oblivious Symbol Fixing (oNOSF) sources, a natural model of defective random sources for which
it is known that extraction is impossible in many parameter regimes [AORSV, EUROCRYPT’20]. A
(g, ℓ)-oNOSF source is a sequence of ℓ blocks X = (X1, . . . ,Xℓ) ∼ ({0, 1}n)ℓ, where at least g of
the blocks are good (are independent and have some min-entropy), and the remaining bad blocks are
controlled by an online adversary where each bad block can be arbitrarily correlated with any block that
appears before it.

The existence of condensers (in regimes where extraction is impossible) was recently studied in
[CGR, FOCS’24]. They proved condensing impossibility results for various values of g and ℓ, and they
showed the existence of condensers matching the impossibility results in the special case when n is
exponential in ℓ (i.e., the setting of few blocks of large length).

In this work, not only do we construct the first explicit condensers matching the existential results
of [CGR, FOCS’24], but we make a doubly exponential improvement by handling the case when n is
only polylogarithmic in ℓ. We also obtain a much improved explicit construction for transforming low-
entropy oNOSF sources (where the good blocks only have min-entropy, as opposed to being uniform)
into uniform oNOSF sources.

As our next result, we essentially resolve the question of the existence of condensers for oNOSF
sources by showing the existence of condensers in almost all parameter regimes, even when n is a large
enough constant and ℓ is growing.

We find interesting connections and applications of our results on condensers to collective coin flip-
ping and collective sampling, problems that are well-studied in fault-tolerant distributed computing. We
use our condensers to provide very simple protocols for these problems.

Next, we turn to understanding the possibility of extraction from oNOSF sources. For proving lower
bounds, we introduce and initiate a systematic study of a new, natural notion of the influence of func-
tions, which we call online influence, and establish tight bounds on the total online influence of functions,
which imply extraction lower bounds. Lastly, we give explicit extractor constructions for oNOSF sources
using novel connections to leader election protocols, and we further construct the required leader elec-
tion protocols. These extractor constructions achieve parameters that go beyond the standard resilient
functions of [AL, Combinatorica’93].
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1 Introduction

Randomness is extremely useful in computation with wide-ranging applications in algorithm design,
cryptography, distributed computing protocols, machine learning, error-correcting codes, and much more
[MR95, Vad12]. Most of these applications require access to high quality randomness. However in a lot
of settings, especially arising in practice, algorithms only have access to low quality source of randomness.
This motivates the notion of condensers: functions that transform weak random sources into strong random
sources that are of better quality.

The standard way of measuring the amount of randomness is using min-entropy. Formally, for a source
(distribution) X with support Ω, define its min-entropy as H∞(X) = minx∈Ω log2(1/Pr[X = x]). We
will also need the notion of smooth min-entropy, which measures how close a distribution is to having
high entropy. Formally, for a source X, its smooth min-entropy with parameter ε is defined as Hε

∞(X) =
maxY:|X−Y|≤ε{H∞(Y)}, where |·| denotes the statistical distance (Definition 4.1).

With this, we are ready to formally define deterministic condensers:

Definition 1.1. A function Cond : {0, 1}n → {0, 1}m is a (kin, kout, ε)-condenser for a family of distribu-
tions X if for all X ∈ X with X ∼ {0, 1}n and H∞(Cond(X)) ≥ kin, we have that Hε

∞(X) ≥ kout.
We say kin

n is the input entropy rate, kout
m is the output entropy rate, and m − kout is the entropy gap of

Cond.

The task of the condenser is to make the output entropy rate as high as possible compared to the input
entropy rate; i.e., to make the output distribution more “condensed”. Related to this, it is also desirable to
have as small entropy gap as possible. Condensers with entropy gap 0 are known as randomness extractors
and have been extensively studied in theoretical computer science.

When X is the family of all distributions, it is folklore that no non-trivial condensing is possible.1

So, we additionally assume that X is a structured family of sources.2 Since extractors are the highest
quality condensers, a significant amount of work has focused on constructing extractors for many interesting
families of sources [TV00, CZ19, DGW09, KZ07]. However, for many natural family of sources, one can
provably show that no extractor can exist.

In this work, we focus on one natural family of sources where it is known that extraction is impossible
(for many interesting parameter regimes): online non-oblivious symbol fixing sources (oNOSF sources).3

Formally:

Definition 1.2. A (g, ℓ, n, k)-oNOSF source X = (X1, . . . ,Xℓ) is such that each block Xi is over {0, 1}n,
g of the blocks are independent sources with min-entropy k (“good blocks”), and each “bad block” is an
arbitrary function of the blocks with an index smaller than it. When k = n, we will call such sources uniform
(g, ℓ, n)-oNOSF sources.

Our results at a glance The previous work of [CGR24] gave a condenser impossibility result for
oNOSF sources and showed the existence of a condenser matching that result as long as the block length n
was exponential in the number of blocks ℓ. We construct explicit condensers for oNOSF sources that match
the results of [CGR24]; in fact, we only require n to be polylogarithmic in ℓ, providing a doubly exponential
improvement over the (existential) result of [CGR24]. Next, we essentially resolve the existence question
for oNOSF source condensers by showing that good condensers exist even when n is a (large) constant and
ℓ grows. To go with these results, we obtain an improved construction for transforming low-entropy oNOSF

1Assuming m ≤ n (wlog this holds since |Cond({0, 1}n)| ≤ 2n), m − kout ≥ (n − kin) − log(1/(1 − ε)) and hence the
output entropy rate cannot be more than the input entropy rate without incurring extremely large error (> 0.999).

2A different route, that has been widely studied, is to assume access to a short independent seed. In this work, we will limit
ourselves to the deterministic or seedless setting.

3These sources are in contrast to non-oblivious symbol fixing (NOSF) sources where bad blocks can be arbitrary functions of
all the good blocks. NOSF sources were introduced in [CGHFRS85] with applications in leakage-resilient cryptography, and have
been well-studied.
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sources into uniform oNOSF sources. Moreover, we find new applications of our results on condensers
to collective coin flipping and collective sampling, and use these connections to provide simple protocols
for these problems. In the complementary direction, we construct explicit extractors for uniform oNOSF
sources by explicitly constructing the required leader election protocols, the results of which are summarized
in Tables 1 and 2. Also in the context of extractors for oNOSF sources, we introduce the new, natural
notion of online influence for Boolean functions and show extraction lower bounds for oNOSF sources by
establishing tight bounds on the total online influence of functions.

On the Utility of Condensing for oNOSF sources

We note that condensers (and sources with high min-entropy rate) are very useful: the condensed distri-
bution can be used to efficiently simulate randomized algorithms with small overhead, perform one-shot
simulations for randomized protocols, cryptography, interactive proofs, and much more. For details on
these applications and more, see [AORSV20, DMOZ23, CGR24, DPW14].

Practical applications to blockchains and cryptography oNOSF sources are inspired by real-time
randomness generation settings such as in blockchains where the adversary has some probability of corrupt-
ing a block. Moreover, it is known that non-corrupted blocks have some amount of min-entropy [BCG15].
In fact, several works have attempted to use Bitcoin or Ethereum as a source of randomness in cryptographic
protocols [BCG15, BGZ16, PW18, BGB17]. However, the authors of [BGZ16] showed that even when the
adversary has a small, constant probability of corrupting a block, randomness extraction is impossible from
Bitcoin.4 Our results show that in this setting, it is still possible to get a condensed source with a high
min-entropy rate. It is known that such sources are still useful for cryptographic protocols, such as hedged
public-key enryption [BBNRSSY09]. Further, there are natural cryptographic settings, such as creating a
Common Reference String, that are widely used in various cryptographic protocols where oNOSF sources
naturally arise [AORSV20].

Practical applications to fault-tolerant distributed computing One common scenario in distributed
computing is that of many agents (e.g., servers in a network) attempting to collectively take a decision using
several rounds of communication over a common broadcast channel in the presence of computationally
unbounded adversarial agents, which render cryptographic primitives ineffective. Protocols for collective
coin flipping, leader election, and collective sampling are prime examples of this scenario that have been
intensively studied ([BL89, GGL91, Dod06, AN93, Fei99] and many more). In Section 3, we explain
how condensing or extracting from oNOSF sources can be viewed as a variant of these protocols. As a
consequence, our new results on condensers provide a new protocol for collective sampling and impossibility
results for these protocols can be translated into lower bounds against extractors and condensers for oNOSF
sources.

Organization The remainder of our introduction is structured as follows. We give an overview of
previous work in Section 1.1 before presenting our main existential and explicit condenser results in Sec-
tion 1.2. In Section 1.3, we present our results on the limits of extraction from oNOSF sources. Later on,
in Section 3, we explain how our results on condensers have implications for collective coin flipping and
sampling protocols.

4This mirrors our extraction impossibility result for oNOSF sources in Section 10
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1.1 Previous Work

Extractors The study of extractors for oNOSF sources was initiated by [AORSV20].5 Their results
include the following:

• It is impossible to extract from uniform oNOSF sources when the fraction of good blocks is 0.99.

• An explicit transformation from (g, ℓ, n, 0.9n)-oNOSF source into a source over ({0, 1}O(n))ℓ−1

where g − 1 of the blocks are uniform and independent.

• An explicit transformation from (g, ℓ, n, 0.1n)-oNOSF source into a source over ({0, 1}O(n))100ℓ

where g − 1 of the blocks are uniform and independent.

Even though the output entropy rate is only slightly more than the input-entropy rate in the second result
and smaller in the third result, the fact that a lot of the blocks are truly uniform is very useful, and they find
interesting cryptographic applications of these “somewhere-extractors”.

Before our work, the best known extractors for oNOSF sources could be obtained by using resilient
functions or equivalently, extractors for NOSF sources (non-online version of oNOSF sources) constructed
by [AL93, CZ19, Mek17, IMV23, IV24] ; these require g ≥ ℓ− ℓ

(log ℓ)2
.

Condensers oNOSF sources were further studied by [CGR24], where they obtained the following
results regarding condensers:

• When n ≥ k ≥ ℓ, there exist functions that can transform a (g, ℓ, n, k)-oNOSF source into a uni-
form (g − 1, ℓ− 1, O(k/ℓ))-oNOSF source (this function can be made explicit with slightly worse
dependence on output length).

• When n ≥ 2ω(ℓ) and g > 0.5ℓ , there exists condenser Cond : ({0, 1}n)ℓ → {0, 1}m=O(n·ℓ/g) such
that for any uniform (g, ℓ, n)-oNOSF source X, Hε

∞(Cond(X)) ≥ m − O(log(n/ε)).6 Their result
is not explicit.

• It is impossible to condense from uniform (0.5ℓ, ℓ, n)-oNOSF sources with output entropy rate more
than 0.5.7

We also mention a related family of sources, namely adversarial Chor-Goldreich sources. Uniform
oNOSF sources can be seen as a special case of adversarial Chor-Goldreich sources where the good blocks
are uniform. Constructing condensers where the output entropy rate is g/ℓ for adversarial Chor-Goldreich
sources is already a challenging task, although such condensers in various parameter regimes have been
recently constructed [DMOZ23, GLZ24]. The paper of [DMOZ25] recently constructed condensers for a
related, more general model.

1.2 This Work: New Condenser Constructions

Previous works only showed the existence of condensers for oNOSF sources when n ≥ 2ω(ℓ). We vastly im-
prove on this result in two ways. First, we construct explicit condensers that work even when n ≥ polylog(ℓ)
and provide an explicit transformation from low-entropy oNOSF sources to uniform oNOSF sources that
works even when the min-entropy of a block k is only polylog(n). Second, we show that condensers for

5In [AORSV20], these sources were called SHELA (Somewhere Honest Entropic Look Ahead) sources.
6They get a tradeoff for g ≤ 0.5ℓ as well
7They get impossibility for other smaller g as well
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oNOSF sources exist when n is just a large constant, only leaving open the question of the existence of such
condensers for when n is a very small constant (e.g., n = 1). We also discover surprising connections be-
tween condensers for oNOSF sources and protocols for natural problems in distributed computing, such as
collective coin flipping and collective sampling. Lastly, we initiate the study of online influence of Boolean
functions, a natural generalization of influence that captures the one-sided nature of our online adversary to
help us analyze the setting of n = 1. We now discuss our results in detail below.

1.2.1 Explicit Condensers

We construct the first explicit condensers for oNOSF sources. Our ultimate result is founded on a baseline
construction that itself is an explicit condenser for oNOSF sources that matches the existential results of
[CGR24] and works for any block length n = 2Ω(ℓ) log(1/ε) as long as at least 51% of blocks are good.

Theorem 1 (Theorem 2.4 restated). For all ε > 0 and n, ℓ ∈ N where n ≥ 2Ω(ℓ) log(1/ε), there exists an
explicit condenser Cond : ({0, 1}n)ℓ → {0, 1}m such that for any (g = 0.51ℓ, ℓ, n)-oNOSF source X, we
have that Hε

∞(Cond(X)) ≥ m− 2O(ℓ) log(1/ε) where m = 0.0001ℓn.

Surprisingly, we are able to improve upon this baseline to obtain explicit condensers that work for
oNOSF sources where the block length n is only at least poly(log(ℓ)/ε).

Theorem 2 (Informal version of Theorem 2.1). For all ε > 0 and n, ℓ ∈ N where n ≥ poly(log(ℓ)/ε), there
exists an explicit condenser Cond : ({0, 1}n)ℓ → {0, 1}m such that for any (g = 0.51ℓ, ℓ, n)-oNOSF source
X, we have that Hε

∞(Cond(X)) ≥ m−poly(log(ℓ)/ε)·log(n) where m = 0.001ℓn−O(ℓ log(ℓ) log(1/ε)).

Since condensing when g = 0.5ℓ is impossible, both results are tight. We note that neither result
completely subsumes the other. Our baseline construction in Theorem 1 has an exponential dependence of
n on ℓ instead of the polylogarithmic dependence achieved in Theorem 2; however, the latter result requires
the dependence n ≥ poly(1/ε) compared to n ≥ log(1/ε) for the baseline construction.

Using our new results regarding transforming oNOSF sources to uniform oNOSF sources, we also obtain
explicit condensers for (0.51ℓ, ℓ, n, k)-oNOSF sources for the same parameter regime:

Corollary 1.3 (Corollary 5.2, simplified). For all n, ℓ, k ∈ N where n ≥ poly(ℓ) and k ≥ polylog(n),
there exists an explicit condenser Cond : ({0, 1}n)ℓ → {0, 1}m such that for any (g = 0.51ℓ, ℓ, n, k)-
oNOSF source X, we have that Hε

∞(Cond(X)) ≥ m − polylog(ℓ) · log(n) where m = 0.001ℓn −
O(ℓ log(ℓ) log log(ℓ)) and ε = poly(1/ log(ℓ)).

We can also extend our result to explicitly condense from uniform (g, ℓ, n)-oNOSF sources in the same
parameter regime so that the output entropy rate is 1/ ⌊ℓ/g⌋ − o(1), which is tight according to the impos-
sibility result of [CGR24].

Previously, [CGR24] showed how to existentially condense from uniform (g, ℓ, n)-oNOSF sources when
n = 2Ω(ℓ). However, they relied on the existence of a very strong pseudorandom object: “output-light” low-
error two-source extractors. Such extractors, even without the output-lightness requirement, are extremely
hard to construct and it is a major open problem to obtain such extractors. We are able to construct explicit
condensers by creating new tools that allow us to use an oNOSF source to sample indices within an oNOSF
source, and stitching them together so that the base pseudorandom object we rely on are seeded extractors
that we know how to explicitly construct with near optimal parameters.
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1.2.2 Transforming Low-Entropy oNOSF sources to uniform oNOSF sources

We show how to existentially, as well as explicitly, with a slight loss in parameters, transform (g, ℓ, n, k)-
oNOSF sources into uniform (0.99g, ℓ− 1, n)-oNOSF sources. Formally, we show:

Theorem 1.4 (Informal version of Theorem 6.1). For all ℓ, n, k, ε where n = poly(log(ℓ)), k =
O(log(ℓ/ε)), there exists a function f such that f transforms (0.51ℓ, ℓ, n, k)-oNOSF sources into uniform
(0.509ℓ, ℓ,m)-oNOSF sources with error ε where m = Ω(k).

Our construction can also be made explicit with slightly worse dependence on m and ε. See Corol-
lary 6.4 for the full tradeoff.

Previously, [CGR24] provided such a transformation only for n ≥ k ≥ Ω(ℓ). Hence, our transformation
makes a major improvement on their parameters. Such an improvement allows us to obtain better condensers
for low-entropy oNOSF sources in the regime n = poly(log(ℓ/ε)) (see Theorem 4).

1.2.3 Existential Condensers

We show how to condense from uniform (g, ℓ, n)-oNOSF sources for almost all settings of ℓ and n when
g ≥ 0.51ℓ. In particular, we show:

Theorem 3 (Informal version of Theorem 7.1). For all ℓ, ε where ℓ ≥ O(log(1/ε)), and n = 104, there
exists a condenser Cond : ({0, 1}n)ℓ → {0, 1}m such that for any uniform (0.51ℓ, ℓ, n)-oNOSF source X,
we have Hε

∞(Cond(X)) ≥ 0.99m where m = Ω(ℓ + log(1/ε)). Furthermore, when n = ω(1), the output
entropy rate becomes 1− o(1).

This is tight since [CGR24] showed it is impossible to condense uniform (0.5ℓ, ℓ, n)-oNOSF sources
beyond output entropy rate 0.5.

Using our new results regarding transforming oNOSF sources to uniform oNOSF sources, we also obtain
condensers for (0.51ℓ, ℓ, n, k)-oNOSF sources when n ≥ poly(log(ℓ)),

Theorem 4. For all ℓ, n, ε where n = poly(log(ℓ/ε)), k = Ω(log(ℓ/ε)), there exists a condenser Cond :
({0, 1}n)ℓ → {0, 1}m such that for any (0.51ℓ, ℓ, n, k)-oNOSF source X, we have Hε

∞(Cond(X)) ≥
m−O(m/ log(m))−O(log(1/ε)) where m = Ω(k).

We sketch the proof of both of these theorems in Section 2.1 We can also extend our result to condense
from uniform (g, ℓ, n)-oNOSF sources for all g, ℓ and constant n where the output entropy rate is 1/ ⌊ℓ/g⌋−
0.001. This is tight since [CGR24] showed it is impossible to condense such sources beyond output entropy
rate 1/ ⌊ℓ/g⌋.

Previously, [CGR24] showed how to existentially condense from uniform (g, ℓ, n)-oNOSF sources when
g ≥ 0.51ℓ, provided n ≥ 2ω(ℓ). As n gets smaller, condensing becomes harder since a uniform (g, ℓ, n)-
oNOSF source is also a uniform (g · n/1000, ℓ · n/1000, 1000)-oNOSF source. Hence, we greatly improve
the parameters while using different and much simpler techniques.

1.3 Extraction from oNOSF Sources

Next we discuss our positive and negative results on the limits of extraction from oNOSF sources. Our
upper bound results (explicit extractors) are based on a novel connection to leader election and coin-flipping
protocols; to instantiate this connection and give explicit extractors, we construct novel protocols for these
distributed problems. Our lower bounds are based on a new notion of influence of functions, namely online
influence, that we introduce and analyze.
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Extraction Lower bounds via Online Influence

For simplicity, we focus on the case of n = 1, which leads to interesting new questions about Boolean
functions. We refer to such uniform (g, ℓ, 1)-oNOSF sources as (g, ℓ)-oNOBF sources; oNOBF stands for
online non-oblivious bit-fixing sources. We ask what is the exact tradeoff between g, ℓ, and ε for extracting
from oNOBF sources. Towards this, we introduce the notion of online influence.

Definition 1.5 (Online influence). For a function f : {0, 1}ℓ → {0, 1}, the online influence of the i-th bit is

oIi[f ] = E
x∼Ui−1

[∣∣∣∣ E
y∼Uℓ−i

[f(x, 1, y)]− E
y∼Uℓ−i

[f(x, 0, y)]

∣∣∣∣]
and the total online influence is oI[f ] =

∑ℓ
i=1 oIi[f ].

We establish new structural results on online influence, including a Poincaré-style inequality and use
them to obtain the following extraction lower bound.

Theorem 1.6 (Informal version of Corollary 10.21). For ε < 0.01, there do not exist extractors for
(0.97ℓ, ℓ)-oNOBF sources with error at most ε.

A similar extraction lower bound was shown in [AORSV20] using different techniques.

Explicit Extractors via Leader Election Protocols

Here we present our explicit constructions of extractors for oNOBF and oNOSF sources. The following are
our main results.

Theorem 5 (informal version of Theorem 8.3). There exists an explicit function Ext : {0, 1}ℓ → {0, 1} such
that for any (g, ℓ)-oNOBF source X where g ≥ ℓ− ℓ/(C log(ℓ)), we have Ext(X) ≈ε=1/100 U1, where C
is a large constant.

Theorem 6 (informal version of Theorem 8.4). There exists an explicit function Ext : ({0, 1}n)ℓ → {0, 1}n
such that for any (g, ℓ, n)-oNOSF source X where g ≥ ℓ − ℓ/(C log∗(ℓ)) and n ≥ log(ℓ), we have
Ext(X) ≈ε=1/100 Un, where C is a large constant.

It is instructive to contrast our results with the non-online setting (where adversarial bits may depend on
any good bit), called NOSF sources and NOBF sources. For both these sources, the current best extractors
require g ≥ ℓ− ℓ

(log ℓ)2
, which is much more than what Theorem 5 and Theorem 6 require.

We contrast the results for both settings in Tables 1 and 2. In these tables, we are providing known upper
and lower bounds on the value of b(ℓ), defined as the maximum number of bad symbols for which extraction
is still possible with a small constant error — so lower bounds correspond to best known constructions of
such functions and upper bounds refers to the best known limitation of such functions. We write “O(ℓ)” to
mean “cℓ for some small universal constant c < 1”.

To interpret our results in terms of (online) influence of coalitions, it will be useful to extend the defini-
tion of online influence to subsets of coordinates, which we do formally in Definition 8.1. Intuitively, we’re
measuring the influence of the exact same adversary as in an oNOSF source.

In Section 10.4, we note that online-resilient functions are equivalent to extractors for uniform oNOSF
source sources (with one bit output). Thus, our explicit extractor results immediately imply explicit online-
resilient functions.
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Source Lower bound Upper bound

NOBF Ω
(

ℓ
log2 ℓ

)
, [AL93] O

(
ℓ

log ℓ

)
, [KKL88]

NOSF Ω
(

ℓ
log2 ℓ

)
, [AL93] O(ℓ), [BKKKL92]

Table 1: b(ℓ) bounds in the non-online setting.

Source Lower bound Upper bound

oNOBF Ω
(

ℓ
log ℓ

)
, [Theorem 8.3] O(ℓ), Corollary 10.21 or

[AORSV20]

oNOSF Ω
(

ℓ
log∗ ℓ

)
, [Theorem 8.4]8 O(ℓ), [AORSV20]

Table 2: b(ℓ) bounds in the online setting.

Our main technique for Theorems 5 and 6 is a new generic way to transform leader election and coin
flipping protocols (formally defined in Section 4.4) into extractors for oNOBF and oNOSF sources. This
is given in Lemma 8.2; the general idea of constructing an extractor is to simulate an appropriate leader
election protocol with the source at hand (oNOBF or oNOSF), and output according to the chosen leader.
To instantiate this transformation, we revisit previous leader election protocols in Section 9. Our leader
election protocols provide a slightly stronger than usual guarantee: a good player is elected as the leader
with probability close to 1 (see Lemma 9.1 and Lemma 9.5). This contrasts with the usual guarantee in
leader election protocols, where a good leader is chosen with only a non-trivial (constant) probability. We
give more connections to distributed computing in Section 3 where we delineate applications of our results
to collection coin flipping and collective sampling.

2 Proof Overview

Our proof overview begins by outlining our new explicit result for condensers in Section 2.1 that is able to
handle polylogarithmic block length. Next, we present our transformation of low-entropy oNOSF sources
to uniform oNOSF sources in Section 2.2 before discussing our existential results for condensers that can
handle constant block length in Section 2.3. We present the main ideas behind our results regarding online
influence and extractor lower bounds in Section 2.4. In Section 2.5, we overview our extractor constructions
for oNOBF and oNOSF sources that are based on a general transformation from leader election protocols.

2.1 Explicit Condensers for Uniform oNOSF Sources

We sketch here our constructions (as well as proof ideas) of explicit condensers for uniform (0.51ℓ, ℓ, n)-
oNOSF sources.9 The goal will be to construct explicit condensers that work with as few good sources as
possible while minimizing the block length n. In particular, we will show:

8Recall that this lower bound is for (g, ℓ, n)-oNOSF sources with n ≥ log(ℓ).
9Since all sources are uniform here, we will not explicitly mention this again.
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Theorem 2.1 (Theorem 5.1, simplified). For all 0 < ε and n, ℓ ∈ N where n ≥
(
log(ℓ)

ε

)Ω(1)
, there exists

an explicit condenser 2Cond : ({0, 1}n)ℓ → {0, 1}m such that for any (g = 0.51ℓ, ℓ, n)-oNOSF source X,

we have that Hε
∞(Cond(X)) ≥ m−

(
log(ℓ)

ε

)O(1)
· log(n) where m = 0.001 · ℓn−O (ℓ log(ℓ) log(1/ε)).

We will require two main tools to show this. The first one uses ideas from the leader election literature
and allows us to sample a O(log(ℓ)) sized committee starting from ℓ players while essentially maintaining
the fraction of bad players. Formally:

Lemma 2.2 (Lemma 5.3, simplified). For all εs > 0, n, ℓ ∈ N, and constant εa > 0 where
n ≥ Ω(log(ℓ) log(1/εs)), there exists an explicit function oNOSFSamp : ({0, 1}n)ℓ → [ℓ]D where
D ≤ O(log(ℓ/εs)) with the following property.10 For all S ⊂ [ℓ] and (g, ℓ, n)-oNOSF sources X, we
have that

Pr
x∼X

[∣∣∣∣ |oNOSFSamp(x) ∩ S|
D

− |S|
ℓ

∣∣∣∣ ≥ εa

]
≤ εs

At a high level, to construct oNOSFSamp, we slightly modify the committee selection procedure from
[RZ01] and instantiate it with a seeded extractor with near optimal dependence on the seed [Zuc07].

Our second tool is a seeded condenser for general min-entropy sources X that uses an oNOSF source Y
as the seed, where the bad bits in Y can depend on X.

Lemma 2.3 (Lemma 5.4, simplified). There exists a constant C2Cond such that for all nx, k, ny, t ∈ N with
ε > 0 and ny ≥ (C2Cond)

t log(tnx/ε), there exists an explicit condenser Cond : {0, 1}nx × ({0, 1}ny)t →
{0, 1}m where m = 1

3(k − (C2Cond)
t log(tnx/ε)) so that the following holds: For all (nx, k)-sources X

and (g = 1, ℓ = t)-oNOSF sources Y ∼ ({0, 1}ny)t such that the good blocks in Y are independent of X
and the bad blocks in Y can depend on X, we have that Hε

∞(2Cond(X,Y)) ≥ m− (C2Cond)
t log(tnx/ε).

We will sketch how to construct this in Section 2.1.6. Using these tools, we are ready to present our ex-
plicit condenser. In fact, we will provide sketches of five different constructions of explicit condensers with
increasingly better parameter dependence; the fifth (and final) one is the construction given by Theorem 2.1.
The parameters they will vary in are the fraction of good blocks (i.e., g/ℓ) and the block length n. As we
will see, each construction will build on ideas from the previous construction.

2.1.1 Construction 1: 51% good and n ≥ 2Ω(ℓ)

We here construct the following condenser:

Theorem 2.4 (Theorem 5.6, simplified). For all 0 < ε and n, ℓ ∈ N where n ≥ 2Ω(ℓ) log(1/ε), there exists
an explicit condenser Cond : ({0, 1}n)ℓ → {0, 1}m such that for any (g = 0.51ℓ, ℓ, n)-oNOSF source X,
we have that Hε

∞(Cond(X)) ≥ m− 2O(ℓ) log(1/ε) where m = 0.0001 · nℓ.

Proof sketch. Let γ = 0.01 and ℓ′ = ℓ/2. We decompose the input X into two equal sized parts so that
X = (X1,X2) where both X1,X2 ∼ ({0, 1}n)ℓ/2 ≡ ({0, 1}n)ℓ′ . Since X has (0.5 + γ)ℓ good players,
we infer that each of X1,X2 has at least γℓ = (2γ) · ℓ′ good players. In particular, we use the fact that
H∞(X1) ≥ (2γ) ·(ℓn/2) and that X2 is a (g = (2γ)ℓ/2, ℓ/2, n)-oNOSF source. With this, we let 2Cond be
the condenser from our second tool Lemma 2.3 and let out final output be 2Cond(X1,X2). Note that here
t = ℓ and so, this requires n ≥ (C2Cond)

ℓ log(ℓn/ε), an inequality that we indeed satisfy. The guarantees
from Lemma 2.3 provide us with the desired claim.

10Even though the output domain of oNOSFSamp is a vector, we will abuse notation and often treat it as a set.
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Each of the subsequent constructions will use a similar construction idea as above. However, they will
try to decrease t as much as possible, where t is the number of players in the oNOSF source when applying
2Cond from Lemma 2.3. Note that any reduction results in a decrease in the block length requirement n.

2.1.2 Construction 2: 67% good and n ≥ poly(ℓ)

Our next construction requires a slightly larger fraction of good blocks. However, the block length required
is exponentially improved.

Theorem 2.5 (Theorem 5.7, simplified). For all 0 < ε and n, ℓ ∈ N where n ≥
(
ℓ
ε

)Ω(1)
, there exists an

explicit condenser Cond : ({0, 1}n)ℓ → {0, 1}m such that for any (g = 0.67ℓ, ℓ, n)-oNOSF source X, we

have that Hε
∞(Cond(X)) ≥ m−

(
ℓ
ε

)O(1)
log(n) where m = 0.001 · ℓn.

Proof sketch. Let γ = 0.67− (2/3). Let ℓ′ = ℓ/3. We decompose the input X into three equal sized parts
so that X = (X1,X2,X3) where all X1,X2,X3 ∼ ({0, 1}n)ℓ′ . Since X has ((2/3) + γ)ℓ good players,
we easily see that each Xi is a (g = 3γℓ′, ℓ′, n)-oNOSF source.

We use X1 to sample a O(log(ℓ)) sized committee from X3. To do so, we use oNOSFSamp1→3 :
({0, 1}n)ℓ′ → ({0, 1}ℓ′)D from Lemma 2.2 with S ⊂ [ℓ′] being the set of good players from X3, the ap-
proximation factor εa = γ and sampling error εs = ε/3. Let C3 ⊂ [ℓ′], |C3| ≤ D3 = O(log(ℓ′/ε)) =
O(log(ℓ/ε)) be the committee of players thus obtained. The approximation property of the sampler guar-
antees us that out of ≥ 3γℓ′ good players in X3, at least 2γ |C3| many good players will be in C3 with
probability 1 − ε/3. Let Y3 be the (2γD3, D3, n)-oNOSF source obtained by restricting the players in
X3 to the committee C3. We finally use 2Cond from Lemma 2.3 and output 2Cond(X2,Y3). Here, the
parameter t in Lemma 2.3 will be set to D ≤ O(log(ℓ/ε)), and hence, Lemma 2.3 would only require that
n ≥ (C22Cond)

t log(ℓn/ε) =
(
ℓ
ε

)O(1)
, a condition that we do meet. We carefully compute the remaining

parameters to infer the claim.

2.1.3 Construction 3: 76% good and n ≥ poly(log(ℓ))

We build on our previous construction and show how to condense when the block length requirement is
again exponentially decreased. This comes at a cost of slightly larger fraction of good blocks.

Theorem 2.6 (Theorem 5.9, simplified). For all 0 < ε and n, ℓ ∈ N where n ≥
(
log(ℓ)

ε

)Ω(1)
, there exists

an explicit condenser Cond : ({0, 1}n)ℓ → {0, 1}m such that for any (g = 0.76ℓ, ℓ, n)-oNOSF source X,

we have that Hε
∞(Cond(X)) ≥ m−

(
log(ℓ)

ε

)O(1)
log(n) where m = 0.001 · ℓn.

Proof sketch. Let γ = 0.01. Let ℓ′ = ℓ/4. We decompose the input X into four equal sized parts such that
X = (X1,X2,X3,X4) and conclude that each Xi is a (g = 4γℓ′, ℓ′, n)-oNOSF source. However here, we
claim something stronger. Call i ∈ [ℓ′] a totally good index if it corresponds to a good player across each of
the four blocks. Since X has (3/4 + γ) · (4ℓ′) good players, there must be ≥ 4γℓ′ totally good indices.

We first use X1 to sample a D2 = O(log(ℓ/ε)) sized committee C2 ⊂ [ℓ′] using the sampler
from Lemma 2.2 such that C2 will have at least 3γ fraction of totally good indices. We let Y2 be the
(g = 3γD2, D2, n)-oNOSF source obtained by restricting X2 to indices from C2.

Second, we use Y2 to sample a D4 = O(log(log(ℓ)/ε)) sized committee C4 ⊂ C2 such that C4 has at
least 2γ fraction of totally good indices. We let Y4 be the (g = 2γD4, D4, n)-oNOSF source obtained by
restricting X4 to indices from C4.
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Third and last, we use 2Cond from Lemma 2.3 and output 2Cond(X3,Y4). Here, the parameter t
in Lemma 2.3 will be set to D4 ≤ O(log(log(ℓ)/ε)), and hence, Lemma 2.3 would only require that

n ≥ (C22Cond)
t log(ℓn/ε) =

(
log(ℓ)

ε

)O(1)
, a condition that we do meet. We carefully compute the remaining

parameters to infer the claim.

2.1.4 Construction 4: 67% good and n ≥ poly(log(ℓ))

Our next construction maintains a similar guarantee as before on the block length and decreases the require-
ment on the fraction of good blocks.

Theorem 2.7 (Theorem 5.10, simplified). For all 0 < ε and n, ℓ ∈ N where n ≥
(
log(ℓ)

ε

)Ω(1)
, there exists

an explicit condenser Cond : ({0, 1}n)ℓ → {0, 1}m such that for any (g = 0.67ℓ, ℓ, n)-oNOSF source X,

we have that Hε
∞(Cond(X)) ≥ m−

(
log(ℓ)

ε

)O(1)
log(n) where m = 0.001 · ℓn.

Proof sketch. Let γ = 0.67− (2/3). Let ℓ′ = ℓ/3. We decompose X = (X1,X2,X3) so that each Xi is a
(g = 3γℓ′, ℓ′, n)-oNOSF source with 3γℓ′ totally good indices.

For the first step, we again use X1 along with a sampler from Lemma 2.2 to obtain C2 ⊂ [ℓ′] with
D2 = |C2| ≤ O(log(ℓ/ε) and a subsource of X2 restricted to C2 - Y2 that is a (g = 2γD2, D2, n)-oNOSF
source. For the second step, we again use Y2 to sample a D3 = O(log(log(ℓ)/ε)) sized committee C3 ⊂ C2
such that C3 has ≥ γ fraction of totally good indices. We let Y3 be the (g = γD3, D3, n)-oNOSF source
obtained by restricting X3 to indices from C3. Third and last, we use 2Cond from Lemma 2.3 and output
2Cond(X2,Y3). Again the parameter t in Lemma 2.3 will be set to D3 ≤ O(log(log(ℓ)/ε)) and would

only require that n ≥
(
log(ℓ)

ε

)O(1)
.

Analyzing this construction requires more care since we use X2 to both sample from X3 and as a source
for 2Cond. We use the chain rule for min-entropy (Lemma 4.3) to argue that most fixings of Y2 = y2
will leave X2 with lot of entropy (since sampler requires few random bits) and observe that such a fixing
still leaves X3 as oNOSF source with the same parameters. Also since for most fixings of Y2 = y2, the
committee C3 has γ fraction of good players, we obtain our claim.

2.1.5 Construction 5: 51% good and n ≥ poly(log(ℓ))

We lastly construct the condenser promised in our main result - Theorem 2.1.

Proof sketch of Theorem 2.1. Let γ = 0.01. Let ℓ′ = ℓ/2. We decompose X = (X1,X2) so that each Xi

is a (g = 2γℓ′, ℓ′, n)-oNOSF source with 2γℓ′ totally good indices.
For the first step, we let X′

1 be the (2γℓ′, ℓ′, n′
1)-oNOSF source obtained by taking a prefix of

length n′
1 from each source where we set n′

1 ≪ n but also n′
1 is long enough to be used by the

sampler from Lemma 2.2. We use X′
1 with such a sampler to obtain a committee C1→2 ⊂ [ℓ′] with

D1→2 = |C1→2| ≤ O(log(ℓ/ε) and a subsource of X2 restricted to C1→2, which we call Y1→2, that is
a (g = (3/2)γD1→2, D1→2, n)-oNOSF source.

We argue that: 1) most fixings of X′
1 are such that they leave X1 with high entropy, and 2) that the

committee C1→2 obtained will have 3γ/2 fraction of good players. We obtain this using the chain rule for
min-entropy and by guarantees of the sampler. We condition on such a fixing from here on.

For the second step, we use Y1→2 to sample a D2→2 = O(log(log(ℓ)/ε)) sized committee C2→2 ⊂
C1→2 such that C2→2 has ≥ γ fraction of totally good indices. We let Y2→2 be the (g = γD2→2, D2→2, n)-
oNOSF source obtained by restricting X2 to indices from C2→2.
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Lastly, we use 2Cond from Lemma 2.3 and output 2Cond(X1,Y2→2). The parameter t in Lemma 2.3

will be set so that it would only require that n ≥
(
log(ℓ)

ε

)O(1)
. We must be a bit careful about the error

parameter ε2Cond for 2Cond and we will choose it to be extremely small.
Analyzing this construction requires care since we use X2 both to sample from within X2 itself and

also as a seed for 2Cond. We cannot use the chain rule since a fixing of Y1→2 will destroy the structure
of the source X2. We first see that the sampler guarantees that no matter how the adversary behaves, with
probability 1−ε/4, the sampler will succeed in selecting a committee C2→2 with γ fraction of good players.
We pay ε/4 in error and now assume that the sampler always succeeds in doing so. We then compare two
scenarios: one scenario Opt where the bits in Y1→2 are all uniform and independent of all other bits and
another scenario Adv where the bits in Y1→2 are all controlled by an adversary (guarantees on this latter
scenario suffice for our claim). Let the total number of bits in Y1→2 be equal to b1→2. Under scenario
Opt, we easily see that we succeed and with error ε2Cond will have high entropy - say k. To compare this
to scenario Adv, we use Lemma 7.9 that lets us conclude that in scenario Adv, with error ε2Cond · 2b1→2 ,
the output will have entropy k − b1→2. Since we carefully chose ε2Cond to be small enough and b1→2 is
small since we only use Y1→2 as source for the sampler, the output will still have small error and will have
high-entropy as desired.

2.1.6 Construction of 2Cond

We now sketch how to construct our desired 2Cond.

Proof sketch of Lemma 2.3. Let X and Y = (Y1, . . . ,Yt) be the two sources. For i ∈ [t], let ni ≈
Ct−i+1 log(tnx/ε) where C is a large constant. For i ∈ [t], let Zi be the length ni prefix of the block Yi.
Our final construction will be the parity of the outputs of seeded extractors applied with source X and seeds
Zi. More formally, we output

t⊕
i=1

sExti(X,Zi),

where sExti is any explicit near optimal seeded extractor (such as the extractor from Theorem 4.6).
We proceed to sketch the analysis. We are guaranteed that there exists at least one j ∈ [t] from Y that

is good. We first condition on fixing blocks Z1, . . . ,Zj−1. Since these blocks can depend on X, we apply
the chain rule for min-entropy (Lemma 4.3) and conclude X will only lose some small amounts of entropy
(the amount will be very small since these blocks are tiny compared to the amount entropy in X). Moreover,
since the adversary is online, Zj remains uniform even after this fixing. We now view our construction as

g(X)⊕
t⊕

i=j

sExti(X,Zi)

where g is the fixed function obtained by fixing Y1, . . . ,Yj−1.
We now compare two scenarios: (1) Where all of Zj , . . . ,Zt are uniform (2) Only Zj is uniform and

Zj+1, . . . ,Zt are arbitrarily controlled by an adversary and can even depend on X:
In the first scenario, we further condition on fixing Zj+1, . . . ,Zt. Since in this scenario Zi are indepen-

dent and random, X retains the same entropy and Yj remains uniform. So our overall output is of the form
h(X)⊕ sExtj(X,Zj) for some fixed function h. We condition on fixing output h(X). Since the number of
output bits m ≪ H∞(X), we apply the chain rule to infer that X still has lots of entropy when we do this
fixing. Now the output is just z ⊕ sExtj(X,Zj) where z is a fixed string, and hence is uniform.
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The second scenario is more realistic and, in the worst case, this is what can actually happen. We then
use the result that if an adversary controls few bits in the input distribution, then they cannot make the
output of the condenser too bad (see Lemma 7.9 for the full statement). With this, since we carefully chose
geometrically decreasing lengths of Zi to help control the error, we indeed obtain that the output will be
condensed.

2.2 Converting Low-Entropy oNOSF Sources to Uniform oNOSF Sources

They key part of our proof for condensing from low-entropy oNOSF sources is a transformation from low-
entropy oNOSF sources to uniform oNOSF sources. Here, we sketch the proof for our transformation in
Theorem 1.4 and compare it to that of [CGR24]. Both these transformations rely on two-source extractors
(see Definition 4.7 for definition) as a basic primitive.

Given a (g, ℓ, n, k)-oNOSF source X = X1, . . . ,Xℓ, [CGR24] uses excellent existential two-source
extractors (such as from Lemma 6.6) to define output blocks Oi = 2Ext(X1 ◦ · · · ◦ Xi−1,Xi) for i ∈
{2, . . . , ℓ} and define their transformation as f(X) = O2, . . . ,Oℓ. They show that Oi is a good block if:
(1) Xi is a good block and (2) at least one block amongst X1, . . . ,Xi−1 is a good block. They showed
that such a good block will be uniform and independent of the blocks O2, . . . ,Oi−1 and argued there will
be g − 1 such good output blocks. This indeed shows their output is a uniform (g − 1, ℓ− 1,m)-oNOSF
source. However, each of their output blocks has length m = O

(
k
ℓ

)
≤ O

(
n
ℓ

)
, and so they were not able to

handle the case of n = o(ℓ). We improve on their construction by using a “sliding window” based technique
to obtain a much better transformation that can even handle n = poly(log(ℓ)).

Theorem 2.8 (Theorem 6.1 restated). Let d, g, gout, ℓ, n,m, k, ε be such that gout ≤ g − ℓ−g+2
d , n ≥ k ≥

log(nd − k) + md + 2 log(2gout/ε). Then, there exists a function f : ({0, 1}n)ℓ → ({0, 1}m)ℓ−1 such
that for any (g, ℓ, n, k)-oNOSF source X, there exists uniform (gout, ℓ− 1,m)-oNOSF source Y for which
|f(X)−Y| ≤ ε.

The parameter d in our theorem statement above is the width of our sliding window. When we set d = ℓ
we recover the analysis of [CGR24]. The true advantage of our transformation emerges when d is very small
compared to ℓ. For instance, when g = 0.51ℓ, n = poly(log(ℓ)) and k = poly(log(ℓ)), we set d to be a
large constant and conclude that the output distribution is a uniform (0.509ℓ, ℓ,poly(log(ℓ))-NOSF source.

Proof sketch of Theorem 2.8. Define Oi = 2Ext(Xi−d ◦ · · · ◦ Xi−1,Xi). We call Oi to be a good output
block when Xi is good and there’s at least one good block amongst {Xi−d, . . . ,Xi−1}.

We first compute the number of good output blocks gout. Let j1, . . . , jg be the indices of the good input
blocks in X and di = ji+1− ji be the gap between the i-th good block and the next (i+1)-th good block. If
the gap di is at most d, then Oi+1 must be a good output block. So, gout is the number of i such that di ≤ d.
Since g ≥ 0.51ℓ, such large gaps can’t appear too often and we compute that gout ≥ g − ℓ−g+2

d as desired.
Next, we show that the good output blocks are indeed uniform conditioned on all previous output blocks.

With this, we will obtain that the output distribution will be uniform (gout, ℓ− 1,m)-oNOSF source as
desired. Let i be the index of a good output block. We want to show that Oi is uniform conditioned
on O1, . . . ,Oi−1. To do this, we first observe that any input block contributes to at most d + 1 good
output blocks. This means that(Xi−d ◦ · · · ◦ Xi−1), which has min-entropy at least k, loses at most d · m
min-entropy conditioned on fixing O1, . . . ,Oi−1. Moreover, Xi still remains uniform and independent of
(Xi−d ◦ · · · ◦Xi−1) when fixing these previous output blocks. Hence, the output of the two-source extractor
will indeed be uniform as desired.

We can make Theorem 2.8 explicit by using the explicit two-source extractors of Theorem 6.7 at a slight
cost of dependence on m and ε as seen in Corollary 6.4.
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2.3 Existence of oNOSF Condensers for All ℓ and n

Here we sketch the proof of Theorem 3. This result states that when g = 0.51ℓ and n = 1000, there exists a
condenser Cond for uniform (g, ℓ, n)-oNOSF sources so that the output entropy rate is 0.99, the number of
output bits is m = O(ℓ+ log(1/ε)), and the error of the condenser is ε where ε ≤ 2−Ω(ℓ) is arbitrary.

Our construction uses amazing seeded condensers (see Definition 4.4) with 1 · log(1/ε) dependence on
seed length. We slightly modify our source and then apply such seeded condenser. Here is a proof sketch:

Proof sketch for Theorem 3. Let X = (X1, . . . ,Xℓ) be such a source. Let Y1 ∼ ({0, 1}n)0.5ℓ be the source
obtained by concatenating the first 0.5ℓ blocks of X. Since 0.51ℓ blocks are good, there exist at least 0.01ℓ
uniform blocks in Y1. We treat Y1 as a single distribution over nℓ bits with min-entropy ≥ 0.01ℓn. Let
Y2 ∼ {0, 1}0.5ℓ be the source obtained by concatenating 1 bit from each of the last 0.5ℓ blocks of X. Once
again, since 0.51ℓ blocks are good, there exist at least 0.01ℓ uniform bits in Y2. We will use the following
seeded condenser:

Theorem 2.9 (Theorem 7.8, simplified). For all d, ε such that d ≥ log(ℓn/ε) +O(1), there exists a seeded
condenser sCond : {0, 1}0.5ℓn ×{0, 1}d → {0, 1}m s.t. for all X ∼ {0, 1}0.5ℓn with H∞(X) ≥ 0.01ℓn, we
have Hε

∞(sCond(X,Ud)) ≥ 0.01ℓn+ d where m = 0.01ℓn+ d+ log(1/ε) +O(1).

Our condenser Cond will output sCond(Y1,Y2). Observe that not only is Y2 not uniform, there could
be as many as 0.49ℓ “bad bits” in Y2 that can depend on Y1. To remedy this, we use the well known fact that
the behavior of such adversarial Y2 cannot be far worse than the behavior if Y2 were uniform. Concretely,
suppose if Y2 were uniform and the output entropy and error were k and ε. Then for the actual Y2, the
output entropy will be k − 0.49ℓ and error will be ε · 20.49ℓ. See Lemma 7.9 for the formal statement.

For us, it means the following: let εsCond, ksCond be such that HεsCond∞ (sCond(Y1,U0.5ℓ)) ≥ ksCond.
Then, it must be that H20.49ℓ·εsCond∞ (sCond(Y1,Y2)) ≥ ksCond − 0.49ℓ. So, for our final error to be some ε,
we need to have εsCond = ε ·2−0.49ℓ. For seeded condensers to exist, we need 0.5ℓ ≥ log(ℓn/εsCond)+O(1)
and we check that such an inequality can indeed be satisfied if ε ≥ 2−0.01ℓ.

Hence, we finally obtain that our seeded condenser will output 0.01ℓn+O(ℓ) bits and will have output
entropy m−∆ where ∆ = O(ℓ). Hence, if n is a large enough constant, our output entropy rate, m−∆

m , will
be ≥ 0.99 as desired.

Remark 2.10. Here (in the inequality 0.5ℓ ≥ 1 · log(ℓn/εsCond)) we crucially used the fact that there exist
seeded condensers with seed length dependence 1 · log(1/ε). Currently, we do not have explicit construc-
tions with this dependence. We also couldn’t have used a seeded extractor since for them, the seed length
dependence is 2 · log(1/ε). For that to work, we would need to assume g ≥ 0.76ℓ.

2.4 Online Influence and Extractor Lower Bounds

In this subsection, we provide a brief overview of our results regarding online influence and sketch how
they imply extractor lower bounds against oNOBF sources. We also contrast this with the established
notion of influence for Boolean functions. For any function f : {0, 1}n → {0, 1}, define the function
e(f)(x) = (−1)f(x).

A Poincaré inequality and extractor lower bounds One fundamental inequality about regular in-
fluence is the Poincaré inequality which states that Var(f) ≤ I[f ]. We prove a similar result for online
influence.

Theorem 2.11 (Theorem 10.5 restated). For any f : {0, 1}ℓ → {0, 1}, we have Var(e(f)) ≤ oI[f ] ≤√
ℓVar(e(f)).

13



It is not hard to derive extractor lower bounds for oNOBF sources from the above result. The high level
idea is to collect bits with high online influence, which is guaranteed by the first inequality in the above
theorem (using an averaging argument) to form a coalition of coordinates that has enough online influence
to bias the claimed extractor. We refer the reader to Theorem 10.19 for more details.

The proof of Theorem 2.11 is based on techniques from the Fourier analysis of Boolean functions.11

The following key result implies Theorem 2.11. We refer the reader to Section 10 for more details.

Lemma 2.12 (Lemma 10.7 restated). For any f : {0, 1}ℓ → {0, 1} and i ∈ [ℓ],

oIi(f)
2 ≤

∑
S⊆[i]
S∋i

f̂(S)2 ≤ oIi(f).

Influence vs Online Influence It is not hard to see that oIi[f ] ≤ Ii[f ] for all i ∈ [ℓ], with equality
always holding for i = ℓ as an adversarial online bit in the last index can see every good bit. Moreover, we
observe that for monotone functions, the notion of online influence is equivalent to regular influence, so any
separation between the two notions must come from non-monotone functions.

We exactly exhibit such a separation via the address function Addrℓ : {0, 1}log ℓ+ℓ → {0, 1} which
considers its first log ℓ bits as an index in {1, . . . , ℓ} and then outputs the value of the chosen index. It is
easy to show (as we do in Lemma 10.12) that the first log ℓ bits of Addrℓ have no online influence, while
the remaining bits have online influence of O

(
1
ℓ

)
. This is in contrast to the well known result of [KKL88]

showing that, for a balanced function such as Addrℓ, there must exist a bit with influence at least Ω
(
log ℓ
ℓ

)
.

2.5 Extractors via Leader Election Protocols

We sketch our main idea for constructing an extractor for oNOBF sources (Theorem 8.3). Similar ideas
work more generally for extracting from oNOSF sources (Theorem 8.4). As mentioned above, we use a
novel connection to leader election protocols to construct extractors. We refer the reader to Section 4.4 for
a quick recap of the leader election protocols.

Suppose π is an (r − 1)-round leader election protocol over ℓ players where in each round, each player
sends 1 bit and with the guarantee that if there are at most δℓ bad players, then a good player is chosen as
leader with probability 1 − ϵ. Suppose X is an (g, ℓr)-oNOBF source, where g ≥ lr − δℓ. We simply
partition the bits of X into chunks X1,X2, . . . ,Xr, where each Xi is on ℓ bits, and simulate the protocol π
by using the j’th bit of Xi as the message of the j’th player in round i, for all 1 ≤ j ≤ ℓ and 1 ≤ i ≤ r− 1.
At the end of this simulation suppose j∗ ∈ [ℓ] is the chosen leader. Then we output the j∗’th bit of Xr as
the output of the extractor.

Briefly, the reason that the above is a valid simulation of π is the fact that the value of any bad bit in
this online setting just depends on bits that appear before it, which is allowed in the leader election protocol
(where in round i, the message of a bad player can be any function of the messages in the same round or
previous rounds). The correctness of the extractor now follows from the fact that since the number of bad
players (i.e., bad bits in X) is at most δℓ, the guarantee of the protocol ensures that the chosen leader j∗ ∈ [ℓ]
is a good player with probability at least 1− ϵ, and in this case the j∗’th bit of Xr must be uniform.

We note here that in the usual definition of leader election protocols, the requirement is to select a good
leader with constant probability, which is a weaker guarantee than what we need to instantiate the above
plan. It turns out that we can combine leader election protocols from prior works, in particular from [Fei99]
and [AN93], to construct protocols with the stronger guarantee we require. We refer the reader to Section 9
for more details on the construction of our leader election protocols.

11We give a very brief recap of necessary notions from Fourier analysis of Boolean functions in Section 10.2.
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2.6 Organization

We give some preliminaries in Section 4 before moving on to our core results. Section 5 provides proofs for
our explicit condenser constructions with small block length, and Section 6 shows how to handle converting
low-entropy oNOSF sources to uniform oNOSF source for a wider range of parameters. Next, Section 7
details our proof for the existence of seedless condensers for oNOSF sources for all regimes of ℓ and n.
In Section 8, we present our explicit constructions of extractors for oNOBF and oNOSF sources using a
connection to leader election protocols. Then, in Section 9, we explicitly construct the required leader
election protocols. Finally, we introduce the notion of online influence in Section 10 and use it to provide
an extraction lower bound for oNOBF sources. We discuss some open questions in Section 11.

In Appendix B, we consider a natural local variant of oNOSF sources and show that it is straightforward
to extract from such sources using existing extractors for small-space sources.

3 Application to Collective Coin Flipping and Collective Sampling

We now discuss applications of our results on condensers for oNOSF sources to fault-tolerant distributed
computing. Condensing from oNOSF sources can be viewed as a special case of coin flipping and collective
sampling protocols in the full information model that arise in fault-tolerant distributed computing.

3.0.1 Background

Say there are ℓ players who have a common broadcast channel and want to jointly perform a task such as
collectively flipping a coin. Some b players out of them are “bad” and want to deter the task. We assume the
bad players are computationally unbounded so cryptographic primitives are of no use. We further assume
that each player has private access to uniform randomness. [BL89] initiated the study of this model and
aptly termed this task as “collective coin flipping.”

The simplest way to collectively flip a coin would be for all the players to initially agree on a function
f : {0, 1}ℓ → {0, 1}, then synchronously broadcast one random bit ri, and to finally agree on the output
being f(r1, . . . , rℓ). However, synchronizing broadcasts is hard, and it could be that the bad players set their
output as function of the bits of the good players. [KKL88] showed that no function f can handle more than
O
(

ℓ
log ℓ

)
corruptions.

One way to allow for more corruptions (almost linear) among players is to consider “protocols” that
allow more rounds of communication. In particular, a protocol can be thought of as a tree where each vertex
represents a “round” where in every round the following happens: all good players sends their bits, then all
bad players send their bits as a function of the bits of the good players, and they jointly compute a function
of these bits. Depending on the outcome of the function, everyone branches on one branch in this tree.
Furthermore, every leaf is labeled with final outcomes (say 0 or 1) and, once a leaf is reached, that is the
outcome that everybody agrees on. [GGL98] initiated the study of protocols where the outcomes are from a
larger range and where the bad players are trying to minimize the largest probability of any outcome. They
called this problem “collective sampling.” For a formal definition, see Section 4.4.

3.0.2 Known Results

[BL89] showed that for protocols with outcomes {0, 1}, b bad players can always ensure that some outcome
occurs with probability at least 1

2+
b
2ℓ . [AN93] first constructed a protocol that can handle a linear number of

corruptions. Follow-up works tried to reduce the number of rounds in this protocol where, in some settings,
players were allowed to send more than one bit per round [RZ01, Fei99].
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[GGL98] showed that for all collective sampling protocols and all outcomes, there exists a way for b bad
players to coordinate and ensure that an outcome that happens without corruption with probability p, now
happens with probability p1−(b/n) ≥ p

(
1 + b

n log(1/p)
)
. Nearly matching collective sampling protocols

were constructed by [GGL98, SV08, GVZ06]. For an overview of further results and bounds, see [Dod06].

3.0.3 Connection to oNOSF Sources

The problem of extracting or condensing from oNOSF sources can be seen as special cases or variants of
collective coin flipping and collective sampling that provide very simple protocols. For instance, suppose
one has an extractor or condenser f for uniform (g, ℓ, n)-oNOSF sources. Then, consider a protocol where
all ℓ players take turns and output n random bits. The agreed final outcome is f applied on these ℓn bits.
This leads to protocols that are structurally much simpler since players don’t have to carefully compute
whose turn it is to go in various rounds and can obliviously prepare for their turn.

The above protocol can also be viewed as a relaxed version of a 1-round protocol where instead of
everyone providing their output asynchronously, they take turns and provide outputs one after another in a
simple sequential manner.

3.0.4 Previous Results Interpreted in oNOSF source context

Previous impossibility results can be interpreted in the context of extracting / condensing from uniform
oNOSF sources. For instance, collective coin flipping impossibility results of [BL89] imply extraction
impossibility results for uniform (g, ℓ, n)-oNOSF sources when n = 1. They imply:

Corollary 3.1. There does not exist an b
2ℓ -extractor for uniform (g, ℓ, 1)-oNOSF sources.

Similarly, we observe that the notion of collective sampling is equivalent to 0-error condensing. Hence,
lower bounds of [GGL98] imply zero-error condensing lower bounds for uniform (g, ℓ, n)-oNOSF sources
when n = 1. Formally:

Corollary 3.2. There does not exist a condenser Cond : {0, 1}ℓ → {0, 1}m for uniform (g, ℓ, 1)-oNOSF
sources that can guarantee output smooth min-entropy (with parameter ε = 0) more than k = g

ℓ ·m.

3.0.5 ε-Collective Sampling

Since collective sampling lower bounds show that for any protocol, 0-error condensing beyond rate g/ℓ is
impossible, one can naturally ask whether condensing with small error ε is possible. We call this problem
ε-collective sampling, where the goal is to output a distribution which is ε-close to a distribution where
every output has small probability.

Interpreted this way, this is exactly what protocols arising out of our condensers for uniform oNOSF
sources provide: Using Theorem 3, when each player has access to 104 random bits, there exists a simple
protocol that can handle 0.49ℓ corrupt players such that the players can collectively sample a distribution
over m = O(ℓ) bits which is 2−Ω(ℓ)-close to having entropy 0.99m. As far as we are aware, such a protocol
is not implied by any other previous protocol. Most previous protocols are obtained through leader election
protocols, which do not seem useful here since the leader has access to only constant number of bits.

We similarly obtain explicit protocols using Theorem 2 for the case when each player has access to
n ≥ poly(log(ℓ)/ε) many bits.
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3.0.6 Collective Coin Flipping and Sampling with Weak Random Sources

A natural extension to collective coin flipping and sampling in the full information model is when all play-
ers only have access to weak source of randomness (that are independent from each other) instead of true
uniform randomness. This question was first studied by [GSV05]. [KLRZ08] used network extractor pro-
tocol to transform weak random sources of each player into independent private random sources. This way,
after using the network extraction protocol, players can follow the usual collective coin flipping / sampling
protocol. [GSZ21] improved the network extraction protocol using two-source non-malleable extractors.

Using our (g, ℓ, n, k)-oNOSF source condensers, we obtain alternative, simple ε-collective sampling
protocols in the setting where players have access to weak sources of randomness. We obtain such an
existential protocol using Theorem 4, and explicit protocol using Corollary 1.3.

4 Preliminaries

In this section we give some basic background and facts used throughout our paper. We use boldfaced font
to indicate a random variable such as X. Often we will use ◦ or , to indicate concatenation of blocks. So if
X1 ∼ {0, 1}n and X2 ∼ {0, 1}n, then X1,X2 will be the concatenated random variable over {0, 1}2n. We
will use the notation [n] as shorthand for {1, . . . , n}. All logs in this paper will have base 2 unless stated
otherwise.

4.1 Basic Probability Notions

We measure the distance between two distributions via statistical distance:

Definition 4.1 (Statistical Distance). For any two distributions X,Y over Ω, we define the statistical dis-
tance or total-variation distance (TV) distance as:

|X−Y| = max
S⊂Ω

|Pr[X ∈ S]− Pr[Y ∈ S]| = 1

2

∑
s∈Ω

|Pr[X = s]− Pr[Y = s]|

We use the notation X ≈ε Y to denote the fact that |X−Y| ≤ ε.

We also state the useful folklore result of the data processing inequality.

Fact 4.2. For any two distributions X,Y over Ω and function f : Ω → R,

|X−Y| ≥ |f(X)− f(Y)| .

We will utilize the very useful min-entropy chain rule in our constructions.

Lemma 4.3 (Min-entropy chain rule, [MW97]). For any random variables X ∼ X and Y ∼ Y and ε > 0,

Pr
y∼Y

[H∞(X | Y = y) ≥ H∞(X)− log |Supp(Y)| − log(1/ε)] ≥ 1− ε.

4.2 Condensers and Extractors

We recall the definition of a seeded condenser.
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Definition 4.4. A (kin, kout, ε)-seeded condenser sCond : {0, 1}n×{0, 1}d → {0, 1}m satisfies the follow-
ing: for every source X ∼ {0, 1}n with H∞(X) ≥ kin, and Y = Ud,

Hε
∞(Cond(X,Y)) ≥ kout.

Here, d is called the seed length of sCond.

A seeded extractor is the special case of seeded condenser where kout = m. We record the full definition
for completeness sake:

Definition 4.5. A (k, ε)-seeded extractor sExt : {0, 1}n × {0, 1}d → {0, 1}m satisfies the following: for
every source X ∼ {0, 1}n with H∞(X) ≥ k, and Y = Ud,

sExt(X,Y) ≈ε Um.

Here, d is called the seed length of sExt. sExt is called strong if

sExt(X,Y),Y ≈ε Um,Y.

We will use the following near optimal explicit construction of seeded extractors:

Theorem 4.6 (Theorem 1.5 in [GUV09]). For all constant 0 < α < 1, there exists a constant C such
that for all n, k, ε, there exists an explicit (k, ε)-seeded extractor sExt : {0, 1}n × {0, 1}d → {0, 1}m with
d = C log(n/ε) and m ≥ (1− α)k.

Next, we recall the definition of two-source extractors.

Definition 4.7. A function 2Ext : {0, 1}n1 × {0, 1}n2 → {0, 1}m is a (k1, k2, ε)-two-source extractor if for
every source X1 ∼ {0, 1}n1 with H∞(X1) ≥ k1 and X2 ∼ {0, 1}n2 with H∞(X2) ≥ k2 where X1 and
X2 are independent of each other, we have

2Ext(X1,X2) ≈ε Um.

It is said to be strong in the first argument if

2Ext(X1,X2),X1 ≈ε Um,X1.

4.3 Averaging Samplers

Recall the definition of an averaging sampler

Definition 4.8. A (k, δ, ε)-averaging sampler is a function Samp : {0, 1}n → ({0, 1}m)D such that for any
function f : {0, 1}m → [0, 1] and any (n, k)-source X, we have that

Pr
(x1,...,xD)∼Samp(X)

[∣∣∣∣∣ 1D
D∑
i=1

f(xi)− E
x∼Um

[f(x)]

∣∣∣∣∣ ≥ ε

]
≤ δ.

It was shown in [Zuc97] that strong extractors and averaging samplers are equivalent. We reproduce the
proof here for completeness.

Lemma 4.9. Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a (k, ε)-extractor. Define Samp : {0, 1}n →
({0, 1}m)D, where D = 2d as Samp(x) = (Ext(x, 1), . . . ,Ext(x,D)) where we identify [D] with {0, 1}d.
Then Samp is a (k + log(1/δ), δ, ε)-averaging sampler.
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Proof. Let X be an (n, k+ log(1/δ))-source. For x ∈ Supp(X), call x bad if |Ext(x,Ud)−Um| > ε and
let B ⊆ {0, 1}n be the subset of bad x’s. Now, suppose for the sake of contradiction that Pr[X ∈ B] > δ.
Then, letting XB = X | (X ∈ B), we can compute the min-entropy of XB as

H∞(XB) ≥ H∞(X)− log

(
1

Pr[X ∈ B]

)
≥ k + log(1/δ)− log(1/δ)

= k.

Therefore, we can apply Ext to XB and obtain that |Ext(XB,Ud)−Un| ≤ ε. However, by assumption
we know that for all x ∈ B, |Ext(x,Ud)−Um| > ε, meaning that |Ext(Xb,Ud)−Um| > ε, giving us a
contradiction. Thus, we have that Pr[X ∈ B] ≤ δ.

Now, we turn our attention to the good x /∈ B. Using Fact 4.2, we know that for any x /∈ B,

|f(Ext(x,Ud))− f(Um)| ≤ |Ext(x,Ud)−Um|
≤ ε.

This is equivalent to saying that, for all good x ∈ {0, 1}n,
∣∣∣ 1D ∑s∈{0,1}d f(Ext(x, s))− f(Um)

∣∣∣ ≤ ε. This
is exactly the requirement of our sampler, and we have shown that this happens with probability Pr[X /∈
B] ≥ 1− δ, as required.

In particular, we will use the following strong extractor from [Zuc07] to instantiate an averaging sampler.

Theorem 4.10 ([Zuc07]). For all constant α, δ, ε > 0, there is an efficient family of strong (k = δn, ε)-
extractors Ext : {0, 1}n × {0, 1}d → {0, 1}m with m ≤ (1− α)δn and D = 2d = O(n).

Using Lemma 4.9, we get the following averaging sampler that we shall use later.

Lemma 4.11. For all constant α, δ, ε > 0, we can construct an explicit sampler Samp : {0, 1}t →
({0, 1}m)D with m ≤ (1 − α)δt and D = O(t) such that for all sets S ⊆ [M ], where M = 2m, and
all (t, k)-sources X , we have that

Pr
x∼X

[∣∣∣∣ |Samp(x) ∩ S|
D

− |S|
M

∣∣∣∣ ≥ ε

]
≤ 2δt−k.

Proof. Simply apply Lemma 4.9 to Theorem 4.10 and consider the indicator function f(x) = 1x∈S of S for
the resulting sampler.

4.4 Leader Election, Collective Coin Flipping, and Sampling Protocols

We formalize the definition of protocols in the full information model. Collective coin flipping protocols,
leader election protocols, and collective sampling protocols are special cases of such protocols where the
output domain is [ℓ] and {0, 1} and {0, 1}m for some m respectively.

Definition 4.12 (Protocol in the full information model). A k-round protocol with output domain Y over ℓ
players where each player sends n random bits per round is a function

π :
(
({0, 1}n)ℓ

)k
→ Y
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that takes in the input of each of the players during each round and outputs an element from set Y which is
the outcome of the protocol.

Here is how the protocol operates in the presence of a set B ⊂ [ℓ] of bad players: In round i, each of
the players from [ℓ] \B independently output a uniformly random element from {0, 1}n. Let their collective
outputs be αi ∈ ({0, 1}n)[ℓ]\B . Then, depending on α1, . . . , αi, the players in B together output an element
of ({0, 1}n)B . Hence, we model the strategy of the bad players as a sequence of functions σ = (σ1, . . . , σk),
where

σi :
(
({0, 1}n)[ℓ]\B

)i
→ ({0, 1}n)B ,

where σi takes in the inputs of the good players from the first i rounds and maps it to the output of the bad
players for round i. For a fixed strategy σ, the outcome of the protocol can be modeled as follows: uniform
random strings α1, . . . , αk ∈ ({0, 1}n)[ℓ]\B are chosen, and the outcome of the protocol is

π(α1 : σ1(α1), α2 : σ2(α1, α2), . . . , αk : σk(α1, . . . , αk)).

We now specialize this definition to define collective coin flipping protocols

Definition 4.13 (Collective coin flipping protocol). A collective coin flipping protocol π is a protocol in the
full information model with output domain Y = {0, 1}. Furthermore, we say π is (b, γ) resilient if in the
presence of any set B of bad players with |B| ≤ b, we have that maxo∈{0,1} Pr[π|B = o] ≤ 1− γ.

Note that when k = 1, the protocol π just becomes a function over {0, 1}ℓ; such 1-round coin flipping
protocols which cannot be biased by any small set of bad players are also known as resilient functions.

We also specialize the definition of protocols to define leader election protocols:

Definition 4.14 (Leader election protocol). A leader election protocol π is a protocol in the full information
model with output domain Y = [ℓ], the number of players the protocol is operating on. Furthermore,
we say π is (b, γ) resilient if in the presence of any set B of bad players with |B| ≤ b, we have that
Pr[π|B ∈ B] ≤ 1− γ.

Remark 4.15. The definition of resilience that we use, which is standard in the leader election and collective
coin flipping literature, requires only that bad players can be elected as a leader with probability at most
1 − γ. Our leader election protocols satisfy (and need) the stronger measure of quality that is standard in
the pseudorandomness literature: that bad players are chosen with probability at most ε for small ε.

We lastly define collective sampling protocols:

Definition 4.16 (Collective sampling protocol). A collective sampling protocol π is a protocol in the full
information model, typically with output domain Y = {0, 1}m for some m which is a function of ℓ and n.
The goal of collective sampling protocols is to ensure that for every output set S ⊂ {0, 1}m with density µ,
in the presence of b bad players, the probability that the output lies in S is at most ε, with the goal to make
ε as close to µ as possible.

5 Explicit Condensers for oNOSFs with Small Block Length

In this section we will give an explicit construction of condensers for uniform oNOSF sources with small
block length. Our main theorem shows that, given an oNOSF source12 with slightly more than a half fraction

12Unless stated otherwise, in this section we will use oNOSF source to refer to uniform oNOSF source
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of good players, the block length only needs to be polylogarithmic in the length of the source to condense
from it. This nearly matches the lower bound that it is impossible to condense above entropy rate 1/2 when
the fraction of good players is at most 1/2.

Theorem 5.1. There exists a universal constant C such that for any constant γ > 0 the following holds. For

all 0 < ε < 1/2 and n, ℓ ∈ N where n ≥
(
log(ℓ)

ε

)C
, there exists an explicit condenser Cond : ({0, 1}n)ℓ →

{0, 1}m satisfying: For any (g = (1/2 + γ)ℓ, ℓ, n)-oNOSF source X, we have that Hε
∞(Cond(X)) ≥ m−(

log(ℓ)
ε

)C
log(n) where m = 1

3 · γℓn− Cℓ log(ℓ) log(1/ε).

We will prove this result in Section 5.5.
Using the transformation of low-entropy oNOSF sources to uniform oNOSF sources from Corollary 6.4,

we get an explicit condenser for low-entropy oNOSF sources.

Corollary 5.2. There exists universal constants C,C ′ such that for any constant γ > 0 the following holds.
For all n, ℓ, k ∈ N where n ≥ ℓC , k ≥ (log(n))C , there exists an explicit condenser Cond : ({0, 1}n)ℓ →
{0, 1}m satisfying: For any (g = (1/2 + γ)ℓ, ℓ, n, k)-oNOSF source X, we have that Hε

∞(Cond(X)) ≥
m− (log(ℓ))C log(n) where m = 1

4 · γℓn− Cℓ log(ℓ) log(log(ℓ)) and ε = 1

(log(ℓ))C
′ .

Proof. To do this, we apply Corollary 6.4 with d as a very large universal constant, and its number of output
bits m = (log(ℓ))C0 for some large universal constant C0. We obtain that with error at most ε/2, the
resultant distribution is uniform

(
g = (1/2 + 0.99γ)ℓ′, ℓ′, (log(ℓ′))C1

)
-oNOSF source where ℓ′ = ℓ−1 and

C1 is a large universal constant. On that resultant source, we apply Theorem 5.1 with error ε/2 to obtain the
desired result.

We will need two main tools to prove Theorem 5.1. The first one will allow us to use an oNOSF source
to sample a logarithmically sized ‘committee’ from any given subset of players that still has approximately
the same fraction of good players.

Lemma 5.3. There exists a universal constant C such that for all constant 0 < γ, εa < 1, the following
holds. For all 0 < εs < 1/2, and n, ℓ ∈ N where n ≥ 6 log(ℓ) log(1/εs)/γ, there exists an explicit function
oNOSFSamp : ({0, 1}n)ℓ → [ℓ]D where D ≤ C log(ℓ/εs) with the following property.13 For all S ⊂ [ℓ]
and (γℓ, ℓ, n)-oNOSF sources X, we have that

Pr
x∼X

[∣∣∣∣ |oNOSFSamp(x) ∩ S|
D

− |S|
ℓ

∣∣∣∣ ≥ εa

]
≤ εs

We will prove this in Section 5.6.
Our second tool is a seeded condenser that works even when the seed is an oNOSF source. In fact, the

bad bits in the seed are allowed to depend on the general min-entropy source that the condenser is acting on.

Lemma 5.4. There exists a universal constant C such that for all nx, k, ny, t ∈ N with ε > 0 and ny ≥
(C)t log(tnx/ε), there exists an explicit condenser 2Cond : {0, 1}nx × ({0, 1}ny)t → {0, 1}m where
m = 1

3(k − (C)t log(tnx/ε)) so that the following holds: For all (nx, k)-sources X and (g = 1, ℓ = t)-
oNOSF sources Y ∼ ({0, 1}ny)t such that the good blocks in Y are independent of X and the bad blocks
in Y can depend on X, we have that Hε

∞(2Cond(X,Y)) ≥ m− (C)t log(tnx/ε).

We prove this in Section 5.7.
13Even though the output domain of oNOSFSamp is a vector, we will abuse notation and often treat it as a set

21



Remark 5.5. In Lemma 5.4, we have the requirement that ny ≥ (C)t log(tnx/ε) so that both m > 0 and
Cond outputs non-zero min-entropy. Therefore, decreasing t will give a smaller bound on the length of each
block of Y and, ultimately, the block length of the oNOSF source we are condensing from. Our trick here
will be to get t down to t ≈ O(log log(ℓ)) when starting from a (g, ℓ, n)-oNOSF source so that the block
length of this source only needs to be at least polylog(ℓ).

To give some intuition behind our explicit construction in Theorem 5.1, this section is organized in parts
that each provide a step towards the proof. For base line construction, we observe that Lemma 5.13 already
yields an explicit condenser for (g, ℓ)-oNOSF sources where g > ℓ/2 with block length n ≥ exp(ℓ). This
is formally proven in Section 5.1. In Section 5.2, we will first see how we use both of these main tools from
above to handle the easier setting of condensing from a (g, ℓ)-oNOSF source with the number of good blocks
g > 2

3ℓ and we have polynomial block length n ≥ poly(ℓ), an exponential improvement over the base line
construction. We build upon these ideas to further exponentially decrease our block length requirement in
Section 5.3 to handle oNOSF sources with g > 3

4ℓ and n ≥ polylog(ℓ). To then decrease the fraction
of good blocks that we require, we introduce a correlated sampling trick in Section 5.4 so that we only
require g > 2

3ℓ while retaining the requirement n ≥ poly(log(ℓ)). Finally, we obtain Theorem 5.1, which
only requires g > 1

2ℓ and n ≥ poly(log(ℓ)) in Section 5.5 by repeating such a correlated sampling trick,
carefully handling the fact that our sources lose some structure each time we do so. Each of these 4 sections
is self contained and only depends only on Lemma 5.3 and Lemma 5.4.

5.1 Condensing from 51% good oNOSF sources with n ≥ exp(Ω(ℓ))

We first construction our baseline condenser that requires at least 51% good blocks but requires the block
length n ≥ exp(Ω(ℓ)). This construction solely relies on Lemma 5.4:

Theorem 5.6. There exists a universal constant C such that for any constant γ > 0, the following holds.
For all n, ℓ ∈ N, and 0 < ε < 1/2 where n ≥ (C)ℓ log(1/ε), there exists an explicit condenser
Cond : ({0, 1}n)ℓ → {0, 1}m satisfying: for any uniform (g = (1/2 + γ)ℓ, ℓ)-oNOSF source X, we have
Hε

∞(Cond(X)) ≥ m− (C)ℓ log(ℓn/ε) where m = 1
6 · γℓn.

Proof. If ℓ is odd, then we split each block of X into two contiguous blocks of length n/2 each and view X
as ((1/2 + γ)2ℓ, ℓ)-oNOSF source. This allows us to without loss of generality assume ℓ is even since this
transformation preserves the output guarantees required by our condenser.

We begin by decomposing X = (X1,X2) where in this decomposition we are simply splitting X into
two parts, so that each Xi is a (g = (2γ) · (ℓ/2), (ℓ/2), n)-oNOSF source. We use 2Cond from Lemma 5.4
with nx = ℓn/2, k = γℓn, ny = n, error parameter equal to ε and output 2Cond(X1,X2). Let C2Cond be
the universal constant from Lemma 5.4. We let our universal constant C be much larger than C2Cond so that
we satisfy n ≥ (C2Cond)

ℓ log(ℓ2n/ε) as required by Lemma 5.4 and also so that in odd ℓ cases, n/2 is also
sufficiently large.

5.2 Condensing from 67% good oNOSF sources with n ≥ poly(ℓ)

We begin by constructing condenser that requires at least 67% good blocks instead of just 51%, but allows
for the block length n to be polynomial instead of super-exponential in ℓ. Formally, we will show that:

Theorem 5.7. There exists a universal constant C such that for any constant γ > 0 the following holds.
For all 0 < ε < 1/2 and n, ℓ ∈ N where n ≥

(
ℓ
ε

)C
, there exists an explicit condenser Cond : ({0, 1}n)ℓ →

{0, 1}m satisfying: For any (g = (2/3 + γ)ℓ, ℓ, n)-oNOSF source X, we have that Hε
∞(Cond(X)) ≥ m−(

ℓ
ε

)C
log(n) where m = 1

3 · γℓn.
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The key idea here will be to sample a few blocks in the last third of the source to take short prefixes from
and then use these as the seed of a particular two source condenser. With this, we present the proof.

Proof of Theorem 5.7. Let ℓ′ = ℓ/3. We begin by decomposing X = (X1,X2,X3) where in this decom-
position we are simply splitting X into thirds, so each Xi is a (g = 3γℓ′, ℓ′, n)-oNOSF source.

Our first step is to use X1 to sample a logarithmically sized committee of players from X3. We do so
by using oNOSFSamp : ({0, 1}n)ℓ′ → [ℓ′]D from Lemma 5.3 with εs = ε/2, εa = γ, the corresponding
γ equal to 3γ, and the S of Lemma 5.3 corresponding to the indices B ⊆ [ℓ] of the bad players in X3, so
|B|
ℓ′ ≤ 1 − 3γ. Note that D ≤ C0 log(ℓ/εs) ≤ C1 log(ℓ/ε)) where C0, C1 are some universal constants.

Lemma 5.3 then allows us to conclude that

Pr
x∼X1

[∣∣∣∣ |oNOSFSamp(x) ∩B|
D

− |B|
ℓ′

∣∣∣∣ ≥ εa

]
≤ εs

=⇒ Pr
x∼X1

[
|oNOSFSamp(x) ∩B|

D
≤ εa +

|B|
ℓ′

]
≥ 1− εs

=⇒ Pr
x∼X1

[∣∣oNOSFSamp(x) ∩B
∣∣ ≥ 2γ ·D

]
≥ 1− ε

2
.

Let Y = (X3)oNOSFSamp(X1) be the D ≤ C1 log(ℓ
′/ε)-sized committee of players from X3 chosen by

oNOSFSamp(X1). The above can then be interpreted as saying that, with at least a 1−ε/2 probability over
X1, we have that Y is a (g = 2γD,D, n)-oNOSF source (we will only need the fact that Y contains at least
one good block, though).

Our second step is to apply the condenser from Lemma 5.4 to X2 and Y. We instantiate Lemma 5.4 with
nx = ℓ′n, ny =

(
ℓ
ε

)C′
log(n), t = D ≤ C1 log(ℓ

′/ε), k = 3γℓ′n, and error equal to ε
2 where C ′ is a large

enough constant. One can verify that this setting of parameters along with our assumption that n ≥
(
ℓ
ε

)C
for a universal constant C (by setting it to be large enough) satisfies the requirements of Lemma 5.4. This
yields a condenser that we shall call 2Cond : ({0, 1}n)ℓ′ × ({0, 1}n)D → {0, 1}m (so as to avoid confusion
with our ultimate condenser Cond).

Lastly, we let Z = 2Cond
(
X2, (X3)oNOSFSamp(X1)

)
and let mz be the length of Z. If mz ≤ m = γℓn

3 ,
then we output Z followed by mz −m many zeros. Otherwise, we output a prefix of Z of length m = γℓn

3 .
We now analyze the guarantees of this condenser. We first observe that

(C2Cond)
t log(2tnx/ε) ≤ (C2Cond)

C1(log(ℓ/3ε)) log(4 · C1 log(ℓ/ε)ℓn/ε)

≤
(
ℓ

ε

)C2

log(n) (∗)

where C2Cond is the universal constant from Lemma 5.4 (we will use this notation in subsequent proofs) and
C2 is a large enough universal constant. With this, we are guaranteed that the length of Z = mz is such that

mz =
1

3

(
k − (C2Cond)

t log(2tnx/ε)
)

=
1

3

(
γℓn− (C2Cond)

t log(2tnx/ε)
)

≥ γℓn

3
−
(
ℓ

ε

)C2

log(n) (by Equation (∗))

= m−
(
ℓ

ε

)C2

log(n)
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Moreover, conditioned on the fact that Y has at least one good block, Lemma 5.4 guarantees that

Hε/2
∞ (Z) = Hε/2

∞ (2Cond(X2,Y))

≥ mz − (C2Cond)
t log(2tnx/ε)

≥ mz −
(
ℓ

ε

)C2

log(n) (by Equation (∗))

Thus, adding up the two ε/2 errors from both our steps, we see that Hε
∞(Z) ≥ mz −

(
ℓ
ε

)C2
log(n).

If mz > m, then our final output inherits the smooth min-entropy gap of Z which is
(
ℓ
ε

)C2
log(n). If

mz ≤ m, then our output inherits not only the entropy gap of Z but also an entropy gap of m−mz . Since
mz ≥ m −

(
ℓ
ε

)C2
log(n), our output will have smooth min-entropy gap at most 2

(
ℓ
ε

)C2
log(n). In either

case, our gap will be at most 2
(
ℓ
ε

)C2
log(n). We let our final universal constant C be much larger than C2

to obtain our claim.

Remark 5.8. The padding or truncating trick at the end of all our steps to meet the desired output length is
standard and for next subsections and proofs, we will omit it and use it implicitly.

5.3 Condensing from 76% good oNOSF sources with n ≥ polylog(ℓ)

To decrease our block length requirement all the way down to polylog(ℓ), we simply apply the idea in the
previous section twice. We split up our oNOSF source X into four blocks X = X1,X2,X3,X4 and use X1

to sample a logarithmically sized committee from X2, use this committee to sample a doubly logarithmically
sized committee from X4, and finally apply the condenser from Lemma 5.4 to X3 and this final committee.

Theorem 5.9. There exists a universal constant C such that for any constant γ > 0 the following holds. For

all 0 < ε < 1/2 and n, ℓ ∈ N where n ≥
(
log(ℓ)

ε

)C
, there exists an explicit condenser Cond : ({0, 1}n)ℓ →

{0, 1}m satisfying: For any (g = (3/4 + γ)ℓ, ℓ, n)-oNOSF source X, we have that Hε
∞(Cond(X)) ≥ m−(

log(ℓ)
ε

)C
log(n) where m = 1

3 · γℓn.

Proof. Let ℓ′ = ℓ/4. We decompose X into quarters as X = (X1,X2,X3,X4), so each Xi is a
(g = 4γℓ′, ℓ′, n)-oNOSF source. We in fact claim something stronger. Call an index i ∈ [ℓ′] totally good if
it is good in each of X1,X2,X3,X4. For the rest of the i ∈ [ℓ′] that are not totally good, we refer to them
as somewhat bad. Since X has (3+ 4γ)ℓ′ good indices out of 4ℓ′, we see that there are must be at least 4γℓ′

totally good indices, i.e., indices that are good across all of the 4 blocks.
Our first step is to use X1 to sample a logarithmically sized committee of players from X2. We obtain

oNOSFSamp2 : ({0, 1}n)ℓ′ → [ℓ′]D2 from Lemma 5.3 with εs = ε/3, εa = γ, the corresponding γ equal
to 4γ, and the set S of Lemma 5.3 corresponding to the indices B2 ⊂ [ℓ] of the somewhat bad players in
X2, so |B2|

ℓ′ ≤ 1− 4γ. Note that D2 ≤ C0 log(ℓ/εs) ≤ C1(log(ℓ/ε)) where C0 and C1 are some universal
constants. Lemma 5.3 then guarantees that

Pr
x∼X1

[∣∣∣∣ |oNOSFSamp2(x) ∩B2|
D2

− |B2|
ℓ′

∣∣∣∣ ≥ εa

]
≤ εs

=⇒ Pr
x∼X1

[
|oNOSFSamp2(x) ∩B2|

D2
≤ εa +

|B2|
ℓ′

]
≥ 1− εs

=⇒ Pr
x∼X1

[∣∣oNOSFSamp2(x) ∩B2

∣∣ ≥ 3γ ·D2

]
≥ 1− ε

3
.
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Let C2 ⊂ [ℓ′] be the D2 sized-committee of indices such sampled and let Y2 = (X2)oNOSFSamp2(X1) be
the induced source by restricting X2 to indices from C2. The above then says that with at least a 1 − ε

3
probability over X1, we have that Y2 is a (g = 3γD2, D2, n)-oNOSF source and C2 contains ≥ 3γD2

totally good indices.
Our second step is to use Y2 to sample from C2 and obtain a subsource over those indices from X4. We

again do this by using oNOSFSamp4 : ({0, 1}n)D2 → [D2]
D4 from Lemma 5.3 with εs = ε/3, εa = γ,

the corresponding γ equal to 3γ, and the set S of Lemma 5.3 corresponding to the indices BC2 ⊆ C2 of the

weakly bad indices in C2 so that |BC2 |
D2

≤ 1 − 3γ. Here, D4 ≤ C3 log(D2/εs) ≤ C4(log(log(ℓ)/ε)) where
C3, C4 are some universal constants. From Lemma 5.3, once again we are guaranteed that

Pr
y∼Y2

[∣∣∣∣ |oNOSFSamp4(y) ∩BC2 |
D4

− |BC2 |
D2

∣∣∣∣ ≥ εa

]
≤ εs

=⇒ Pr
y∼Y2

[
|oNOSFSamp4(y) ∩BC2 |

D4
≤ εa +

|BC2 |
D2

]
≥ 1− εs

=⇒ Pr
y∼Y2

[∣∣oNOSFSamp4(y) ∩BC2
∣∣ ≥ 2γ ·D4

]
≥ 1− ε

3
.

If we define Y4 = (X4)oNOSFSamp4(Y2), then the above guarantees that, with probability 1 − ε
3 over Y2

(conditioned on C2 containing ≥ 3γD2 totally good indices), we have that Y4 is a (g = 2γD4, D4, n)-
oNOSF source.

In our third and final step, we will use Lemma 5.4 to condense from X3 and Y4. We instantiate

Lemma 5.4 with nx = ℓ′n, ny =
(
log(ℓ)

ε

)C′

log(n), t = D4 ≤ C4 log(log(ℓ)/ε), k = 4γℓ′n, and er-

ror equal to ε
3 where C ′ is a large enough universal constant. Given these parameters and our assumption

that n ≥ (log(ℓ)/ε)C for a universal constant C (that is large enough), as well as the fact that Y4 contains
at least one good index, the requirements of Lemma 5.4 are satisfied. Consequently, we obtain the function
2Cond : ({0, 1}n)ℓ′ × ({0, 1}n)D4 → {0, 1}m2Cond . Finally the overall output of our explicit condenser is
Z = 2Cond (X3,Y4).

We now analyze the guarantees of this condenser. We first observe that

(C2Cond)
t log(3tnx/ε) ≤ (C2Cond)

C4(log(log(ℓ)/ε)) log(3 · ℓn · (ℓ/ε)C
′
/ε)

≤
(
log(ℓ)

ε

)C5

log(n) (∗)

where C5 is a large enough universal constant. With this, we are guaranteed that the length of Z = mz

above is

mz =
1

3

(
k − (C2Cond)

t log(3tnx/ε)
)

=
1

3

(
γℓn− (C2Cond)

t log(3tnx/ε)
)

≥ γℓn

3
−
(
log(ℓ)

ε

)C5

log(n) (by Equation (∗))

Moreover, conditioned on the fact that Y4 has at least one good block, Lemma 5.4 guarantees that

Hε/3
∞ (Z) = Hε/3

∞ (2Cond(X3,Y4))
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≥ mz − (C2Cond)
t log(3tnx/ε)

≥ mz −
(
log(ℓ)

ε

)C5

log(n) (by Equation (∗))

Thus, adding up the three ε/3 errors from both our steps, we see that Hε
∞(Z) ≥ mz −

(
ℓ
ε

)C5
log(n).

We let our final universal constant C be much larger than C5 to obtain our desired claim.

5.4 Condensing from 67% good oNOSF sources with n ≥ polylog(ℓ)

We now decrease not only our block length requirement all the way down to polylog(ℓ) but also require that
only 67% of the blocks are good. To do this, we apply the idea in the previous section twice; but this time
at the end, we reuse one of the blocks we previously used to sample as a source. We show this by observing
that sampling requires the usage of very few bits. By using the chain rule for min-entropy, we conclude that
fixing those bits still leaves the source with lots of entropy.

Theorem 5.10. There exists a universal constant C such that for any constant γ > 0 the following holds. For

all 0 < ε < 1/2 and n, ℓ ∈ N where n ≥
(
log(ℓ)

ε

)C
, there exists an explicit condenser Cond : ({0, 1}n)ℓ →

{0, 1}m satisfying: For any (g = (2/3 + γ)ℓ, ℓ, n)-oNOSF source X, we have that Hε
∞(Cond(X)) ≥ m−(

log(ℓ)
ε

)C
log(n) where m = 1

3 · γℓn.

Proof. Let ℓ′ = ℓ/3. We decompose X into three parts as X = (X1,X2,X3), so each Xi is a
(g = 3γℓ′, ℓ′, n)-oNOSF source. We in fact claim something stronger. Call an index i ∈ [ℓ′] totally good if
it is good in each of X1,X2,X3. For the rest of the indices i ∈ [ℓ′] that are not totally good, we refer to
them as somewhat bad. Since X has (2+3γ)ℓ′ good indices out of 3ℓ′, we see that there are must be at least
3γℓ′ totally good indices, i.e., indices that are good across each of the 3 blocks.

Our first step is to use X1 to sample a logarithmically sized committee of players from X2. We use
oNOSFSamp2 : ({0, 1}n)ℓ′ → [ℓ′]D2 from Lemma 5.3 with εs = ε/4, εa = γ, the corresponding γ equal
to 3γ, and the set S of Lemma 5.3 corresponding to the indices B2 ⊂ [ℓ′] of the somewhat bad indices in
X2, so |B2|

ℓ′ ≤ 1− 3γ. Note that D2 ≤ C0 log(ℓ/εs) ≤ C1(log(ℓ/ε)) where C0 and C1 are some universal
constants. Lemma 5.3 then guarantees that

Pr
x∼X1

[∣∣∣∣ |oNOSFSamp2(x) ∩B2|
D2

− |B2|
ℓ′

∣∣∣∣ ≥ εa

]
≤ εs

=⇒ Pr
x∼X1

[
|oNOSFSamp2(x) ∩B2|

D2
≤ εa +

|B2|
ℓ′

]
≥ 1− εs

=⇒ Pr
x∼X1

[∣∣oNOSFSamp2(x) ∩B2

∣∣ ≥ 2γ ·D2

]
≥ 1− ε

4
.

Let C2 ⊂ [ℓ′] be the D2 ≤ C1(log(ℓ/ε)) sized-committee of indices thus sampled and let Y2 =
(X2)oNOSFSamp2(X1) be the source obtained by restricting X2 to indices from C2. However, when we do
this, instead of each player in Y2 holding n bits, we take a prefix of length n2 = C2 ·log(log(ℓ)/ε)·log(1/ε)
from each where C2 is a sufficiently large universal constant. The above then says that with at least a 1− ε

4
probability over X1, we have that Y2 is a (g = 2γD2, D2, n2)-oNOSF source and C2 contains ≥ 2γD2

totally good indices.
Our second step is to use Y2 to sample from C2 and obtain a subsource over those indices from X3. We

again do this by using oNOSFSamp3 : ({0, 1}n)D2 → [D2]
D3 from Lemma 5.3 with εs = ε/4, εa = γ,
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the corresponding γ equal to 2γ, and the set S of Lemma 5.3 corresponding to the indices BC2 ⊆ C2 of the

weakly bad indices in C2 so that |BC2 |
D2

≤ 1 − 2γ. Here, D3 ≤ C3 log(D2/εs) ≤ C4(log(log(ℓ)/ε)) where
C3, C4 are some universal constants. From Lemma 5.3, once again we are guaranteed that

Pr
y∼Y2

[∣∣∣∣ |oNOSFSamp3(y) ∩BC2 |
D3

− |BC2 |
D2

∣∣∣∣ ≥ εa

]
≤ εs

=⇒ Pr
y∼Y2

[
|oNOSFSamp3(y) ∩BC2 |

D3
≤ εa +

|BC2 |
D2

]
≥ 1− εs

=⇒ Pr
y∼Y2

[∣∣oNOSFSamp3(y) ∩BC2
∣∣ ≥ γ ·D3

]
≥ 1− ε

4
.

If we define Y3 = (X3)oNOSFSamp3(Y2), then the above guarantees that, with probability 1 − ε
4 over Y2

(conditioned on C2 containing ≥ 2γD2 totally good indices), we have that Y3 is a (g = γD3, D3, n)-oNOSF
source.

We will show that X2 has entropy conditioned on most fixings of Y2. Recall that X2 is a
(g = 3γℓ′, ℓ′, n)-oNOSF source. We use the min-entropy chain rule (Lemma 4.3) to conclude that with
probability 1− ε/4 over y ∼ Y2, we have that

H∞(X2|(Y2 = y)) ≥ 3γℓ′n− log(4/ε)−D2 · n2

≥ 3γℓ′n− log(4/ε)− C1 log(ℓ/ε) · C2 log(log(ℓ)/ε) · log(1/ε)
≥ 3γℓ′n− C5 (log(ℓ/ε))

3

where C5 is a large enough universal constant.
With this, we apply union bound to conclude that conditioned on C2 containing ≥ 2γD2 totally good

indices, with probability 1− ε/2 over y ∼ Y2, we have that Y3 is a (g = γD3, D3, n)-oNOSF source and
H∞(X2) ≥ γℓn− C5 (log(ℓ/ε))

3. We refer to such a fixing of Y2 = y2 as ‘good.’
In our third and final step, we use Lemma 5.4 to condense from X2 and Y3. We instantiate Lemma 5.4

with nx = ℓ′n, ny =
(
log(ℓ)

ε

)C′

log(n), t = D3 ≤ C6 log(log(ℓ)/ε), k = 3γℓ′n − C5 (log(ℓ/ε))
3, and

error equal to ε
4 where C ′ is a large enough universal constant. Using our assumption that n ≥ (log(ℓ)/ε)C

for a universal constant C (that is large enough), these parameters satisfy the requirements of Lemma 5.4,,
and the lemma gives us the explicit condenser 2Cond : ({0, 1}n)ℓ′ × ({0, 1}ny)D3 → {0, 1}m2Cond . Let
Z = 2Cond (X2,Y3) and let this be the final output of our own condenser.

We now analyze the guarantees of this condenser. We first observe that

(C2Cond)
t log(4tnx/ε) ≤ (C2Cond)

C6(log(log(ℓ)/ε)) log(4 · C6(log(log(ℓ)/ε)) · ℓn/ε)

≤
(
log(ℓ)

ε

)C7

log(n) (∗)

where C7 is a large enough universal constant.
Let mz be the length of the source Z. With this, we are guaranteed from Lemma 5.4 the following lower

bound on mz:

mz =
1

3

(
k − (C2Cond)

t log(4tnx/ε)
)

=
1

3

(
γℓn− C5(log(ℓ/ε))

3 − (C2Cond)
t log(4tnx/ε)

)
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≥ 1

3

(
γℓn− C5(log(ℓ/ε))

3 −
(
log(ℓ)

ε

)C7

log(n)

)
(by Equation (∗))

≥ γℓn

3
−
(
log(ℓ)

ε

)C8

log(n)

where C8 is a large enough universal constant.
We condition on both C2 containing 2γD2 totally good indices and a ‘good’ fixing of Y2. Under this

conditioning, Lemma 5.4 guarantees that

Hε/4
∞ (Z) = Hε/4

∞ (2Cond(X2,Y3))

≥ mz − (C2Cond)
t log(4tnx/ε)

≥ mz −
(
log(ℓ)

ε

)C7

log(n) (by Equation (∗))

≥ mz −
(
log(ℓ)

ε

)C8

log(n).

Thus, adding up the four ε/4 errors from both our steps, we see that Hε
∞(Z) ≥ mz −

(
log(ℓ)

ε

)C8

log(n).
We let our final universal constant C be much larger than C8 to obtain our final claim.

5.5 Condensing from 51% good oNOSF sources with n ≥ polylog(ℓ)

We now decrease not only our block length requirement all the way down to polylog(ℓ) but also require that
only 51% of the blocks are good. To do this, we build upon the previous ideas with one more ‘self-sampling’
idea - where we sample from within the blocks in the same source. This introduces correlations between
the bits that are being used to sample and the source itself, in a way that makes us lose the structure of our
sources. Nevertheless we rely on the fact that very few bits are required to do sampling, and that sampling
succeeds regardless of the behavior of the bad players. To handle this situation, we use Lemma 7.9 that
states if an adversary is allowed to arbitrarily control few bits of the source (that were previously uniform),
then the damage they can do is not too much.

Proof of Theorem 5.1. Let ℓ′ = ℓ/2. We begin by decomposing X into two parts as X = (X1,X2), so each
Xi is a (g = 2γℓ′, ℓ′, n)-oNOSF source. We in fact claim something stronger. Call an index i ∈ [ℓ′] totally
good if it is good in both of X1,X2. For the rest of the indices i ∈ [ℓ′] that are not totally good, we refer
to them as somewhat bad. Since X has (1 + 2γ)ℓ′ good indices out of 2ℓ′, we see that there are must be at
least 2γℓ′ totally good indices, i.e., indices that are good across both the blocks.

Let X′
1 be the subsource obtained from X1 by taking prefixes of all blocks of length n′

1 =
C1 log(ℓ) log(1/ε) where C1 is a large enough universal constant. Hence, X′

1 is a (g = 2γℓ′, ℓ′, n′
1)-oNOSF

source.
Our first step is to use X′

1 to sample a logarithmically sized committee of players from X2. We obtain
oNOSFSamp1→2 : ({0, 1}n′

1)ℓ
′ → [ℓ′]D2 from Lemma 5.3 with εs = ε/4, εa = γ/2, the corresponding γ

equal to 2γ, and the set S of Lemma 5.3 corresponding to the indices B2 ⊂ [ℓ′] of the somewhat bad indices
in X2, so |B2|

ℓ′ ≤ 1− 2γ. Note that

D2 ≤ C0 log(ℓ/εs) ≤ C1(log(ℓ/ε)) (1)
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where C0 and C1 are some universal constants. Lemma 5.3 then guarantees that

Pr
x∼X′

1

[∣∣∣∣ |oNOSFSamp1→2(x) ∩B2|
D2

− |B2|
ℓ′

∣∣∣∣ ≥ εa

]
≤ εs

=⇒ Pr
x∼X′

1

[
|oNOSFSamp1→2(x) ∩B2|

D2
≤ εa +

|B2|
ℓ′

]
≥ 1− εs

=⇒ Pr
x∼X′

1

[∣∣oNOSFSamp1→2(x) ∩B2

∣∣ ≥ (3γ/2) ·D2

]
≥ 1− ε

4
.

Let C2 ⊂ [ℓ′] be the D2 ≤ C1(log(ℓ/ε)) sized committee of indices thus sampled and let Y2 =
(X2)oNOSFSamp2(X1) be the source obtained by restricting X2 to indices from C2. Let E1→2 be the event that
the sampler oNOSFSamp1→2 above succeeds. We have that Pr[E1→2] ≥ 1−ε/4 with the probability being
over sampling from X′

1. We see that when E1→2 occurs, Y2 will be an (g = (3γ/2)D2, D2, n)-oNOSF
source.

We will show that X1 has entropy conditioned on most fixings of X′
1. We use the min-entropy chain

rule (Lemma 4.3) to conclude that with probability 1− ε/4 over x ∼ X′
1, we have that

H∞(X1|(X′
1 = x)) ≥ 2γℓ′n− ℓ′n′

1 − log(4/ε)

= 2γℓ′n− ℓ′ · C1 log(ℓ) log(1/ε)− log(4/ε)

≥ 2γℓ′n− C3ℓ
′ log(ℓ′) log(1/ε)

where C3 is a large enough universal constant. Let

k1 = 2γℓ′n− C3ℓ
′ log(ℓ′) log(1/ε) (2)

Let E1 be the event that x ∼ X′
1 is such that H∞(X1|(X′

1 = x1)) ≥ k1. Then, we have that Pr[E1] ≥
1− (ε/4) with the probability being over sampling from X′

1.
By a union bound, we have that both E1 and E1→2 happen together with probability at least 1 − ε/2.

Note that conditioning on both E1 and E1→2, the online structure of the source still remains intact, i.e., Y2

still remains an oNOSF source and the good bits in Y2 still are independent of X1. So, for instance we also
satisfy the required independence conditions of Lemma 5.13 and if we also satisfied the parameter conditions
for it, we could apply it. However, we do not satisfy the parameter conditions since our guarantees on n are
too small. To remedy this, we will use a subsource of Y2 to sample from within itself. Doing so will shrink
our source and let us satisfy the parameter conditions from Lemma 5.13. However, we will then no longer
satisfy the independence requirements to apply it. Nevertheless we do this anyways and argue that we can
so, while only sacrificing the final guarantees of the condenser by a tiny amount.

Let Y2,Samp be the subsource obtained from Y2 by taking prefixes of all blocks of length

n′
2 = C2 · log(log(ℓ)/ε) · log(1/ε) (3)

where C2 is a large enough universal constant. So, when E1→2 occurs, we have that Y2,Samp is
(g = (3γ/2)D2, D2, n

′
2)-oNOSF source

In the second step, we will use Y2,Samp to sample from C2 and obtain a subsource over those indices
from Y2. We again do this by using oNOSFSamp2→2 : ({0, 1}n)D2 → [D2]

D2,Cond from Lemma 5.3 with
εs = ε/4, εa = γ/2, the corresponding γ equal to 3γ/2, and the set S of Lemma 5.3 corresponding to

the indices BC2 ⊆ C2 of the weakly bad indices in C2 so that |BC2 |
D2

≤ 1 − (3γ/2). Here, D2,Cond ≤
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C4 log(D2/εs) ≤ C5(log(log(ℓ)/ε)) where C4, C5 are some universal constants. From Lemma 5.3, once
again we are guaranteed that

Pr
y∼Y2,Samp

[∣∣∣∣ |oNOSFSamp2→2(y) ∩BC2 |
D2,Cond

− |BC2 |
D2

∣∣∣∣ ≥ εa

]
≤ εs

=⇒ Pr
y∼Y2,Samp

[
|oNOSFSamp2→2(y) ∩BC2 |

D2,Cond
≤ εa +

|BC2 |
D2

]
≥ 1− εs

=⇒ Pr
y∼Y2,Samp

[∣∣oNOSFSamp2→2(y) ∩BC2
∣∣ ≥ γ ·D2,Cond

]
≥ 1− ε

4
. (∗∗)

For y2,Samp ∈ ({0, 1}n)D2 , let C2,Cond(y2,Samp) = oNOSFSamp2→2(y2,Samp) so that the number of players
in the resultant committee is |C2,Cond(y2,Samp)| = D2,Cond ≤ C5(log(log(ℓ)/ε)). We let Y2,Cond(y2,Samp)
be the subsource obtained from Y2 by taking suffix of all blocks of length n − n′

2 where n′
2 is as above.

Then Equation (∗∗) guarantees that, with probability 1− ε
4 over sampling y2,Samp ∼ Y2,Samp (conditioned

on E1 and E1→2), we have that Y2,Cond(y2,Samp) is a (g = γD2,Cond, D2,Cond, n)-oNOSF source. We refer
to such a y2,Samp as ‘good.’

In our third and final step, we use Lemma 5.4 to condense from X1 and Y2,Cond(y2,Samp). We condition
on events E1 and E1→2 here. We also pay additional ε/4 in error and assume that all y2,Samp are good, i.e.,
the sampler always succeeds. This brings the total error we have incurred so far to 3ε/4. Note that since
we used y2,Samp ∼ Y2,Samp to obtain Y2,Cond, any fixing of the output of Y2,Samp = y2,Samp can create
correlations between X1 and Y2,Cond and it may not even preserve the structure of Y2,Cond. Formally for
any fixed y2,Samp, conditioned on Y2,Samp = y2,Samp, 1) it is not necessarily true that Y2,Cond still remains
an oNOSF source, and 2) the good bits in Y2,Cond may not necessarily be independent of X1. We address
these concerns by using Lemma 7.9 and paying with more error and more entropy gap at the end.

Let Opt (short for optimistic) be the assumption that all the bits (including the bad ones) in Y2,Samp

were truly uniform and independent of X1 and independent of all length n− n′
2 suffices of the bits of good

players in X2 (these bits in the suffixes are the ones that potentially can be used to form Y2,Cond above). We
use this to assume we do meet the preconditions of Lemma 5.4. Let Actual be the realistic scenario where
the above does not happen and Y2,Samp is allowed to have bad bits.

Let εCond = 2−C6(log(ℓ/ε))3 where C6 is a large universal constant. We then instantiate Lemma 5.4 with

nx = ℓ′n, ny =
(
log(ℓ)

ε

)C′

log(n), t = D3 ≤ C6 log(log(ℓ)/ε), k = k1 (from Equation (2)), and error

equal to εCond where C ′ is a large enough universal constant. Given these parameters and our assumption
that n ≥ (log(ℓ)/ε)C for a universal constant C (that is large enough), we indeed satisfy the requirements
of Lemma 5.4 under Opt. Consequently, we obtain the function 2Cond : ({0, 1}n)ℓ′ × ({0, 1}n)D2,Cond →
{0, 1}m2Cond and our final output will be 2Cond(X1,Y2,Cond).

Let ZOpt = 2Cond(X1,Y2,Cond) be the distribution under the assumption Opt. Let ZActual be the actual
output distribution that we obtain. i.e., ZActual := Cond(X), the output distribution of our condenser.

We first analyze the guarantees of this condenser under the assumption Opt. We first observe that

(C2Cond)
t log(tnx/εCond) ≤ (C2Cond)

C6(log(log(ℓ)/ε)) log(C6(log(log(ℓ)/ε)) · ℓn/εCond)

= (C2Cond)
C6(log(log(ℓ)/ε)) log(C6(log(log(ℓ)/ε)) · ℓn · 2C6(log(ℓ/ε))3)

≤
(
log(ℓ)

ε

)C7

log(n) (∗)

where C7 is a large enough universal constant.
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Since n ≥ (log(ℓ)/ε)C for a very large universal constant C, our parameter setting indeed satisfies all
the requirements of Lemma 5.4 (and the independence based requirements hold because we are arguing
under the assumption ZOpt.

With this, Lemma 5.4 provides us with the following guarantee on the length mz of our final output
(recall that k1 from Equation (2) is the entropy of X1 conditioned on event E1 occurring):

mz =
1

3

(
k1 − (C2Cond)

t log(tnx/εCond)
)

=
1

3

(
2γℓ′n− C3ℓ

′ log(ℓ′) log(1/ε)− (C2Cond)
t log(tnx/εCond)

)
(by Equation (2))

≥ 1

3

(
2γℓ′n− C3ℓ

′ log(ℓ′) log(1/ε)−
(
log(ℓ)

ε

)C7

log(n)

)
(by Equation (∗))

=
1

3

(
γℓn− C3(ℓ/2) log(ℓ/2) log(1/ε)−

(
log(ℓ)

ε

)C7

log(n)

)
(by definition of ℓ′)

≥ γℓn

3
− C8 (ℓ log(ℓ) log(1/ε))−

(
log(ℓ)

ε

)C7

log(n)

where C8 is some large enough universal constant.
Then, Lemma 5.4 (under assumption Opt) guarantees that

HεCond
∞ (ZOpt) ≥ mz − (C2Cond)

t log(tnx/εCond)

≥ mz −
(
log(ℓ)

ε

)C7

log(n) (by Equation (∗))

We are not yet done since in reality, the assumption Opt does not hold and we need to argue under
Actual. To handle this situation, instead of using Y2,Samp above, we consider a distribution XAdv ∼
({0, 1}n)ℓ which is same as the distribution X but the n′

2 ·D2 many bits in Y2,Samp are instead controlled
by an adversary ; we allow those bits to depend on any other bits from X. Let ZAdv be the resulting output
distribution when we do this. Since the adversary Adv is arbitrary, this adversarial assumption is stronger
than Actual scenario, so it suffices to argue about ZAdv. To argue regarding ZAdv, we apply Lemma 7.9 to
infer that

HεCond·2n
′
2·D2

∞ (ZAdv) ≥ HεCond
∞ (ZOpt)− n′

2 ·D2

≥ mz −
(
log(ℓ)

ε

)C7

log(n)− (C2 · log(log(ℓ)/ε) · log(1/ε)) · (C1 log(ℓ/ε))

(by Equation (3) and Equation (1))

≥ mz −
(
log(ℓ)

ε

)C9

log(n)

where C9 is a large enough universal constant. We also see that

εCond · 2n
′
2·D2 = 2−C6(log(ℓ/ε))3 · 2(C2·log(log(ℓ)/ε)·log(1/ε))·(C1 log(ℓ/ε)) (by Equation (3) and Equation (1))

≤ ε/4

The last inequality follows since we will pick C6 to be much larger than C1 and C2.
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We note that X, even after conditioning on E1, E1→2 can be assumed to be a flat source. This is because
we can express X1 as a convex combination of sources with the same min-entropy and doing so retains the
structure of our source X. Hence, we do meet all the preconditions of Lemma 7.9.

Lastly, since we incurred 3ε/4 error at the beginning of the fourth step, and we incur additional ε/4 here,

we obtain that our final output distribution will be ε-close to having min-entropy mz −
(
log(ℓ)

ε

)C9

log(n).
By taking C to be a large enough constant for our actual claimed parameters, we infer the claim.

5.6 Constructing oNOSFSamp

In this subsection, we will construct oNOSFSamp and prove Lemma 5.3. Our construction of oNOSFSamp
itself requires two ingredients: (1) A Reduce function that reduces an oNOSF source of length ℓ to an
O(log(ℓ)) length source, and (2) a good averaging sampler with linear sample complexity from Lemma 4.11.

Let’s formally define this Reduce function:

Lemma 5.11. There exists a universal constant C such that the following holds. For all 0 < γ ≤ 1, 0 <
ε < 1/2 and all ℓ, n ∈ N such that n ≥ 6 log(ℓ) log(1/ε)/γ, there exists an explicit function Reduce :
({0, 1}n)ℓ → {0, 1}t such that for all (γℓ, ℓ)-oNOSF sources X, we have that Reduce(X) is a (t, k)-source
where t ≤ C log(ℓ/ε) and k ≥ 3 log(ℓ/ε).

We construct this function in Section 5.6.1. Let’s see how using it we can construct oNOSFSamp.

Proof of Lemma 5.3. We use the given parameters γ, n, ℓ to instantiate Reduce : [N ]ℓ → {0, 1}t from
Lemma 5.11 with ε = εs. This gives us a constant C0 such that Reduce(X) is a (t ≤ C0 log(ℓ/εs), k ≥
6 log(ℓ/εs))-source. We then let δ = k

2t = 3
C0

and α = 1
3 which we use to instantiate Lemma 4.11 with

ε = εa to get Samp : {0, 1}t → ({0, 1}m)D.
Define oNOSFSamp(X) = Samp(Reduce(X)) : ({0, 1}n)ℓ → ({0, 1}m)D. Since (1 − α)δt = 2

3 ·
3
2 log(ℓ/εs) ≥ log(ℓ), Lemma 4.11 allows us to take m = log(ℓ). Moreover, because k − δt = k/2 ≥
3 log(ℓ/εs) ≥ log(1/εs), we have that 2δt−k ≤ εs, giving us the desired error bound. Finally, Lemma 4.11
also gives us that D = O(t) = O(log(ℓ/εs)), as claimed.

5.6.1 Constructing Reduce

We here construct Reduce function as required by Lemma 5.11. Our construction is based on the construc-
tion from [RZ01] that utilizes hitting sets for combinatorial rectangles. We call their general constructed
function as Reduce′.

This function Reduce′ has the following guarantee:

Lemma 5.12 ([RZ01]). There exists a universal constant C ′ such that for any γ > 0 and a, d ∈ N, there
exists an efficient function Reduce′ : [a]d → {0, 1}t such that for any (g = γd, d, log(a))-oNOSF source X,
we have that Reduce′(X) is a (t, k)-source with t ≤ C ′(log(a) + log log(d) + d/a) and k ≥ γd/a.

We construct our desired function Reduce′ in Appendix A. Let’s see first how by carefully choosing a
and d in Lemma 5.12, we get the Reduce function we require.

Proof of Lemma 5.11. We will consider two cases for the parameters of our oNOSF source and apply
Lemma 5.12 with different parameters in each case. Recall that, in Lemma 5.12, d represents the num-
ber of blocks in our oNOSF source and log(a) represents the number of bits in each block. However, our
given (g = γℓ, ℓ, n)-oNOSF source X is on [N ]ℓ, so we must make these parameters match. We take cases
on the relative size of log(ℓ) and log(1/ε).
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Case 1 First, if log(1/ε) ≤ log(ℓ), then let d = ℓ and a = γℓ
6 log(ℓ) in Lemma 5.12. In this setting,

since we are guaranteed that n ≥ 6 log(ℓ) log(1/ε)/γ, so N ≥ ℓ > a, we can simply truncate each block
to log(a) bits and take X to be a (g = γℓ, ℓ)-oNOSF source on [a]d. Lemma 5.12 gives us that there exists
some C ′ such that

t ≤ C ′(log(a) + log log(d) + d/a)

= C ′(log(γ) + log(ℓ)− log(6)− log log(ℓ) + log log(ℓ) + 6 log(ℓ)/γ)

≤ C2 log(ℓ)

≤ C2 log(ℓ/ε)

for some constant C2. Then, we compute the min-entropy of Reduce(X) as

k ≥ γd/a

= γℓ · 6 log(ℓ)/(γℓ))
= 6 log(ℓ).

Recall that the assumption in this case is that log(1/ε) ≤ log(ℓ), which we can rearrange into log(ℓ) ≥
log(ℓ/ε)/2. Applying this yields that k ≥ 6 log(ℓ) ≥ 3 log(ℓ/ε), as desired.

Case 2 Second, if log(1/ε) > log(ℓ), then let d = 6ℓ log(1/ε)/γ and a = ℓ in Lemma 5.12. In order
to convert X to a source over [a]d, we split each n length block of X into length n′ = γn

6 log(1/ε) blocks. This
gives us ℓ′ = ℓ log(1/ε) · 6

γ = d total blocks with g′ = γℓ′ total good blocks. Thus, we now view X as a
source X′ over [N ′]ℓ

′
where N ′ = 2n

′
. To finish the conversion, we recall that n ≥ 6 log(ℓ) log(1/ε)/γ,

so n′ ≥ log(ℓ) = log(a), allowing us to just take a length log(a) prefix of each length n′ block to create a
new source X′′ over [a]d, as required. Finally, we can analyze t and k in this setting. We begin with t using
Lemma 5.12 to infer that there exists some C ′ such that

t ≤ C ′(log(a) + log log(d) + d/a)

= C ′(log(ℓ) + log log(6ℓ log(1/ε)/γ) + 6 log(1/ε)/γ)

≤ C3 log(ℓ/ε)

for some constant C3. We compute k as

k ≥ γd/a

= γ(6ℓ log(1/ε)/γ)/ℓ

= 6 log(1/ε).

showing that k ≥ 6 log(1/ε). Finally, recall that in this case log(1/ε) > log(ℓ), so log(1/ε) > log(ℓ/ε)/2,
which we can apply to get that k ≥ 6 log(1/ε) > 3 log(ℓ/ε).

Let C = max(C2, C3). In either case, we have that the number of output bits is t ≤ C(log(ℓ/ε)) and
the min-entropy k of Reduce(X) is ≥ 3 log(ℓ/ε), as claimed.

5.7 Constructing 2Cond

In this subsection we will prove our remaining helper lemma - Lemma 5.4. First, we will require the
following result:
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Lemma 5.13. There exists universal constant C ′ such that for all nx, kx, ny,1, . . . , ny,t,m, 0 < ε1 ≤ · · · ≤
εt < 1 satisfying ny,i ≥ C ′ log(2nx/εi) and m = kx−log(2/ε1)

3 , the following holds: There exists an explicit
extractor Ext : {0, 1}nx × {0, 1}ny,i × · · · × {0, 1}ny,t → {0, 1}m satisfying: For all 1 ≤ j ≤ t and
all independent sources X ∼ {0, 1}nx ,Y1 ∼ {0, 1}ny,1 , . . . ,Yt ∼ {0, 1}ny,t where H∞(X) = kx, each
of Y1, . . . ,Yj−1 are fixed constants and all Yj , . . . ,Yt are uniform, we have that Ext(X,Y1, . . . ,Yt) is
εj-close to Um.

Proof of Lemma 5.13. For 1 ≤ i ≤ t, let sExti : {0, 1}nx ×{0, 1}ny,i → {0, 1}m be explicit (εi/2)-seeded-
extractor guaranteed by Theorem 4.6 - where we assume the universal constant from Theorem 4.6 is C ′ and
check that our parameters meet the requirements. Our extractor construction is:

Ext(x, y1, . . . , yt) =
t⊕

i=1

sExti(x, yi).

Let Zgood = sExtj(X,Yj) and let Zrest =
⊕

1≤i≤t,i ̸=j sExti(X,Yi). Notice that our final output
distribution is Zgood ⊕ Zrest. We will argue that on most fixings of Zrest, the output will be close to
uniform.

By Lemma 4.3, we have the following (where the probability below is over sampling from Zrest)

Pr[H∞(X|Zrest = zrest) ≥ kx −m− log(2/εj)] ≥ 1− εj/2.

Call the fixings zrest of Zrest that satisfy the above property of leaving X with a lot of entropy when
conditioning on them, as the “good fixings.” As Zrest is independent of Yj and X is left with a lot of
entropy conditioning on a good fixing zrest, we have that

sExtj((X|Zrest = zrest), (Yj |Zrest = zrest)) ≈εj/2 Um.

As 1−εj/2 fraction of fixings of Zrest are good, we conclude that Ext(X,Y1, . . . ,Yt) ≈εj Um as desired.

With this, we finally proved the proof of our lemma:

Proof of Lemma 5.4. Let C ′ be a universal constant that we set later. For 1 ≤ i ≤ t, let nz,i =
2C ′(3C ′)t−i log(2tnx/ε) and let nz =

∑t
i=1 nz,i. Let Zi be the length nz,i prefix of the block Yi, and

let Z = Z1, . . . ,Zt be the concatenation of these prefixes. Note that by our lower bound guarantee on
ny, each block is long enough to take such prefixes. We use the extractor Ext from Lemma 5.13 with
kx = k−nz − log(2/ε), m = 1

3(k− (3C ′)t log(2tnx/ε)) as in the lemma statement, and for 1 ≤ i ≤ t, we

set εi =
(

ε
2tnx

)(3C′)t−i

. With this, we define our condenser as:

2Cond(X,Y) = Ext(X,Z) = Ext(X,Z1, . . . ,Zt).

We easily compute and check that our parameter settings satisfy the requirements of Lemma 5.13. We
will show that the output entropy (with error ε) is at least m−nz . We compute that nz ≤ (3C ′)t log(2tnx/ε),
the output entropy gap. Hence if we show this, then our condenser will indeed have the claimed property.

We now show that our condenser construction is correct. Since Y is guaranteed to have at least one
good block by assumption, let j ∈ [t] be the index of this good block. Now, let A = Z1, . . . ,Zj−1 and let
B = Zj+1, . . . ,Zt so that Z = (A,Zj ,B). We will show that Hε

∞(Cond(X,Y)) ≥ m− nz .
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We will now consider fixings of A. We say a fixing of A = a is good if H∞(X|A = a) ≥ k − nz −
log(2/ε) = kx. By the min-entropy chain rule (Lemma 4.3), at least 1 − ε/2 fraction of fixings of A are
good. Since Y is an oNOSF source, Zj remains independent and uniform of X for every fixing of A.

We will show that, conditioned on a good fixing a of A, we have H
ε/2
∞ (Cond(X,Y)) ≥ m −∑t

i=j+1 nz,i ≥ m − nz . This will prove our result as our total error will be ε/2 + ε/2 = ε and the
min-entropy guarantee will be m− nz , as desired.

Consider the best case scenario when (B|A = a) = U|B|. This is unrealistic since it is possible
that all bits in B are bad and arbitrarily depend on the remaining bits. Nevertheless, it is instructive to
see what happens in this scenario. In this case, X,Y are independent distributions, and we can infer that
Cond(X,Y) = Ext(X,Z) ≈εj Um. However, as alluded before, all bits in B can be adversarially set. To
overcome this, we invoke Lemma 7.9 that allows us to compare how worse off our output distribution can be
compared to the best case scenario. We conclude that even when B is completely adversarially controlled,
Hε′

∞(Cond(X,Y)) ≥ m− |B| = m−
∑t

i=j+1 nz,i where

ε′ = εj · 2|B|

=

(
ε

2tnx

)(3C′)t−j

· 2
∑t

i=j+1 nz,i

=

(
ε

2tnx

)(3C′)t−j

· 22C
′ log(2tnx/ε)

∑t
i=j+1(3C

′)t−i

=

(
ε

2tnx

)(3C′)t−j

·
(
2tnx

ε

)2C′ (3C′)t−j−1

3C′−1

≤
(

ε

2tnx

)(3C′)t−j

·
(
2tnx

ε

)(3C′)t−j−1

≤ ε

2tnx

≤ ε/2

This proves our claim, showing that for all good fixings, our output is highly condensed. We set our final
universal constant C to be 4 · C ′ and see that doing so only weakens the promise of our condenser.

We also need to be careful when invoking Lemma 7.9 since it requires that (X,A,Zj ,U|B|) should be
a flat distribution. While that may not be true, we can express X as a convex combination of flat sources
with the same min-entropy and since A is fixed and Zj and U|B| are independent and uniform, we can
express the joint distribution as a convex combination of flat sources, for each of them invoke the lemma,
and conclude that the original distribution will be condensed as well.

6 Transforming Low-Entropy oNOSF Sources to Uniform oNOSF Sources

In this section, we show how to transform low-entropy oNOSF sources into uniform oNOSF sources. Such
a transformation was also provided in [CGR24]. Here, we obtain improved bounds using a generalized
construction that allows us to obtain better tradeoffs and parameters in many more regimes of n, ℓ. Our
main theorem is:
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Theorem 6.1. Let d, g, gout, ℓ, n,m, k, ε be such that gout ≤ g − ℓ−g+2
d , n ≥ k ≥ log(nd − k) + md +

2 log(2gout/ε). Then, there exists a function f : ({0, 1}n)ℓ → ({0, 1}m)ℓ−1 such that for any (g, ℓ, n, k)-
oNOSF source X, there exists uniform (gout, ℓ− 1,m)-oNOSF source Y for which |f(X)−Y| ≤ ε.

The flexibility of setting d to any desired value allows us to obtain stronger results. For instance by
setting d to be a large constant, we can get the following transformation that works even when n is very
small compared to ℓ:

Corollary 6.2 (Transformation for small n). Let g, ℓ, n,m, k, ε, δ be such that δ ≤ 0.99, g = δℓ, n =
poly(log(δℓ/ε)), k = Ω(log(δℓ/ε)),m = Ω(k). Then, we can construct a function f : ({0, 1}n)ℓ →
({0, 1}m)ℓ−1 such that: for any (g, ℓ, n, k)-oNOSF source X, there exists uniform (0.99δℓ, ℓ− 1,m)-
oNOSF source Y such that |f(X)−Y| ≤ ε.

We additionally note that when we set d = ℓ, we recover the same construction as in [CGR24], matching
its parameters. This is most interesting in the regime when say ℓ = O(1) and n is arbitrarily growing.

Corollary 6.3 (similar parameters as Theorem 5.2 from [CGR24]). Let g, ℓ, n,m, k, ε be such that k ≥
1.01(log(nℓ) + 2 log(2(g − 1)/ε)),m = k/200ℓ. Then, we can construct a function f : ({0, 1}n)ℓ →
({0, 1}m)ℓ−1 such that for any (g, ℓ, n, k)-oNOSF source X, there exists uniform (g − 1, ℓ− 1,m)-oNOSF
source Y such that |f(X)−Y| ≤ ε.

To obtain these transformations, we will use two-source extractors. In fact, using explicit construction
of two-source-extractors, we also obtain an explicit transformation:

Corollary 6.4 (Explicit Transformation). There exists a universal constant C such that for all
d, g, gout, ℓ, n,m, k, ε satisfying gout ≤ g− ℓ−g+2

d , k ≥ poly(log(n)) +md+2 log(2gout/ε) +O(1),m ≤
poly(log n), ε ≥ n−Ω(1)/2gout. the following holds: There exists an explicit function f : ({0, 1}n)ℓ →
({0, 1}m)ℓ−1 such that for any (g, ℓ, n, k)-oNOSF source X, there exists uniform (gout, ℓ− 1,m)-oNOSF
source Y for which |f(X)−Y| ≤ ε.

We can instantiate this lemma even in the case of constant d and get an explicit transformation similar
to Corollary 6.2 with fewer output bits per block.

We will use the following main technical lemma that shows how to use two-source extractors to obtain
these transformations:

Lemma 6.5 (Main Lemma). Let d, g, gout, ℓ, n,m, k2Ext, k, ε2Ext be such that k ≥ k2Ext + m · d +
log(1/ε2Ext), gout ≤ g(d+1)−ℓ−2

d . Let 2Ext : {0, 1}d·n ×{0, 1}n → {0, 1}m be (k2Ext, ε2Ext)-average-case-
strong two-source extractor. Then, we can construct a function f : ({0, 1}n)ℓ → ({0, 1}m)ℓ−1 such that for
any (g, ℓ, n, k)-oNOSF source X, there exists (gout, ℓ− 1,m)-oNOSF source Y such that |f(X)−Y| ≤ ε
where ε = 2gout · ε2Ext.

Existentially, two-source-extractors with following parameters exist:

Lemma 6.6 (Lemma 5.4 from [CGR24]). Let n1, n2, k1, k2,m, ε be such that k1 ≤ n1, k2 ≤ n2,m = k1+
k2−2 log(1/ε)−O(1), k2 ≥ log(n1−k1)+2 log(1/ε)+O(1), and k1 ≥ log(n2−k2)+2 log(1/ε)+O(1).
Then, a random function 2Ext : {0, 1}n1 × {0, 1}n2 → {0, 1}m is a (k1, k2, ε)-two source extractor with
probability 1− o(1).

Using this, our main result follows:

Proof of Theorem 6.1. We use the two-source-extractors from Theorem 6.1 and apply it in Lemma 6.5.
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To make this transformation explicit, we can use the following construction of a two-source-extractor:

Theorem 6.7 ([CZ19, Mek17, Li16]). There exists a universal constant C ≥ 1 such that for all n, k,m, ε
with k ≥ logC(n),m ≤ n1/C , ε ≥ n−1/C , the following holds: There exists an explicit (n, k) two-source-
extractor 2Ext : {0, 1}n × {0, 1}n → {0, 1}m.

With this our explicit transformation follows:

Proof of Corollary 6.4. We use the explicit two-source-extractors from Theorem 6.7 and apply it in
Lemma 6.5.

6.1 Low-Entropy oNOSF Source to Uniform Using Two-Source-Extractors

In this subsection, we will prove Lemma 6.5. To do this, we will use two-source-extractors and average-case
two-source-extractors. Let’s first define them:

Definition 6.8. We say that 2Ext is (k1, k2, ε) average-case strong if

2Ext(X1,X2),W ≈ε Um,W

for every X1 and W such that H̃∞(X1 | W) ≥ k1 with X2 independent of X1 and H∞(X2) ≥ k2 and W.

This notion of average-case two-source-extractors allows us obtain a simpler chain rule:

Lemma 6.9. [DORS08] Let A, B, and C be distributions such that Supp(B) ≤ 2λ. Then H̃∞(A | B,C) ≥
H̃∞(A,B | C)− λ ≥ H̃∞(A | C)− λ.

Lemma 2.3 of [DORS08] shows that all two-source extractors are average-case-two-source extractors
with similar parameters.

Lemma 6.10. [DORS08] For any η > 0, if 2Ext is a (k1, k2, ε)-two-source extractor, then 2Ext is a (k1 +
log(1/η), k2, ε+ η))-average-case-two-source extractor.

With this, we will finally prove our main lemma that shows how to use two-source-extractors to obtain
our transformation:

Proof of Lemma 6.5. For −d ≤ i ≤ 0, define Xi to be the random variable that always outputs 0n. For
2 ≤ i ≤ ℓ, we output Oi = 2Ext(Xi−d ◦ · · · ◦Xi−1,Xi).

For 2 ≤ i ≤ ℓ, we say that Oi is good if (1) Xi is good and (2) there exists a block amongst
Xi−d, . . . ,Xi−1 that is good. We observe that if Oi is good, then |Oi −Um| ≤ ε2Ext. Let g′ be the
number of such good Oi. Let j1, . . . , jg be the indices of the good blocks in X. For 1 ≤ i ≤ g − 1, let
di = ji+1 − ji. We observe that g′ equals number of i such that di ≤ d. As

∑g−1
i=1 di ≤ ℓ and di ≥ 1, we

infer that g′ ≥ (g−1)(d+1)−ℓ
d . Hence, as long as gout ≤ ⌈g′⌉, we can guarantee the desired number of good

blocks in the output. This holds as long as gout ≤ g(d+1)−ℓ−2
d .

Using Lemma 6.10, we infer that 2Ext is (k2Ext+log(1/ε2Ext), 2ε2Ext)-average-case-two-source extrac-
tor. We will use this property below.

Now, using a hybrid argument we will show that

(O2, . . . ,Oℓ) ≈2gout·ε2Ext (Y2, . . . ,Yℓ)
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where Y = (Y2, . . . ,Yℓ) is a uniform (gout, ℓ,m)-oNOSF source that we will define as the proof goes. Let
Y(1) = (O2, . . . ,Oℓ) and for 2 ≤ i ≤ ℓ, let Y(i) = (O2, . . . ,Oi,Yi+1, . . . ,Yℓ). Hence, Y(ℓ) = Y. We
proceed by induction. We will show that for 2 ≤ i ≤ ℓ,∣∣∣Y(i) −Y(i−1)

∣∣∣ ≤ 2ε2Ext

whenever Oi is good and
Y(i) = Y(i−1)

whenever Oi is bad. By repeated applications of the triangle inequality, we will have shown that our output
is indeed close to some uniform oNOSF source with desired parameters.

We proceed by induction and let i ≥ 2 be arbitrary. If Oi is bad, then we let Yi = Oi. Then, we indeed
have that Y(i) = Y(i−1) as desired. Otherwise, we assume Oi is good. Then, it must be that Xi is good.
Let iprev be the index of the good block before Xi in X. Then, we know that i− iprev ≤ d. We first claim
that

H̃∞(Xiprev |O1, . . . ,Oi−1) ≥ k2Ext = k −m · d

Firstly, by construction, blocks O2,Oiprev−1 are functions of blocks X1, . . . ,Xiprev−1. As Xiprev is inde-
pendent of X1, . . . ,Xiprev−1, we infer that Xiprev is independent of O2,Oiprev−1. As 2Ext is average-case-
strong, we apply Lemma 6.9 to get that

H̃∞(Xiprev |O2, . . . ,Oi−1) ≥ k −m · (i− iprev) ≥ k −m · d = k2Ext + log(1/ε)

where for the second last inequality, we used the fact that i − iprev ≤ d. Moreover, as Xi is independent
of X1, . . . ,Xi−1 and O2, . . . ,Oi−1 are solely functions of X1, . . . ,Xi−1, we infer that Xi is independent
of O2, . . . ,Oi−1. Hence, conditioned on fixing O2, . . . ,Oi−1, Oi will be 2ε2Ext close to Um. This implies
Y(i−1) ≈2ε2Ext Y

(i) as desired. This shows that a good block in Y is uniform conditioned on all previous
blocks, .i.e., it is independent of all the blocks before it. This shows all bad blocks can only depend on good
blocks appearing before them and that good blocks are independent of each other. This implies Y is indeed
a uniform oNOSF source as desired.

7 Existence of Condensers for All Values of ℓ, n

We will show that there exist condensers for uniform (g, ℓ, n)-oNOSF sources for almost all settings of
ℓ, n, provided g > 0.5ℓ. Observe that a uniform (g, ℓ, n)-oNOSF source is also a uniform (g · s, ℓ · s, n/s)-
oNOSF source by simply dividing up all blocks into s parts. This implies that as n becomes smaller (relative
to ℓ), it gets harder to condense with the hardest case being n = 1. Our condenser will also be able to handle
the case of n = O(1) and ℓ arbitrarily growing:

Theorem 7.1 (Simplified version of Corollary 7.7). For all g, ℓ, n, ε, δ where g = 0.51ℓ, and 0.01ℓn ≥
2 log(ℓn/2ε) + O(1), there exists a condenser Cond : ({0, 1}n)ℓ → {0, 1}m such that for any uniform
(g, ℓ, n)-oNOSF source X, we have Hε

∞(Cond(X)) ≥ m−∆ where m = 0.005ℓn+200(ℓ+log(ℓn/2ε))+
O(1) and ∆ = 200(ℓ+ log(ℓn/2ε)) +O(1).

Note that when n is a large enough constant, m ≥ 100∆ and hence, the output entropy rate is at least
0.99.

In fact, we obtain a general result for all values of n, ℓ and when g = 0.5ℓ+ e where e ∈ N is arbitrary.
See Lemma 7.4 for the full tradeoff; to get slightly better parameters for small n, see Corollary 7.6.
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We combine the above condenser for uniform oNOSF sources with the transformation for low-entropy
oNOSF sources to uniform oNOSF sources from Corollary 6.2 to obtain the following condenser for low-
entropy oNOSF sources:

Corollary 7.2. Let g, ℓ, n,m, k, ε be such that g = 0.51ℓ, n = poly(log(ℓ/ε)), k = Ω(log(ℓ/ε)),m =
Ω(ℓ log(ℓ/ε)). Then, we can construct condenser Cond : ({0, 1}n)ℓ → {0, 1}m such that for any
(g, ℓ, n, k)-oNOSF source X, we have Hε

∞(Cond(X)) ≥ m−∆ where ∆ = O(ℓ+ log(1/ε)).

Remark 7.3. Previous condensers from [CGR24] could only show that condensers exist for uniform oNOSF
sources when ℓ = o(log n). They relied on existence of low-error two source extractors equipped with an
additional “regularity” property. Our constructions are much simpler, recover all their results with even
better parameters, and work for all values of n and ℓ, including the hardest case of n = O(1).

We provide our general construction of condensers in Section 7.1. To do that, we will require another
type of condenser for two uniform oNOSF sources where the bad bits of the second block are allowed to
depend on the bits of the first block. We provide this construction in Section 7.2.

7.1 Constructing Condensers for Uniform oNOSF Sources

In this subsection, we will construct the following general condenser for uniform oNOSF sources:

Lemma 7.4 (General uniform oNOSF source condensing). For all g, ℓ, n, ε, e where g ≥ (ℓ/2) + e, and
en ≥ 2 log(ℓn/2ε)+O(1), there exists a condenser Cond : ({0, 1}n)ℓ → {0, 1}m such that for any uniform
(g, ℓ, n)-oNOSF source X, we have Hε

∞(Cond(X)) ≥ m−∆ where m = en
2 +(2ℓ−e)

⌈
log(ℓn/2ε)+O(1)

e

⌉
+

log(1/ε) +O(1) and ∆ = (2ℓ− 2e)
⌈
log(ℓn/2ε)+O(1)

e

⌉
+ log(1/ε) +O(1).

To do this, we will use a condenser for two distinct uniform oNOSF sources where one source can
depend on the other:

Lemma 7.5. For all g, ℓ, nx, ny, ε where nx ≥ ny and gny ≥ log(ℓnx/ε) +O(1), there exists a condenser
Cond : ({0, 1}nx)ℓ × ({0, 1}ny)ℓ → {0, 1}m such that: For any uniform (g, ℓ, nx)-oNOSF source X and
uniform (g, ℓ, ny)-oNOSF source Y with the additional property that bad blocks in Y can depend on X as
well, we have that Hε

∞(Cond(X,Y)) ≥ m − ∆ where m = gnx + (2ℓ − g)ny + log(1/ε) + O(1) and
∆ = (2ℓ− 2g)ny + log(1/ε) +O(1).

We construct this condenser in Section 7.2. Using this, our main general condenser can be constructed
as follows:

Proof of Lemma 7.4. We split each block in X into 2 parts to obtain a uniform (2g, 2ℓ, n/2)-oNOSF source.
We call this resultant source X as well since it is the same distribution, just viewed differently. Let U =
(U1, . . . ,Uℓ) and where for 1 ≤ i ≤ ℓ, Ui = Xi. Let V = (V1, . . . ,Vℓ) where for 1 ≤ i ≤ ℓ, we define
Vi to be prefix of length nv of Xℓ+i where nv =

⌈
log(ℓn/2ε)+O(1)

e

⌉
.

We observe that U is a uniform (e, ℓ, n/2)-oNOSF source and V is a uniform (e, ℓ, nv)-oNOSF source
where bad bits in V can depend on U and the good bits in both sources are independent. We now define our
condenser Cond to be the condenser from Lemma 7.5 applied to sources U,V. Hence, we will have that
Hε

∞(Cond(U,V)) ≥ m−∆ where m = en/2 + (2ℓ− e)ny + log(1/ε) +O(1) and ∆ = (2ℓ− 2e)ny +
log(1/ε) +O(1) as desired.
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Our first corollary will apply to the regime that his the hardest to condense from, namely when n is very
small compared to ℓ, even when n = O(1) and ℓ is arbitrarily growing:

Corollary 7.6 (Small n). For all g, ℓ, n, ε, δ where g ≥ (0.5+δ)ℓ, ε ≥ 2−δℓ+O(1), and n ≤ 2δℓ/2, there exists
a condenser Cond : ({0, 1}n)ℓ → {0, 1}m such that for any uniform (g, ℓ, n)-oNOSF source X, we have
Hε

∞(Cond(X)) ≥ m−∆ where m = δℓn/2+(2−δ)ℓ+log(1/ε)+O(1) and ∆ = (2−δ)ℓ+log(1/ε)+O(1).

Proof. We observe that
⌈
log(ℓn/2ε)+O(1)

e

⌉
= 1 and directly apply Lemma 7.4.

We also obtain the following general tradeoff for larger n that may be growing with ℓ or even when
ℓ = O(1) and n growing alone (this applies to all n but is most interesting when n is large since Corollary 7.6
provides better tradeoff for small n).

Corollary 7.7 (Larger n). For all g, ℓ, n, ε, δ where g ≥ (0.5 + δ)ℓ, and δℓn ≥ 2 log(ℓn/2ε) +O(1), there
exists a condenser Cond : ({0, 1}n)ℓ → {0, 1}m such that for any uniform (g, ℓ, n)-oNOSF source X, we
have Hε

∞(Cond(X)) ≥ m−∆ where m = δℓn
2 +(2/δ−1)(log(ℓn/2ε)+O(1))+(2−δ)ℓ+log(1/ε)+O(1)

and ∆ = (2/δ − 1)(log(ℓn/2ε) +O(1)) + 2(2− δ)ℓ+ log(1/ε) +O(1).

Proof. We observe that
⌈
log(ℓn/2ε)+O(1)

e

⌉
≤ 1 + log(ℓn/2ε)+O(1)

e and apply that to the condenser from
Lemma 7.4.

7.2 Condenser for Two Uniform oNOSF Sources

In this subsection, we will prove Lemma 7.5. To construct the claimed condenser, we will use the following
folklore result regarding existence of excellent seeded condensers (e.g., see Corollary 3 of [GLZ24]).

Theorem 7.8. For all n, k, d, ε such that d ≥ log(n/ε) + O(1), there exists a seeded condenser sCond :
{0, 1}n × {0, 1}d → {0, 1}m such that for all X ∼ {0, 1}n with H∞(X) = k, we have Hε

∞(Cond(X)) ≥
k + d where m = k + d+ log(1/ε) +O(1).

We will also use the following result from [CGR24] that states an adversary can’t make things too
bad if it controls very few bits. We note that similar lemmas have been useful in previous construction of
condensers [BCDT19, BGM22, GLZ24]:

Lemma 7.9 (Lemma 6.18 in [CGR24]). Let X ∼ {0, 1}n be an arbitrary flat distribution and let Cond :
{0, 1}n → {0, 1}m be such that Hε

∞(Cond(X)) ≥ k. Let G ⊂ [n] with |G| = n − b be arbitrary. Let
XG ∼ {0, 1}n−b be the projection of X onto G. Let X′ ∼ {0, 1}n be the distribution where the output bits
defined by G equal XG and remaining b bits are deterministic functions of the n− b bits defined by G under
the restriction that Supp(X′) ⊂ Supp(X). Then, Hε′

∞(Cond(X′)) ≥ k − b where ε′ = ε · 2b.

With this, we are ready to provide the construction of condensers for two uniform oNOSF sources:

Proof of Lemma 7.5. Let sCond : ({0, 1}nx)ℓ × ({0, 1}ny)ℓ → {0, 1}m be lossless condenser guaranteed
from Theorem 7.8 with εsCond = ε · 2−(ℓ−g)ny . We define Cond(x, y) = sCond(x, y).

Let Ounif = Cond(X,Uℓny) and Oadv = Cond(X,Y). We argue that Ounif will be highly condensed
and since the adversary controls so few bits in Y, Oadv will be condensed as well.

We first see that by the property of the seeded condenser, HεsCond∞ (Ounif ) ≥ gnx+ℓny. Next we observe
that Oadv can be obtained from Ounif by an adversary controlling b = (ℓ − g)ny bits from (X,Uℓny) to
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obtain (X,Y) and considering the output of sCond. We apply Lemma 7.9 which allows us to compare
output entropy in such scenarios and obtain that

HεsCond·2b
∞ (Oadv) ≥ Hε

∞(Ounif )− b ≥ (gnx + ℓny)− ((ℓ− g)ny) = m−∆.

As εsCond · 2b = ε, we indeed have that Hε
∞(Oadv) ≥ m−∆ as desired.

8 Extractors for oNOSF and oNOBF Sources via Leader Election Protocols

In this section, we provide a generic way to transform leader election and coin flipping protocols into ex-
tractors for oNOSF sources and oNOBF sources. To do so, we must formally define the online influence of
coalitions.

Definition 8.1. For any function f : Σℓ → {0, 1}, and any B ⊂ [ℓ], where B = {i1 < i2 < . . . < ik},
define oIB(f) as follows: an online adversary A samples a distribution X in online manner. It starts by
sampling the variables x1, x2, . . . , xi1−1 independently and uniformly from Σ, then picking the value of xi1
depending on x<i1 . Next, the variables xi1+1, . . . , xi2−1 are sampled independently and uniformly from Σ,
and A sets the value of xi2 based on all variables set so far, and so on. Define the advantage of A to be
advf,B(A) = |E[f(X)]−E[f(Uℓ)]|. Then oIB(f) is defined to be maxA{advf,B(A)}, where the maximum
is taken over all online adversaries A that control the bits in B.

We say a function f is (b, ε)-online-resilient if oIB(f) ≤ ε for every set B ⊂ [ℓ] of size at most b.

We note that Definition 8.1 is a special case of Definition 1.5, for Σ = {0, 1} and |B| = 1.
Now we return to our transformation from leader election and coin flipping protocols into extractors for

oNOSF sources and oNOBF sources. Conceptually, given a leader election protocol, we can use an oNOSF
source to simulate the protocol and then have the elected leader output its last block. We formalize this
below.

Lemma 8.2. For any integers r > 1, ℓ > 0 and any δ > 0, let π be an (r − 1)-round protocol over ℓ
players that send n bits per round such that for any δℓ bad players, the protocol elects a good leader with
probability 1− ε.

Then, there exists an explicit function Ext : ({0, 1}n)ℓr → {0, 1}n such that for any (g, ℓr, n)-oNOSF
source X where g ≥ ℓr − δℓ, we have Ext(X) ≈ε Un.

Instantiating our lemmas with the leader election protocols from Section 9, we construct explicit extrac-
tors for oNOBF sources and uniform oNOSF sources:

Theorem 8.3. There exists an explicit function Ext : {0, 1}ℓ → {0, 1} such that for any δ and any (g, ℓ)-
oNOBF source X where g ≥ ℓ − δℓ/ log(ℓ), we have Ext(X) ≈ε U1 where ε = Cδ + 12 (Cδ)3/2 +
log(ℓ)−1/3 where C is a large universal constant.

Proof. This directly follows by instantiating Lemma 8.2 with the protocol guaranteed from Lemma 9.1.

By using a the leader election protocol of Lemma 9.5 with multiple bits per round, we construct extrac-
tors for oNOSF sources:

Theorem 8.4. There exists an explicit function Ext : ({0, 1}n)ℓ → {0, 1}n such that for any constant δ and
any (g, ℓ, n)-oNOSF source X where g ≥ ℓ − δℓ/ log∗(ℓ) and n ≥ log(ℓ), we have Ext(X) ≈ε Un where
ε = Cδ + 13 (Cδ)3/2.
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Proof. This directly follows by instantiating Lemma 8.2 with the protocol guaranteed from Lemma 9.5.

We finally prove our lemma regarding obtaining extractors for oNOSF Sources from leader election
protocols:

Proof of Lemma 8.2. Define function Ext as follows: On input (y1, . . . , yr) where yi ∈ ({0, 1}n)ℓ, let
yi,j ∈ {0, 1}n denote the j’th block of yi. Simulate the protocol π with the message of the j’th player in
round i being yi,j , where 1 ≤ i ≤ r − 1 and 1 ≤ j ≤ ℓ. Let j∗ ∈ [ℓ] be the leader that is elected by π; then
output yr,j∗

Let us analyze Ext on some source Y ∼ ({0, 1}n)ℓr. Let the bad symbols in Y be given by A ⊂ [ℓ]× [r]
where |A| ≤ δℓ. Let X ∼ (({0, 1}n)ℓ)r be the exact same source as Y. We write X = {Xi,j}1≤i≤r,1≤j≤ℓ

and interpret it as the distribution where Xi,j denotes the random bits of player j in round i. Call Xi,j a
bad block if the corresponding index (i, j) is in A, i.e., the block is bad in Y. Since a bad block in Y can
only depend on blocks before it, the corresponding bad block in X satisfies the criteria for being bad in X;
this is because a bad block in the protocol setting is allowed to depend on all blocks in the same or previous
rounds. Thus X has at most δℓ bad blocks as well. By declaring the player corresponding to the bad block
in X as bad, we obtain that the distribution X can be simulated by at most δℓ bad players. Formally, for
1 ≤ i ≤ r, let Bi ⊂ [ℓ] be the set of bad blocks in X among all blocks in round i. Let B = ∪r

i=1Bi. We
declare all players in B as bad players. Finally, observe that

|B| ≤
r∑

i=1

|Bi| = |A| = δℓ

as desired. Thus the correctness of π implies that after (r− 1) rounds, the chosen leader j∗ does not belong
to B with probability at least 1 − ε. By construction, it follows that (r, j∗) /∈ A whenever j∗ /∈ B. Thus,
the output of the extractor, Yr,j∗ is uniform on n bits, with probability at least 1− ε.

9 High Probability Leader Election Protocols

We use this section to provide the leader election protocols that are used in Section 8. In Section 9.1, we
present leader protocols where each player is allowed to send one bit per round. We tackle the case where
players can send multiple bits per round in Section 9.2.

9.1 One Bit per Round

We will construct leader election protocols with the following guarantees:

Lemma 9.1. There exists a universal constant C and an explicit protocol over ℓ players, where each player
sends n = 1 bit per round, that lasts for C log(ℓ) rounds such that for any δ > 0, if δℓ players are bad, then
a good leader is chosen with probability ≥ 1− ε where ε = δ + 12δ3/2 + log(ℓ)−1/3.

We will use the following protocol from [AN93]:

Lemma 9.2. There exists a protocol π over ℓ players where each player sends at most 1 bit per round,
that lasts for O(ℓ) rounds such that if δℓ players are bad for δ ≤ 1/4, then a good leader is chosen with
probability ≥ 1− ε where ε = δ + 12δ3/2. Furthermore, this protocol can be explicitly constructed in time
2O(ℓ).

We will also need the Chernoff bound:
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Lemma 9.3. Let X1, . . . ,Xn be independent random variables taking values in {0, 1}. Let X =
∑n

i=1Xi

and let µ = E[X]. Then, Pr[X ≤ (1− δ)µ] ≤ e−δ2µ/2.

Proof of Lemma 9.1. Our protocol will have two stages. In the first stage, we will use the lightest bin
protocol from [Fei99] until the number of players is small enough, and then in the second stage we use the
protocol from Lemma 9.2. Let C0 be a large constant that we set later. In particular, our final protocol will
be:

1. Let P1 = [ℓ].

2. In round i of stage 1, all players in Pi will present their value in {0, 1} and based on that, they will be
divided into P 0

i , P
1
i .

3. Set Pi+1 equal to the smaller set among P 0
i , P

1
i (breaking ties arbitrarily).

4. Repeat this until the number of players becomes at most C0 log ℓ. Let this happens after r rounds.
This marks the end of the first stage.

5. In the second stage, apply the protocol from Lemma 9.2 to Pr+1 and output the leader from that
protocol.

We now analyze this protocol. We argue that at the end of the first stage, with high probability, the
fraction of good players in Pr+1 will be at least (1− δ)− o(1). For the second stage, the correctness of the
protocol follows from Lemma 9.2.

For 1 ≤ i ≤ r + 1, let gi be the number of good players in Pi and let pi = |Pi|. As we always choose
the lightest bin at each stage, pi+1 ≤ pi/2. Hence, we infer that pi ≤ 2−i+1 · ℓ. Let g1 = g. We next lower
bound gi:

Claim 9.4. With probability at least 1 − exp(−(1/10) · (g/2r)), it holds that for all 1 ≤ i ≤ r + 1,
gi ≥ g

2i
− 5

( g
2i

)2/3.

We prove this claim using concentration bounds later. Using this claim, we see that in Pr+1, the number
of good players will be at least

(1− δ)ℓ

2r
− 5

(
(1− δ)ℓ

2r

)2/3

out of pr+1 ≤ ℓ
2r many surviving players. In particular, gr+1 ≥ (1−δ)pr+1−5p

2/3
r+1. So, in stage 2, we have

pr+1 many players remaining where the fraction of bad players is δ′ = δ + 5p
−1/3
r+1 . Applying Lemma 9.2

with these parameters, we infer that probability of electing a good leader is at least

1−
(
δ + 5p

−1/3
r+1 + 12

(
δ + 5p

−1/3
r+1

)3/2)
≥ 1− δ − 12δ3/2 − 6p

−1/3
r+1

where the last inequality follows because pr+1 ≥ ω(1). Hence, our overall probability of electing a good
leader is at least

1− δ − 12δ3/2 − 6p
−1/3
r+1 − exp(−(1/10) · (1− δ)pr+1) ≥ 1− δ − 12δ3/2 − log(ℓ)−1/3 = 1− ε

where the last inequality follows because we let pr+1 = C0 log(ℓ) for a large constant C0. We check that
the number of rounds in the first stage is no more than log(ℓ) and in stage 2, as guaranteed by Lemma 9.2,
the number of rounds is no more than O(log(ℓ)). These together give us our universal constant C that we
use in the claim.
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Proof of Claim 9.4. Fix either of the two bins. We apply Lemma 9.3 with δ = µ−1/3 to infer that with
probability at least 1− exp(−(gi/2)

1/3/2), it holds that the number of good players in that bin is ≥ gi/2−
(gi/2)

2/3. Applying this to both bins, we infer that with probability at least 1 − 2 exp(−(gi/2)
1/3/2), it

holds that gi+1 ≥ gi/2− (gi/2)
2/3. By unravelling this recurrence and lower bounding, we see that

gi+1 ≥
g

2i
−

i∑
j=1

(g/2j)2/3

2i−j

Hence,

gi+1 ≥
g

2i
− g2/3

i∑
j=1

2j/3−i

=
g

2i
−
( g

2i

)2/3 i∑
j=1

(21/3)j−i

=
g

2i
−
( g

2i

)2/3 i−1∑
j=0

(2−1/3)j

≥ g

2i
−
( g

2i

)2/3 1

1− 2−1/3

≥ g

2i
− 5

( g

2i

)2/3
.

By union bound, the overall probability that the claim holds is at least

1−
r+1∑
i=1

2 exp(−(gi/2)
1/3/2) ≥ 1− exp(−gr+1/6)

≥ 1− exp(−(1/10) · (g/2r)).

9.2 Multiple Bits per Round

If the players are allowed to send O(log ℓ) bits per round, then the number of rounds can be significantly
improved.

Lemma 9.5. There exists a universal constant C and an explicit protocol over ℓ players where each player
sends n = log ℓ bits per round, that lasts for C · log∗ ℓ rounds such that for any constant δ > 0, if δℓ players
are bad, then a good leader is chosen with probability 1− ε where ε = δ + 13δ3/2.

Proof. Our protocol and proof is similar to Lemma 9.1 with the key difference being that the larger value
of n allows us to increase the number of bins and simplify our analysis. Here, we end up being verbose and
repeating ourselves for clarity. Just like earlier, our protocol will have two stages, one using the lightest bin
protocol from [Fei99] until the number of players is small enough and then resorting to the protocol from
Lemma 9.2. Let C0, C1 be large constants that we set later. Our final protocol will be:

1. Let P1 = [ℓ].

2. In round i of stage 1, all players in Pi will present a number between 1 and bi = |Pi| / log(|Pi|)C0 .
Based on this value, they will be divided into setsP j

i where j ∈ [bi].

44



3. Set Pi+1 equal to the smallest set amongst P 1
i , . . . , P

bi
i (breaking ties arbitrarily).

4. Repeat this until the number of players becomes at most exp
(
(log(1/δ))C1

)
(stop right before it goes

below this value). Let this happens after r rounds. This marks the end of the first stage.

5. In the second stage, apply the protocol from Lemma 9.2 to Pr+1 and output the leader from that
protocol.

We now analyze this protocol. We argue that at the end of the first stage, with high probability, the
fraction of good players in Pr+1 will be at least (1− δ)− o(1). For the second stage, the correctness of the
protocol follows from Lemma 9.2.

For 1 ≤ i ≤ r + 1, let gi be the number of good players in Pi and let pi = |Pi|. As we always choose
the lightest bin at each stage, pi+1 ≤ pi/bi. Hence, we infer that pr+1 ≤ ℓ/

∏r
i=1 bi. Let g = g1. We first

bound gi:

Claim 9.6. For any constant C1, with probability at least 1 − exp(− log(pr+1)
1/5), it holds that for all

1 ≤ i ≤ r + 1, gi ≥ g∏i−1
j=1 bj

− 2

(
g∏i−1

j=1 bj

)2/3

.

We prove this claim using concentration bounds later, and we remark that C0 will be a growing function
of C1. Using this claim, we see that in Pr+1, the number of good players will be at least

(1− δ)ℓ∏r
i=1 bi

− 2

(
(1− δ)ℓ∏r

j=1 bi

)2/3

out of pr+1 ≤ ℓ∏r
i=1 bi

many surviving players. In particular, gr+1 ≥ (1− δ)pr+1 − 2p
2/3
r+1.

So, in stage 2, we have pr+1 many players remaining where the fraction of bad players is δ′ = δ+2p
−1/3
r+1 .

Applying Lemma 9.2 with these parameters, we infer that probability of electing a good leader is at least

1−
(
δ + 2p

−1/3
r+1 + 12

(
δ + 2p

−1/3
r+1

)3/2)
≥ 1− δ − 12δ3/2 − 3p

−1/3
r+1

where the last inequality follows because pr+1 ≥ ω(1). Hence, our overall probability of electing a good
leader is at least

1−δ−12δ3/2−3p
−1/3
r+1 −exp(− log(pr+1)

1/5) ≥ 1−δ−12δ3/2−exp(− log(pr+1)
1/6) ≥ 1−δ−13δ3/2 = 1−ε

where the first inequality follows because C1 is a large enough universal constant, and δ < 1/4. We check
that the number of rounds in the first stage is no more than O(log∗(ℓ)) and in stage 2, as guaranteed by
Lemma 9.2, the number of rounds is no more than c log∗(ℓ), where c is a constant that just depends on δ and
C1 (and is independent of ℓ). These together give us our universal constant C of Lemma 9.5.

Proof of Claim 9.6. Fix any of the bi bins in round i. We apply Lemma 9.3 with δ = µ−1/3 to infer that with
probability at least 1− exp(−(gi/bi)

1/3/2), it holds that the number of good players in that bin is ≥ gi/bi−
(gi/bi)

2/3. Applying this to all bi bins, we infer that with probability at least 1 − bi exp(−(gi/bi)
1/3/2), it

holds that gi+1 ≥ gi/bi − (gi/bi)
2/3. By unraveling this recurrence and lower bounding, we see that

gi+1 ≥
g∏i

j=1 bj
−

i∑
j=1

(g/
∏j

k=1 bk)
2/3∏i

k=j+1 bk
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For ease of notation, let α(u, v) =
∏v

j=u bj . Hence,

gi+1 ≥
g

α(1, i)
− g2/3

i∑
j=1

(1/α(1, j))2/3

α(j + 1, i)

=
g

α(1, i)
−
(

g

α(1, i)

)2/3 i∑
j=1

(α(1, i)/α(1, j))2/3

α(j + 1, i)

=
g

α(1, i)
−
(

g

α(1, i)

)2/3 i∑
j=1

α(j + 1, i)−1/3.

We observe that each term in the summand is exponentially decreasing. Hence, we can upper bound the

the sum by 2
(

g
α(1,i)

)2/3
.

This means

gi+1 ≥
g

α(1, i)
− 2

(
g

α(1, i)

)2/3

.

By union bound, the overall probability that the claim holds is at least

1−
r+1∑
i=1

bi exp(−(gi/bi)
1/3/2) = 1−

r+1∑
i=1

exp(−(gi/bi)
1/3/2 + log(bi)).

By our choice of parameters, in particular by letting C0 to be a large enough constant, we can ensure that
gi/bi ≥ poly(bi). Thus, we can ensure that the probability that the claim holds is at least

1−
r+1∑
i=1

exp(−(gi/bi)
1/3/2 + log(bi)) ≥ 1−

r+1∑
i=1

exp(− log(pi)
1/4)

where we get the constant 1/4 by appropriately increasing C0 and we used the fact that δ < 1/4. As pi is
exponentially decreasing, we infer that the overall probability that the desired conclusion holds is at least

1− exp(− log(pr+1)
1/5).

10 Online Influence and Extraction Lower Bounds

Towards proving lower bounds on the possiblity of extraction from oNOSF sources, we introduce a new,
natural notion of influence of Boolean functions, which we call online influence. For simplicity, we first start
by considering the class of oNOBF sources, which corresponds to uniform (g, ℓ, n = 1)-oNOSF sources.

We believe this is an interesting new measure and is worth studying in its own right, and we refer the
reader to Example 10.6 for a couple of interesting examples. For monotone functions (and more gener-
ally, unate functions), it is not hard to see that online influence equals the usual notion of influence (see
Lemma 10.4 for a proof). Thus, to find interesting properties of online influence (compared to standard
influence, Definition 10.1), one must look at non-monotone (in fact, non-unate) Boolean functions.

The following natural question arises towards our goal of proving extractor lower bounds: for a function
f , what is the maximum online influence out of all n bits? For the usual notion of influence, this question
was resolved by the well-known theorem of [KKL88], who showed there always exists a bit with influence
at least Var(f) · Ω

(
log ℓ
ℓ

)
.
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We show that surprisingly, there exists a balanced function, namely the address function, where every
bit has online influence at most O

(
1
ℓ

)
(see Lemma 10.12 for a proof). This provides a separation between

the usual notion of influence and online influence.

Organization We formally define the notion for Boolean functions and discuss some basic properties
in Section 10.1. We establish tight bounds on the online influence for general functions, including a Poincaré
style inequality, in Section 10.2. We provide an example exhibiting a separation between maximum (stan-
dard) influence and online influence in Section 10.3. Finally, in Section 10.4, we extend the definition of
online influence to subsets of coordinates (and functions from Σn → {0, 1}m, for arbitrary alphabet Σ).
This allows us to prove the required lower bounds on extraction (and condensing) from oNOSF sources.

Notation For convenience, we introduce some notation that we use for the rest of this section. For
any bit b ∈ {0, 1}, let e(b) = (−1)b. For any Boolean function f : {0, 1}ℓ → {0, 1}, let e(f) denote the
function e(f)(x) = (−1)f(x).

10.1 Basic Properties

In this section, for a function f : {0, 1}ℓ → {0, 1}, we will freely use commas to indicate concatenation in
its input. For example, for x ∈ {0, 1}i−1 and y ∈ {0, 1}ℓ−i, we write f(x, 1, y) to indicate f applied to the
tuple (x1, . . . , xi−1, 1, y1, . . . , yℓ−i).

When asking about the influence of a single bit, such as the i-th bit, previous work has specifically
looked at whether the i-th bit still has the ability to change the output of some function f : {0, 1}ℓ → {0, 1}
after all other ℓ− 1 bits have been set. In other words, if the i-th bit is a non-oblivious adversary (that is, it
can look at the values of all the other bits before setting its own value), how much power does it have? This
has led to a standard notion of influence defined below.

Definition 10.1 (Influence). For a function f : {0, 1}ℓ → {0, 1}, the influence of the i-th bit is

Ii[f ] = E
x∼Ui−1
y∼Un−i

[|f(x, 1, y)− f(x, 0, y)|]

and the total influence is

I[f ] =

ℓ∑
i=1

Ii[f ].

However, in our setting of oNOSF sources and oNOBF sources, an adversarial bit can only depend on
the bits that come before it. This motivates our new definition of online influence, where we prevent the i-th
bit from depending on bits that come after it by independently sampling subsequent bits.

Definition 10.2 (Online influence). For a function f : {0, 1}ℓ → {0, 1}, the online influence of the i-th bit
is

oIi[f ] = E
x∼Ui−1

[∣∣∣∣ E
y∼Uℓ−i

[f(x, 1, y)]− E
y∼Uℓ−i

[f(x, 0, y)]

∣∣∣∣]
and the total online influence is

oI[f ] =

ℓ∑
i=1

oIi[f ].
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Remark 10.3. It is easy to see that for any f : {0, 1}ℓ → {0, 1}, and any i ∈ ℓ, we have oIi(f) ≤ Ii(f).
Further, they are the same for the last bit: Iℓ[f ] = oIℓ[f ].

Many results for the influence of a function are based on working with monotone functions. In contrast,
it turns out that monotone functions are not very interesting for online influence as the definition collapses
to that of regular influence.

Lemma 10.4. If f : {0, 1}ℓ → {0, 1} is monotone, then oIi[f ] = Ii[f ] for all i ∈ [ℓ].

Proof. Using the monotonicity of f , note that for any x ∈ {0, 1}i−1 and any y ∈ {0, 1}ℓ−i, f(x, 1, y) ≥
f(x, 0, y). Thus, oIi[f ] = Ex∼Ui−1,y∼Uℓ−i

[f(x, 1, y)− f(x, 0, y)] = Ii(f).

Thus, any difference between influence and online influence can only be demonstrated by non-monotone
functions.

10.2 A Poincaré Inequality for Online Influence

Similar to regular influence, we prove a Poincaré-style inequality holds for online influence, and also provide
an upper bound on online influence. The following is the main result of this subsection.

Theorem 10.5. For any f : {0, 1}ℓ → {0, 1}, we have Var(e(f)) ≤ oI[f ] ≤
√

ℓVar(e(f)).

Before proving the above result, we observe that the MAJORITY and PARITY functions provide tight
examples for the upper and lower bound respectively for Theorem 10.5.

Example 10.6. The majority function on ℓ bits Majℓ : {0, 1}ℓ → {0, 1}, is monotone, and hence by by
Lemma 10.4, has total online influence oI[Majℓ] = I[Majℓ] =

√
2ℓ/π + O(1/

√
ℓ), achieving the upper

bound (up to constants).
The PARITY function on ℓ bits

⊕
ℓ : {0, 1}ℓ → {0, 1} for i ∈ [ℓ− 1] has online influence oIi[

⊕
ℓ] = 0,

while oIℓ[
⊕

ℓ] = 1. Thus, PARITY meets the lower bound of Theorem 10.5. We note that this is starkly
different from regular influence where Ii[

⊕
ℓ] = 1 for all i.

To prove Theorem 10.5, we will use Boolean Fourier analysis. For any f : {0, 1}n → {0, 1}, e(f)
has a unique Fourier expansion given by: e(f(x)) =

∑
S⊆[ℓ] f̂(S)χS(x), where χS(x) = (−1)

∑
i∈S xi

and f̂(S) = Ey∼Uℓ
[e(f)(y)χS(y)].14 Also recall that f̂(∅) = Ex∼Un [e(f)(x)], Var(e(f)) =∑

S⊆[ℓ],S ̸=∅ f̂(S)
2, and for any S ̸= T , Ex∼Uℓ

[χS(x)χT (x)] = 0. For more background, we refer the
reader to the excellent book by O’Donnell [ODo14].

The following is our key lemma, from which Theorem 10.5 is easy to derive.

Lemma 10.7. For any f : {0, 1}ℓ → {0, 1} and i ∈ [ℓ], oIi(f)2 ≤
∑

S⊆[i]
S∋i

f̂(S)2 ≤ oIi(f).

We first derive Theorem 10.5 using Lemma 10.7.

Proof of Theorem 10.5. We start with the lower bound. We have,

oI[f ] =

ℓ∑
i=1

oIi[f ] ≥
ℓ∑

i=1

∑
S⊆[i]
S∋i

f̂(S)2 =
∑
S⊆[ℓ]
S ̸=∅

f̂(S)2 = Var(e(f)),

14For simplicity of notation, we use f̂(S) for ê(f)(S).
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where the inequality uses Lemma 10.7.
The upper bound is easy to derive as well.

oI[f ] =
ℓ∑

i=1

oIi[f ]

≤

√√√√ℓ

ℓ∑
i=1

(oIi[f ])
2 (Cauchy-Schwarz inequality)

≤

√√√√√√ℓ

ℓ∑
i=1

∑
S⊆[i]
S∋i

f̂(S)2 (Lemma 10.7)

=
√

ℓVar(e(f)).

This completes the proof.

We now focus on proving Lemma 10.7. We need the following useful characterization of oIi(f).

Claim 10.8. For any f : {0, 1}ℓ → {0, 1}, we can write the online influence of its i-th bit as

oIi[f ] = E
x∼Ui−1


∣∣∣∣∣∣∣∣
∑
T⊆[i]
T∋i

f̂(T )χT\{i}(x)

∣∣∣∣∣∣∣∣
 .

Assuming the above claim, let us prove Lemma 10.7. We supply the proof of Claim 10.8 below.

Proof of Lemma 10.7. We first prove the inequality oIi(f) ≥
∑

S⊆[i]
S∋i

f̂(S)2. Since for any x ∈ {0, 1}i−1

we have
∣∣Ey∼Uℓ−i

[e(f |x,1)(y)]− Ey∼Uℓ−i
[e(f |x,0)(y)]

∣∣ = 2

∣∣∣∣∑T⊆[i]
T∋i

f̂(T )χT\{i}(x)

∣∣∣∣ by Claim 10.8,

and the fact that Ey∼Uℓ−i
[e(f |x,b)(y)] is in [−1, 1] for all x ∈ {0, 1}i−1, b ∈ {0, 1}, it follows that∣∣∣∣∑T⊆[i]

T∋i
f̂(T )χT\{i}(x)

∣∣∣∣ is in [0, 1].

Thus,

oIi[f ] = E
x∼Ui−1


∣∣∣∣∣∣∣∣
∑
T⊆[i]
T∋i

f̂(T )χT\{i}(x)

∣∣∣∣∣∣∣∣


≥ E
x∼Ui−1


∑

T⊆[i]
T∋i

f̂(T )χT\{i}(x)


2

=
∑
T⊆[i]
T∋i

∑
S⊆[i]
S∋i

f̂(T )f̂(S) · E
x∼Ui−1

[χT\{i}(x)χS\{i}(x)]
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=
∑
S⊆[i]
S∋i

f̂(S)2.

Next, we prove oIi(f)
2 ≤

∑
S⊆[i]
S∋i

f̂(S)2. We have,

oIi[f ]
2 =

 E
x∼Ui−1


∣∣∣∣∣∣∣∣
∑
T⊆[i]
T∋i

f̂(T )χT\{i}(x)

∣∣∣∣∣∣∣∣



2

(Claim 10.8)

≤ E
x∼Ui−1


∑

T⊆[i]
T∋i

f̂(T )χT\{i}(x)


2

=
∑
S⊆[i]
S∋i

f̂(S)2 (derived above).

Next, we show how to rewrite oIi[f ] in terms of the Fourier coefficients of f .

Proof of Claim 10.8. We begin by defining the restriction f |x,b(y) = f(x, b, y) for x ∈ {0, 1}i−1, b ∈
{0, 1}, and y ∈ {0, 1}ℓ−i. Thus, we can rewrite oIi[f ] as

oIi[f ] =
1

2
· E
x∼Ui−1

[∣∣∣∣ E
y∼Uℓ−i

[e(f |x,1)(y)]− E
y∼Uℓ−i

[e(f |x,0)(y)]
∣∣∣∣] . (4)

We would like to put the above expression in terms of Fourier coefficients of f . This motivates us to find
the Fourier coefficients of f |x,b(y) in terms of those of f , which we do via computation. We manipulate the
Fourier expansion of f(z) for z = (x, b, y) ∈ {0, 1}ℓ to get

e(f)(z) =
∑
S⊆[ℓ]

f̂(S)χS(z)

=
∑
S⊆[ℓ]

f̂(S)χS(x, b, y)

=
∑
S⊆[ℓ]

f̂(S)χS∩[i](x, b)χS\[i](y)

=
∑

S⊆{i+1,...,ℓ}

∑
T⊆[i]

f̂(S ∪ T )χT (x, b)

χS(y). (5)

We also have that

e(f)(z) = e(f)(x, b, y)

= e(f |x,b)(y)

=
∑

S⊆{i+1,...,ℓ}

f̂ |x,b(S)χS(y). (6)
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Therefore, Equation (5) and Equation (6) allow us to conclude that

f̂ |x,b(S) =
∑
T⊆[i]

f̂(S ∪ T )χT (x, b).

Thus, we have

E
y∼Uℓ−i

[e(f |x,b)(y)] = f̂ |x,b(∅)

=
∑
T⊆[i]

f̂(T )χT (x, b)

=
∑
T⊆[i]
T∋i

f̂(T )χT\{i}(x)b+
∑

T⊆[i−1]

f̂(T )χT (x).

We now plug this in to our definition of oIi[f ] in Equation (4) to get a simplified expression. Recalling
the fact that for any x ∈ {0, 1}n, f(x) = (1− e(f)(x))/2, we have

oIi[f ] =
1

2
E

x∼Ui−1

[∣∣∣∣ E
y∼Uℓ−i

[e(f |x,1)(y)]− E
y∼Uℓ−i

[e(f |x,0)(y)]
∣∣∣∣]

=
1

2
E

x∼Ui−1


∣∣∣∣∣∣∣∣
−

∑
T⊆[i]
T∋i

f̂(T )χT\{i}(x) +
∑

T⊆[i−1]

f̂(T )χT (x)

−

∑
T⊆[i]
T∋i

f̂(T )χT\{b}(x) +
∑

T⊆[i−1]

f̂(T )χT (x)


∣∣∣∣∣∣∣∣


= E
x∼Ui−1


∣∣∣∣∣∣∣∣
∑
T⊆[i]
T∋i

f̂(T )χT\{i}(x)

∣∣∣∣∣∣∣∣
 .

10.3 A Tight Example for Maximum Online Influence

The lower bound on total online influence from Theorem 10.5 allows us to conclude that for balanced
functions, there must be at least one bit with online influence Ω(1/ℓ). We can phrase this in terms of
maximum influence.

Definition 10.9 (Maximum influence). For a function f : {0, 1}ℓ → {0, 1}, we define its maximum influ-
ence as Imax[f ] = maxi∈[ℓ] Ii[f ] and its maximum online influence as oImax[f ] = maxi∈[ℓ] oIi[f ].

In terms of maximum online influence, we get the following corollary from Theorem 10.5.

Corollary 10.10. For a function f : {0, 1}ℓ → {0, 1}, we have oImax[f ] ≥ Var(e(f))/ℓ.

Proof. By Theorem 10.5 we have that oI[f ] =
∑ℓ

i=1 oIi[f ] ≥ Var(e(f)), and the conclusion follows via
an averaging argument.

We show that the bound in Corollary 10.10 is in fact tight (up to constants), as witnessed by the address
function.
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Definition 10.11. We define the address function Addrℓ : {0, 1}log(ℓ)+ℓ → {0, 1} as follows: For z ∈
{0, 1}log(ℓ)+ℓ, split z up as z = (x, y) with x of length log(ℓ) and y of length ℓ. Then interpret x as
a binary number which gives us an index i(x) ∈ [ℓ]. The output of Addrℓ is the i(x)-th bit of y, so
Addrℓ(x, y) = yi(x).

Lemma 10.12. Let m = ℓ+ log ℓ and Addrℓ be the function defined above. Then,

• for 1 ≤ i ≤ log ℓ, oIi[Addrℓ] = 0.

• for log ℓ < i ≤ m, oIi[Addrℓ] = 1/ℓ.

Thus, oImax(Addrℓ) = Θ(1/m).

Proof. For i ∈ [log ℓ], no matter what the value of the i-th bit of Addrℓ is set to, the output bit will be
a uniform bit, so we immediately get that oIi[f ] = 0. For i ∈ {log ℓ + 1, . . . ,m}, the i-th bit only has
control if it’s selected by the first log ℓ address bits, meaning it has a 1/ℓ chance of controlling the output
(and otherwise the output is uniform). Hence, oIi[f ] = 1

ℓ .

Compared with the result of [KKL88] that Imax[f ] ≥ Var(f) · Ω
(
log ℓ
ℓ

)
, this exhibits a separation

between maximum (standard) influence and the online influence (of balanced functions).
Moreover, this analysis of the address function also shows us that it is an extractor for uniform (ℓ− 1, ℓ)-

oNOSF sources.

Lemma 10.13. For all ℓ, n where ℓ ≥ 2 and n ≥ log(ℓ − 1), there exists an explicit extractor Ext :
({0, 1}n)ℓ → {0, 1}n such that for any uniform (ℓ− 1, ℓ, n)-oNOSF source X, we have Ext(X) ≈ε Un

where ε = 1
ℓ−1 .

Proof. Let Ext be defined as follows: From the first block, use the first log(ℓ− 1) bits and interpret them as
an index j ∈ [ℓ − 1]. Then, output the block with index j + 1. For a source X with first block controlled
by an adversary, the output will be truly uniform and for a source X with adversary controlling one of the
last ℓ− 1 blocks, that block will be outputted with probability 1

ℓ−1 while a uniform block will be outputted
otherwise. This makes our total error at most 1

ℓ−1 as desired.

10.4 Online Influence of Sets and Extraction Lower Bounds

For convenience we restate the definition of online influence of sets of coordinates.

Definition 10.14 (Online influence, Definition 8.1 restated). For any function f : Σℓ → {0, 1}, and any
B ⊂ [ℓ], where B = {i1 < i2 < . . . < ik}, define oIB(f) as follows: an online adversary A samples
a distribution X in online manner. It starts by sampling the variables x1, x2, . . . , xi1−1 independently and
uniformly from Σ, then picking the value of xi1 depending on x<i1 . Next, the variables xi1+1, . . . , xi2−1 are
sampled independently and uniformly from Σ, and A sets the value of xi2 based on all variables set so far,
and so on. Define the advantage of A to be advf,B(A) = |E[f(X)] − E[f(Uℓ)]|. Then oIB(f) is defined
to be maxA{advf,B(A)}, where the maximum is taken over all online adversaries A that control the bits
in B.

We say a function f is (b, ε)-online-resilient if oIB(f) ≤ ε for every B of size at most b.

In the special case where Σ = {0, 1} and we are considering the online influence of a single coordinate,
the definition simplifies nicely.
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Definition 10.15. For a function f : {0, 1}ℓ → {0, 1}, the online influence of the i-th bit is

oIi[f ] = E
x∼Ui−1

[∣∣∣∣ E
y∼Uℓ−i

[f(x, 1, y)]− E
y∼Uℓ−i

[f(x, 0, y)]

∣∣∣∣]
and the total online influence is

oI[f ] =
ℓ∑

i=1

oIi[f ].

Online-resilient functions are equivalent to extractors (with 1 output bit) for oNOSF sources.

Lemma 10.16 (online-resilient functions yield extractors). Let f : Σℓ → {0, 1} be a (b, ε1)-online-resilient
function with the property that |f(Uℓ)−U1| ≤ ε2. Then f can extract from (g = ℓ− b, ℓ)-oNOSF sources
with error at most ε1 + ε2.

Proof. Consider a (g = ℓ− b, ℓ)-oNOSF source X. Recall that X is created by choosing some set of bad
indices B of size b, letting the symbols in B be uniform, and finally setting the symbols in B adversarially
while only depending on uniform symbols to the left of them. Using the triangle inequality for total variation
distance, we get that

|f(X)−U1| ≤ |f(X)− f(Uℓ)|+ |f(Uℓ)−U1|
≤ ε1 + ε2,

as claimed.

Remark 10.17. We note that the other direction is immediate from definitions. If Ext : Σℓ → {0, 1} is an
extractor with error ε for (g = ℓ− b, ℓ)-oNOSF sources, then Ext is a (b, 2ε)-online-resilient function.

Remark 10.18. Our results below on oNOBF extraction impossibility can be interpreted as a limit on
online-resilience of balanced Boolean functions.

For B ⊂ [ℓ], we use the notation f |B to indicate the function obtained from f by letting an online
adversary control the indices in B.

Theorem 10.19. Let f : {0, 1}ℓ → {0, 1} be such that Ex∼Uℓ
[f(x) = 1] = α. Then for any 1 ≥ β > α,

there exists a coalition B ⊆ [ℓ] such that oIB(f) ≥ β − α, where |B| ≤ γℓ and γ = β−α
4α(1−β) .

Proof. We greedily collect the bits with the most online influence and add them to B until our goal of
Ex∼Uℓ|B [f |B(x) = 1] ≥ β is achieved. Our first step is as follows: let B0 = ∅, f0 = f , and i1 =
argmaxi∈[ℓ]{oIi[f ]}. Corollary 10.10 tells us that oIi1 ≥ Var(e(f0))/ℓ. Recall that if Ex∼Uℓ

[f(x) = 1] =
p then Var(e(f)) = 4p(1 − p). Because we have not yet achieved our goal of Ex∼Uℓ|B [f |B(x) = 1] ≥ β,
we have that Var(f0) ≥ 4α(1 − β). Thus, we collect i1 as B1 = {i1}, let f1 = f0|B1

and see that

Ex[f1(x)] ≥ Ex[f0(x)] + oIi1 [f0] ≥ α+ 4α(1−β)
ℓ .

We now repeat this process t times to get Bt = {i1, . . . , it} until our goal is achieved. For general t, let
ft = f |Bt where Bt = Bt−1 ∪ {it} and it = argmaxi∈[n]\Bt−1

{oIi[ft−1]}. At the (t− 1)-th step, since we
have not stopped, it means that Ex[ft−1(x) = 1] < β, but we of course have Ex[ft−1(x) = 1] ≥ α as well.
Thus, by Corollary 10.10, collecting it as a bad bit gives us that

E
x
[ft(x)] ≥ E

x
[ft−1(x)] + oIit [ft−1]
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≥ α+
4α(1− β)

ℓ
(t− 1) +

4α(1− β)

ℓ

= α+
4α(1− β)

ℓ
· t.

We repeat this process until Prx[ft(x) = 1] ≥ β. Therefore, the number of steps is the smallest b such that
α + 4α(1−β)

ℓ · b ≥ β, meaning that the number of steps is at most b ≤ ℓ · β−α
4α(1−β) . We let B = Bb and get

the desired coalition.

We can also ask the dual question of how large we are able to make β given some budget b of bad bits.

Corollary 10.20. Let f : {0, 1}ℓ → {0, 1} be such that Prx∼Uℓ
[f(x) = 1] ≥ α. If we are able to control

b bits in an online adversarial manner, then there exists a set B ⊆ [ℓ] of indices of size |B| = b such that
Prx∼Uℓ|B [f |B(x) = 1] ≥ β where β ≥ α(ℓ+4b)

ℓ+4αb .

Proof. For a fixed β, Theorem 10.19 tells us that b ≤ ℓ · β−α
4α(1−β) . Solving for β gives the desired bound.

We now immediately obtain our oNOBF extraction impossibility result.

Corollary 10.21. For any balanced function f : {0, 1}ℓ → {0, 1} and 0 < ε < 1/3, there exists a
(g = ℓ− b, ℓ)-oNOBF source X with b ≤ 3εℓ such that |f(X)−U1| ≥ ε.

Proof. It is enough to find a set B of indices such that oIB(f) ≥ β. By Theorem 10.19, there exists such a
set B of size b = |B| ≤ ℓ · ε

1−2ε . The bound on |B| follows since ε ≤ 1
3 .

Remark 10.22. By essentially following our Fourier analytic proof, one can similarly obtain a Poincaré
inequality for functions f : Σn → {0, 1}, for arbitrary alphabet Σ. To obtain extraction impossibility
for such uniform oNOSF sources with constant δ fraction of corrupt blocks, we do the following: Let f
be a candidate extractor for uniform ((1− δ)ℓ, ℓ, n)-oNOSF sources. Then, f also extracts from uniform
(⌈1/δ⌉ − 1, ⌈1/δ⌉ , ℓn/ ⌈1/δ⌉)-oNOSF source. Since there exists an influential coordinate with influence
O(δ), we let the adversary control that coordinate and infer that there exists constant ε = O(δ) for which it
is impossible to extract with error less than ε.

11 Open Problems

We list here some interesting open problems left by our work:

• While we obtain explicit condensers for almost all parameter regimes, it remains open to construct
them when the bock length is constant, matching the parameters of our existential results. As we
show, one way of achieving this would be to explicitly construct a seeded condenser with dependence
on seed length being 1 · log(1/ε).

• All our condensers have entropy gap much larger than a constant. It will be interesting to show there
exist condensers with constant entropy gap (for any values of n, ℓ) for uniform oNOSF sources. A
slightly weaker but equally interesting question is to construct seeded extractors for uniform oNOSF
sources with constant seed length.

• Show that there exist non-trivial condensers for oNOBF sources or show no such condenser exists.
We conjecture that no condenser exists with output entropy rate larger than the input entropy rate for
such sources.
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• Construct ε-collective sampling protocols with fewer rounds than the ones obtained using uniform
oNOSF source condensers. It will also be interesting to explicitly construct such protocols when the
number of players are very large compared to the number of bits each player has access to. Further,
proving lower bounds for ε-collective sampling protocols is a natural direction to explore.

• Determine the exact threshold for extracting from oNOBF sources and oNOSF sources. Our lower
bounds show extraction is impossible when g ≤ 0.99ℓ while our constructions using leader election
protocols require g ≥ ℓ−Ω

(
ℓ

log ℓ

)
for oNOBF sources and g ≥ ℓ−Ω

(
ℓ

log∗(ℓ)

)
for (g, ℓ, n)-oNOSF

sources where n ≥ log(ℓ). Using the connection between extractors and leader election protocols,
lower bounds for extraction imply lower bounds for leader election protocols. In particular, matching
lower bounds for extraction would imply all current leader election protocols are tight, a long standing
open problem.
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A Constructing Reduce′

In this section we construct Reduce′ which has the properties as guaranteed by Lemma 5.12. In [RZ01],
the authors use hitting sets for combinatorial rectangles to reduce ℓ-length oNOSF sources to shorter min-
entropy sources. We provide a proof of their lemma for completeness here.

Let’s first define combinatorial rectangles.

Definition A.1 (Combinatorial rectangle). Let a, d ∈ N. We say that a set R ⊆ [a]d is a combinatorial
rectangle if R = R1 ×R2 × · · · ×Rd for some sets Ri ⊆ [a] for i ∈ [d]. The density of R is Density(R) =
1
ad

∏d
i=1 |Rd|.

A hitting set for a family of combinatorial rectangles is a subset of [a]d such that it has an intersection
with every combinatorial rectangle in the family. Formally:

Definition A.2 (Hitting sets for combinatorial rectangles). A set H ⊆ [a]d is a (a, d, δ)-hitting set for
combinatorial rectangles if for every combinatorial rectangle R ⊆ [a]d with Density(R) ≥ δ we have that
R ∩H ≠ ∅.

Of course, taking H = [a]d is a trivial hitting set for any combinatorial rectangle, so the difficulty lies in
decreasing the cardinality of H while keeping the density requirement δ of the combinatorial rectangle low.
In [LLSZ97], the authors create a small enough hitting set for our use.

Lemma A.3 ([LLSZ97]). There exists a universal constant C such that for any δ > 0 and a, d ∈ N, there

exists an explicit construction of an (a, d, δ)-hitting set H ⊆ [a]d such that |H| ≤
(
a log(d)

δ

)C
.

Let’s see how using all of these ingredients we can construct Reduce′.

Proof of Lemma 5.12. To construct Reduce′, we begin by defining a family of functions F ⊆ {f : [a]d →
{0, 1}} and a hitting set H ⊆ [a]d of size |H| = 2t = T . For every x ∈ Supp(X), we will select a
fx ∈ F and output the smallest y ∈ H such that fx(y) = 1, where we consider our output as an element
of [|H|] = {0, 1}t. Then, for all y ∈ H, we will show that Prx∼X[fx(y) = 1] ≤ 2−k, meaning that
Reduce′(X) is a (t, k)-source.

Formally, we let F be the following family of combinatorial rectangles on [a]d. Given an x ∈ [a]d, we
define the combinatorial rectangle Rectx = {y ∈ [a]d | ∀i ∈ [d], yi ̸= xi} and the associated function
fx : [a]d → {0, 1} for this rectangle as fx(y) = 1y∈Rectx . Then, we let F = {fx | x ∈ [a]d}.

Note that the density of any particular rectangle Rectx is δ = Density(Rectx) = Rectx
ad

=
(
1− 1

a

)d.
We can lower bound δ as δ ≥ (exp(−d/a))Cδ for some universal constant Cδ. Rearranging then gives us
that log(1/δ) ≤ Cδ · d

a . With this in mind, we set up our hitting set H for F . From [LLSZ97], we know

that there exists a universal constant C1 and an explicit hitting set H such that T = |H| ≤
(
a log(d)

δ

)C1

.
Simplifying this expression yields

T ≤
(
a log(d)

δ

)C1

t ≤ C1(log(a) + log log(d) + log(1/δ))

t ≤ C1(log(a) + log log(d) + Cδd/a)

t ≤ C ′(log(a) + log log(d) + d/a), (7)
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where C ′ is a sufficiently large universal constant, depending only on C1, Cδ. To analyze the min-entropy
of Reduce′(X), we note that for all y ∈ [a]d

Pr
x∼X

[fx(y) = 1] ≤
(
1− 1

a

)γd

≤ exp(−γd/a) ≤ 2−γd/a,

which directly implies that the min-entropy k of Reduce′(X) is ≥ γd/a, as desired.

B Extracting from Local oNOSF Sources

A natural variation on our definition of oNOSF sources is to consider the case where the adversary cannot
remember the value of every good block in the past; rather, it can only remember the value of the most
recent s blocks. Arguably, this is a realistic assumption in the setting of many short blocks, where it could
be difficult to introduce long range correlation.

Definition B.1 (Local oNOSF sources). We call a (g, ℓ, n, k)-oNOSF source X = (X1, . . . ,Xℓ) an s-local
(g, ℓ, n, k)-oNOSF source if each bad block Xi can only depend on at most s blocks Xi−s, . . . ,Xi−1 that
come before it.

Interestingly, weakening the adversary in this way converts our oNOSF source into a small-space source.
These sources were first studied by [KRVZ11] and we refer the reader to them for a definition and back-
ground. Since the adversarial blocks of an s-local (g, ℓ, n, k)-oNOSF source can only depend on the binary
string of length at most sn to its left, we easily see that an s-local (g, ℓ, n, k)-oNOSF source is samplable
by a space-sn source.

Using recent explicit extractors for low-space sources provided by [CL22, Li23] and the fact that a
(g, ℓ, n, k)-oNOSF source has entropy at least gk, we get the following extraction result for these local
online sources.

Theorem B.2 (Using the explicit extractor of [CL22]). There exists a universal constant C such that for
every s and k ≥ 2sn+logC(nℓ)

g there is an explicit extractor Ext : ({0, 1}n)ℓ → {0, 1}m with error ε =

(nℓ)−Ω(1) and output length m = (gk − 2sn)Ω(1) for every s-local (g, ℓ, n, k)-oNOSF source.

A similar result with slightly better entropy requirement, but constant error, can be obtained using the
small-space extractor from [Li23].

61

ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il


