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Abstract

We exhibit a total search problem whose communication complexity in the quantum SMP
(simultaneous message passing) model is exponentially smaller than in the classical two-way
randomized model. Moreover, the quantum protocol is computationally efficient and its solutions
are classically verifiable, that is, the problem lies in the communication analogue of the class TFNP.
Our problem is a bipartite version of a query complexity problem recently introduced by
Yamakawa and Zhandry (JACM 2024). We prove the classical lower bound using the structure-
vs-randomness paradigm for analyzing communication protocols.

1 Introduction
A foremost goal in quantum communication complexity is to demonstrate an exponential advantage
of quantum protocols over classical protocols. Such quantum speed-up results come in two flavors:

• Partial problems have a promise about the structure of the problem input. A long line of
work [BCW99, Raz99, BJK04, GKK+08, KR11, Gav16, Gav19, Gav21, GRT22, LLPY24] has
culminated in strong separations results: Gavinsky [Gav21] (for a search problem) and Girish,
Raz, and Tal [GRT22] (for a function problem) exhibited partial problems with an exponential
separation between the quantum SMP (simultaneous message passing) model and the classical
two-way randomized communication model; that is, separations between the weakest standard
quantum model and the strongest standard classical model.

• Total problems come with no structural promises—the problem is defined for all possible input
strings. Obtaining exponential quantum speed-ups is notoriously difficult for total problems.
In some settings, this is even known to be impossible: In decision tree complexity, classical
and quantum query complexities for any total function are polynomially related [ABK+21]. In
communication complexity, the seminal work of Bar-Yossef, Jayram, and Kerenidis [BJK04]
showed an exponential quantum–classical separation in the restricted setting of one-way
protocols for a total search problem (the hidden matching problem). Since then, essentially no
progress has been made for total problems.

In a recent breakthrough, Yamakawa and Zhandry [YZ24a] introduced a new total search
problem that exhibits an exponential quantum–classical advantage in the query complexity model.
In this work, we define a communication variant of their problem, called Bipartite NullCodeword
and obtain the strongest quantum–classical communication separation so far for any total problem.
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Theorem 1 (Main result). There exists a total two-party search problem S ⊆ {0, 1}N × {0, 1}N ×Q
for N = 2Θ(n) that admits a poly(n)-bit protocol in the quantum SMP model, but requires 2nΩ(1) bits
of communication in the randomized two-way communication model.

The separation in Theorem 1 is qualitatively as strong as we can hope to get for any total relation.
Recall that in a quantum SMP protocol, Alice and Bob send a quantum state to a third-party
referee, Charlie, who outputs the answer without further interaction. Even the one-way model
can simulate this since Bob can emulate Charlie. Furthermore, our separation has two additional
desirable properties.

Verifiability: The relation we construct is verifiable using polylog(N) bits of classical communi-
cation. It thus lies in the communication analogue of the complexity class TFNP (Total
Functional NP) [GKRS19, dRGR22].

Efficiency: Our quantum SMP protocol is computationally efficient, i.e, all parties can be imple-
mented using polylog(N) size quantum circuits with oracle access to the input. This is the
same notion of efficiency as in the result of [GRT22].

Besides being fundamental considerations in theoretical computer science, verifiability and
efficiency are also desirable properties for a quantum–classical communication complexity separation
to be used as an experiment to demonstrate unconditional quantum advantage (a.k.a. quantum
information supremacy [ABK24]). We see our result as a theoretical feasibility result for designing
such an experiment based on communication complexity. We compare our result to several other
notable quantum–classical communication separations in Table 1.

1.1 Other related work

The Yamakawa–Zhandry problem. The Yamakawa–Zhandry problem [YZ24a] was a breakthrough
average-case query separation. Since then, it has proven to be a useful in other settings with
modifications to the problem. Before our work, it was tweaked to make progress on the question of
getting an oracle separation of QMA and QCMA [LLPY24, BK24a]. More relevant to our work, Li
et al. [LLPY24] also use the Yamakawa–Zhandry problem to get a new separation between one-way
quantum and one-way randomized communication complexity. However, their problem is easy in
the classical two-way model since Bob’s input is short.

Query-to-communication lifting. Most techniques in communication complexity literature which
can distinguish quantum and classical communication complexity are tailored to promise problems.
One technique that works for total problems (functions and relations) is query-to-communication
lifting [GPW20, CFK+21].1 The current strongest separation for a total boolean function between the
quantum and classical two-way communication is cubic: This is achieved by lifting an analogous cubic
separation in query complexity obtained by Sherstov, Storozhenko, and Wu [SSW23, Theorem 1.5]
and independently by Bansal and Sinha [BS21, Corollary 1.5].

The exponential quantum query separation from the Yamakawa–Zhandry problem [YZ24a] can
also be converted to one for a total problem via lifting (Lifted NullCodeword in Table 1). Given
this, we can get an exponential separation between quantum and classical two-way communication
for a total relation. However, we do not know how to simulate queries to the input of the original
relation for the lifted relation by using less than two rounds of communication. This limits us to a
two-way vs. two-way separation, as opposed to a quantum SMP vs. classical two-way separation.

1Lifting theorems show that CC(f ◦ g) = Ω(Q(f)) where g is a boolean function gadget, CC is a communication
complexity measure and Q is a query complexity measure.
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Candidate problem Reference Quantum u.b. Classical l.b. f / R Totality

Vector in Subspace [Raz99, KR11] one-way two-way function partial
Gap Hamming Relation [Gav21] SMP two-way relation partial
Forrelation ◦Xor [GRT22] SMP two-way function partial
Hidden Matching [BJK04] one-way one-way relation total
Lifted NullCodeword [YZ24a, GPW20] two-way two-way relation total

Bipartite NullCodeword This work SMP two-way relation total

Table 1: Several notable exponential quantum–classical separations. Green text indicates a strong result and
red text indicates a weak result.

Relations vs. partial functions. Our separation for a total relation and the separation of [GRT22]
for a partial function are formally incomparable. However, it is interesting to note that, in a different
context, a separation for a total relation can be automatically translated to a separation for a partial
function. Namely, Ben-David and Kundu [BK24b] show how to do this in the query complexity
model by using a pointer-based construction. If we tried to implement a similar trick naively for
our problem, we would lose the quantum easiness in the SMP model.

2 Technical overview
We construct a relation to prove Theorem 1 in two stages. First, we define a natural bipartite
analogue of the relation studied by Yamakawa–Zhandry which we call Bipartite NullCodeword
(BiNC). We show in Sections 4 and 5 that for BiNC there is an average case separation between
QSMP and two-way randomized communication for a certain code and distribution. We then
convert this into a worst-case separation for a total relation in Section 6.

2.1 The Yamakawa–Zhandry problem and its bipartite variant

We build upon the Yamakawa–Zhandry query complexity problem [YZ24a], which we call the
NullCodeword (NC) problem. In this problem, an error correcting code C ⊆ Σn is chosen,
where Σ is an exponential-size alphabet, namely |Σ| = 2Θ(n). The inputs are n random ora-
cles H1, . . . ,Hn : Σ → {0, 1}, and the goal is to find a codeword x ∈ C such that H(x) = 0n,
where H : Σn → {0, 1}n is the concatenation of all His.

Lemma 2 (Informal, [YZ24a]). When C is instantiated by a folded Reed–Solomon code with cer-
tain parameters, there exists a poly(n)-query quantum algorithm (called the Yamakawa–Zhandry
algorithm) solving NullCodeword, but any classical algorithm requires 2nΩ(1) queries.

Our communication problem is a bipartite analogue of NullCodeword which we call BiNC.
In BiNC, we give the first half of the oracles H1, . . . ,Hn/2 as input to Alice, and the second half
Hn/2+1, . . . ,Hn as input to Bob. Their goal is still to find a codeword x ∈ C such that H(x) = 0n.
The input length for Alice and Bob is N := n|Σ|/2 = 2Θ(n).

Quantum easiness of BiNC. One immediate advantage of our definition of BiNC is that it is fairly
easy in the quantum communication setting. The key observation is that the Yamakawa–Zhandry
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algorithm for NullCodeword can be divided into two stages—it first makes non-adaptive queries
to each H1, . . . ,Hn individually, and then processes the results without making any more queries.
Therefore, we can get a QSMP protocol of BiNC by simulating the Yamakawa–Zhandry algorithm:
Alice and Bob first simulate the non-adaptive queries to their halves of inputs and send their results
to Charlie; Charlie then simulates the processing stage of the Yamakawa–Zhandry algorithm and
outputs the solution. Furthermore, this QSMP protocol is computationally efficient and uses no
shared entanglement/randomness.

2.2 Classical lower bound for BiNC

Proving a classical communication lower bound for BiNC turns out to be a more challenging task.
First, most of the communication lower bound techniques we currently have only work for boolean
functions (or relations with few or unique solutions), but BiNC has exponentially many solutions for
a typical random input. Furthermore, the choice of the error correcting code C—which is a folded
Reed–Solomon code—complicates the analysis for proving a classical lower bound. For example,
information complexity seems like a viable approach if C is a random code. But the analysis would
become intimidating if a folded Reed–Solomon code is considered.

Below, we give an overview of our proof. For X ⊆ {0, 1}N and I ⊆ [N ], we use XI := {xI ∈
{0, 1}I : x ∈ X} to denote the set of strings in X restricted to the coordinates in I.

Simple special case: Subcube protocols. We start by proving a lower bound for highly structured
protocols. A rectangle X × Y ⊆ {0, 1}N × {0, 1}N is said to be a subcube rectangle if there
exist two index sets I, J ⊆ [N ] such that XI and YJ are fixed strings and the sets XĪ = {0, 1}Ī
and YJ̄ = {0, 1}J̄ contain all possible strings. A subcube protocol is such that every node of the
protocol tree corresponds to a subcube rectangle. This model is closely related to decision trees
(but strictly more general). The below property of the code C will be central to the lower bound.

Definition 3 (List-recoverability: Simplified definition). A code C ⊆ Σn is list-recoverable if for any
collection of subsets S1, . . . , Sn ⊆ Σ such that ∑

i |Si| ≤ ℓ, it holds that

|{(x1, . . . , xn) ∈ C : |i ∈ [n] : xi ∈ Si| ≥ 0.4n}| ≤ 2o(n) . (1)

Suppose Π is a subcube protocol that communicates at most ℓ ≤ 2o(n) bits. Assume also for
simplicity that all rectangles in the subcube protocol fix at most ℓ coordinates. It follows from (1)
that for any rectangle R in the protocol tree of Π, the number of codewords x ∈ C such that more
than 0.4n bits of H(x) are fixed in R is at most 2o(n).

Let us now sketch how to use this property to bound the success probability of Π. Say that
a codeword x ∈ C is dangerous for a rectangle R if at least 0.4n of the bits of x are fixed by R;
intuitively, this means that the protocol has communicated a lot of information about x. Consider
any leaf rectangle R and suppose it is labeled with solution x ∈ C. Assuming for contradiction
that Π never errs, then x is a correct solution (all-0 codeword) for all inputs H ∈ R; in particular, x
is dangerous for R. We have two key facts:

• Few dangerous codewords: By list-recoverability (1), the number of codewords x that ever
become dangerous in a single execution of Π is at most 2o(n).

• Dangerous codewords rarely become solutions: Consider a single execution of the protocol and
suppose Alice sends a message that causes a given codeword x to become dangerous for the
first time at rectangle R. Then there are at least 0.1n unfixed input bits of x on Bob’s side.
Thus, at most 2−0.1n fraction of inputs in R would map x to 0n.
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We can conclude our lower bound for subcube protocols by a union-bound argument: None of the
dangerous codewords will likely be a valid solution at the leaf and hence Π errs often.

Structure-vs-randomness dichotomy. To prove a lower bound for general protocols, we use the
structure-vs-randomness framework developed by Wang, Yang, and Zhang [YZ24b, WYZ23] who
build upon query-to-communication lifting techniques [GPW20]. We use this framework to convert
any general communication protocol into a subcube-like protocol. The nodes of a subcube-like
protocol correspond to subcube-like rectangles X × Y ⊆ {0, 1}N × {0, 1}N defined such that

1. XI , YJ are fixed strings for some index sets I, J ⊆ [N ]. (structure)
2. XĪ , YJ̄ are pseudorandom (they “look” like the uniform distribution). (randomness)

We show that subcube-like protocols behave similarly enough to subcube protocols that we may
simply re-do the proof sketched above for subcube protocols.

Biased input distribution. So far, we have been ignoring a non-trivial issue—the list-recoverability
property in Definition 3 required by our argument is not known to hold for the folded Reed–Solomon
code C used for the original Yamakawa–Zhandry problem. To improve the parameters in the
list-recoverability of the folded Reed–Solomon code, one could decrease its degree parameter k.
However, a smaller degree k would also weaken the list-decodability of its dual code, which is
essential for the quantum upper bound of the NullCodeword problem. This inherent tension
between the list-recoverability and the dual-decodability poses the following dilemma: if we decrease
the degree k to an extent that list-recoverability is strong enough for our lower bound argument,
the dual-decodability would be too weak to retain our quantum upper bound.

To resolve this, we tweak the input distribution of NullCodeword and BiNC. Recall that
the NullCodeword problem in [YZ24a] is defined over uniform random oracles. We now consider
the scenario where the input bits can be biased, i.e., each symbol is (independently) mapped to 1
with probability p for a constant p ∈ (0, 1). When p gets smaller, it becomes easier to find an all-0
codeword. By generalising the original analysis in [YZ24a], we show that a weaker dual-decodability
suffices for the quantum upper bound when p is a small constant. Therefore, we can decrease the
degree k of the code to achieve the list-recoverability parameters we need for our lower bound
analysis while maintaining the quantum upper bound under the biased input distribution.

It might be of independent interest that our analysis broadens the range of parameters for which
there is an exponential quantum advantage in the Yamakawa–Zhandry [YZ24a] problem.

Conversion to a total problem. Our discussion so far has been about an average case separation of
quantum and classical communication complexity. Our input distribution has a non-zero probability
of having no solution. Thus, we do not have totality yet. To fix this, we borrow a trick from
the original [YZ24a] paper. The idea begins with the observation that an O(n)-wise independent
distribution suffices for the quantum upper bound. Thus, instead of a uniform random input we
could give arbitrary inputs and allow Alice and Bob to XOR their inputs with a string that they
can choose from an O(n)-wise independent hash family. The canonical family is that of low-degree
polynomials over finite fields [Vad12], which can be efficiently implemented.

However, modifying the problem in this way also allows for a classical upper bound! The protocol
can simply pick an arbitrary codeword x ∈ C and run Gaussian elimination to find a function h from
the family which maps the codeword x to 0n. To get around this, we further modify the problem
and require the protocol to solve t instances of BiNC that are XORed with the same hash function.
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To prove this lower bound, we first apply a direct product theorem for product distribu-
tions [BRWY13] and show that for each fixed choice of hash function, the success probability of any
sub-exponential cost classical protocol is less than ≈ 2−t. Thus, by taking t as a large polynomial
in n, we can use a union bound over all hash function from the family and show that the success
probability is still o(1) even when the protocol is given the freedom of picking a hash function.

3 Preliminaries
In this work, we study search problems, formalized by relations. We introduce terminology below.

A search problem R is a relation R ⊆ [k]N ×O where for any given x ∈ [k]N we want to find
y ∈ O such that (x, y) ∈ R. A two-party search problem R is a bipartite relation R ⊆ [k]N× [k]N×O
where given x, y ∈ [k]N the two parties want to find a z such that (x, y, z) ∈ R. When the two-party
search problem is total and efficiently verifiable, it is said to be in communication-TFNP (see
[GKRS19, dRGR22] for a discussion of this class).

3.1 Communication complexity

We assume some familiarity with quantum computing and communication complexity. For more
background refer to textbooks [NC00, KN97, RY20]. We define QSMP and two-way randomized
communication protocols below.

Definition 4 (QSMP). A QSMP (without shared randomness/entanglement) protocol Π for relation
R ⊆ X × Y × O is pair of quantum states |ϕx⟩ , |ϕy⟩ for every input (x, y) ∈ X × Y . Alice and
Bob send |ϕx⟩ and |ϕy⟩ respectively to Charlie, and he outputs a solution Π(x, y) = ox,y. The
protocol is said to succeed with probability 1− ϵ if the probability that (x, y,ox,y) ̸∈ R is at most ϵ.
The communication cost (denoted |Π|) is the total number of qubits sent by Alice and Bob on the
worst-case input.

Definition 5 (Two-way randomized). A (public-coin) two-way randomized protocol Π is a sequence
of messages exchanged between Alice and Bob which depend on their input, previous messages,
and publicly sampled randomness after which Bob outputs Π(x, y) = ox,y. The protocol is said to
succeed with probability 1−ϵ if the probability that (x, y,ox,y) ̸∈ R is at most ϵ. The communication
cost (denoted |Π|) is the total number of bits sent by Alice and Bob on the worst-case input.

3.2 Error-correcting codes

For a prime power q, we denote by Fq the finite field of order q and denote by F≤k
q [x] the set of

polynomials over Fq with degree at most k. For any vector x, define hw(x) as the Hamming weight
of x, i.e., the number of non-zero elements in x.

An error correcting code C of length N and distance d over the alphabet Σ is a subset of ΣN such
that the Hamming distance of every c1, c2 ∈ C is lower bounded by d. We will use the notation N or
n for the code length in order to distinguish with the input length N of the communication problem.

We will focus on linear codes, which are codes that are linear subspaces.

Definition 6 (Linear code and its dual code). A code C ⊆ FN
q is a linear code if C is a linear subspace

of FN
q . The dual code C⊥ of a linear code C is defined as its orthogonal complement:

C⊥ = {x ∈ FN
q : x · y = 0,∀y ∈ C}.
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Definition 7 (Generalized Reed–Solomon code). The Reed–Solomon code RSFq ,γ,k over Fq with
generator γ ∈ F∗

q and degree 0 ≤ k ≤ N has length N := q − 1, and is defined as:

RSFq ,γ,k := {(f(0), f(γ), . . . , f(γN−1)) : f ∈ F≤k
q [x]}.

For any vector v = (v0, . . . , vN−1) ∈ F∗
q

N, the generalized Reed–Solomon code GRSFq ,γ,k,v is
defined as:

GRSFq ,γ,k,v := {(v0f(0), v1f(γ), . . . , vN−1f(γN−1)) : f ∈ F≤k
q [x]}.

The Reed–Solomon code is a special case of the generalized Reed–Solomon code with v =
(1, . . . , 1). The generalized Reed–Solomon code is a linear code, and the dual code of RSFq ,γ,k is
GRSFq ,γ,N−k−2,v for some v ∈ F∗

q
N.

Since multiplying a scalar on each coordinate does not affect the decodability, the classical
list-decoding algorithm for the Reed–Solomon code also applies to the generalized Reed–Solomon
code.

Lemma 8 (List-decodability of the GRS code [GS99]). There is a deterministic list-decoding algorithm
ListDecode for GRSFq ,γ,k,v such that for any z ∈ FN

q, ListDecode(z) returns a list of all codewords
with hamming distance at most N−

√
kN to z in poly(N) time.

Definition 9 (Folded linear codes). For a linear code C ⊆ FN
q and an integer m that divides N, the

m-folded code C(m) is a linear code over alphabet Σ = Fm
q of length n := N/m, defined as follow.

C(m) = {((x1, . . . , xm), (xm+1, . . . , x2m), . . . , (xN−m+1, . . . , xN)) : (x1, . . . , xN) ∈ C}.

Note that (C⊥)(m) = (C(m))⊥. In particular, the dual code of folded Reed–Solomon code RS(m)
Fq ,γ,k

is the folded generalized Reed–Solomon code GRS(m)
Fq ,γ,d,N−k−2,v for some v ∈ FN

q .

Definition 10 (List-recoverability). A code C ⊆ Σn is (ζ, ℓ, L) list-recoverable if for any collection of
subsets S1, . . . , Sn ⊆ Σ such that |Si| ≤ ℓ for any i ∈ [n], it holds that

|{(x1, . . . , xn) ∈ C : |i ∈ [n] : xi ∈ Si| ≥ ζn}| ≤ L .

The folded Reed–Solomon code is known to be list-recoverable in certain parameter regimes.

Lemma 11 ([GR08, Rud07]). For positive integers ℓ, r, s,m, where s ≤ m, and a real number
ζ ∈ (0, 1), the code RS(m)

Fq ,γ,k is (ζ, ℓ, qs) list-recoverable if the following inequalities hold:

ζN
m
≥ (1 + s

r
) · (Nℓks)

1
s+1

m− s+ 1 . (2)

(r + s) · (Nℓ/k)
1

s+1 < q. (3)

Quantum fourier transform over the code space. The quantum Fourier transform over the finite
field Fq where q = pr for a prime p, is a unitary defined as follows:

QFTFq |x⟩ = 1
√
q

∑
z∈Fq

ωTr(x·z)
p |z⟩ ,

where the trace function is defined as Tr(x) := ∑r−1
i=0 x

pi for any x ∈ Fq.
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The quantum Fourier transform over the alphabet Σ = Fm
q is defined as the m-tensor product of

QFTFq :

QFTΣ |x⟩ := QFT⊗m
Fq
|x1⟩ |x2⟩ . . . |xm⟩ = 1√

|Σ|
∑
z∈Σ

ωTr(x·z)
p |z⟩ .

Note that the second equality uses the linearity of Tr(·). Similarly, the quantum Fourier transform
over the code space Σn is

QFT |x⟩ := QFT⊗n
Σ |x⟩ = 1

|Σ|n/2

∑
z∈Σn

ωTr(x·z)
p |z⟩ .

For a quantum state |ϕ⟩ = ∑
x f(x) |x⟩, we use f̂ to denote its fourier coefficient, i.e.,

QFT |ϕ⟩ =
∑

z

f̂(z) |z⟩ .

3.3 The Yamakawa–Zhandry problem

The Yamakawa–Zhandry problem is a search problem in which, given a fixed code and query access
to random oracles, the goal is to find a codeword that is null for the oracles.

Definition 12 (NullCodeword [YZ24a]). Fix a family of codes C = {Cn}, where Cn ⊆ Σn.
For each i ∈ [n], let Hi : Σ → {0, 1}, and let H : Σn → {0, 1}n be the concatenation H(x) =
(H1(x1), . . . ,Hn(xn)). The relation NCC

n ⊆ {0, 1}n|Σ| × Σn is defined as:

NCC
n = {(H,x) : x ∈ C ∧H(x) = 0n}.

The NullCodeword problem NCC is defined as the following search problem: Given n and
the oracle access to H ∈ {0, 1}n|Σ|, find a string x such that (H,x) ∈ NCC

n .

A folded Reed–Solomon code C with certain parameters is chosen in [YZ24a], which allows NCC

to have a quantum algorithm with poly(n) queries and at the same time be exponentially hard for
any classical (randomized) algorithm, when the input H is given by a uniformly random oracle.

4 The Bipartite NullCodeword problem
We present the formal definition of the Bipartite NullCodeword communication problem (BiNC) in
Section 4.1. We then, in Section 4.2, instantiate the problem with the folded Reed-Solomon code,
with a careful parameterization that provides the properties needed for our techniques. Finally, we
provide an efficient quantum SMP protocol for BiNC in Section 4.3. Throughout this section, we
will work with a biased-input distribution. In Section 6, we will convert this into a total problem.

4.1 Definition of BiNC

To transform the NullCodeword problem (Definition 12) into a communication problem, the
mapping H : Σn → {0, 1}n is divided into two halves HA, HB : Σn/2 → {0, 1}n/2 as the input of
Alice and Bob respectively.
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Definition 13 (Bipartite NullCodeword, BiNC). Fix a family of codes C = {Cn}, where Cn ⊆
Σn. Let H1 . . . , Hn be n mappings from Σ to {0, 1}, define HA, HB : Σn/2 → {0, 1}n/2, where
HA = (H1, . . . ,Hn/2) and HB = (Hn/2+1, . . . ,Hn). The bipartite relation BiNCC

n ⊆ {0, 1}n|Σ|/2 ×
{0, 1}n|Σ|/2 × Σn is defined as:

BiNCC
n = {(HA, HB, x) : x ∈ Cn ∧ HA(xA) = HB(xB) = 0n/2} ,

where xA = (x1, . . . , xn/2) and xB = (xn/2+1, . . . , xn).

The superscript C may be omitted in BiNCC if the choice of code C is clear from the context.
We will consider a distributional version of BiNCC where the input is given by a biased random
oracle.

Definition 14 (p-biased input distribution). A distribution over H = (H1, H2, . . . ,Hn) where each
Hi maps every element of Σ to 1 with probability p independently.

We will pick the constant p := 2−6 for our setting, though we note that for any constant value
below 1/2, we can get a non-trivial tradeoff and preserve the classical lower bound.

4.2 A suitable code: Trading off dual-decodability for list-recoverability

We modify the code used in the NullCodeword problem [YZ24a] to achieve a stronger list-
recoverability, which we will need to prove the classical two-way communication lower bound. We
do this by reducing the degree of the polynomials in the construction of the Reed–Solomon code.
This hampers the decodability of the dual code, but we show that over the biased input distribution
(Definition 14), we can still decode the dual code with high probability, which is necessary for our
upper bound. We instantiate the code we will use for the remainder of this paper below.

Definition 15. Define code C = {Cn} as the folded Reed–Solomon codes RS(m)
Fq ,γ,k with the following

choice of parameters:

• the length of the code n = 2t − 1 for some t ∈ N;
• q = 22t, and thus, N = q − 1 and m = N/n = 2t + 1;
• γ is an arbitrary generator of F∗

q ;
• degree k = 0.1N.

By definition, |Cn| = qk+1 = 2Θ(n2) and |Σ| = |Fm
q | = qm = 2Θ(n).

Only the degree parameter k is different compared with the original NullCodeword prob-
lem [YZ24a], in which k is chosen to be αN for some constant α ∈ (5/6, 1). Below, we state a lemma
with the parameters for which our code is list-recoverable and dual-decodable over the p-biased
input distribution.

Lemma 16 (Modified from Lemma 4.2 in [YZ24a]). The code C satisfies:

1. Cn is (ζ, ℓ, L)-list-recoverable, where ζ = 0.4, ℓ = 2n0.8
, L = 2n0.9. (List-Recoverability)

2. Let Dn be the product distribution on Σn where each symbol is 0 with probability 1− p and
otherwise a uniformly random element of Σ \ {0}. If p ≤ 0.04, there exists a poly(n) time
deterministic decoding algorithm Decode for the dual code C⊥

n such that

Pr
e∼Dn

[∀x ∈ C⊥
n ,Decode(x+ e) = x] = 1− 2−Ω(n). (4)

(Unique-Decodability of the Dual)
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Proof. The proof of (1), the list-recoverability property, follows immediately from Lemma 11.
Namely, we apply Lemma 11 with s := n0.9, r := n0.95. It is straightforward to verify that both
inequalities (2) and (3) are satisfied with the parameters specified in Definition 15.

It remains to show the unique decodability of the dual code. Note that the dual code C⊥
n is the

folded generalized Reed–Solomon code GRS(m)
Fq ,γ,d,v for some v ∈ FN

q , where d := N− k− 2 = 0.9N− 2.
Let ε := 0.01. For any vector x ∈ FN

q , let xf ∈ Σn be the m-folded version of x; similarly, for
any vector z ∈ Σn, define zu ∈ FN

q by unfolding each letter in z. So, if z = x1, . . . , xm ∈ Fn
q then

zu = (x1, . . . , xm) ∈ FN
q .

The algorithm Decode(z) works as follows: On input z ∈ Σn, it first unfolds z into zu ∈ FN
q . It

then runs the list-decoding algorithm ListDecode(zu) (Lemma 8) for the generalized Reed–Solomon
code GRSFq ,γ,d,v to get a list of codewords. If there is a unique x ∈ FN

q in the list such that
hw(zu − x) ≤ (p+ ε)N, it outputs xf (interpreted as a codeword of GRS(m)

Fq ,γ,N−k−2,v), and otherwise
outputs ⊥.

We now analyze the success probability of Decode. Define a subset G ⊆ Σn of good error terms,
leading to unique decoding, as follows.

G := {e ∈ Σn : hw(e) ≤ (p+ ε)n}.

Applying a Chernoff bound to the Hamming weight of e, we know e is good with high probability.

Pre∼Dn [e ∈ G] ≥ 1− 2−Ω(n). (5)

Therefore, it suffices to prove that the algorithm Decode always succeeds on a good error. Towards
this end, we first show a useful property of set G.

Claim 17. For any e ∈ G and y ∈ C⊥
n \ {0}, we have hw(eu − yu) > (p+ ε)N.

Proof. For any e ∈ G, hw(eu) ≤ (p+ ε)N < 0.05N . Note that for any non-zero codeword y ∈ C⊥
n , it

holds that hw(yu) ≥ N− d ≥ 0.1N, because a degree d non-zero polynomial could have at most d
roots. By the triangle inequality, we have hw(eu − yu) > 0.05N ≥ (p+ ε)N.

Using Claim 17, we proceed to show the correctness of the algorithm Decode.

Claim 18. For any x ∈ C⊥
n and e ∈ G, Decode(x+ e) = x.

Proof. Fix any x ∈ C⊥
n and e ∈ G. Recall that d = 0.9N−2, it holds that N−

√
dN > 0.05N ≥ (p+ε)N.

By Lemma 8, xu is contained in the list of codewords outputted by the list-decoding algorithm for
GRSFq ,γ,d,v. For the uniqueness, consider any y ∈ C⊥

n , y ̸= x, since C⊥
n is a linear code, we have

(x+ e)− y = e− (y − x) = e− y′

for some y′ ∈ C⊥
n \ {0}. By Claim 17, we have that hw((x+ e)u − yu) = hw(eu − (y′)u) > (p+ ε)N.

Thus, xu is the only codeword in the list whose Hamming distance from (x+ e)u is smaller than or
equal to (p+ ε)N. We conclude that Decode(x+ e) = x.

The proof of the second part of Lemma 16 then follows from Claim 18 and inequality (5).

Remark. In the following subsection and Section 6, we will denote BiNC to be the problem with
C fixed to be the code in Definition 15, dropping the superscript.
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4.3 Quantum SMP easiness of BiNC

We prove the quantum easiness of BiNC by adapting the query algorithm for the NullCodeword
problem to the biased bipartite setting, noting that the protocol can be implemented under the
constraints of the quantum SMP model.

Theorem 19. BiNC has a quantum SMP protocol using poly(n) qubits over the p-biased distribution.

Algorithm 1 Quantum SMP Protocol for BiNC
Notation:
For each i ∈ [n], define the state

|ϕi⟩ ∝
∑

e∈Σ: Hi(e)=0
|e⟩ .

Let Uadd, Udecode be unitaries defined as follows:

|x⟩ |e⟩ Uadd−−−→ |x⟩ |x+ e⟩ Udecode−−−−→ |x− Decode(x+ e)⟩ |x+ e⟩ .

Alice:
Prepare |ϕ1⟩ , . . . , |ϕn/2⟩ using H1, . . . ,Hn/2.
Send |ϕ1⟩ , . . . , |ϕn/2⟩ to Charlie.

Bob:
Prepare |ϕn/2+1⟩ , . . . , |ϕn⟩ using Hn/2+1, . . . ,Hn.
Send |ϕn/2+1⟩ , . . . , |ϕn⟩ to Charlie.

Charlie:
After receiving |ϕ⟩ := |ϕ1⟩ ⊗ . . .⊗ |ϕn⟩, perform the following steps:

1. Prepare a state:
|ψ⟩ ∝

∑
x∈C

|x⟩ .

2. Apply QFT to both |ψ⟩ and |ϕ⟩. Now, Charlie holds the state:

|η⟩ := QFT |ψ⟩ ⊗ QFT |ϕ⟩ .

3. Apply (I ⊗ QFT−1)UdecodeUadd to |η⟩.
4. Measure the second register and output the measurement result.

We provide a proof sketch here and refer the reader to Appendix A for the full proof of the
correctness of our quantum SMP protocol, as captured in Theorem 19.

Proof Sketch. As pointed out by Liu [Liu23], the original NullCodeword problem can be solved
by a two-stage quantum algorithm AYZ:

Query Make poly(n) queries to each of H1, . . . ,Hn, and store the raw results from those queries
into states |ϕ1⟩ , . . . , |ϕn⟩, where |ϕi⟩ stores the query results from Hi.

Process Process |ϕ1⟩ , . . . , |ϕn⟩ and output the solution without making any more queries to H.

11



Our quantum SMP protocol for BiNCC emulates the query protocol as follows. Alice and Bob
first prepare states |ϕ1⟩ , . . . , |ϕn/2⟩ and |ϕn/2+1⟩ , . . . , |ϕn⟩ by simulating the Query stage of AYZ on
their half of inputs, and then send them to Charlie. Then, Charlie runs the same Process stage of
AYZ with states |ϕ1⟩ , . . . , |ϕn⟩ and outputs the solution. See Algorithm 1 for the quantum SMP
protocol in detail.

It remains to argue that the algorithm AYZ still works for NCC after the following two changes:

1. The code C specified in Definition 15 has a lower degree.
2. Each Hi is drawn from a p-biased distribution outputting 1 with probability p = 2−6 rather

than being uniformly random.

As shown in Lemma 16, the first change weakens the unique-decodability of the dual code C⊥.
In particular, we can only guarantee the unique-decodability against a milder distribution Dn of
errors, where each location is scrambled with probability p = 2−6 ≤ 0.04. However, in the analysis
of the original Yamakawa–Zhandry problem, the dual code needs to deal with the distribution of
errors where each location is scrambled with probability 1/2.

Fortunately, the second change fixes this problem once the biased input distribution is plugged
into the analysis. Here, we briefly sketch the idea: Recall that the state |ϕ̂i⟩ = QFT |ϕi⟩ is generated
in the second step of Charlie for each i ∈ [n]. In expectation over Hi drawn from the biased
distribution, the state |ϕ̂i⟩ has weight 1 − p on 0, and the remaining weight of p is uniformly
distributed over Σ\{0}. Therefore, at a high level, before Charlie applies Udecode in the third step,
one can think of the error e is now drawn from the distribution Dn defined in Lemma 16, which can
be uniquely decoded with high probability by Lemma 16.

The remaining analysis in [YZ24a] is not affected by these two changes. This concludes the
sketch of proof of correctness of our quantum SMP protocol.

5 Classical lower bound for BiNC
In this section, we prove the distributional lower bound for the BiNC problem.

Theorem 20. Let C ⊆ Σn be a (ζ, ℓ, L)-list-recoverable code with ζ ≤ 0.4 and L = 2o(n). Then BiNCC
n

has randomized communication complexity Ω(ℓ) over the p-biased input distribution (Definition 14)
for any constant p ∈ (0, 1).

In particular, we can later instantiate Theorem 20 with the code from Lemma 16 (for which
we proved the quantum upper bound). We present the proof of Theorem 20 in stages. We first
(Section 5.1) prove the theorem for highly structured communication protocols that we call subcube
protocols, which are closely related to decision trees. We then (Section 5.2) generalize that proof to a
more powerful class of subcube-like protocols. Finally (Section 5.3), we use structure-vs-randomness
paradigm [GPW20, YZ24b] to show that any communication protocol can be converted (with
modest loss) into a subcube-like protocol.

Input distribution: Simplification. Recall that the p-biased input distribution assigns all bits i.i.d.
such that the probability of a 1-bit is p. We first prove Theorem 20 for the uniform distribution,
p = 1/2, and then indicate (Section 5.4) how to generalize it to any p ∈ (0, 1).
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5.1 Lower bound for subcube protocols

We start by defining the notion of subcube protocols. We study exclusively deterministic protocols—
run on a random distribution over inputs—as this is enough to prove a lower bound against
randomised protocols (by Yao’s principle).

Definition 21 (Subcubes). A set X ⊆ {0, 1}N is a subcube if there exists I ⊆ [N ] such that
X = {x ∈ {0, 1}N : xI = a} for some partial assignment a ∈ {0, 1}I . The codimension of X is
defined as |I|. Moreover, if i ∈ I then we say the corresponding variable xi is fixed in X.

Definition 22 (Subcube protocols). A rectangle R = X × Y ⊆ {0, 1}N × {0, 1}N is said to be a
subcube rectangle if X and Y are subcubes. The codimension of R is then the sum of codimensions
of X and Y . A communication protocol Π is said to be a subcube protocol if for every node in the
protocol tree of Π, the associated rectangle is a subcube rectangle. We denote by |Π| the worst-case
communication cost of Π (maximum length of the transcript).

The simplest example of a subcube protocol is when the players send individual input bits to
each other. For example, Alice can send x1 ∈ {0, 1} to Bob, which corresponds to splitting Alice’s
input domain {0, 1}n to two subcubes where x1 = 1 or x1 = 0. Subcube protocols that send one bit
at a time correspond precisely to decision trees.

More generally, in each communication round of a subcube protocol, the length of the message
can be larger than 1 bit if v has large arity (number of its children). The correspondence between
subcube protocols and decision trees breaks when the protocol tree has nodes with arity larger
than 2. For example, suppose Alice on input x ∈ {0, 1}N sends the index i ∈ [N ] of her first 1-bit
(or indicates her input is all-0). This is a log(N + 1)-bit message that induces a partition of {0, 1}N
into N + 1 subcubes. Such a protocol is not efficiently simulated by a shallow subcube protocol
sending one bit at a time, that is, a decision tree. (See [AKK16] for more separations between
subcube partitions and decision trees.)

Cleanup. We first show that any subcube protocol for BiNCC
n (or for any communication-TFNP

problem) can be converted into a zero-error protocol with bounded codimension at the leaves.

Lemma 23 (Subcube protocol cleanup). Suppose Π is a subcube protocol solving BiNCC
n with

error ϵ > 0 over the uniform distribution. Then there exists another subcube protocol Π′ such that

(C1) |Π′| ≤ O(|Π|).
(C2) Π′ is zero-error: on a uniform random input, it outputs the symbol ⊥ (“I don’t know”) with

probability at most 2ϵ, and otherwise it outputs a valid solution.
(C3) Every leaf rectangle of Π′ has codimension O(|Π|/ϵ).

Proof. Since Π communicates |Π| bits, the protocol tree has at most 2|Π| leafs. The leafs partition
the input domain into at most 2|Π| rectangles. Denote by R the rectangle of the leaf reached when
Π is run on a uniform random input. A fixed leaf rectangle R ⊆ {0, 1}N × {0, 1}N is reached with
probability Pr[R = R] = |R|/22N ≤ 2− codim(R). Letting H( · ) denote Shannon entropy, we have

E[codim(R)] ≤ E[log(1/Pr[R = R])] = H(R) ≤ |Π|.

By Markov’s inequality, Pr[codim(R) ≤ |Π|/ϵ] ≥ 1− ϵ. If we reach a node fixing more than |Π|/ϵ
indices, we modify Π to output ⊥. This produces a protocol Π′ satisfying (C1) and (C3).

Finally, we assume that the protocol Π ends with Bob outputting the solution. Alice can then
check if his solution is valid for her input, and send a 1 if yes. If she sends a 0, Bob outputs ⊥. This
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means our protocol can be converted into one which is zero-error via this round of interaction which
verifies the solution outputted by Bob. In the modified protocol, the success probability is the same
and we can assume Π always outputs a correct solution or ⊥. The total probability of outputting ⊥
is the error probability of the original protocol plus the probability of the leaf codimension being
greater than |Π|/ϵ. Thus, the probability is 2ϵ, which satisfies (C2).

Proof of Theorem 20 for subcube protocols. By Lemma 23 we may assume w.l.o.g. that Π is zero-
error and has bounded codimension at the leaves. For the sake of contradiction, assume that
|Π| ≤ o(ℓ). Sample a uniform random input H ∼ {0, 1}N × {0, 1}N and run the protocol to get a
random transcript Π(H). In this run, we encounter a sequence of nodes v1, . . . ,vd of the protocol
tree of Π where v1 is the root node, vd is a leaf, and d is the number of communication rounds.

We call a codeword c ∈ C dangerous in a partial assignment ρ ∈ {0, 1, ∗}N × {0, 1, ∗}N if at
least 0.4n bits of c are fixed by ρ. In communication round i, we denote by Qi ⊆ C the set of
codewords that are dangerous for the partial assignment corresponding to the subcube rectangle at
node vi. We observe three properties of Q := (Q1, . . .Qd):

(i) Q is monotone: Qi ⊆ Qi+1 for all i.
(ii) If Π(H) outputs c ̸= ⊥, then c ∈ Qd.
(iii) |Qd| ≤ L.

Here (i) is immediate. Item (ii) follows because Π is zero-error. To see (iii), note that since |Π| ≤ o(ℓ)
we have from Lemma 23 that at most O(|Π|) ≤ o(ℓ) bits of H are fixed. By the (0.4, ℓ, L)-list-
recoverability of the code C, we obtain (iii). Using (iii) we can write Qd = {c1, c2, . . . , cL} where
every ci ∈ C is a random variable.

Claim 24. For every j ∈ [L] we have Pr[H(cj) = 0n] ≤ 2−Ω(n).

Proof. Fix j ∈ [L] and consider the first node v ∈ {v1, . . . ,vd} where cj becomes dangerous. That
is, v = vi such that cj ∈ Qi but cj /∈ Qi−1. Let Rv denote the rectangle corresponding to node v.
Note that for v ∈ supp(v), the events “v = v” and “H ∈ Rv” are the same: monotonicity (i) states
that once a codeword c ∈ C becomes dangerous at node v, it will stay dangerous for all leafs in v’s
subtree. Suppose Alice sent a message at v’s parent vi−1. Since cj /∈ Qi−1, Bob has at most 0.4n
bits of cj fixed at Rvi−1 , and hence also at Rv. Because of these 0.1n unfixed bits of cj on Bob’s
side, we have

Pr[H(cj) = 0n | v = v] = Pr[H(cj) = 0n |H ∈ Rv] ≤ 2−0.1n ≤ 2−Ω(n). (6)

We now calculate

Pr[H(cj) = 0n] =
∑

v

Pr[H(cj) = 0n | v = v] ·Pr[v = v]

≤ 2−Ω(n) ∑
v

Pr[v = v] (by (6))

= 2−Ω(n).
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Using Claim 24, we can now show that Π errs with high probability, which finishes the proof.

Pr[Π(H) is correct] ≤ Pr[∃c ∈ Qd : H(c) = 0n] (by (ii))
≤

∑
j∈[L]

Pr[H(cj) = 0n] (union bound)

≤ L · 2−Ω(n) (Claim 24)
≤ 2o(n) · 2−Ω(n) ≤ o(1).

5.2 Subcube-like protocols

We will now prove Theorem 20 for a more general class of subcube-like protocols. To set this up,
we introduce the notion of dense random variables, which is a notion of pseudorandomness first
considered in [GLM+16]. We first recall the definition of min-entropy.

Definition 25 (Min-entropy). Given a random variable X ∈ X , its min-entropy is defined to be

H∞(X) := log 1
maxx∈X Pr[X = x]

For example, note that H∞(X) ≥ t iff we have Pr[X = x] ≤ 2−t for all x.

Definition 26. A random variable X ∈ {0, 1}N is said to be γ-dense if for every I ⊆ [N ], we have

H∞(XI) ≥ γ|I|

Definition 27 (Subcube-like rectangle). A rectangle R = X × Y is said to be γ-subcube-like with
respect to (I, J) if (here we denote Ī := [N ] \ I)

• XI and YJ are fixed strings.
• XĪ and YJ̄ are γ-dense where X ∼ X and Y ∼ Y are sampled uniformly at random.

Similar to subcubes, the codimension of a subcube-like rectangle w.r.t. (I, J) is said to be
|I|+ |J |. A communication protocol Π is said to be a subcube-like protocol if for every node in the
protocol tree, the associated rectangle is subcube-like. We can now re-prove the cleanup lemma
(Lemma 23) for subcube-like protocols; the original proof works verbatim.

Lemma 28 (Subcube-like protocol cleanup). Suppose Π is a γ-subcube-like protocol solving BiNCC
n

with error ϵ > 0 over the uniform distribution. Then there exist another γ-subcube-like protocol Π′

such that Items (C1) to (C3) are satisfied.

We are now ready to prove that Theorem 20 holds for 0.8-subcube-like protocols.

Proof of Theorem 20 for subcube-like protocols. The argument is nearly identical to that for subcube
protocols. Define Q := (Q1, . . .Qd) as before for the candidate subcube-like protocol Π. The only
crucial difference is in Claim 24: We show that it continues to hold (albeit with a smaller constant
hidden by the Ω-notation). Indeed, if cj becomes dangerous for the first time at v = v, then Bob (or
Alice) has at least 0.1n unfixed bits of cj in his input set Y where Rv = X × Y . These unfixed bits
come from a 0.8-dense distribution Y ∼ Y where the min-entropy of the marginal distribution of these
unfixed bits is at least 0.8 · 0.1n = 0.08n. This implies Pr[H(cj) = 0n |H ∈ Rv] ≤ 2−0.08n ≤ 2−Ω(n)

showing that the bound (6) continues to hold, which re-proves Claim 24. We can finally conclude
that Pr[Π(H) is correct] = o(1) using the same calculation as before.
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5.3 From general protocols to subcube-like protocols

We will now prove Theorem 20 for general protocols. The proof is by a reduction to the case of
subcube-like protocols using the following theorem.

Theorem 29 (Protocol preprocessing). Suppose Π is a protocol solving some communication problem
with error ϵ > 0 over the uniform distribution. Then for any constant γ < 1 there exist a γ-subcube-
like protocol Π′ such that

1. |Π′| ≤ O(|Π|/ϵ)
2. Π′ has error 2ϵ over the uniform distribution.

Simply put, Theorem 29 states that any protocol can be assumed to be subcube-like without
loss of generality. A similar theorem was proved in [YZ24b, WYZ23], but instead of a bound on the
communication cost (Item 1), their version produced a subcube-like protocol with a bound on the
codimension of the leafs. This is a slightly weaker guarantee than Item 1: Recall from Lemma 23(C3)
that bounded communication cost implies a bound on the leaf codimension. We prefer our version
in Theorem 29 as it is more elegant and potentially easier to use in subsequent work.

Proof sketch. Theorem 29 is only a slight strengthening of the techniques in [GPW20, YZ24b,
WYZ23] and so we are content with only sketching the crucial differences. To begin, we assume
the protocol Π is in the normal form where the players send one bit in each communication round.
Protocol Π′ is now defined by Algorithm 2. The only difference to [YZ24b, WYZ23] is that we send
the index i encoded using a Huffman code. That is, we use the following fact.

Fact 30 ([Huf52]). Let k be any random variable. There exist an encoding function C( · ) (called the
Huffman code) such that E[|C(k)|] ≤ H(k) + 1.

Otherwise the algorithm is the one stated in [YZ24b, WYZ23]. It crucially relies on the
density-restoring partition from [GPW20], which states:

Lemma 31 (Density-restoring partition [GPW20, CFK+21]). Let X ∈ {0, 1}N be a random variable
and let 0 ≤ γ < 1 be a constant. Then there exists a partition

X := X 1 ∪ · · · ∪ X ℓ

where every X j is associated with a set Ij ⊆ [n] and a value xj ∈ {0, 1}Ij such that:

• (XIj |X ∈ X j) is fixed to xj.
• (XĪj

|X ∈ X j) is γ-dense.

• If we pick i at random according to Pr[i = i] = |X i|/|X |, then the expected codimension of X i

is n−H∞(X) +O(1).

The proof of this lemma is by analysing a greedy algorithm that constructs the X js one by one.
We refer the reader to [GPW20, CFK+21] for a proof. We now state the key fact about Algorithm 2:
over the uniform input distribution, the the probabilities of typical transcripts of Π′ (concatenation
of Π′s messages) are similar to those of Π. We write Π′ := Π′(X,Y ) for the transcript generated
on a uniform random input (X,Y ) ∼ {0, 1}N × {0, 1}N . The following is a version of [YZ24b,
Lemma 3.3]. Their original statement bounds the expected codimension of the leaf ℓ reached, but
the same proof implicitly bounds log(1/Pr[Π′ = ℓ]), whose average value is H(Π′) by definition.
(Note that our use of Huffman encoding only relabels messages, which does not change the entropy
of the transcript.)
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Algorithm 2 Protocol Π′ on input (x, y)
initialize: v ← root of Π, X × Y = {0, 1}N × {0, 1}N , I, J ← ∅
while v is not at leaf level do [ invariant: X × Y is γ-subcube-like w.r.t. (I, J) ]

let v0, v1 be the children of v
Suppose Alice sends a bit at v (otherwise swap roles of X and Y )
let X = X0 ∪X1 be the partition according to Alice’s message function at v
update X ← Xb where b is such that x ∈ Xb

let X = ⋃
iX

i be a density-restoring partition for X (with associated sets Ii)
Let C( · ) be the Huffman encoding of k where Pr[k = i] = |Xi|/|X|
update X ← Xi and I ← I ∪ Ii where i is such that x ∈ Xi

Alice sends (b, C(i)) to Bob
update v ← vb

Output the same as leaf v

Lemma 32 ([YZ24b]). H(Π′) ≤ O(|Π|).

We can now verify Items 1 and 2. Denote by v1, . . . ,vd the nodes of the protocol tree of Π′

encountered when running it on a uniform random input. That is, v1 is the root node, vd is a leaf,
and d is the number of communication rounds. We can thus calculate,

E[|Π′|] = ∑
k∈[d] E[|(b, C(i)) at vk|]

≤ d+ ∑
k E[|C(i) at vk|]

≤ d+ ∑
k(H(i at vk) + 1) (Fact 30)

≤ 2d+ H(Π′)
≤ O(|Π|). (Lemma 32)

If the communication cost exceeds O(|Π|) by a factor larger than 1/ϵ, we make Alice and Bob abort
and output ⊥. By Markov’s inequality, this increases the probability of ⊥ by at most ϵ. For the
new protocol, we have Item 1 by definition and Item 2 since the new error is at most ϵ+ ϵ = 2ϵ.
This concludes the proof sketch of Theorem 29.

Remark. Even though we assumed Π sends one bit per communication round, Π′ can send long
variable-length messages. This is important in order to ensure every node in Π′ is subcube-like.

5.4 Proof for any p ∈ (0, 1)

To extend the proof of Theorem 20 to p-biased distributions, we will do the analysis over a modified
definition of the input. For any p = 2−k for some integer k, define H := (ANDN

k (H1),ANDN
k (H2))

where H := H1, H2 ∈ {0, 1}kN . That is, H is defined by dividing the input H into blocks of size k
and performing a logical AND on those bits. Sampling H uniformly from {0, 1}kN × {0, 1}kN then
results in a p-biased distribution for H . Thus, doing the analysis for this modified problem over the
uniform distribution gives us a lower bound for BiNCC over the p-biased distribution.

Since our input is now a uniform distribution, we can assume we have a subcube-like protocol
by Theorem 29. Note that for any p2 > p1, BiNC is easier with the p1-biased distributions than
p2-biased distributions. If Alice and Bob are given a sample H from a p1-biased distribution, then
Alice and Bob can flip each 0-bit independently to 1 with probability (p2−p1)/(1−p1). The result is
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another random variable H ′ which is p2-biased. If they run the algorithm on H ′ and get a solution c,
then that c is also valid for H. Since for any p ∈ (0, 1) there is an integer k such that p ≥ 2−k, it
suffices to prove the lower bound for such distributions. We claim that Theorem 20 also continues
to hold for subcube-like protocols when we have a p-biased distribution for any constant p = 2−k.

Proof of Theorem 20 for p-biased distributions. We sample H ∼ {0, 1}kN×{0, 1}kN , which induces
a p-biased distribution on H , where p = 2−k. We preprocess the protocol over H using Theorem 29.
Define Q = Q1, . . .Qd the same way for the candidate subcube-like protocol Π over this distribution.
Note that Claim 24 continues to hold. For any cj , if it becomes dangerous for the first time at v, then
Bob has at least 0.1n unfixed bits in his input. Since Bob’s rectangle is subcube-like, the underlying
bits of H come from a 0.8-dense distribution. The min-entropy of the marginal distribution for
these bits is at least 0.08kn. This implies Pr[H(cj) = 0n |H ∈ Rv] ≤ 2−0.08kn = 2−Ω(n). We can
then conclude that Pr[Π(H) is correct] = o(1) using the same calculation as before.

6 Converting to a total relation
So far, we have shown that BiNC achieves an exponential separation between quantum SMP and
classical two-way communication over a biased input distribution. In this section, we convert BiNC
into a total problem and prove our main theorem.

Theorem 1 (Main result). There exists a total two-party search problem S ⊆ {0, 1}N × {0, 1}N ×Q
for N = 2Θ(n) that admits a poly(n)-bit protocol in the quantum SMP model, but requires 2nΩ(1) bits
of communication in the randomized two-way communication model.

6.1 Construction

Following the approach of Yamakawa and Zhandry [YZ24a, Section 6] towards obtaining a separation
for total problems, we consider a total problem variant of BiNC, to which we refer to as Total
Bipartite NullCodeword (T-BiNC). At a high level, we allow Alice and Bob to pick a common
hash function from a λ(n)-wise independent hash function family, and then XOR it with their own
input. The quantum easiness still holds for any λ(n)-wise independent random inputs. However,
the freedom of choosing a common hash function also makes the problem too easy, so we further
require Alice and Bob to solve t instances of BiNC while using the same common hash function.

To provide a formal definition, we first introduce some notation. Recall that we can simulate
the p-biased distribution (Definition 14), for p = 2−6, by splitting each bit into the conjunction of
six uniformly random bits. For any function f : X → {0, 1}m, where X is any input domain, we use
notation f : X → {0, 1}6m for the expanded version. Though, we often give f : X → {0, 1}6m first,
and then define f : X → {0, 1}m by taking the AND of every six consecutive bits of the output of f .

Fix C to be the code defined in Definition 15. We abuse notation and write h : Σn → {0, 1}6n

as the concatenation of h(·, 1), . . . , h(·, n). We take λ(n) = n2 and assume {hk} is implemented
by the standard low-degree polynomial construction. See, e.g., [Vad12, Section 3.5.5]. With this
construction, |K| = 2r with r = poly(n).

Definition 33 (Total Bipartite NullCodeword, T-BiNC). Take t := nr. Let H(1)
. . . , H

(t) be t
mappings Σn → {0, 1}6n, where each H(i) is the concatenation of n mappings H(i)

1 , . . . ,H
(i)
n of type

Σ→ {0, 1}6. Let H(i)
A , H

(i)
B : Σn/2 → {0, 1}3n be the first half and the second half of H(i).

T-BiNC is defined as the following communication problem: Alice and Bob are given t mappings
(H(1)

A , . . . ,H
(t)
A ) and (H(1)

B , . . . ,H
(t)
B ), respectively, and they need to find a key k ∈ K and t strings
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x(1), . . . , x(t) such that

∀i ∈ [t] : x(i) ∈ Cn and H(i)(x(i))⊕ hk(x(i)) = 0n.

Remark (totality). The totality of T-BiNC is implied by the fact that for any input, the quantum
SMP protocol can always find a solution with high probability, which will be proved later. A more
direct proof can be shown as follows: Fixing any input H(1)

, . . . ,H
(t). For each i ∈ [t], by the

λ(n)-wise independence of hk, it holds that

Prk∼K[{x ∈ Cn : H(i)(x(i))⊕ hk(x(i)) = 0n} = ∅] = 2−Ω(n).

Since t = ω(n), there exists a key k such that the set of codewords mapped to 0n is non-empty.

6.2 Worst-case quantum easiness for T-BiNC

We here present a proof sketch for the quantum easiness of T-BiNC.

Lemma 34. T-BiNC has a quantum SMP protocol using poly(n) qubits over the worst-case input.

Proof Sketch. As in [YZ24a], the query algorithm for the total version of the NullCodeword
(T-NCC) will first randomly pick a key k ∼ K, and then solve t copies of NCC , where the i-th
NCC instance is given by oracle H(i) ⊕ hk. Let us call this algorithm AT. Similar to the proof of
Theorem 19, the algorithm AT can also be captured by the same two-stage framework, Query and
Process. Therefore, our SMP protocol for T-BiNC can simulate it in the same manner: Alice and
Bob simulate the Query stage on their own inputs and send their results to Charlie; Charlie then
simulates the Process stage and output the solution. See Algorithm 3 for the details of the quantum
SMP protocol for T-BiNC.

Now we have to show that for the code C specified in Definition 15, the algorithm AT correctly
solves T-NCC . It was shown in [YZ24a, Zha12, Lemma 6.10 using Lemma 2.5] that since AT uses
the algorithm AYZ for solving NCC as a sub-procedure, the correctness of AYZ (in the average case)
would imply the correctness of AT in the worst case. Recall that the correctness of AYZ for NCC is
already proven in Theorem 19, we conclude Lemma 34.

6.3 Classical lower bound for T-BiNC

The classical lower bound follows via a union bound after applying a direct product theorem.
We shall use the following direct product theorem for randomized communication complexity by
Braverman, Rao, Weinstein, and Yehudayoff [BRWY13].

Theorem 35 ([BRWY13]). Let f be any communication problem (function or relation), and µ be a
product distribution of f ’s input. Denote the maximum success probability of a classical two-way
communication protocol for solving f by suc(f, µ, C). Let fn denote the problem of solving n copies
of f and µn denote the product distribution on n inputs.

Then, if T log2 T = o(nC) and suc(f, µ, C) ≤ 2/3, it holds that suc(fn, µn, T ) ≤ 2−Ω(n).

Remark (functions vs relations). Theorem 35 was originally proven for boolean functions f in
[BRWY13]. However, their technique does not depend on whether there is a unique solution or
many valid solutions. Specifically for product distributions, the technique is to

(i) extract a protocol with low external information cost, and then
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Algorithm 3 Quantum SMP Protocol for T-BiNC
Notation:
For each i ∈ [t], j ∈ [n], define the states

|ϕ(i)
j ⟩ ∝

∑
e∈Σ
|e⟩ |H(i)

j (e)⟩ , |ϕ(i)
j ⟩ ∝

∑
e∈Σ
|e⟩ |H(i)

j (e)⊕ hk(e, j)⟩

and define the set
T

(i)
j = {e ∈ Σ : H(i)

j (e)⊕ hk(e, j) = 0}.

Let Uadd, Udecode be unitaries defined as follows:

|x⟩ |e⟩ Uadd−−−→ |x⟩ |x+ e⟩ Udecode−−−−→ |x− Decode(x+ e)⟩ |x+ e⟩ .

Alice:
For each i ∈ [t]:

1. Prepare n copies of |ϕ(i)
1 ⟩ , . . . , |ϕ

(i)
n/2⟩ using H(i)

1 , . . . ,H
(i)
n/2.

2. Send those copies of |ϕ(i)
1 ⟩ , . . . , |ϕ

(i)
n/2⟩ to Charlie.

Bob:
For each i ∈ [t]:

1. Prepare n copies of |ϕ(i)
n/2+1⟩ , . . . , |ϕ

(i)
n ⟩ using H(i)

n/2+1, . . . ,H
(i)
n .

2. Send those copies of |ϕ(i)
n/2+1⟩ , . . . , |ϕ

(i)
n ⟩ to Charlie.

Charlie:
Randomly draw a key k ∼ K and prepare t copies of the state |ψ⟩ ∝∑

x∈C |x⟩ .

for i ∈ [t] do

1. For each j ∈ [n], generate the state |ϕ(i)
j ⟩ using |ϕ(i)

j ⟩ and then measure the second register
of it. If the measurement returns 0, then Charlie successfully generates the state

|ϕk
j ⟩ ∝

∑
e∈T

(i)
j

|e⟩ ;

otherwise, retry with another copy of |ϕ(i)
j ⟩.

2. Apply QFT to |ϕk⟩ := |ϕk
1⟩ ⊗ . . .⊗ |ϕk

n⟩ and |ψ⟩. Now, Charlie holds the state:

|η⟩ := QFT |ψ⟩ ⊗ QFT |ϕk⟩ .

3. Apply (I ⊗ QFT−1)UdecodeUadd to |η⟩.
4. Measure the second register and store the measurement result as x(i).

Output the solution (k, x(1), . . . , x(t)).
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(ii) compress the protocol using ideas from [BBCR13].

Step (i) is easily seen to be true regardless of the number of solutions. Step (ii) works for
relations because the key idea is to simulate the transcript of the protocol, which is oblivious to
whether we are solving a function or relation.

Now we are ready to establish the classical lower bound of T-BiNC.

Lemma 36. T-BiNC requires 2nΩ(1) communication for any classical two-way randomized communi-
cation protocol.

Proof. By Yao’s principle, it suffices to prove a lower bound when the inputs (H(1)
A , . . . ,H

(t)
A ) and

(H(1)
B , . . . ,H

(t)
B ) are drawn from the uniform distribution. By definition, for each i ∈ [t], H(i)

A and
H

(i)
B are drawn from the p-biased distribution.

Now consider a fixed hash function hk where k ∈ K. Note that for each i ∈ [t], H(i)
A ⊕ hk

and H
(i)
B ⊕ hk are also drawn from the p-biased distribution, and they can be viewed as t copies

of input to BiNC. By Theorem 20, we know that there exist a number C = 2nΩ(1) such that
suc(BiNC, µ, C) ≤ 2/3, where µ is the p-biased distribution. Then, we apply Theorem 35, it holds
that that suc(BiNCt, µt, C) ≤ 2−Ω(t).

Finally, by a union bound over all k ∈ K, the success probability of a communication protocol
for T-BiNC using C bits is at most

|K| · 2−Ω(t) = 2r · 2−Ω(nr) = 2−Ω(n),

since |K| = 2r and t = nr.

7 Future directions
We highlight three directions for future investigation.

Total boolean functions. The most immediate problems left open by our work are showing any
exponential separations between classical and quantum communication for total boolean functions,
or proving that they are always polynomially related. We do not expect any modification of the
Yamakawa–Zhandry problem to work since it is a search problem with inherently exponential
number of solutions.

Multiparty communication. Beyond the 2-party model, it would be interesting to show that k-party
quantum NOF (Number on Forehead) communication can be exponentially separated from k-party
randomized NOF communication. We expect that a natural 3-party version of the problem we
study achieves this separation, where each player gets 2/3 of the input oracles. However, in the
NOF model we lack techniques to lower bound randomized communication which don’t also lower
bound quantum communication (see [LSS09]). Note that lower bounds in the 2-party model already
imply lower bounds in the k-party NIH (Number in Hand) model, and it is easy to verify that our
quantum upper bound does indeed work in the NIH model when the inputs to NullCodeword
are split into k equal parts among the k parties. Hence, our result gives a separation in the k-party
NIH model.
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NISQ separation. The era of fault-tolerant quantum computers has not arrived yet, but we do have
so-called NISQ (noisy intermediate-scale quantum) devices. Chen et al. [CCHL23] defined NISQ as
a computational class and studied its complexity. Can we find a quantum–classical communication
separation where the quantum upper bound is in an analogue of their class?

A Correctness of the quantum SMP protocol for BiNC
In this section, we prove the correctness of our quantum SMP protocol described in Algorithm 1.

Lemma 37. When each Hi is drawn from a p-biased distribution distribution, Charlie outputs a valid
solution of BiNCC with high probability.

Recall that for each i ∈ [n],

|ϕi⟩ ∝
∑

ei∈Σ: Hi(ei)=0
|ei⟩ , |ϕ⟩ := |ϕ1⟩ ⊗ . . .⊗ |ϕn⟩ ,

and
|ψ⟩ ∝

∑
x∈C

|x⟩ .

After receiving the state |ϕ⟩, Charlie is essentially solving the NCC problem without any
additional queries to H1, . . . ,Hn. Recall that in the original algorithm AYZ for NCC , the first part
is preparing the state |ϕ⟩ using queries to H1, . . . ,Hn, and the second part is processing |ϕ⟩ without
queries. Charlie’s algorithm is the same as the second part of AYZ. Therefore, it suffices to check
that the original analysis of the AYZ in [YZ24a] still holds for the new code C and biased input
distribution.

Analysis of the Yamakawa–Zhandry Algorithm. We follow the original analysis in [YZ24a] and
highlight where it has to be changed. We will use negl(n) to denote the class of functions which
are asymptotically smaller than an inverse-polynomial in n, which is the standard notation in
cryptographic literature. The main technical lemma in [YZ24a] is the following.

Lemma 38 (Lemma 5.1 in [YZ24a]). Let |ψ⟩ and |ϕ⟩ be quantum states on a quantum system over
an alphabet Σ = Fm

q written as

|ψ⟩ =
∑

x∈Σn

V (x) |x⟩ , |ϕ⟩ =
∑

e∈Σn

W (e) |e⟩ .

Let F : Σn → Σn be a function. Let GOOD ⊆ Σn × Σn be a subset such that for any (x, e) ∈ GOOD,
we have F (x+ e) = x.

Let BAD be the complement of GOOD, i.e., BAD := (Σn × Σn) \ GOOD. Suppose that we have∑
(x,e)∈BAD

|V̂ (x)Ŵ (e)|2 ≤ ϵ (7)

∑
z∈Σn

∣∣∣∣∣∣
∑

(x,e)∈BAD:x+e=z

V̂ (x)Ŵ (e)

∣∣∣∣∣∣
2

≤ δ. (8)

Let Uadd and UF be unitaries defined as follows:

|x⟩ |e⟩ Uadd−−→ |x⟩ |x+ e⟩ UF−−→ |x− F (x+ e)⟩ |x+ e⟩ .
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Then we have

(I ⊗ QFT−1)UFUadd(QFT⊗ QFT) |ψ⟩ |ϕ⟩) ≈√
ϵ+

√
δ |Σ|

n/2 ∑
z∈Σn

(V ·W )(z) |0⟩ |z⟩ .

Define set Ti := {e ∈ Σ : Hi(e) = 0}, T := T1 × T2 × . . .× Tn ∈ Σn, one can represent

|ψ⟩ =
∑

x∈Σn

V (x) |x⟩ , |ϕ⟩ =
∑

e∈Σn

W (e) |e⟩

with

V (x) =


1√
|C|

x ∈ C

0 otherwise

W (e) =


1√
|T |

e ∈ T

0 otherwise

By definition, a string z is a valid solution if and only if V (z) ·W (z) > 0. Therefore, by taking
F (·) := Decode(·) and assuming inequalities (7) and (8) are satisfied, Lemma 38 implies that Charlie
will get a valid solution with high probability when he measures the second register of the resulted
quantum state of the step (3).

It remains to prove inequalities (7) and (8) hold with high probability.

Claim 39 (Modified from Claim 6.4 in [YZ24a]). With high probability over H = (H1, . . . ,Hn) drawn
from a p-biased distribution, there is a subset GOOD ⊆ Σn ×Σn such that DecodeC⊥(x+ e) = x for
any (x, e) ∈ GOOD and we have∑

(x,e)∈BAD
|V̂ (x)Ŵ (e)|2 ≤ negl(n),

∑
z∈Σn

∣∣∣∣∣∣
∑

(x,e)∈BAD:x+e=z

V̂ (x)Ŵ (e)

∣∣∣∣∣∣
2

≤ negl(n).

where BAD = (Σn × Σn) \ GOOD.

To simplify Claim 39, we reuse the definition of set G in Lemma 16,

G := {e ∈ Σn : hw(e) ≤ (p+ ε)n}.

Take B := Σn\G. By Claim 18, we can set GOOD := C⊥ × G, and BAD := (Σn × Σn)\GOOD.
Plug them into Claim 39, and note that V̂ (x) = 0 for all x /∈ C⊥, we have the following:

∑
(x,e)∈BAD

|V̂ (x)Ŵ (e)|2 =
∑
e∈B
|Ŵ (e)|2,

∑
z∈Σn

∣∣∣∣∣∣
∑

(x,e)∈BAD:x+e=z

V̂ (x)Ŵ (e)

∣∣∣∣∣∣
2

=
∑

z∈Σn

∣∣∣∣∣∣∣∣
∑

x∈C⊥,e∈B
:x+e=z

V̂ (x)Ŵ (e)

∣∣∣∣∣∣∣∣
2

.

Then, by an averaging argument, it suffices bound their expected values to be negligible, i.e.,
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EH

[∑
e∈B
|Ŵ (e)|2

]
≤ negl(n), (9)

EH

 ∑
z∈Σn

∣∣∣∣∣∣∣∣
∑

x∈C⊥,e∈B
:x+e=z

V̂ (x)Ŵ (e)

∣∣∣∣∣∣∣∣
2 ≤ negl(n). (10)

We only prove inequality (9) here, while the proof for inequality (10) is the same as in [YZ24a].
For any i ∈ [n], let

Wi(ei) =


1√
|Ti|

ei ∈ Ti

0 otherwise

We now prove the following claim.

Claim 40 (Modified from the first half of Claim 6.6 in [YZ24a]). For all i ∈ [n], it holds that

EHi

[
|Ŵi(0)|2

]
= 1− p,

Proof.

EHi

[
|Ŵi(0)|2

]
= EHi


∣∣∣∣∣∣ 1√
|Σ|

∑
z∈Σ

Wi(z)

∣∣∣∣∣∣
2
 = EHi [|Ti|]

|Σ| = 1− p.

The next claim follows from the same proof as in [YZ24a] by exploiting the symmetry.

Claim 41 (Second half of Claim 6.6 in [YZ24a]). For all i ∈ [n] and e, e′ ∈ Σ \ {0}, it holds that

EHi

[
|Ŵi(e)|2

]
= EHi

[
|Ŵi(e′)|2

]
.

Note that
ŴH(e) =

n∏
i=1

ŴHi
i (ei).

Therefore, by combining Claim 40 and Claim 41, we get that for all e ∈ Σn,

EH

[
|Ŵ (e)|2

]
= Dn(e),

where Dn is the same distribution defined in Lemma 16—each symbol is 0 with probability 1− p
and otherwise a uniformly random element of Σ \ {0}.

Finally, by the linearity of expectation and Lemma 16, we conclude that

EH

[∑
e∈B
|Ŵ (e)|2

]
= Pre∼Dn [e ∈ B] ≤ negl(n).
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