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Abstract

This work makes two distinct yet related contributions. The first contribution is a new
information-theoretic model, the query-with-sketch model, and tools to show lower bounds
within it. The second contribution is conceptual, technically builds on the first contribution,
and is a barrier in the derandomization of randomized logarithmic space (BPL).

(1) The query-with-sketch model generalizes the query complexity model for computing
multi-bit functions f : {0, 1}N → {0, 1}M . In this model, computation unfolds in two phases.
Initially, the algorithm sends an agent to evaluate an arbitrary but length-restricted sketch of
the input. Subsequently, the algorithm proceeds with queries. The main technical contribution
is a lower bound in this model for the Approximate Matrix Powering (AMP) problem. To that
end, we introduce a constrained form of conditional min-entropy that characterizes the number
of queries in the model. We bound this entropy by developing tools that blend geometry, a
generalization of tools from Lipschitz analysis for polynomials and low-distortion spaces, and
probability theory. The main result is that AMP requires polynomial query complexity or super-
polylogarithmic sketch size. We note that AMP and the query-with-sketch model are natural
and interesting in their own right, in addition to the following conceptual contribution.

(2) Derandomizing BPL is an open question in computational complexity. The most success-
ful derandomization algorithms of BPLmake recursive use of pseudorandom generators or similar

pseudorandom objects. The best-known derandomization places BPL inside DSPACE( log3/2 n√
log logn

).

We ask whether these algorithms can be substantially improved if we keep fixed the pseudoran-
dom object and the main idea, which is to approximate Mn of the computation matrix M by
relying on intermediate powers such as Mn/2. We answer this question in the negative in a re-
cursive generalization of the query-with-sketch model. We show that in this recursive and space-
bounded model AMP needs super-polynomially many queries (time) or super-polylogarithmic
sketch size (space). Specifically, in our model an algorithm that uses approximations of elements
of the matrix Mn/2 to approximate an element of Mn, it must first determine the values of these
elements in Mn/2 and it can do this recursively. Other than this restriction, an algorithm is free
to determine arbitrarily how to organize the recursion and how to use the bounded space. The
conceptual takeaway is the “intermediate powers barrier”, which indicates that fully derandom-
izing BPL cannot rely on a natural, recursive use of approximated intermediate powers.
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1 Introduction

It is believed that it is possible to turn every terminating probabilistic logarithmic space algorithm
into a deterministic one by paying only a constant factor in the algorithm’s space. Despite the
significant research activity, this question has no general answer. Understanding one aspect of
the limitations of the known techniques for the derandomization of randomized logarithmic space
(BPL) is the motivation of this work.

Our contribution is twofold. First, we introduce the query-with-sketch model and develop tools
for proving lower bounds. The lower bounds are for the approximate matrix powering (AMP) prob-
lem, which is ultimately related to the derandomization of BPL. Both the query-with-sketch and
AMP are interesting in their own right, and the developed techniques might also be of independent
interest. By generalizing the query-with-sketch model, we get to our second contribution. This
contribution is the conceptual message of this work. It regards the limits of one current approach
in derandomizing BPL. Importantly, we note that almost all known derandomizations of BPL fall
within this barrier.

Here is a brief description of the barrier. After the seminal work1 of Nisan [Nis92], which
derandomized RL in polynomial time and O(log2 n) space, the followup works studied the use
of pseudorandom generators in a recursive framework. Our barrier is a super-polynomial query
lower bound for a class of space-bounded recursive algorithms solving AMP. These algorithms have
ω(1) recursion levels, with each level approximating elements of an intermediate power where the
exponents are divisors of one another (e.g., Mn,Mn/3,Mn/12, . . . ,M). Each level can only query
the approximated elements of the immediately lower level. A query to one or more elements whose
values are not determined yet, triggers a recursive call. Furthermore, each level is given a local
space of size polylog(n), which it can use arbitrarily. Syntactically, each level of the recursion is
associated with a distinct query-with-sketch model with the added feature that the algorithm can
update its space (sketch) during its computation. These algorithms are allowed to organize the
recursive calls arbitrarily and also make arbitrary use of the bounded space.

The remainder of the Introduction is structured as follows. First, we define the query-with-
sketch model and present our main results. Next, we discuss the barrier in the derandomization of
BPL.

1.1 The query-with-sketch model

An algorithm in the query-with-sketch model aims to compute a multi-bit function f : {0, 1}N →
{0, 1}M with the help of a short piece of information that we call “sketch”. The sketch size should
be smaller than N and M for the model to make sense. Instead of a multi-bit function, more
generally, a problem f : X n → Y is a function we want to compute, where X ,Y are finite sets. An
algorithm in the query-with-sketch consists of the agent and the query algorithm. These two are
computationally unbounded. The resources we care to bound are: (i) the sketch size that we think
of as space, and (ii) the number of queries that we think of as time.

1Nisan’s work uses intermediate powers of matrices but in a non-recursive way. This is because the derandom-
ization algorithm stores in its memory enough many hash functions that can be efficiently used to reconstruct an
approximation of the entire intermediate power (see pp.621–622 [Nis92]). In this way there is no need for recursion.
Recursion is used when instead of storing a succinct representation of the intermediate matrix power you calculate it
on-demand.

3



Informal definition. An algorithm in this model works as follows: first, send the agent S to the
input x and get the sketch. Then, proceed by making queries until you specify the output. A more
detailed definition and some notation follows.

Definition 1 (Query-with-sketch: algorithms and resources). Let f : X n → Y be a problem.

[Algorithm] A query-with-sketch algorithm ΠS is defined through the functions S,Π as follows.
Fix any input x ∈ X n. The function S : X n → {0, 1}s is the sketch of the input, which outputs
a string S(x) of fixed length s. The function Π gets as input a sequence of length ℓ + 1: C =
⟨S(x), (q1, a1), (q2, a2), . . . , (qℓ, aℓ)⟩, and Π is defined for every ℓ ∈ Z+. A query qi ∈ {1, . . . , n} is
an input location, whereas the answer to the query ai = xqi. On a sequence C, Π outputs the next
query Π(C) = qℓ+1 ∈ {1, . . . , n} or it produces an output from Y and halts.

[Computation] The computation of an algorithm ΠS on input x is a sequence of Cs: C0 ⊢ · · · ⊢ Cm,
where the transition from Ci to Ci+1 is consistent with Π; C0 = ⟨S(x)⟩ and Cm ∈ Y.

[Complexity] We define two types of query complexity: Cost(ΠS) the worst-case cost of ΠS, and
Avg-CostµXn (Π

S) the average-case cost of ΠS for an input distribution µXn on X n. Let TΠS (x) be

the number of queries of the algorithm ΠS on input x.

Cost(ΠS)
def
= max

x∈Xn
TΠS (x) and Avg-CostµXn (Π

S)
def
= Ex←µXn [TΠS (x)]

1.1.1 Query-with-sketch and related models

Before we explain what the model can and, importantly, cannot do, we will locate the query-with-
sketch on the map of information-theoretic models.

In query and communication complexity [Yao79, KN97, RY20] the goal is to determine the
output without knowing the whole x. In such models “computation” corresponds to “information”
revealed to us in a specific order. In contrast, in space-bounded models such as space-bounded
Turing Machines, branching programs [Sha38, Sha49, Weg00], and streaming algorithms [AMS96,
M+05], the computational device gets to see the entire input, but during its computation can only
remember a limited number of things. In the query-with-sketch model, in some sense, we do both.
We get to see a sketch, a compression of the entire input, and our goal is to determine the output
of the function by querying the input.

In the most common, 2-party communication complexity model each player computes by typ-
ically knowing half of the input. The space-bounded versions of the communication complexity
model [BCP+13, PSS14] also fundamentally differ from the query-with-sketch since in that case
the space-bounded players maintain non-uniform space, but they do not get to see the entire input.
The communication model studied in [DVM14] is loosely reminiscent of ours. However, it is used
for the computationally bounded case and has a completely different application.

The models that are more closely related to the query-with-sketch are the decision tree model
with help bits and the succinct cell-probe model. The most related one is the decision tree model
with help bits [NRS98, BH98], which can be seen as a special case of our model. In that model,
algorithms compute the direct sum of k instances of a boolean function using k−1 help bits, which
can be viewed as a sketch of length k− 1. The succinct cell probe model [PV10] also uses sketches.
However, it is important to note that this model fundamentally differs from our query-with-sketch
model since the cell probe model, being a data structure model, primarily focuses on managing the
memory of inputs rather than computing a single function.
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1.1.2 Examples of algorithms in the query-with-sketch

The query-with-sketch generalizes the query model [BDW02]. Without the sketch, Definition 1
above becomes the standard query model. This new model is strictly more powerful than the query
model, as shown in the examples below.

Two examples. We present two problems and algorithms for these problems that make polyno-
mially fewer queries than any algorithm in the standard query model. Both algorithms work by
first approximating the output and then using the sketch to correct the (additive) error.

First, consider the Hamming Weight Problem where the input is a string from {0, 1}n and the
output is the number of 1s. In the query model, n queries are needed to compute, with probability
more than 1

2 , the exact answer to this problem. But, in the query-with-sketch we can do the
following: first sample nε-many bits to approximate the higher-order digits of the hamming weight
and use a small sketch to get the lower-order digits. The intuition is that the lower-order (least
significant) digits are harder to compute than the higher-order ones.

Our second example is the problem of Counting the Connected Components of an undirected
graph in the adjacency list model. Our query-with-sketch algorithm simulates the sublinear ap-
proximation algorithm [CRT05] to approximate the answer with a subquadratic number of queries
and then use the sketch to correct the approximation error.

The above toy-examples regard what the model can do.2 For completeness, the easy details of
these algorithms are given in Section 3. Algorithms in the query-with-sketch is a digression from
the main topic of this work, which regards lower bounds.

1.1.3 The limitations of the query-with-sketch model

The main technical result for the query-with-sketch model is Theorem 4 (see below). This is a lower
bound not just for the Approximate Matrix Powering (AMP) problem, but also for a generalization
of the AMP. The reason we prove the lower bound for the Generalized AMP is because this is the
version we need when we later on extend our results in the recursive model.

Let us now define the AMP problem and explain its relationship to our model. The AMP
problem is determined by a rounding constant α > 0. For a substochastic matrix M ∈ Rn×n –
i.e., a non-negative matrix whose rows sum up to at most 1 – we denote by [M]α the matrix whose
entries are the entries of M rounded to the closest multiple of 1

nα .

Problem AMPα

Input: the input is a rounded substochastic matrix [M]α.
Output: the output is the rounded [Mn]α (or any [(M′)n]α where [M′]α = [M]α)

3.

2To be precise, in this discussion we compared the randomized versions of the query-with-sketch and standard
query algorithms.

3This is the appropriate definition of the problem. Two remarks are in order. First, why the definition does not
allow an arbitrary matrix A which is close (in normed sense) to Mn? This is because one can use the lower-order
bits of the precision of the entries of A to encode arbitrary information which would have made any non-trivial lower
bound in the recursive model (see below) impossible. In other words, the rounding of the entries is necessary in the
“correct” definition of the problem. Second, the definition is more restricted (but cleaner) than the problem for which
we have proved the lower bound. If instead of [Mn]α we allow to output [A]α for an arbitrary matrix A which is
close to [Mn]α, then this [A]α is still among the valid outputs. This is because every [A]α has preimages M′ whose
n-th power that is arbitrarily close to A and thus [M′n]α = [A]α (see Lemma 15 and 19, pp. 44 and 47).
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Algorithms in this work are given query access to elements of rounded matrices.
As mentioned for the application to the recursive model we need a more general AMP. The

more general problem besides α is determined by two parameters k and k′, where k′ is a multiple
of k. In Generalized− AMP the query-with-sketch algorithm is given query access of [Mk]α and the
goal is to output [Mk′ ]α.

Problem Generalized− AMPα,k,k′,where k|k′

Input: the input is a rounded substochastic matrix [Mk]α, for some substochastic matrix M.
Output: the output is the rounded [Mk′ ]α (or any [(M′)k

′
]α where [(M′)k]α = [Mk]α).

Informally, the problem is given an n×n matrix M (or some power of M) we would like to com-
pute a power of this matrix, e.g., M2 or M4 or Mn/2 or Mn. Generalized− AMP is a family of prob-
lems; one problem for each choice of α, k, k′. For example, one problem is Generalized− AMP3,1,2,
where for n = 10 the problem is: given a 10 × 10 matrix M each element of which is rounded to
the third decimal digit ( 1

103
) the goal is to compute M2 where the elements of the output are also

rounded to the third decimal digit. As we will see, our lower bound holds simultaneously for all
pairs of matrix powers k, k′ ≤ n.

Before we proceed we will clarify two things.
First, the reason that we denote the input as Mk (and not as M′ = Mk) is to emphasize that

we use one nemesis distribution for the whole family of the Generalized− AMP problems.
Second, due to rounding, for one input [Mk]α there are multiple valid outputs [Mk′ ]α. In this

work, an algorithm is correct if it outputs any of the valid outputs. This way the lower bound is
stronger. Moreover, this is in line with the desired behavior of a successful derandomization of
BPL.4

The main lower bound in the query-with-sketch model is informally stated as follows.

Theorem 4 (informally stated: lower bound for the query-with-sketch). Fix the matrix dimension
n × n. We can construct a distribution M over matrices that works for every k, k′, where 1 ≤
k < k′ ≤ n and k′ is a multiple of k. This M is the nemesis distribution, which means that every
algorithm ΠS with inputs from M has average query complexity nΩ(1), when ΠS approximates a
power Mk′ given a sketch and query access to a smaller power Mk. This is true for sketch size
s = polylog(n) and remains true even if ΠS approximates up to N = polylog(n)-many elements of
Mk′.

Later on, when we state the above theorem rigorously, we will see that given s, N is a sufficiently
large polylog.

For example, a corollary of the above informal theorem (after parameterizing it carefully) is
that there is a distribution M over n × n substochastic matrices M, where given query access to
[M]3 every query-with-sketch algorithm that aims to compute any log4 n-many elements of [M2]3
using any sketch of size log n must make at least

√
n queries in average.

The above theorem says that computing the Generalized-AMP even for a small part of the
output matrix is difficult. The theorem is restated on page 24, with the correct range of param-
eters and appropriate quantification. The formal statement and proof of this theorem is given in
Sections 7, 8, and 9 (pp. 23 – 49). An outline of the argument is given in Section 2 (pp. 10 – 15).

4Derandomization algorithms compute a rounded output M̃n that has small error ||Mn − M̃n||∞, where || · ||∞
denotes the entry-wise max norm. For derandomization, every such small-error rounded output would do.
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To show this lower bound we develop new technical tools. At a high level the conceptual
difficulty in proving the theorem lies in the following:

When proving a lower bound using a nemesis input distribution, the sketch – which is a
function of the entire input – arbitrarily creates statistical dependencies in the analysis.
It is not clear how existing techniques (prior to this work) can be used to prove such a
lower bound.

Here is a summary of the argument: First, we reduce the query complexity when given a
sketch, to a min-entropy conditioned on certain boundary conditions. We refer to this as “restricted
conditional min-entropy” or simply “min-entropy”. This reduction is in Section 4 and is a general
tool in the query-with-sketch model; i.e., not specific to the AMP problem. Here is an informal
statement of the min-entropy theorem.5

Theorem 1 (Informal statement – Query-with-sketch to min-entropy reduction). Let f : X n → Y
be an arbitrary function, and µXn an arbitrary distribution over X n. Fix ΠS to be a correct
algorithm for f with the help of an arbitrary sketch S, where s = |S|. High min-entropy of f
implies a high number of queries in the query-with-sketch model.

Now, the problem reduces to lower bounding this entropy conditioned on boundary conditions.
To deal with those boundary conditions we study perturbations of the input matrix M. We use
this perturbation study when proving a lower bound in the number of queries to approximate say
M2 with query access and sketch to M. Now, if we want to approximate Mk′ when we are given
query access and sketch not to M but to a higher power Mk (k < k′), things are more complicated.
This is because one element of Mk potentially reveals information of polynomial many elements of
M due to powering the matrix (Mk). To that end, we show that the distribution of Mk (which
lives inside a metric space) can be embedded with low distortion into the distribution of M. Thus,
it suffices to analyze the events in the simpler M-space. For a more detailed outline see Section 2.

1.2 The recursive model and intermediate powers

At a high level, we show that the complete derandomization of BPL (BPL = L) or even a poly-
nomial time but space-restricted derandomization of BPL ⊆ TISP(poly(n), polylog(n)) cannot rely
on approximating Mn of the transition matrix M by using intermediate powers, such as Mn/2.
We refer to this limitation as the intermediate powers barrier in the derandomization of BPL. The
limitation is shown in an information-theoretic recursive model, where time and space are naturally
formalized. In this model, algorithms are restricted to using previous powers to approximate higher
matrix powers.

Below, we define the recursive model. Next, we compare our work to previous works and discuss
barriers in complexity theory as well as prior works on derandomizing BPL. Finally, we state and
explain the barrier result.

5Caution is needed. This is not a general “min-entropy” notion, but one where the conditionals are very specific
(see Section 4).
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1.2.1 The space-bounded recursive model

Previously, we defined the query-with-sketch model in its generality. Below, the space-bounded
recursive model is defined only for AMP. This is because different problems have different recursive
structures/subproblems.

Informal definition. To compute [Mn]α given [M]α as input, a space-bounded recursive algo-
rithm recursively computes intermediate powers (e.g., [Mn/2]α, [M

n/4]α, . . . ). Each recursion level
is associated with a distinct query-with-sketch algorithm. The workspace (sketch) at each level
is dynamically updated during the computation. To compute an element of [Mn[u, v]]α, the algo-
rithm issues a list of queries to elements of [Mn/2[u, v]]α until enough information is gathered in the
workspace and becomes possible to determine the value of [Mn[u, v]]α. Once this value is computed,
the algorithm returns it to the recursion level that made the call and updates its space accordingly.
We answer queries recursively. In this work, recursive algorithms are partially adaptive, meaning
that the queries made at each recursion level are not dependent on what the algorithm has seen
so far, but are instead based on an index h, which is a polylog(n)-long string computed from the
input.6 One can view the recursive algorithm as a family of non-adaptive algorithms, where each
algorithm is indexed by h, a precomputed string from the input.

Formal definition. To formally define the recursive model we must specify various details. For
the informal statement of the barrier Theorem 3 these details are not necessary. We defer the
definition to Section 5, pp. 19.

In the remainder of this section, we first discuss the existing barriers in complexity theory to
contextualize our proposed barrier. Next, we review the state-of-the-art in the derandomization of
BPL. Finally, we link these to the intermediate powers barrier and state the key barrier theorem.

1.2.2 Barriers in complexity theory and space-bounded derandomization

The question of whether randomized logarithmic space or BPL, can be completely derandomized
has remained open for more than four decades. In this work, we propose that a common algo-
rithmic approach toward the derandomization of BPL cannot succeed within a structured model
of computation. Meta-results of this nature are generally known as barriers, and we refer to our
specific barrier as the intermediate powers barrier. Before explaining what this is we will briefly
discuss barriers in complexity theory.

Barriers in computational complexity. Almost all of the major open questions in compu-
tational complexity remain unresolved. For example, we do not know if P ̸= NP, or even the
uniform TC0 ̸= NP. We also do not know if BPP = P or if BPL = L, among many other important
questions that are widely open. Thus, understanding the limitations of existing techniques toward
answering a conjecture has become a common theme in computational complexity. These types of
results are termed as “barriers”. For example, when it comes to the open questions regarding class
separations, most notably P ̸= NP, three main barriers are known: relativization [BGS75], natural
proofs [RR94], and algebrization [AW09]. Results that relate the difficulty of the derandomization of
probabilistic polynomial time BPP with proving exponential circuit lower bounds [KI03] can also be

6String h corresponds to the “offline seed” in [SZ99].
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thought of as barriers. Similarly, for improving slightly existing circuit lower bounds, e.g., [CT19].
Many other interesting results fall within the same barrier category, e.g., [LP21, Hir22, CJSW24]
Most barriers are about time/circuit size lower bounds. Regarding space-bounded derandomiza-
tion, back in the 1980s it was not known if the standard randomized algorithm for undirected
st-connectivity [AKL+79] can be derandomized. In [CR80, BBR+96] it was shown that certain
structured algorithms that test connectivity by placing pebbles on the given graph fail to deran-
domize the randomized st-connectivity algorithm. Years later, [Rei08] gives a logarithmic space
algorithm that tests connectivity without moving pebbles on the original graph – thus, bypassing
the [CR80, BBR+96] barrier. How about the derandomization of the entire BPL?

Progress in BPL = L. Despite three decades of research [Sak96], progress in derandomization of
space-bounded computation has been greatly slowed down. In the 1990s two seminal works shaped
much of the field. The first is a pseudorandom generator [Nis90, Nis92], which uses O(log2 n) space
and can be computed in polynomial time. The second is a recursive algorithm [SZ99, CCvM06]
that using this pseudorandom generator, or any other that uses O(log1+c n) space, c ≤ 1, can shrink
the space to O(log1+c′ n) for c′ < c at the expense of the running time which becomes nω(1). As
mentioned before, besides a clever deterministic algorithm [Rei08] for undirected st-connectivity,
there is no major advance in the derandomization of the entire BPL in the sense that there is no
known improvement on the constant c, which remains 3/2, i.e., essentially BPL ⊆ DPSACE(log3/2 n).
The best known derandomization is through a more recent work [HZ20] showing that BPL ⊆
DSPACE( log3/2 n√

log logn
); i.e., log3/2 n can be improved. This latter result still relies on the recursive

structure of [SZ99]. In the recent years, there is massive progress in derandomizing branching
programs [CDSTS23, PP23], hardness vs. randomness results on BPL [PRZ23, DPT24], L-AC1

derandomization of BPL [CW24] and catalytic time-space CTISP(n, log n, log2 n) derandomization
of BPL [Pyn24], which are also of great interest.

In space-bounded derandomization [Nis90, Nis92, BNS92, INW94, SZ99, CCvM06, RTV06,
GR14, BCG19, CL20, AKM+20, HZ20, PV21, Hoz21, CDSTS23, PP23, PRZ23, CW24, Pyn24,
DPT24], and in particular in the derandomization of logarithmic space, the way that most known
derandomization algorithms proceed is by approximating matrix powering for stochastic matrices
in small space or simultaneously small space and time. Many of these works rely on approximating
higher powers of the computation matrix by first computing intermediate powers [SZ99, CCvM06,
BCG19, CL20, HZ20, PV21, Hoz21, CDSTS23, PP23, Pyn24].

1.2.3 The limitations of the intermediate powers method

We give a super-polynomial query lower bound for AMP in the space-bounded recursive model,
which is a natural recursive model for computing AMP and generalizes the Saks-Zhou frame-
work [SZ99]. Algorithms in the recursive model approximate the matrix power Mn by recursively
approximating its intermediate powers first (e.g., Mn/2). We require ω(1) recursion levels and
O(polylog(n)) space for each recursion level. We also require the algorithms to be partially adap-
tive. For a formal definition and examples of the recursive model, please refer to Section 5.

In the previous subsection, we informally stated a theorem showing that the generalized AMP
problem is hard for the query-with-sketch model. By carefully using this theorem we can apply it
to each recursion level of the recursive model, and obtain our barrier below.

Theorem 3 (informal statement of the barrier to derandomization of BPL). Fix the matrix dimen-
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sion n. We can construct a nemesis distribution M over substochastic matrices, such that every
algorithm Π∗h in the space-bounded recursive model correctly computes the matrix power [Mn]α
given inputs from M either requires super-polylogarithmic space complexity, or super-polynomial
average-case query complexity.

In Section 6 we show how to express the Saks-Zhou algorithm together with all of its variants
and extensions in our recursive model. We do this because we wish to explicitly state which existing
techniques our work rules out.

Most of the work following up [SZ99] falls into a recursive framework, where computing the n-th
power of a matrix reduces to computing intermediate powers. In the seminal works [Nis90, Nis92],
Nisan proposed a pseudorandom generator whose random seed has O(log2 n) bits. By simulat-
ing the Turing Machine on poly(n) many pseudorandom numbers generated from the random
seed, Nisan showed that BPL ⊆ SC. Saks and Zhou [SZ99] significantly improved the space from
O(log2 n) to O(log1.5 n) by reusing Nisan’s PRG. Specifically, they approximate Mn by recursively
approximating intermediate powers Mi·

√
logn for each i ∈ {1, . . . ,

√
log n}, where all the recursion

levels share the same random seed of length O(log1.5 n). [CCvM06] further generalized [SZ99], and
gave a smooth time-space trade-off to the derandomization of BPL. More recently and perhaps
unexpectedly, [Hoz21] improved the bound to BPL ⊆ DSPACE(log1.5 n/

√
log logn) by plugging in a

better WPRG (weighted pseudorandom generator) into the Saks-Zhou framework. As mentioned
our barrier holds for all those works. We defer to Section 6 a more detailed discussion and a for-
malization of the Saks-Zhou framework. As a corollary to the intermediate powers barrier, a lower
bound to previous works is also included and stated at Theorem 2.

2 Outline of the argument and high-level presentation of our tools
(lower bounds – main result)

In this section we give an outline of our main results. This work introduces the following three
lower-bounding tools, which might also be of independent interest.

(I) Reduction to min-entropy.

(II) Perturbation analysis.

(III) Conditional probability bounds from volume and embeddings.

The purpose of this outline is to identify the exact points in the argument where each of the
aforementioned tools is applied. The presentation is high-level, and the arguments are heuristic7.
These heuristic arguments are rigorously formalized in Sections 3 through 9. Below we list in which
sub-section each of the (I), (II), or (III) is used.

• Section 2.1: From elementary principles (no new tools).

• Section 2.2: (III).

• Section 2.3: (I) and (II).

• Section 2.4: (I), (II), and (III).

• Section 2.5: From elementary principles (application to the recursive model).
7“Heuristic argument” means that we make simplifying assumptions to advance the exposition.
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Before the proof: dealing with a multi-valued function

The definition of AMP due to rounding permits two distinct matrices M1 ̸= M2 to be such that
[M1]α = [M2]α and [Mn

1 ]α ̸= [Mn
2 ]α. In our exposition in this section, we shall assume that this

does not happen. We take care of this detail in Section 8.

2.1 Computing M2 from M is hard in the query model (without sketch)

When there is no sketch, M2 depends on all the elements of the substochastic matrix M. The same
thing holds for approximating M2. To see this, let M be everywhere 1

n and M′ be the same as
M but with one element equal to zero. Then, M2 = M but in (M′)2 the minimum element is at
most n−1

n2 . This means, that ||M2 − (M′)2||∞ ≥ 1
n2 . Hence, every algorithm which approximates

the square in the output with error smaller than 1/(2n2) must query all the elements of the input
matrix.

2.2 Computing Mn from Mn/2 is hard in the query model (without sketch):
Bound the probability by a volume-embedding argument

The situation becomes more complex when the input elements are dependent. For instance, consider
a distributionM from which we sample M. If the input to our problem is not M, but rather Mn/2,
the elements of Mn/2 may exhibit statistical dependencies. To address this, we need to designM
such that knowing a few values of [Mn/2]α does not allow recovery of [M]α (since in that case, we
can compute [Mn]α).

We will construct a nemesis distribution8M of the form M = n2−1
n2 I+ 1

n3 (
1
nJ−∆), which is the

weighted sum of the identity matrix I, the all-one matrix J and a relatively small uniform random
matrix ∆ (i.e., ∆ is the only source of randomness) whose elements are i.i.d. uniformly selected
from a small range. Specifically, ∆ is a discrete random matrix whose elements are uniformly
distributed in [0, 1

nγ ] ∩ {d · 1
nτ }d≥0, where 2 ≤ γ < α − 12.2 and τ large enough are constants.9

Then, Mk for each k ≥ 1 can be rewritten as
∑k

t=0

(
k
t

)
(n

2−1
n2 )k−tn−3t( 1nJ−∆)t, which is dominated

by the first few terms of the sum; i.e., the terms for small t.
The main point of our “volume and embeddings” technique (bullet number (III) above) is that

the mapping M 7→ Mk is a low distortion embedding when the probability space is viewed as a
metric space (and now probability corresponds to volume). This is because Mk is dominated by

(n
2−1
n2 )kI+k(n

2−1
n2 )k−1 1

n3 (
1
nJ−∆), which is linear in ∆ and hence also linear in M. Specifically, us-

ing Lipschitz analysis we can show that (i) if we regard ϕk(
1
nJ−∆)

def
= Mk = (n

2−1
n2 I+ 1

n3 (
1
nJ−∆))k

as a function of 1
nJ −∆, then ϕk is an invertible function10. (ii) ϕk and ϕ−1k are Lipschitz func-

tions with constants that are not very hard to bound. Hence, ϕk is a bi-Lipschitz function, i.e. a
low distortion embedding. These two results are stated and proved as Lemma 14 and Lemma 15,
pp. 43-44. Finally, observe that the (discrete) volumes under low-distortion embeddings are some-
what preserved. It follows that (almost) preserving discrete volumes also preserves statistical
dependence/independence, which is the key observation.

Since the elements of M are independent and identically distributed and since Mn/2 is a low-
distortion embedding of M, the statistical dependencies among the elements of Mn/2 are relatively

8The complete definition of the distribution M is on page 23.
9The parameters γ, τ will not be used until the next subsection.

10This is not true in general, but is always true for ∆ in a sufficiently small range.
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weak. By “weak” we mean that even if 0.99n2 elements of [Mn/2]α are fixed, there remains sig-
nificant uncertainty about the remaining elements (cf. Theorem 6, p. 48). With this in mind, a
lower-bound argument similar to that of the previous section applies here as well.

2.3 Computing any one element of M2 from M is hard with short sketch:
min-entropy theorem and perturbation analysis

We will now incorporate the sketch into our model of computation and analysis. Consider the
function whose input is M and the output is M2 both rounded to the nearest multiple of 1

nα where
α > 14.2 is a constant. Then, each element can be described with log(nα) = ⌈α log2 n⌉ bits. We
claim that computing an arbitrary element M2[u, v] with the help of an arbitrary sketch S of length
|S| = log n requires average query complexity Ω(n) over the same nemesis distribution M in the
previous section.

Obviously, the sketch might reduce the number of queries but makes lower bounds harder
to get. Our intuition about the lower bound is that when the sketch is short it cannot bring
enough information to save queries for all possible inputs. To quantify this we introduce restricted
conditional min-entropy or min-entropy for short, and relate it to the query-with-sketch model.
According to our min-entropy theorem (cf. Theorem 1, p. 17), a lower bound in the number
of queries of a query-with-sketch algorithm can be obtained by lower bounding this min-entropy
notion. This way the analysis focuses on the entropy and is not concerned with queries and sketches.

Specifically, fix an integer q ≥ 0, and fix a distribution µ over the input M. Fix also an arbitrary
event over the inputs σ = ([M[i1, j1]]α = x1, ..., [M[iq, jq]]α = xq) for every (i1, j1, x1), ..., (iq, jq, xq).
The min-entropy of this one element [M2[u, v]]α conditioned on σ is

Hmin([M
2[u, v]]α|µ, σ)

def
= min

y∈R
log

(
Pr

M∼µ
[[M2[u, v]]α = y|σ]

)−1
Note that this conditional min-entropy can be viewed as the entropy of the function M 7→M2[u, v],
i.e., the entropy measured on the output where the randomness is in the input of this function.
The min-entropy theorem states that, if Hmin([M

2[u, v]]α|µ, σ) > 2|S| for every σ, then every
query-with-sketch algorithm ΠS that computes [M2[u, v]]α has Avg-Costµ(Π

S) > q/3.
This theorem is not hard to prove, but we will not outline its proof here to continue with the

flow of the outline.
We use the above theorem to establish an Ω(n) query lower bound as follows. Let q = 2n − 2

be the desired query lower bound. Note that 2n− 1 are all the elements of the u-th row and v-th
column. Given the nemesis distributionM as constructed in Section 2.2, the query lower bound is
reduced to upper bound PrM∼M[[M2[u, v]]α = y|σ] for every y and σ (equivalently to lower bound
the conditional min-entropy of [M2[u, v]]α for every y and σ). Now, we will bound this probability
in three steps.

Step 1: First, observe that [M2[u, v]]α is a constant function in each [M[i, j]]α when i ̸= u and
j ̸= v. There are n2 − 2n + 1 many such indices (i, j). We want to show that, even if σ fixes
q = 2n − 2 many input elements [M[i, j]]α for which u = i or v = j, the element [M2[u, v]]α still
heavily depends on the one remaining input element (i′, j′). Let us arbitrarily choose the remaining
(i′, j′) where i′ = u or j′ = v and call this input element M[i′, j′] the core element.

Step 2: To upper bound the probability, it suffices to focus on the core element and disregard other
elements of M. Specifically, upper bounding the conditional probability PrM∼M[[M2[u, v]]α = y|σ]
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can be reduced to upper bounding PrM∼M[[M2[u, v]]α = y|σ′], since PrM∼M[[M2[u, v]]α = y|σ] ≤
maxσ′ PrM∼M[[M2[u, v]]α = y|σ′] where σ is a restriction to 2n − 2 elements, and σ′ restricts
n2 − 1 elements (other than the core element) and is consistent to σ. This is because the previous
probability is a weighted sum of the latter one.11. This probability is also analytically easier to
handle.

Step 3: Recall that our goal is to bound the conditional probability for the value of [M2[u, v]]α,
i.e., we want to show that this probability is not too large even when the only source of randomness is
the core element M[i′, j′]. In other words, we want to show that enough uncertainty from M[i′, j′] is
preserved in [M2[u, v]]α. To that end, we observe that M2[u, v] is an increasing function of M[i′, j′].
Intuitively, this means that the randomness from M[i′, j′] makes it to the output M2[u, v]. The
problem is that the output is [M2[u, v]]α not M2[u, v]. This means that as a function of the input
M[i′, j′] the output [M2[u, v]]α is a step-wise increasing function, due to rounding. However, if
we could show that the function M[i′, j′] 7→ [M2[u, v]]α increases not too slow, then this would
imply that the number of discrete inputs that make the same (rounded) output is small. Given a
uniform input distribution, which is also over equidistant points, the upper bound of the desired
probability PrM∼M[[M2[u, v]]α = y|σ′] follows from carefully counting the distinct possible values
for [M2[u, v]]α. Everything holds true when the input elements are also rounded, i.e., the function
becomes [M[i′, j′]]α 7→ [M2[u, v]]α.

Let us give a little more details about how fast M2[u, v] grows. Observe that the partial

derivative ∂M2[u,v]
∂M[i′,j′] = Ω( 1

n4 ), which means that the speed in which M2[u, v] grows at least linearly.

It turns out this to be sufficient for the purpose of upper bounding PrM∼M[[M2[u, v]]α = y|σ′].
To bound the probability and ignoring that the input elements [M[i, j]]α are also rounded,

we argue as follows. To increase M2[u, v] by n−α, one only need to increase M[i′, j′] by at most

n−α
/∂M2[u,v]

∂M[i′,j′] = O(n4−α). Given that each element of M is taken uniformly and equidistantly from

a range of length 1/n3+γ , the probability can be bounded

Pr
M∼M

[[M2[u, v]]α = y|σ′] ≤ O(n4−α)

n−3−γ
= O(n7−α+γ)

Recall that α > 14.2 and 2 ≤ γ < α−12.2, the probability is bounded by O(n−5.2)≪ 2−2|S| = n−2.
Therefore, the restricted conditional min-entropy is at least 2|S|. By the theorem connecting this
entropy and the query lower bound in the query-with-sketch model, we get an Ω(n) query lower
bound.

The Perturbation Analysis method (Section 8) generalizes the above high-level argument in two
ways: (i) computing elements of [Mk′ ]α as a function of [Mk]α for every k|k′, and (ii) comput-
ing polylog(n) elements of [Mk′ ]α, instead of a single element. This generalization is crucial for
establishing our main result, which is outlined in the next section.

2.4 Computing any polylog elements in Mn via Mn/2 is hard with short sketch:
putting everything together

We are now ready to give an outline of the argument of our main query-with-sketch result. Here,
we are given a sketch of length |S| = polylog(n), and as many as N = ( |S|logn)

2 indices of Mn that

11For a discrete probability space and two events A,B, Pr[A|B] =
∑

B′ Pr[A|B′∩B]·Pr[B′|B], where the summation
runs over a partition of B space; and thus, Pr[A|B] ≤ Pr[A|B′], for some B′ ⊆ B.
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we wish to approximate their values. We will show that computing any set of N elements of [Mn]α
with the help of sketch S, and given [Mn/2]α as input, requires Ω(

√
n) queries on the average

when the underlying distribution is the sameM as before; see Theorem 4 (page 24) for the formal
statement. This result is non-trivial as the sketch length can be as long as polylog(n) (not too large
polylogarithmic, but still polylogarithmic).

We still use the min-entropy theorem to reduce the query complexity with sketch to the min
entropy of the output conditioned on partial restrictions of the input elements. Formally, let
out = ((u1, v1), . . . , (uN , vN )) be the N indices of [Mn]α we want to evaluate. To show an Ω(

√
n)

query lower bound, it suffices to show that

Pr
M∼M

[[(Mn)out]α = y|σ] < 2−2|S|

for every output y and an arbitrary partial assignment σ to any q =
√
n elements of [Mn/2]α.

The technical problem with choosing more than one elements ofMn (in this case polylogarithmic
many) is that we have to carefully “match” each of them with an element of Mn/2. This is because,
same as in Section 2.3, we want to transfer simultaneously for all elements entropy from the input
(i.e., from Mn/2) to the output (i.e., to Mn). To that end, instead of looking to identify a single
core element (as in Section 2.3) we are somehow able to show that polylogarithmically many core
elements of Mn/2 are “matched” to a same number of co-core elements of Mn. The correct way to
generalize Section 2.3 is through the notion of a diagonally dominant Jacobian matrix. The details
are left for actual argument, but the point is that we can find such core and co-core elements.

Now, recall that in Section 2.3 the reason we found the core element was to use the restricted
conditional min-entropy notion and its connection to the number of queries. Same here with the core
and co-core elements. A key step in upper bounding the corresponding conditional probability is to
express the event about the co-core elements of [Mn]α as an event about the elements of [Mn/2]α.
We do this by relying on the Jacobian. Now, the conditional event we wish to bound is expressed in
a language where certain matrix elements are contained in a hypercube (or hyper-rectangle). This
view of the event is rather useful, because we can further decompose the hyper-rectangle into smaller
hypercubes and by the union bound the probabilistic upper bound reduces to upper bound a sum
of probabilities. Finally, to upper bound each such probability we need to invoke a generalization
of our “embeddings and volume” technique we discussed in Section 2.2. This summary does not
provide any details. The details matter a lot in this argument, and are given in Sections 8 and 9.

We will use a generalization of this result to obtain the lower bound for the AMP problem in
the recursive model that follows.

2.5 Approximate matrix powering in the recursive model

The main conceptual/meta-result result of our work is a query lower bound for AMP in the recursive
model, which generalizes the Saks-Zhou framework. Algorithms in the recursive model approximate
the matrix power Mn by recursively computing its intermediate powers first (e.g., Mn/2). Each
recursion level has O(polylog(n)) space. The model is partially adaptive in the sense instead of
one recursive algorithm we have a family of quasi-polynomially many algorithms {Π∗h}h. Each Π∗h
is non-adaptive, but before the computation starts given the input a short string

h = h(M)

with |h| = O(polylog(n)) is determined. A formal definition of the model is in Section 5.
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To explain how the recursive model works let us look at a natural recursive algorithm (concep-
tually simpler than Saks-Zhou). This algorithm recursively computes the power by realizing the
following equation (for simplicity assume that n is a power of 2).

Mk[u, v] =

n∑
i=1

Mk/2[u, i] ·Mk/2[i, v]

The algorithm runs in space O(log2 n) space and O((2n)logn) time (for the same reason that
Savitch’s algorithm [Sav70] runs in this space and time) and solves the AMP problem. To compute
each element of the matrix power Mk[u, v], we recursively query the elements of smaller powers
Mk/2[u, i] and Mk/2[i, v], and sum up their products. Since there are only log n recursion levels,
and in each levels of the recursion, we only maintain a summation variable which costs O(log n)
space, the total space complexity is O(log2 n). Note that the algorithm is non-adaptive; i.e., the
order of queries made to the lower powers is predetermined.

In addition to the Saks-Zhou framework, several other known algorithms can be expressed in
the recursive model. Saks-Zhou framework (Section 6) in comparison to the above algorithm, has
an extra string h produced by the Nisan’s pseudorandom generator (the precomputed hash function
on the input) and has a smaller number of recursion levels.

Theorem 3 says that, to compute AMP in the recursive model with a piece of extra advice h
of length O(polylog(n)), either super-polylogarithmic space or super-polynomial running time is
necessary.

The proof goes by grouping successive O(polylog(n)) queries from the upper recursion level
to the lower recursion level. By applying the previously obtained lower-bound for the query-
with-sketch, we know that to answer every polylog(n) queries one must make on the average
Ω(
√
n)-many queries to its succeeding recursion level. Then, the lowest recursion level will receive

( Ω(
√
n)

O(polylog(n)))
ω(1) = nω(1) queries in expectation.

3 Warm up: algorithms in query-with-sketch

The query-with-sketch model is a non-trivial model when the length of the sketch is shorter than
the input and the output. To motivate our lower bounding studies, and to showcase how the
query-with-sketch model works, we give non-trivial sublinear algorithms to two classic problems,
the Hamming weight problem and the counting connected components problem.

Hamming weight problem. Given n input bits X1, ..., Xn ∈ {0, 1}. Output the Hamming
weight of the n bits, i.e., the sum of the n bits T =

∑n
i=1Xi.

Fact 1. There exist constants c < c′ < 1 and a probabilistic query-with-sketch algorithm with query
complexity O(nc′) and sketch length c log n, such that for every distribution of the input µ over
{0, 1}n, the algorithm computes the exact Hamming weight with high probability.

Proof of Fact 1. Given any fixed inputX1, ..., Xn. We let their average p :=
∑n

i=1 Xi

n . The Hamming
weight is exactly p · n. The standard estimation algorithm goes by estimating p using a sublinear
number of queries. Our idea of computing p · n is simply to use the sketch to correct the error of
the estimation.

15



Formally, the query-with-sketch algorithm runs as follows. We set the sketch S to be the last
2
3 log n bits of the Hamming weight pn, which is the hardest part to estimate. The query-with-

sketch algorithm will uniformly and independently query n3/4 bits from the input. Denote by p̃ the
average of the n3/4 bits. The algorithm will output the closest number to p̃ · n such that the last
2
3 log n bits are exactly S.

Notice that each query evaluates to 1 with probability p. We will show by Chernoff bound that,
n3/4 number of queries suffice to estimate p within error n−1/3 with high probability.

Let σ = (σ1, ..., σn3/4) denote the list of queries to the input. By Chernoff bound, we have

Pr
σ
[|n1/4 ·

n3/4∑
i=1

Xσi − pn| ≥ ε · n1/4] ≤ 2 · e−
ε2

3n3/4

for every possible input (X1, ..., Xn) ∈ {0, 1}n and every ε > 0. By letting ε = 1
2n

5/12 and
introducing the input distribution µ, we have

Pr
σ,(X1,...,Xn)∼µ

[|n1/4 ·
n3/4∑
i=1

Xσi − pn| ≥ 1

2
n2/3] ≤ 2e−

1
12

n1/12

The inequality above says that if the queries are made uniformly at random, we can always
approximate the Hamming weight within error 1

2n
2/3 with high probability. By setting the sketch

S to be the last 2
3 log n bits of f(X1, ..., Xn), we can recover the exact answer with high probability.

The query complexity of the algorithm is O(n3/4).

The algorithm for the counting connected components problem goes in a similar way as above
and relies on the following result.

Lemma 2 ([CRT05]). Fix n the number of vertices, and ε, δ ∈ (0, 1) functions of n. One can
construct a probabilistic algorithm Π in the adjacency list query model with query complexity O(ε−4 ·
ln(1/δ)) estimating the number of connected components of a graph. Specifically, fix an arbitrary
input graph G, let #CC(G) denote the number of connected components of G, then we have

Pr
r
(|Π(G, r)−#CC(G)| ≤ ε · n) ≥ 1− δ

where r is the randomness of the algorithm.

Fact 3. For every constant c ∈ (0, 1), there exists a probabilistic query-with-sketch algorithm run-
ning in O(n4−4c · log n) queries computing the exact number of connected components in the adja-
cency list query model, with sketch length c · log n, where n is the number of vertices.

When c > 3/4, we obtain a sublinear algorithm.

Proof of Fact 3. Set δ = 1/poly(n) and ε = nc−1

2 . We simply run the algorithm in Lemma 2 which
gives the first log n− log(2ε · n) = (1− c) log n bits of the answer with high probability. Combined
with the c log n-bit long sketch we can obtain the correct answer with high probability.
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4 The min-entropy theorem

Here we give a formal statement of the min-entropy theorem, which is the key to reducing the query-
sketch lower bound to lower-bounding the entropy of the output, which is amenable to analysis.

Definition 2 (restricted conditional min-entropy). Let f : X n → Y be a function, µXn a distri-
bution over X n, and two parameters: the hard instance set E ⊆ X n (optional) and q ∈ {0, ..., n}
many fixed elements of the input σ = (Xi1 = xi1 , ..., Xiq = xiq) (corresponding to q queries and their
answers) for some i1, ..., iq ∈ [n]. The restricted conditional min-entropy12 of f given µXn , E , σ is

Hmin(f |µXn , E , σ) def
= min

y∈Y
log

(
Pr

x←µXn
[f(x) = y and x ∈ E|σ]

)−1
If the probability is zero then the Hmin(f |µXn , E , σ) is defined to be ∞.

When it is clear from the context, we use the notation Hmin(f) to denote the restricted condi-
tional min-entropy.

We note that σ here denotes the condition that Xi1 = xi1 , ..., Xiq = xiq holds true. The
restricted conditional min-entropy does not involve queries and the sketch.

Our restricted conditional min-entropy is a special form of the min-entropy of the output of a
function conditioned on a partial assignment to the input. This is the only notion of entropy we
will use in this work. We also call it min-entropy without ambiguity.

Throughout the paper q =
√
n and the min-entropy is supposed to be lower-bounded by

polylog(n). Note that while E = X n and q = 0 the min-entropy collapses to the (unconditional)
min-entropy of f . However, we observe that the min-entropy alone is not a good measure of query
complexity. For example, the parity of n uniformly random bits requires linear query complexity
but has a min-entropy of only 1. In contrast, if we show that the min-entropy of a function is
always high conditioned on an arbitrary assignment to Ω(n) elements of the input, then a linear
query lower bound follows.

The set E is important in our proof to restrict the set of inputs where bounding Pr[f(x) = y|σ]
is feasible. When optional, we set E = X n. The role E plays will be clear in Section 9.

Intuitively, the observed entropy in the output is related to the sketch and queries as follows.
Without any precomputed information the observed entropy on the output of f is the (uncon-
ditional) min-entropy. Given the precomputed sketch S, which is a function of x, the observed
entropy in the output f(x) reduces, and every subsequent query makes the entropy smaller until it
becomes zero. At this point, an algorithm can make a correct decision.

Theorem 1 (min-entropy theorem: main tool for lower-bounding the query-with-sketch model).
Let f : X n → Y be an arbitrary function, and µXn an arbitrary distribution over X n. Fix ΠS

to be a correct algorithm for f with the help of an arbitrary sketch S of length s ≥ 3, and fix a
set E ⊆ X n (optional) with PrµXn [E ] ≥ 1/2 (where PrµXn [E ] = Prx←µXn [x ∈ E ]). If for every
q, i1, i2, ..., iq ∈ [n] and every partial assignment σ = (Xi1 = xi1 , ..., Xiq = xiq) ∈ X q, we have

Hmin(f) > 2s

12Min-entropy as a fundamental concept in information theory, has been extensively used in coding theory, cryp-
tography, and various complexity-theoretic applications [HILL99, Vad19]. It is important to note that the notion of
min-entropy in our work is defined in a form with a specific purpose and application and bears little resemblance to
the traditional notion of min-entropy used in previous works.
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then
Avg-CostµXn (Π

S) >
q

3

To clarify, we note that the min-entropy theorem does not require the algorithms to be non-
adaptive. The non-adaptivity emerges at the reduction from the lower bound of the recursive model
to the lower bound of the query-with-sketch model.

The intuition of the theorem is that, if for every fixed q queries we need an at-least-s-length
sketch to figure out the answer, then conversely the query complexity is also Ω(q) for sketches of
fixed length s. The proof goes by a counting argument that regards the query-with-sketch model
as a family of decision trees, where each sketch corresponds to a decision tree.

Proof of Theorem 1. Assume for sake of contradiction that Avg-CostµXn (Π) ≤ q
3 . Recall that

TΠS (x) denotes the query complexity of ΠS on input x. Consider the subset E ′ def= {x ∈ X n|TΠS (x) ≤
q}. By the definition of the average-case cost and Markov’s inequality, we know that PrµXn [E ′] ≥ 2

3 .
Hence PrµXn [E ∩ E ′] ≥ 1

6 .
However, we will show that the probability mass of E ∩ E ′ is actually small. To that end, we

partition E ∩ E ′ into depth-q decision trees and bound the overall probability of their leaves. Note
that the length-s sketch of the input partitions ΠS into 2s decision trees. Each leaf of the decision
trees corresponds to an output y ∈ Y and a list of queries and answers σ′ = (Xi1 = xi1 , ..., Xiq′ =

xiq′ ) ∈ X
q′ for some q′ ≤ q.

Another condition Hmin(f) > 2s implies that, for every y ∈ Y, every i1, i2, ..., iq ∈ [n], and every
σ = (xi1 , ..., xiq) ∈ X q,

Pr
x←µXn

[f(x) = y and x ∈ E ∩ E ′|σ] < 2−2s

For the case the decision tree is not full, i.e., there are some σ′ = (xi1 , ..., xiq′ ) where q′ < q is a
shorter partial assignment to x. The above inequality still holds simply because we allow redundant
queries, and it is equivalent to making q − q′ additional redundant queries iq′+1 = ... = iq = i1.

Fix an arbitrary sketch S, we denote by T the corresponding decision tree, and ET the set
of inputs assigned to this decision tree. We note that every leaf of the tree can be uniquely
characterized by its evaluation f(x) = y and its partial assignment σ′ to q elements of the input.
The probability mass of the first q layers of the tree can be bounded as follows.

Pr
µXn

(ET ∩ E ∩ E ′) =
∑

(y,σ′) is a leaf of T

Pr[x ∈ E ∩ E ′, f(x) = y, σ′]

=
∑

(y,σ′) is a leaf of T

Pr[σ′] · Pr[f(x) = y and x ∈ E ∩ E ′|σ′]

<
∑

(y,σ′) is a leaf of T

Pr[σ′] · 2−2s

≤ 1

22s

The last inequality holds because the partial assignments σ′1, σ
′
2 of every two leaves (y1, σ

′
1), (y2, σ

′
2)

are disjoint events.
By summing up all the 2s decision trees we have

Pr
µXn

(E ∩ E ′) < 2s

22s
=

1

2s
≤ 1

8
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a contradiction with PrµXn (E ∩ E ′) ≥ 1
6 .

We apply this min-entropy theorem to show that a function f has average case query complexity
greater than q/3 given a precomputed string of length s. For this we will (i) construct an input
distribution µXn , (ii) find a large subset E of X n, and (iii) show that for every q indices and
restriction σ = (Xi1 = xi1 , ..., Xiq = xiq), Hmin(f) > 2s.

5 Definition and examples of the recursive model

In this section, we formally define the space-bounded recursive model, which operates as a partially
adaptive model. For clarity in our definition, we begin by introducing the fully adaptive space-
bounded recursive model. We then impose certain restrictions on this model to define the partially
adaptive version.

The following notation is necessary before giving the definition. Given a list of indices ind =

((u1, v1), . . . , (uN , vN )). We define the vector (M)ind
def
= (M[u1, v1], . . . ,M[uN , vN ]) to be the el-

ements of corresponding indices. We write [(M)ind]α to denote the vector whose elements are
rounded to precision 1

nα .

Definition 3 (adaptive space-bounded recursive model). Fix the matrix dimension n ∈ Z+.

[Algorithm] A space-bounded recursive algorithm for matrix powering, or recursive algorithm for
short, is an algorithm that evaluates [Mn]α given as input M for a fixed rounding constant α.
The algorithm is determined by α > 0 and Π∗ = ⟨ΠS1

1 , . . . ,ΠSL
L ⟩, for a number of recursion levels

L = ω(1), and parameters 1 = k0 < k1 < · · · < kL = n, where ki|ki+1. Each recursion level
is associated with a distinct query-with-sketch algorithm ΠSi

i , which computes [Mki ]α when given

query access to [Mki−1 ]α. Each query-with-sketch algorithm ΠSi
i has its own private memory Si,

where for all i, |Si| = s, and is restricted in the following syntactic form. ΠSi
i has two “states”:

clear and wait.

Πi([u, v], Si, clear) =

{
update Si; return clear; return g
update Si; return wait; return “query Mki−1 [u′, v′]”

and

Πi([u, v], Si,wait, g
′) =

{
update Si; return clear; return g
update Si; return wait; return “query Mki−1 [u′, v′]”

In a correct recursive it must be the case that g = [Mki [u, v]]α and g′ = [Mki−1 [u′, v′]]α.
The meaning of Πi([u, v], Si, clear) is: determine and return the value of [Mki [u, v]]α in case the

internal state of the information-theoretic computing machine (transition system) is not currently
performing recursion.

The meaning of Πi([u, v], Si,wait, [M
ki−1 [u′, v′]]α) is: in case the internal state of the machine

is to perform a recursive call to determine the value of [Mki [u, v]]α, feed the current recursive step
with a returned value [Mki−1 [u′, v′]]α from the previous recursion level and check if this terminates
the current recursive call or whether a new recursive call has to be made.

[Computation] The computation of Π∗ on input [M]α consists of n2 sub-computations each for the
computation of [Mn[u, v]]α for every u, v ∈ {1, . . . , n}.
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A configuration C = ⟨SL, clear or wait, SL−1, clear or wait, . . . , S1, clear or wait⟩. It can be in-
ductively shown that a valid configuration will have states of the form (wait, . . . ,wait, clear, . . . , clear),
i.e., consecutive wait (if there is any wait state) followed by consecutive clear. Each Si is the private
memory of each recursion level. In a valid success of configurations C ⊢ C ′, it must be the case
that C ′ has been derived from C as follows: let i be the first clear in the sequence; apply Πi; if
Πi returns clear together with the value [Mki [u, v]]α then mark as appropriately the ⟨Si−1, state⟩
pair in the configuration and update appropriately by using Πi−1 (which must be wait) with input
[Mki [u, v]]α, which is the output of the previous recursion level. A subcomputation for the element
[u, v]: C1 ⊢ C2 ⊢ · · · ⊢ Cℓ is valid if all states are clear in C1, Cℓ, every succession of configurations
Cj ⊢ Cj+1 is valid and Cℓ outputs the correct value [Mn[u, v]]α.

[Complexity] The space of Π∗ is Space(Π∗h) = L · s. Given a computation C1 ⊢ · · · ⊢ Cℓ the number
of queries [u, v] is the cost of the computation, whereas TΠ∗(M) is the total cost of the computation
of Π∗ on input M is the total number of queries made for computing each [u, v]. We denote by
Cost(Π∗h) the worst-case cost of Π∗h and Avg-Costµ(Π

∗) the average-case cost of Π∗h for an input
distribution µ over substochastic matrices.

Cost(Π∗h)
def
= max

M
TΠ∗(M) and Avg-Costµ(Π

∗
h)

def
= EM←µ[TΠ∗(M)]

where the maximum is taken over all substochastic matrices.

Figure 1 shows an example of the first few steps of a run in this model.
Now, we modify the model to introduce some technically necessary restrictions and make it

partially adaptive.
Analogous to the AMP problem in the query-with-sketch model, we accept both [Mn]α and

[(M′)n]α as valid outputs if the input matrices satisfy [M]α = [M′]α. Since each recursion level ΠSi
i

functions as a query-with-sketch algorithm, we extend this consistency requirement to the entire
recursive model. Specifically, if the input matrix to the recursive algorithm is M, then for each
recursion level i, (i) the input to level i is fixed to be [Mki−1 ]α, and (ii) there exists a matrix M′i such
that ΠSi

i always returns elements from [(M′)ki ]α. These restrictions imply that (i) each recursion
level is assumed to “repair” its intermediate powers in some way,13 and (ii) any valid output is
acceptable.

In this work, we restrict our attention to partially adaptive recursive algorithms. A partially
adaptive recursive algorithm is a pair ⟨h, {Π∗ι }ι⟩, where h : {substochastic n× n matrices} →
{0, 1}polylog(n) is a function that given a matrix [M]α outputs a polylog(n)-bit string used as an
index ι = h(M). This way we choose an algorithm Π∗ι from the family of algorithms. Each
Π∗ι is non-adaptive, in the sense that it makes the same queries and in the same order for every
input [M]α, but it is allowed to make arbitrary (intelligent) use of its space at each recursion level
to answer these queries. Henceforth, the term recursive algorithm in this work means partially
adaptive recursive algorithm.

13This assumption does not necessarily strengthen the algorithms, nor does it undermine our core conceptual
message: previous works following the Saks-Zhou framework remain valid under this assumption. Several other
assumptions are also made without loss of generality, e.g., we assume that the elements of the intermediate powers
[Mk]α are rounded to its nearest multiple of n−α, whereas in [SZ99] elements are rounded down.
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M4[2,2]Level 3

Level 2 M2[2,1] M2[2,2] … M2[4,2]

Level 1 M[2,1] M[2,2] … M[4,1]

S3= Updated throughout 
computation

S2=

S1=

Updated throughout 
computation

Updated throughout 
computation

5

1

2

3

4

= recursion step

Figure 1: This is an example of a non-adaptive recursive algorithm for calculating M4 of a 4 × 4
matrix whose entries are all 1/4. Say that the workspace at each recursion level is empty (filled
with zeros) and each recursion level is “clear”. S1 = S2 = S3 = 00 . . . 00. Suppose that this is the
query to determine M4[2, 2].
#1: Π3([2, 2], S3, clear) = (wait, “query M2[2, 1]”)

Update S3: S3 =“when the call returns the next query will be M2[2, 2]”
#2: Π2([2, 1], S2, clear) = (wait, “query M [2, 1]”)

Update S2: S2 =“when the call returns the next query will be M [2, 2]”
#3: Π1([2, 1], S1, clear) = (clear, 1/4)

Update S1: S1 =“still empty”
#4: Π2([2, 1], S2, wait, 1/4) = (wait, “query M [2, 2]”)

Update S2: S2 =“M [2, 1] = 1/4 and also when the call returns the next query will be M [2, 3]”
#5: Π1([2, 2], S1, clear) = (clear, 1/4)

Update S1: S1 =“still empty”

6 Casting the Saks-Zhou’s framework in the recursive model

In this section, we summarize previous works that build on [SZ99], collectively referred to as the
Saks-Zhou framework. We demonstrate that the recursive model is a generalization of the Saks-
Zhou framework. Consequently, these prior works are subject to the lower bounds established by
our results.

Our barrier applies to a family of recursive algorithms, encompassing nearly all the previous
works based on Saks and Zhou’s framework [SZ99, CCvM06, Hoz21, CDSTS23, PP23]. Notably, two
exceptions are running in polynomial time: Nisan’s pseudorandom generator [Nis90, Nis92], which
is not a recursive algorithm, and the catalytic time-space CTISP(n, log n, log2 n) derandomization
[Pyn24], which employs a variant of the Saks-Zhou framework with a constant recursion tree depth.
In this section, we summarize the Saks-Zhou framework and compare the differences of previous
works in this framework.

Derandomizing BPL naturally reduces the problem of approximating the matrix power of the
transition matrix of a space-bounded probabilistic Turing machine. In the seminal work [Nis90,
Nis92], Nisan designed a pseudorandom generator whose random seed has O(log2 n) bits. By
simulating the Turing machine on poly(n) many pseudorandom numbers generated from the random
seed, Nisan proved that BPL ⊆ SC.

Saks and Zhou [SZ99] utilized the pseudorandom generator in a recursive way, and improved
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Algorithm 1 The Saks-Zhou framework

Input: A substochastic matrix M ∈ Rn×n.
Output: Approximation of Mn.

1: Choose an “offline” seed h ∈ {0, 1}polylog(n) of the Nisan generator.

2: M0 = M // Mi is the approximation of M(2
√
logn)i, for i = 0, ...,

√
log n

3: for i← 1 to
√
log n do

4: for “online” seed s ∈ {0, 1}polylog(n) do
5: Simulate M2

√
logn

i−1 on pseudorandom bits generated from h and s.
6: If the simulation maps x to y, count it at Mi[x, y].
7: end for
8: Adjust Mi locally.
9: end for

10: return M√logn

the space from O(log2 n) to O(log1.5 n). As Algorithm 1 shows, they generate an offline seed by
using Nisan generator. Then they break down the problem of approximating the n-th power of the
matrix into

√
log n iterations of computing the intermediate powers. They still approximate the

matrix power by simulating the random choices on Nisan’s pseudorandom generator produced by
the offline seed and the online seed, in which the offline seed is reused in each recursion layer. At
line 8 of Algorithm 1, they randomly shift and round Mi to make sure that the offline seed h looks
random to each of the

√
log n recursion levels. The whole process can be done in low space.

[CCvM06] is a generalization of [SZ99], where they save the running time by refining the step
searching for the offline seed h.

Based on a series of works [Arm98, BCG19, CL20, CDR+21, PV21], [Hoz21] shows that a
slightly better derandomization can be obtained by applying weighted pseudorandom generators
to the Saks-Zhou framework, where the structure of the algorithm remains unchanged.

In the special case where the size of the matrix is much smaller14 than n, [CDSTS23, PP23]
significantly improved the previous results by truncating and recovering the precision of the matrix
powers by using Richardson iteration. In their work, line 8 is replaced by applying the space-efficient
Richardson iteration, which can be done locally and non-adaptively.

Here we are ready to give our main result in the context of the Saks-Zhou framework.

Theorem 2 (barrier in the context of the Saks-Zhou framework). There exists a constant c > 0.
For every algorithm Π that lies in the Saks-Zhou framework described in Algorithm 1. If the length
of both the offline seed and the online seed are O(polylog(n)), and Π approximates each intermediate

power M(2
√
logn)i for i = 1, ...,

√
log n to within precision n−c (or higher precision), then the worst-

case running time of Π is nω(1).

Theorem 2 directly follows from Theorem 3 the intermediate powers barrier, and a reduction
from the AMP in the Saks-Zhou framework to the AMP in the recursive model.

We note that the recursive model is generalized from the Saks-Zhou framework above, where
some conditions are relaxed. For example, instead of

√
log n, the lower bound applies to every

14That is, approximating the n-th power of a w × w-dimensional matrix, where w ≪ n.
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recursive algorithm with ω(1) recursion levels. Variants of Theorem 2 can be obtained by applying
the same reduction from analogous frameworks.

Proof. We show that the space-bounded recursive model strictly generalizes the Saks-Zhou frame-
work in Algorithm 1. Recall that we defined the recursive model in Section 5 at page 19.

We skip lines 1-2 which are outside the recursive algorithm. The outside for-loop can be
implemented as a

√
log n-level recursive algorithm, where Mi queries elements from Mi−1 for each

i. To output M√logn we just query and output the n2 elements M√logn[1, 1], ...,M
√
logn[n, n] in

order. To compute Mi[x, y], at the i-th recursion level, we enumerate the “online” seeds s using

polylog(n) space. We simulate M2
√
logn

i−1 [x, y] by taking a walk starting from x, and following the
pseudorandom choices of PRG(h, s). Nisan’s generator helps generate pseudorandom bits on the
fly. Finally, we count the number of walks from x to y and obtain the approximation to Mi[x, y].
And we adjust the matrix locally and non-adaptively.

As we can see, the recursive algorithm above has ω(1) recursion levels. The list of queries
made by each recursion level is only depending on the “offline” seed h. Each recursion level i
only has query access to elements of its successive recursion level i− 1. While the algorithm goes
in a counting argument, the space needed for each recursion level is O(log n). In conclusion, the
Saks-Zhou framework falls in the space-bounded recursive model.

7 Main Results

In this section, we present the necessary notation and restate our primary results: the lower bounds
for the AMP problem in both the query-with-sketch model and the recursive model.

7.1 Formalization and input distribution

Denote by out = ([u1, v1], ..., [uN , vN ]) the list of indices of the output matrix we want to com-

pute. Recall that we use the vector (M)out
def
= (M[u1, v1], ...,M[uN , vN ]) to denote the elements of

corresponding indices. And [(M)out]α denotes the vector whose elements are rounded to precision
1
nα .

Here we formally give the nemesis distribution of the underlying matrix M that is hard for the
AMP problem. Fix n ∈ N≥0, and γ, τ ≥ 2 constant parameters to be determined later. LetMγ,τ be

a distribution of n×n matrices M = n2−1
n2 I+ 1

n3MU, where MU is a random matrix whose elements
are independent and identically distributed (i.i.d.) uniformly from [ 1n −

1
nγ ,

1
n ]∩ {d

1
nτ |d ∈ Z+}. We

write M ←Mγ,τ for M sampled from distribution Mγ,τ . We pick a discrete distribution for the
convenience of counting arguments in the proofs.

7.2 Main results

Theorem 3 (main theorem). Let n ∈ N≥0 and the number of recursion levels L = ω(1). Let α, γ, τ
to be constants such that 2 ≤ γ < α − 12.2, and τ > α. Fix Mγ,τ to be the input distribution
constructed above. Let h = h(M) be a function of the input, where |h| = O(polylog(n)). Fix

Π∗h = (Π
(·)
1 , ...,Π

(·)
L ) to be an algorithm in the space-bounded recursive model, with input and output

precision 1
nα . If space size of each recursion level of Π∗h is s = O(polylog(n)), then Cost(Π∗) = nω(1).

Moreover, for M←Mγ,τ we have Avg-CostMγ,τ
(Π∗) = nω(1).

23



Briefly, any partially-adaptive space-bounded recursive algorithm with ω(1) recursion levels,
space size polylog(n) each level, and a string h with polylog(n) length requires superpolynomial
query complexity to approximate the matrix power Mn. We note that α is the rounding parameter,
and γ, τ are constants specifying the input distribution. The following corollary captures our main
result with fewer parameters.

Corollary 4 (restated theorem 3). For every large enough constant α, to approximate Mn given
M as input, where both the input and the output matrices are rounded to precision n−α. Any
space-bounded recursive algorithm Π∗ specified above either requires logω(1)(n) space or nω(1) query
complexity.

Theorem 3 follows from the theorem below.

Theorem 4 (main result for query-with-sketch). Let n ∈ N≥0, and s = O(polylog(n)) be the
length of the sketch S. Let N = ⌈( s

logn)
2⌉. Fix α, γ, τ to be constants such that 2 ≤ γ < α −

12.2, and τ > α. Fix Mγ,τ to be the input distribution constructed above. And fix k < k′ to
be two positive integers such that k|k′, k′ ≤ n. Then, for every N many distinct indices out =
([u1, v1], ..., [uN , vN ]) of Mk′, any algorithm ΠS that correctly computes the output [(Mk′)out]α =
([Mk′ [u1, v1]]α, ..., [M

k′ [uN , vN ]]α) with sketch S has query complexity Cost(ΠS) = Ω(
√
n) and in

particular Avg-CostMγ,τ
(ΠS) = Ω(

√
n).

Here the sketch S corresponds to the private memory Si in the recursive model. As we assume,
S can be an arbitrary function of the input. Intuitively, at least one query is needed when N > s

logn .

The above theorem says that to approximate arbitrary N = ⌈( s
logn)

2⌉ many elements of a matrix

power, one needs to make at least Ω(
√
n) queries. To put things in the proper context, we fix an

assignment to the above parameters and restate the theorem in the following.

Corollary 5 (restated theorem 4). To approximate Mn given Mn/2 as input, where both the
input and the output matrices are rounded to precision n−20. Any query with sketch algorithm ΠS

with sketch length log2 n that approximates arbitrary log2 n fixed elements of Mn requires worst-
case query complexity Ω(

√
n) and average-case query complexity Ω(

√
n) given the above nemesis

distributionMγ,τ .

Proof of Theorem 3. We first show the special case where h is always a empty string. Then we deal
with h later.

Given a space-bounded recursive algorithm Π∗ that correctly computes [Mn]α, the algorithm is
non-adaptive given h to be empty.

At level L, the protocol makes n2 queries to ΠSL
L for the whole [Mn]α. To compute each element,

ΠSL
L recursively makes queries to its lower recursion level L− 1. By grouping every N = ⌈( s

logn)
2⌉

successive queries to ΠSL
L , Theorem 4 tells us that to compute these N elements at least Ω(

√
n)

queries to level L−1 are necessary in average. We consider the content of the local space SL before
computing the N elements as the sketch. Since Π∗ is non-adaptive, Ω(

√
n) queries must be made

on every input.
The above argument applies to each pair of successive recursion levels. As a result, the number

of queries blow up by a polynomial factor at each recursion level. To answer the n2 queries from
level L we need to make at least

L∑
i=1

n2 ·
(
Ω(
√
n)

N

)i−1
= nω(1)
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queries in total, since N = O(polylog(n)) and L = ω(1).
Now consider the extra string h, where |h| = O(polylog(n)). The algorithm Π∗ becomes a family

of 2|h| non-adaptive recursive algorithms Π∗h. For every h′ an instance of h, we denote byMγ,τ (h
′)

(orM(h′) for simplicity) the input distribution conditioned on h(M) = h′, for M ←Mγ,τ . That
is, for every matrix M′,

Pr
M←M(h′)

[M = M′]
def
= Pr

M←Mγ,τ

[M = M′|h(M) = h′]

We will show that Theorem 4 still holds given input distributionM(h′) if PrM←Mγ,τ [h(M) =
h′] = 1

2O(polylog(n)) , and if we slightly increase N . The key observation is that the min-entropy of the

output [(Mk′)out]α in Theorem 4 is still high. This is becauseM(h′) takes a part fromMγ,τ , and
zooms in by a factor of 2O(polylog(n)). By increasing N , we can still get the desired bound.

We call h′ ∈ {0, 1}|h| typical if PrM←Mγ,τ [h(M) = h′] ≥ 1
n2·2|h| . We will increase N to

⌈( s+|h|+2 logn
logn )2⌉, which is still polylog(n). Notice that Theorem 4 follows directly from combin-

ing Theorem 1 (pp. 17), Theorem 5 (pp. 37) and Theorem 6 (pp. 48). We plug this increased N
into Theorem 5 and Theorem 6, and get

Hmin([(M
k′)out]α|Mγ,τ , E , σ) ≥ 2(s+ |h|+ 2 log n)

for every partial assignment σ and a set E whose definition is not important for now. When we
replace Mγ,τ by M(h′) for an arbitrary typical h′, observe that for every vector y and partial
assignment σ,

Pr
M←M(h′)

[[(Mk′)out]α = y and M ∈ E|σ]

≤
PrM←Mγ,τ [[(M

k′)out]α = y and M ∈ E|σ]
PrM←Mγ,τ [h(M) = h′]

≤n2 · 2|h| · Pr
M←Mγ,τ

[[(Mk′)out]α = y and M ∈ E|σ]

which means that
Hmin([(M

k′)out]α|M(h′), E , σ) ≥ 2s

By Theorem 1, the query lower bound follows. And we get an edited version of Theorem 4 where
(i) the input distribution is replaced by M(h′) for arbitrary typical h′ (ii) N is increased to

⌈( s+|h|+2 logn
logn )2⌉. Combined with the proof above, it is now clear that when h′ = h(M) is typ-

ical, the average-case query complexity of Π∗ is still nω(1).
We get the lower bound for the case h′ = h(M) is typical. Now we show that the probability

that h(M) is typical is high.

Pr
M←Mγ,τ

[h(M) is typical]

= Pr
M←Mγ,τ

[
Pr

M′←Mγ,τ

[h(M) = h(M′)] ≥ 1

n2 · 2|h|

]
≥1− n−2

This is because the probability mass of non-typical h′ is upper bounded by 2|h| · 1
n2·2|h| in total.
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Therefore, the average-case query complexity of Π∗ given input distribution Mγ,τ and extra
advice bits h is lower-bounded by:

Avg-CostMγ,τ
(Π∗)

≥
∑

h′ is typical

Pr
M←Mγ,τ

[h(M) = h′] ·Avg-CostM(h′)(Π
∗)

≥(1− n−2) · nω(1)

=nω(1)

The remaining part of this paper will focus on proving Theorem 4.

8 Reducing the min-entropy bound by the analysis of perturba-
tions

In this section, we reduce the min-entropy bound of the AMP to an upper bound on a more manage-
able conditional probability. We note that a significant portion of this section involves calculating
the partial derivatives of matrix powers, while some of these calculations are straightforward and
repetitive, but necessary. Bounding these partial derivatives is essential for establishing the reduc-
tions.

8.1 Roadmap to the argument

Recall that the lower bound to the multi-valued AMP problem naturally reduces to the lower
bound of each fixed-valued AMP problem. We denote by ffix : Rn×n → Rn×n the fixed-valued
AMP function that maps [Mk]α to [M′k

′
]α for some M′ such that [Mk]α = [(M′)k]α. That is, given

[Mk]α as input, we fix ffix([M
k]α) as the output matrix. For simplicity, we write it as ffix(M).

We will simultaneously lower bound the min-entropy of each ffix(M). By the end of this section,
bounding the min-entropy of (ffix(M))out will be reduced to bounding the probability of an event
of Mk, while getting rid of the function ffix.

By Theorem 1 it suffices to show that for every q =
√
n many elements ((i1, j1), . . . , (iq, jq)),

every vector w ∈ Rq and event σ =
(
([Mk[i1, j1]]α, . . . , [M

k[iq, jq]]α) = w
)
, the min-entropy of the

output (ffix(M))out = (ffix(M)[u1, v1], . . . , ffix(M)[uN , vN ]) is high. That is, if you do not know a
proportion of the elements ofMk, then we will know little aboutMk′ . This is not true in general, but
is true given our nemesis distribution. Recall that our input distribution isMγ,τ = n2−1

n2 I+ 1
n3MU,15

where MU is a matrix whose elements are independent and identically distributed (i.i.d.) uniformly
from [ 1n −

1
nγ ,

1
n ] ∩ {d

1
nτ |d ∈ Z+}. Recall that α, τ, γ are constants satisfying 2 ≤ γ < α− 12.2 and

τ > α. Matrices are drawn from a small range since γ is lower bounded.
We will demonstrate that the matrix power, given this distribution, maintains the desired high

min-entropy. Roughly speaking, this result can be interpreted as the power of the transition matrix
mixing quite slowly, thereby preserving high entropy.

15For simplicity, we denote by the input distribution M the distribution of the underlying matrix M instead of the
input matrix [Mk]α, where the previous one is more manageable.
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To achieve this, we first quantify the effect of a perturbation16 on Mk to Mk′ , i.e., the partial

derivatives ∂Mk[u,v]
∂M[i,j] ,

∂Mk′ [u,v]
∂Mk[i,j]

for each u, v, i, j ∈ [n].

Based on that, we reduce the task of lower bounding the entropy of (ffix(M))out to upper
bounding the conditional probability ⌈

√
N⌉ elements of Mk falling in some small range, during

which we get rid of both the entropy and the fixed-valued function ffix(·). This will be presented
in Theorem 5, the main result of this section.

8.2 Partial derivatives bound: from M to Mk

In the following two subsections, we will show how larger matrix powers will change when we make
small perturbations to small powers given input distributionM : M = n2−1

n2 I+ 1
n3MU. We regard

each element of the larger matrix power as a polynomial of elements of the smaller matrix power
while applying derivations. To be clear, the matrices are differentiable variables on Rn×n for now,
instead of discrete random matrices.

Before delving into the partial derivations, we give the following inequality which will be used
numerous times to bound the partial derivatives.

Lemma 6. For every integer n > 1,

(1− 1

n
)n ≤ e−1 ≤ (1− 1

n
)n−1

Proof. For simplicity, we let f(n) = (1− 1
n)

n, g(n) = (1− 1
n)

n−1 for now. It is known that

lim
n→∞

f(n) = lim
n→∞

g(n) = e−1

Given this fact, to show the inequalities hold whenever n > 1, we show that (i) the inequalities
hold true when n = 2, and (ii) f(n) is an increasing function and g(n) is a decreasing function.

One can easily verify that the inequalities hold for the case n = 2. To show the monotonicity
of f(n) and g(n),

f ′(n) = (en ln(1−1/n))′ = (1− 1

n
)n
(
ln(1− 1/n) +

1

n− 1

)
= (1− 1

n
)n
((
− 1

n
− 1

2n2
− 1

3n3
− ...

)
+

1

n− 1

)
> 0

when n ≥ 2.

g′(n) = (e(n−1) ln(1−1/n))′ = (1− 1

n
)n−1

(
ln(1− 1/n) +

1

n

)
= (1− 1

n
)n
((
− 1

n
− 1

2n2
− 1

3n3
− ...

)
+

1

n

)
< 0

when n ≥ 2.

16We note that the perturbation here comes with a different purpose to the perturbation in [SZ99]. In [SZ99], small
perturbations are applied to intermediate matrix powers to ensure the correctness of reusing Nisan’s pseudorandom
generator.
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Lemma 7. Let γ ≥ 2, and the values of elements of MU range from [ 1n−
1
nγ ,

1
n ]. For every positive

integer k ≤ n, for every element [i, j] of MU and every element [u, v] of MU
k. If k ≥ 2, we have:

∂MU
k[u, v]

∂MU[i, j]
=



Θ

(
2n+ k − 2

n2

)
, u = i and v = j

Θ

(
n+ k − 2

n2

)
, u = i or v = j, but not both

Θ

(
k − 2

n2

)
, otherwise

If k = 1, we have:

∂MU
k[u, v]

∂MU[i, j]
=

{
1, u = i and v = j

0, otherwise

When k = o(n) where k > 1, we can see that each element in MU
k depends more heavily on

the 2n− 1 out of n2 elements of MU.

Proof of Lemma 7. The partial derivation of the case k = 1 is trivial.
For k ≥ 2, note that

MU
k[u, v] =

∑
u=h0,h1,...,hk−1,hk=v

k−1∏
t=0

MU[ht, ht+1]

So the partial derivative is

∂MU
k[u, v]

∂MU[i, j]
=

k−1∑
g=0

 ∑
u=h0,h1,...,hg=i,hg+1=j,...,hk−1,hk=v

 k−1∏
t=0,t̸=g

MU[ht, ht+1]


In this equation the appearance of MU[i, j] is canceled at position g in the summation of the
product. Since for all i, j ∈ {1, . . . , n}, MU[i, j] ∈ [ 1n −

1
nγ ,

1
n ], which is a quite small range,∏k−1

t=0,t̸=g MU[ht, ht+1] can be lower-bounded by setting all elements in MU equal to 1
n −

1
nγ and

upper bounded by setting all elements in MU equal to 1
n . We only need to count the number of

sequences u = h0, h1, ..., hk−1, hk = v in which two adjacent indices are i and j, while in both the
lower and upper bound all elements are equivalent. If u ̸= i, v ̸= j, g can only be picked from
{1, 2, ..., k − 2}, since hg = i, hg+1 = j. Then, all the rest of k − 3 indices can be chosen from [n].
Therefore, there are (k − 2)nk−3 distinct sequences. Of course, at the edge case k = 2, g cannot
be from {1, 2, ..., k − 2}, and the count becomes 0. For the case u = i or v = j but not both,
g can be 0 or k − 1, which gives additional nk−2 sequences. Hence, the total number of distinct
sequences is nk−2 + (k − 2)nk−3. Similarly, when u = i, v = j the total number of sequences is
2nk−2 + (k − 2)nk−3.

If u ̸= i, v ̸= j,

(k−2)n−2 = (k−2)nk−3
(
1

n

)k−1
≥ ∂MU

k[u, v]

∂MU[i, j]
≥ (k−2)nk−3

(
1

n
− 1

nγ

)k−1
≥ e
− k−1

nγ−1−1 (k−2)n−2

Recall that γ ≥ 2, so ∂MU
k[u,v]

∂MU[i,j] = Θ(k−2
n2 ).
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Similarly, if u = i or v = j but not both happens, then

n−1 + (k − 2)n−2 = (nk−2 + (k − 2)nk−3)

(
1

n

)k−1
≥ ∂MU

k[u, v]

∂MU[i, j]
≥ (nk−2 + (k − 2)nk−3)

(
1

n
− 1

nγ

)k−1

≥ e
− k−1

nγ−1−1

(
1

n
+

k − 2

n2

)
namely ∂MU

k[u,v]
∂MU[i,j] = Θ(n+k−2

n2 ).
And finally, if u = i, v = j,

2

n
+

k − 2

n2
= (2nk−2 + (k − 2)nk−3)

(
1

n

)k−1
≥ ∂MU

k[u, v]

∂MU[i, j]
≥ (2nk−2 + (k − 2)nk−3)

(
1

n
− 1

nγ

)k−1

≥ e
− k−1

nγ−1−1

(
2

n
+

k − 2

n2

)
namely ∂MU

k[u,v]
∂MU[i,j] = Θ(2n+k−2

n2 ).
Note that the k − 2 term becomes 0 when k = 2. So the above bounds also apply to the case

k = 2.

Furthermore, we need the following corollary. We will not use it in this section, but we will use
it later on to obtain the Lipschitz constant of the matrix power when we introduce our geometric
machinery in section 9.2. We use ||M|| to denote the entry-wise max norm of a matrix throughout
this paper.

Corollary 8. Let γ ≥ 2 and 2 ≤ k ≤ n. Let MU,MU
′ be two matrices whose elements range from

[ 1n −
1
nγ ,

1
n ]. We have

||MU
k −MU

′k|| ≤ k||MU −MU
′||

Proof. For convenience, let x1,1, ..., xn,n be the elements of MU, and y1,1, ..., yn,n be the elements of
MU

′. And let d = ||MU−MU
′||. For each (u, v) ∈ {1, . . . , n}×{1, . . . , n}, we rewrite (MU

k)[u, v]
as fk,u,v(x1,1, ..., xn,n) = (MU = (x1,1, ..., xn,n))

k[u, v] a function of n2 elements. Then

||MU
k −MU

′k||
= max

u,v∈[n]
|fk,u,v(x1,1, ..., xn,n)− fk,u,v(y1,1, ..., yn,n)|

= max
u,v∈[n]

∣∣∣∣∣∣
∑

i,j∈[n]

∫ yi,j

xi,j

∂fk,u,v(x1,1, ..., xi,j−1, z, yi,j+1, ..., yn,n)

∂z
dz

∣∣∣∣∣∣
≤2n+ k − 2

n2
· d+ n+ k − 2

n2
· (2n− 2) · d+ k − 2

n2
· (n2 − 2n+ 1) · d

=k · d = k · ||MU −MU
′||

where the inequality follows from the upper bound to the partial derivatives ∂MU
k[u,v]

∂MU[i,j] in Lemma
7.

29



Given Lemma 7 and the fact that M = n2−1
n2 I + 1

n3MU which is linear to MU, observe the
following

Mk =
k∑

t=0

(
k

t

)(
n2 − 1

n2

)k−t(
1

n3
MU

)t

We have

∂Mk[u, v]

∂M[i, j]
=

k∑
t=0

(
k

t

)(
n2 − 1

n2

)k−t(
1

n3

)t−1 ∂MU
t[u, v]

∂MU[i, j]
(1)

Now, we are ready to prove the following lemma.

Lemma 9. Let γ ≥ 2, and the values of elements of MU range from [ 1n−
1
nγ ,

1
n ]. For every positive

integer k ≤ n, every element (i, j) of M and every element (u, v) of Mk, we have:

∂Mk[u, v]

∂M[i, j]
=



Θ(k), u = i and v = j

Θ

(
k2

n4

)
, u = i or v = j, but not both; and k ≥ 2

Θ

(
k3

n8

)
, u ̸= i, v ̸= j, and k ≥ 3

0, otherwise

Proof. It is not hard to see that at the edge case, the partial derivation becomes 0.

Note that in the equation (1),
(
k
t

) (
n2−1
n2

)k−t (
1
n3

)t−1
will decrease by a factor of at least n2

when t increases by 1. For fixed u, v, i, j and t < n, ∂MU
t[u,v]

∂MU[i,j] is of the same order for two successive
t. Thus, the summation asymptotically forms a geometric series. We only need to find the smallest

t such that ∂MU
t[u,v]

∂MU[i,j] is non-zero, which dominates the summation.
If u = i, v = j, then

∂Mk[u, v]

∂M[i, j]
=

(
n2 − 1

n2

)k−1
k +

k∑
t=2

(
k

t

)(
n2 − 1

n2

)k−t(
1

n3

)t−1 ∂MU
t[u, v]

∂MU[i, j]
= Θ(k) (2)

If u = i or v = j but not both happens, then

∂Mk[u, v]

∂M[i, j]
=

(
n2 − 1

n2

)k−2(
k

2

)(
1

n3

)
∂MU

2[u, v]

∂MU[i, j]
+

k∑
t=3

(
k

t

)(
n2 − 1

n2

)k−t(
1

n3

)t−1 ∂MU
t[u, v]

∂MU[i, j]

= Θ

(
k2

n4

)
(3)

If u ̸= i, v ̸= j, then

∂Mk[u, v]

∂M[i, j]
=

(
n2 − 1

n2

)k−3(
k

3

)(
1

n3

)2 ∂MU
3[u, v]

∂MU[i, j]
+

k∑
t=4

(
k

t

)(
n2 − 1

n2

)k−t(
1

n3

)t−1 ∂MU
t[u, v]

∂MU[i, j]

= Θ

(
k3

n8

)
(4)
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Also, the same as in Corollary 8, we need the following bound precise to constant, which will
be used to obtain the Lipschitz constant in Section 9.2.

Corollary 10. Suppose n is sufficiently large. Let γ ≥ 2, and the values of elements of MU range
from [ 1n −

1
nγ ,

1
n ]. For every integer k ≤ n, for every element [i, j] of M and every element [u, v] of

Mk, we have the upper bound of ∂Mk[u,v]
∂M[i,j] :

∂Mk[u, v]

∂M[i, j]
≤



k, u = i and v = j

k2

2n4
, u = i or v = j, but not both; and k ≥ 2

k3

6n8
, u ̸= i, v ̸= j, and k ≥ 3

0, otherwise

Proof. This corollary follows from the intermediate results of the proof of the above two lemmas.
We only need to bound the first three cases, since the edge case follows directly from Lemma 9.

We first know from the proof of Lemma 7 that when k ≥ 2,

∂MU
k[u, v]

∂MU[i, j]
≤



2

n
+

k − 2

n2
, u = i and v = j

1

n
+

k − 2

n2
, u = i or v = j, but not both

k − 2

n2
, otherwise

When u = i, v = j, by (2) we have

∂Mk[u, v]

∂M[i, j]
≤
(
n2 − 1

n2

)k−1
k +

k∑
t=2

(
k

t

)(
n2 − 1

n2

)k−t(
1

n3

)t−1( 2

n
+

t− 2

n2

)
<

(
k − k(k − 1)

n2
+

k3

2n4

)
+O

(
k2

n4

)
< k

When u = i or v = j but not both by (3) we have

∂Mk[u, v]

∂M[i, j]
≤
(
n2 − 1

n2

)k−2
k(k − 1)

2n4
+

k∑
t=3

(
k

t

)(
n2 − 1

n2

)k−t(
1

n3

)t−1( 1

n
+

t− 2

n2

)
<

(
1− k − 2

n2
+

k2

n4

)
k2

2n4
+O

(
k3

n7

)
<

k2

2n4
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When u ̸= i, v ̸= j, by (4) we have

∂Mk[u, v]

∂M[i, j]
≤
(
n2 − 1

n2

)k−3
k(k − 1)(k − 2)

6n8
+

k∑
t=4

(
k

t

)(
n2 − 1

n2

)k−t(
1

n3

)t−1 t− 2

n2

<

(
1− k − 3

n2
+

k2

2n4

)
k3

6n8
+O

(
k4

n11

)
<

k3

6n8

8.3 Partial derivatives bound: from Mk to Mk′

The previous section bounds to precision the partial derivatives of each Mk[u, v] to each M[i, j].
Things become more involved when we consider the relationship between Mk and Mk′ , where the

dependencies of elements in Mk are non-trivial. More precisely, we will compute ∂Mk′ [u,v]
∂Mk[i,j]

for every

u, v, i, j ∈ {1, . . . , n}.17

Lemma 11. Let γ ≥ 2, and the values of elements of MU range from [ 1n −
1
nγ ,

1
n ]. Let 1 ≤ k <

k′ ≤ n be integers such that k|k′. For every element [i, j] of Mk and every element [u, v] of Mk′,
we have:

∂Mk′ [u, v]

∂Mk[i, j]
=



Θ

(
k′

k

)
, u = i and v = j

Θ

(
k′2

n4k

)
, u = i or v = j, but not both; and

k′

k
≥ 2

Θ

(
k′3

n8k

)
, u ̸= i, v ̸= j, and

k′

k
≥ 3

0, otherwise

For simplicity, let us denote t = k′

k and in this way the above becomes:

∂Mkt[u, v]

∂Mk[i, j]
=



Θ(t) , u = i and v = j

Θ

(
kt2

n4

)
, u = i or v = j, but not both; and t ≥ 2

Θ

(
k2t3

n8

)
, u ̸= i, v ̸= j, and t ≥ 3

0, otherwise

Since k, t ≤ n, we can see that each Mkt[i, j] depends more heavily on 2n−1 out of n2 elements
of Mk.

The key observation is the following

Mk =

(
n2 − 1

n2

)k

I+
k∑

r=1

(
k

r

)(
n2 − 1

n2

)k−r (
1

n3
MU

)r

17Notice that here we ignore the effect of ∂Mk[i, j] on other elements in ∂Mk. Because for the purpose of this

section to reduce the entropy of Mk′
to the entropy of Mk, we could for now regard Mk′

as a function of Mk, and
to show that the function preserves entropy. Hence discard the distribution for now.
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Let C
def
=
(
n2−1
n2

)k
and M̄

def
=
∑k

r=1

(
k
r

) (
n2−1
n2

)k−r
( 1
n3MU)r, then Mk = CI + M̄. The matrix

M̄ is defined with the sole purpose of reducing notational clutter.
Observe that C = Θ(1), and every element of M̄ is also in a small range. In this way, we rewrite

Mk in a similar form as M = n2−1
n2 I+ 1

n3MU. Thus we can expect similar bounds to still hold.

Proof of Lemma 11. The edge case where Mkt[u, v] does not depend on Mk[i, j] obviously gives a
0 partial derivative. Also, we may assume that k ≥ 2 since we have already shown the case k = 1
in Lemma 9.

Given Mk = CI+ M̄, we have

∂Mkt[u, v]

∂Mk[i, j]
=

t∑
t′=0

(
t

t′

)
Ct−t′ ∂M̄

t′ [u, v]

∂M̄[i, j]

We need to bound the value of M̄[i, j] before bounding the partial derivatives.
From the lower bound side, when n is large enough

M̄[i, j] ≥ k

(
n2 − 1

n2

)k−1
1

n3
MU[i, j] ≥ e

− k−1

n2−1 · k
n3

(
1

n
− 1

nγ

)
From the upper bound side, when n is large enough

M̄[i, j] ≤ k

n4
·
(
n2 − 1

n2

)k−1
+

k∑
r=2

(
k

r

)(
n2 − 1

n2

)k−r (
1

n3

)r 1

n

≤ k

n4
·
(
n2 − 1

n2

)
+

k2

n7

k−2∑
r=0

(
k − 2

r

)(
n2 − 1

n2

)k−2−r (
1

n3

)r

≤ k

n4
− k

n6
+

k2

n7
≤ k

n4

Clearly, when t′ = 1, ∂M̄t′ [u,v]
∂M̄[i,j]

=

{
1, if u = i, v = j

0, otherwise

Now, we proceed with the case where t′ ≥ 2. We apply the same proof as in Lemma 7,
considering M̄ in place of MU.

If u = i and v = j,

∂M̄t′ [u, v]

∂M̄[i, j]
≤
(
2nt′−2 + (t′ − 2)nt′−3

)( k

n4

)t′−1
≤ kt

′−1

n3t′−1 (2n+ t′ − 2)

∂M̄t′ [u, v]

∂M̄[i, j]
≥
(
2nt′−2 + (t′ − 2)nt′−3

)e
− k−1

n2−1 · k
n3

(
1

n
− 1

nγ

)t′−1

≥ (2n+ t′ − 2)
kt

′−1

n3t′−1 · e
− (k−1)(t′−1)

n2−1 · e−
t′−1

nγ−1−1 ≥ e−O(1) · (2n+ t′ − 2)
kt

′−1

n3t′−1

where the inequalities follows from Lemma 6 and the fact that γ ≥ 2. Thus, ∂M̄t′ [u,v]
∂M̄[i,j]

= Θ
(

kt
′−1

n3t′−2

)
.
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Similarly, if u = i or v = j but not both happens, then

∂M̄t′ [u, v]

∂M̄[i, j]
≤
(
nt′−2 + (t′ − 2)nt′−3

)( k

n4

)t′−1
≤ kt

′−1

n3t′−1 (n+ t′ − 2)

∂M̄t′ [u, v]

∂M̄[i, j]
≥
(
nt′−2 + (t′ − 2)nt′−3

)e
− k−1

n2−1 · k
n3

(
1

n
− 1

nγ

)t′−1

≥ (n+ t′ − 2)
kt

′−1

n3t′−1 · e
− (k−1)(t′−1)

n2−1 · e−
t′−1

nγ−1−1 ≥ e−O(1) · (n+ t′ − 2)
kt

′−1

n3t′−1

namely ∂M̄t′ [u,v]
∂M̄[i,j]

= Θ
(

kt
′−1

n3t′−2

)
.

If u ̸= i, v ̸= j,

∂M̄t′ [u, v]

∂M̄[i, j]
≤ (t′ − 2)nt′−3

(
k

n4

)t′−1
≤ (t′ − 2)

kt
′−1

n3t′−1

∂M̄t′ [u, v]

∂M̄[i, j]
≥ (t′ − 2)nt′−3

e
− k−1

n2−1 · k
n3

(
1

n
− 1

nγ

)t′−1

≥ (t′ − 2)
kt

′−1

n3t′−1 · e
− (k−1)(t′−1)

n2−1 · e−
t′−1

nγ−1−1 ≥ e−O(1) · (t′ − 2)
kt

′−1

n3t′−1

namely ∂M̄t′ [u,v]
∂M̄[i,j]

= Θ
(
(t′ − 2) kt

′−1

n3t′−1

)
.

Now we can bound ∂Mkt[u,v]
∂Mk[i,j]

. Recall that Mk = CI+ M̄ and C =
(
n2−1
n2

)k
.

If u = i, v = j, then

∂Mkt[u, v]

∂Mk[i, j]
= t ·

(
n2 − 1

n2

)k(t−1)
+

t∑
t′=2

(
t

t′

)
Ct−t′ ∂M̄

t′ [u, v]

∂M̄[i, j]
= Θ(t)

If u = i or v = j but not both happens, then

∂Mkt[u, v]

∂Mk[i, j]
=

(
t

2

)(
n2 − 1

n2

)k(t−2)
∂M̄2[u, v]

∂M̄[i, j]
+

t∑
t′=3

(
t

t′

)
Ct−t′ ∂M̄

t′ [u, v]

∂M̄[i, j]
= Θ(

kt2

n4
)

If u ̸= i, v ̸= j, then

∂Mkt[u, v]

∂Mk[i, j]
=

(
t

3

)(
n2 − 1

n2

)k(t−3)
∂M̄3[u, v]

∂M̄[i, j]
+

t∑
t′=4

(
t

t′

)
Ct−t′ ∂M̄

t′ [u, v]

∂M̄[i, j]
= Θ(

k2t3

n8
)
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8.4 Perturbation analysis

In this section, we reduce lower bounding the min-entropy of the output (ffix(M))out to upper
bounding the probability some elements of Mk fall into some small range, so that it depends only
on Mk. Recall that ffix(M) = [M′k

′
]α for some [M′k]α = [Mk]α.

One can see that ffix(M) is close to [Mk′ ]α, where Mk′ is more manageable. Let us discard ffix
but focus on [Mk′ ]α for now, to better figure out the intuition of this section. We will bring ffix
back in our formal argument.

We remove the dependence from Mk′ by using the partial derivative bounds from the previous
two sections. This section deals with the following issue. There are many dependencies in the
elements of Mk′ . If we only consider one element, it is clear that it will have a conditional min-
entropy of Ω(log n). However, if we put N elements together it is not clear at all that the min-
entropy of them will be much larger than one element. To that end, we manage to find ⌈

√
N⌉

elements of Mk such that they affect corresponding ⌈
√
N⌉ out of N elements of Mk′ orthogonally.

Here, by “orthogonally” we mean fixing all the other n−⌈
√
N⌉ elements of Mk, each of the ⌈

√
N⌉

elements ofMk′ is dominated by its corresponding element inMk. In this way, we are able to reduce
the conditional min-entropy of the N output elements to the uncertainty of the ⌈

√
N⌉ elements of

Mk.
For given N elements of Mk′ : Mk′ [u1, v1], . . . ,M

k′ [uN , vN ], after fixing any q elements of Mk

we can find Ncore = ⌈
√
N⌉ elements (we call them core elements) from the unfixed ones of Mk and

correspondingly Ncore elements of Mk′ (we call them co-core elements), with the following notation:

• the Ncore many core elements in Mk are denoted by Mk[i′1, j
′
1], . . . ,M

k[i′Ncore
, j′Ncore

]

• theNcore many co-core elements elements inMk′ are denoted byMk′ [u′1, v
′
1], . . . ,M

k′ [u′Ncore
, v′Ncore

]

and the following holds true

• any large perturbation (we will define it later) in Mk[i′1, j
′
1], . . . ,M

k[i′Ncore
, j′Ncore

] will cause

observable change (larger than the accuracy) in Mk′ [u′1, v
′
1], . . . ,M

k′ [u′Ncore
, v′Ncore

]

The above informal statement is the key to lower bound the min-entropy. There are many ways
to perturb Mk[i′1, j

′
1], . . . ,M

k[i′Ncore
, j′Ncore

], but only when the perturbation is very small can the

value of Mk′ [u′1, v
′
1], . . . ,M

k′ [u′Ncore
, v′Ncore

] be approximately the same. Therefore, the probability

that Mk′ [u′1, v
′
1], . . . ,M

k′ [u′Ncore
, v′Ncore

] approximately equal to some fixed values can never be too
large.

Here let us introduce some notations. We write || · ||∞ or simply || · || to indicate the entry-wise

max norm. For every vectorw ∈ Rd, defineQd(w, r) as the hypercubeQd(w, r)
def
=
{
w′ ∈ Rd

∣∣ ||w′ −w||∞ ≤ r
}
.

So we rewrite the events in a more manageable form.
Let σ be the partial assignment, i.e., the queried (fixed) elements of Mk with their values. Note

that the query is given with input precision α. So if we denote fixed = ([i1, j1], . . . , [iq, jq]) as the
queried indices18 and (Mk)fixed = (Mk[i1, j1], . . . ,M

k[iq, jq]) as the vector representation of the
queried elements, then σ can be rewritten as the event (Mk)fixed ∈ Qq(wfixed,

1
2nα ) for some vector

18Note that the vector fixed here denotes the indices of the elements of [Mk]α that has been fixed by the queries
made to the input, whereas ffix denotes the matrix power function whose rounded output has been fixed.
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wfixed. Then by the definition of the restricted conditional min-entropy, the probability we want to
bound can be rewritten as

Pr

[
(ffix(M))out = (y1, . . . , yN ),M ∈ E

∣∣∣∣(Mk)fixed ∈ Qq

(
wfixed,

1

2nα

)]
for every vectors out, fixed, wfixed, and (y1, ..., yN ).

Given the vector fixed, we will show how to choose the core elements and the co-core elements.
By the standard averaging argument, we further reduce the above probability to the probability
conditioning on a partial assignment on all but the core elements instead of σ on q =

√
n elements.

We use (Mk)core to denote the Ncore
def
= n2 −Ncore elements other than the core elements. And we

use wcore to denote a vector of Ncore values.

Pr

[
(ffix(M))out = (y1, . . . , yN ),M ∈ E

∣∣∣∣(Mk)fixed ∈ Qq

(
wfixed,

1

2nα

)]
=

∑
wcore consistent with wfixed

Pr

[(
Mk
)
core
∈ QNcore

(
wcore,

1

2nα

)∣∣∣∣ (Mk)fixed ∈ Qq

(
wfixed,

1

2nα

)]
×

Pr

[
(ffix(M))out = (y1, . . . , yN ),M ∈ E

∣∣∣∣(Mk
)
core
∈ QNcore

(
wcore,

1

2nα

)]
≤max

wcore

Pr

[
(ffix(M))out = (y1, . . . , yN ),M ∈ E

∣∣∣∣(Mk
)
core
∈ QNcore

(
wcore,

1

2nα

)]
We will show by Theorem 5 that, even after we have Ncore many elements fixed, the min-entropy
of the output is still high.

Now we show how we choose the core elements in Mk, and the corresponding Ncore co-core
elements in Mk′ . This builds upon the partial derivatives developed so far. Observe that an
element of Mk affects more heavily the elements of Mk′ on the same row or the same column. But
two or more elements of Mk may cancel with each other when we consider their effect on Mk′ .
However, we show below that we can find Ncore = ⌈

√
N⌉ many elements of Mk that are not fixed

by the previous q =
√
n queries, and they affect “orthogonally” to the output.

Lemma 12. Let γ ≥ 2, and the values of elements of MU range from [ 1n −
1
nγ ,

1
n ]. For every N =

O(polylog(n)), and every 1 ≤ k < k′ ≤ n such that k|k′. Let q =
√
n, Ncore = ⌈

√
N⌉. For every

out = ([ut, vt])
N
t=1 output indices of Mk′ and for every q indices fixed = ([it, jt])

q
t=1 of Mk, there

exists Ncore core elements Mk[i′1, j
′
1], . . . ,M

k[i′Ncore
, j′Ncore

] where [i′1, j
′
1], ..., [i

′
Ncore

, j′Ncore
] ̸∈ fixed,

and corresponding Ncore co-core elements core = ([u′t, v
′
t])

Ncore
t=1 of Mk′ where each [u′t, v

′
t] ∈ out such

that 

∂Mk′ [u′
1,v

′
1]

∂Mk[i′1,j
′
1]

. . . . . .
∂Mk′ [u′

Ncore
,v′Ncore

]

∂Mk[i′1,j
′
1]

...
. . .

...
...

. . .
...

∂Mk′ [u′
1,v

′
1]

∂Mk[i′Ncore
,j′Ncore

]
. . . . . .

∂Mk′ [u′
Ncore

,v′Ncore
]

∂Mk[i′Ncore
,j′Ncore

]


=


Ω( k′2

kn4 ) O( k′3

kn8 ) . . . O( k′3

kn8 )

O( k′3

kn8 ) Ω( k′2

kn4 )
...

...
. . .

...

O( k′3

kn8 ) . . . . . . Ω( k′2

kn4 )


We observe that when k′ ≤ n this matrix is diagonally dominant.
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Proof. By Lemma 11, the core elements and the co-core elements have a Jacobian matrix of the
above form if and only if (i) for every t = 1, . . . , Ncore, u

′
t = i′t or v

′
t = i′t, and (ii) for t′ ̸= t, u′t′ ̸= i′t

and v′t′ ̸= i′t. Fix arbitrary co-core elements [u′1, v
′
1], ..., [u

′
Ncore

, v′Ncore
], notice the following fact:

• When u′1 = u′2 = · · · = u′Ncore
, we just let each j′t = v′t and each i′t to be such that (i)

[i′t, j
′
t] ̸∈ fixed (ii) i′t ̸= u′1 (iii) for each t′ ̸= t, i′t ̸= i′t′ . There always exist such core elements

because there are at least n − q = n −
√
n many rows of Mk that have no fixed elements.

This way we get the desired core and co-core elements.

• If u′t ̸= u′t′ for every pair of t ̸= t′, then we can also find core elements. We let each
i′t = u′t. Then we find a column v of Mk that has no fixed elements, and let v′t = v for every
t = 1, ..., Ncore.

Since we are selecting the co-core elements from N ≥ (Ncore − 1)2 + 1 output elements, one of the
above cases must occur. Because otherwise we will have less than Ncore different rows, and each
row has less than Ncore different elements, no more than (Ncore − 1)2 different elements in total.
Therefore, the desired core and co-core elements always exist.

Now we are ready to give the main result of this section. Note that the hard instance set E will
not be specified below until the next section.

Theorem 5 (main result for the perturbation analysis part). For every N = O(polylog(n)), and
every 1 ≤ k < k′ ≤ n such that k|k′. Let Ncore = ⌈

√
N⌉, Ncore = n2 −Ncore, q =

√
n. Let τ > α,

2 ≤ γ < α − 12.2, η = α − 7.1 be constants. Fix out = ([ut, vt])
N
t=1 to be arbitrary N indices of

Mk′, and fixed = ([it, jt])
q
t=1 to be the indices of Mk that has been queried and hence fixed. Let

(Mk)core = (Mk[i′1, j
′
1], . . . ,M

k[i′Ncore
, j′Ncore

]) be the core elements so the corresponding Jacobian

matrix is of the form in Lemma 12. (Mk)core denotes the remaining Ncore elements of Mk. For
sufficiently large n, for every Yout ∈ RN ,wcore ∈ RNcore, there exists wcore ∈ RNcore such that

Pr
M←Mγ,τ

[
(ffix(M))out = Yout,M ∈ E

∣∣∣∣(Mk
)
core
∈ QNcore

(
wcore,

1

2nα

)]
≤ Pr

M←Mγ,τ

[
(Mk)core ∈ QNcore

(
wcore,

1

2nη

)
,M ∈ E

∣∣∣∣(Mk
)
core
∈ QNcore

(
wcore,

1

2nα

)]
To prove Theorem 5 we introduce the following lemma. This will also formalize what we mean

by “large perturbation”. Here we use Supp(Mγ,τ ) to denote the support of the distributionMγ,τ .

Lemma 13 (perturbation). For every N = O(polylog(n)), and every 1 ≤ k < k′ ≤ n such that k|k′.
Let Ncore = ⌈

√
N⌉, Ncore = n2−Ncore. Let τ > α, 2 ≤ γ < α−12.2, η = α−7.1 be constants. Fix the

indices of the core elements ([i′t, j
′
t])

Ncore
t=1 of Mk, and ([u′t, v

′
t])

Ncore
t=1 the indices of the co-core elements

of Mk′, so the corresponding Jacobian matrix is of the form in Lemma 12. For sufficiently large n,
and for two arbitrary assignments to the core elements (Mk

1)core = (Mk
1[i
′
1, j
′
1], . . . ,M

k
1[i
′
Ncore

, j′Ncore
])

and (Mk
2)core = (Mk

2[i
′
1, j
′
1], . . . ,M

k
2[i
′
Ncore

, j′Ncore
]), corresponding to the power of two matrices Mk

1

and Mk
2, if the rest Ncore elements [Mk

1]core and [Mk
2]core fall in QNcore(wcore,

1
2nα ) for arbitrary

wcore ∈ Rn2−Ncore such that (i) M1,M2 ∈ Supp(Mγ,τ ), and (ii)

max
t=1,...,Ncore

|Mk
1[i
′
t, j
′
t]−Mk

2[i
′
t, j
′
t]| ≥

1

2nη+0.05
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then

max
t=1,...,Ncore

|Mk′
1 [u

′
t, v
′
t]−Mk′

2 [u
′
t, v
′
t]| ≥

1

nα

The main idea is that if the Jacobian matrix between the core elements and the co-core elements
is diagonally dominant, then when the p-th element of Mk[i1, j1], . . . ,M

k[iNcore , jNcore ] has the
maximum change over the rest, we should be able to observe the change in the corresponding p-th
element of Mk′ [u1, v1], . . . ,M

k′ [uNcore , vNcore ].

Proof. The proof is similar to Corollary 8. We consider matrices as vectors of dimension n2.
For simplicity, we write the elements Mk[i′1, j

′
1], . . . ,M

k[i′Ncore
, j′Ncore

] as x1, . . . , xNcore and the rest
elements as yNcore+1, . . . , yn2 . We arrange the order of the elements such that the core elements come
first and write Mk

1 = (x1, . . . , xNcore , yNcore+1, . . . , yn2), Mk
2 = (x′1, . . . , x

′
Ncore

, y′Ncore+1, . . . , y
′
n2).

Let t = argmaxi∈[Ncore] |xi − x′i|. Then we have
∑Ncore

i ̸=t |xi − x′i| ≤ Ncore|xt − x′t| and |xt − x′t| ≥
1

nη+0.05 . Moreover, for every Ncore < j ≤ n2, |yj − y′j | ≤ 1
nα .

It is much more convenient if we rewrite each Mk′ [u′t, v
′
t] as a function ft of M

k. We have

|Mk′

1 [u′
t, v

′
t]−Mk′

2 [u′
t, v

′
t]| = |ft(x1, . . . , xNcore

, yNcore+1, . . . , yn2)− ft(x
′
1, . . . , x

′
Ncore

, y′Ncore+1, . . . , y
′
n2)|

=

∣∣∣∣∣∣
Ncore∑
t′=1

Xt′ +

n2∑
t′=Ncore+1

Yt′

∣∣∣∣∣∣
≥ |Xt| −

Ncore∑
t′ ̸=t

|Xt′ | −
n2∑

t′=Ncore+1

|Yt′ |

where

Xt′ = ft(x
′
1, ..., x

′
t′−1, xt′ , xt′+1, ..., xNcore , yNcore+1, ..., yn2)−ft(x′1, ..., x′t′−1, x′t′ , xt′+1, ..., xNcore , yNcore+1, ..., yn2)

Yt′ = ft(x
′
1, ..., x

′
Ncore

, y′Ncore+1, ..., y
′
t′−1, yt′ , yt′+1, ..., yn2)−ft(x′1, ..., x′Ncore

, y′Ncore+1, ..., y
′
t′−1, y

′
t′ , yt′+1, ..., yn2)

Here the difference is divided into the difference of the n2 dimensions. We can first use integral to
rewrite each Xt′ and Yt′ , and then bound it by using the partial derivation results we established
above.

|Xt′ | =

∣∣∣∣∣
∫ xt′

x′
t′

∂ft
∂Mk[i′t′ , j

′
t′ ]
dMk[i′t′ , j

′
t′ ]

∣∣∣∣∣
Note that ∂ft

∂Mk[i′
t′ ,j

′
t′ ]

is always positive, so we have the following bound:

|Mk
1[i
′
t′ , j
′
t′ ]−Mk

2[i
′
t′ , j
′
t′ ]|min

M

∂ft
∂Mk[it′ , jt′ ]

≤ |Xt′ | ≤ |Mk
1[i
′
t′ , j
′
t′ ]−Mk

2[i
′
t′ , j
′
t′ ]|max

M

∂ft
∂Mk[it′ , jt′ ]

By Lemma 12, there exists some constants c1, c2, c3 that for term t

c1k
′2

kn4
|Mk

1[i
′
t, j
′
t]−Mk

2[i
′
t, j
′
t]| ≤ |Xt|

and for t′ ̸= t

c3k
′3

kn8
|Mk

1[i
′
t′ , j
′
t′ ]−Mk

2[i
′
t′ , j
′
t′ ]| ≤ |Xt′ | ≤

c2k
′3

kn8
|Mk

1[i
′
t′ , j
′
t′ ]−Mk

2[i
′
t′ , j
′
t′ ]|
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The same argument also applies to Yt′ . Actually we only need |Yt′ | ≤ c4 · k
′

k |M
k
1[i
′
t′ , j
′
t′ ]−Mk

2[i
′
t′ , j
′
t′ ]|,

for some c4 > 0, by Lemma 11.
Thus, we obtain

|Mk′
1 [i
′
t, j
′
t]−Mk′

2 [i
′
t, jt]

′]| ≥|Xt| −
Ncore∑
t′ ̸=t

|Xt′ | −
n2∑

t′=Ncore+1

|Yt′ |

≥1

k

(
c1k
′2

n4
|Mk

1[i
′
t, j
′
t]−Mk

2[i
′
t, j
′
t]|−

Ncore∑
t′ ̸=t

c2k
′3

n8
|Mk

1[i
′
t′ , j
′
t′ ]−Mk

2[i
′
t′ , j
′
t′ ]|

−
n2∑

t′=Ncore+1

c4k
′|Mk

1[i
′
t′ , j
′
t′ ]−Mk

2[i
′
t′ , j
′
t′ ]|
)

≥1

k

|xt − x′t|

c1k
′2

n4
−

Ncore∑
t′ ̸=t

c2k
′3

n8

− (n2 −Ncore)
c4k
′

nα


≥1

k

(
c1k
′2

2nη+4.05
− c2k

′3Ncore

2nη+8.05
− c4k

′(n2 −Ncore)

nα

)
≥ c1k

′2

2knα−3.05 −
c2k
′3Ncore

2knα+0.95
− c4k

′

knα−2

≥ c1
2nα−3.05 −

c2Ncore

2nα+0.95
− c4

nα−2 ≥
1

nα

The last inequalities follow from that η = α− 7.1 and 1 ≤ k′

k , k ≤ n. Therefore, for sufficiently

large n, |Mk′
1 [i
′
t, j
′
t]−Mk′

2 [i
′
t, j
′
t]| ≥ 1

nα .

Now, we can conclude the proof of Theorem 5.

Proof of Theorem 5 by Lemma 13. We select the indices of co-core elements core′ = ([u′t, v
′
t])

Ncore
t=1

and the indices of core elements core = ([i′t, j
′
t])

Ncore
t=1 as in Lemma 13.

For every w ∈ RNcore such that

Pr

[
(ffix(M))out = w,M ∈ E

∣∣∣∣(Mk
)
core
∈ QNcore

(
wcore,

1

2nα

)]
> 0

there must be a feasibleM0 ∈ Supp(Mγ,τ ) such that [(Mk′
0 )out]α = w approximatesMk′

0 , and above
condition in the probability is satisfied. Let wcore = (Mk

0)core. We will show that conditioning on
(Mk)core ∈ QNcore(wcore,

1
2nα ), the event that (ffix(M))out = w, M ∈ E occurs only if (Mk)core ∈

QNcore(wcore,
1

2nη ).
By the definition of the fixed-valued function ffix, (ffix(M))out = w only if there exists an-

other matrix M′ where [M′k]α = [Mk]α and [(M′k
′
)out]α = w. This happens only if (Mk)core ∈

QNcore((M
′k)core,

1
nα ). Here M′ might be or might not be the same as M0. But by our observation

from Lemma 13, we know that the two matrices must have low max-norm distance.
Specifically, if (M′k)core ̸∈ QNcore(wcore,

1
2nη+0.05 ), then by Lemma 13 we can get that there exists

t ∈ [Ncore] such that for sufficiently large n, |M′k′ [u′t, v′t]−Mk′
0 [u

′
t, v
′
t]| ≥ 1

nα . A contradiction to the

fact that [(Mk′
0 )out]α = [(M′k

′
)out]α = w. This way, ||wcore − (Mk)core|| ≤ ||wcore − (M′k)core|| +

||(M′k)core − (Mk)core|| ≤ 1
2nη+0.05 + 1

nα ≤ 1
2nη is a necessary condition for (ffix(M))out = w.
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Formally, we have

Pr

[
(ffix(M))out = w,M ∈ E

∣∣∣∣(Mk
)
core
∈ QNcore

(
wcore,

1

2nα

)]
≤Pr

[
(Mk)core ∈ QNcore

(
(M′k)core,

1

nα

)
,M ∈ E

∣∣∣∣(Mk
)
core
∈ QNcore

(
wcore,

1

2nα

)]
≤Pr

[
(Mk)core ∈ QNcore(wcore,

1

2nη+0.05
+

1

nα
),M ∈ E

∣∣∣∣(Mk
)
core
∈ QNcore

(
wcore,

1

2nα

)]
≤Pr

[
(Mk)core ∈ QNcore(wcore,

1

2nη
),M ∈ E

∣∣∣∣(Mk
)
core
∈ QNcore

(
wcore,

1

2nα

)]
Because η is a smaller constant than α.

In this way, we get rid of ffix and Mk′ . The lower bound reduces to upper-bounding the above
conditional probability.

9 Conditional probability bounds from volume and embeddings

The previous Theorem 5 reduces the problem of lower-bounding the restricted conditional min-
entropy to the problem of upper-bounding the following probability:

Pr
M←Mγ,τ

[
(Mk)core ∈ QNcore(wcore,

1

2nη
),M ∈ E

∣∣∣∣(Mk
)
core
∈ QNcore

(
wcore,

1

2nα

)]
In this section, we will show that for every wcore ∈ RNcore ,wcore ∈ Rn2−Ncore ,

Pr
M←Mγ,τ

[
(Mk)core ∈ QNcore(wcore,

1

2nη
),M ∈ E

∣∣∣∣(Mk
)
core
∈ QNcore

(
wcore,

1

2nα

)]
≤ 55·n(γ−η+3.1)Ncore

in which γ, η are constants such that γ−η+3.1 < −2 and η = α−7.1. Recall that wcore and wcore

are respectively assignments to the core elements and the remaining n2 −Ncore elements.
We show this in three steps: (i) introduce the hard instance set E . (ii) rewrite the above con-

ditional probability as the ratio of unconditional probabilities (i.e., Pr[A|B] = Pr[A,B]
Pr[B] ). Moreover,

we partition the events into small hypercubes of the same size, in the probability space. (iii) by

Lipschitz analysis, we show that the metric space of the matrix power Mk = (n
2−1
n2 I + 1

n3MU)k

has low distortion from the space of MU. Since MU follows a uniform distribution, we can bound
the probability measure of the small hypercubes. Given the upper bound and the lower bound of
the hypercubes, we just need to count the number of the small hypercubes in the denominator and
numerator.

We begin with the definition of E .19

Definition 4 (construction of E). Let EU be the set of matrices MU such that (i) each element
of MU is in the interval [ 1n −

1
nγ + 1

nγ+3 ,
1
n −

1
nγ+3 ]. (ii) each element of MU is a multiple of 1

nτ .
Define

E =

{
n2 − 1

n2
I+

1

n3
MU : MU ∈ EU

}
19We are very careful on the following definitions and decompositions to avoid boundary problems in lower bounding

and upper bounding the volumes of the hypercubes.
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We use E to consider all the M that are at a distance from the boundary of M, so the small
hypercubes centered at Mk have preimages always contained inside the boundary. To formalize
what we referred to as the boundary, we consider a cover of the matrix space of M and Mk:

Define ϕk(MU)
def
= Mk = (n

2−1
n2 I+ 1

n3MU)k. Let Mk
max be the matrix Mk

max = ϕk(MU) where
every element of MU is 1

n . Let M
k
min be the matrix Mk

min = ϕk(MU
′) where every element of MU

′

is 1
n −

1
nγ . Then for each elements (i, j) ∈ {1, . . . , n} × {1, . . . , n},

Mk
min[i, j] ≤Mk[i, j] ≤Mk

max[i, j]

Similarly, let Mk
Emax and Mk

Emin be the corresponding matrix powers where MU ∈ E . Specif-
ically, let Mk

Emax = ϕk(MU
′′) where every element of MU

′′ is 1
n −

1
nγ+3 , and Mk

Emin = ϕk(MU
′′′)

where every element of MU
′′′ is 1

n −
1
nγ + 1

nγ+3 .

9.1 Geometric decomposition

In this subsection we decompose the conditional probability into more tractable hypercubes in
the probability space of Mk. This step is intuitive from a geometric view. When we rewrite the
conditional probability

Pr
M←Mγ,τ

[
(Mk)core ∈ QNcore(wcore,

1

2nη
),M ∈ E

∣∣∣∣(Mk
)
core
∈ QNcore

(
wcore,

1

2nα

)]
=
PrM←Mγ,τ

[
(Mk)core ∈ QNcore(wcore,

1
2nη ),M ∈ E ,

(
Mk
)
core
∈ QNcore

(
wcore,

1
2nα

)]
PrM←Mγ,τ

[
(Mk)core ∈ QNcore

(
wcore,

1
2nα

)]
both the numerator and the denominator are exactly the volume of two hyperrectangles in the
probability space of Mk. The decomposition would also trivially be cutting the hyperrectangles
along each dimension.

We will first decompose the denominator into hyperrectangles of the same size as the numerator.

Definition 5 (grid point). For every w ∈ RNcore, we call a vector wgrid ∈ RNcore a grid point
with respect to w if (i) each element of w − wgrid is a multiple of 1

nη (ii) for l = 1, . . . , Ncore,
Mk

min[il, jl] +
1

2nη ≤ wgrid[l] ≤Mk
max[il, jl]− 1

2nη , where (il, jl) are the core elements.

We note that the grid points will all be with respect to wcore. For simplicity, we sometimes just
call the grid points “wgrid” instead of “wgrid with respect to wcore”.

We use grid points to partition the space of (Mk)core into hypercubes of edge length 1
nη centered

at grid points

QNcore

(
wgrid,

1

2nη

)
Note that the hypercubes intersect at boundaries, which brings non-negligible discrete probabilities

in counting. To that end, we instead use QNcore

(
wgrid,

1
2nη+1

)
in giving lower bounds to the volume

of the hypercubes.
Given the partition above, the probability becomes

Pr

[
(Mk)core ∈ QNcore

(
wcore,

1

2nη

)
,M ∈ E

∣∣∣∣(Mk
)
core
∈ QNcore

(
wcore,

1

2nα

)]
≤

Pr[(Mk)core ∈ QNcore(wcore,
1

2nη ),M ∈ E , (Mk)core ∈ QNcore(wcore,
1

2nα )]∑
wgrid

Pr[(Mk)core ∈ QNcore(wgrid,
1

2nη+1), (M
k)core ∈ QNcore(wcore,

1
2nα )]
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Now, we further decompose the regions (Mk)core ∈ QNcore(wgrid,
1

2nη+1), (M
k)core ∈ QNcore(wcore,

1
2nα )

into many small hypercube of edge length 2
2nα+1 (here the edge length is 2

2nα+1 for the same reason

as above), dimension n2. The hypercubes are smaller since η < α, and thus 1
nη ≫ 1

nα .
We achieve this decomposition by considering hypercubes with the following two types of centers

respectively used for upper bounding the numerator and lower bounding the denominator:

Definition 6 (local center - global center). For every wcore ∈ RNcore,
We call a vector wlocal ∈ Rn2

local with respect to (wcore,wcore), if (i) Each element of wlocal−
(wcore,wcore) is a multiple of 1

nα . (ii) each element of wlocal satisfies: |wlocal[i, j] − wcore[i, j]| <
1

2nη + 1
2nα for core elements i, j and |wlocal[i, j] − wcore[i, j]| ≤ 1

2nα for the remaining n2 − Ncore

elements.
We call wglobal ∈ Rn2

global with respect to (wcore,wcore) if there exists some wgrid with respect
to wcore such that (i) Each element of wglobal− (wgrid,wcore) is a multiple of 1

nα . (ii) each element
of wglobal satisfies: |wglobal[i, j]−wgrid[i, j]| ≤ 1

2nη+1 −
1

2nα for core elements i, j and |wglobal[i, j]−
wcore[i, j]| ≤ 1

2nα for the remaining n2 −Ncore elements.

By the definition, all the wglobal[i, j] and wlocal[i, j] for non-core elements i, j should be equal
to wcore[i, j]. Now, we can further decompose the probability as:

Pr

[
(Mk)core ∈ QNcore

(
wcore,

1

2nη

)
,M ∈ E ,

(
Mk
)
core
∈ QNcore

(
wcore,

1

2nα

)]
≤
∑
wlocal

Pr

[
Mk ∈ Qn2

(
wlocal,

1

2nα

)
,M ∈ E

]
and ∑

wgrid

Pr

[
(Mk)core ∈ QNcore

(
wgrid,

1

2nη + 1

)
,
(
Mk
)
core
∈ QNcore

(
wcore,

1

2nα

)]

≥
∑

wglobal

Pr

[
Mk ∈ Qn2

(
wglobal,

1

2nα + 1

)]

So we can see that the probability measure of each hypercube Pr[Mk ∈ Qn2(w, 1
2nα )] and

Pr[Mk ∈ Qn2(w, 1
2nα+1)] for w ∈ Rn2

inside the boundary is the key to our problem.
However, as we can see the probabilities of the hypercubes with local centers above still have E

inside. We can remove it by further focusing on centers contained in E .

Definition 7 (valid center). Fix wcore ∈ RNcore as the value of the core elements and wcore ∈
Rn2−Ncore as the value of the rest of the elements. Denote w = (wcore,wcore) as the vector descrip-
tion of the whole (rounded) matrix.

We call wvalid,local ∈ Rn2
a valid local center if (i) wvalid,local is local with respect to w (ii) for

every (i, j) ∈ {1, . . . , n} × {1, . . . , n}, Mk
Emin[i, j]−

1
2nα < wvalid,local[i, j] < Mk

Emax[i, j] +
1

2nα .

Similarly, we call wvalid,global ∈ Rn2
a valid global center if (i) wvalid,global is global with respect to

w (ii) for every (i, j) ∈ {1, . . . , n}×{1, . . . , n}, Mk
Emin[i, j]+

1
2nα ≤ wvalid,global[i, j] ≤Mk

Emax[i, j]−
1

2nα .
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Given the above definition, we can see that∑
wlocal

Pr

[
Mk ∈ Qn2

(
wlocal,

1

2nα

)
,M ∈ E

]
≤

∑
wvalid,local

Pr

[
Mk ∈ Qn2

(
wvalid,local,

1

2nα

)]

and ∑
wglobal

Pr

[
Mk ∈ Qn2

(
wglobal,

1

2nα + 1

)]

≥
∑

wvalid,global

Pr

[
Mk ∈ Qn2

(
wvalid,global,

1

2nα + 1

)]
Therefore,

Pr

[
(Mk)core ∈ QNcore

(
wcore,

1

2nη

)
,M ∈ E

∣∣∣∣(Mk
)
core
∈ QNcore

(
wcore,

1

2nα

)]
≤

∑
wvalid,local

Pr[Mk ∈ Qn2(wvalid,local,
1

2nα )]∑
wvalid,global

Pr[Mk ∈ Qn2(wvalid,global,
1

2nα+1)]

9.2 Volume argument

Now we just need to (i) count the number of valid centers, and to (ii) upper bound Pr[Mk ∈
Qn2(w, 1

2nα )] and lower bound Pr[Mk ∈ Qn2(w, 1
2nα+1)] for every valid w. We focus on part (ii)

in this section, which is also the technical part. We achieve this by equipping tools from Lipschitz
analysis. More specifically, given ϕk(MU) = Mk, we show that the Lipschitz constant of ϕk and
the inverse of the Lipchitz constant of ϕ−1k are close to each other, which means that the probability
space of Mk has low distortion from the (uniform) space of MU. Formally, we will prove that each
hypercube in the space of Mk has a preimage that is inside a small hypercube of the space of MU,
and also contains a slightly smaller hypercube. In this way, we obtain the desired upper bound and
lower bound of its volume.

To begin with, we show that ϕk is an injective function. This is not true in general. But in the
special case where M is limited in a small range, it is true.

Lemma 14. Given MU ∈ Rn×n in which each element lies in range [ 1n −
1
nγ ,

1
n ]. Fix an integer

k ∈ [n]. For sufficiently large n, ϕk = Mk = (n
2−1
n2 I+ 1

n3MU)k is an injective function.

Proof. The proof goes similarly as in Lemma 8.
Suppose for sake of contradiction that ϕk is not an injective function, which means that there ex-

istsMU ̸= MU
′ ∈ [ 1n−

1
nγ ,

1
n ]

n×n such that ϕk(MU) = ϕk(MU
′). Let (i, j) = argmax(i,j) |MU[i, j]−

MU
′[i, j]|.
For simplicity, let x1,1, ..., xn,n be the elements of MU, and y1,1, ..., yn,n be the elements of MU

′.

We rewrite ϕk(MU)[i, j] as fk,i,j(x1,1, ..., xn,n)
def
= (ϕk(MU = (x1,1, ..., xn,n)))[i, j] a function of n2
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elements. Then
|(ϕk(MU)− ϕk(MU

′))[i, j]|

=

∣∣∣∣∣∣
∑

u,v∈[n]

∫ yu,v

xu,v

∂fk,i,j(x1,1, ..., xu,v−1, z, yu,v+1, ..., yn,n)

∂z
dz

∣∣∣∣∣∣
≥
∣∣∣∣Θ(k)

n3
· (xi,j − yi,j)

∣∣∣∣− (2n− 2) ·
∣∣∣∣O(k2

n7

)
· (xi,j − yi,j)

∣∣∣∣
− (n2 − 2n+ 1) ·

∣∣∣∣O( k3

n11

)
· (xi,j − yi,j)

∣∣∣∣
≥
(
Θ

(
k

n3

)
−O

(
k2

n6

)
−O

(
k3

n9

))
· |xi,j − yi,j |

>0

where the first inequality comes from Lemma 9 and the fact that ∂M[i,j]
∂MU[i,j] =

1
n3 . Then ϕk(MU) ̸=

ϕk(MU
′), a contradiction.

Given that ϕk is injective, the inverse function ϕ−1k exists20. Recall that ||M|| is the entry-
wise max norm of M. For every function ϕ : Rn×n → Rn×n, we define its Lipschitz constant as

||ϕ||Lip
def
= supMU ̸=MU

′
||ϕ(MU)−ϕ(MU

′)||
||MU−MU

′|| . An invertible function ϕ is called a bi-Lipschitz function if

it has bounded ||ϕ||Lip and ||ϕ−1||Lip.

Lemma 15. For every k ≤ n and two matrices MU,MU
′ in the space of MU. For every lare

enough n,

||ϕ−1k ||
−1
Lip||MU −MU

′|| ≤ ||ϕk(MU)− ϕk(MU
′)|| ≤ ||ϕk||Lip||MU −MU

′||

where ||ϕ−1k ||
−1
Lip ≥ ((n

2−1
n2 )k−1 k

n3 − k2

n6 ), ||ϕk||Lip ≤ ((n
2−1
n2 )k−1 k

n3 + k2

n6 )

Proof. The case k = 1 can be verified easily, where ||ϕk(MU)− ϕk(MU
′)|| = 1

n3 ||MU −MU
′||.

Assuming k ≥ 2. We note that

ϕk(MU)− ϕk(MU
′) =

(
n2 − 1

n2
I+

1

n3
MU

)k

−
(
n2 − 1

n2
I+

1

n3
MU

′
)k

=

k∑
k′=1

(
k

k′

)(
n2 − 1

n2

)k−k′
1

n3k′
(MU

k′ −MU
′k′)

By triangle inequality we have

||ϕk(MU)−ϕk(MU
′)|| ≤ ||k

(
n2 − 1

n2

)k−1
1

n3
(MU−MU

′)||+
k∑

k′=2

||
(
k

k′

)(
n2 − 1

n2

)k−k′
1

n3k′
(MU

k′−MU
′k′)||

and

||ϕk(MU)−ϕk(MU
′)|| ≥ ||k

(
n2 − 1

n2

)k−1
1

n3
(MU−MU

′)||−
k∑

k′=2

||
(
k

k′

)(
n2 − 1

n2

)k−k′
1

n3k′
(MU

k′−MU
′k′)||

20We ignore the matrices with no preimages for now.
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By Corollary 8, we only need to bound

k∑
k′=2

∣∣∣∣∣
∣∣∣∣∣
(
k

k′

)(
n2 − 1

n2

)k−k′
1

n3k′
(MU

k′ −MU
′k′)

∣∣∣∣∣
∣∣∣∣∣ ≤

k∑
k′=2

(
k

k′

)(
n2 − 1

n2

)k−k′
k′

n3k′
||MU −MU

′||

=
k

n3

((
n2 − 1

n2
+

1

n3

)k−1
−
(
n2 − 1

n2

)k−1)
||MU −MU

′||

≤ k2

n6
||MU −MU

′||

Therefore,((
n2 − 1

n2

)k−1
k

n3
− k2

n6

)
||MU−MU

′|| ≤ ||ϕk(MU)−ϕk(MU
′)|| ≤

((
n2 − 1

n2

)k−1
k

n3
+

k2

n6

)
||MU−MU

′||

Note that the above shows that each dimension of Mk[i, j] has a range of length Θ((n
2−1
n2 )k−1 ·

k
n3 · 1

nγ ). Because the range of each dimension of MU is 1
nγ .

For simplicity, we refer to ||ϕ−1k ||
−1
Lip as its lower bound (n

2−1
n2 )k−1 k

n3 − k2

n6 . And we denote

||ϕk||Lip as its upper bound (n
2−1
n2 )k−1 k

n3 + k2

n6 (instead of its precise value). We have the following
two corollaries which will be used later on.

Corollary 16. For every elements (i, j) ∈ {1, . . . , n} × {1, . . . , n},

||ϕ−1k ||
−1
Lip

(
1

nγ
− 2

nγ+3

)
≤ |Mk

Emax[i, j]−Mk
Emin[i, j]| ≤ ||ϕk||Lip

(
1

nγ
− 2

nγ+3

)
Corollary 17.

||ϕk||Lip
||ϕ−1k ||

−1
Lip

≤ 1 +
4

n2

Given that ϕk is an invertible function, we define the preimage as follows.

Definition 8 (preimage). Let w ∈ Rn2
be the vector representation of a matrix. We say w has a

preimage wpre ∈ Rn2
, if there exists a MU such that MU = wpre and ϕk(MU) = w. Recall that

our MU has the following property: (i) each element is a multiple of 1
nτ (ii) each element falls in

the interval [ 1n −
1
nγ ,

1
n ].

With the fact that ϕk is invertible, we have:

Pr

[
Mk ∈ Qn2

(
w,

1

2nα

)]
= Pr

[
MU ∈ ϕ−1k

(
Qn2

(
w,

1

2nα

))]
and the same holds if we replace 1

2nα by 1
2nα+1 .

Now we just need to bound the above. Since MU is a discrete uniform distribution, we can see

that the probability mass of ϕ−1k

(
Qn2(w, 1

2nα )
)
and ϕ−1k

(
Qn2(w, 1

2nα+1)
)
are almost proportional

to its volume. Our goal is to count and bount the discrete probability of the preimage of every
hypercube. Recall that our input distributionMγ,τ is defined on the matrices MU whose elements
are multiples of n−τ .
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Definition 9 (integer point). wint ∈ Rn2
is called an integer point if each element of wint is a

multiple of 1
nτ .

Definition 10 (boundary ofMγ,τ ). Given the vector representation of a matrix w ∈ Rn2
(in the

space of Mk). We say w is inside the boundary ofMγ,τ in the space of Mk if for every i, j ∈ [n]

Mk
min[i, j] ≤ w[i, j] ≤Mk

max[i, j]

Analogously, we say the w is inside the boundary ofMγ,τ in the space of MU if for every i, j ∈ [n]

1

n
− 1

nγ
≤ w[i, j] ≤ 1

n

Besides, for every r > 0, we say a set of points (e.g., a hypercube Qn2(w, r)) is inside the boundary
of Mγ,τ in the space of Mk (resp. MU) if every point in the set (e.g., w′ ∈ Qn2(w, r)) is inside
the boundary ofMγ,τ in the space of Mk (resp. MU).

With the definitions above, we can say that each instance of MU is an integer point. Then, we
have

Lemma 18. For every w in Rn2
and r > n−τ , let N0 be the number of integer points in Qn2(w, r).

If Qn2(w, r) is inside the boundary ofMγ,τ in the space of MU, then

(2rnτ − 1)n
2 ≤ N0 ≤ (2rnτ + 1)n

2

Proof. We only need to consider one dimension. For an edge of length 2r, it contains at most
2rnτ + 1 integer points. On the other hand, it contains at least ⌊2rnτ⌋ > 2rnτ − 1 integer points.
The inequality follows by combining the n2 dimensions.

We have shown that the key point is to bound Pr[Mk ∈ Qn2(w, 1
2nα )] and Pr[Mk ∈ Qn2(w, 1

2nα+1)]

for valid centers w. Here w should be regarded as an approximation of Mk. If w has a preim-
age w′ (should be regarded as the vector representation of MU), then ∀MU ∈ {MU|ϕk(MU) ∈
Qn2(w, 1

2nα )}, ||MU−w′|| ≤ 1
2nα·||ϕ−1

k ||
−1
Lip

. So we have {MU|ϕk(MU) ∈ Qn2(w, 1
2nα )} ⊆ Qn2(w′, 1

2nα·||ϕ−1
k ||

−1
Lip

).

Similarly, ∀MU ∈ Qn2(w′, 1
||ϕk||Lip(2nα+1)), ||M

k − w|| ≤ 1
2nα+1 , namely Qn2(w′, 1

||ϕk||Lip(2nα+1)) ⊆
{MU|ϕk(MU) ∈ Qn2(w, 1

2nα+1)}. So if the hypercubes centered at w′ are inside the boundary of
Mγ,τ in the space of MU, we have:

|{MU|ϕk(MU) ∈ Qn2(w,
1

2nα
)}| ≤

(
nτ

nα · ||ϕ−1k ||
−1
Lip

+ 1

)n2

and

|{MU|ϕk(MU) ∈ Qn2(w,
1

2nα + 1
)}| ≥

(
2nτ

||ϕk||Lip(2nα + 1)
− 1

)n2

By the set E we already let MU to be not close to the boundary. We will verify in Lemma 20
that the hypercubes above are indeed inside the boundary ofMγ,τ .

However, before dealing with the boundary, a problem arises: if w does not have a preimage,
then we can never apply this argument. But those w with preimages should be dense. Our strategy
is to find a w that has a preimage nearby.
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Lemma 19. For every 2 ≤ k ≤ n and every valid w ∈ Rn2
, i.e., for every (i, j) ∈ {1, . . . , n} ×

{1, . . . , n}, Mk
Emin[i, j]−

1
2nα < w[i, j] < Mk

Emax[i, j] +
1

2nα . There exists w′′ ∈ Qn2(w, 2k
nτ+3 ) such

that w′′ has a preimage, namely, there exists an MU such that ϕk(MU) = w′′.

Proof. We prove it in a geometric way. For every integer point v =
(
k1,1
nτ , . . . ,

kn,n

nτ

)
, where

k1,1, ..., kn,n are integers, and each element of v lies in the interval
[
1
n −

1
nγ ,

1
n

]
. We define Cv

to be the smallest hypercube such that (1) each side of the hypercube is strictly parallel to the axis
(2) it contains the following point set{

ϕk(v + v′)

∣∣∣∣for every i, j ∈ [n],v′[i, j] = 0 or
1

nτ

}
Because ϕk is a monotone function, we know that every vector v′′ that lies between v and

v + 1
nτ J will be mapped to a point at Cv, where J is the all-1 matrix. In this way, we give a cover

to the space of Mk, where some hypercubes overlap with others. The hypercubes are always inside
the boundary of the space of Mk (i.e., the hypercubes do not exceed Mk

min and Mk
max) because

valid w is distant from the boundary. We will prove this in the next lemma.
As each hypercube Cv at least contains one point that has a preimage (e.g., v). We only need

to bound the edge length of the hypercube, which is the largest possible (max-norm) distance from
each valid w to a point w′′ that has a preimage. For each hypercube Cv, by Corollary 10 we have

max
v′,v′′∈Cv

||ϕk(v
′)− ϕk(v

′′)|| = max
v′,v′′,u,v

∣∣(ϕk(v
′)− ϕk(v

′′))[u, v]
∣∣

≤ max
u,v∈[n]

∑
i,j∈[n]

∣∣∣∣∂Mk[u, v]

∂MU[i, j]
· n−τ

∣∣∣∣
= max

u,v∈[n]

∑
i,j∈[n]

∣∣∣∣∂Mk[u, v]

∂M[i, j]
· n−τ−3

∣∣∣∣
≤ n−τ−3

(
k +

k2

n3
+

k3

6n6

)
≤ 2kn−τ−3

With Lemma 19 we have shown that there exists w′′ ∈ Qn2(w, 2k
nτ+3 ) such that w′′ has a

preimage. Then we can apply a similar argument. Moreover, we have

Qn2(w′′, r −
2k

nτ+3
) ⊆ Qn2(w, r) ⊆ Qn2(w′′, r +

2k

nτ+3
)

Recall that r is either 1
2nα or 1

2nα+1 . So we can get: when w is not close to the boundary in the

space of Mk, such that all the hypercubes above are inside the boundary ofMγ,τ in the space of
Mk, we have(

2nτ

||ϕk||Lip
·
(
r − 2k

nτ+3

)
− 1

)n2

≤ |{MU|Mk ∈ Qn2(w, r)}| ≤

(
2nτ

||ϕ−1k ||
−1
Lip

·
(
r +

2k

nτ+3

)
+ 1

)n2

This is exactly the bound we need. Now we justify that the hypercubes are indeed inside the
boundary.
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Lemma 20. Given 2 ≤ γ < α − 12.2 and τ > α constants. For every valid center wvalid (i.e.,
wvalid,local or wvalid,global), and a point w′′ ∈ Qn2(wvalid,

2k
nτ+3 ) that has a preimage, both hypercubes

Qn2(w′′, 1
2nα+1 −

2k
nτ+3 ) and Qn2(w′′, 1

2nα + 2k
nτ+3 ) are inside the boundary of Mγ,τ in the space of

Mk.

Proof. We know that for each index (i, j) ∈ {1, . . . , n}×{1, . . . , n}, the (i, j)-th element of wvalid is
inside the range [Mk

Emin[i, j]−
1

2nα ,Mk
Emax[i, j] +

1
2nα ]. Notice that the second hypercube contains

the first one. The hypercubes are inside the boundary if(
Mk
Emax[i, j] +

1

2nα

)
+

2k

nτ+3
+

(
1

2nα
+

2k

nτ+3

)
< Mk

max[i, j](
Mk
Emin[i, j]−

1

2nα

)
− 2k

nτ+3
−
(

1

2nα
+

2k

nτ+3

)
> Mk

min[i, j]

This is true because

||Mk
max −Mk

Emax|| > ||ϕ−1k ||
−1
Lip ·

1

nγ+3
= Θ

(
k

nγ+6

)
>

1

nα
+

4k

nτ+3

which is true given 2 ≤ γ < α− 12.2 and τ > α. And the same holds for Mk
Emin −Mk

min.

We give a brief summary of what we have achieved above. To give both an upper bound
and a lower bound to the probability mass of hypercubes Qn2(wvalid, r), where r is either 1

2nα or
1

2nα+1 . We first relocate wvalid to w′′ ∈ Qn2(wvalid,
2k

nτ+3 ) such that w′′ has a preimage MU of
ϕ(MU). The existence of such w′′ is promised by Lemma 19. It now suffices to lower bound
Qn2(w′′, r − 2k

nτ+3 ), which is contained in Qn2(wvalid, r), and to upper bound Qn2(w′′, r + 2k
nτ+3 ),

which contains Qn2(wvalid, r).
By the Lipschitz analysis (Lemma 15) of the function ϕk(MU) = Mk and its inverse ϕ−1k (Mk) =

MU, we know that the distance between matrices is preserved given either ϕk or ϕ−1k . So, every
point v inside Qn2(w′′, r± 2k

nτ+3 ) has a preimage ϕ−1k (v) close to ϕ−1k (w′′), and every point v′ close

to ϕ−1k (w′′) should also have a image ϕ(v′) contained in Qn2(w′′, r ± 2k
nτ+3 ). The distortion of the

distance is quantified by the Lipschitz constants ||ϕk||Lip, ||ϕ−1k ||
−1
Lip. Recall that MU is uniformly

sampled from a discrete and equidistant distribution. To bound Qn2(w′′, r ± 2k
nτ+3 ) we just count

the number of points that within max-norm distance to ϕ−1k (w′′), which is also a hypercube.

9.3 Proof of the main theorem

Now we are ready to prove the main theorem of this section:

Theorem 6 (main result for the volume and embeddings part). For every N = O(polylog(n)), and
every 2 ≤ k ≤ n. Let Ncore = ⌈

√
N⌉, Ncore = n2 −Ncore. Let τ > α, 2 ≤ γ < α− 12.2, η = α− 7.1

be constants. Let wcore ∈ RNcore to be an arbitrary assignment to arbitrary Ncore elements of Mk,
and wcore ∈ RNcore to be an assignment to the remaining Ncore elements. We have:

Pr
M←Mγ,τ

[
(Mk)core ∈ QNcore

(
wcore,

1

2nη

)
,M ∈ E

∣∣∣∣(Mk
)
core
∈ QNcore

(
wcore,

1

2nα

)]
≤ 55·n(γ−η+3.1)Ncore
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Proof. Recall that we have shown

Pr

[
(Mk)core ∈ QNcore

(
wcore,

1

2nη

)
,M ∈ E

∣∣∣∣(Mk
)
core
∈ QNcore

(
wcore,

1

2nα

)]
≤

∑
wvalid,local

Pr[Mk ∈ Qn2(wvalid,local,
1

2nα )]∑
wvalid,global

Pr[Mk ∈ Qn2(wvalid,global,
1

2nα+1)]

Then the number of “valid, local” points is upper bounded by:
(
n−η+n−α

n−α

)Ncore

. As for the

“valid, global” points, the number is at least

(
||ϕ−1

k ||
−1
Lip(n

−γ−2n−γ−3)−n−α

n−η ·
2

2nη+1
−n−α

n−α

)Ncore

, the

number of grid points times the number of length-n−α hypercubes inside each length-n−η hyper-
cubes.

We bound it below∑
wvalid,local

1∑
wvalid,global

1
=

(
n−η

||ϕ−1k ||
−1
Lip(n

−γ − 2n−γ+3)− n−α
· n−η + n−α

2
2nη+1 − n−α

)Ncore

≤
(
2n3+γ

k
· n−η + n−α

1− n−η − n−7.1

)Ncore

≤ n
(3+γ−η+ 4

logn
)Ncore

Now we bound the probability.∑
wvalid,local

Pr[Mk ∈ Qn2(wvalid,local,
1

2nα )]∑
wvalid,global

Pr[Mk ∈ Qn2(wvalid,global,
1

2nα+1)]

≤n(3+γ−η+ 4
logn

)Ncore ·

(
2nτ

||ϕ−1
k ||

−1
Lip

·
(

1
2nα + 2k

nτ+3

)
+ 1

)n2

(
2nτ

||ϕk||Lip

(
1

2nα+1 −
2k

nτ+3

)
− 1
)n2

=n
(3+γ−η+ 4

logn
)Ncore ·

(
||ϕk||Lip
||ϕ−1k ||

−1
Lip

)n2

·

 1
2nα + 2k

nτ+3 +
||ϕ−1

k ||
−1
Lip

2nτ

1
2nα+1 −

2k
nτ+3 −

||ϕk||Lip

2nτ

n2

≤n(3+γ−η+ 4
logn

)Ncore ·
(
1 + 4n−2

)n2

·

(
1

2nα + 2.5k
nτ+3

1
2nα+1 −

2.5k
nτ+3

)n2

≤n(3+γ−η+ 4
logn

)Ncore ·
(
1 + 4n−2

)n2

·
(
1 +

20

nτ+2−α

)n2

≤55 · n(3.1+γ−η)Ncore < n−2Ncore

where we used the facts that γ < α− 12.2, η = α− 7.1 and α < τ .

The proof of Theorem 4 directly follows from Theorem 5 and Theorem 6 that, if we set Ncore =
⌈ s
logn⌉, the restricted conditional min-entropy Hmin(f) is bounded by − log(n−2Ncore) ≥ 2s. By

Theorem 1, we know that the average query complexity is bounded by Ω(
√
n).
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