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Abstract

Estimating the second frequency moment of a stream up to (1 ± ε) multiplicative error requires at
most O(logn/ε2) bits of space, due to a seminal result of Alon, Matias, and Szegedy. It is also known
that at least Ω(logn + 1/ε2) space is needed. We prove an optimal lower bound of Ω

(
log

(
nε2

)
/ε2

)
for all ε = Ω(1/

√
n). Note that when ε > n−1/2+c, where c > 0, our lower bound matches the classic

upper bound of AMS. For smaller values of ε we also introduce a revised algorithm that improves the
classic AMS bound and matches our lower bound. Our lower bound holds also for the more general
problem of p-th frequency moment estimation for the range of p ∈ (1, 2], giving a tight bound in the only
remaining range to settle the optimal space complexity of estimating frequency moments.

1 Introduction

An extensive body of literature is devoted to the streaming model of computation, which is important for
the analysis of massive datasets and in network traffic monitoring. A central problem in this model is the
frequency moment estimation problem: Elements from a universe U are given to the algorithm one-by-one,
defining a vector of frequencies — that is, fx ∈ N is the number of times the element x ∈ U appeared in the
stream; Finally, the algorithm has to return, with good probability, a (1 ± ε)-estimation of Fp :=

∑
x∈U fp

x

— the p-th frequency moment of the stream. We generally denote the length of the stream by n and assume
that |U | = poly(n). The main complexity parameter studied in this model is how much space is needed for
the algorithm to succeed. The study of both the streaming model and of frequency moment estimation in it
was initiated in the seminal 1996 work of Alon, Matias, and Szegedy [AMS96].

The case of p = 2, or second moment estimation, is of particular importance. It is often called the
repeat rate or surprise index, and is used in various tasks such as database query optimization [AGMS99],
network traffic anomaly detection [KSZC03], approximate histogram maintenance [GGI+02] and more. Other
moments of particular interest are p = 1, corresponding to the approximate counting problem [Mor78, NY22],
and p = 0, corresponding to the distinct elements problem [FM85, IW03, KNW10b]. Among these special
cases, only the space complexity of the first remains not fully understood. The original algorithm for F2-
estimation given by Alon, Matias, and Szegedy uses O(log n/ε2) bits of space; while the highest known lower
bound due to Woodruff in 2004 [Woo04] is Ω(log n + 1/ε2) — leaving up to a quadratic gap between the
upper and lower bounds for certain choices of ε.

While Fp-estimation for p ≤ 2 uses amount of space that is only logarithmic in the length of the stream,
it was shown that for p > 2 at least Ω(n1−2/p/poly(ε)) space is needed [BYJKS04, CKS03b] — which is
polynomial in the stream’s length. A long list of works [IW05, BGKS06, MW10, AKO11, BO10, And17,
Gan11b, WZ12, Gan11a, LW13] resulted in a nearly-tight bound of Θ̃

(
n1−2/p/ε2

)
for Fp-estimation for

every p > 2 (not necessarily an integer) and ε, for some ranges of parameters the bounds are tight — in
others there is a gap between the bounds that is poly-logarithmic in the bound itself.

For p ≤ 2 the space complexity is not as well understood. Woodruff [Woo04] showed a lower bound
of Ω(log n + 1/ε2) for every p ̸= 1, this is optimal in terms of ε alone and is also known to be optimal for
the distinct elements problem (that is, p = 0). For the special case of approximate counting (that is, p = 1),
a tight bound of Θ(log log n + log ε−1) is known [NY22]. For the range of p ∈ [0, 1), the upper bound of
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0 ≤ p < 1 p = 1 1 < p ≤ 2 p > 2

Θ̃(log n+ 1/ε2) Θ(log log n+ log ε−1) Θ(log n/ε2) Θ̃(n1−2/p/ε2)

Figure 1: Space complexity of Fp-estimation.

AMS was improved by Jayaram and Woodruff who presented a nearly-tight Õ
(
log n+ 1/ε2

)
bound in that

range [JW19]. This leaves p ∈ (1, 2] as the last remaining range within no nearly-tight bounds are known.
For certain generalizations more is known: When the stream is randomly shuffled and given in ran-

dom order, then in the range p ∈ (1, 2) (excluding p = 2) [BVWY18] showed an improved upper bound
of Õ

(
log n+ 1/ε2

)
. When updates are allowed in the stream, that is, elements can also be deleted and not

only added to it, then [KNW10a] showed that Θ(log n/ε2) is optimal for p ≤ 2.
In this work, we settle the space complexity of frequency moment estimation in the entire remaining

range of p ∈ (1, 2], including the special case of second frequency moment estimation. For p = 2, we show
that the AMS bound is essentially tight.

Theorem. Let A be a streaming algorithm that gives an (1± ε) multiplicative approximation to the F2 of
its input stream and succeeds with probability ≥ 2/3, for some ε = Ω(1/

√
n). Then, the space used by A

is Ω
(
log
(
ε2n
)
/ε2
)
.

Note that the range ε < 1/
√
n is less interesting as O (min{n log n, |U |}) space suffices for exactly main-

taining the vector of frequencies. We observe that in the range where ε is very close to 1/
√
n our lower bound

is (slightly) lower than the AMS upper bound, we show that this is inherent by introducing a modification
of the AMS algorithm that matches our lower bound in this range.

Theorem. For ε = Ω(1/
√
n), we can get a (1 ± ε)-approximation of the F2 of a stream of length n us-

ing O
(
log
(
ε2n
)
/ε2
)
space with success probability > 2/3.

We also extend our lower bound to the range p ∈ (1, 2], which settles the space complexity of Fp-estimation
for all values of p. See Figure 1 for a summary of the space complexity of Fp-estimation for all p ≥ 0.

Theorem. Fix p ∈ (1, 2]. Let A be a streaming algorithm that gives an (1± ε) approximation to the Fp of
its input stream, for some ε ∈

(
Ω
(
n−1/p

)
, 4−1/(p−1)

)
, and succeeds with probability ≥ 2/3. Then, the space

used by A is Ω
(
log
(
ε1/pn

)
/ε2
)
.

Most of the lower bounds for streaming problems are based on reductions from communication complexity.
In [JW19], a natural barrier to prove a better than Ω̃(1/ε2) lower bound was shown: Even in a very strong
model of communication, O

(
1/ε2 ·

(
log log n+ log d+ log ε−1

))
bits of communication suffice for the players

to correctly produce a Fp estimation, where d is the diameter of the communication graph. This means that
problems who reduce to Fp-estimation have a too low communication complexity to improve the existing
lower bounds. To overcome this natural barrier, we present a new type of a direct sum theorem that takes
place at the level of the streaming algorithm rather than the level of the communication model — informally,
we pack many instances of problems with communication complexity Θ(1/ε2) into a single stream, and then
directly show that a successful streaming algorithm must solve them all. In Section 2 we give a detailed
high-level overview of our proofs. The lower bound is presented in Section 4 and Section 5, and then extended
from p = 2 to p ∈ (1, 2] in Section 5.3. The improved upper bound is presented in Section 6. We conclude
and present remaining open problems in Section 7.

2 High-Level Overview

In this Section we give a high-level overview of the components used in our lower and upper bounds. The
lower bound is then proven in Section 4 and Section 5, and the upper bound in Section 6.
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ℓ = 1

ℓ = 2

ℓ = 3

Figure 2: The parts of the stream corresponding to the players of a 2ℓ-party Exam Disjointness instance,
for ℓ = 1, 2, 3.

2.1 Exam Communication Model

As in many other streaming lower bounds, our initial building blocks are reductions from communication
complexity problems. However, instead of using the classic communication model, we consider a slight
variant which we call the exam model. In the classic numbers-in-hand communication model, t-players
receive different parts x1, x2, . . . , xt of an input and have to compute some function f(x1, . . . , xn) of the
entire input by communicating with each other. In our model, we introduce an additional player, a referee,
who has an additional input y which we think of as a question about the players’ inputs {xi}. The players
still receive their parts of the input and are allowed to communicate with each other, but not with the
referee; finally, a player sends a single message to the referee, and the referee then has to compute some
function g(x1, . . . , xt, y) of both the input and her “secret” question y.

In the classic Disjointness problem, each of the t players receives a set Si and they have to determine
whether or not all of their input sets are pairwise disjoint. It is known that solving this problem remains hard
even under the promise that the input sets are either all disjoint or contain a unique element appearing in
all input sets and do not intersect further. We introduce a variant we call Exam Disjointness in which each
of the players still receives a set Si, and the referee receives a single element y from the universe; based on
the message she receives the referee needs to decide whether y appears in all input sets Si. In other words,
instead of determining whether there was a unique intersection between their input sets, the players now
have to send enough information to determine if a specific y given to the referee is that unique intersection.
In Section 4 we prove that solving Exam Disjointness requires at least as much information about the input
as the standard Disjointness problem.

This communication model turns out to be very useful for reducing a communication problem to a one-
pass streaming algorithm problem. Intuitively, only the suffix a of the stream would depend on the referee’s
input y, which would in turn mean that the algorithm processing the rest of the stream has to learn enough
information to answer any possible question of the referee that might appear in the exam. In Section 5.1,
we use the Exam Disjointness problem to recover the existing Ω(1/ε2) lower bound for F2-estimation, with
a simple and short proof.

2.2 Direct Sum for Dependent Instances

A standard tool for proving lower bounds is proving a direct sum theorem; this means showing that solving
several independent instances of a certain problem is as hard as solving every one of them separately. In our
proof, we introduce an unintutive variant of a direct sum theorem in which several instances are dependent,
and nevertheless solving them all is as hard as solving them separately.

As stated above, we first show that we can reduce the t-party Exam Disjointness problem to estimating
the F2 of a certain stream. We then introduce a distribution over input stream that encodes within it
instances of t-party Exam Disjointness for multiple different values of t. See Figure 2 for an example of a
stream in which Exam Disjointness instances with two, four, and eight players are encoded, using different
parts of the stream to encode each player; while at the same level all players get a disjoint part of the
stream — players at different levels occasionally intersect. We would describe a construction containing
roughly log

(
ε2n
)
such levels, such that solving the Exam Disjointness instance corresponding to a single

level requires Ω(1/ε2) bits of space. If instances of different levels were disjoint, a direct sum theorem would
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j

Figure 3: An index j and its preceding players from several different levels.

yield our desired Ω
(
log
(
ε2n
)
/ε2
)
lower bound; we obtain a similar bound despite the intersection of different

levels.
The core idea of this part is the following observation: Consider an average index j within the stream; at

each level, look at the part of the stream that encodes the last player appearing before index j in that level.
Although some of these players might intersect each other, usually there is a large subset of them who are
pairwise disjoint. See Figure 3 for an illustration. At index j we must have information about each level,
as otherwise we would not be able to finally solve the instance of that level. For the levels in which the last
players are pairwise disjoint, we would be able to show that the information known about each of them by j
is independent. This would be enough to prove a “local” direct sum for only a subset of the levels at each
index j, and an average over all indices would then give us a bound as good as a “global” direct sum. The
exact details are given in Section 5.2.

Another way to look at the direct sum across levels is that at each level ℓ we get a lower bound on the
amount of information the stream typically needs to store about the ∼ 2ℓ preceding stream elements. It is
then shown that these lower bounds add up, as these different-scaled “pasts” are essentially disjoint. This
multi-scale phenomenon is arguably the “real reason” behind the log n multiplicative factor in the lower
bound. A similar phenomenon was used to show that estimating the majority of n random bits requires
Ω(log n) memory [BGW20].

2.3 Improved Algorithm for The Small Error Regime

The classic algorithm of AMS gives us a bound of O(log n/ε2) for (1 ± ε)-estimating the F2 of a stream.
Evidently, this matches our Ω

(
log
(
ε2n
)
/ε2
)
lower bound only when ε is polynomially larger than n−1/2.

In Section 6 we introduce a slight variant of the AMS algorithm that matches our lower bound. The
modification is rather simple: we randomly partition the universe of elements into roughly 1/ε2 disjoint
subsets, and then run the AMS algorithm separately (and simultaneously) on the subsets of the stream
contained in each of these parts. Each subset of the stream only contains around ε2n elements, which would
result in the improved bound. A similar modification was used before in algorithms aiming to reduce the
memory-probes-per-update complexity of the AMS algorithm [TZ04].

3 Mutual Information and Streaming Algorithms

We frequently use the notions of information complexity, mutual information and entropy, see [BYJKS04]
for example for more background on these notions.

A one-pass streaming algorithm receives a sequence of inputs X = (X1, . . . , Xn) one by one, and even-
tually outputs an answer. Denote by M1, . . . ,Mn the memory transcript of the streaming algorithm. That
is, Mi is the memory state of the algorithm immediately after receiving the i-th input Xi. We observe
that Mi is drawn from a distribution that depends solely on Mi−1 and Xi. From now on, we think of the
inputs as a distribution, thus every Xi and every Mi is a random variable.

The following classic observation highlights the benefit of studying the mutual information between the
input distribution and the memory transcript.

Observation 3.1. The number of memory bits used by a streaming algorithm is at least

max
j

(I (Mj ; X)) .

Proof. It follows immediately as I(Mj ; X) ≤ H(Mj) ≤ log |Support (Mj) |.
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We next introduce a useful lemma.

Lemma 3.2. If the inputs Xi are mutually independent, then

I(M ; X) =

n∑
i=1

I (Xi ; Mi | Mi−1) .

Proof. Consider the following chain of equalities,

I(X1, . . . , Xn ; M1, . . . ,Mn) =

n∑
i=1

I (X1, . . . , Xn ; Mi | M<i) (1)

=

n∑
i=1

(I (Xi ; Mi | M<i) + I (X ; Mi | M<i, Xi)) (2)

=

n∑
i=1

(I (Xi ; Mi | Mi−1) + 0) . (3)

Inequalities (1) and (2) are applications of the chain rule of mutual information. The second part of In-
equality (3), that is I (X ; Mi | M<i, Xi) = 0, follows as X is independent of the algorithm’s random coins
while Mi is fully determined by M<i, Xi and these random coins. The first part of Inequality (3), that
is I (Xi ; Mi | M<i) = I (Xi ; Mi | Mi−1), follows as to both Xi and Mi conditioning on M<i or on Mi−1

is equivalent, this uses the independence of Xi from X<i.

4 Exam Variant of Multi-Party Set Disjointness

At the core of our lower bound is a variant of the Multi-Party Set Disjointness problem (denoted DISJ from
now on). The DISJt communication problem is defined as follows. There are t players, each player i ∈ [t]
receives a set Si of elements from some universe U ; We are promised that either all sets are disjoint, or
otherwise there is exactly one element that appears in all of the sets and beside it all other elements are
disjoint; the players need to decide in which of the two cases their input sets are. We focus on the one-
way communication model in which there is a predetermined order of the players; In its turn, a player
can look at its own input set and on the communication it received from the previous player, work for an
unbounded amount of time, and then send a communication to the next player; The last player needs to
answer whether the sets were disjoint or contained a shared element. Chakrabarti et al. [CKS03a] proved
that the total length (in bits) of the message communicated by the players throughout the protocol must be

at least Ω
(

1
t

∑t
i=1 |Si|

)
if they succeed with good probability. Intuitively, this follows as otherwise the total

amount of communicated information is smaller than even a single player’s set, and thus even a single set
cannot be fully described throughout the protocol’s transcript. Their lower bound is optimal and holds even
in a stronger communication model called the blackboard model in which each player can see the messages
communicated by all previous players, rather than just the preceding one. The same lower bound holds even
in the stronger model of communication in which players can talk several times in arbitrary order and not
only in a one-way fashion [Gro09, Jay09].

For our needs, we introduce a slight variant of the one-way DISJt problem which we call Exam DISJt
and denote by EDISJt. In this version, we still have t players with input sets Si that can be disjoint or
have a unique common intersection, but we also have an additional special player, which we call the referee.
The referee receives as input a single universe element x ∈ U . The t players still communicate one by one
according to order, and the last player communicates a message to the referee. Then, the referee has to
decide (and succeed with probability ≥ 2/3) whether there was an intersection between the players’ sets and
that intersection is exactly the referee’s input x. We think of this as an “exam” for the players: If they
claim there was an intersection, they also need to know enough about the intersection to tell whether or not

5



it is x. In this section, we extend the lower bound for DISJt and prove that EDISJt also requires as much
communication.

Let P be a protocol that solves EDISJt, and denote by Π = Π(X) its transcript on an input X =
(S1, S2, . . . , St, x); the transcript consists of the message communicated by each of the t players during its
turn to speak. Note that Π is a random variable that depends only on X ′ := (S1, . . . St), as the referee does
not speak and thus x does not affect the transcript.

We define an input distribution for the players of EDISJt. Let m be a size parameter, and let U be
a universe of size |U | ≥ m4. Each input set Si is drawn randomly and independently as a subset of U of
size ⌈mt ⌉. We note that m ≤

∑t
i=1 |Si| < m+ t and that with high probability all t sets are disjoint. Denote

this distribution of X ′ by µ = µ (t,m,U).
In this section, we prove the following lower bound on the information complexity of EDISJt on the

distribution µ. We also assume that t < m
4 lnm .

Theorem 4.1. Let P be a protocol that solves EDISJt with success probability ≥ 2/3 for any input with |Si| ≤
⌈mt ⌉ for i ∈ [t]. Let X ′ = (S1, . . . , St) ∼ µ and denote by Π = Π(X ′) the transcript of P on X ′. Then,

I (X ′ ; Π) = Ω
(m
t

)
.

The proof of Theorem 4.1 is similar to standard lower bound proof for multi-party set disjointness. It
proceeds in two steps: first, derive an appropriate information bound for the AND function – which is the
one-bit version of disjointness; second, apply a direct sum argument to obtain the lower bound statement.

4.1 AND Lower Bounds

All proofs for the hardness of the standard Disjointess problem go through a direct sum between instances
of the AND problem [BYJKS04, CKS03b, Jay09]. In the ANDt communication problem, there are t players
and each receives a single input bit Yi ∈ F2; the players need to compute the “and” function

∧t
i=1 Yi. Also

denote by Y = (Y1, . . . , Yt). In the DISJt problem, we may think of each player’s input as the characteristic
vector of its set Si ⊂ U , and denote its coordinates by Yi,u = 1 if u ∈ Si and otherwise 0. Then, the

answer to DISJt is simply
∨

u∈U

∧t
i=1 Yi,u. Due to this structure, techniques introduced by [BYJKS04] show

it suffices to give a lower bound to the information complexity of ANDt to imply a lower bound for DISJt.
Consider the probability distribution ν over inputs to the ANDt problem that gives probability 1

2 for all
input bits being 0, and probability 1

2 for exactly one coordinate chosen at random being 1 and the rest 0.
Let Π be the transcript of a communication protocol that solves ANDt with probability > 2/3, the citations
above show that I (Y ; Π) = Ω

(
1
t

)
. Denote by Πt the last message communicated in the protocol Π, from

which the answer has to be deduced (in a one-way communication setting this is simply the message sent
by the last player). In slightly more detail, they show that as long as there is a non-negligible statistical
difference between the distributions of Πt when the input is 0t and when the input is 1t (which there must
be for solving ANDt correctly), then the above information bound holds.

Lemma 4.2 (e.g., Corollary 8 of [Jay09]1). If ∥Πt(1
t)−Πt(0

t)∥1 > 0.1, then Iν (Y ; Π) = Ω
(
1
t

)
.

For our proof, we need a slight variant of Lemma 4.2. Let p ≤ 1
t be some probability. We consider

a distribution µ = µp in which every input bit Yi is independently chosen to be 1 with probability p and
otherwise 0. We prove the following adaptation of Lemma 4.2. While it is straightforward to deduce it by
repeating any of the previous proofs of Lemma 4.2, we give a proof that uses them in a black-box manner.

Lemma 4.3. Suppose ∥Πt(1
t)−Πt(0

t)∥1 > 0.1, then Iµ(Y ; Π) = Ω(p).

Proof. We observe that µ (0t) = (1− p)
t ≥

(
1− 1

t

)t ≥ 1
4 , and that for every i ∈ [t] also µ (ei) = p ·

(1− p)
t−1 ≥ 1

4t . Therefore, we may define a Boolean random variable D such that: (1) Pr[D = 1] = Θ(p · t);
1In [Jay09] this statement is phrased in terms of the Hellinger distance between the two distributions rather than the total

variation distance, but in the constant regime the two distances are equivalent; See for example Proposition A.2 in [BYJKS04].
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(2) µ|D=1 = ν. That is, conditioned on the event D happening, µ becomes ν. Note that D is independent
of Π. Using Lemma 4.2, we get

Iµ(Y ; Π) = Iµ(Y,D ; Π)− Iµ(D; Π|Y ) = Iµ(Y,D ; Π) = Iµ(D; Π) + Iµ(Y ; Π|D)

= Iµ(Y ; Π|D) ≥ Pr[D = 1] · Iµ(Y ; Π|D = 1) = Pr[D = 1] · Iν(Y ; Π)

≥ Θ(p · t) · Ω(1/t) = Ω(p).

We denote the problem from Lemma 4.3 with this distribution µ by ANDt
p.

4.2 Proof of Theorem 4.1

For the remainder of the proof set

p :=
m

2t|U |
.

Let Y := {Y j}|U |
j=1 be |U | instances of inputs to ANDt. Let Yi := (Y j

i )
|U |
j=1 be the i-th player’s input, which

consists of the i-th player’s inputs in all of the |U | instances. Given a protocol Π that solves EDISJt, we
construct a protocol Π′(Y1, . . . , Yt) that we will then use to solve all of the instances of ANDt defined above:

1. Each player i ∈ [t] constructs an input set Si as follows:

(a) Set S′
i := {j ∈ U : Y j

i = 1};
(b) If |S′

i| > ⌈mt ⌉, send ‘Fail’, and the protocol fails;

(c) Otherwise, set Si ⊂ U by adding ⌈mt ⌉ − |S
′
i| random elements from U \ S′

i to S′
i.

2. Run Π(S1, . . . , St) and return the message sent to the referee as the output Π′
t.

We first observe that if every instance Y j is drawn from µp then w.h.p no player will ‘Fail’.

Lemma 4.4. When every Y j is independently distributed as µp, then the probability that any Si is larger
than m/t is at most te−m/(2t) < 1

4m lnm .

Proof. The size of Si is distributed as Binomial(|U |, m
2t|U | ) and therefore a Chernoff bound gives that

Pr
(
|Si| >

m

t

)
≤ e−m/(2t).

We then take a union bound over the t indices.

Then, we also observe that the protocol’s output Π′
t can be used to answer each of the ANDt instances.

Lemma 4.5. Let j ∈ U be a universe element. Let Y j be an input to the ANDt problem. If for every u ̸= j
we draw Y u independently from µp and then run the above protocol Π′ on Y1, . . . , Yt, then Π′

t implies the
correct solution to ANDt(Y j) with probability > 2/3− o(1).

Proof. Using Π′
t, we may simulate the referee’s part of the EDISJt protocol with the choice of j as the

exam question. This correctly computes ANDt(Y j) as long as no player mistakenly added j to its set
in line (2) of the reduction, or if the reduction returned ‘Fail’. Nonetheless, the former happens with
probability ≤ p ·m = o(1) and the latter happens with probability ≤ 1

4m lnm = o(1).
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For any j ∈ U , Lemma 4.5 implies that Π′
t conditioned on Y j = 0t must be at statistical distance

> 1/3− o(1) from Π′
t conditioned on Y j = 1t. Therefore, by Lemma 4.3 we have that when Y j ∼ µp (like

all other instances Y u) then

I(Y j ; Π′) = Ω(p) = Ω

(
m

t|U |

)
.

Thus if every Y j ∼ µp independently, we also have

I(Y ; Π′) =
∑
j∈U

I(Y j ; Π′|Y <j) =
∑
j∈U

I(Y j ; Π′, Y <j) ≥
∑
j∈U

I(Y j ; Π′) = Ω
(m
t

)
.

Let F denote the Boolean random variable such that F = 1 if Π′ fails (that is, any player outputs ‘Fail’).
We observe that conditioned on F = 0, the distribution of X ′ := (S1, . . . , St), the input to the portocol Π,
is exactly µ = µ (t,m,U). Since Π runs on the input X ′ when we do not fail, then I(Y ; Π′ | X ′, F = 0) = 0
as there is no additional information about Y seen by the protocol besides X ′. We therefore have,

Iµ(Π;X
′) = I(Π′;X ′|F = 0) = I(Π′;X ′, Y |F = 0)− I(Π′;Y |X ′;F = 0)

= I(Π′;X ′, Y |F = 0) ≥ I(Π′;Y |F = 0) ≥ I(Π′;Y )−H(F )− Pr[F = 1] · I(Π′;Y |F = 1)

≥ Ω
(m
t

)
− 1− t exp

(
−m

2t

)
·m log |U | = Ω

(m
t

)
.

The last inequality holds since even in the failure event, each player who transmits anything but ‘Fail’ only
holds at most m/t elements, bounding the total entropy of their inputs by m log |U |.

5 Lower Bound

We begin with Section 5.1, in which we show how to reduce an instance of EDISJ to the problem of F2 esti-
mation on a stream. This reduction already gives a simple proof of Woodruff’s Ω(1/ε2) lower bound [Woo04]
in the entire range of ε = Ω(1/

√
n). Then, in Section 5.2 we show that we can pack Θ

(
log
(
ε2n
))

instances

of EDISJ into a single stream of length n. Solving each single instance would require Ω
(

1
ε2

)
space; We prove

that solving all Θ
(
log
(
ε2n
))

instances requires Ω
(
log
(
ε2n
)
/ε2
)
memory bits, as much as it would take to

solve each of them independently. Crucially, our instances are not going to be independent of each other,
but to share certain stream elements. Finally, we prove the following, which is the main theorem of this
paper.

Theorem 5.1. Let A be a streaming algorithm that gives an (1± ε) approximation to the F2 of its in-
put stream and succeeds with probability ≥ 2/3, for some ε = Ω(1/

√
n). Then, the space used by A

is Ω
(
log
(
ε2n
)
/ε2
)
.

In Section 5.3 we extend the found to Fp estimation for p ∈ (1, 2].

5.1 Reducing EDISJ to F2

Fix some n, ε > 2√
n
and |U | > n3. Denote by t := ⌊ε

√
n⌋ ≥ 2, for simplicity we assume that t divides n. We

reduce EDISJt to estimating F2 on a stream of length (1± o (1))n up to error ε. Let X = (S1, . . . , St, x) be
a valid input to EDISJt, for simplicity we also assume that |Si| = n

t for every i ∈ [t] (otherwise we may pad
the sets). We define a stream s(X) with elements from U that encodes X as follows: First, we write down
the elements of S1 in arbitrary order, afterwards we write down the elements of S2, then of S3 and so on
until those of St; Finally, we write down x repeatedly k := ⌈ tε⌉ = Θ(

√
n) times. We note that the length

of s(X) is
(
1 +O

(
1√
n

))
n, and that the stream is naturally partitioned to t+ 1 parts such that each part

depends on the input of a single player (where the (t+ 1)-th ‘player’ is the referee).
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Lemma 5.2. A (1±Θ(ε))-approximation to F2 (s (X)) implies the answer to EDISJt(X).

Proof. If EDISJt(X)=‘No’ then there are two possible cases: First, there is no intersection to the input sets,

and thus x might appear in at most one of the sets; Hence, F2 (s (X)) ≤ (n−1) ·12+1 ·(1 + k)
2
= n+k2+2k.

Second, there is a unique intersection to all input sets, but this intersection is not x, who might still appear
in at most one of the sets; Hence, F2 (s (X)) ≤ (n− t− 1) · 12 +1 · t2 +1 · (1+ k)2 = n+ k2 +2k+ t2− t. On
the other hand, if EDISJt(X)=‘Yes’ then there is a unique intersection to all input sets who is also x, and
thus F2 (s (X)) = (n−t)·12+(t+k)2 = n+t2−t+k2+2tk. Due to our choice of parameters, F2 (s (X)) = O(n)
in all cases; Furthermore, the additive gap between the ‘Yes’ case and the largest possible ‘No’ case is

2tk − 2k = 2k(t− 1) ≥ kt ≥ t2

ε
≥ εn.

Next, we observe that a streaming algorithm approximating F2 (s (X)) naturally implies a communication
protocol for EDISJt(X). Let A be a streaming algorithm that gives a (1±Θ(ε))-approximation to F2, we
define a communication protocol P as follows. The first player, who knows S1, can construct the part of s(X)
corresponding to it and start running A on that prefix of the stream. Denote by M1 the memory in A at the
end of that part. The first player communicates M1 to the second player, who has S2 and can thus construct
the second part of s(X); as it also has the communicated M1 it can now continue the run of A until the
end of the second part of the stream and communicate the memory in its end, M2, to the next player. We
continue similarly until the t-th player communicates Mt to the referee, who has x and can thus construct
the last part of s(X) and complete A’s run. The transcript of P is Π := (M1, . . . ,Mt), note that it depends
only on X ′ := (S1, . . . , St) and not on x, or equivalently, only on the first n elements of s(X). Lemma 5.2
implies that if A correctly approximates F2 with error Θ(ε) then P correctly solves EDISJt with the same
success probability. We conclude using Theorem 4.1 that over the distribution X ′ ∼ µ(t, n, U) we have

I (X ′ ; Π) = Ω
(n
t

)
= Ω

(√
n

ε

)
.

Corollary 5.3. For any ε = Ω(1/
√
n), approximating F2 up to multiplicative error (1± ε) requires Ω(1/ε2)

bits of space.

Proof. The length of Π = (M1, . . . ,Mt) is at most t times the size M of the space used by the streaming
algorithm A in bits. Thus,

Ω

(√
n

ε

)
≤ I (X ′ ; Π) ≤ H(Π) ≤ tM,

and therefore

M ≥ Ω

(√
n

εt

)
= Ω

(
1

ε2

)
.

For the consecutive parts of our lower bound, we need a slightly more flexible reduction from EDISJ
to F2. In particular, we show that with a slight modification the above reduction yields the same lower
bound even if we reduce from EDISJt for any 2 ≤ t ≤ ε

√
n rather than exactly t = ⌊ε

√
n⌋. Fix any such t.

Denote by d := ⌊ ε
2n
t2 ⌋ ≥ 1. For simplicity, we assume that d · t divides n. We still use the universe U

for the stream elements, but our EDISJt instances are defined over the larger universe Ud of d-tuples of
elements from U . We add the promise that we only need to solve instances of EDISJt in which no two
distinct elements of Ud appearing in the input intersect each other. We consider instances of EDISJt in
which the set sizes are |Si| = n

dt . For an instance X = (S1, . . . , St, x) the stream s(X) is constructed almost
identically to the previous construction, except that when we write an element of Ud on the stream we write
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replace it with the d elements of U it consists of. We still repeat the referee’s element x ∈ Ud at the end
of the stream for k = ⌈ tε⌉ times. Thus, the size of the stream corresponding to X ′ is still t · n

dt · d = n
and its elements are still elements from U . The size of the suffix of the stream corresponding to the referee

is k · d = O
(
td
ε

)
= O

(
tε2n
εt2

)
= O

(
εn
t

)
which is at most O(εn). We next observe that Lemma 5.2 still holds:

In both the ‘Yes’ and ‘No’ cases, we have F2 (s (X)) ≤ d ·
(
n
d + t2 − t+ k2 + 2tk

)
= O (n). Furthermore, the

gap between the ‘Yes’ case and the largest possible ‘No’ case is at least d · (2tk − 2k) ≥ Ω(dtk) ≥ Ω (εn). We
conclude as before that for Π = (M1, . . . ,Mt) and input distribution X ′ ∼ µ

(
t, n

d , U
d
)
we have

I (X ′ ; Π) = Ω

(
n/d

t

)
= Ω

(
t

ε2

)
.

Remark 5.4. This modification implies that the Ω(1/ε2) lower bound follows even from the Exam version
of the 2-party DISJ problem.

5.2 Packing many EDISJ instances into a single F2 instance

We now construct a stream of length n that encodes within it many instances of EDISJ. Fix some n, ε > 4√
n

and |U | > n3. For simplicity, assume that ε−1 is a power of two and that n is a power of four (otherwise we
may round to the nearest ones); In particular, ε

√
n is also a power of two and divides n.

Let ℓ ∈ [1, log (ε
√
n) − 2] be a level index. We construct a stream of length n that encodes an instance

of EDISJt for t = 2ℓ, similar to that of Section 5.1. Denote by d := ε2n
4t2 . Denote by X ′ = (S1, . . . , St) , X =

(X ′, x) a valid instance to EDISJt with set sizes |Si| = n
4dt and universe Ud. As before, the only valid inputs

are those in which all sets Si ⊂ Ud are either disjoint or have a unique intersection, and furthermore every
distinct elements of Ud appearing in the input do not intersect each other (i.e., each element of U is used in
at most one element of Ud appearing in the input sets).

We start by partitioning the stream of length n into named parts. We partition the stream into 2ℓ+2 con-
secutive blocks of size n

2ℓ+2 each. We call each such block a bucket ; The buckets of indices divisible by four are

called active buckets and the buckets of other indices are called inactive buckets, denote by B
(ℓ)
1 , B

(ℓ)
2 , . . . , B

(ℓ)

2ℓ

the t active buckets, each of them is a consecutive subsequence of the stream of length n/2ℓ+2 = n/4t. Within
each active bucket, we again partition the stream into consecutive blocks of size d each; We call each such
sub-block a super-element. Every active bucket contains n

2ℓ+2·d = n
4dt super-elements. We refer the reader to

Figure 2 for an illustration of the active buckets in several levels.

Reduction from DISJt:

We follow the reduction of Section 5.1 in our current terminology. Given a valid input X, we put the set Si

for i ∈ [t] in place of the active bucket B
(ℓ)
i in the stream, where each element x ∈ Si ⊂ Ud fills an entire

super-element within the active bucket. Every element of the stream not within an active bucket is drawn
uniformly and independently from U . We append to the described stream a suffix of length d · k, for k = t

ε ,
which we fill with k repetitions of x written as a super-element each time.

We observe that with high probability approximating the F2 of the described stream up to error Θ(ε) also
solves EDISJt(X): This is because with high probability (at least 1− 1

n ) the random elements of U placed
in the non-active buckets are completely disjoint to any element appearing in X, and thus subtracting 3

4n
from the F2 of the entire stream leaves us with the F2 of the sub-stream containing only the active buckets
— which is exactly the stream analyzed in Section 5.1.

Let A be an algorithm that estimates the F2 of a stream up to Θ(ε) error. Let 0 < j1 < j2 < . . . < jt < n
be any t indices such that ji is located between the end of the i-th active bucket and before the beginning
of the (i + 1)-th active bucket (or before the referee’s suffix of the stream when i = t). Denote by Mji the
state of A’s memory after processing the ji-th stream element while running over the stream S = S(X) we
get from the reduction. Due to the stated above, Π = (Mj1 , . . . ,Mjt) is the transcript of a communication
protocol that solves EDISJt(X).
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Denote by ξ the distribution of a stream of length n where each element is drawn uniformly and in-
dependently from U . We observe that when X ′ ∼ µ

(
t, n

4d , U
d
)
, the resulting stream without the referee’s

suffix S(X ′) is exactly distributed according to ξ. Thus, from Theorem 4.1 we conclude the following.

Corollary 5.5. For indices j1 < j2 < . . . < jt as above, we have

I
( (

B
(ℓ)
1 , B

(ℓ)
2 , . . . , B

(ℓ)
t

)
; (Mj1 , . . . ,Mjt)

)
= Ω

(
t

ε2

)
,

where the memory states of the algorithm A and the active buckets are with respect to a stream drawn from ξ.

Information measure for a single level ℓ:

Following the above, we define an information measure that encapsulates how much information about the
active buckets of level ℓ is given by the memory of the algorithm in an average index. From now on, we only
consider the input stream distribution ξ for A, and denote the stream itself by X = (X1, . . . , Xn) ∼ ξ.

Definition 5.6. For level ℓ, denote by

Iℓ :=

n∑
j=1

I
(
X(j− n

2ℓ
, j− n

2ℓ+1 ]
; Mj | M(j− n

2ℓ
)

)
.

We next give a lower bound for Iℓ, based on Corollary 5.5.

Lemma 5.7. Iℓ > Ω
(

n
ε2

)
.

Proof. Let j1 be any index in the range
(
3
4 ·

n
2ℓ
, n
2ℓ

)
. For 1 < i ≤ 2ℓ, denote by ji := ji−1 + n

2ℓ
. We

observe that each ji is between the end of the i-th active bucket B
(ℓ)
i and the beginning of the next, so by

Corollary 5.5 we have

I
( (

B
(ℓ)
1 , B

(ℓ)
2 , . . . , B

(ℓ)

2ℓ

)
;
(
Mj1 , . . . ,Mj

2ℓ

) )
= Ω

(
2ℓ

ε2

)
.

By applying Lemma 3.2 this also implies

2ℓ∑
i=1

I
(
B

(ℓ)
i ; Mji | Mj(i−1)

)
> Ω

(
2ℓ · 1

ε2

)
,

where we abuse notation and treat Mj0 as an empty conditioning. Furthermore, each active bucket B
(ℓ)
i is

fully contained within X(ji− n

2ℓ
, ji− n

2ℓ+1 ]
; Hence,

I
(
X(ji− n

2ℓ
, ji− n

2ℓ+1 ]
; Mji | Mji−1

)
≥ I

(
B

(ℓ)
i ; Mji | Mji−1

)
.

The sequences j1, j2, . . . , j2ℓ corresponding to each different j1 ∈
(
3
4 ·

n
2ℓ
, n
2ℓ

)
are disjoint, and there are Ω

(
n
2ℓ

)
of those. We thus conclude that

Iℓ ≥ Ω
( n

2ℓ

)
· Ω
(
2ℓ

1

ε2

)
= Ω

(
n · 1

ε2

)
.
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Combining multiple levels:

Crucially, while the analysis leading to the lower bound of Iℓ depended on the specific level ℓ, the in-
put stream’s distribution is the same across all levels. Our final component is a type of direct-sum over
all Θ

(
log
(
ε2n
))

information measures Iℓ.

Lemma 5.8. For any index j ∈ [n], we have

I (X1, X2, . . . , Xj−1 ; Mj) ≥
log(ε

√
n)−2∑

ℓ=1

I
(
X(j− n

2ℓ
, j− n

2ℓ+1 ]
; Mj | M(j− n

2ℓ
)

)
.

Proof. The subsets X(j− n

2ℓ
, j− n

2ℓ+1 ]
of X1, . . . , Xj−1 are disjoint, and we may thus use the chain law of

mutual information to get

I (X1, X2, . . . , Xj−1 ; Mj) ≥
log(ε

√
n)−2∑

ℓ=1

I
(
X(j− n

2ℓ
, j− n

2ℓ+1 ]
; Mj | X≤(j− n

2ℓ
)

)
.

We conclude the proof by observing that

I
(
X(j− n

2ℓ
, j− n

2ℓ+1 ]
; Mj | X≤(j− n

2ℓ
)

)
= I

(
X(j− n

2ℓ
, j− n

2ℓ+1 ]
; Mj | M(j− n

2ℓ
)

)
,

as to both X(j− n

2ℓ
, j− n

2ℓ+1 ]
and Mj the conditioning on either X≤(j− n

2ℓ
) or M(j− n

2ℓ
) is equivalent.

We next define a global measure of information between the algorithm’s memory and the inputs, then
bound it using the single-level information measures.

Definition 5.9. Denote by

Ī :=
1

n

n∑
j=1

I (X<j ; Mj) .

Lemma 5.10. Ī ≥ 1
n

∑log(ε
√
n)−2

ℓ=1 Iℓ.

Proof. Using Lemma 5.8 we have

n∑
j=1

I (X<j ; Mj) =

n∑
j=1

log(ε
√
n)−2∑

ℓ=1

I
(
X(j− n

2ℓ
, j− n

2ℓ+1 ]
; Mj | M(j− n

2ℓ
)

)

≥
log(ε

√
n)−2∑

ℓ=1

n∑
j=1

I
(
X(j− n

2ℓ
, j− n

2ℓ+1 ]
; Mj | M(j− n

2ℓ
)

)

=

log(ε
√
n)−2∑

ℓ=1

Iℓ.

Proof of Theorem 5.1. By Lemma 5.10 and Lemma 5.7 we have

Ī ≥
log(ε

√
n)−2∑

ℓ=1

1

n
Iℓ ≥

log(ε
√
n)−2∑

ℓ=1

Ω

(
1

ε2

)
≥ Ω

(
log
(
ε2n
)

ε2

)
.

We conclude the proof by using Observation 3.1.
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5.3 Generalization to p ∈ (1, 2]

The lower bound presented in this section naturally translates to the problem of estimating the fractional p-th
norm (that is,

∑
i f

p
i for the frequency vector {fi} or equivalently its Lp norm), for p ∈ (1, 2].

Theorem 5.11. Fix p ∈ (1, 2]. Let A be a streaming algorithm that gives an (1± ε) approximation to the Fp

of its input stream, for some ε ∈
(
Ω
(
n−1/p

)
, 4−1/(p−1)

)
, and succeeds with probability ≥ 2/3. Then, the

space used by A is Ω
(
log
(
ε1/pn

)
/ε2
)
.

We only give a short sketch of this generalization, as it only requires setting the parameters of the proof
for p = 2 differently and the rest of the proof remains as-is.

We consider level indices in the range ℓ ∈ [1, log
(
εn1/p

)
−2], all construction parameters remain as before

besides d which we set to d = (εpn)/(4tp) instead. In particular, the places of the active buckets in each
level remain as before. The appropriate parallel of Lemma 5.2 still holds, as the Fp of the stream is in all
cases dominated by O (n+ d · kp) = O(n) as

d · kp =

(
εpn

4tp

)
·
(
t

ε

)p

≤ n;

Furthermore, the gap between the ‘Yes’ and ‘No’ cases is at least

d · ((t+ k)
p − tp − (k + 1)

p
) =

(
εpn

4tp

)
·
((

t+
t

ε

)p

− tp −
(
t

ε
+ 1

)p)
=

1

4
n ·
(
(1 + ε)

p − εp −
(
1 +

1

t
ε

)p)
≥ 1

4
n ·
(
(1 + ε)

p −
(
1 +

1

2
ε

)p

− εp
)

≥ 1

4
n ·
(p
2
ε− εp

)
= Ω(εn),

where we used that (1 + x)
p −

(
1 + x

2

)p ≥ p
2x for every x ≥ 0, p > 1, and also that p

2ε− εp ≥ p
4ε when ε ≤

4−1/(p−1).

6 Upper Bound

In this section we give a new tight upper bound on the problem of F2 estimation. The upper bound is similar
to the original AMS construction [AMS96], with the modification that the random vectors onto which we
calculate the projections have (random) disjoint support. To simplify the presentation we assume that the
algorithm has access to public randomness – similarly to prior works this assumption can be relaxed by
replacing true randomness with k-wise independence for a constant k. The same algorithm with a different
choice of parameters appeared in [TZ04] (see also [CCFC02]), in the context of improving the update time
of AMS. We include a full analysis here for completeness.

Algorithm 1 Partition-based F2 algorithm

P ← ⌈4/ε2⌉+ 1;
Let H : U → [P ] and γ : U → {−1, 1} be two random hash functions;
Initialize an array A[1..P ] of integer counters to 0;
for elements x in the stream do

A[H(x)]← A[H(x)] + γ(x)

Output A =
∑P

i=1 A[i]2;
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6.1 Correctness analysis of Algorithm 1

For the analysis, let A be the random variable representing the algorithm’s output, and Ai the random
variable representing the i-th cell of the array.

Suppose the stream of length n consists of elements {xj ∈ U}nj=1 with frequencies {fj ≥ 0}nj=1
2.

Let γj := γ(xj), and let Bji ∈ {0, 1} be the indicator random variable specifying whether xj got mapped
to A[i]:

Bji := 1H(xj)=i.

Then we have

Ai =

n∑
j=1

fj ·Bji · γj ; A =

P∑
i=1

A2
i

Next, we compute A’s expectation and variance over the choices of the H and γ hash functions.
Observe that for each i,

E[A2
i ] = E

∑
j∈[n]

f2
j ·B2

ji · γ2
j +

∑
j1 ̸=j2∈[n]

fj1fj2 ·Bj1iBj2i · γj1γj2


= E

∑
j∈[n]

f2
j ·Bji


=

1

P
·
∑
j∈[n]

f2
j

And for each i1 ̸= i2:

E[Ai1 ·Ai2 ] = E

∑
j∈[n]

f2
j ·Bji1 ·Bji2 · γ2

j +
∑

j1 ̸=j2∈[n]

fj1fj2 ·Bj1i1Bj2i2 · γj1γj2


= 0,

since for all j, Bji1 ·Bji2 = 0.
Therefore,

E[A] =

P∑
i=1

E[A2
i ] =

∑
j∈[n]

f2
j = F2,

and A is an unbiased estimator of the F2 moment.
Next, we will calculate the variance Var[A]. Let i1 ≤ i2 ≤ i3 ≤ i4 ∈ [P ] be any four (not necessarily

distinct) elements. We have

E[Ai1 ·Ai2 ·Ai3 ·Ai4 ] =
∑

j1,j2,j3,j4∈[n]

fj1fj2fj3fj4 · E[Bj1i1Bj2i2Bj3i3Bj4i4 ] · E[γj1γj2γj3γj4 ]

This equals to 0 unless i1 = i2 and i3 = i4: for example, if i1 < i2 ≤ i3 ≤ i4, then when j1 ∈ {j2, j3, j4} we
have Bj1i1Bj2i2Bj3i3Bj4i4 = 0, and when j1 /∈ {j2, j3, j4}, we have E[γj1γj2γj3γj4 ] = 0.

Therefore, we only need to consider terms of the form E[A2
i1
·A2

i2
].

2We allow some frequencies to be 0 so that the counter on j goes from 1 to n
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If i1 < i2, we have

E[A2
i1 ·A

2
i2 ] =

∑
j1,j2,j3,j4∈[n]

fj1fj2fj3fj4 · E[Bj1i1Bj2i1Bj3i2Bj4i2 ] · E[γj1γj2γj3γj4 ]

=
∑

j1 ̸=j3∈[n]

f2
j1f

2
j3 · E[Bj1i1Bj3i2 ] · E[γ2

j1γ
2
j3 ]

=
∑

j1 ̸=j3∈[n]

f2
j1f

2
j3/P

2

=
1

P 2
·

F 2
2 −

∑
j

f4
j


=

1

P 2
·
(
F 2
2 − F4

)
If i1 = i2, we have

E[A4
i ] =

∑
j1,j2,j3,j4∈[n]

fj1fj2fj3fj4 · E[Bj1iBj2iBj3iBj4i] · E[γj1γj2γj3γj4 ]

= 6 ·
∑

j5<j6∈[n]

f2
j5f

2
j6 · E[Bj5iBj6i] +

∑
j∈[n]

f4
j · E[Bji]

=
3

P 2
·

F 2
2 −

∑
j

f4
j

+
1

P
·
∑
j

f4
j

=
3

P 2
·
(
F 2
2 − F4

)
+

1

P
· F4

We are now ready to compute Var[A]:

Var[A] = E[A2]− F 2
2

=
∑

i1 ̸=i2∈[P ]

E[A2
i1 ·A

2
i2 ] +

∑
i∈[P ]

E[A4
i ]− F 2

2

= P · (P − 1) · 1

P 2
· (F 2

2 − F4) + P ·
(

3

P 2
·
(
F 2
2 − F4

)
+

1

P
· F4

)
− F 2

2

=
2

P
· F 2

2 −
2

P
· F4

<
2

P
· F 2

2

Theorem 6.1. The expected relative ℓ2-error of Algorithm 1 is bounded by ε:

E

[(
A− F2

F2

)2
]
< ε2 (1)

Proof. Since E[A] = F2, we have

E[(A− F2)
2] = Var[A] <

2

P
· F 2

2 < ε2 · F 2
2 ,

implying (1).
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Memory analysis of Algorithm 1 In the word model, or if each element A[i] of the array is stored using
O(log n) bits, the memory cost of the algorithm is O(P log n) = O(ε−2 · log n) – matching the memory cost of
[AMS96]. We observe that in some regimes – when log(ε2n)≪ log n – Algorithm 1 requires asymptotically
less memory, matching our lower bounds above.

Claim 6.2. Suppose the stream length is n ≥ Ω(ε−2). Then Algorithm 1 can be implemented using
O(P log(n/P )) = O(ε−2 · log(ε2n)) memory.

Proof. Note that the state of the memory consists of P integers satisfying
∑

i |A[i]| ≤ n. Each integer A[i]
can be stored using a prefix-free code that only requires 2 log(|A[i]|+ 1) +O(1) bits3.

The total memory cost of concatenating P such prefix-free encodings is therefore at bounded by

2
∑
i∈[P ]

log(|A[i]|+ 1) +O(P ) ≤ 2P · log

(∑
i∈[P ] |A[i]|

P
+ 1

)
+O(P ) = O(P log(n/P )).

Here the inequality follows from the concavity of the log function.

7 Summary and Open Problems

After this work, the space complexity of Fp estimation is understood with nearly-tight bounds for the entire
range of p ≥ 0, as illustrated in Figure 1. Nonetheless, several natural questions remain open.

For second moment estimation, we prove a tight space bound for all ε = Ω(1/
√
n), which is Θ(n)

when ε = Θ(1/
√
n). By simply maintaining the frequency vector, an exact computation of the second

moment is possible with O (min{n log n, |U |}) space. A gap between Θ(n log n) and Θ(n) space remains for
the range of 0 < ε < 1/

√
ε. What is the exact space complexity of F2 estimation in the regime of very low

error?
Contrasting our result with the Õ

(
log n+ 1/ε2

)
upper bound in random-ordered streams for p ∈ (1, 2)

of [BVWY18], we end up with the first proven gap between the space complexity of Fp estimation in
adversarial and random-ordered streams for any range of p. For p > 2, it is known that no such gap
exists [GH09]. Therefore, only the case of p = 2 remains open: Is F2-estimation “cheaper” in random-
ordered streams?
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