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Abstract

The Schwartz-Zippel Lemma states that if a low-degree multivariate polynomial
with coefficients in a field is not zero everywhere in the field, then it has few roots on
every finite subcube of the field. This fundamental fact about multivariate polynomials
has found many applications in algorithms, complexity theory, coding theory, and
combinatorics. We give a new proof of the lemma that offers some advantages over the
standard proof.

First, the new proof is more constructive than previously known proofs. For every
given side-length of the cube, the proof constructs a polynomial-time computable and
polynomial-time invertible surjection onto the set of roots in the cube. The domain of
the surjection is tight, thus showing that the set of roots on the cube can be compressed.
Second, the new proof can be formalised in Buss’ bounded arithmetic theory S1

2
for

polynomial-time reasoning. One consequence of this is that the theory S1
2
+dWPHP(PV)

for approximate counting can prove that the problem of verifying polynomial identities
(PIT) can be solved by polynomial-size circuits. The same theory can also prove
the existence of small hitting sets for any explicitly described class of polynomials of
polynomial degree.

To complete the picture we show that the existence of such hitting sets is equivalent
to the surjective weak pigeonhole principle dWPHP(PV), over the theory S1

2
. This is a

contribution to a line of research studying the reverse mathematics of computational
complexity (cf. Chen-Li-Oliveira, FOCS’24). One consequence of this is that the prob-
lem of constructing small hitting sets for such classes is complete for the class APEPP
of explicit construction problems whose totality follows from the probabilistic method
(Kleinberg-Korten-Mitropolsky-Papadimitriou, ITCS’21; cf. Korten, FOCS’21). This
class is also known and studied as the class of Range Avoidance Problems (Ren-
Santhanam-Wang, FOCS’22).
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1 Introduction

We study constructive proofs of the well-known Schwartz-Zippel Lemma, and their applica-
tions in complexity theory. This statement is sometimes referred to as the “Schwartz-Zippel-
DeMillo-Lipton Lemma” following [47, 42, 15]. However, this result goes back to Øystein
Ore, 1922 [34] (over finite fields) and was subsequently rediscovered by other authors; see [3]
who unearthed the history of this lemma. Due to this complicated history, it is sometimes
called “The Polynomial Identity Lemma”.

Theorem 1.1 (Schwartz-Zippel Lemma). Let F be a field, let x be a set of n indeterminates,
let S ⊆ F be a finite subset of field elements, and let P (x) be a multivariate polynomial
in the indeterminates x with coefficients in the field F and maximum individual degree at
most d. Then, either every point in F

n is a root of P (x), or the number of roots in Sn is at
most d·n·|S|n−1. In particular, the number of roots in Sn is either |S|n or at most d·n·|S|n−1.1

The Schwartz-Zippel Lemma is a cornerstone in randomised algorithms and the use of
randomness in computing, with a wide range of applications in computational complexity,
coding theory, graph algorithms, and algebraic computation. The lemma shows that evalu-
ating a non-zero polynomial on inputs chosen randomly from a large enough set is likely to
find an input that produces a non-zero result. This offers a fast test with good guarantees
for checking if a polynomial is identically zero.

While the lemma provides significant efficiency advantages in its applications, it is based
on an existential statement—the existence of many non-roots for non-zero polynomials—
without offering a deterministic way to find these non-roots or easily witness their absence.
Accordingly, the standard textbook proof of the lemma, which goes by induction on the
number of variables, although simple, does not reveal a feasible constructive argument.
Specifically, it treats multivariate polynomials as potentially exponential sums of monomials.
This non-constructive nature of the lemma is one reason why providing feasible constructive
proofs has been challenging (cf. [28]).

Although different in nature, feasible constructivity in proofs and algorithms often go
hand in hand, either informally or, at times, formally through translation theorems between
proofs and computation. This work presents a new proof of the Schwartz-Zippel Lemma
that fits within the framework of feasibly constructive proofs in a precise manner. We then
demonstrate several applications of this proof, both in feasible constructive mathematics and
in computational complexity, as we explain in the following.

Organisation of the introduction. In Section 1.1 we discuss the motivation behind seeking
feasibly constructive proofs in general, and specifically the approach taken here to carry

1Our version of the lemma is for maximum individual degree and is closely related to Zippel’s version
of the lemma in [47]. Zippel’s bound, also for maximum individual degree, is slightly tighter than the one
stated here, namely: |S|n · (1 − (1 − d/|S|)n) ≤ d · n · |S|n−1. There is also a better known version of the
lemma for total degree D, where the bound is D · |S|n−1. Note that d ≤ D ≤ d · n, so the bound for total
degree is never further than a factor of n from our bound. In the regime where |S| is bigger than n and d,
which is the setting of most applications, all bounds are equally useful and yield similar conclusions. See [30]
and the discussion there, for a comparison of the bounds, and for a discussion on how tight they are.
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out the new proof within the formal logic framework of bounded arithmetic, which are
formal theories accompanying and complementing the development of complexity theory.
In Section 1.2 we describe (in the “meta-theory”) the new feasibly constructive proof of
Schwartz-Zippel. For those interested to first see the new proof, it is presented at the end of
Section 1.2. We precede it with an exposition that aims to explain the intuition behind the
new proof. In Section 1.3 we discuss applications of the new proof to bounded arithmetic,
where our new argument helps to settle the open problem of formalising the Schwartz-Zippel
Lemma in bounded arithmetic. Specifically, in Section 1.3.2 we discuss how to prove the
existence of small hitting sets and hence formalise Polynomial Identity Testing (PIT) in the
theory. In Section 1.3.3 we describe a “reversal” theorem, in which the dual weak pigeonhole
principle—namely, the statement that a function cannot map surjectively a small domain
onto a large range—is shown to be equivalent to the existence of small hitting sets. And in
Section 1.3.4 we show that this reversal theorem implies that finding hitting sets is complete
for the class of Range Avoidance Problems (aka APEPP).

1.1 The Quest for Feasibly Constructive Proofs

While existence proofs, particularly those establishing the presence of certain combinato-
rial objects, are very useful—for instance, in probabilistic combinatorics, where one seeks
to identify objects with certain properties that are as large or small as possible, such as
expanders or combinatorial designs—it is widely acknowledged that constructive arguments,
which provide explicit methods for constructing these objects, are often even more fruitful.
This is especially significant in algorithmic contexts, where the utility of the objects (e.g.,
expanders) depends on their “explicitness”, meaning that they must be feasibly computable,
typically in polynomial time.

In computational complexity theory, the notions of constructivity and explicitness are
equally critical. Fundamental questions about separating complexity classes hinge on explicit
languages, such as the satisfiability problem (SAT), and whether SAT can be solved by
polynomial-size circuits. For random, non-explicit languages, the analogous problems are
almost trivially resolved: a simple counting argument shows that there exist non-explicit
Boolean functions that cannot be computed by Boolean circuits of polynomial-size.

A related but distinct approach to feasible constructivity in complexity theory is found
in the framework of bounded arithmetic, which is the field that studies the computational
complexity of concepts needed to prove different statements. In this setting, one aims to
formalise constructivity in a more rigorous and systematic manner. Bounded arithmetic is a
general name for a family of weak formal theories of arithmetic (that is, natural numbers, and
whose intended model is N). These theories are characterized by their axioms and language
(set of symbols), starting from a basic set of axioms providing the elementary properties of
numbers. Each bounded arithmetic theory possesses different additional axioms postulating
the existence of different sets of numbers, or different kinds of induction principles. Based on
its specific axioms, each theory of bounded arithmetic proves the totality of functions from
different complexity classes (e.g., polynomial-time functions). We can typically consider
such theories as working over a logical language that contains the function symbols of that
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prescribed complexity class. In this sense, proofs in the theory use concepts from a specific
complexity class, and we can say that the theory captures “reasoning in this class” (e.g.,
“polynomial-time reasoning”).

In the current work we shall start with a standard naturally written constructive proof
(in the “meta-theory”) of the Schwartz-Zippel Lemma (Section 1.2), following the first, less
formal approach, to constructivity. We then show how the new proof fits in the formal ap-
proach to feasible constructivity of bounded arithmetic. We moreover exemplify the usual
benefits of such proofs by showing applications both in bounded arithmetic and computa-
tional complexity.

Background on theories of bounded arithmetic, their utility and applications.
While the first theory for polynomial-time reasoning was the equational theory PV considered
by Cook [14], bounded arithmetic goes back to the work of Parikh [35] and Paris-Wilkie [36].
In a seminal work, Buss [8] introduced other theories of bounded arithmetic and laid much
of the foundation for future work in the field.

Using formal theories of bounded arithmetic is important for several reasons. First, it
provides a rigorous framework to ask questions about provability, independence, and the
limits of what can be proved by which means and arguments. The quest for “barriers” in
computational complexity—namely, the idea that some forms of arguments are futile as a
way to solve the fundamental hardness problems in complexity—such as Relativisation by
Baker, Gill and Solovay [6], Natural Proofs by Razborov and Rudich [40] or Algebrisation by
Aaronson and Wigderson [1], has played an important role in complexity theory. Neverthe-
less, the language of formal logic provides a more systematic framework for such a project
(cf. [2, 19] and the recent work [11]). In that sense, bounded arithmetic allows us to identify
suitable logical theories capable of formalising most contemporary complexity theory, and
determine whether the major fundamental open problems in the field about lower bounds
are provable or unprovable within these theories.

Furthermore, bounded arithmetic serves as a framework in which the bounded reverse
mathematics program is developed (in an analogy to Friedman and Simpson reverse math-
ematics program [44]). In this program, one seeks to find the weakest theory capable of
proving a given theorem. In other words, we seek to discover what are the axioms that
are not only sufficient to prove a certain theorem, but rather are also necessary. Special
theorems of interest are those of computer science and computational complexity theory.
The motivation is to shed light on the role of complexity classes in proofs, in the hope to
delineate, for example, those concepts that are needed to progress on major problems in
computational complexity from those that are not. For instance, it has been identified that
apparently most results in contemporary computational complexity can be proved using
polynomial-time concepts (e.g., in PV) (cf. [38]), and it is important to understand whether
stronger theories and concepts are needed to prove certain results.

Accordingly, recent results in bounded arithmetic [11] seek to systematically build a
bounded reverse mathematics of complexity lower bounds, in particular, as these are perhaps
the most fundamental questions in complexity. This serves to establish complexity lower
bounds as “fundamental mathematical axioms” which are equivalent, over the base theory,
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to rudimentary combinatorial principles such as the pigeonhole principle or related principles.
Indeed, we will show that the (upper bound) statement about the existence of small hitting
sets is equivalent to the (dual weak) pigeonhole principle. (It is interesting to note that the
existence of explicit small hitting sets, which implies efficient PIT, is also a disguised lower
bound statement as shown by Kabanets and Impagliazzo [23]; though we do not attempt to
formalise or pursue this direction in the current work.)

Another advantage of bounded arithmetic comes in the form of “witnessing” theorems.
These are results that automatically convert formal proofs (of low logical-complexity theo-
rems, namely, few quantifier alternations) in bounded arithmetic to feasible algorithms (usu-
ally, deterministic polynomial-time ones). Witnessing theorems come in different flavours
and strength, and recent work show the advantage of this method in both lower and upper
bounds [10, 18, 29].

Moreover, the somewhat forbidding framework of bounded arithmetic forces one to think
algorithmically from the get go, optimising constructions. This resulted in new arguments to
existing results, which proved very useful in complexity, beyond the scope of bounded arith-
metic. A celebrated example is Razborov’s new coding argument of the H̊astad’s switching
lemmas [17], which emerged as work in bounded arithmetic [39]. (Intriguingly, our new
argument for Schwartz-Zippel will also be based on a coding argument.)

Randomness and feasibly constructive proofs. One central part of complexity that was
challenging to fit into bounded arithmetic is that of random algorithms. Randomness usually
entails thinking of probability spaces of exponential size (e.g., the outcome of n coin flips),
and so cannot be directly used in most bounded arithmetic theories which cannot state the
existence of exponential size sets. Initial work by Wilkie (unpublished) [26, Theorem 7.3.7],
taken as well by Thapen [45], and systematically developed in a series of works of Jeřábek
(cf. [21]), concerned how to work with randomness in bounded arithmetic. Nevertheless,
one of the most well-known examples for using randomness in computing, the question of
formulating Schwartz-Zippel and polynomial identity testing in particular, was left open due
to the exponential nature of the standard argument (i.e., the need to treat polynomials as
sums of exponential many monomials; see the first paragraph in Section 1.2). For example,
Lê and Cook in [28] list this as an open question (where they settled for formalising a special
case of the Schwartz-Zippel Lemma).

The formalisation of Schwartz-Zippel Lemma and PIT in bounded arithmetic and its
consequences we present, hopefully exemplify several of the benefits of bounded arithmetic
described above. It serves to fill in the missing link in the formalisation of complexity of
randomness; it produces a new (coding) argument of Schwartz-Zippel lemma that may be
of independent interest; it establishes the existence of hitting sets as equivalent to the dual
weak pigeonhole principle, and thus provides further examples of the “axiomatic” nature of
building blocks in complexity theory; lastly, it has consequences to computational complexity,
by showing that hitting sets are complete for the class of range avoidance problems.
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1.2 New Proof of the Schwartz-Zippel Lemma

The standard Schwartz-Zippel proof proceeds by induction on the number of variables n but
is not a feasibly constructive proof. It is non-constructive in the sense that each inductive
step involves stating properties of objects that are of exponential size. For example, in step i
of the induction, the proof states that the current polynomial on n− i+ 1 variables can be
rewritten into a univariate polynomial in the last variable, with coefficients taken from the
ring of polynomials in the first n− i variables. The non-constructive character of the proof
stems then from the fact that there is no (known) efficient way of iterating this rewriting n
times, unless the polynomial is given in explicit sum of monomials form. Note, however,
that the sum of monomials form is typically of exponential size.

Moshkovitz [32] provided an alternative proof of the Schwartz-Zippel Lemma, but only
for finite fields. The proof in [32] does not use explicit induction, but it is anyway unclear
how to make it strictly constructive in our sense, namely how to identify polynomial-time
algorithms for the concepts used in the proof, and then use these to formalise the whole
argument in a relatively weak theory. We refer to Moshkovitz’ proof again later in this
section to compare it with our approach.

Towards our new proof. For the sake of exposition, let us begin with two natural but failed
attempts to a new proof. In what follows, let P (x) be a polynomial over the field F, with n
variables and maximum individual degree d, and let a ∈ F

n be a given non-root; P (a) 6= 0.
Let S ⊆ F be a finite subset of the field. In the first attempt, we try to cover the cube Sn

with at most n · |S|n−1 lines, each emanating from the non-root a. These lines are the subsets
of Fn of the form {a + t · b : t ∈ F} for some b ∈ F

n. For each such line L, note that P
retricted to L, defined as PL(t) := P (a+ t · b), is a non-zero univariate polynomial of degree
at most d. It is non-zero because it evaluates to P (a) 6= 0 at t = 0, and it has degree at
most d because it is a linear restriction of P . Therefore, by the fundamental theorem for
(univariate) polynomials, each such line has at most d roots, and since the lines cover Sn,
we count at most d · n · |S|n−1 roots in Sn in total, and we are done.

The problem with this approach is that it is not always possible to cover |S|n with at
most n · |S|n−1 lines emanating from a single point a. A simple counterexample can be found
already at dimension n = 2 with S = {0, 1, . . . , q−1} and a = (0, 0): the 2q−1 points of the
form (i, q − 1) or (q − 1, i) with i ∈ S require each its own line emanating from the origin,
and the remaining q2 − 2q − 2 points cannot be covered with one more line.

In the second attempt, we want to cover the cube Sn again with at most n · |S|n−1 lines,
but now we try with parallel lines. For example we could consider the set of axis-parallel
lines of the form {(c1, . . . , ck−1, t, ck+1, . . . , cn) : t ∈ F} with cj ∈ S for all j 6= k, for some
fixed k = 1, . . . , n. The problem with this approach now is that it is not clear that all
such lines will go through some non-root of P . It is tempting to consider some sets of
parallel lines that are more related to the given non-root a, such as the set of lines of the
form {b+ t ·a : t ∈ F} whose gradient is a. This is indeed the approach taken by Moshkovitz
in [32], but as far as we can see this does not work for arbitrary non-roots a, and works only
for a specific kind of non-roots that seem hard to find in the first place.
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Our approach. We are now ready to explain the two new ideas that we use in our proof, and
how they overcome the obstacles of the previous two attempts. First, instead of covering the
roots in Sn with n·|S|n−1 lines where the polynomial is non-zero, we are going to encode each
root in Sn with one in n · |S|n−1 such lines, together with an additional number i in 1, . . . , d.
The lines we use to encode the roots are not necessarily pair-wise parallel, though each
line will be parallel to one of the axes. Second, to actually find this line, our proof uses a
hybrid-type argument. Concretely, to encode the root c, we start at a line through a and
end at a line through c. Along the way, the process travels across at most n axis-parallel
lines of the cube Sn, changing the dimension of travel at each step. The hybrid-argument is
used to preserve the property that the restriction of P to the current line is still a non-zero
polynomial. The exact details of how this is done are explained below.

New proof of Schwartz-Zippel lemma: Let a = (a1, . . . , an) ∈ F
n be such

that P (a) 6= 0, and let S be a finite subset of the field F. Each vector c = (c1, . . . , cn) ∈
Sn of field elements in S can be encoded with n numbers, each from 1 to |S|, by iden-
tifying each ci with its position in an arbitrary ordering of the finite set S. Our goal
is to encode the roots of P in Sn with shorter codewords. To achieve this we will use
only the fact that we know a non-root a ∈ F

n.
Let c = (c1, . . . , cn) ∈ Sn be such that P (c) = 0. Find the mini-

mal index k between 1 and n such that P (c1, . . . , ck−1, ak, ak+1, . . . , an) 6= 0
while P (c1, . . . , ck−1, ck, ak+1, . . . , an) = 0. Such a k must exist since by assump-
tion P (a) 6= 0 and P (c) = 0. Observe that, if we are given both a and c, then
finding k is easy by looping through the coordinates from left to right. The argument
hinges on the following observation:

Knowing this k allows us to encode, given c1, . . . , ck−1, ck+1, . . . , cn, the
field element ck ∈ S by a single number i between 1 and d.

Therefore, we can use i, together with k and the positions of c1, . . . , ck−1, ck+1, . . . , cn
in the fixed ordering of S, as a code for c. This shows that the set of roots in Sn

can be encoded using only d · n · |S|n−1 numbers instead of the trivial |S|n bound,
concluding the argument.

In detail, consider the root c = (c1, . . . , ck−1, ck, ck+1 . . . , cn), where k is the min-
imal index as above. We encode c by the n − 1 elements c1, . . . , ck−1, ck+1, . . . , cn
from S, together with k and a second index i such that ck ∈ S is the i-th root in S
of the univariate polynomial Q(t) = P (c1, . . . , ck−1, t, ak+1, . . . , an). This encoding
works because given the numbers k and i, and the elements (c1, . . . , ck−1, ck+1 . . . , cn)
we can recover c. Indeed, by the choice of k and i, the univariate polynomial Q(t) is
non-zero and has degree at most d, which means that it has no more than d roots in
F. By looping through S we can find its i-th root in S which, by construction, is ck.
The fact that each root of P in Sn is coded by n− 1 of its components and the two
positive integers k and i finishes the proof as it means that the total number of such
roots is bounded above by the number of all possible such codes: d · n · |S|n−1.

6



(0, 0, 0)

Illustration of the encoding process. Refer to the cube on
the right. The x, y, z axes are represented by the vertical
dimension, and the two horizontal dimensions, respectively.
The given non-root is the red dot a = (1, 0, 0). The root to
encode is the blue dot c = (3, 2, 1). The process starts at the
red line (t, 0, 0) through a, parallel to the x axis. Replacing
the first component a1 by c1, we check if P (c1, a2, a3) = 0.
If not, we travel along the red line for c1 − a1 = 2 units to
reach the green line (3, t, 0), parallel to the y axis. Next we
check if P (c1, c2, a3) = 0. If not, we travel along the green
line for c2 − a2 = 2 units to reach the blue line (3, 2, t), parallel to the z axis. We test now
if P (c1, c2, c3) = 0, which checks, because c is a root. The journey ends here. In this example
it took us k = 3 steps to reach the root. Note that this was the first k in 1, . . . , n that
caused P to vanish on the hybrid (c1, . . . , ck−1, ck, ak+1, . . . , an).

The blue line, call it L, is the one we use to encode the root c. To encode it, we use the
index of ck as a root of the univariate polynomial PL(t) obtained by restricting P to this line.
If this index is i in 1, . . . , d, then we encode the root c by (i, k, (c1, . . . , ck−1, ck+1, . . . , cn)).
In the example, if the index i happens to be 1, then we use (1, 3, (3, 2)). Note that this
encoding depends on the given non-root a, but any non-root serves the purpose of encoding
all roots in Sn.

1.3 Applications

1.3.1 Schwartz-Zippel Lemma in the Theory

We begin with a short informal description of the theories, language and axioms we shall
use.

PV: This is the language with a function symbol for every polynomial-time function, with
its meaning specified by the equations that define it via Cobham’s bounded recursion
on notation.

S1

2
: The first level of Buss’ family of theories [8] for basic number theory whose definable

functions are precisely the polynomial-time functions. It contains basic axioms for
properties of numbers (e.g., associativity of product), together with a polynomial in-
duction axiom for NP-predicates. The extension of S1

2
with all PV-symbols and the

Cobham equations as axioms is denoted by S1

2
(PV). The theory has the same theo-

rems as S1

2
in the base language (see [8]), and it is customary to abuse notation and

still call it S1

2
instead of the heavier S1

2
(PV).

dWPHP(PV): The set of dual weak pigeonhole principle axioms dWPHP(f), for every poly-
nomial-time function symbol f ∈ PV. This axiom states the simple counting principle
that a function f cannot map surjectively a domain of size N to a range of size 2N or
more; namely, there is a point in the set of size 2N that is not covered by f . Wilkie
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(unpublished; see [26, Theorem 7.3.7]) observed the connection between this princi-
ple and randomness in computation (within bounded arithmetic): roughly speaking,
when f has a small domain but much larger co-domain, with high probability a point
in the co-domain will not be covered by f . Hence, the ability to pick such a point is
akin to witnessing this probabilistic argument.

S1

2
+dWPHP(PV): S1

2
(indeed S1

2
(PV); see above), augmented with the axioms dWPHP(f) for

every polynomial-time function symbol f ∈ PV. This is a theory that can serve as a ba-
sis for probabilistic reasoning (close to Jeřábek’s theory for approximate counting [21];
cf. [20]).

With this notation we can now state the form of Schwartz-Zippel Lemma that we prove.
Here, and in the rest of this introduction, let [q] denote the set {1, . . . , q}.

Theorem 1.2 (Schwartz-Zippel Lemma in S1

2
; informal, see Theorem 3.9). Let P be a

polynomial of degree d, given as an algebraic circuit, with integer coefficients and n variables.
Then, either P is zero everywhere on Z, or for every positive integer q there is a (polynomial-
time) function f that given any non-root a = (a1, . . . , an) ∈ Z

n with P (a) 6= 0, returns a
function f(a) : codes → roots that maps the set of codes surjectively onto the set of roots in
the cube [q]n, and |codes| ≤ d · n · qn−1.

Here the codes and the function f are defined according to the encoding scheme in Sec-
tion 1.2. Since given a non-root a the function f(a) is (provably) surjective onto the roots
in the cube [q]n, the number of roots of P in the cube is at most the number of codes,
or |codes| ≤ d · n · qn−1. To actually reason in the theory about the size of exponential-size
sets like codes we could have chosen to invoke approximate counting (based on Jeřábek’s the-
ories [21], which would require the inclusion of the dual weak pigeonhole principle dWPHP).
However, we opt not to do this for the Schwartz-Zippel Lemma. Rather, we will show that
this formulation of the Schwartz-Zippel Lemma, together with the dWPHP(PV) axiom, suf-
fices to apply the lemma in its standard applications, such as PIT and finding small hitting
sets (see below).

En route to the proof of Theorem 1.2, we prove in the theory S1

2
one half of the Fundamen-

tal Theorem of Algebra (FTA). This is the fundamental theorem of univariate polynomials
stating that every non-zero polynomial of degree d with complex coefficients has exactly d
complex roots. The theorem naturally splits into two halves: the half that states that there
are at least d roots, and the half that states that there are at most d roots. While the at
least statement relies on special properties of the complex numbers, the proof of the at most
statement relies only on the fact that univariate polynomials over a field admit Euclidean
division. In particular, the at most statement holds also for polynomials over any subring of
a field; e.g., the integers.

Theorem 1.3 (Half of Fundamental Theorem of Algebra in S1

2
informal; see Lemma 3.4).

Every non-zero univariate polynomial of degree d with integer coefficients has at most d roots
on (every finite subset of) Z.
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While the underlying idea of this proof is standard, it is somewhat delicate to carry out
the argument in S1

2
because we need to keep track of the bit-complexity of the coefficients

that appear along the way in the computations. It is well-known that certain widely-used
algorithms working with integers or rational numbers, including Gaussian Elimination, could
incur exponential blow-ups in bit-complexity if careless choices were made in their imple-
mentation; cf. [16]. We also note that Jeřábek [22] formalised Gaussian Elimination over
rationals in S1

2
, and proved also the same half of the FTA that we prove, but only for finite

fields, where exponential blow ups cannot occur.

1.3.2 Existence of Hitting Sets and PIT in the Theory

For a field F and a set of algebraic circuits C over F with n variables, we say that a setH ⊆ F
n

is a hitting set for C if for every non-zero polynomial P in C there exists a point a ∈ H
such that P (a) 6= 0. In other words, if P is non-zero, H ‘hits’ it. Hitting sets are important
because when they are explicit and small they allow for derandomization of PIT: running
through the full hitting set one can test if a given algebraic circuit is the zero polynomial or
not.

By Theorem 1.2, the theory S1

2
proves (by means of a surjective map) that every non-

zero n-variable algebraic circuit with small degree d has relatively few roots in [q]n. By
a counting argument (or the union bound, cf. [43, Theorem 4.1]), it follows that for any
given bounds d and 2m on the degree and the number of circuits in the class C , there is a
set H ⊆ [q]n of poly(n, d,m) points, with q = poly(n, d), that intersects the set of non-roots
of every non-zero circuit in the class. This set H is thus a hitting set of polynomial size, and
we say it is a hitting set for C over [q]. We show that this counting argument can now be
formalised in the theory S1

2
+ dWPHP(PV).

Theorem 1.4 (Small Hitting Sets Exist in S1

2
+ dWPHP(PV); informal, see Theorem 4.4).

For every class C of algebraic circuits with integer coefficients that is definable in the theory,
with n variables, polynomial degree, and polynomial size, there exists a polynomial-size hitting
set for C over [q] with q = poly(n).

The argument in the theory makes two uses of the axiom dWPHP and is roughly as
follows. We begin by showing that, if q is sufficiently large but polynomial, then a non-zero
polynomial with n variables and polynomial degree always has non-root a in [q]n. To see
this, recall the function f(a) : codes → roots from Theorem 1.2, that given a polynomial P
and a non-root a of P , surjectively maps all codes of roots to the roots of P . Note that
the set roots is a subset of [q]n, which has size qn, and recall that the set codes has size at
most d ·n · qn−1, where d is the degree of P . Thus, when q ≥ 2dn, the dWPHP axiom applies
to show that there exists a point a0 in [q]n that is not in the range root of f(a). This a0 is
thus a non-root of P in the set [q]n, like we wanted.

Next we show how to use this fact to get a hitting set with a second application of
the dWPHP axiom. Let C be a class of algebraic circuits with n variables, syntactic degree
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at most d, and size at most s. Consider the function

g : C × [q]n × codesr → rootsr

(P, a, c1, . . . , cr) 7→ (f(a)(c1), . . . , f(a)(cr)),
(1)

where c1, . . . , cr are candidate codes, each from the code-set codes of size n ·d ·qn−1, and a is a
potential non-root of P in [q]n. The parameter r should be sufficiently big, but polynomial.
Then, it follows by construction and the fact proved in the previous paragraph that any
point outside the range of g is a hitting set, since it will have a non-root for every non-zero
algebraic circuit in C . To find the point outside the range of g we invoke the dWPHP axiom,
using again the assumption that q ≥ 2dn.

One immediate consequence of Theorem 1.4 is that the theory S1

2
+ dWPHP(PV) proves

that the problem of verifying polynomial identities PIT can be solved by polynomial-size
Boolean circuits, so is in P/poly. We read this as adding evidence to the claim that the
theory is sufficiently powerful to prove most contemporary results in complexity theory. In
particular, it adds interest to the question of proving that the major lower bound conjectures
of computational complexity are consistent with S1

2
+ dWPHP(PV) and stronger theories;

see [27, 10, 5] for more on this line of work.

1.3.3 Contribution to Reverse Mathematics of Complexity Theory

The fact that the dual weak pigeonhole principle suffices to prove the existence of small
hitting sets raises a natural question: Is it also necessary? A positive answer would provide
a combinatorial characterization of the algebraic statement that small hitting sets exist. It
would also shed light on the role or the necessity of the probabilistic method in the usual
proof of this existential statement. We show how to achieve a version of these two goals.

We define a formal scheme of hitting sets axioms called HS(PV). We follow two provisos.
First, in view of the generality of Theorem 1.4, we define the axiom scheme to contain one
axiom for each definable class C of algebraic circuits; the axiom states that each slice Cn,
consisting of the circuits of C with n variables, has small hitting sets. Second, in the
definition of the axiom for C , we need to decide whether to let it state the existence of
hitting sets of unspecified but polynomial size, or to let it state the existence of hitting sets
of some specified polynomial size. The bound established in Theorem 1.4 is actually of the
form poly(m,n) where m is the logarithm of the number of circuits in the n-th slice, and
poly(m,n) refers to a fixed polynomial ofm and n. This dependence onm is common in most
proofs of existence by the union bound. While the claim that hitting sets of any possibly
larger but unspecified size exist would of course be also true, it turns out that asking the
axiom to provide a hitting set of some fixed polynomial bound seems crucial in the proof
of necessity of dWPHP(PV) that we are after. We chose the latter because this is what is
sufficient, and it is still natural.

These two provisos motivate the following definition (informal; see Definition 5.1):

HS(PV): The set of hitting set axioms HS(g), for every g ∈ PV. This states that if g defines a
class C with its n-th slice Cn having 2m algebraic circuits with n variables, polynomial
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degree, and polynomial size, then there is a hitting set for Cn over [q] of size poly(m,n),
with q = poly(n).

With the right definitions in place we can state the theorem that characterizes the proof-
theoretic strength of the existence of small hitting sets:

Theorem 1.5 (Reverse Mathematics of Hitting Sets; informal, see Theorem 5.2). The ax-
ioms schemes dWPHP(PV) and HS(PV) are provably equivalent over the theory S1

2
.

As remarked earlier, the sufficiency claim follows from Theorem 1.4. To prove the ne-
cessity we show how to use a hitting set to find a point outside the range of any given
polynomial-time function f : [N ] → [2N ]. To do this we design a class Cf of N many low-
degree algebraic circuits each vanishing on the appropriate representation of a point in the
image of f . We do so in such a way that a hitting set for Cf will correspond to an element
in [2N ] \ Img(f), completing the proof. To make this actually work we need to use a tech-
nique known as amplification, which goes back to the work of Paris-Wilkie-Woods [37]. The
same kind of technique was discovered even earlier, in cryptography, to build pseudorandom
number generators from hardcore bits; see the work of Blum-Micali [7]. The details of this
argument can be found in Section 5 and Appendix A.

1.3.4 Application to Computational Complexity and Range Avoidance Problem

The proof-sketch we gave for Theorem 1.5 reveals a two-way connection between the com-
putational problem of finding hitting sets and the so-called Range Avoidance Problem,
or Avoid. The latter problem asks to find a point outside the range of a given func-
tion f : [N ] → [2N ]. In recent years, Avoid has been studied with competing names. It was
first studied by Kleinberg-Korten-Mitropolsky-Papadimitriou [24], calling it 1-Empty, and
later by Korten [25], renaming it Empty. Those works defined it as the canonical complete
problem for a complexity class of total search problems they called APEPP. Ren-Santhanam-
Wang [41] studied it too, calling it Avoid, in their range avoidance problem approach to circuit
lower bounds.

Our new coding-based proof of the existence of hitting sets shows that its associated
search problem is in APEPP. The proof of Theorem 1.5 yields its completeness in the class:

Theorem 1.6 (Completeness of Finding Hitting Sets; informal, see Theorem 1.6). The total
search problem that asks to find witnesses for the hitting set axioms of the scheme HS(PV)
is APEPP-complete under PNP-reductions.

Perhaps not too surprisingly, the proof of Theorem 1.6 is almost identical to the proof of
Theorem 1.5. Indeed, the necessity for the NP-oracle in the reductions comes (only) from
the use of the amplification technique in the proof, as in earlier uses of this method; cf. [25].

A handful of complete problems for APEPP were known before, and some required PNP-
reductions too (cf. [24, 25]). But, to our knowledge, none of these complete problems related
to the problem of constructing hitting sets for algebraic circuits. Here we used the new
constructive proof of the Schwartz-Zippel Lemma to find an example of this type.
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2 Preliminaries

2.1 Theories of Bounded Arithmetic

Here we define the formal theories we work with. Our main results are proved in the the-
ories S1

2
and its extension S1

2
+ dWPHP(PV). These are single-sort theories for arithmetic,

namely, number theory over N. The theory S1

2
is the first in Buss’ hierarchy of theories

of bounded arithmetic, and defines precisely the polynomial-time computable functions [8].
The theory S1

2
+dWPHP(PV) denotes its extension with the Dual Weak Pigeonhole Principle

(dWPHP) for polynomial-time functions (PV), which allows to reason about probabilities
and do approximate counting, based on the work of Jeřábek [21]. For a rigorous yet concise
survey on bounded arithmetic the reader is referred to Buss [9] (for a full treatment of the
area see [13, 26]; as well as a contemporary survey by Oliveira [33]). We refer the reader to
Tzameret and Cook [46] for treatment of algebraic circuits over the integers inside theories
of bounded arithmetic. Here we use a similar treatment of algebraic circuits, discussed in
the next section.

The language L. The language L contains the function symbols +,×, ⌊·/2⌋, | · |,#, 0, 1,
and the relation symbol ≤. A finite collection of axioms called BASIC gives these symbols
their intended meaning: 0 and 1 are constant symbols for the numbers 0 and 1, the symbols +
and × denote addition and multiplication of numbers, and the unary functions ⌊·/2⌋ and | · |
denote rounded halving and binary length, respectively. Precisely, if x is a natural number,
then ⌊x/2⌋ is the largest natural number bounded by x/2, and |x| is the length of x written
in binary notation, except for x = 0 where |x| is defined as 0 by convention. I.e., |x| =
⌈log2(x+ 1)⌉. We say that |x| is the length of x.

The only non-self-explanatory symbol is the “smash” binary function symbol # intro-
duced by Buss [8]. The intention of x#y is 2 raised to the power of the length of x times the
length of y, namely 2|x|·|y|. This function allows us to work with strings as follows: assume
we wish to talk about a binary string S of length n in the theory. Since the theory only talks
about numbers, we represent the string as the number x between 2n−1 and 2n − 1 whose
unique binary representation of length n is S. Note that the length n of S is precisely |x|. To
consider a polynomial growth rate in the length of S, we need to be able to express strings of
length nc, for a constant c. Strings of length at most nc are encoded, as before, by numbers
of magnitude less than

2n
c

= 2|x|
c

= 2
|x|·|x| · · · |x|
︸ ︷︷ ︸

c times = x#(x# · · ·#(x#x)) [c times]. (2)

We write n ∈ Log to mean that n serves as the length of some string, namely, n = |x| for
some x. Note that in bounded arithmetic theories where exponentiation may not be total,
the formula ∀n∃x |x|=n is not provable. We use ∀n∈Log ψ and ∃n∈Log ψ as shorthand
notations for the formulas ∀x∀n (|x|=n→ ψ) and ∃x∃n (|x|=n ∧ ψ).
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The Theory S1

2
(PV). We need to define several polynomial-time computable functions in

the theory and show that the theory proves some basic properties of these functions. We
work in the extension of the language L with the language PV which has a new symbol for
every polynomial-time computable function (to be precise, it has a new symbol for every
function defined by Cobham’s bounded recursion on notation [12]). The theory will be
Buss’s S1

2
extended with the axioms defining the added PV-symbols ([8]; see [9]). This

theory is sometimes denoted S1

2
(PV) but we will use the shorter notation S1

2
if this does not

lead to confusion as S1

2
(PV) is a conservative extension of S1

2
for statements in the L-language.

For the precise definition of S1

2
(PV) see Kraj́ıček [26, page 78].

Objects like strings, circuits, etc. in the theory are coded by numbers (cf. [8, 26]). In this
sense, we may refer to an object in the theory, meaning formally its code. The inputs and out-
puts of PV-functions are natural numbers. However, the polynomial-time algorithms/Turing
machines that compute the functions as PV-symbols get their inputs presented in binary
notation as binary strings. The statement that n is an argument that is presented to a PV-
function in unary notation means that it is expected that n ∈ Log (so 2n exists) and that the
argument is actually 2n, so in this case the binary representation 100 · · · 0 of 2n is given in
the input of the polynomial-time algorithm that computes the function. An alternative con-
vention would be to think of PV-functions as getting inputs of two sorts : numbers in unary
notation and numbers in binary notation. This is the approach taken in the two-sorted
theories of bounded arithmetic [13].

Definable sets and set-bounded quantification. Let Φ be a class of formulas in the
language L. A set of natural numbers S ⊆ N is called Φ-definable (with parameters) if there
exists a formula ϕ(x; y) in Φ, with all free variables indicated, such that for some c ∈ N we
have S = {a ∈ N : N |= ϕ(a; c)}. This is definability in the meta-theory, or in the standard
model. In a formal theory T such as S1

2
, a formula ϕ(x; y) defines a set in every model M of

the theory for every choice of the parameter c ∈M in the model:

[ϕ(x; c)]M := {a ∈M :M |= ϕ(a; c)}. (3)

When the model or the parameter are not specified, a definable set is simply given by the
formula ϕ(x; y) that defines it (parametrically in y), and we write [ϕ(x; y)].

For example, if we take ϕ(x; y) := 1≤x ∧ x≤y, then for every standard c ∈ N we have

[1≤x ∧ x≤c]N = [c] := {1, 2, . . . , c}.

When this is not confusing, we use the same notation [c] := {1, 2, . . . , c} in the theory
instead of the more accurate [1≤x∧ x≤c], even when c is a free variable. Also, we use x∈[c]
as short-hand notation for the formula 1≤x ∧ x≤c. More generally, if we declare that a
formula ϕ(x; c) defines a set which we denote Sc, then we are entitled to use the following
short-hand notations:

x∈Sc ≡ ϕ(x; c)
∃x∈Sc ψ ≡ ∃x (ϕ(x; c) ∧ ψ)
∀x∈Sc ψ ≡ ∀x (ϕ(x; c) → ψ).

(4)
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When Sc is a bounded set, i.e., there exists a term t(c) such that every x ∈ Sc satisfies x ≤ t(c)
provably in the theory, then the quantifiers in (4) can be bounded: ∃x≤t(c) (ϕ(x; c) ∧ ψ)
and ∀x≤t(c) (ϕ(x; c) → ψ).

Dual Weak Pigeonhole Principle. Let f be a PV-symbol. The axiom dWPHP(f) is the
universal closure of the following formula with free variables a, b, c:

dWPHPa
b (fc) := (b≥2a ∧ a≥1 → ∃y∈[b] ∀x∈[a] fc(x) 6= y), (5)

where fc(x) is notation for f(x, c), thinking of c as a parameter for f . We write dWPHP(PV)
for the axiom-scheme that contains all axioms dWPHP(f) for all PV-symbols f .

The presence of the parameter c in fc makes the statement of dWPHP(f) more expressive.
For example, the parameter may specify the sizes a and b of the intended domain and range of
a function fc : [a] → [b], say as c = 〈a, b〉, for an appropriate pairing function 〈·, ·〉. Another
example of the power of parameters is the following. The class of PV-functions admits a
natural universal-like function, that we call eval, which provably in S1

2
evaluates any PV

function f : the theory S1

2
proves ∀b ∀x<b eval(Cf (b), x)=f(x) for a certain natural PV-

function Cf . It follows from this that the infinite axiom scheme dWPHP(PV) is equivalent,
over S1

2
, to the single axiom dWPHP(eval).

2.2 Polynomials and Algebraic Circuits

Let G be a ring. Denote by G[x] the ring of (commutative) polynomials with coefficients
from G and variables (indeterminates) x := {x1, x2, . . . }. A polynomial is a formal linear
combination of monomials, whereas a monomial is a product of variables. Two polynomials
are identical if all their monomials have the same coefficients. The (total) degree of a
monomial is the sum of all the powers of variables in it. The (total) degree of a polynomial
is the maximum (total) degree of a monomial in it. The degree of an individual variable in
a monomial is its power, and in a polynomial it is its maximum degree in the monomials of
the polynomial. The maximum individual degree of a polynomial is the maximum degree of
its variables.

Algebraic circuits and formulas. Algebraic circuits and formulas over the ring G com-
pute polynomials in G[x] via addition and multiplication gates, starting from the input
variables and constants from the ring. In the rest of this paper the ring G will be fixed to
the integers Z.

An algebraic circuit (with parameters) is a directed acyclic graph (DAG) with its nodes
labelled. The sources of the DAG are labelled by the name of an input. The internal nodes
are labelled by gates of types + and ×. The inputs of the circuit are split into variables and
parameters; a parameter-free circuit is one without parameter inputs. The circuit may come
with an implicit integer parameter assignment, in which case the corresponding sources of
the DAG are labelled by the corresponding integer. We say that the constants are plugged
into the circuit. An algebraic formula is an algebraic circuit whose DAG is a tree.
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Size and syntactic degree. The representation size of a circuit is the number of bits
that are needed to represent the DAG, the operation of each internal node of the graph, and
the names of the variables and the parameters. If the circuit comes with implicit integer
parameter assignment, then the representation size also includes the number of bits in their
binary representations.

An algebraic circuit C can also be understood as a straight-line program, which is a
finite sequence C0, C1, . . . , Ct of labelled gates. Each gate Ci is of one of four types: (1) a
variable input gate, which is labelled by the name of a variable, or (2) a parameter input
gate, which is labelled by the name of a parameter and perhaps also with an integer constant
if the circuit comes with an implicit parameter assignment, or (3) an addition gate, which
is labelled by the symbol + and two integers j < i and k < i that specify the two operands
in the addition Cj + Ck that is computed at the gate, or (4) a multiplication gate, which is
labelled by the symbol × and two integers j < i and k < i that specify the two operands in
the multiplication Cj × Ck that is computed at the gate. The last gate Ct is the output of
the circuit.

The syntactic degree di of the gate Ci is defined inductively on i: if Ci is a variable gate
or a parameter gate, then di = 1; if Ci is an addition gate Cj + Ck, then di = max{dj, dk};
and if Ci is a multiplication gate Cj ×Ck, then di = dj +dk. The syntactic degree of C is the
syntactic degree of its output gate Ct. By induction on the number of gates in the circuit, it
is easy to see that the syntactic degree of a circuit with t gates is at most 2t. For formulas,
a better upper bound is t.

A refinement of the concept of syntactic degree is syntactic individual degree. Suppose
that C, with straight-line program C0, C1, . . . , Ct, has n variables andm parameters. Let u ∈
{1, . . . , n+m} be the name of a variable or a parameter. The syntactic individual degree of
gate Ci on u, denoted by di,u, is defined also inductively on i: If Ci is a variable or parameter
gate with label u, then di,u = 1; if Ci is a variable or a parameter gate with label v 6= u,
then di,u = 0; if Ci is an addition gate Cj + Ck, then di,u = max{dj,u, dk,u}; if Ci is a
multiplication gate Cj×Ck, then di,u = dj,u+dk,u. The syntactic individual degree of C on u
is dt,u. Clearly, the syntactic degree of C is bounded by the sum of the individual degrees,
and each individual degree is bounded by the syntactic degree. What we call syntactic degree
is sometimes called syntactic total degree.

3 Schwartz-Zippel Lemma in the Theory

3.1 Notation and formalisations

Here we discuss formalisation in the theory and fix some notation. For every natural num-
ber n ∈ N we write [n] = {1, . . . , n}. We fix some standard and efficient encoding for pairs,
tuples, and lists of natural numbers as natural numbers, with its usual properties provable
in the theory (cf. [8]). We discussed already in Section 2.1 how binary strings are encoded in
the theory. For n ∈ Log, we write {0, 1}n for the definable set of strings of length n, with n
as a parameter.
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Ring of integers in the theory. Integers are encoded in the theory in the sign-magnitude
representation as pairs (b,m) where b ∈ {0, 1} is the sign, and m is the magnitude. The
intention is that the pair (b,m) ∈ {0, 1} ×N encodes the integer (−1)b ·m. Note that 0 has
two codes. The bit-complexity of the integer is the length |m| of its magnitude. When fed
as argument into an algorithm operating with strings, the integer represented by (b,m) is
presented as the pair (b,m) itself, with m written in binary notation. The set of codes (b,m)
of integers in the theory is definable by the quantifier-free formula (b=0∨b=1), and is denoted
by Z. The addition, subtraction, and multiplication operations on Z are PV-functions. The
ordering relation≤ on Z is a PV-predicate. The basic properties of these symbols are provable
in the usual theories.

Algebraic circuits in the theory. Algebraic circuits and formulas over Z are formalised
in the theory as labelled graphs with the integer constants that may appear on its leaves
encoded in the sign-magnitude representation discussed above. We refer the reader to [46,
Section 3.1.1] for more details on encoding algebraic circuits over Z in the theory. We define
some PV-functions that operate with codes of algebraic circuits:

• size(C): the PV-function that computes the number of gates of the algebraic circuit C.
In any reasonable explicit encoding of graphs we have size(C) ≤ |C|.

• dimension(C): the PV-function that computes the number of variables, or indetermi-
nates, of the algebraic circuit C, called the dimension of C.

• parametric-dimension(C): the PV-function that computes the number of parameters
of the algebraic circuit C, called the parametric dimension of C.

• total-degree(C): the PV-function that computes the syntactic total degree of the al-
gebraic circuit C. Recall that this is bounded by 2size(C), hence by 2|C|, so its binary
representation fits in |C| bits. Recall also that our definition of syntactic degree counts
the parameter inputs as contributing to the degree. One consequence of this is that
if the circuit is fed with integers for its n variables, and integers for its m parame-
ters, all of bit-complexity at most s, then the output has bit-complexity polynomial
in d, s, n,m, where d is the total degree.

• individual-degree(C, i): the PV-function that computes the syntactic individual degree
of the i-th input in the algebraic circuit C, where 1 ≤ i ≤ n+m, and n and m are the
dimension and the parametric dimension of C. The maximum syntactic individual de-
gree of the circuit is denoted max-individual-degree(C). When C has a single variable,
we write degree(C) instead of max-individual-degree(C).

• eval-arithmetic(C, a, p, d): the PV-function for the standard polynomial-time algorithm
which, given an integer d in unary notation, given an algebraic circuit C of syntactic
maximum individual degree d, given vectors of integer inputs a = (a1, . . . , an) for the
variables, and p = (p1, . . . , pm) for the parameters, evaluates C on inputs a and p,
with the gates that are labelled by + and × interpreted as the addition and multi-
plication operations of the integers. This is defined inductively on the structure of C
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and the standard algorithm runs in time polynomial in the size of its input because
the syntactic degree d is given in unary notation. Here we use also the fact that the
definition of syntactic degree takes the parameter inputs into account. In other words,
this PV-function models the evaluation of algebraic circuits of polynomial-degree with
constants of polynomial bit-complexity. See [46, Sec. 11.1] how to define this func-
tion in PV (first balancing the algebraic circuit of polynomial syntactic-degree, and
then evaluating the balanced circuit; in PV however, the initial balancing step is not
necessary). If the parameter inputs p are plugged into C, then the notation C(a)
abbreviates eval-arithmetic(C, a, p, total-degree(C)).

We need also some notation for definable sets of circuits ; see Section 2.1 for a discussion
on definability in the theory. With the encodings discussed so far, all the sets below are
quantifier-free definable in the language L.

• Ckt: the set of (codes of) algebraic circuits. The subset of formulas is denoted Fms.

• Ckt(n, d): the set of (codes of) algebraic circuits with at most n indeterminates
and syntactic maximum individual degree at most d. The subset of formulas is de-
noted Fms(n, d).

• Ckt(n, d, s): the subset of Ckt(n, d) whose elements have representation size at most s.
The subset of formulas is denoted Fms(n, d, s).

• UniPoly(d): the set of (codes of) univariate polynomials with integer coefficients and
degree at most d, written (as formulas) in explicit sum of monomials form. In other
words, if x denotes the indeterminate, then UniPoly(d) denotes the set of polynomials
of the form P (x) = c0 + c1x + c2x

2 + · · · + cdx
d, where, for i = 0, . . . , d, the i-th

coefficient ci is an integer. Note that when we say degree at most d we do not require
that cd 6= 0; that would be degree exactly d.

• UniPoly(d, s): the subset of UniPoly(d) in which all coefficients are integers of bit
complexity at most s; i.e., each coefficient ci is an integer in the interval [−2s+1, 2s−1].
We write coef(P, i) for the PV-function that extracts the coefficient of the term of
degree i ∈ {0, . . . , d} of the univariate polynomial P ∈ UniPoly(d). This is trivially
computable in polynomial time because the polynomials in UniPoly(d) are given in
explicit sum of monomials form.

Finally, we need to define the concept of semantic equivalence over a definable set. If F
and G denote algebraic circuits with the same number n of indeterminates, and S is a (finite
or infinite) definable set of integers, with its membership predicate x ∈ S definable by a
formula (with or without parameters), then the notation F ≡S G stands for the (possibly
unbounded) formula

∀a∈Sn F (a)=G(a). (6)
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In words, this formula says that evaluations of F andG agree on every n-vector of integers a =
(a1, . . . , an) in S

n. If q is an integer (in the theory), then we use Sq to denote the definable
set {0, 1, . . . , q − 1} of integers between 0 and q − 1; i.e.,

Sq := {0, 1, . . . , q − 1} ⊆ Z (7)

We write F ≡q G instead of F ≡Sq
G, and the corresponding formula can be written with

bounded quantifiers: ∀a≤q (a∈Sn
q → F (a)=G(a)) or, more precisely, the bounded quantifier

is ∀a≤t(n, q), where t(n, q) is the PV-function that bounds the encodings of the elements
of Sn

q . In the other extreme case in which S is the set of all integers Z, we write F ≡ S, and
the corresponding formula has unbounded quantifiers ∀a∈Zn F (a)=G(a).

Definable classes of algebraic circuits. We introduce next the concept of a definable
class of algebraic circuits. The intention is to capture the usual practice in algebraic circuit
complexity of considering different subclasses of circuits with varying parameters (cf. [43]).
Examples include: formulas, syntactic multilinear circuits, uniform families, projections of
the determinant polynomial, arithmetizations of Boolean circuits, algebraic branching pro-
grams, etc. We have already seen two classes of definable classes: the class of circuits Ckt,
and the class of formulas Fms. The following definition generalizes these:

Definition 3.1 (In S1

2
). A definable class of algebraic circuits is a subset C ⊆ Ckt of

(codes of) algebraic circuits that comes with a PV-function g, the decoding function, that
is surjective onto C . The polynomial-time algorithm that computes g as a PV-function
must satisfy the following condition: given n, d, s in unary and given a string x ∈ {0, 1}m,
the function ge(n, d, s, x) outputs an algebraic circuit in Ckt(n, d, s), for all settings of the
parameter e.

For the rest of this section, let C be a definable class of algebraic circuits with decoding
function g. If C is an algebraic circuit in C and ge(n, d, s, x) = C, then we say that x is
a description of C as a member of C . The description size of C as a member of C is the
length as a string of its smallest description as a member of C .

We write Ce(n, d, s,m) for the slice of algebraic circuits in C of the form ge(n, d, s, x)
with x ∈ {0, 1}m; in symbols:

Ce(n, d, s,m) := {ge(n, d, s, x) : x ∈ {0, 1}m}.

Note that Ce(n, d, s,m) is always a subset of Ckt(n, d, s), but its cardinality is at most 2m,
which may be much smaller than the cardinality of Ckt(n, d, s). When 2m ≪ 2s, we say
that the class is sparse. An extreme case of this occurs when C is a class of algebraic cir-
cuits determined by their dimension, say (Cn)n≥1 with Cn ∈ Ckt(n, d(n), s(n)), where each
C (n, d, s) has at most one member Cn. A typical example is the class of determinant polyno-
mials (detn)n≥1, where detn denotes the polynomial with n2 indeterminates that computes
the determinant of the n × n matrix given by its n2 inputs. A related but less extreme ex-
ample of a sparse definable class is the class of determinants of Tutte matrices of graphs. In
this example, the representation size of a member in this class is determined by the number
of edges of the underlying graph.
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3.2 Fundamental Theorem of Algebra: the Univariate Case

The Fundamental Theorem of Algebra (FTA) states a fundamental property of univariate
polynomials over the field of complex numbers.

Theorem 3.2 (Fundamental Theorem of Algebra). Every non-zero univariate polynomial
of degree d with coefficients in the field of complex numbers has exactly d roots in the complex
numbers.

The theorem naturally splits into two halves: the half that states that there are at least d
roots, and the half that states that there are at most d roots. While the at least statement
relies on special properties of the complex numbers, the proof of the at most statement relies
only on the fact that the class of univariate polynomials with coefficients in a field forms a
Euclidean domain where the Euclidean division algorithm applies. In particular, this means
that the at most statement holds also for polynomials over any subring of a field; for example,
polynomials over the ring of integers.

In this section we show that the theory S1

2
is able to formalise the standard proof of the

second half of the FTA for the class of univariate polynomials over the ring of integers. This
will be used as a building block in the next section. While the underlying idea of this proof
is completely standard, it is somewhat delicate to carry out the argument in S1

2
because we

need to keep control of the bit-complexity of the coefficients that appear along the way in
the computations.

Let d and q be small non-negative integers. Let P be an element of UniPoly(d), that
is, P is (the code of) a univariate polynomial with integer coefficients c0, c1, . . . , cd of arbitrary
bit-complexity, and degree at most d. If we write x for the indeterminate, then

P (x) = c0 + c1x + · · ·+ cdx
d. (8)

Define
Sq := {0, . . . , q − 1} ⊆ Z,
ZP,q := {u ∈ Sq : P (u) = 0}.

Note that ZP,q is the set of roots of P (x) in the set Sq. The goal is to show that if P is not
the zero polynomial, then ZP,q has cardinality at most d. For later reference, we state this
upper bound in the form of the existence of a surjection from the set [d] onto the set ZP,q.

Remark 3.3. With P given as in (8), where the number of roots is polynomial in the rep-
resentation size of P , we could also choose to state the upper bound by listing the roots.
Indeed, provided d is polynomial in the representation size, this holds true even if P is given
by a univariate algebraic circuit, as we will later see. However, in the multivariate case with
n > 1 variables, the number of roots in Sn

q may be exponential in the representation size of
P , even if d is small, so there we need to resort to the surjective mapping formulation of the
upper bound. For this reason and to be able to reuse it, we state the upper bound for the
univariate case with a surjective mapping too.

We define a PV-function
hP,q : [d] → Sq ∪ {q}
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by the polynomial-time algorithm that computes it. The input to the algorithm for hP,q(i)
is the triple (P, q, i) with P as above, q given in unary notation, and i ∈ [d]. In the
algorithm, let u loop over the set Sq and evaluate P (x) at x = u, keeping a counter of
the number of distinct roots found along the way. If P (x) has at least i distinct roots in Sq,
then hP,q(i) is defined to be the i-th smallest root of P (x) in Sq. Otherwise, hP,q(i) is set to
the value q seen as an end-of-list marker. In other words, the sequence (hP,q(1), . . . , hP,q(d))
equals (r1, . . . , rt, q, . . . , q) where r1 < · · · < rt is the ordered list of the first d roots of P (x)
in Sq. The next lemma states that S1

2
proves that if P (x) does not vanish everywhere on Sq,

then this enumeration indeed covers all the roots of P (x) in Sq.

Lemma 3.4 (Second Half of Fundamental Theorem of Algebra in S1

2
). For all d, q ∈ Log

and every degree-d polynomial P ∈ UniPoly(d), if not all coefficients of P are zero, then the
sequence hP,q(1), hP,q(2), . . . , hP,q(d) contains all the roots of P in Sq; i.e., the function hP,q
is surjective onto ZP,q.

Proof. Fix d, q ∈ Log and let P be an element of UniPoly(d). Let s be the bit-complexity
of the coefficients of P , so s is a length and P ∈ UniPoly(d, s). The plan for the proof is
to define a sequence s0, s1, . . . , sd of lengths with sd = s, and then prove φ(z) by Πb

1-PIND,
where φ(z) is the following Πb

1-formula:

φ(z) := ∀k≤z (k=|z|≤d→ ∀A∈UniPoly(k, sk)
(∃i≤k coef(A, i) 6=0) → (∀u∈ZA,q ∃i≤k hA,q(i)=u)).

Observe that the conclusion of the lemma is the specialization of φ(2d−1) to k := d and A :=
P . The formula φ(z) uses d, q and the (code of the) sequence s0, . . . , sd as parameters. Note
also that φ(z) is indeed a Πb

1-formula because d, q ∈ Log and, therefore, all quantifiers except
the first two are sharply bounded: for ∃i≤k, note the condition k=|z|; for ∀v∈ZA,q recall
that ZA,q ⊆ Sq, and Sq is the set of codes of integers {0, 1, . . . , q − 1} ⊆ Z, and these are
bounded by 2|q|+1 ≤ 4q (using sign-magnitude representation).

We still need to define sk for k = 0, . . . , d. We define sk by the following inverse recurrence
relation for k = d, d− 1, . . . , 2, 1:

sd := s,
sk−1 := sk + k|q|+ |k|.

(9)

Since Log is provably closed under addition and multiplication and d is a length, by Πb
1-PIND

each sk is a length. Also by Πb
1-PIND, each sk is bounded by s+d2|q|+d2. Since in the rest of

the proof the parameter q will be fixed, we write ZA and S instead of the more accurate ZA,q

and Sq. Similarly, we write hA instead of hA,q.

To prove φ(2d−1) we proceed by Πb
1-PIND. Concretely, we prove ∀k<d(φ

′(k) → φ′(k+1))
and φ′(0), where φ′(k), with k a length, is shorthand notation for φ(2k − 1),

Base case: φ′(0). In this case we have A(x) = a0 for a single integer a0 and, therefore,
either a0 = 0, or else ZA = ∅ because a0 6= 0 and hence hA is vacuously surjective onto ZA.
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Inductive step: ∀k<d (φ′(k) → φ′(k+1)). For convenience of notation, we shift the induction
parameter k by one unit, which is clearly equivalent: assuming 1 ≤ k ≤ d and φ′(k − 1),
we prove φ′(k). Fix A in UniPoly(k, sk), say A(x) = a0 + a1x + · · · + akx

k. Assume also
that not all coefficients a0, a1, . . . , ak are zero. When ZA = ∅ there is nothing to prove
as then hA is vacuously surjective onto ZA. Assume then that ZA 6= ∅ and let then v ∈
S be such that A(v) = 0. We define the coefficients b0, b1, . . . , bk−1 of a degree-(k − 1)
polynomial B(x) = b0 + b1x + · · ·+ bk−1x

k−1 and show that

A(x) ≡ (x− v)B(x). (10)

This will imply that ZA = ZB ∪ {v}, so the list of roots of A will be easily obtained from
the list of roots of B.

The coefficients b0, . . . , bk−1 of B(x) are defined by the inverse recurrence relation:

bk := 0,
bk−i := ak−i+1 + bk−i+1v,

(11)

for i = 1, . . . , k.

Claim 3.5. The polynomial B(x) belongs to UniPoly(k − 1, sk−1).

Proof of Claim 3.5. Clearly, there exists a PV-function that, given the appropriate inputs,
computes the sum of the sequence ak−i+jv

j−1 for j = 1, . . . , i. Using this, by quantifier free
induction on i = 0, . . . , k we have

bk−i = ak−i+1 + ak−i+2v + ak−i+3v
2 + · · ·+ akv

i−1. (12)

For all j = 1, . . . , i, the j-th term in (12) has bit-complexity bounded by sk + k|q|: in-
deed ak−i+j has bit-complexity at most sk, and v

j−1 < qk. Thus, each bk−i has bit complexity
at most sk + k|q| + |k|, which equals sk−1 by (9). Thus, the polynomial B(x) given by the
coefficients b0, b1, . . . , bk−1 is indeed an element of UniPoly(k − 1, sk−1).

Claim 3.6. Not all coefficients of the polynomial B(x) are 0.

Proof of Claim 3.6. By assumption, not all the coefficients a0, a1, . . . , ak of A(x) are zero.
Therefore, by quantifier-free maximization, there is a largest j ≤ k such that aj 6= 0, so
all coefficients aj+1, aj+2, . . . , ak are 0. By (11) and quantifier-free reverse induction, this
means that all coefficients bk, bk−1, . . . , bj are also 0. Now we argue that j ≥ 1. Indeed,
if j = 0, then all bs are 0 so by (12) with i = k we get A(v) = a0 + b0v = a0. But v was
such that A(v) = 0, and a0 is non-zero since j = 0; a contradiction. Thus j ≥ 1. But
then bj−1 = aj + bjv = aj 6= 0, since bj = 0.

Claim 3.7. A(x) ≡ (x− v)B(x).
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Proof of Claim 3.7. Fix u ∈ Z. Our goal is to show that A(u) = (u − v)B(u). To see this
first set the following notation:

A0(x) := ak−1x
k−1 + akx

k,
Ai(x) := ak−1−ix

k−1−i + Ai−1(x),
(13)

for i = 1, . . . , k − 1, and also

B0(x) := bk−1x
k−1,

Bi(x) := bk−1−ix
k−1−i + Bi−1(x),

(14)

for i = 1, . . . , k− 1. Note that Ak−1(x) is just an alternative notation for A(x), and Bk−1(x)
is an alternative notation for B(x). With these, we show, by quantifier-free induction on i =
0, . . . , k − 1 with u, v, k and (the codes of) A(x) and B(x) as parameters, that

Ai(u) = (u− v)Bi(u) + (ak−1−i + bk−1−iv)u
k−1−i. (15)

The base case i = 0 of this equation checks out as

A0(u) = ak−1u
k−1 + aku

k (16)

= (u− v)bk−1u
k−1 + (ak−1 + bk−1v)u

k−1, (17)

= (u− v)B0(u) + (ak−1 + bk−1v)u
k−1 (18)

where the first equality follows from the choice of A0(x) in (13), the second equality follows
from the choice of bk−1 in (11), and the third equality follows from the choice of B0(x) in (14).
Similarly, assuming (15) for 0 ≤ i ≤ k−2 as induction hypothesis, the same equation for i+1
checks out as

Ai+1(u) = ak−2−iu
k−2−i + Ai(u) (19)

= ak−2−iu
k−2−i + (u− v)Bi(u) + (ak−1−i + bk−1−iv)u

k−1−i (20)

= (u− v)(bk−2−iu
k−2−i + Bi(u)) + (ak−2−i + bk−2−iv)u

k−2−i, (21)

= (u− v)Bi+1(u) + (ak−2−i + bk−2−iv)u
k−2−i, (22)

where the first equality follows from the choice of Ai+1(x) in (13), the second equality follows
from the induction hypothesis, the third equality follows from the choice of bk−2−i in (11),
and the fourth equality follows from the choice of Bi+1(x) in (14). This gives

A(u) = Ak−1(u) (23)

= (u− v)Bk−1(u) + (a0 + b0v) (24)

= (u− v)B(u) + A(v) (25)

= (u− v)B(u) (26)

where the first equality follows from the choice of Ak−1(x), the second follows from (15)
with i = k − 1, the third follows from the choices of Bk−1(x) and b0, and the fourth follows
from the fact that v is a root of A(x). Since u was an arbitrary value in Z, this proves the
claim.
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We are ready to complete the proof of the lemma. We argued via Claim 3.5 that B
is an element of UniPoly(k − 1, sk−1), and via Claim 3.6 that not all coefficients of B are
zero. Therefore, the induction hypothesis φ′(k− 1) applied to B gives that the function hB :
[k−1] → S∪{q} is surjective onto ZB. Think of the function hB as a list (r1, . . . , rt, q, . . . , q)
of t ≤ k − 1 roots r1 < · · · < rt of B in S, followed by a string of end-of-list markers q. We
argued via Claim 3.7 that ZA = ZB ∪ {v}; recall for this that v was from S. Therefore, the
list hA of roots in S for A is obtained from hB by inserting v in the right place of the list of
at most k− 1 roots of B, or ignoring it if it is already there, in such a way that the resulting
list is the sorted list of distinct roots of A in S followed by end-of-list markers. It follows
that hA is surjective onto ZA, as was to be shown.

3.3 Coefficients of Univariate Polynomials

Next we show that the coefficients of the univariate polynomial computed by an algebraic
circuit with a single indeterminate and with integer coefficients can be computed in time
polynomial in the representation-size of the circuit, provably in S1

2
.

Consider the PV-function polynomial(C, d) given by the following polynomial-time al-
gorithm: The input is a positive integer d written in unary notation, and an algebraic
circuit C with a single indeterminate x and syntactic degree bounded by d. The circuit
can be thought of as given by a straight-line program of gates C0, C1, . . . , Ct, identified with
their labels. For all gate numbers u = 0, 1, . . . , t in this order, the algorithm constructs the
coefficients au,0, . . . , au,d of a degree-d polynomial Pu ∈ UniPoly(d), inductively according to
the following rules:

1. if Cu = c ∈ Z, then au,0 := c and au,k := 0 for k = 1, 2, . . . , d,

2. if Cu = x, then au,0 := 0 and au,1 := 1, and au,k := 0 for k = 2, 3, . . . , d,

3. if Cu = Cv + Cw with v < u and w < v, then au,k := av,k + aw,k for k = 0, 1, . . . , d,

4. if Cu = Cv ×Cw with v < u and w < u, then au,k :=
∑k

t=0 av,taw,k−t for k = 0, 1, . . . , d.

On termination, the algorithm outputs the code of the polynomial Pt.
We verify that the algorithm runs in polynomial time. Let s be the bit-complexity of

the constants plugged into the circuit C. By the definition of the representation-size of
algebraic circuits, s is bounded by the representation-size of C. The bit-complexity su of
the coefficients au,0, . . . , au,d, and the syntactic degree du of the circuit rooted at u, obey the
following recurrences:

1. su ≤ s and du = 1 if Cu = c ∈ Z,

2. su ≤ 2 and du = 1 if Cu = x,

3. su ≤ 1 + max{sv, sw} and du ≤ max{dv, dw} if Cu = Cv + Cw,

4. su ≤ |d+ 1|+ (sv + sw) and du ≤ dv + dw if Cu = Cv × Cw.
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Therefore, by induction on u = 0, 1, . . . , t, we get su ≤ (s+ |d+ 1|)(2du − 1). Since du ≤ d,
the conclusion is that each su is bounded by a polynomial poly(d, s), so the algorithm runs
in time polynomial in the size of its input.

Lemma 3.8 (Univariate Coefficient-Extraction Lemma in S1

2
). For every d ∈ Log, every

algebraic circuit C with a single indeterminate input, syntactic degree at most d, and integer
constants, we have P ≡ C, for P = polynomial(C, d).

Proof. Let C0, C1, . . . , Ct be the straight-line program of C and let p be the integer constants
plugged into C. Let P0, P1, . . . , Pt be the degree-d polynomials constructed by the algorithm
that defines polynomial(C, d). For every z ∈ Z, fixed as parameter of induction together
with p, d and the sequences C0, C1, . . . , Ct and P0, P1, . . . , Pt, prove Pu(z) = Cu(z), i.e.,

eval-arithmetic(Pu, z, p, d) = eval-arithmetic(Cu, z, p, d), (27)

by quantifier-free induction on u = 0, 1, . . . , t. For this, use the rules 1–4 that define the
algorithm of the PV-function polynomial(C, d). Note that this works for any value z ∈ Z,
regardless of its bit-complexity. Thus, applying (27) to t = u we get P (z) = Pt(z) = Ct(z) =
C(z). Since z was arbitrary in Z, this shows P ≡ C and the lemma is proved.

3.4 The Coding Argument and its Formalisation

We show that the theory S1

2
proves the Schwartz-Zippel Lemma for multivariate polynomials

of polynomial degree. As in the univariate case, in the n-dimensional case we consider the
roots with all its entries in Sq for given q, where Sq = {0, 1, . . . , q − 1}. For any non-zero
polynomial P (x) with n variables and individual degree at most d, any given non-root a
of P (x), and any given positive integer q, we build a function that has domain-size n ·d · qn−1

and covers, in its range, all the roots of P (x) within Sn
q . Note that in this case the covering

function must be given access to one non-root a of P (x) that certifies it as non-zero. In other
words, the statement that the theory S1

2
will formalise is the following:

if P (x) has n variables, individual degree d, and at least one non-root a in Z
n,

then P (x) has at least qn · (1− nd/q) non-roots in Sn
q .

To formulate and prove this statement with the required precision, we need to introduce
some notation.

Let n, d, q be small positive integers. Let P be an element of Ckt(n, d), that is, P is (the
code of) an algebraic circuit with n inputs and syntactic individual degree at most d. As in
the univariate case, define

Sq := {0, . . . , q − 1} ⊆ Z,
ZP,q := {(u1, . . . , un) ∈ Sn

q : P (u1, . . . , un) = 0},
Cn,d,q := [n]× [d]× Sn−1

q .
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Note that ZP,q is the set of roots, or zeros, of P in the set Sn
q . We will use Cn,d,q as the

set of codes of roots of P in the set Sn
q . Observe that if q > nd, then |CP,d,q| < |ZP,q| and

compression is achieved.
For the fixed n, d, q, P and any fixed additional vector a = (a1, . . . , an) of integers (not

necessarily in Sn
q ) we define a pair of PV-functions

encP,a : S
n
q → Cn,d,q,

decP,a : Cn,d,q → Sn
q .

These functions are defined by the polynomial-time algorithms that compute them.

Encoding. The input to encP,a(b) is a 5-tuple (P, d, q, a; b) with P, d, q, a as above, with d
and q presented in unary notation, and b = (b1, . . . , bn) a vector Sn

q . The goal is to encode

the vector b as an element in Cn,d,q. The algorithm first evaluates P at a and b to check
if P (a) 6= 0 and P (b) = 0. If this fails, then either the given a is not suitable for the encoding
scheme, or the given b is not even a root, which we do not need to encode. In such a case
the algorithm returns the default value (1, 1, 0) from [n] × [d] × Sn−1

q , where 0 = (0, . . . , 0)

is the all-zero vector in Sn−1
q . If indeed P (a) 6= 0 and P (b) = 0, then the algorithm loops

through k = 1, 2, . . . , n in this order until it finds the first position where

P (a1, . . . , an) 6= 0
P (b1, a2, . . . , an) 6= 0
P (b1, b2, a3, . . . , an) 6= 0

...
. . .

...
...

P (b1, b2, b3, . . . , bk−1, ak , ak+1, . . . , an) 6= 0
P (b1, b2, b3, . . . , bk−1, bk , ak+1, . . . , an) = 0.

(28)

A first such k ∈ [n] must exist since P (a) 6= 0 and P (b) = 0. Next, consider the univariate
algebraic circuit

Q(x) := P (b1, . . . , bk−1, x, ak+1, . . . , an) (29)

By definition Q(bk) = 0 so bk is a root of Q(x). Then the algorithm loops through r ∈ Sq to
form the ordered list of roots of Q(x) in Sq and finds the position i ∈ [q] of bk in this ordered
list. If this index exceeds d (spoiler: this will never happen but the algorithm need not know
this), then something went wrong and the algorithm outputs the default value (1, 1, 0) as
before. Otherwise, it outputs (k, i, b1, . . . , bk−1, bk+1, . . . , bn), which is in [n]× [d]× Sn−1

q .

Decoding. The input to decP,a(k, i, c) is the 7-tuple (P, d, q, a; k, i, c), with P, d, q, a as
above, with d and q presented in unary notation, k ∈ [n] and i ∈ [d], and c = (c1, . . . , cn−1)
a vector in Sn−1

q . The algorithm first evaluates P on the vector a to check that P (a) 6= 0. If
this check fails, then the given a is not suitable for the encoding scheme. In such a case the
algorithm outputs the default value 0 from Sn

q , where 0 = (0, . . . , 0) is the all-zero vector of
length n. If indeed P (a) 6= 0, consider the following univariate algebraic circuit:

G(x) := P (c1, . . . , ck−1, x , ak+1, . . . , an). (30)
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The algorithm loops through r in Sq to check if there are at least i different r ∈ Sq such
that P (r) = 0. If it finds less than i roots in Sq, then something went wrong and again the
algorithm outputs 0 = (0, . . . , 0) in Sn

q as a default value. Otherwise, it sets r to the i-th
smallest root of G(x) in S and outputs (c1, . . . , ck−1, r, ck, . . . , cn−1) in S

n
q .

Correctness of the encoding scheme. We are ready to prove that the encoding scheme
for roots of P given by the pair of functions encP,a and decP,a is correct. This correctness
hinges on the condition P (a) 6= 0 but does not require any upper bound on the components of
the vector a. Note also that the functions encP,a and decP,a are polynomial-time computable
because they are given P, d, q, a in the input, with d and q in unary notation. Finally, it
is also worth pointing out that the correctness of the encoding scheme will not require any
lower bound on q. However, as noted earlier, the encoding achieves some compression only
if nd < q.

In the statement of the next lemma, which states the correctness, recall that we use the
notation P ≡ 0 to the denote the (unbounded) formula ∀a∈Zn P (a)=0, where Z denotes
the set of encodings of all integers.

Theorem 3.9 (Proof of Schwartz-Zippel Lemma in S1

2
). For all n, d, q ∈ Log and all P ∈

Ckt(n, d), either P ≡ 0 or for every a = (a1, . . . , an) ∈ Z
n such that P (a) 6= 0 the func-

tion decP,a is surjective onto ZP,q and inverts encP,a on ZP,q: for every b ∈ ZP,q we have
decP,a(encP,a(b)) = b.

Proof. Since for this proof the parameters n, d, q, P, a will be fixed, we drop them from
the notation and write S and Z instead of Sq and ZP,q, and dec and enc instead of decP,a
and encP,a. Given a root b = (b1, . . . , bn) ∈ Z, our goal is to find a triple (k, i, c) ∈ [n]× [d]×
Sn−1 such that dec(k, i, c) = b; indeed we will show that the choice (k, i, c) = enc(b) works,
and this proves also the second part of the lemma that dec(enc(b)) = b.

Fix (k, i, c) = enc(b). To see that dec(k, i, c) = b, recall that in the definition of enc(b)
the index k is defined as the smallest index in the sequence 1, . . . , n such (28) holds. In
particular, the univariate circuit Q(x) from (29) does not vanish everywhere as it is non-
zero on ak. Further, Q(x) has syntactic degree at most d since it is a restriction of P
with plugged constants from a. Using the PV-function of Lemma 3.8, we can extract the
coefficients of a polynomial H = polynomial(Q, d) in UniPoly(d) such that H ≡ Q; i.e., the
equality H(u) = Q(u) holds for all integers u ∈ Z. In particular H(ak) = Q(ak) 6= 0 and,
by Lemma 3.4, the function hH,q in surjective onto the set of roots of H(x) in S. Also bk is
one of these roots by (28) and the just mentioned fact that H ≡ Q.

Now recall that in the definition of the function enc(b), the components i and c in its
output are defined to satisfy the following conditions:

C1. element bk ∈ S is the i-th smallest root of Q(x) in S unless i > d,
C2. vector c = (c1, . . . , cn−1) is set to (b1, . . . , bk−1, bk+1, . . . , bn).

The i-th smallest root of Q(x) in S is, by virtue of H ≡ Q, also the i-th smallest root
of H(x) in S. Thus, by Lemma 3.4 and the fact that H(bk) = Q(bk) = 0, this is the
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preimage of bk under hH,q, which is at most d since the domain of hH,q is [d]. This means
that, in C1, the index i is indeed such that bk is the i-th smallest root of Q(x) in S. We
show that dec(k, i, c) = b.

Let r be the i-th smallest root in S of the univariate polynomial G(x) from (30), which
exists because by C2 we have G ≡ Q, even syntactically as circuits in this case. By the
discussion in the previous paragraph bk is the i-th smallest root ofQ(x) in S. By the definition
of the function dec(k, i, c) we have dec(k, i, c) = (c1, . . . , ck−1, r, ck, . . . , cn−1), which by C1
and C2 equals (b1, . . . , bk−1, bk, bk+1, . . . , bn), also known as b. This completes the proof.

4 Hitting Sets and Identity Testing in the Theory

4.1 Hitting Sets

So far we argued that the theory S1

2
proves that every n-variable algebraic circuit with integer

coefficients and small degree has relatively few roots in Sn
q , unless the polynomial vanishes

everywhere. By a standard counting argument, it follows that for any given bounds d
and m on the degree and the description size of algebraic circuits with n variables, there
is a set (c1, . . . , cr) of r = poly(n, d,m) points in Sn

q , with q = poly(n, d), that intersects
the set of non-roots of every non-vanishing algebraic circuit with those bounds. We say
that (c1, . . . , cr) is a hitting set over Sq. Formally:

Definition 4.1 (In S1

2
). Let C be a definable class of algebraic circuits (Definition 3.1).

Let e be a parameter, let n, d, s, q, r,m ∈ Log be positive lengths and let H = (h1, . . . , hr) ∈
(Sn

q )
r be an r-sequence of n-vectors with entries in Sq. We say that H is a hitting set

for Ce(n, d, s,m) over Sq if and only if for every P ∈ C (n, d, s,m), if there exists a ∈ Z
n

such that P (a) 6= 0, then there exists i ∈ [r] such that P (hi) 6= 0.

If H as above is not a hitting set, then a witness that H is not a hitting set is a pair

(P, a) ∈ Ce(n, d, s,m)× Z
n (31)

such that P (a) 6= 0 and P (hj) = 0 for every j ∈ [r]. The size of the hitting set H is the
number of distinct tuples among the hi, which is always at most r. In what follows we use
the results of the previous sections to show that the counting argument that proves that
polynomial-size hitting sets exist can be formalised in the theory S1

2
+ dWPHP(PV).

Small witnesses. We start by showing that, if q is sufficiently big, but polynomial in n
and d, then the witnesses of failure as in (31) can always be chosen with a in Sn

q . This is
interesting in its own right:

Lemma 4.2 (Small Witnesses Exist in S1

2
+ dWPHP(PV)). For all n, d, q ∈ Log and every

algebraic circuit P ∈ Ckt(n, d), if P 6≡ 0 and q ≥ 2dn, then there exists a ∈ Sn
q such

that P (a) 6= 0.
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Proof. Assume P 6≡ 0, so there exists a ∈ Z
n such that P (a) 6= 0. We find an a0 ∈ Sn

q also
with P (a0) 6= 0. By Theorem 3.9, the function decP,a : Cn,d,q → Sn

q is surjective onto ZP,q.
Let b = qn and note that the parameters q, n allow us to code each point a0 ∈ Sn

q as an n-
tuple of elements in {0, . . . , q − 1}. Thus, the co-domain Sn

q of decP,a can be identified with
the set [qn]. Similarly, the parameters n, d, q allow us to identify the domain Cn,d,q with
the set [dnqn−1]. Thus, the function decP,a can be thought of as the parameterization of
a PV-function f such that:

fP,a,n,d,q : [a] → [b] where
a := dnqn−1,
b := qn .

(32)

Now note that the assumption q ≥ 2dn implies b ≥ 2a ≥ 2. Since each element of [b] codes an
element of Sn

q , and each element of Cn,d,q is coded by an element of [a], by dWPHPa
b (fP,a,n,d,q),

there exists a0 ∈ Sn
q that is outside the range ZP,q of decP,a. Since ZP,q is the set of all roots

of P in Sn
q , we get that a0 is a non-root of P that belongs to Sn

q , as needed.

As stated earlier, one consequence of Lemma 4.2 is that whenever H ⊆ Sn
q fails to be a

hitting set in the sense of Definition 4.1, if q ≥ 2dn then not only is there a witness of this
failure as in (31), but there is even a witness of the following form:

(P, a) ∈ C (n, d, s,m)× Sn
q (33)

Next we show how to use this to get hitting sets with one more application of dWPHP.

Hitting sets exist. Let C be a definable class of algebraic circuits, let e be a parameter,
and let n, s, d, q, r,m be positive integers with q > d and s ≥ n. Consider the function

gC ,e,n,d,s,q,r,m : Ce(n, d, s,m)× Sn
q × ([n]× [d]× Sn−1

q )r → (Sn
q )

r (34)

defined by
(P, a, c1, . . . , cr) 7→ (decP,a(c1), . . . , decP,a(cr)), (35)

where c1, . . . , cr ∈ [n] × [d] × Sn−1
q are candidate codes for roots of P in Sn

q . Recall that

if P (a) = 0, then the definition of decP,a(c) is such that its output is 0, so that g(P, a) =
(0, . . . , 0) in this case. Here, the all-zero tuple (0, . . . , 0) is used as a don’t care value indicating
that a is not serving the purpose of certifying that P does not vanish everywhere.

Lemma 4.3 (In S1

2
+ dWPHP(PV)). For every definable class C of algebraic circuits, every

parameter e for its decoding function, all n, d, s, q, r,m ∈ Log, and every H ∈ (Sn
q )

r, if q ≥
2dn and H 6∈ Img(g), where g = gC ,e,n,d,s,q,r,m, then H is a hitting set for Ce(n, d, s,m)
over Sq.

Proof. We prove the contrapositive statement. Assume that H = (d1, . . . , dr) is not a hitting
set and let (P, a) witness it as in (31): a ∈ Z

n \ ZP,q and dj ∈ ZP,q for every j ∈ [r].
Since q ≥ 2dn, by Lemma 4.2 we may assume that a is in Sn

q ; i.e., the witness (P, a) is as

in (33): a ∈ Sn
q \ZP,q and dj ∈ ZP,q for every j ∈ [r]. By Lemma 3.9, there exists (c1, . . . , cr) ∈

([n] × [d] × Sn−1
q )r such that decP,a(cj) = dj for every j ∈ [r]. Hence, g(P, a, c1, . . . , cr) =

(d1, . . . , dr) by the definition of g in (35). This shows that H is in the range of g.
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We intend to apply dWPHP(g) for the function g in (34). To do so we need to view g
as a function from [a] to [b] for appropriate a and b such that b ≥ 2a ≥ 2. In other words,
we need to specify the numeric encodings for the elements in the domain and the co-domain
of g. For the co-domain, the parameters n, q, r allow us to code each element H ∈ (Sn

q )
r

as an nr-tuple of elements in {0, . . . , q − 1}, so the co-domain can be identified with the
set [qnr]. Recall that the parameters n, r are lengths, i.e., elements of Log, so qnr exists. For
the domain, the parameters e, n, d, s, q, r,m allow us to code each element (P, a, c1, . . . , cr) ∈
Ce(n, d, s,m)×Sn

q × ([n]× [d]×Sn−1
q )r as a number in [2mnrdrq(n−1)r+n]. Again this quantity

exists because the parameters n, r,m are lengths; i.e., elements of Log. Summarizing, the
specification (34) becomes

gC ,e,n,d,s,q,r,m : [a] → [b] where
a := 2mnrdrq(n−1)r+n.
b := qnr.

(36)

The fact that every element in [b] denotes an element of the co-domain will be used in the
proof of the next theorem.

Theorem 4.4 (Small Hitting Sets Exist in S1

2
+ dWPHP(PV)). For every definable class C

of algebraic circuits, every parameter e for its decoding function, and all n, d, s, q, r,m ∈ Log
such that q ≥ 2dn and r > m + n|q|, there exists H ∈ (Sn

q )
r such that H is a hitting set

for Ce(n, d, s,m) over Sq.

Proof. To show the existence of H = (d1, . . . , dr) as claimed in the lemma we apply the dual
weak pigeonhole principle dWPHP(g) on the PV-function g in (34), with the parameters
indicated there. By the discussion preceding the lemma we have g : [a] → [b] where a and b
are as in (36). Comparing a to b, we see that the assumptions q ≥ 2nd and r > m + n|q|
yield b ≥ 2a. Indeed, m,n, |q| are integers, so r ≥ m + 1 + n|q|. Therefore, using q ≥ 2nd,
we get (q/(nd))r ≥ 2m+1+n|q| ≥ 2m+1qn. Multiplying both sides by qnr and rearranging we
get b ≥ 2a. Recalling that each element of [b] codes an element of (Sn

q )
r, by dWPHPa

b (g)
there exists H ∈ (Sn

q )
r that is outside the range of g. By Lemma 4.3, this H is a hitting set

for Ce(n, d, s,m) over Sq, as needed.

4.2 PIT in co-RP and in P/poly

Let PIT stand for Polynomial Identity Testing, which is the following computational prob-
lem:

PIT: Given positive integers n, d, s written in unary notation and given an alge-
braic circuit C of representation size s, with n variables, integer constants, and
syntactic individual degree d, does it compute the identically zero polynomial?

The requirement to have d written in unary notation in the input is a way to enforce that the
polynomial computed by the circuit has polynomial degree; the size of the input is inflated at
the same rate as the degree. Similarly, since our definition of degree includes the parametric
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inputs, the size of the input is inflated at the same rate as the bit-complexity of the constants
it computes.

In the statement of the problem, the phrase “identically zero polynomial” can be inter-
preted in two ways: syntactically and semantically. In the syntactic interpretation, it is the
polynomial which has zero coefficient on each monomial when written explicitly in its unique
representation as a finite linear combination of monomials. In the semantic interpretation,
it is the polynomial that evaluates to zero on all points in Z

n. It is well known that both
interpretations yield the same computational problem, but note that weak theories such as
S1

2
or even S1

2
+ dWPHP(PV) may not be able to prove this since the standard proof involves

exponential-time computations.
The Schwartz-Zippel Lemma as stated in Theorem 1.1 implies that the semantic inter-

pretation of PIT is not only decidable but even in co-NP: it suffices to check that C evaluates
to zero on all points a = (a1, . . . , an) of the cube {0, . . . , q−1}n, where q = 2nd. For the sake
of formalisation in weak theories, let us state what we call the explicitly co-NP formulation
of the problem:

Bounded PIT: Given positive integers n, d, s written in unary notation and given
an algebraic circuit C of representation size s, with n variables, integer constants,
and syntactic individual degree d, does it evaluate to 0 on all points (a1, . . . , an)
of the cube {0, . . . , q − 1}n of side-length q = 2nd?

This version of the problem is in co-NP yet the Schwartz-Zippel Lemma shows that it is even
in co-RP and hence in P/poly. Indeed, if P (a) 6= 0 for at least one point a ∈ {0, . . . , q− 1}n,
then P (a) 6= 0 for a fraction of at least 1 − nd/q ≥ 1/2 of the points a ∈ {0, . . . , q − 1}n.
This means that an evaluation at a random point in {0, . . . , q − 1}n has chance at least 1/2
of detecting that C does not always evaluate to zero. This is co-RP. The results in this
paper show that these statements are available in the theory S1

2
+ dWPHP(PV). For P/poly

the definition of what this means is straightforward. Let Boolean circuits be encoded in the
theory in a completely analogous way to how algebraic circuits are encoded in the theory.
The only difference is that the evaluation function for Boolean circuits takes only binary
strings as inputs for its variables or parameters, and interprets its gates in the Boolean
sense, with + as disjunction, and × as conjunction.

Definition 4.5 (In S1

2
). Let c ≥ 1 be a standard constant and let A be a definable set of

strings given by a formula ϕ(x) without parameters, i.e., with all free variables indicated.
The set A is in SIZE(nc) if for every n ∈ Log there exists a Boolean circuit C with nc gates,
with n inputs and 1 output, such that for every x ∈ {0, 1}n we have that C(x) = 1 if and
only if ϕ(x) holds.

Membership of PIT in P/poly is now an immediate consequence of the existence of hit-
ting sets. We state this explicitly. Let PIT denote the Π1-definable set of strings that
encode the YES instances of the computational problem defined earlier: the strings en-
code 4-tuples (C, n, d, s) where n, d, s are integers presented in unary notation (i.e., as three
strings of the form 100 · · · 0 with lengths n, d, s), and C is an algebraic circuit in Ckt(n, d, s)
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such that C ≡ 0 holds; i.e., the Π1-formula ∀a∈Zn C(a)=0 holds. Similarly, let Bounded PIT

denote the Πb
1-definable set of strings that encode the YES instances of the explicitly co-NP

version of PIT. We say that a theory proves that a definable set A of strings is in P/poly if
there exists a standard constant c > 0 such that it proves that A is in SIZE(nc).

Theorem 4.6 (PIT is in P/poly in S1

2
+ dWPHP(PV)). The theory S1

2
+ dWPHP(PV) proves

that both PIT and Bounded PIT are in P/poly. Indeed, there is a standard constant c ≥ 1,
such that it proves the following stronger statement proving both claims simultaneously: For
all n, s, d, q ∈ Log such that q ≥ 2nd, there exists a Boolean circuit C with (n + d + s + q)c

gates such that for every P ∈ Ckt(n, d, s) the following hold:

1. if C(P ) = 1, then for every a ∈ Z
n we have P (a) = 0,

2. if C(P ) = 0, then there exists a ∈ Sn
q such that P (a) 6= 0.

Proof. Consider the PV function that given (C, n, d, s) as required in the input for PIT and
given H = (h1, . . . , hr) ∈ Sn

q , evaluates C on all points in H and outputs 1 if all evaluations
are zero, and outputs 0 otherwise. Setting q = 2nd and r = s + n|q|, and hardwiring for H
the hitting set for Ckt(n, d, s) of Theorem 4.4 we get a Boolean circuit C as required, for a
standard c ≥ 1 that depends only on the runtime of the PV function.

Corollary 4.7 (Small Counterexamples for Identities in S1

2
+ dWPHP(PV)). The theory

S1

2
+ dWPHP(PV) proves that PIT and the explicitly co-NP version of PIT are the same

problem, i.e., the formulas that define the sets PIT and Bounded PIT are equivalent.

Stating membership of PIT in co-RP within the theory S1

2
+ dWPHP(PV) is much less

straightforward, but at least the necessary ingredients are now available. We refer the reader
to Jeřábek’s seminal papers [20, 21] where the complexity classes BPP and RP are studied
in PV1 + dWPHP(PV), a subtheory of S1

2
+ dWPHP(PV).

5 Complexity of Finding Hitting Sets

5.1 Hitting Set Axioms

Let C be a definable class of algebraic circuits with parameterized slices Ce(n, d, s,m) ac-
cording to the definition. To recall, the slice Ce(n, d, s,m) is the set of algebraic circuits
in the class C with parameter e that have at most n indeterminates, syntactic individual
degree at most d, representation size at most s, but description size m ≤ s as members of C .
Let the Hitting Set Axiom for the class C be the following statement:

HS(C ) := ∀e ∀n, d, s, q, r,m∈Log (q≥2nd ∧ r>m+n|q| → ∃H=(h1, . . . , hr)∈(S
n
q )

r

∀C∈Ce(n, d, s,m) ((∃a∈Zn C(a) 6=0) → (∃i<r C(hi+1) 6=0))).

It is important to note that the largeness hypothesis r > m + n|q| does not depend on the
representation size s; it depends only on the description size m, the bit-complexity |q| of the
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evaluation points, and on the number n of indeterminates. The role of the representation
size s in Ce(n, d, s,m) is to ensure that the circuits of the class C can be evaluated in
polynomial time, given n, d, s in unary, a description x ∈ {0, 1}m, and an integer assignment
for the variables. When the definable class C is simply the class Ckt of all circuits, thenm = s
and the largeness bound is r > s+ n|q|.

We write HS(PV) for the axiom-scheme formed by all axioms of the form HS(C ) where C

is a definable class of algebraic circuits. To motivate this notation, we observe that if g
is the encoding function of a definable class C , then the axiom HS(C ) would be provably
equivalent (in S1

2
) to the following slightly longer but essentially identical variant:

HS(g) := ∀e ∀n, d, s, q, r,m∈Log (q≥2nd ∧ r>m+n|q| → ∃H=(h1, . . . , hr)∈(S
n
q )

r

∀x∈{0, 1}m ∀C∈Ckt(n, d, s) (ge(n, d, s, x)=C →
((∃a∈Zn C(a) 6=0) → (∃i<r C(hi+1) 6=0)))).

Conversely, every axiom HS(g) with g in PV is provably equivalent (in S1

2
) to the axiom HS(C )

for the definable class C that has as encoding function the modification of g, still in PV,
that with parameter e and input (n, d, s, x) outputs a default trivial circuit that computes
the constant 0 polynomial if ge(n, d, s, x) is not already a circuit in Ckt(n, d, s).

Let us make turn this notation into a definition:

Definition 5.1. For every PV-symbol g, the hitting set axiom for g is the formula HS(g).
The hitting set axiom scheme, denoted by HS(PV), is the collection of all HS(g) for all g ∈ PV.

An immediate consequence of Theorem 4.4 is that HS(PV) is a consequence of dWPHP(PV)
over S1

2
. The first goal of this section is to prove the converse:

Theorem 5.2 (Reverse Mathematics of Hitting Sets). The axiom-schemes dWPHP(PV)
and HS(PV) are provably equivalent over S1

2
.

The next two sections are devoted to the proof of Theorem 5.2.
That S1

2
+ dWPHP(PV) proves HS(PV) was shown in Theorem 4.4. Here we show the

converse. Fix a PV-symbol f for which we want to prove dWPHP(f). Let a and b be such
that b ≥ 2a ≥ 2, and let c be a setting for the parameters of f . Our goal is to show that
there exists y ∈ [b] such that for every x ∈ [a] we have fc(x) 6= y.

The first step in the proof is to apply an amplification transformation to fc that, without
loss of generality, will let us assume that a = 2m and b = 2m+t, for m = |a − 1| and
a t = poly(m) of our choice. This will let us think of fc as a function he : {0, 1}

m → {0, 1}m+t.
The goal will then become finding a string y ∈ {0, 1}m+t that is outside the range of the
function he.

The amplification technique that we need is standard in the context of the weak pi-
geonhole principle. For the sake of completeness, the details of this argument have been
made explicit in Section A of the Appendix. Concretely, we summarize the composition
of Lemmas A.1 and A.2 in the following lemma. In its statement, PV2 refers to a col-
lection of symbols for the (clocked) FPNP-machines, just as PV is a collection of symbols
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for (clocked) FP-machines. Indeed, we need symbols for the FPNP[wit, q]-machines: FPNP-
machines that get witnesses to their NP-oracle queries when they are answered YES, and
make at most q queries in every computation path. In general, such machines compute multi-
output functions (i.e., total relations), instead of just functions, because their output may
depend on the witness-sequence provided by the oracle. The FPNP[wit, O(log n)]-computable
multi-output functions are Σb

2-definable in S1

2
by Theorem 6.3.3 in [26].

Lemma 5.3 (In S1

2
). For every PV-function f and every standard natural number k ≥ 2,

there is a PV-function h and a PV2[wit, 2]-function r such that for all a, b, c such that b ≥
2a ≥ 2, setting m = |a − 1| and e = 〈a, c〉 as parameter for the functions h and r, the
restriction of he to {0, 1}m is a function he : {0, 1}

m → {0, 1}m
k

and, for every y ∈ {0, 1}m
k

that is outside the range of he, there is a computation of re(y) that does not fail, and any
such computation outputs an element in [2a] ⊆ [b] that is outside the range of fc restricted
to [a].

Proof. Set t = mk −m and compose the g and h functions, and the s and r functions, in
Lemmas A.1 and A.2 of Section A.

The bottom line of this section is that Lemma 5.3 reduces the problem of producing a
witness for dWPHPa

b (fc) to the problem of producing a string in {0, 1}m
k

that avoids the
range of he. In our application we will choose k := 3, so that

he : {0, 1}
m → {0, 1}m

3

. (37)

The reason for the choice k = 3 will become clear later in the proof.

5.2 The Definable Class of Algebraic Circuits

We continue now with the proof of the implication from HS(PV) to dWPHPa
b (fc) over S1

2
.

We argued already that the problem reduces to avoiding the range of he in (37).
For the sake of contradiction, assume that for all y ∈ {0, 1}m

3
there is an x ∈ {0, 1}m such

that he(x) = y. We intend to use the hitting set H provided by HS(C ) for an appropriately
chosen definable class of algebraic circuits C , with suitable parameters e, n, d, s, q, r,m de-
fined from e and m. The contradiction will come from the following three steps of reasoning:

1. first we define a string y ∈ {0, 1}m
3
that suitably encodes the hitting set H;

2. next we use the assumption to get a shorter x ∈ {0, 1}m that can recover y via he;

3. finally, we use x, as a compressed version of H, to build a small non-vanishing algebraic
circuit C in Ce(n, d, s,m) which will, however, vanish on H, by design.

Before we can execute this plan first we need to define the suitable class C on which to
apply HS(C ). We commit to the following choice of parameters e, n, d, s, q, r,m as functions
of e and m. First we note that we are not overloading the names of the parameters: e and m
will be taken to be themselves. Second, since every finite instance of dWPHP of standard
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size is provable in BASIC, and in particular in S1

2
, we may assume that m is large enough,

i.e., m ≥ m0 for a fixed standard m0 to be fixed later. For such large m, choose

n := m d := m2 s := m3

r := 4m|m| q := 2m3.
(38)

Observe that, if m is large enough, then

m3 ≥ rn|q| d ≥ 2r|q| q ≥ 2dn r > m+ n|q|. (39)

The first part in (39) implies that every triple (i, j, k) ∈ [r]× [n]× [|q|] can be encoded with a
number in [m3].2 Fix such an encoding of triples and write em(i, j, k) ∈ [m3] for the encoding
of (i, j, k); we require of this encoding that it is provably PV-computable and provably PV-
invertible, which is easy to achieve in many standard ways, given m as parameter.

We now define the class C . For all x ∈ {0, 1}m and (i, j, k) ∈ [r]×[n]×[|q|], let he(x; i, j, k)
denote the em(i, j, k)-th bit of output of he(x). Let Ge,m ⊆ Ckt(n, d) be the set of algebraic
circuits with variables z1, . . . , zn and plugged constants −1, 0, 1 that have the form

Ae,x(z1, . . . , zn) :=
∏

i∈[r]

∑

j∈[n]

(

zj −
∑

k∈[|q|]

he(x; i, j, k) · 2
k−1

)2

, (40)

where x ∈ {0, 1}m. In this description of the algebraic circuit Ae,x, the z1, . . . , zn are the
variables, while the constants −1, 0, 1 are used for the he(x; i, j, k), the 2 in 2k−1, and the −1
that is implicit in the subtraction. The syntactic individual degree of (40) on the zj variables
is 2r, and the syntactic individual degree of (40) on the parametric inputs is at most 2r|q|. By
the second part in (39) we have d ≥ 2r|q|, so indeed, as claimed, Ge,m is a subset of Ckt(n, d).
Further, if m is large enough, by the first part in (39) again, the representation size of Ae,x

(as a member of Ckt) is bounded by m3. Thus, by the choice of s in (38), the set Ge,m is even
a subset of Ckt(n, d, s). We let C be given by the encoding function ge(n, d, s, x) = Ae,x,
if n, d, s,m obey (38) and m is as determined by e = 〈a, c〉, i.e., m = |a − 1|; otherwise
we let ge(n, d, s, x) be a default trivial circuit that computes the constant 0 polynomial. By
construction, C is a legitimate definable class of algebraic circuits and Ce(n, d, s,m) := Ge,m.

3

5.3 The Compression Argument

We are ready to complete the proof of dWPHP(f) in S1

2
+ HS(PV). Consider HS(g) or,

equivalently, HS(C ), for the class C of the previous section with encoding function g, and

2This is the place in proof where the choice k = 3, so he has co-domain {0, 1}m
3

, is needed.
3Observe that Ce(n, d, s,m) is a sparse class since 2m ≪ 2m

3

= 2s. This is the crucial point that makes
the proof work. We cannot afford m = s as would be the case for Ckt(n, d, s) because the representation

size of Ae,x as an explicit circuit is roughly rn|q|, which is larger than s, and no choice of parameters can
make rn|q| smaller than s if m = s and r and m are to satisfy the requirement that r > m + n|q| in the
statement of HS. In contrast, as member of C , the description size of Ae,x is m, which is significantly smaller
than rn|q| ≥ m2.
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consider the parameters e, n, d, s, q, r,m chosen in (38). These choices are made to guarantee
that the hypotheses in the HS(C )-axiom are met; concretely, by (39), the requirement q ≥
2nd holds and, most importantly, the requirement r > m+n|q|, which ensures the abundance
of hitting sets H, also holds.

Let then H = (h1, . . . , hr) ∈ (Sn
q )

r be a hitting set for Ce(n, d, s,m). Let y ∈ {0, 1}m
3

be the string that encodes H in binary padded with 0s to length m3. More precisely, first
note that H can be identified with an element of [q]nr, and hence with a string in {0, 1}rn|q|,
so the first inequality in (39) ensures that m3 is big enough to encode H. Even more
explicitly, if we write hi = (hi,1, . . . , hi,n) and write each hi,j ∈ Sq = {0, . . . , q − 1} in binary
notation as hi,j = (hi,j,1, . . . , h1,j,|q|) ∈ {0, 1}|q|, then we choose y such that for all triples
(i, j, k) ∈ [r]× [n]× [|q|] we have that

the e(i, j, k)-th bit of y equals hi,j,k; the rest of bits of y are 0. (41)

By the assumption that dWPHP fails for he : {0, 1}
m → {0, 1}m

3
, there exists an x ∈ {0, 1}m

such that he(x) = y. In particular, by (41) and the definition of he(x; i, j, k), for all (i, j, k) ∈
[r]× [n]× [|q|] we have

he(x; i, j, k) = hi,j,k. (42)

Now consider the algebraic circuit Ae,x(z1, . . . , zn) from (40), which is in Ce(n, d, s,m) by
definition. The polynomial computed by Ae,x does not evaluate to zero on all a ∈ Z

n. To see
this, take aj := 2q for j = 1, . . . , n and note that each factor of the product in Ae,x(a1, . . . , an)
is (provably) positive since each of its n summands is (provably) positive as all inner sums are
less than 2|q| ≤ 2q. Therefore, since H hits Ae,x, there exists i ∈ [r] such that Ae,x(hi) 6= 0.
But then each factor evaluated at hi is non-zero, and in particular the i-th factor is non-zero,
which means that there exists j ∈ [n] such that

hi,j 6=
∑

k∈[|q|]

he(x; i, j, k) · 2
k−1. (43)

In turn, since hi,j belongs to Sq = {0, 1, . . . , q− 1} and we encoded it in binary with |q| bits,
it follows from the (provable) uniqueness of the binary encoding that there exists k ∈ [q]
such that hi,j,k 6= he(x; i, j, k). This contradicts (42), and the claim is proved.

This completes the proof of Theorem 5.2, and this section.

5.4 Completeness for Range Avoidance Problems

Consider the total search problem of finding hitting sets for low-degree algebraic circuits:

Hitting Sets: Given n, d, s, q, r in unary such that q ≥ 2nd and r > s+ n|q|, find
a hitting set for Ckt(n, d, s) over Sq of size at most r.

This is a total function in the complexity class TFΣ2P of total functions in FΣ2P; the totality
is given by Theorem 4.4. We define also its generalization to arbitrary circuit classes. In
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its definition below, the phrase a description of a class of at most 2m algebraic circuits
G ⊆ Ckt(n, d, s) refers to a Boolean circuit C with m Boolean inputs and s Boolean outputs
syntactically guaranteed to satisfy C(x) ∈ Ckt(n, d, s) for all x ∈ {0, 1}m. One way to fulfill
the syntactic guarantee is to check its output for membership in Ckt(n, d, s) and to return
the code of a default trivial circuit that computes the constant 0 polynomial if the check
fails.

Hitting Sets for Circuit Classes: Given n, d, s, q, r,m in unary such that q ≥ 2nd
and r > m + n|q|, and given a description of a class of at most 2m algebraic
circuits G ⊆ Ckt(n, d, s), find a hitting set for G over Sq of size at most r.

Again Theorem 4.4 shows that this is a total function in TFΣ2P. Indeed, Theorem4.4
shows that both problems reduce, in polynomial time, to the Range Avoidance Problem for
Boolean circuits from [41]. In the terminology of [24, 25], this is the problem Empty, and
then both problems belong to the complexity class APEPP for which Empty is its defining
problem. The first of the two problems is even in the subclass SAPEPP of sparse problems
in APEPP.

We observe now that the proof of Theorem 5.2 shows that the problem about hitting sets
for circuit classes is complete for the class APEPP. In the precise statement below, recall that
a polynomial-time mapping reduction between search problems is a pair of polynomial-time
computable maps f and r: the forward f maps any instance x of the first problem to an
instance f(x) of the second problem; the backward r maps any solution y to the instance g(x)
of the second problem to a solution h(x, y) of the first problem. We call this a P/P-reduction
because both maps are polynomial-time computable. If the second map is computable only
by a PNP-machine, then we call it a P/PNP-reduction.

Theorem 5.4. The problem Hitting Sets for Circuit Classes is complete for the APEPP under
PNP-reductions; indeed, P/PNP-reductions suffice.

Proof. Membership in the class follows from the proof of the first half of Theorem 5.2; i.e.,
from the proof of Theorem 4.4. Precisely, that proof shows that our problem reduces to Empty

with a P/P-reduction. Completeness for APEPP follows from the proof of the second half
of Theorem 5.2. In more details, we argue that the proof of Theorem 5.2 shows how to
reduce Empty to our problem, with a P/PNP-reduction.

Let an instance C of Empty be given: C is a Boolean circuit with m inputs and m + 1
outputs. Let a = 2m and b = 2m+1, let c be the integer encoding of the Boolean circuit C,
and let e = 〈a, c〉. Let f be the PV-function which, with parameter c, computes as the
Boolean circuit C on input x ∈ {0, 1}m. Let h be the PV-function given by Lemma 5.3 with
k = 3. Thus he is a function as in (37).

Consider the corresponding definable class of algebraic circuits C from Section 5.2 and
let g be its encoding function. For the given m, consider the setting of parameters n, d, s, q, r
as specified in (38). By (39), these parameters satisfy the requirements in the input of our
problem. By definition we have ge(n, d, s, x) = Ae,x for all x ∈ {0, 1}m; i.e., ge(n, d, s, x)
outputs (the code of) the algebraic circuit Ae,x. Let D be the canonical Boolean circuit that
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computes as ge(n, d, s, x) on all inputs x ∈ {0, 1}m. Then D is a description of the class
of at most 2m algebraic circuits Ge,m ⊆ Ckt(n, d, s). The proof in Section 5.3 shows that
any hitting set H of size at most r for Ge,m gives a string y ∈ {0, 1}m

3
that is outside the

range of he restricted to {0, 1}m. Concretely, let y be the string specified in (41). Finally,
let r be the PV2[wit, 2]-function r from Lemma 5.3 and consider (any) re(y). By 5.3 and
the natural correspondence between [a] and {0, 1}m, and between [b] and {0, 1}m+1, this is
a string in {0, 1}m+1 that is not in the range of C, so a solution to the Empty-instance C.
Since the circuit D is computable from e and hence from C in time polynomial in the size
of C, the forward map is computable by a polynomial-time machine. Since r is computable
by a PNP-machine and m is bounded by the size of C, the backward map is computable by
a PNP-machine. Both together give a P/PNP-reduction and the proof is complete.

A Amplification for dWPHP

The material of this appendix, or at least the techniques in it, can be considered known.
Since we were not able to find a reference with the exact result that we need, we provide
the details here. In bounded arithmetic, the main ideas go back to the seminal paper by
Paris-Wilkie-Woods [37], and have been revisited several times; cf. [31, 4] for bounded
arithmetic, and [24, 25] for complexity theory. Much earlier, in the area of cryptography,
exactly the same construction was used to build pseudo-random number generators (PRNGs)
from hardcore bits [7], which actually give a kind of guarantee that is incomparable with
what we need.

In few words, what is done here is to show that the search problem associated to an
arbitrary instance of the Dual Weak Pigeonhole Principle dWPHPa

b with b ≥ 2a reduces
to certain special instances of the same problem. In what we call the normalization step
below, we show how to reduce an arbitrary instance with b ≥ 2a to an instance of the
form a = 2m and b = 2m+1. In the terminology of Section 5.4, this will be a P/P-reduction.
In the amplification step, also below, we show how to reduce an instance of the form a = 2m

and b = 2m+1, to an instance of the form a = 2m and b = 2m+t for any arbitrary t = poly(m)
of our choice. In both cases, we do this provably in S1

2
, as this is what is needed for the proof

of Theorem 5.2.
To make this section more self-contained, let us recall the definition of the Dual Weak

Pigeonhole Principle axioms. Let f be a PV-symbol. The axiom dWPHP(f) is the universal
closure of the following formula with free variables a, b, c:

dWPHPa
b (fc) := (b≥2a≥2 → ∃y∈[b] ∀x∈[a] fc(x) 6= y). (44)

Here, fc(x) is alternative notation for f(x, c), thinking of c as a parameter for f . These
parameters may, in particular, specify the sizes a and b of the intended domain and range of
a function fc : [a] → [b], but this is not enforced.

Let m = |a − 1| and n = |b − 1|, so that n > m by b ≥ 2a ≥ 2m+1. In particular, all
elements in {0, . . . , a−1} and {0, . . . , b−1} can be represented in binary with m and n bits,
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respectively. Subtracting and adding one as appropriate, the same applies to [a] = {1, . . . , a}
and [b] = {1, . . . , b}.

A.1 Normalization step

In the normalization step we want to find a function gd : {0, 1}m → {0, 1}m+1, with its
parameters d defined in terms of the given PV-function f and the parameters a, b, c, in such
a way that, given a point in {0, 1}m+1 that is outside the range of the function gd, it is easy
to find a point in [b] that is outside the range of the function fc restricted to [a]. In this
case, easy means in time polynomial in m and the length |c|+ |d| of the parameters.

Let us note that if a and b were both exact powers of two, then it would suffice to
take m = |a − 1| and let gd compute the same as fc with all inputs encoded in binary
notation. In case a or b are not exact powers of two, we can still take m = |a− 1|, but the
details of the construction require a bit of care to deal with the appropriate encodings of the
sets. The proof is still straightforward, just more tedious.

Lemma A.1 (In S1

2
). For every PV-function f there exist PV-functions g and r such that

the following holds: For all a, b, c such that b ≥ 2a ≥ 2, setting m = |a− 1| and d = 〈a, b, c〉,
the functions gd and rd have domains and co-domains gd : {0, 1}m → {0, 1}m+1 and rd :
{0, 1}m+1 → [2a] ⊆ [b], and for all y ∈ {0, 1}m+1, if y is outside the range of gd restricted
to {0, 1}m, then rd(y) is outside the range of fc restricted to [a].

Proof. Recall that m = |a−1| and let numa : {0, 1}
m → [a] be a canonical surjection onto [a]

defined by, say, numa(x1, . . . , xm) =
∑m

i=1 xi2
i−1 mod a, with the residue classes mod a

naturally identified with the elements of the set [a]. Fix a corresponding easily computable
inverse function num−1

a : [a] → {0, 1}m satisfying the invertibility condition

numa(num
−1
a (y)) = y (45)

for all y ∈ [a]. Similarly, but dually, note that |2a−1| = m+1, so let bin2a : [2a] → {0, 1}m+1

be a canonical surjection onto {0, 1}m+1, with corresponding inverse bin−1
2a : {0, 1}m+1 → [2a]

satisfying the invertibility condition

bin2a(bin
−1
2a (y)) = y (46)

for all y ∈ {0, 1}m+1. All these are PV-functions and the invertibility conditions (45) and (46)
are provable in S1

2
.

Let gd : {0, 1}
m → {0, 1}m+1 be the function defined on x ∈ {0, 1}m by

gd(x) := bin2a(fc(numa(x)) mod 2a). (47)

We claim that, to find a y ∈ [b] such that fc(x) 6= y for all x ∈ [a], it suffices to find
a y ∈ {0, 1}m+1 such that gd(x) 6= y for all x ∈ {0, 1}m. Indeed, given such a y ∈ {0, 1}m+1,
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just let y = rd(y) := bin−1
2a (y) ∈ [2a] ⊆ [b]. To prove the correctness, note that any x ∈ [a]

such that fc(x) = y would give x = num−1
a (x) ∈ {0, 1}m such that

gc(x) = gc(num
−1
a (x)) = bin2a(fc(numa(num

−1
a (x))) mod 2a) =

= bin2a(fc(x) mod 2a) = bin2a(y mod 2a) = bin2a(y) =

= bin2a(bin
−1
2a (y)) = y,

where the first equality follows from the choice of x, the second follows from (47), the
third follows from (45) on the fact that x ∈ [a], the fourth follows from the assumption
that fc(x) = y, the fifth follows from the fact that y ∈ [2a], the sixth follows from the choice
of y, and the last follows from (46) on the fact that y ∈ {0, 1}m+1.

A.2 Amplification step

In the amplification step we extend the co-domain of the function gd : {0, 1}m → {0, 1}m+1

to the set {0, 1}m+t, for any desired t = poly(m). The construction of this new function hd :
{0, 1}m → {0, 1}m+t will be such that, given a point outside the range of hd, it will be
possible to get a point outside the range of gc. In this case, the sense in which it is easy to
translate the solution is a bit more nuanced since we will need the help of an NP-oracle in the
computation. Concretely, the translation function will be represented by a PV2-symbol that
computes a multi-output function (i.e., a total relation) in FPNP[wit, 2]. Here, FPNP[wit, q]
denotes the class of multi-output functions that can be computed by FPNP-machines that
get witnesses to their NP-oracle queries when they are answered YES, and make at most q
queries in every computation path. For q = O(log n), where n is the size of the input, the
computations of such machines are Σb

2-definable in S1

2
by Theorem 6.3.3 in [26].

Lemma A.2 (In S1

2
). For every PV-function g there exist a PV-function h and a PV2[wit, 2]-

function s such that the following holds: For all d and all m, t ∈ Log, setting e = 〈d,m, t〉
we have that he and se compute functions he : {0, 1}

m → {0, 1}m+t and (multi-output) se :
{0, 1}m+t → {0, 1}m+1, and for all y ∈ {0, 1}m+t, if y is outside the range of he restricted to
{0, 1}m, then there is a computation of se(y) that does not fail, and any such computation
outputs a string outside the range of gd restricted to {0, 1}m.

We begin the proof of Lemma A.2 by fixing notation to manipulate strings. For a
string x = (a1, . . . , ak) ∈ {0, 1}k and indices i, j ∈ [k] we write x[i, j] to denote the
substring (ai, ai+1, . . . , aj) of x between positions i and j with endpoints included (un-
less i > j). This is a string in {0, 1}j−i+1 if i ≤ j, and the empty string if i > j. For
strings x = (a1, . . . , ak) ∈ {0, 1}k and y = (b1, . . . , bℓ) ∈ {0, 1}ℓ, we write x:y to denote the
concatenation (a1, . . . , ak, b1, . . . , bℓ) of x and y, which is a string in {0, 1}k+ℓ.

With this notation, we define the function he. For i = 0, 1, . . . , t, let he,i : {0, 1}
m →

{0, 1}m+i be defined for all x ∈ {0, 1}m by the following recursion:

he,0(x) = x
he,1(x) = g(x)
he,i+2(x) = gd(he,i+1(x)[1,m]):he,i+1(x)[m+ 1,m+ i+ 1].
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Note that for any t = poly(m), the function he,i : {0, 1}m → {0, 1}m+t is computable in
polynomial time. Let h be the corresponding PV-symbol in such a way that its parame-
terization by e, i is he,i, and its parameterization by e alone is he,t. We claim that, to find
a y0 ∈ {0, 1}m+1 such that g(x0) 6= y0 for all x0 ∈ {0, 1}m, it suffices to find a y ∈ {0, 1}m+t

such that he(x) 6= y for all x ∈ {0, 1}m. Consider the following stronger claim:

Claim A.3 (In S1

2
). For all m, i ∈ Log, all y ∈ {0, 1}m, all v ∈ {0, 1}i, and all z ∈ {0, 1}m,

if he,i(z) = y:v, then he,i+1(z) = g(y):v. In particular, for all y0 ∈ {0, 1}m+1 and all v ∈
{0, 1}i, if the concatenated string y0:v is outside the range of he,i+1, then either y0 is outside
the range of gd, or any w ∈ {0, 1}m that witnesses the opposite by satisfying gd(w) = y0 is
such that the concatenated string w:v is outside the range of he,i.

Proof. The first statement is a direct consequence of the recursive definition of the he,i. To
prove the second statement, assume that there exists w ∈ {0, 1}m such that gd(w) = y0
yet w:v is inside the range of he,i, say he,i(u) = w:v for some u ∈ {0, 1}m. Then, by the first
part of the lemma we get he,i+1(u) = gd(w):v = y0:v, which means that y0:v is inside the
range of he,i+1.

In case i = 0, the second part of Lemma A.3 concludes that y0 is outside the range
of he,1, which equals gd. To see this observe that if i = 0, then v is the empty string, and
any w ∈ {0, 1}m is always inside the range of he,0, since he,0 is the identity map on {0, 1}m.
This means that, when given a y ∈ {0, 1}m+i that is outside the range of he,i with i > 0,
the following FPNP[wit] procedure (for now making more than 2 queries) halts in less than i
iterations and finds a y0 ∈ {0, 1}m+1 that is outside the range of gd:

1. given y = (a1, . . . , am+i) ∈ {0, 1}m+i,
2. set y0 := (a1, . . . , am+1),
3. for j = 0, 1, . . . , i− 2 do the following:
4. query “∃w∈{0, 1}m gd(w)=yj” to the NP-oracle
5. if answer is NO, halt and output yj,
6. if answer is YES, get such w and set yj+1 := w:am+j+2,
7. halt and fail.

In turn, this FPNP[wit]-procedure is special in that it halts after it gets the first NO. This
means that it can be replaced by the following different but equivalent FPNP[wit, 2]-procedure:

1. given y = (a1, . . . , am+i) ∈ {0, 1}m+i,
2. set y0 := (a1, . . . , am+1),
3. query “∃k<i−1 ∃y1, . . . , yk ∃w0, . . . , wk−1 ∀j<k (gd(wj) = yj ∧ yj+1 = wj:am+j+2)”
6. if answer is NO, halt and fail,
7. if answer is YES, get such k, y1, . . . , yk, w0, . . . , wk−1,
8. query “∃wk gd(wk)=yk”
9. if answer is NO, halt and output yk,
10. halt and fail.
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We now show that the desired claim follows. Let se,i denote the FPNP[wit, 2]-machine
defined above; precisely, s is a PV2[wit, 2]-symbol in the theory, and se,i is its parameterization
with e, i.

Claim A.4 (In S1

2
). For all m, i ∈ Log such that i > 0 and all y ∈ {0, 1}m+i, if y ∈ {0, 1}m+i

is outside the range of he,i, then there exists a computation of se,i(y) that does not fail, and
any such computation outputs a string in {0, 1}m+1 that is outside the range of g.

Proof. For fixed positive m, i ∈ Log and fixed y = (a1, . . . , am+i) ∈ {0, 1}m+i the strategy
for this proof is a maximization argument showing that a longest computation of se,i(y)
exists. We exploit the maximality to argue that this computation does not fail and also that
any such computation outputs a correct solution. The maximization argument is proved
by using the length-maximization principle Σb

1-LENGTH-MAX, which is available in S1

2
(see

Lemma 5.2.7 in [26]).
Consider the statement φ(x) asserting of k = |x| that there exist y0, y1, . . . , yk ∈ {0, 1}m+1

and w0, w1, . . . , wk−1 ∈ {0, 1}m that witness the first oracle query in the algorithm for se,i.
Formally:

φ(x) := ∃k≤x (k=|x| ∧ ∃y0, y1, . . . , yk∈{0, 1}
m+1 ∃w0, w1, . . . , wk−1∈{0, 1}

m

y0=y[1,m+ 1] ∧ ∀j<k (gd(wj)=yj ∧ yj+1=wj:am+j+2)).
(48)

This is a Σb
1-formula with m, i, y = (a1, . . . , am+i) as parameters: the sequences in it have

the length of a length, and the ∀j<k quantifier in it is sharply bounded (by k = |x|). We
intend to apply the length-maximization principle φ-LENGTH-MAX with bound 2i−1 − 1.
Recall that i > 0. The existence of a length-maximum x ≤ 2i−1 − 1 such that φ(x) holds
will let us argue that there is a computation of se,i(y) that does not fail, and also that any
such computation outputs a string in {0, 1}m+1 that is outside the range of gd.

First, note that φ(0) holds by setting k = 0 (recall that |0| = 0) and y0 = y[1,m + 1],
and by setting w0, w1, . . . , wk−1 to the empty sequence of strings; the quantifier ∀i<k holds
vacuously in this case. By φ-LENGTH-MAX applied to the upper bound 2i−1−1, there exists
a length maximum x ≤ 2i−1 − 1 such that φ(x) holds. Let k = |x| and note that k ≤ i − 1
since every number below 2i−1 has length i−1 or less. By the definition of the procedure se,i
and the maximality of x ≤ 2i−1 − 1, which could have length up to i − 1, if k < i − 1
and y0, y1, . . . , yk are the witnesses for φ(x), then si(y) does not fail and outputs yk. In
addition, in such a case the NP-oracle answered NO on the query “∃wk∈{0, 1}

m g(wk)=yk”,
and hence se,i(y) = yk is the string outside the range of gd we were looking for. To complete
the proof it remains to be seen that, indeed, k < i− 1.

Suppose the contrary, so k = i − 1 and hence |x| = i − 1. Let y0, y1, . . . , yi−1 and
w0, w1, . . . , wi−2 be the witnesses for φ(x). For j = 0, 1, 2, . . . , i−1, let vj = (am+j+2, . . . , am+i);
note that vj has length i − j − 1 and that vi−1 is the empty string. Consider the sequence
of concatenations yj:vj for j = 0, 1, 2, . . . , i − 1. Note that y0:v0 is y. By assumption y is
outside the range of he,i. Since y0 is in the range of gd and w0 witnesses it, by the second
part of Lemma A.3 we conclude that w0:v0 is outside the range of he,i−1. Now note that
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w0:v0 equals y1:v1, so we have shown that y1:v1 is outside the range of he,i−1. More generally,
consider the Πb

1-formula

ψ(x) := ∀j≤x(j=|x| ∧ j≤i−1 → ∀w∈{0, 1}m he,i−j(w) 6= yj:vj), (49)

with i among others as parameter. This says of the length j := |x| that yj:vj is outside the
range of he,i−j . We know that ψ(0) holds by assumption since y = y0:v0 and y is outside the
range of he,i (and recall |0| = 0). Further, the second statement in Lemma A.3 combined
with the fact that gd(wj) = yj holds for all j < i− 1 shows that ψ(⌊x/2⌋) implies ψ(x), for
all x. By Πb

1-PIND we get that ψ(2i−1−1) holds. But vi−1 is the empty string, so ψ(2i−1−1)
says that yi−1 is outside the range of he,1, which is absurd since yi−1 = gd(wi−2) and he,1
is gd.
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