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Abstract

Seeded extractors are fundamental objects in pseudorandomness and cryptography, and a
deep line of work has designed polynomial-time seeded extractors with nearly-optimal param-
eters. However, existing constructions of seeded extractors with short seed length and large
output length run in time Ω(n log(1/ε)) and often slower, where n is the input source length
and ε is the error of the extractor. Since cryptographic applications of extractors require ε to
be small, the resulting runtime makes these extractors unusable in practice.

Motivated by this, we explore constructions of strong seeded extractors with short seeds
computable in nearly-linear time O(n logc n), for any error ε. We show that an appropriate
combination of modern condensers and classical approaches for constructing seeded extractors
for high min-entropy sources yields strong extractors for n-bit sources with any min-entropy k
and any target error ε with seed length d = O(log(n/ε)) and output length m = (1 − η)k for
an arbitrarily small constant η > 0, running in nearly-linear time, after a reasonable one-time
preprocessing step (finding a primitive element of Fq with q = poly(n/ε) a power of 2) that is
only required when k < 2C log∗n · log2(n/ε), for a constant C > 0 and log∗ the iterated logarithm,
and which can be implemented in time polylog(n/ε) under mild conditions on q. As a second
contribution, we give an instantiation of Trevisan’s extractor that can be evaluated in truly
linear time in the RAM model, as long as the number of output bits is at most n

log(1/ε) polylog(n) .

Previous fast implementations of Trevisan’s extractor ran in Õ(n) time in this setting. In
particular, these extractors directly yield privacy amplification protocols with the same time
complexity and output length, and communication complexity equal to their seed length.

∗Ben-Gurion University. deand@bgu.ac.il. Part of this work was done while visiting Instituto de Telecomuni-
cações and the Simons Institute for the Theory of Computing.

†Instituto de Telecomunicações and Departamento de Matemática, Instituto Superior Técnico, Universidade de
Lisboa. jribeiro@tecnico.ulisboa.pt. Part of this work was done while at NOVA LINCS and NOVA School of
Science and Technology, and while visiting the Simons Institute for the Theory of Computing.

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 176 (2024)



Contents

1 Introduction 3
1.1 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Other Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Technical Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Preliminaries 8
2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Model of Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Fast Finite Fields Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Statistical Distance, Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Extractors and Condensers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.6 Averaging Samplers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.7 Standard Composition Techniques for Extractors . . . . . . . . . . . . . . . . . . . . 13

3 Additional Building Blocks 14
3.1 Fast Generation of Small-Bias Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 A Sampler from Bounded Independence . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Nearly-Linear Time Condensers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 A Faster Instantiation of Trevisan’s Extractor 19

5 Nearly-Linear Time Extractors with Order-Optimal Seed Length 20
5.1 A Non-Recursive Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.1.1 Item 2: Generating the block source . . . . . . . . . . . . . . . . . . . . . . . 21
5.1.2 Item 3: Subsampling from the block source . . . . . . . . . . . . . . . . . . . 23
5.1.3 Item 4: Applying a block source extractor . . . . . . . . . . . . . . . . . . . . 24
5.1.4 Improving the output length . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2 A Recursive Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2.1 The (extremely) low-error case . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2.2 The (relatively) high-error case . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2



1 Introduction

Seeded randomness extractors are central objects in the theory of pseudorandomness. A strong
(k, ε)-seeded extractor is a deterministic function Ext : {0, 1}n × {0, 1}d → {0, 1}m that receives as
input an n-bit source of randomness X with k bits of min-entropy1 and a d-bit independent and
uniformly random seed Y , and outputs an m-bit string Ext(X,Y ) that is ε-close in statistical distance
to the uniform distribution over {0, 1}m, where ε is an error term, even when the seed Y is revealed.
Besides their most direct application to the generation of nearly-perfect randomness from imperfect
physical sources of randomness (and their inaugural applications to derandomizing space-bounded
computation [NZ96] and privacy amplification [BBCM95]), seeded extractors have also found many
other surprising applications throughout computer science, particularly in cryptography.

For most applications, it is important to minimize the seed length of the extractor. A standard
application of the probabilistic method shows the existence of strong (k, ε)-seeded extractors with
seed length d = log(n − k) + 2 log(1/ε) + O(1) and output length m = k − 2 log(1/ε) − O(1), and
we also know that these parameters are optimal up to the O(1) terms [RT00]. This motivated a
deep line of research devising explicit constructions of seeded extractors with seed length as small
as possible spanning more than a decade (e.g., [NZ96, SZ99, NT99, Tre01, TZS06, SU05]) and
culminating in extractors with essentially optimal seed length [LRVW03, GUV09]. In particular,
the beautiful work of Guruswami, Umans, and Vadhan [GUV09] gives explicit strong extractors
with order-optimal seed length d = O(log(n/ε)) and output length m = (1 − η)k for any constant
δ > 0, and follow-up work [DKSS13, TU12] further improved the entropy loss k + d − m. The
extractors constructed in these works are explicit, in the sense that there is an algorithm that given
x and y computes the corresponding output Ext(x, y) in time polynomial in the input length.

A closer look shows that the short-seed constructions presented in the literature all run in time
Ω(n log(1/ε)), and often significantly slower. In cryptographic applications of extractors we want
the error guarantee ε to be small, which means that implementations running in time Ω(n log(1/ε))
are often impractical. If we insist on nearly-linear runtime for arbitrary error ε, we can use strong
seeded extractors based on universal hash functions that can be implemented in O(n log n) time
(e.g., see [HT16]), have essentially optimal output length, but have the severe drawback of requiring
a very large seed length d = Ω(m).

These limitations have been noted in a series of works studying concrete implementations of
seeded extractors, with practical applications in quantum cryptography in mind [MPS12, FWE+23,
FYEC24]. For example, Foreman, Yeung, Edgington, and Curchod [FYEC24] implement a version
of Trevisan’s extractor [Tre01, RRV02] with its standard instantiation of Reed–Solomon codes con-
catenated with the Hadmadard code, and emphasize its excessive running time as a major reason
towards non-adoption.2 Instead, they have to rely on extractors based on universal hash functions,
which, as mentioned above, are fast but require very large seeds.

This state of affairs motivates the following question, which is the main focus of this work:

Can we construct strong (k, ε)-seeded extractors with seed length d = O(log(n/ε)) and
output length m = (1− η)k computable in nearly-linear time, for arbitrary error ε?

Progress on this problem would immediately lead to faster implementations of many cryptographic
protocols that use seeded extractors.

1A random variable X has k bits of min-entropy if Pr[X = x] ≤ 2−k for all x. Min-entropy has been the most
common measure for the quality of a weak source of randomness since the work of Chor and Goldreich [CG88].

2The reason why these works focus on Trevisan’s extractor is that this is the best seeded extractor (in terms of
asymptotic seed length) that is known to be secure against quantum adversaries [DPVR12].
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1.1 Our Contributions

We make progress on the construction of nearly-linear time extractors.

Seeded extractors with order-optimal seed length and large output length. We construct
nearly-linear time strong seeded extractors with order-optimal seed length and large output length
for any k and ε, with the caveat that they require a one-time preprocessing step whenever k =
O(log2(n/ε)). This preprocessing step corresponds to finding primitive elements of finite fields Fq

with q = poly(n/ε), which, as we discuss below, is reasonable in practical applications. More
precisely, we have the following result.

Theorem 1. For any constant η > 0 there exists a constant C > 0 such that the following holds.
For any positive integers n and k ≤ n and any ε > 0 satisfying k ≥ C log(n/ε) there exists a strong
(k, ε)-seeded extractor

Ext : {0, 1}n × {0, 1}d → {0, 1}m

with seed length d ≤ C log(n/ε) and output length m ≥ (1− η)k. Furthermore,

• if k ≥ 2C log∗n·log2(n/ε), then Ext is computable in time Õ(n), where Õ(·) hides polylogarithmic
factors in its argument and log∗ denotes the iterated logarithm;

• if k < 2C log∗n · log2(n/ε), then Ext is computable in time Õ(n) after a preprocessing step,
corresponding to finding a primitive element of Fq with q = poly(n/ε) a power of 2.3

Theorem 1 follows from combining modern condensers with short seeds (namely, the lossless con-
denser of Kalev and Ta-Shma [KT22] and the lossy Reed-Solomon-based condenser of Guruswami,
Umans, and Vadhan [GUV09]) with a careful combination and instantiation of classical recursive
approaches developed by Srinivasan and Zuckerman [SZ99] and in [GUV09]. It readily implies,
among other things, an Õ(n)-time privacy amplification protocol where only O(log(n/ε)) bits need
to be communicated over the one-way authenticated public channel and almost all the min-entropy
can be extracted (after a reasonable one-time preprocessing step if the min-entropy bound k is very
small).

A new non-recursive construction. As a conceptual contribution which may be of independent
interest, we present a new “non-recursive” construction of extractors with seed length O(log(n/ε))
and output length (1−η)k that is computable in nearly-linear time when k > polylog(1/ε) and avoids
the complicated recursive procedures from [SZ99, GUV09]. We believe this to be a conceptually
better approach towards constructing seeded extractors, and we discuss it in more detail in the
technical overview.

3In full rigor, the preprocessing step corresponds to finding primitive elements of O(log log n) fields Fq with
orders q ≤ poly(n/ε), each a power of 2. This O(log log n) term has negligible influence on the complexity of this
preprocessing step. Note that we can find such a primitive element in time polylog(n/ε) if q ≤ poly(n/ε) is a power
of 2 and we know the factorization of q−1, but we do not know how to do that in time Õ(log q). More precisely, given
the factorization of q − 1 we can test whether a given α ∈ Fq is primitive in time polylog(q) by checking whether
α

q−1
p ̸= 1 for all prime factors p of q − 1. We can exploit this in various ways. If we are fine with using randomness

in the one-time preprocessing stage, then we can sample an element of Fq uniformly at random, test whether it is
primitive, and repeat if not. If we insist on a deterministic algorithm, then we can combine the testing procedure
with algorithms of Shoup [Sho90] or Shparlinski [Shp92] which identify in time polylog(q) a subset of size polylog(q)
in Fq that is guaranteed to contain a primitive element. For an alternative faster randomized algorithm, see [DD06].
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Faster instantiations of Trevisan’s extractor. One of the most widely-used explicit seeded
extractors is Trevisan’s extractor [Tre01, RRV02]. While by now we have extractors with better
parameters, one of its main advantages is that it is one of the few examples of extractors, and in a
sense the best one, which are known to be quantum proof.4

Trevisan’s extractor uses two basic primitives: combinatorial designs (when more than one
output bit is desired), and binary list-decodable codes. A standard instantiation of such suitable
codes goes by concatenating a Reed-Solomon code with a Hadamard code, and this is also what is
considered in [FWE+23, FYEC24]. As they also observe, this gives a nearly-linear time construction
when the output length m = 1. In fact, by leveraging fast multipoint evaluation, one can also get a
nearly-linear time construction for any output length m ≤ n

log(1/ε) , although this was not noted in
previous works.5

Our main contribution in this direction is an alternative instantiation of Trevisan’s extractor
that can be computed in truly linear time on a RAM in the logarithmic cost model, for any output
length m ≤ n

log(1/ε)·polylog(n) .

Theorem 2. There exists an instantiation of Trevisan’s extractor, set to extract m bits with any
error ε > 0, that is computable in:

1. Time O(n)+m log(1/ε) ·polylog(n) after a preprocessing step running in time Õ(m log(n/ε)),
on a RAM in the logarithmic cost model. In particular, there exists a universal constant c,
such that whenever m ≤ n

log(1/ε)·logc(n) , the instantiation runs in time O(n), without the need
for a preprocessing step.

2. Time Õ(n+m log(1/ε)) in the Turing model.

We note that one interesting instantiation of the above theorem is when Trevisan’s extractor is
set to output kΩ(1) bits for k = nΩ(1). In this setting, Trevisan’s extractor requires a seed of length
O
(
log2(n/ε)
log(1/ε)

)
, and, as long as ε is not too tiny, we get truly-linear runtime.

1.2 Other Related Work

Besides the long line of work focusing on improved constructions of explicit seeded extractors and
mentioned in the introduction above, other works have studied randomness extraction in a va-
riety of restricted computational models. These include extractors computable by streaming al-
gorithms [BRST02], local algorithms [Lu02, Vad04, BG13, CL18], AC0 circuits [GVW15, CL18,
CW24], AC0 circuits with a layer of parity gates [HIV22], NC1 circuits [CW24], and low-degree
polynomials [ACG+22, AGMR24, GGH+24]. Moreover, implementations in various restricted com-
putational models of other fundamental pseudorandomness primitives such as k-wise and ε-biased
generators, that often play a key role in constructions of various types of extractors, have also been
independently studied (see [HV06, Hea08, CRSW13, MRRR14] for a very partial list).

As mentioned briefly above, some works have also focused on constructing seeded extractors
computable in time O(n log n) motivated by applications in privacy amplification for quantum key
distribution. Such constructions are based on hash functions, and are thus far restricted to Ω(m)
seed length. The work of Hayashi and Tsurumaru [HT16] presents an extensive discussion of such

4An extractor is quantum proof if its output is close to uniform even in the presence of a quantum adversary
that has some (bounded) correlation with X. A bit more formally, Ext is quantum-proof if for all classical-quantum
state ρXE (where E is a quantum state correlated with X) with H∞(X|E) ≥ k, and a uniform seed Y , it holds that
ρExt(X,Y )Y E ≈ε ρUm ⊗ ρY ⊗ ρE . See [DPVR12] for more details.

5For a rigorous statement on fast multipoint evaluation, see Lemma 2.1.
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efforts. We also mention that nearly-linear time extractors with very short seed, in the regime
k = nΩ(1) and ε = n−o(1), were given in [DMOZ22], with applications in derandomization.

1.3 Technical Overview

In a nutshell, we obtain Theorem 1 by following two standard high-level steps:

1. We apply a randomness condenser with small seed length O(log(n/ε)) to the original n-bit
weak source X to obtain an output X ′ that is ε-close to a high min-entropy source.

2. We apply a seeded extractor tailored to high min-entropy sources with small seed length
O(log(n/ε)) to X ′ to obtain a long output that is ε-close to uniform.

To realize this approach, we need to implement each of these steps in nearly-linear time Õ(n)
(possibly after a reasonable one-time preprocessing step). We briefly discuss how we achieve this,
and some pitfalls we encounter along the way.

Observations about nearly-linear time condensers. In order to implement Item 1, we need
to use fast condensers with short seeds. Luckily for us, some existing state-of-the-art constructions
of condensers already satisfy this property, although, to the best of our knowledge, this has not
been observed before. We argue this carefully in Section 3.3.

For example, the “lossy Reed-Solomon condenser” from [GUV09] interprets the source as a
polynomial f ∈ Fq[x] of degree d ≤ n/ log q and the seed y as an element of Fq, and outputs
RSCond(f, y) = (f(y), f(ζy), . . . , f(ζm

′
y)), for an appropriate m′ and field size q, with ζ a primi-

tive element of Fq. Evaluating RSCond(f, y) corresponds to evaluating the same polynomial f on
multiple points in Fq. This is an instance of the classical problem of multipoint evaluation in com-
putational algebra, for which we know fast and practical algorithms (e.g., see [vzGG13, Chapter 10]
or Lemma 2.1) running in time Õ((d+m′) log q) = Õ(n), since d ≤ n/ log q and if m′ ≤ n/ log q.

A downside of this condenser is that it requires knowing a primitive element ζ of Fq with
q = poly(n/ε). As discussed above, if we know the factorization of q − 1 and q is a power of 2,
then we can find such a primitive element in time polylog(q). Beyond that, having access to such
primitive elements, which only need to be computed once independently of the source and seed, is
reasonable in practice. Therefore, we may leave this as a one-time preprocessing step.

The lossless “KT condenser” from [KT22] has a similar flavor. It interprets the source as
a polynomial f ∈ Fq[x] and the seed y as an evaluation point, and outputs KTCond(f, y) =
(f(y), f ′(y), . . . , f (m′)(y)), for some appropriate m′. The problem of evaluating several derivatives
of the same polynomial f on the same point y (sometimes referred to as Hermite evaluation) is
closely related to the multipoint evaluation problem above, and can also be solved in time Õ(n).6

Evaluating the KT condenser does not require preprocessing. On the other hand, it only works
when the min-entropy k ≥ C log2(n/ε) for a large constant C > 0, where n is the source length and
ε the target error of the condenser.

The “ideal” approach to seeded extraction from high min-entropy sources. We have
seen that there are fast condensers with short seeds. It remains to realize Item 2. Because of the
initial condensing step, we may essentially assume that our n-bit weak source X has min-entropy
k ≥ (1− δ)n, for an arbitrarily small constant δ > 0. In this case, we would like to realize in time

6Interestingly, recent works used other useful computational properties of the KT condenser. Cheng and
Wu [CW24] crucially use the fact that the KT condenser can be computed in NC1. Doron and Tell [DT23] use
the fact that the KT condenser is logspace computable for applications in space-bounded derandomization.
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Õ(n) and with overall seed length O(log(n/ε)) what we see as the most natural approach to seeded
extraction from high min-entropy sources:

1. Use a fresh short seed to transform X into a block source Z = Z1◦Z2◦· · ·◦Zt with geometrically
decreasing blocks, where ◦ denotes string concatenation. A block source has the property that
each block Zi has good min-entropy even conditioned on the values of blocks Z1, . . . , Zi−1.

2. Perform block source extraction on Z using another fresh short seed. Due to its special struc-
ture, we can extract a long random string from Z using only the (small) seed length associated
with extracting randomness from the smallest block Zt, which has length O(log(n/ε)).

The classical approach to Item 2 where we iteratively apply extractors based on universal hash
functions with increasing output lengths to the blocks of Z from right to left is easily seen to run
in time Õ(n) and requires a seed of length O(log(n/ε)) if, e.g., we use the practical extractors
of [TSSR11, HT16]. Therefore, we only need to worry about realizing Item 1.

A standard approach to Item 1 would be to use an averaging sampler to iteratively sample
subsequences of X as the successive blocks of the block source Z, following a classical strategy of
Nisan and Zuckerman [NZ96] (improved by [RSW06, Vad04]). We do know averaging samplers
running in time Õ(n) (such as those based on random walks on a carefully chosen expander graph).
However, this approach requires a fresh seed of length Θ(log(n/ε)) per block of Z. Since Z will have
roughly log n blocks, this leads to an overall seed of length Θ(log2 n+ log(1/ε)), which is too much
for us.

Instead, we provide a new analysis of a sampler based on bounded independence, that runs in
time Õ(n) and only requires a seed of length O(log(n/ε)) to create the entire desired block source.
We give the construction, which may be of independent interest, in Section 3.2. The caveat of this
“block source creator” is that it only works as desired when the target error ε ≥ 2−kc for some small
constant c > 0. Combining these realizations of Items 1 and 2 yields the desired Õ(n)-time extractor
with order-optimal seed length O(log(n/ε)) and output length (1−η)n for arbitrary constant η > 0,
provided that ε ≥ 2−kc . See Theorem 5.1 for the formal statement.

Getting around the limitation of the ideal approach. We saw above that combining the ideal
approach to seeded extraction from high min-entropy sources with the new analysis of the bounded
independence sampler yields a conceptually simple construction with the desired properties when the
error is not too small (or alternatively, whenever the entropy guarantee is large enough). However,
we would like to have Õ(n)-time seeded extraction with O(log(n/ε)) seed length and large output
length for all ranges of parameters.

To get around this limitation of our first construction, it is natural to turn to other classical
approaches for constructing nearly-optimal extractors for high min-entropy sources, such as those of
Srinivasan and Zuckerman [SZ99] or Guruswami, Umans, and Vadhan [GUV09]. These approaches
consist of intricate recursive procedures combining a variety of combinatorial objects, and require
a careful analysis.7 However, we could not find such an approach that works as is, even when
instantiated with Õ(n)-time condensers and Õ(n)-time hash-based extractors. In particular:

• The GUV approach [GUV09] gives explicit seeded extractors with large output length and
order-optimal seed length for any min-entropy requirement k and error ε. However, its overall
runtime is significantly larger than Õ(n) whenever ε is not extremely small (for example,
ε = 2−kα for some α ∈ (0, 1/2) is not small enough).

7In our view, these approaches are much less conceptually appealing than the “ideal” approach above. We believe
that obtaining conceptually simpler constructions of fast nearly-optimal extractors that work for all errors is a
worthwhile research direction, even if one does not improve on the best existing parameters.
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• The SZ approach [SZ99] can be made to run in time Õ(n) and have large output length when
instantiated with fast condensers, samplers, and hash-based extractors, but it is constrained
to error ε ≥ 2−ck/ log∗n, where log∗ is the iterated logarithm.

Fortunately, the pros and cons of the GUV and SZ approaches complement each other. Therefore,
we can obtain our desired result by applying appropriately instantiated versions of the GUV and
SZ approaches depending on the regime of ε we are targeting.

1.4 Future Work

We list here some directions for future work:

• Remove the preprocessing step that our constructions behind Theorem 1 require when k <
C log2(n/ε).

• On the practical side, develop concrete implementations of seeded extractors with near-optimal
seed length and large output length. In particular, we think that our non-recursive construc-
tion in Section 5.1 holds promise in this direction.
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2 Preliminaries

2.1 Notation

We often use uppercase roman letters to denote sets and random variables – the distinction will be
clear from context. We denote the support of a random variable X by supp(X), and, for a random
variable X and set S, we also write X ∼ S to mean that X is supported on S. For a random
variable X, we write x ∼ X to mean that x is sampled according to the distribution of X. We use
Ud to denote a random variable that is uniformly distributed over {0, 1}d. For two strings x and
y, we denote their concatenation by x ◦ y. Given two random variables X and Y , we denote their
product distribution by X × Y (i.e., Pr[X × Y = x ◦ y] = Pr[X = x] · Pr[Y = y]. Given a positive
integer n, we write [n] = {1, . . . , n}. For a prime power q, we denote the finite field of order q by
Fq. We denote the base-2 logarithm by log.

2.2 Model of Computation

We work in the standard, multi-tape, Turing machine model with some fixed number of work tapes.
In particular, there exists a constant C such that all our claimed time bounds hold whenever we
work with at most C work tapes. This also implies that our results hold in the RAM model, wherein
each machine word can store integers up to some fixed length, and standard word operations take
constant time. In Section 4 we will give, in addition to the standard Turing machine model bounds,
an improved runtime bound that is dedicated to the logarithmic-cost RAM model.
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2.3 Fast Finite Fields Operations

For a prime power q = pℓ, we let Mq(d) be the number of field operations required to multiply
two univariate polynomials over Fq of degree less than d, and Mb

q (d) be the bit complexity of
such a multiplication, so Mb

q (d) ≤ Mq(d) · T (q), where we denote by T (q) an upper bound on
the bit complexity of arithmetic operations in Fq. When ℓ = 1, Harvey and van der Hoeven
[HvdH19, HvdH21] showed that

Mb
q (d) = O(d log q · log(d log q) · 4max(0,log∗d−log∗q)),

and in general, Mq(d) = d · log d ·2O(log⋆ n) [Für09].8 When p = 2, we can use Schönhage’s algorithm
[Sch77] to get Mb

q (d) = O(d log d · loglog d ·Mq(log q)), where we relied on the fact that addition and
multiplication in Fq can be done in time Mq(ℓ) = O(ℓ · log ℓ · loglog ℓ). Overall, when d ≤ q ≤ 2d,
and q is either a prime or a power of two, Mb

q (d) = d log d · Õ(log q). We will use fast multi-point
evaluation and fast computation of derivatives (together with the preceding bounds on Mb

q ).

Lemma 2.1 ([BM74], see also [vzGG13, Chapter 10]). Let d ∈ N, and let q be a prime, or a power
of 2. Then, given a polynomial f ∈ Fq[X] of degree at most d, the following holds.

1. Given a set {α1, . . . , αt} ⊆ Fq, where t ≤ d, one can compute f(α1), . . . , f(αt) in time
O(Mb

q (d) · log d) = d log2 d · Õ(log q).

2. For t ≤ d and α ∈ Fq, one can compute the derivatives f(α), f ′(α), . . . , f (t)(α) in time
O(Mq(d) · log d) = d log2 d · Õ(log q).

Note that when q ≤ 2d, we can bound O(Mq(d) · log d) by Õ(d) · log q.9

For a comprehensive discussion of fast polynomial arithmetic, see Von Zur Gathen and Gerhard’s
book [vzGG13] (and the more recent important developments [HvdH21]).

2.4 Statistical Distance, Entropy

We present some relevant definitions and lemmas about the statistical distance and min-entropy.

Definition 2.2 (statistical distance). The statistical distance between two random variables X and
Y supported on S, denoted by ∆(X,Y ), is defined as

∆(X,Y ) = sup
T ⊆S

|Pr[X ∈ T ]− Pr[Y ∈ T ]| = 1

2

∑
x∈S

|Pr[X = x]− Pr[Y = x]|.

We say that X and Y are ε-close, and write X ≈ε Y , if ∆(X,Y ) ≤ ε.

Definition 2.3 (min-entropy). The min-entropy of a random variable X supported on X , denoted
by H∞(X), is defined as

H∞(X) = − log

(
max
x∈X

Pr[X = x]

)
.

Above, and throughout the paper, we use base-2 logarithms.
8If Fq contains a d-th root of unity, one can get Mq(d) = d log d from the classic FFT algorithm [CT65]. For a

simpler algorithm attaining the bound Mq(d) = d log d loglog d, see [vzGG13, Sections 8,10]. See also [HvdH22] for a
widely-believed conjecture under which Mq(d) = d log d always holds.

9The looser bound of Õ(d) · log q, when q ≤ 2d, is also a bound for an arbitrary Fq, and can be achieved with
simpler algorithms than the ones cited.
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Definition 2.4 (average conditional min-entropy). Let X and Y be two random variables supported
on X and Y, respectively. The average conditional min-entropy of X given Y , denoted by H̃∞(X|Y ),
is defined as

H̃∞(X|Y ) = − log
(
Ey∼Y [2

−H∞(X|Y=y)]
)
.

The following standard lemma gives a chain rule for min-entropy.

Lemma 2.5 (see, e.g., [DORS08]). Let X, Y , and Z be arbitrary random variables such that
|supp(Y )| ≤ 2ℓ. Then,

H̃∞(X|Y,Z) ≥ H̃∞(X|Z)− ℓ.

We can turn the chain rule above into a high probability statement.

Lemma 2.6 (see, e.g., [MW97]). Let X, Y , and Z be random variables such that |supp(Y )| ≤ 2ℓ.
Then,

Pr
y∼Y

[H̃∞(X|Y = y, Z) ≥ H̃∞(X|Z)− ℓ− log(1/δ)] ≥ 1− δ

for any δ > 0.

Definition 2.7 (smooth min-entropy). We say that a random variable X has ε-smooth min-entropy
at least k, denoted by Hε

∞(X) ≥ k, if there exists a random variable X ′ such that X ≈ε X ′ and
H∞(X ′) ≥ k.

2.5 Extractors and Condensers

Definition 2.8 ((n, k)-source). We say that a random variable X is an (n, k)-source if X ∼ {0, 1}n
and H∞(X) ≥ k.

Definition 2.9 (block source). A random variable X is an ((n1, n2, . . . , nt), (k1, . . . , kt))-block
source if we can write X = X1◦X2◦· · ·◦Xt, each Xi ∈ {0, 1}ni , where H̃∞(Xi|X1, . . . , Xi−1) ≥ ki for
all i ∈ [s]. In the special case where ki = αni for all i ∈ [t], we say that X is an ((n1, n2, . . . , nt), α)-
block source.

We say that X is an exact block source if H∞(Xi|X1 = x1, . . . , Xi−1 = xi−1) ≥ ki for any
prefix x1, . . . , xi−1. Lemma 2.6 tells us that any ((n1, . . . , nt), α)-block-source is ε-close to an exact
((n1, . . . , nt), (1− ζ)α)-block-source, where ε =

∑t
i=1 2

−αζni .

Definition 2.10 (seeded extractor). A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε) seeded
extractor if the following holds. For every (n, k)-source X,

Ext(X,Y ) ≈ε Um,

where Y is uniformly distributed over {0, 1}d and is independent of X and Um is uniformly dis-
tributed over {0, 1}m. We say that Ext is strong if Ext(X,Y ) ◦ Y ≈ε Um+d.

Furthermore, Ext is said to be an average-case (k, ε) (strong seeded) extractor if for all correlated
random variables X and W such that X is supported on {0, 1}n and H̃∞(X|W ) ≥ k we have

Ext(X,Y ) ◦ Y ◦W ≈ε Um+d ◦W,

where Y is uniformly distributed over {0, 1}d and is independent of X and Um+d is uniformly
distributed over {0, 1}m+d and independent of W .

Remark 2.11. By Lemma 2.6, every strong (k, ε)-seeded extractor Ext : {0, 1}n×{0, 1}d → {0, 1}m
is also an average-case strong (k′ = k + log(1/ε), ε′ = 2ε)-seeded extractor.
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Definition 2.12 (condenser). A function Cond : {0, 1}n × {0, 1}d → {0, 1}m is a (k, k′, ε) (seeded)
condenser if the following holds. For every (n, k)-source X, Hε

∞(Cond(X,Y )) ≥ k′, where Y is
uniformly distributed over {0, 1}d and is independent of X.

We say that Cond is strong if Y ◦ Cond(X,Y ) is ε-close to some distribution Y ◦D with min-
entropy k′ (and note that here, necessarily, d bits of entropy come from the seed). Finally, we say
that Cond is lossless if k′ = k + d.

We also define extractors tailored to block sources.

Definition 2.13 (block source extractor). A function BExt : {0, 1}n1 × · · · × {0, 1}nt × {0, 1}d →
{0, 1}m is a (k1, . . . , kt, ε) strong block-source extractor if for any ((n1, n2, . . . , nt), (k1, . . . , kt))-
block-source X,

BExt(X,Y ) ◦ Y ≈ε Um+d,

where Y is uniformly distributed over {0, 1}d and is independent of X and Um+d is uniformly
distributed over {0, 1}m+d.

We will also require the following extractors based on the leftover hash lemma and fast hash
functions. We state a result from [TSSR11] which requires seed length d ≈ 2m, where m is the
output length. It is possible to improve the seed length to d ≈ m, but this requires the input length
n to be structured [HT16].

Lemma 2.14 (fast hash-based extractors [TSSR11, Theorem 10], adapted. See also [HT16, Table
I]). For any positive integers n, k, and m and any ε > 0 such that k ≤ n and m ≤ k − 4 log(16/ε)
there exists a (k, ε)-strong seeded extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with seed length d ≤
2(m+ log n+ 2 log(1/ε) + 4). Moreover, Ext can be computed in time O(n log n).

Note that by appending the seed to the output of the extractor, we can get the following: There
exists a constant c such that for any constant θ ≤ 1

3 , d ≥ c log(n/ε) and k ≥ θd+ c log(1/ε), there
exists a strong (k, ε)-seeded extractor Ext : {0, 1}n × {0, 1}d → {0, 1}(1+θ)d.

2.6 Averaging Samplers

In this section we define averaging samplers and state some useful related results and constructions.

Definition 2.15 (averaging sampler). We say that Samp : {0, 1}r → [n]m is a (γ, θ)-averaging
sampler if

Pr
(i1,...,im)∼Samp(Ur)

∣∣∣∣∣∣1t
m∑
j=1

f(ij)− E[f ]

∣∣∣∣∣∣ ≥ θ

 < γ

for every function f : [n] → [0, 1], where E[f ] = 1
n

∑
i∈[n] f(i). We say that Samp has distinct

samples if Samp(x) outputs m distinct elements of [n] for every input x. The parameter θ is
often referred to as the accuracy of the sampler, and γ is its confidence parameter. Moreover, we
sometimes refer to Samp(Ur) ∼ [n]m as a (γ, θ) sampling distribution.

The following lemma gives guarantees on sub-sampling from a weak source using an averaging
sampler.

Lemma 2.16 ([Vad04, Lemma 6.2]). Let δ, γ, τ ∈ (0, 1) be such that δ ≥ 3τ and let Samp : {0, 1}r →
[n]m be a (γ, θ = τ/ log(1/τ))-averaging sampler with distinct samples. Then, for any (n, k = δn)-
source X and Y uniformly distributed over {0, 1}r we have that

Y ◦XSamp(Y ) ≈γ+2−Ω(τn) Y ◦W,

where (W |Y = y) is an (m, k′ = (δ − 3τ)m)-source for every y.
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The “expander random walk” sampler. We will need the following averaging sampler based
on random walks on expanders. Let G be a D-regular graph with vertex set [n]. We assume that the
neighborhood of each vertex is ordered in some predetermined way. Then, the associated averaging
sampler parses its input x as (i1, b1, b2, . . . , bt−1), where i1 ∈ [n] and b1, . . . , bt−1 ∈ [D], and outputs
Samp(x) = (i1, . . . , it), where ij is the bj−1-th neighbor of ij−1 when j > 1. To ensure distinct
samples, we skip repeated vertices.

The performance of Samp as an averaging sampler is determined by the spectral expansion of
G. In fact, if G has spectral expansion θ/2 then a direct application of the expander Chernoff
bound [Gil98] gives that Samp is a (γ, θ)-averaging sampler with t = O(log(1/γ)/θ2) and r =
log n+O(t log(1/θ)) [Vad04, Section 8.2]. We instantiate G with the regular expander graphs from
the following result of Alon [Alo21].

Lemma 2.17 ([Alo21, Theorem 1.2], adapted). Fix any prime p such that p ≡ 1 mod 4. Then,
there is a constant Cp such that for every integer n ≥ Cp there exists a (D = p + 2)-regular graph
Gn on n vertices with spectral expansion λ ≤ (1+

√
2)
√
d−1+o(1)
d , where the o(1) tends to 0 as n → ∞.

Furthermore, the family (Gn)n is strongly explicit.
In particular, for any θ > 0 there exist constants Cθ > 0 and Dθ = O(θ−2) and a strongly

explicit family of Dθ-regular graphs (Gn)n≥Cθ
with spectral expansion λ ≤ θ for any n ≥ Cθ.

Taking the t-th power of a λ-spectral expander improves its expansion to λt. This readily gives
us the following corollary.

Corollary 2.18. For every large enough n, and any λ = λ(n) > 0, there exists a D-regular graph
G = (V = [n], E) with spectral expansion λ, where D = poly(1/λ), and given x ∈ [n] and i ∈ [D],
the y-th neighbor of x can be computed in time log(1/λ) · polylog(n).

Combining the discussion above with Lemma 2.17 (or Corollary 2.18) immediately yields the
following.

Lemma 2.19 ([Vad04, Lemma 8.2], appropriately instantiated). For every large enough integer n
and every θ, γ ∈ (0, 1), there exists a (γ, θ)-averaging sampler Samp : {0, 1}r → [n]t with distinct
samples with t = O(log(1/γ)/θ2) and r = log n + O(t log(1/θ)). Furthermore, Samp is computable
in time O(t · polylog n).

We can extend Lemma 2.19 to output more distinct samples while not increasing r via the
following simple lemma.

Lemma 2.20 ([Vad04, Lemma 8.3]). Suppose that Samp0 : {0, 1}r → [n]t is a (γ, θ)-averaging
sampler with distinct samples. Then, for every integer m ≥ 1 there exists a (γ, θ)-averaging sampler
Samp : {0, 1}r → [m · n]m·t with distinct samples. Furthermore, if Samp0 is computable in time T ,
then Samp is computable in time O(mT ).

Lemma 2.20 follows easily by parsing [m ·t] = [m]× [t] and considering the sampler Samp(x)i,j =
(i,Samp0(x)j) for i ∈ [m] and j ∈ [t]. If we can compute Samp0(x) in time T , then we can compute
Samp(x) in time O(mT ), as desired. The following is an easy consequence of Lemmas 2.19 and 2.20.

Lemma 2.21 ([Vad04, Lemma 8.4], with additional complexity claim). There exists a constant
C > 0 such that the following holds. For every large enough n and θ, γ ∈ (0, 1), there exists a
(γ, θ)-averaging sampler Samp : {0, 1}r → [n]t with distinct samples for any t ∈ [t0, n] with t0 ≤
C log(1/γ)/θ2 and r = log(n/t) + log(1/γ) · poly(1/θ). Furthermore, Samp is computable in time
t · poly(1/θ, log n).

In particular, if θ is constant then t0 = O(log(1/γ)), r = log(n/t) + O(log(1/γ)), and Samp is
computable in time t · polylog n.
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2.7 Standard Composition Techniques for Extractors

We collect some useful classical techniques for composing seeded extractors.

Lemma 2.22 (boosting the output length [WZ99, RRV02]). Suppose that for i ∈ {1, 2} there
exist strong (ki, εi)-seeded extractors Exti : {0, 1}n × {0, 1}di → {0, 1}mi running in time Ti, with
k2 ≤ k1 − m1 − g. Then, Ext : {0, 1}n × {0, 1}d1+d2 → {0, 1}m1+m2 given by Ext(X, (Y1, Y2)) =
Ext1(X,Y1) ◦ Ext(X,Y2) is a strong (k1,

ε1
1−2−g + ε2)-seeded extractor running in time O(T1 + T2).

Lemma 2.23 (block source extraction). Let X = X1◦· · ·◦Xt be an ((n1, . . . , nt), (k1, . . . , kt))-block-
source, and let Exti : {0, 1}ni × {0, 1}di → {0, 1}mi be average-case strong (ki, εi)-seeded extractors
running in time Ti with output length mi ≥ di−1 − di for i ≥ 2. Then, there exists a strong
(k1, . . . , kt, ε =

∑
i∈[t] εi)-block-source extractor BExt : {0, 1}n1 × · · · × {0, 1}nt × {0, 1}dt → {0, 1}m

with output length m = m1 +
∑t

i=2(mi − (di−1 − di)) that runs in time O(
∑

i∈[t] Ti). If X is an
exact block source, then the Exti’s do not need to be average-case.

We discuss how the fast hash-based extractor from Lemma 2.14 can be used to construct a
fast extractor with seed length any constant factor smaller than its output length for high min-
entropy sources. We need the following lemma, which is an easy consequence of the chain rule for
min-entropy.

Lemma 2.24 ([GUV09, Corollary 4.16]). If X is an (n, k = n − ∆)-source and we write X =
X1 ◦ · · · ◦ Xt with |Xi| ≥ n′ for all i ∈ [t], then X1 ◦ · · · ◦ Xt is tε-close to an (n1 = n′, . . . , nt =
n′, k′ = n′ −∆− log(1/ε))-block-source.

The following appears in [GUV09] without the time complexity bound. We appropriately in-
stantiate their approach and analyze the time complexity below.

Lemma 2.25 (fast extractors with seed shorter than output [GUV09, Lemma 4.11]). For every
integer t ≥ 1 there exists a constant C > 0 such that for any positive integer n and ε > 2−

n
50t there

exists a strong (k = (1 − 1
20t)n, ε)-seeded extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with m ≥ k/2

and d ≤ k/t+ C log(n/ε) computable in time O(tn log n).

Proof. Let X be an (n, k = (1 − 1
20t)n)-source and ε′ = ε

2t . Write X as X = X1 ◦ · · · ◦ Xt with
|Xi| = ⌊n/t⌋ = n′ for all i. Then, Lemma 2.24 guarantees that X1 ◦ · · · ◦ Xt is (tε′)-close to an
(n1 = n′, . . . , nt = n′, k′ = n′ − n

20t − log(1/ε′))-block-source X ′. Note that

k′ = n′ − n

20t
− log(1/ε′) ≥ 19n

20t
− 1− log(1/ε′) ≥ 0.9n′,

since we have assumed that ε > 2−
n
50t . Now, let Ext′ : {0, 1}n′ × {0, 1}d → {0, 1}m be the strong

(k′, ε′)-seeded extractor from Lemma 2.14 with output length m =
⌈
k
2t

⌉
≤ k − 4 log(16/ε′) and

corresponding seed length d ≤ k/t+ 4 log(n/ε′) + 9 ≤ k/t+C log(n/ε) for a large enough constant
C > 0 depending only on t. Then, we apply block source extraction (Lemma 2.23) to X ′ with
Ext1 = · · · = Extt = Ext′ to get the desired strong (k, 2tε′ = ε)-extractor Ext with output length
t ·m ≥ k/2 and seed length d. Since Ext′ is computable in time O(n log n), then Ext is computable
in time O(tn log n).

In addition to Lemma 2.22, one can potentially boost the output length of a high min-entropy
extractor by first treating the source as a block sources and then performing a simple block source
extraction. The following corollary follows easily from Lemmas 2.23 and 2.24 (and can also be found
in [Vad04, Section 6]).
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Lemma 2.26. Let Extin : {0, 1}n/2 × {0, 1}ℓ → {0, 1}d and Extout : {0, 1}n/2 × {0, 1}d → {0, 1}m be
(k′, ε)-extractors. Then, for any (n, k = δn)-source X1◦X2, each Xi ∼ {0, 1}n/2, and an independent
uniform Y ∼ {0, 1}ℓ, we have that

Ext((X1, X2), Y ) = Extout(X1,Extin(X2, Y ))

is 4ε-close to uniform, assuming that k′ ≥ (δ− 3
4)n and ε ≥ 2−n/4. In other words, Ext is a (k, 4ε)-

extractor. Moreover, if Extin is strong then Ext is also strong, and if Extin and Extout run in time
T1 and T2, respectively, then Ext runs in time O(T1 + T2).

3 Additional Building Blocks

3.1 Fast Generation of Small-Bias Sets

A set S ⊆ {0, 1}n is ε-biased if the uniform distribution over its elements is indistinguishable from
uniform by every linear test. Namely, if for every nonempty T ⊆ [n] it holds that Prs∼S [

⊕
i∈T si] ∈

[1−ε
2 , 1+ε

2 n]. We say that a linear code C ⊆ {0, 1}n is ε-balanced if the Hamming weight of each
nonzero codeword lies in [1−ε

2 n, 1+ε
2 ]. It is known that these two objects are essentially the same: S

is ε-biased if and only if the |S| × n matrix whose rows are the elements of S is a generator matrix
of an ε-balanced code.

One prominent way of constructing ε-balanced codes is via distance amplification, namely, start-
ing with a code of some bias ε0 ≫ ε and, using a parity sampler, amplify its bias. We will use a
specific, simple, instantiation of a parity sampler – the random walk sampler.

Lemma 3.1 (RWs amplify bias [Ta-17]10). Let C0 ⊆ {0, 1}n be an ε0-balanced code, and let G =
(V = [n], E) be a D-regular λ-spectral expander, and for an even t ∈ N, let Wt = {w1, . . . , wn̄} ⊆ [n]t

be the set of walks of length t on G, noting that n̄ = n ·Dt. Define C ⊆ {0, 1}n̄ such that

C = {dsumWt(c0) : c0 ∈ C0},

where y = dsumWt(x) at location i ∈ [n̄] is given by
⊕

j∈wi
xj.

Then, C is ε-balanced, for
ε = (ε0 + 2λ)t/2.

For C0, we will use the Justesen code.

Lemma 3.2 ([Jus72]). There exist constants R ∈ (0, 1) and ε0 ∈ (0, 1) such that there exists
an explicit family of codes {Jusn}, each of which has block length n, rate R, and is ε0-balanced.
Moreover, given x ∈ {0, 1}k=Rn, Jusn(x) can be computed in Õ(n).

Proof. The parameters of the codes follow from the original construction (and specifically, the lemma
holds, say, with R = 1

8 and ε0 = 37
40), so we will just show that the code is efficiently computable.

Given a message x, we first encode it with a full Reed–Solomon code of constant relative distance
over a field Fq of characteristic 2, where q log q = O(n). By Lemma 2.1, this can be done in time
Õ(q) = Õ(n). Then, we encode with polynomial evaluation px(α), for α ∈ Fq, with the binary
representation of (p(α), α · p(α)). This takes Õ(q) time as well.

10The argument for t = 2 was suggested already by Rozenman and Wigderson (see [Bog12]).
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Corollary 3.3. There exist a constant c > 1, and an explicit family of balanced codes, such that
for every n̄ ∈ N and any ε > 0, C ⊆ Fn̄

2 is ε-balanced of rate R = εc, and given x ∈ Fk=Rn̄
2 , any m

bits of C(x) can be computed in time Õ(n) +O(m log(1/ε) log n loglog n).
Moreover, for every k ∈ N and any ε > 0 there exists an explicit ε-biased set over Fk

2 generated
by a function SmallBias : [n̄] → {0, 1}k computable in time (k + log(1/ε)) · Õ(log k).

Proof. Let C0 : Fk=Θ(n)
2 → Fn

2 be the ε0-balanced code guaranteed to us by Lemma 3.2, and let
G = (V = [n], E) be the D-regular λ-spectral expander of Corollary 2.18, instantiated with λ = 1−ε0

4
(so D = D(ε0)). Letting C : Fk

2 → Fn̄
2 be the amplified code of Lemma 3.1 set with

t =
2 log(1/ε)

log
(
1+ε0
2

) = O(log(1/ε)),

the lemma tells us that it is (ε0 + 2λ)t/2 ≤ ε balanced. Given x ∈ Fn
2 and i ∈ [n̄], computing

C(x)i amounts to XORing t coordinates of C0(x) determined by i = (v, i1, . . . , it), which indexes a
random walk over G. Computing C0(x) takes Õ(n) time, and computing a length-t walk over G
takes t ·O(log(1/λ) · log n · loglog n) time. The corollary then follows, observing that n̄ = n ·Dt =
n · poly(1/ε), and that

Õ(n) +m · t ·O(log n · loglog n) = Õ(n) +m · log(1/ε).

For the “Moreover” part, recall that we can take the rows of the generator matrix of C as
our ε-biased set S. Thus, for any i ∈ [n̄], we can compute SmallBias(i) as follows: Compute the
corresponding random walk on G, and then, for any j ∈ [k], SmallBias(i)j is obtained by XORing the
bits of C0(ej) indexed by the i-th random walk. Observing that each bit of C0(ej) can be computed
in time Õ(log n),11 the runtime of SmallBias is

t ·O(log(1/λ) · log n · loglog n) + k · Õ(log n) = (k + log(1/ε)) · Õ(log k).

Remark 3.4. Instead of using Justesen’s code from Lemma 3.2 as our inner code C0, we can instead
use the linear-time encodable code of Spielman [Spi96]. While not stated as balanced codes, but
rather as constant relative distance codes, one can verify that the distance can also be bounded by
above. The construction is more involved than Justesen’s one. However, in the logarithmic-cost
RAM model, in which basic register operations over O(log n) bit registers count as a single time
step, Spielman’s code can be implemented in O(n) time.

3.2 A Sampler from Bounded Independence

Recall that X1, . . . , Xn ∼ Σn is a (b, ε)-wise independent distribution, if for every distinct i1, . . . , ib ∈
[n] it holds that (Xi1 , . . . , Xib) is ε-close to the uniform distribution over Σb. Given our efficiently
generated small biased spaces, we can efficiently generate almost b-wise independent sample spaces
as well.

Lemma 3.5. For any positive integers n, m ≤ n, and b ≤ m, and any ε > 0, there exists an explicit
(b, ε)-wise independent generator BIb,ε : {0, 1}d → [n]m with d = O(b log n+ log(1/ε)). That is, the
distribution formed by picking z ∼ Ud and outputting BIb,ε(z) is (b, ε)-wise independent over [n]m.
Moreover,

1. Given z ∈ {0, 1}d, BIb,ε(z) is computable in time Õ(n).
11Indeed, each coordinate of C0(ej) is a bit in the encoding of (αj , αj+1) for some α ∈ Fq, where q log q = O(n).
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2. Assume that θ ∈ (0, 1/4) is such that ε ≤ θ · n−b/2. Then, with probability at least 1− 2−Ω(θb)

over z ∼ Ud, BIb,ε(z) has at least m− (1 + 4θ)m
2

n distinct elements.

Proof. Let q = 2⌈logn⌉, and set γ = ε · 2−
b log q

2 and nb = n log q. Let Sb ⊆ {0, 1}nb denote the
γ-biased set that is guaranteed to us by Corollary 3.3 and let S ⊆ [q]n be the set that corresponds
to treating each consecutive log q bits as an element of [q].12 By the XOR lemma, S is (b, ε)-biased
over [q]n. Moreover, log |S| = O(log(1/ε)+k log q+logn) = O(log(1/ε)+b log n), and each element
of S can be generated in time

(nb + log(1/γ)) · Õ(log nb) = Õ(n) + (b+ log(1/ε)) · Õ(log n) = Õ(n),

where the last equality follows since we can always assume that ε ≥ m−n. Notice that ignoring the
last n−m symbols of each element of S still preserves the above properties, which indeed gives rise
to an efficiently samplable (b, ε)-wise independent sample space over [q]m.

Next, we argue that most samples contain mostly distinct elements. Towards this end, let
X1, . . . , Xm be our (b, ε)-wise independent distribution BIb,ε(Ud), and let Zi denote the indicator
random variable that is 1 if and only if Xi is a duplicate element (namely, there exists j < i such
that Xi = Xj). We are looking to bound

∑
i∈[m] Zi with high probability.

Claim 3.6. Assume that t ≤ b/2 and ε ≤ θq−t for some θ > 0. Then, for any distinct i1, . . . , it ∈
[m], it holds that Pr[Zi1 = . . . = Zit = 1] ≤ (1 + θ)(m/q)t.

Proof. Fix indices j1, . . . , jt, where each jℓ < iℓ. The probability that Xiℓ = Xjℓ for all ℓ ∈ [t] is at
most q−t + ε ≤ (1 + θ)q−t, since this event depends on at most 2t ≤ b random variables. Union-
bounding over all choices of j-s incurs a multiplicative factor of

∏
ℓ∈[t](iℓ − 1) ≤ mt, so overall,

Pr[Zi1 = . . . = Zit = 1] ≤ (1 + θ)(m/q)t.

Now, Claim 3.6 is sufficient to give us good tail bounds (see, e.g., [HH15, Section 3]). In
particular, denoting µ = (1 + θ)mq there exists a universal constant c > 0 such that

Pr

∑
i∈[m]

Zi ≥ (1 + θ)µm

 ≤ 2−cθb,

which implies Item 2 when n = q. Finally, we need to argue that we can also handle the case
where n is not a power of 2 (and so q > n). In this case, we can take our γ-biased set to be over
nb = ⌈ε−1 log n⌉n bits, and each consecutive ⌈ε−1 log n⌉ bits are mapped to [n] by simply taking
the corresponding integer modulo n. The correctness can be found, e.g., in [Rao07].

Towards introducing our sampler, we will need the following tail bound for (b, ε)-wise indepen-
dent random variables.

Lemma 3.7 ([XZ24]). Let X ∼ Σm be a (b, γ)-wise independent distribution, and fix some ε > 0.
Then, X is also a (δ, ε) sampling distribution, where

δ =

(
5
√
b

ε
√
m

)b

+
γ

εb
.

12Since we won’t care about optimizing the dependence on n, we do not pre-encode using a bounded-independence
generator (as in, say, [NN90, AGHP92]).
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While the error in Item 2 above is small, it is not small enough for us to simply combine
Lemmas 3.5 and 3.7, and we will need to do a mild error reduction. We do this via random walks
on expanders and discarding repeating symbols, as was also done in [Vad04]. This gives us the
following bounded-independence based sampler.

Lemma 3.8. For any positive integers m ≤ n, any δΓ ∈ (0, 1), and any constant η ∈ (0, 1) such that
m ≤ η

8n, there exists an explicit (δΓ, εΓ = 2η) sampler Γ: {0, 1}d → [n]m with d = O
(

logn
logm · log 1

δΓ

)
,

that satisfies the following additional properties.

1. Every output of Γ contains distinct symbols of [n], and,

2. Given y ∈ {0, 1}d, Γ(y) is computable in time Õ(n+ log2 1
δΓ

· logn
logm).

Proof. Set b to be the smallest integer such that b log η
√
m

5
√
b
≥ log 8

δΓ
, set m′ = (1 + η)m, θ = η/4,

and γ = min
{
1
8η

b · δΓ, θ · n−b/2
}
. Notice that b = O

(
log(1/δΓ)
logm

)
and log 1

γ = O
(

logn
logm · log 1

δΓ

)
. Let

BIb,γ : {0, 1}d
′
→ [n]m

′

be the (b, γ)-wise independent generator guaranteed to us by Lemma 3.5, with d′ = O(b log n +
log(1/γ)) = O(log(1/γ)). By Lemma 3.7, X = BIb,ε(Ud′) is a (δb, η) sampling distribution, where

δb =

(
5
√
b

η
√
m′

)b

+
γ

ηb
≤ δΓ

8
+

δΓ
8

≤ δΓ
4
.

Also, we know from Lemma 3.5 that with probability at least 1−2−Ω(θb) ≜ 1−p, each sample from X

has at least m′− (1+4θ)m
′2

n ≥ m distinct symbols, using the fact that n
m ≥ (1+η)3

η . Conditioned on
seeing at least m distinct symbols, X as a sampling distribution, when we remove the non-distinct
elements, has confidence δΓ/4

1−p ≤ δΓ
2 and accuracy 2η (where the second η comes from the fact that

ηm symbols were removed).
Next, in order to improve the probability of sampling a good sequence, let G = (V = {0, 1}d

′
, E)

be the D-regular λ-spectral expander of Corollary 2.18, instantiated with λ = p, so D ≤ p−c for some
universal constant c. Write d = d′ + ℓ′ for ℓ′ = ℓ · logD, where ℓ = cℓ · log(1/δΓ)

b for some constant
cℓ soon to be determined. Given y = (z, w) ∈ {0, 1}d

′
× [D]ℓ, let z = v0, v2, . . . , vℓ denote the

corresponding random walk over G. Our sampler Γ, on input y, computes BIb,γ(vi) and outputs the
first sequence with at least m distinct symbols. If no such sequence was found, Γ simply outputs
(1, . . . ,m) (in which case we say it failed). By the expander hitting property (see, e.g., [Vad12,
Section 4]), Γ fails with probability at most

(p+ λ)ℓ = (2p)ℓ ≤ δΓ
2

over y ∼ Ud, upon choosing the appropriate constant cℓ = cℓ(η). We then have that Γ(Ud) is indeed
a (δΓ, 2η) sampling distribution, that can be generated using a seed of length d′+ ℓ′ = O(log(1/γ)).
In terms of runtime, computing v1, . . . , vℓ can be done in time

ℓ · log 1

p
· Õ(d′) = Õ

(
log2

1

δΓ
· log n
logm

)
,

and computing the sequences themselves takes ℓ · Õ(n) time. Observing that ℓ = O(logm), the
proof is concluded.
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We will need to somewhat extend Lemma 3.8 and use the simple, yet crucial, property of our
bounded independence sampling: A subset of the coordinates of a (b, ε)-wise independent distri-
bution with distinct samples is itself a (b, ε)-wise independent distribution with distinct samples.13

Thus, if we wish to sample multiple times, say using m1 ≤ . . . ≤ mt < n samples, we can use one
sample from a sampler that outputs mt coordinates, and truncate accordingly to create the other
samples. We only need to note that: (1) the sampling parameters are determined by the different
mi-s (and in particular, m1 should be large enough), and (2) mt needs to be small enough compared
to n, so that we can get enough distinct symbols. We summarize this observation in the next lemma.

Lemma 3.9. For any positive integers n and m1 < . . . < mt ≤ n, any δ ∈ (0, 1) and any constant ε
such that mt ≤ ε

16n, there exists an explicit function Γ: {0, 1}d → [n]mt with d = O
(

logn
logm1

· log 1
δΓ

)
that satisfies the following.

1. For any i ∈ [t], the function Γi, that on input y ∈ {0, 1}d outputs Γ(y)|[1,mi], is a (δ, ε) sampler,
and each sample contains distinct symbols.

2. On input y ∈ {0, 1}d, Γ(y) can be computed in time Õ(n+ log2(1/δ)).

3.3 Nearly-Linear Time Condensers

We first give the condenser based on multiplicity codes, due to Kalev and Ta-Shma [KT22].

Theorem 3.10 (the lossless KT condenser, [KT22]). For any constant α ∈ (0, 1) the following
holds, for every n ∈ N, and any 0 < ε ≤ 1

n and k ≥ 256
α2 log2 n

ε . There exists an explicit strong
(k, k′ = k + ℓ, ε)-condenser

KTCond : {0, 1}n × {0, 1}ℓ → {0, 1}m

where ℓ =
(
1 + 1

α

)
log nk

ε = Oα(log
1
ε ) and m = (1+α)k. Note that the output entropy rate satisfies

k′

m ≥ 1− α. Moreover, given x ∈ {0, 1}n and y ∈ {0, 1}ℓ, the output KTCond(x, y) can be computed
in Õ(n) time.

In particular, if ε′ =
√
ε, then for all (n, k)-sources X and a (1− ε′)-fraction of seeds y it holds

that KTCond(X, y) ≈ε′ Zy, where Zy is an (m = (1+α)k, k′− ℓ = k ≥ (1−α)m)-source. Note that
the seed length is ℓ = Oα(log

1
ε′ ).

Proof. For the first part of the theorem statement we only need to establish the construction’s
runtime. Given x ∈ {0, 1}n and y ∈ {0, 1}ℓ, set a prime p = polyα(

n
ε ),

14 and interpret x as a
polynomial fx ∈ Fq[X] of degree at most d− 1, and y as an element of Fp. Thus, n = d log q, and
we can safely ignore rounding issues, which can easily be addressed. The output KTCond(x, y) is
the sequence of derivatives (

f(y), f ′(y), . . . , f (m′)(y)
)
,

where m′ = m
log q . By Lemma 2.1, computing the derivatives takes Õ(d) · log p = Õ(n) time. The

rest of the auxiliary operations are negligible compared to computing the derivatives.
To see the “In particular” part of the theorem statement, fix an (n, k)-source X and note that

Y ◦ KTCond(X,Y ) ≈ε Y ◦ Z for some Z such that H∞(Y ◦ Z) ≥ k′. Let Zy = (Z|Y = y). Then,
an averaging argument gives that for a (1−

√
ε)-fraction of seeds y we have RSCond(X, y) ≈√

ε Zy.
Since Y is uniformly random over {0, 1}ℓ, we get that H∞(Zy) ≥ k′ − ℓ, as desired.

13We note that the distinct-samples sampler given in [Vad04] does not seem to enjoy a similar property.
14More precisely, they set h = (2nk/ε)1/α, and take p to be a prime between 1

2
h1+α and h1+α.

18



The downside of Theorem 3.10 is that it requires the entropy in the source to be Ω(log2(1/ε)),
instead of the optimal Ω(log(1/ε)). Instead, we can use a lossy condenser15 based on Reed–Solomon
codes. Unfortunately, this comes at the expense of computing a generator of a field of size poly(1/ε),
which we do not know how to do in nearly-linear time for arbitrary ε-s. We consider it a one-time
preprocessing step, as it does not depend on the inputs to the condenser.

Theorem 3.11 (the lossy RS condenser, [GUV09]). For any constant α ∈ (0, 1) the following
holds, for every n ∈ N, and any 0 < ε ≤ 1

n and k ≥ (2+α) log(1/ε). There exists an explicit strong
(k, k′, ε)-condenser

RSCond : {0, 1}n × {0, 1}ℓ → {0, 1}m

where ℓ =
(
1 + 1

α

)
log nk

ε = Oα(log
1
ε ), m = k, and k′ = k−log(1/ε)

1+α + ℓ ≥ (1 − α)k. Note that the
output entropy rate satisfies k′

m ≥ 1− 2α. Moreover, given x ∈ {0, 1}n, y ∈ {0, 1}ℓ, and a primitive
element for F2ℓ, the output RSCond(x, y) can be computed in time Õ(n).

In particular, if ε′ =
√
ε and k ≥ log(1/ε)

α(1+2α) , then for all (n, k)-sources X and a (1 − ε′)-fraction
of seeds y it holds that RSCond(X, y) ≈ε′ Zy, where Zy is an (m = k, k′ − ℓ ≥ (1 − 2α)m)-source.
Note that the seed length is ℓ = Oα(log

1
ε′ ).

Proof. We set q = 2ℓ, and let ζ ∈ Fq be the generator of the multiplicative group F⋆
q given to us as

input.16 Given x ∈ {0, 1}n and y ∈ {0, 1}ℓ, similarly to Theorem 3.10, interpret x as a univariate
polynomial fx of degree at most d − 1, and y as an element of Fq. The output Cond(x, y) is the
sequence of evaluations (

f(y), f(ζy), . . . , f(ζm
′
y)
)
,

where m′ = m
log q .

The correctness proof, as well as the exact choice of parameters, are given in [GUV09, Section
6], so we proceed to bounding the runtime. Towards that end, since we rely on a specific primitive
element ζ, we assume that the irreducible polynomial used to construct Fq is known, either (and
there are several ). Computing the evaluation points y, ζy, . . . , ζm′

y can then be done naively in time
m′ ·Mb

q (ℓ) = Õ(n). Then, using Lemma 2.1, the evaluation can be done in time Õ(d) · log q = Õ(n)
as well.

The “In particular” part of the theorem statement follows analogously to that of Theorem 3.10,
using also the fact that if k ≥ log(1/ε)

α(1+2α) , then k′ − ℓ = k−log(1/ε)
1+α ≥ (1− 2α)k = (1− 2α)m.

4 A Faster Instantiation of Trevisan’s Extractor

We first recall Trevisan’s extractor [Tre01, RRV02], Tre : {0, 1}n × {0, 1}d → {0, 1}m, set to some
designated error ε > 0. We will need the notion of weak designs, due to Raz, Reingold, and
Vadhan [RRV02].

Definition 4.1 (weak design). A collection of sets S1, . . . , Sm ⊆ [d] is an (ℓ, ρ)-weak design if for
all i ∈ [m] we have |Si| = ℓ and ∑

j<i

2|Si∩Sj | ≤ ρ(m− 1).

15Our extractor will lose a small constant fraction of the entropy, so losing a small constant fraction of the entropy
in the condensing step will not make much difference.

16Working with fields of characteristic 2 is not necessary, but may help in efficiently computing ζ. For example,
Shoup [Sho90] showed that given an irreducible polynomial f ∈ F2[X] of degree at most d−1, there exists a primitive
element h ∈ F2[X]/⟨f⟩ of F2[X]/⟨f⟩ ≡ F2d such that h is a monic polynomial of degree O(log d).

19



We will also need a δ-balanced code C : {0, 1}n → {0, 1}n̄. The parameters of the weak design
affect the extractor’s parameters and can be set in a couple of different ways. The parameter ℓ is
set to be log n̄, typically ρ is chosen according to m, ε, and the desired entropy k, and then d is
chosen as a function of ℓ, m, and ρ according to the weak design (see [RRV02]). Given x ∈ {0, 1}n
and y ∈ {0, 1}d, Trevisan’s extractor outputs

Tre(x, y) = x̄|yS1
◦ . . . ◦ x̄|ySm

, (1)

where we denote x̄ = C(x) and interpret each length-log n̄ bit-string ySi as a location in [n̄]. For the
runtime analysis, it will be important to recall that δ is set to be ε

cm for some universal constant c.

Theorem 4.2. Trevisan’s extractor of Equation (1), set to extract m bits with any error ε > 0, is
computable in time Õ(n+m log(1/ε)).

On a RAM in the logarithmic cost model, Trevisan’s extractor is computable in time O(n) +
m log(1/ε) · polylog(n) with a preprocessing time of Õ(m log(n/ε)). In particular, there exists a
universal constant c, such that whenever m ≤ n

logc(n/ε) , it runs in time O(n), without the need for a
separate preprocessing step.

Proof. Looking at Equation (1), note that we only need to compute m coordinates of C(x). To
compute those m coordinates, yS1 , . . . , ySm , we first need to compute the weak design itself. Note
that this can be seen as a preprocessing step, since it only depends on the parameters of the
extractor, and not on x or y. We will use the following result.

Claim 4.3 ([FYEC24], Section A.5). For every ℓ,m ∈ N and ρ > 1, there exists an (ℓ, ρ)-weak
design S1, . . . , Sm ⊆ [d] with d = O( ℓ2

log ρ), computable in time Õ(mℓ).

Once we have our preprocessing step, we are left with computing the code. By Corollary 3.3,
we can choose n̄ so that n/n̄ = δc for some universal constant c, and so n̄ = n · poly(m, 1/ε) and
ℓ = log n̄ = O(log(n/ε)). Generating the design can then be done in time Õ(m log(n/ε)). Now,
Corollary 3.3 tells us that any m bits of C(x) can be computed in time

Õ(n) +O(m log(1/δ) log n loglog n) = Õ(n+m log(1/ε)).

On a RAM in the logarithmic cost model, we can use the variant of C that uses Spielman’s code
as a base code (see Remark 3.4) and get a runtime of O(n) +m log(1/ε) · polylog(n). This gives a
truly linear time construction whenever m is at most n

log(1/ε) polylog(n) .

We conclude by noting that there is a natural setting of parameters under which Trevisan’s
extractor gives logarithmic seed and linear (or near-linear) time. When m = kΩ(1), the parameters
can be set so that d = O

(
log2(n/ε)

log k

)
. We thus have the following corollary.

Corollary 4.4. For every n ∈ N, any constant c > 1, and any constants α, β ∈ (0, 1), Trevisan’s
extractor Tre : {0, 1}n × {0, 1}d → {0, 1}m can be instantiated as a (k = nα, ε = n−c) extractor with
d = O(log n), m = kβ, and given x ∈ {0, 1}n and y ∈ {0, 1}d, Tre(x, y) is computable in time Õ(n)
(or O(n) time, depending on the model).

5 Nearly-Linear Time Extractors with Order-Optimal Seed Length

5.1 A Non-Recursive Construction

In this section, we use the various previously introduced building blocks to construct a seeded
extractor with order-optimal seed length O(log(n/ε)) computable in time Õ(n). In a nutshell, our
extractor proceeds as follows on input an (n, k)-source X:
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1. Using a fresh seed, apply the lossless KT condenser from Theorem 3.10 to X. This yields an
(n′, k)-source X ′ of length n′ ≈ k and constant entropy rate δ which can be arbitrarily close
to 1.

2. Using the fact that X ′ has high min-entropy rate, use the bounded-independence sampler
from Lemma 3.9 to sample subsources from X ′ using a fresh seed. Specific properties of the
bounded-independence sampler allow us to obtain a block source Z = Z1 ◦Z2 ◦ · · · ◦Zt with a
seed of length only O(log(1/ε)). The number of blocks is t = O(log n) and the blocks Zi have
geometrically increasing lengths, up to an nα length threshold.

3. Now, to prepare for the hash-based iterative extraction, we need to make our blocks decreasing.
Again, using a short seed, of length O(log(n/ε)), we transform Z into S = S1 ◦ · · ·St, where
the blocks are now geometrically decreasing. The blocks lengths will vary from nβ1 to some
nβ2 , for some constants β1 > β2.

4. Using a fresh seed, apply the fast hash-based extractor from Lemma 2.14 to perform block
source extraction from S. Noting that the first block has length nΩ(1), the block source
extraction only outputs nΩ(1) bits. We are able to use only O(log(n/ε)) random bits here,
since we do not output nΩ(1) bits already at the beginning of the iterative extraction process,
but instead output logarithmically many bits, and gradually increasing the output length.

These steps will culminate in the following theorem.

Theorem 5.1 (non-recursive construction). There exists a constant c ∈ (0, 1) such that for every
positive integers n and k ≤ n, any ε ≥ 2−kc , and any constant η ∈ (0, 1), there exists a strong (k, ε)
extractor

Ext : {0, 1}n × {0, 1}d → {0, 1}m,

where d = O(log(n/ε)), and m = (1− η)k. Moreover, given inputs x ∈ {0, 1}n and y ∈ {0, 1}d, we
can compute Ext(x, y) in time Õ(n).

5.1.1 Item 2: Generating the block source

Because of the initial condensing step, we will assume from here onwards that our input source X is
an (n, k = δn)-source with constant δ. In order to generate the desired block source, we first use a
fresh seed Y as input to an appropriate instantiation of the bounded-independence sampler Γ from
Lemma 3.9. This yields a tuple of coordinates Γ(Y ) = j1, . . . , jmt from [n], such that Γ(Y )|[1,mi] is
an appropriate averaging sampler for every i. Then, we use these coordinates to sample subsources
from X ∼ {0, 1}n, and get a block source with increasing blocks.

Lemma 5.2 (sampling a block source). There exists a deterministic procedure that given an (n, k)-
source X with k ≥ δn, δ being constant, and:

• A constant loss parameter ζ ∈ (0, 1),

• A closeness parameter ε ∈ (0, 1) that satisfies ε ≥ 2−cεn where cε = cε(ζ, δ) is constant,

• Number of desired blocks t ∈ N,

• A final, maximal, block length ∆t ≤ ct · n where ct = ct(ζ, δ) is constant, and,
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takes an independent and uniform random seed Y ∼ {0, 1}dsamp and outputs a random variable Z
that is ε-close to a

((∆1, . . . ,∆t), (1− ζ)δ)

block-source, where each ∆i−1 = α ·∆i for α = ζδ
4 . Moreover, the seed length d = O

(
logn
log∆1

· log t
ε

)
,

and the procedure runs in time Õ(n+ log2(t/ε)).
Note that for any constants 0 < θ1 < θ2 < 1, and any ε = Ω(2−

√
n), we can have ∆t = nθ2 and

∆1 = nθ1 for some t = O(log n), with seed length O(log(1/ε)) and runtime Õ(n).

Proof. Given our ∆1, . . . ,∆t, we let mi =
∑i

j=1∆j for j ∈ [t]. Note that for i ∈ [t − 1], each
mi =

∑i
j=1∆j ≤ α

1−α∆i+1, so in particular

mt = mt−1 +∆t ≤
α

1− α
∆t +∆t ≤ n,

by choosing the constant ct appropriately. Let Γ: {0, 1}dsamp → [n]mt be the (γ, εΓ) sampler of
Lemma 3.9, set with εΓ = 1

log( 6
ζδ

)
· ζδ

6 = O(1) and γ = ε
2t . Note that then,

dsamp = O

(
log n

logm1
· log 1

γ

)
= O

(
log n

log∆1
· log t

ε

)
,

and indeed mt ≤ εΓ
16 · n can be met by, again, setting the constant ct appropriately. Moreover, we

have that for any i ∈ [t],
Wi = Γ(Y )|[1,mi]

is a (γ, εΓ) sampler, where w ∼ Wi has distinct symbols. Set β = ζ
2 .

Now, Lemma 2.16, instantiated with τ = βδ
3 (notice that indeed εΓ ≤ τ

log(1/τ)), tells us that for

every i ∈ [t], denoting Ai = XWi , there exists a set Bi ⊆ {0, 1}dsamp of bad y-s of density at most
γ + 2−Ω(τn), such that for any y /∈ Bi,

Ai|{Y = y} ∼ {0, 1}mi

has entropy rate δ − 3τ ≥ (1 − β)δ for every y. Letting Z = At, union-bounding over the bad
y-s tells us that Z is t · (γ + 2−Ω(n)) ≤ ε close to some Z ′ ∼ {0, 1}mt such that for any i ∈ [t],
Z ′
i = Z ′

[1,mi]
∼ {0, 1}mi has entropy rate (1− β)δ.

Next, we apply the chain rule for min-entropy to argue that Z ′ (and hence Z) is close to a block
source. To do that, we apply the chain rule for min-entropy t− 1 times. For simplicity, abbreviate
Z(i) = Z ′

[mi−1+1,mi]
(so note that Z ′

i is the longer block, Z ′
[1,mi]

, whereas Z(i) is its length-∆i suffix),
so

Z ′ =
(
Z(1), Z(2), . . . , Z(t)

)
.

We will argue that Z ′ is a block source. Applying Lemma 2.5, we know that for any i ∈ [t],

H̃∞

(
Z(i) | Z(1), . . . , Z(i−1)

)
≥ H∞(Z(i))−

i−1∑
j=1

∆j = H∞(Z(i))−mi−1 ≥ H∞(Z(i))− α

1− α
∆i.

Now, Z ′
i = (Z ′

i−1, Z
(i)), so H∞(Z(i)) ≥ H∞(Z ′

i)−mi−1, and notice that

(1− β)δ ·∆i −mi−1 ≥ (1− β)δ ·∆i −
α

1− α
∆i ≥ (1− ζ)δ ·∆i,

where we used the fact that α ≤ (ζ−β)δ
1−(ζ−β)δ .

The bound on the runtime follows easily, recalling that Γ runs in time Õ
(
n+ log2(1/γ)

)
.

22



5.1.2 Item 3: Subsampling from the block source

To apply iterative extraction, we will our block source to have decreasing blocks. Here, we will use
a sampler to sample from each block, using the same seed accross the blocks.

Lemma 5.3 (subsampling from a block source). There exists a deterministic procedure that given
a

((∆1, . . . ,∆t), δ)

block-source Z = (Z1, . . . , Zt), for every ∆1 ≤ . . . ≤ ∆t and a constant δ, and:

• A constant shrinkage parameter α ∈ (0, 1),

• A constant loss parameter ζ ∈ (0, 1),

• A closeness parameter ε ∈ (0, 1),

• An initial, maximal, block length ℓ1 ≤ ∆1, and,

takes an independent and uniform random seed Y ∼ {0, 1}dsamp and outputs a random variable S
that is ε-close to a ((ℓ1, . . . , ℓt), (1− ζ)δ) block-source, where each ℓi+1 = α · ℓi, and assuming that
ℓt ≥ c1 log(t/ε) where c1 = c1(ζ, δ) is a constant. Moreover, the seed length d = log ∆t

ℓ1
+O
(
t+ log 1

ε

)
,

and the procedure runs in time polylog(∆t) · ℓ1.
Note that when ∆1 = nθ1 and ℓt = nβ for some constants 0 < β < θ1 < 2, dsamp = O(log(n/ε)),

the procedure runs in time O(n), and we can take any ε ≥ 2−c·ℓt for some constant c that depends
on ζ and δ.

Proof. For i ∈ [t], let mi =
∑i

j=1 ℓi, recalling that ℓi = αi−1ℓ1. For each i ∈ [t], let Γi : {0, 1}di →
[∆i]

ℓi be the (γ, εΓ) be the distinct-samplers sampler of Lemma 2.21, where γ = ε
2t and εΓ =

1
log( 6

ζδ
)
· ζδ

6 = O(1). We need to make sure that each ℓi ≥ c · log(1/γ)
ε2Γ

for some universal constant c,

and indeed that is the case, by our constraint on ℓt. Also, di = log(∆i/ℓi) + O(log 1
γ · poly(1/εΓ))

and we set dsamp to be the maximal over the di-s, so

dsamp = dt = log
∆t

ℓ1
+ t · log 1

α
+O

(
log

t

ε

)
.

We denote the corresponding samples by Wi = Γi(Y |[1,di]), and let Si = Zi|Wi . Setting ε′i =

2−(ζ/2)δ∆i and observing that δ∆i = (1 − ζ
2)δ∆i + log(1/ε′i), we get that Z is ε′ =

∑
i ε

′
i close to

some Z ′, an exact ((∆1, . . . ,∆t), (1 − ζ)δ)-source. From here onwards, assume that Z is the exact
block source, and aggregate the error.

Next, we invoke Lemma 2.16 with τ = ζδ
6 (notice that indeed εΓ ≤ τ

log(1/τ)), and get that for

every i ∈ [t], and zpre ∈ {0, 1}∆1+...+∆i−1 ,

Si | {(Z1, . . . , Zi−1) = zpre}

is ε′′i = γ +2−Ω(τ∆i)-close to having min-entropy (1− ζ
2)

2δ · ℓi ≥ (1− ζ)δ · ℓi. Thus, in particular, it
holds if we condition on any sample from (S1, . . . , Si−1), and so we have that for every i ∈ [t],

(S1, . . . , Si−1, Si) ≈ε′′i

(
S1, . . . , Si−1, S

′
i

)
,
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where S′
i has (1− ζ)δ entropy rate. This means17 that (S1, . . . , St) has distance

ε′ +
t∑

i=1

ε′′i ≤ t · (ε′1 + ε′′1) ≤ ε

from an ((ℓ1, . . . , ℓt), (1−ζ)δ) block source, where we used the fact that the 2−Ω(τ∆1) and 2−(ζ/2)δ∆1

terms are at most ε
4t , which follows from the fact that c1 log(t/ε) ≤ ∆1 for a suitable choice of c1.

To establish the runtime, note that we simply apply Γi for each i ∈ [t], which takes

t∑
i=1

ℓi · polylog(∆i) = polylog(∆t) · ℓ1

time. This concludes our lemma.

5.1.3 Item 4: Applying a block source extractor

We now wish to extract from our decreasing-blocks block source, and for that we combine Lem-
mas 5.2 and 5.3 with the block source extraction of Lemma 2.23, which will give us a nearly
linear-time logarithmic-seed extractor that outputs nΩ(1) bits. For the Exti-s in Lemma 2.23, we
will use the fast hash-based extractors from Lemma 2.14.

Lemma 5.4. There exists a small constant c > 0 such that the following holds. For every large
enough n, any constant δ ∈ (0, 1), any k ≥ δn, and any ε ≥ 2−nc, there exists a (k, ε) extractor

Extshort : {0, 1}n × {0, 1}d → {0, 1}m

where d = O(log(n/ε)), and m = nc. Moreover, given inputs x ∈ {0, 1}n and y ∈ {0, 1}d, we can
compute Extshort(x, y) in time Õ(n).

Proof. Let X be an (n, k = δn)-source. Set ε′ = ε/3, θ1 = 8/10, θ2 = 9/10, and ζ = 1/10. We
first apply Lemma 5.2 with ∆t = nθ2 , ∆1 = nθ1 , and error ε′, where t = O(log n) is as guaranteed
from the lemma’s statement. This requires a seed of length d1 = O(log(1/ε′)) = O(log(1/ε)), and
in time Õ(n) we output a random variable Z1 which is ε′-close to a ((∆1, . . . ,∆t), (1 − ζ)δ) block
source. Assume that Z1 is exactly a block source, and aggregate the error.

Set β = 7/10, and γ = 6/10 < β. Set α to be the constant such that nβ · αt−1 = nγ . We then
apply Lemma 5.3 on Z1 with that α, the same ζ, closeness ε′ and an initial block length ℓ1 = nβ .This
gives us a random variable Z2 that is 2ε′-close to a(

(ℓ1 = nβ, . . . , ℓt = nγ), δ′ ≜ (1− ζ)2δ
)

block source, requires a seed of length d2 = O(log(n/ε′)) = O(log(n/ε)), and runs in time O(n).
Again, assume that Z2 is exactly a block source, and aggregate the error.

For our next and final step, set d3 = cE log(ℓt/εExt) where cE is the constant guaranteed by
Lemma 2.14. Also, let εExt = ε′

6t , and θ will be a constant whose value will be later determined. We
will use the following extractors:

17In what follows, we use the fact that we can couple any two X ≈ε X ′ with (X,Y ) ≈ε (X ′, Y ), for any joint
distribution (X,Y ). See, e.g., [Li15, Lemma 3.20].
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• Let Extt : {0, 1}ℓt×{0, 1}d3 → {0, 1}mt=(1+θ)d3 be the (kt = (δ′/2)ℓt, εExt) extractor guaranteed
to us by Lemma 2.14. Notice that we need to satisfy kt ≥ θd3+cE log(1/εExt). Looking forward,
we will also need that (δ′/2)ℓt ≤ δ′ℓt − log(1/εExt). Those constraints can be satisfied making
sure that ε is at most 2−Ω(ℓt), where the hidden constant depends on cE.

• For each i ∈ [t− 1], let
Exti : {0, 1}ℓi × {0, 1}mi+1 → {0, 1}mi

be the (ki = (δ′/2)ℓi, εExt) extractor guaranteed to us by Lemma 2.14, where mi = (1+θ)mi+1.
We need to make sure that mi+1 ≥ cE log(ℓi/εExt) and that ki ≥ θmi+1+cE log(1/εExt). To see
that the latter holds, note that ki = (δ′/2)ℓ1 · αi−1 ≥ nγ/2 and that θmi+1 + cE log(1/εExt) =
θ(1 + θ)t−id3 + cE log(1/εExt) < nγ/2, if we choose θ to be a small enough constant (with
respect to the constant logn

t ) and ε to be, again, at most 2−Ω(ℓt). Also, here too, record that
(δ′/2)ℓi ≤ δ′ℓi − log(1/εExt), which follows easily, since the ℓi-s increase.

Everything is in place to apply our block source extraction, Lemma 2.23, on Z2 and an independent
and uniform seed of length d3.18 We get that BSExt outputs Z3 of length m1 = nΩ(1), which is
2tεExt ≤ ε′ close to uniform, and runs in time O

(∑t
i=1 ℓi log ℓi

)
= O(n).

To conclude, note that the overall error of our extractor is at most 3ε′ = ε, and the seed length
is d1 + d2 + d3 = O(log(n/ε)).

5.1.4 Improving the output length

The extractor Extshort from Lemma 5.4 only outputs nΩ(1) bits. Here, we will use an extractor Extaux
that outputs a linear fraction of the entropy but requires a (relatively) long seed, and use Lemma 2.26
to boost the output length. For Extaux, we will again use a sample-then-extract extractor, however
this time, we can use independent samples to create a block source with exponentially decreasing
blocks. This setting is easier, and we can simply use the original [NZ96] construction. Since a
similar construction will be analyzed later in the paper (including a time complexity analysis), we
choose to employ it instead of revisiting [NZ96].

Corollary 5.5. There exist constants τ, c ∈ (0, 1) and C > 1, such that for every positive integer
n, and any ε ≥ 2−nc , there exists a strong (k = (1− τ)n, ε) extractor

Extout : {0, 1}n × {0, 1}d → {0, 1}m

where d = O(log n · log(n/ε)), and m = ck − C log(1/ε). Moreover, given inputs x ∈ {0, 1}n and
y ∈ {0, 1}d, we can compute Extout(x, y) in time Õ(n).

The correctness follows from Lemma 5.9 (without the need for a preliminary condensing step),
employed with the hash functions of Lemma 2.14.

Plugging-in Extout and Extshort into Lemma 2.26 readily gives the following result.

Lemma 5.6. There exist constants τ, c ∈ (0, 1) such that for every positive integer n, and any
ε ≥ 2−nc , there exists a (k = (1 − τ)n, ε) extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m where d =
O(log(n/ε)), and m = ck. Moreover, given inputs x ∈ {0, 1}n and y ∈ {0, 1}d, we can compute
Ext(x, y) in time Õ(n).

18Note that here, we use Lemma 2.23 with ni = (1 + θ)−in1 and ki ≥ θni − log(1/εi). The slack in entropy is
needed since we work with the notion of block sources that also allows average conditional min-entropy. We can thus
use the fact that under such setting of parameters, every extractor is an average case extractor with only a slight loss
in parameters (see, e.g., [DORS08]). We omit the easy proof.
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To boost the output length from Ω(k) to (1− η)k for any constant η > 0, we apply Lemma 2.22
a constant number of times depending only on η (that is, we simply apply Ext with independent
seeds and concatenate the outputs). To go from any min-entropy k to entropy rate 1 − τ , we first
apply a condenser, either the one from Theorem 3.10 or the one from Theorem 3.11. Specifically,
when k ≥ C log2(n/ε), we can use Theorem 3.10 which takes Õ(n) time. When k is smaller, we can
use Theorem 3.11, but this requires an extra preprocessing time which takes Tpre = polylog(1/ε)
times. Note that the bound on ε from Lemma 5.6 translates to ε ≥ 2−kc , so we can (if needed)
modify c so that Tpre = O(n). This finally gives us our main theorem for this section, Theorem 5.1,
apart from the strongness property, which we now discuss.

The non-recursive construction is strong. In what follows, we refer to the itemized list in the
beginning of the section. The condensing step, Item 1, is strong, since we use strong condensers.
Next, inspecting the proofs of Lemmas 5.2 and 5.3, we see that both samplings procedures yield a
good sample with high probability over the fixing of the seed, so Items 2 and 3 hold in a strong
manner as well. Item 4 follows by applying a block source extractor, which is strong since the
extraction steps output the seed. Thus, the extractor Extshort from Lemma 5.4 is in fact strong.
For the output-extending phase, Lemma 2.26 readily tells us that the extractor from Lemma 5.6 is
strong. Finally, we apply that extractor several times with independent seeds, and the strongness
of that procedure is guaranteed from Lemma 2.22.

5.2 A Recursive Construction

In this section, we prove the following.

Theorem 5.7 (recursive construction). For any constant η > 0 there exists a constant C > 0 such
that the following holds. For any positive integers n, k ≤ n, and any ε > 0 such that k ≥ C log(n/ε)
there exists a strong (k, ε)-seeded extractor

Ext : {0, 1}n × {0, 1}d → {0, 1}m

with seed length d ≤ C log(n/ε) and output length m ≥ (1− η)k. Furthermore,

• if k ≥ 2C log∗n · log2(n/ε), then Ext is computable in time Õ(n);

• if k < 2C log∗n · log2(n/ε), then Ext is computable in time Õ(n) after a preprocessing step that
corresponds to finding primitive elements of O(log log n) fields Fq with orders q ≤ poly(n/ε)
powers of 2.

In a nutshell, our construction behind Theorem 5.7 works by considering two cases. If ε >
Cn3·2−k/ log k, then we instantiate the recursive approach of Srinivasan and Zuckerman [SZ99] appro-
priately. Otherwise, we apply the recursive approach of Guruswami, Umans, and Vadhan [GUV09].

5.2.1 The (extremely) low-error case

In this section, we consider the lower error case of Theorem 5.7 where ε ≤ Cn3 · 2−k/ log k. We
instantiate the recursive approach from [GUV09, Section 4.3.3] appropriately, and analyze its time
complexity. Crucially, because of our upper bound on ε, we will only need to run O(log log n) levels
of their recursive approach.

In order to obtain the statement of Theorem 5.7 for output length m ≥ (1 − η)k with η an
arbitrarily small constant, it suffices to achieve output length m = Ω(k) and then apply Lemma 2.22
a constant number of times depending only on η. Therefore, we focus on achieving output length
m = Ω(k).
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Theorem 5.8. There exist constants c, C > 0 such that the following holds. For any positive
integers n and k ≤ n and any ε ∈ (0, Cn3 · 2−k/ log k] further satisfying k > C log(n/ε), there exists
a strong (k, ε)-seeded extractor Ext : {0, 1}n×{0, 1}d → {0, 1}m with seed length d ≤ C log(n/ε) and
output length m ≥ k/3.

Furthermore, Ext is computable in time Õ(n) after a preprocessing step that corresponds to
finding primitive elements of O(log log n) fields Fq with orders q ≤ poly(n/ε), each a power of 2.

Proof. We discuss our instantiation of the recursive approach from [GUV09] in detail, as it will be
relevant to the time complexity analysis. Let ε0 = ε/ logC n and d = C log(n/ε0) = O(log(n/ε)) for
a large enough constant C > 0 to be determined later. For an integer k ≥ 0, let i(k) =

⌈
log
(

k
8d

)⌉
,

which determines the number of levels in our recursion. It will be important for bounding the time
complexity of this construction to observe that

i(k) = O(log log n) (2)

because ε ≤ Cn3 · 2−k/ log k. For each k, we define a family of strong (k, εi(k))-seeded extractors
Exti(k) : {0, 1}n × {0, 1}d → {0, 1}m with εi(k) ≤ 9εi(k/3) + 63ε0 when i(k) > 0 by induction on i(k).
Solving this recursion yields εi(k) = 2O(i(k)) · ε0 ≤ ε, provided that ε0 = ε/ logC n for a sufficiently
large constant C > 0.

Base case. For the base case i(k) = 0, which holds when k ≤ 8d, we choose Ext0 to be the
(k, ε0)-seeded extractor defined as follows. On input an (n, k)-source X,

1. Apply the lossy RS strong condenser RSCond (Theorem 3.11) on X, instantiated with α =
1/400 and error ε′0 = ε0/2. When C is large enough we have k ≥ (2+α) log(1/ε′0), and require
a seed Y1 of length d1 ≤ C0 log(n/ε

′
0), for some constant C0 > 0. The corresponding output

X ′ satisfies Y1 ◦X ′ ≈ε′0
Y1 ◦Z, for some (n′, k′)-source Z with k′ ≥ (1−2α)n′ = (1−1/200)n′.

2. Let Ext′0 : {0, 1}n
′ × {0, 1}d2 → {0, 1}m′ be the average-case strong (k′, ε′0)-seeded extractor

from Lemma 2.25 instantiated with t = 10, which requires a seed Y2 of length d2 ≤ k′/10 +
C ′
0 log(n

′/ε′0) for some constant C ′
0 > 0 and has output length m′ ≥ k′/2. The conditions for

the invocation of Lemma 2.25 with t = 10 are satisfied since k′ ≥ (1− 1/200)n′ = (1− 1
20t)n

′

and
2−n′/500 ≤ 2−k/500 ≤ (ε0/n)

C/500 ≤ ε′0,

where the second inequality uses the theorem’s hypothesis that k ≥ C log(n/ε) with C > 0 a
sufficiently large constant.

We set Y = Y1 ◦ Y2 and define Ext0(X,Y ) = Ext′0(RSCond(X,Y1), Y2). From the discussion
above, we have

Y ◦ Ext0(X,Y ) = Y1 ◦ Y2 ◦ Ext′0(RSCond(X,Y1), Y2) ≈ε′0
Y1 ◦ Y2 ◦ Ext′0(Z, Y2) ≈ε′0

Y1 ◦ Y2 ◦ Um′ .

Therefore, the triangle inequality implies that Ext0 is an average-case strong (k, 2ε′0 = ε0)-seeded
extractor. It remains to argue about the seed length, output length, and time complexity of Ext0.
The seed length of Ext0 is

d1 + d2 ≤ k′/10 + (C0 + C ′
0) log(n

′/ε′0) ≤ 0.8d+ (C0 + C ′
0) log(n

′/ε′0) ≤ d,

provided that d = C log(n/ε) with C a sufficiently large constant. The output length of Ext0 is
m′ ≥ k′/2 ≥ k/3, since k′ ≥ (1 − 1/200)k. Finally, both steps above take time Õ(n), and so Ext0
can be computed in time Õ(n) after a polylog(1/ε) preprocessing step.
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Induction step. When i(k) > 0, we assume the existence of the desired average-case strong
extractors Exti(k′) for all i(k′) < i(k) as the induction hypothesis. More precisely, we assume
that for all k′ such that i(k′) < i(k) there exists a family of average-case strong (k′, εi(k′))-seeded
extractors Exti(k′) : {0, 1}n×{0, 1}d → {0, 1}k

′/3 parameterized by n computable in time Õ(n) after
a one-time preprocessing step. We proceed as follows on input an (n, k)-source X:

1. Apply the lossy RS strong (k, k′, ε1 = ε20)-condenser RSCond (Theorem 3.11) on X with
α = 1/20 and a seed YRS of length dRS ≤ CRS log(n/ε0). Since k > 8d ≥ log(1/ε1)

α(1+2α) if C is a
large enough constant, by the second part of Theorem 3.11 we know that with probability at
least 1 − ε0 over the choice of YRS = y it holds that the corresponding condenser output X ′

is ε0-close to some (n′, k′)-source Z with k′ ≥ (1− 2α)n′ = 0.9n′. For the sake of exposition,
from here onwards we work under such a good choice of the seed YRS, and we will add the ε0
slack term to the final error.

2. Split X ′ = X ′
1 ◦ X ′

2 with |X ′
1| = |X ′

2| = n′/2 ≜ n′′. By Lemma 2.24 instantiated with n′

and ∆ = 0.1n′ and the fact that X ′ is ε0-close to an (n′, k′)-source, we get that X ′
1 ◦ X ′

2 is
(εRS + 2ε0 = 3ε0)-close to an ((n′′, n′′), k′′/n′′)-block-source W1 ◦W2 with

k′′ ≥ k′/2−∆− log(1/ε0) ≥ 0.4n′ − log(1/ε0) ≥ k/3, (3)

since n′ ≥ k > d = C log(n/ε0) for a sufficiently large constant C > 0.

3. Apply the lossy RS strong (k′′, k′′′, ε1 = ε20)-condenser RSCond′ (Theorem 3.11) to X ′
2 with

α = 1/800 and a seed Y ′
RS of length at most d′RS = C ′

RS log(n
′′/ε1) ≤ C ′

RS log(n/ε0). From
Item 2 and the data-processing inequality, we know that

Y ′
RS ◦X ′

1 ◦X ′′
2 = Y ′

RS ◦X ′
1 ◦ RSCond(X ′

2, Y
′
RS) ≈3ε0 Y ′

RS ◦W1 ◦ RSCond(W2, Y
′
RS). (4)

Since (W2|W1 = w1) is a k′′-source for any w1 in the support of W1, we conclude from
Theorem 3.11 and Equation (4) that

Y ′
RS ◦W1 ◦ RSCond(W2, Y

′
RS) ≈ε1 Y ′

RS ◦W1 ◦ W̃2,

where W̃2 ∼ {0, 1}n
′′′

and H∞(Y ′
RS ◦W̃2|W1 = w1) ≥ k′′′+d′RS for all w1 in the support of W1,

with n′′′ ≥ k′′ ≥ k′′′ ≥ (1− 1/400)n′′′. This is a valid invocation since k′′ ≥ k/3 > 8d/3 > d ≥
log(1/ε1)
α(1+2α) by Equation (3). Therefore, by the second part of Theorem 3.11, with probability at
least 1− ε0 over the choice of of Y ′

RS = y′ we get that

(W1 ◦ W̃2|Y ′
RS = y′) ≈ε0 W1 ◦W ′

2, (5)

where W ′
2 ∼ {0, 1}n

′′′
satisfies H∞(W ′

2|W1 = w1) ≥ k′′′ ≥ (1 − 1/400)n′′′. Fix such a good
fixing of Y ′

RS from now onwards. As before, we will account for the probability ε0 of fixing a
bad seed in the final extractor error. Then, by combining Equations (4) and (5) we get that
X ′

1 ◦X ′′
2 is (εBS = 4ε0)-close to an ((n′′, n′′′), k′′, k′′′)-block source.

4. We will now apply block source extraction to X ′
1 ◦ X ′′

2 , which we recall is (εBS = 4ε0)-close
to an ((n′′, n′′′), k′′, k′′′)-block source. We instantiate Lemma 2.23 with Ext2 being the strong
extractor from Lemma 2.25 with source input length n′′′, min-entropy requirement k′′′, error
εBExt = ε0, output length d, and t = 16. This requires a seed of length dBExt ≤ d/16 +
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C ′
0 log(n/ε0). This instantiation of Lemma 2.25 is valid since k′′′ ≥ (1−1/400)n′′′ > (1− 1

20t)n
′′′

and
k′′′ ≥ 0.95n′′′ ≥ 0.95k′′ ≥ 0.95k

3
>

0.95 · 8d
3

> 2d,

where we used the fact that i(k) > 0, and so k > 8d. For Ext1 we choose the average-case
strong extractor Exti(k/3) (recall that k′′ ≥ k/3 and note that i(k/3) < i(k)) with input length
n′′, entropy requirement k/3, error εi(k/3), output length at least (k/3)/3 = k/9, and seed
length d guaranteed by the induction hypothesis above.

Items 1 to 4 above yield a strong seeded extractor Ext′i(k) : {0, 1}n × {0, 1}d′ → {0, 1}m′ with
min-entropy requirement k, error ε′ = εi(k/3)+ εBExt+ εBS+2ε0 = εi(k/3)+7ε0 (where the 2ε0 term
comes from the two fixings of the seeds in the two condensing steps in Items 1 and 3), seed length

d′ = dBExt + d′RS + dRS ≤ d/16 + C ′ log(n/ε0),

for some constant C ′ > 0, and output length m′ = k/9.
To conclude the definition of Exti(k), we need to increase the output length of Ext′i(k) from

k/9 to k/3. To that end, we use Lemma 2.22. Applying Lemma 2.22 once with Ext1 = Ext′i(k1)
with k1 = k and Ext2 = Ext′i(k2) with k2 = k − k/9 − 1 = 8k/9 − 1 and g = 1 yields a strong
(k, 3ε′)-seeded extractor Ext′′i(k) with output length (k1 + k2)/9 ≥ k(1− (8/9)2)− 1 and seed length
2(d/16 + C ′ log(n/ε0)) = d/8 + 2C ′ log(n/ε0). Applying Lemma 2.22 again with Ext1 = Ext′′i(k1)
for k1 = k and Ext2 = Ext′′i(k2) for k2 = (8/9)2k and g = 1 yields a strong (k, 9ε′)-seeded extractor
with output length m ≥ k(1 − (8/9)4) − 1 ≥ k/3 and seed length 2(d/8 + 2C ′ log(n/ε0)) = d/4 +
4C ′ log(n/ε0) ≤ d, which we set as Exti(k). This second invocation of Lemma 2.22 is also valid,
since k2 = (8/9)2k = k − (k(1− (8/9)2)− 1)− 1 = k1 −m1 − g. Note that the error εi(k) = 9ε′ =
9εi(k/3) + 63ε0, as desired.

Time complexity and final error. It remains to analyze the time complexity and the overall
error of the recursive procedure above. Evaluating Exti(k) requires at most eight evaluations of the
condenser from Theorem 3.11, four evaluations of the fast hash-based extractor from Lemma 2.25,
four evaluations of Exti(k′′) for some i(k′′) < i(k), and simple operations that can be done in
time Õ(n). This means that the overall time complexity is 4i(k) · Õ(n) = Õ(n) after a one-time
preprocessing step independent of the source and seed, since 4i(k) = poly(log n) by Equation (2).
This preprocessing step corresponds to finding primitive elements for O(log log n) fields Fq with
orders q ≤ poly(n/ε0) = poly(n/ε) powers of 2. Furthermore, εi(k) = O(ε0 + εi(k/3)) for all k, and
so εi(k) = 2O(i(k))ε0 = poly(log n) · ε0 ≤ ε provided that ε0 ≤ ε/ logC n for a large enough constant
C > 0.

5.2.2 The (relatively) high-error case

In this section, we consider the higher error case where ε ≥ Cn3 · 2−k/ log k. We instantiate the
recursive approach of Srinivasan and Zuckerman [SZ99, Section 5.5] appropriately with our building
blocks and analyze its complexity.

Lemma 5.9 (analogous to [SZ99, Corollary 5.10], with different instantiation and additional com-
plexity claim). There exist constants c, C > 0 such that the following holds. Suppose that for any pos-
itive integers n0, k0 = 0.7n0, and some ε0 = ε0(n0) ≥ 2−ck0 and m0 = m0(n0) there exists a strong
(k0, ε0)-seeded extractor Ext0 : {0, 1}n0×{0, 1}d0 → {0, 1}m0 with seed length d0 ≤ u·log(n0/ε0) ≤ k0.
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Then, for any positive integers n and k ≤ n there exists a family of strong (k, ε)-seeded extractors
Ext : {0, 1}n×{0, 1}d → {0, 1}m with error ε ≤ C log u·ε0(ck), seed length d ≤ C log u·log(n/ε0(ck)),
and output length m ≥ m0(ck). Furthermore,

1. If Ext0 is computable in time Õ(n0) and k ≥ C log2(n/ε), then Ext is computable in time
Õ(n);

2. If Ext0 is computable in time Õ(n0) after a preprocessing step corresponding to finding primitive
elements of j fields Fq of orders q ≤ poly(n/ε0), then Ext is computable in time Õ(n) after
a preprocessing step corresponding to finding primitive elements of j + 1 fields Fq of orders
q ≤ poly(n/ε0).

Proof. We begin by setting up relevant notation:

• Let Cblocks ≥ 1 be a constant to be determined. Set ℓ0 = k
100·Cblocks

and k0 = 0.7ℓ0. For
ε0 = ε0(ℓ0) and m0 = m0(ℓ0), we define ℓ1 = Cblocks ·u log(ℓ0/ε0). Then, we define ℓi = 0.9ℓi−1

for all i ≥ 2. The ℓi’s will be block lengths for a block source Z. In particular, when performing
block source extraction from Z we will instantiate Ext0 with input length n0 = ℓ0.

• Define m1 = u · log(ℓ0/ε0) and mi = 0.9mi−1 for all i ≥ 2. The mi’s will be output lengths
for block source extraction from Z.

• Set t = 1 + log(u/ log u)
log(1/0.9) . This will be the number of blocks of Z. We have mt = 0.9t−1m1 =

log u · log(ℓ0/ε0). Furthermore, since ℓ1 = Cblocks ·m1, we also have that ℓi = Cblocks ·mi for
all i ≥ 1.

Let X be an arbitrary (n, k)-source. The extractor Ext : {0, 1}n ×{0, 1}d → {0, 1}m proceeds as
follows on input X:

1. Using a fresh seed YCond of length CCond log(n/ε0), apply a strong (k, k′, ε20)-condenser Cond
to X. If k ≥ C log2(n/ε0) for an apropriately large constant C > 0, then we instantiate Cond
with the lossless KT (k, k′ = k, εCond)-condenser (Theorem 3.10). Otherwise, we instantiate
Cond with the lossy RS (k, k′ ≥ 0.95k, εCond)-condenser (Theorem 3.11) instantiated with
α = 0.05. By the second part of either Theorem 3.10 or Theorem 3.11, we get that with
probability at least 1 − ε0 over the choice of YCond = y it holds that X ′ = Cond(X, y) is
ε0-close to an (n′, k′)-source with k′ ≥ 0.95n′. From here onwards we work under such a good
fixing YCond = y, and will account for the ε0 error term in the final extractor error later on.

2. We use X ′ and Lemma 2.16 to generate a block source Z with geometrically decreasing block
lengths ℓ0, ℓ1, . . . , ℓt defined above.

For each i = 0, 1, . . . , t, let Sampi : {0, 1}ri → [n′]ℓi be the (θ = 1/100, γ = ε0)-averaging
sampler from Lemma 2.21 with input length ri = CSamp log(n

′/ε0) for some constant CSamp >
0. We choose the constant Cblocks above to be large enough so that n′ ≥ ℓi ≥ ℓt ≥
C ′
Samp log(1/ε0)/θ

2 for all i ∈ [t], where C ′
Samp is the constant C from Lemma 2.21. To

see that ℓi ≤ n′ for i = 0, . . . , t (and so indeed Lemma 2.21 can be applied to obtain ℓi
samples), note that

t∑
i=0

ℓi ≤
∞∑
i=0

ℓi = 10ℓ1 + ℓ0 ≤ k/9 < n′. (6)

The second-to-last inequality uses the fact that

ℓ1 = Cblocks · u log(ℓ0/ε0) ≤ Cblocks · k0 ≤ Cblocks · ℓ0 = k/100,

30



where the first inequality holds since u log(ℓ0/ε0) ≤ k0 is an hypothesis in the lemma state-
ment. We also assume that ε0 ≥ 2−ck0 for a constant c > 0 small enough so that

ℓ0 =
k

100Cblocks
≥ C ′

Samp · ck0/θ2 ≥ C ′
Samp log(1/ε0)/θ

2,

where we recall that k0 = 0.7ℓ0, meaning that the conditions of Lemma 2.21 are satisfied for
all i = 0, . . . , t.

For each i = 0, 1, . . . , t, let Yi be a fresh seed of length ri. We set the i-th block as Zi =
X ′

Samp(Yi)
. By Lemma 2.16 instantiated with X ′ and Samp0, we conclude that

Y0 ◦ Z0 ≈ε0+2
−cSampk

′ Y0 ◦ Z ′
0,

with cSamp > 0 an absolute constant guaranteed by Lemma 2.16, where (Z ′
0|Y0 = y) is an

(ℓ0, 0.9ℓ0)-source for every y. We now argue how this guarantee extends to more blocks.
Consider an arbitrary i and fixings Y0 = y0, . . . , Yi−1 = yi−1. Then, Lemma 2.6 with δ =
2−cSampk and ℓ = k/9 (from the upper bound in Equation (6)) implies that

H∞(X|(Z ′
0|Y0 = y0) = z0, . . . , (Z

′
i−1|Yi−1 = yi−1) = zi−1) ≥ 0.8n′

except with probability at most 2−cSampk over the choice of z0, . . . , zi−1, which we can absorb
into the statistical distance, since k′ ≥ 0.95n′ ≥ 0.95k. Consequently, from Lemma 2.16 we
get that

Y0, Z
′
0, . . . , Yi−1, Z

′
i−1, Yi, Zi = XSamp(Yi) ≈ε0+2·2−cSampk Y0, Z

′
0, . . . , Yi−1, Z

′
i−1, Yi, Z

′
i, (7)

where (Z ′
i|Y0 = y0, Z

′
0 = z0, . . . , Yi−1 = yi−1, Z

′
i−1 = zi−1, Yi = yi) is an (ℓi, 0.7ℓi)-source for

any choice of y0, z0, . . . , yi−1, zi−1, yi. Combining Equation (7) with the triangle inequality over
all 0 ≤ i ≤ t, we conclude that Z = Z0 ◦Z1 ◦ · · · ◦Zt is εblock-close to an exact (ℓ0, . . . , ℓt, 0.7)-
block-source Z ′, where εblock = (t+ 1)(ε0 + 2 · 2−cSampk).

3. We apply block source extraction (Lemma 2.23) to Z = Z0 ◦ Z1 ◦ · · · ◦ Zt. More precisely, let
BExt : {0, 1}ℓ0×· · ·×{0, 1}ℓt×{0, 1}dt → {0, 1}m0 be the strong (k0, k1, . . . , kt, (t+1)ε0)-block-
source extractor with ki = 0.7ℓi obtained via Lemma 2.23 as follows. We instantiate Ext0 with
the strong extractor promised by the lemma statement with seed length d0 ≤ u · log(ℓ0/ε0) =
m1. For i ∈ [t], we instantiate Exti : {0, 1}ℓi×{0, 1}di → {0, 1}mi as the strong (ki = 0.7ℓi, ε0)-
seeded extractor from Lemma 2.14 with seed length di = 2mi + 4 log(ℓi/ε0) + 8. We choose
the constant Cblocks to be large enough so that

mi = ℓi/Cblocks ≤ 0.7ℓi − 16 log(4/ε0) = ki − 16 log(4/ε0),

as required by Lemma 2.14. This is possible since by choosing Cblocks large enough we have

ℓi ≥ ℓt = Cblocks ·mt = Cblocks log u · log(ℓ0/ε0) ≥ 100 log(4/ε0)

for all i ∈ [t], and so 0.7ℓi − 16 log(4/ε0) ≥ ℓi/2 for all i ∈ [t]. Furthermore, for any i ≥ 2 the
output length mi of Exti satisfies

di +mi = 3mi + 4 log(n/ε0) + 8 ≥ 2mi−1 + 4 log(n/ε0) + 8 ≥ di−1,

where we recall that mi = mi−1/0.9 for i ≥ 2. Finally, the output length of Ext1 satisfies
d1 +m1 ≥ m1 ≥ d0, where we recall that d0 is the seed length of Ext0.
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Let YBExt be a fresh seed of length dt. With the desired upper bound on the seed length d
from the lemma’s statement in mind, we note that

dt ≤ 2mt + 4 log(ℓt/ε0) + 8 ≤ 2 log u · log(ℓ0/ε0) + 4 log(ℓ0/ε0) ≤ 6 log u · log(n/ε0), (8)

since ℓ0 ≤ k ≤ n. By Lemma 2.23, we get that

YBExt ◦ BExt(Z, YBExt) ≈εblock YBExt ◦ BExt(Z
′, YBExt) ≈(t+1)ε0 Udt+m0 .

Applying the triangle inequality, we conclude that

YBExt ◦ BExt(Z, YBExt) ≈εblock+(t+1)ε0 Udt+m0 .

We now define our final strong extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m0 (recall that we
abbreviate m0 = m0(ℓ0)). Choose our overall seed to be Y = YCond ◦ Y0 ◦ · · · ◦ Yt ◦ YBExt and set
Ext(X,Y ) = BExt(Z, YBExt). By the discussion above, Ext is a strong (k, ε)-extractor with error
(recall that we abbreviate ε0 = ε0(ℓ0))

ε = 2ε0 + εblock + (t+ 1)ε0 ≤ (2t+ 4)(ε0 + 2 · 2−cSampk)

for a sufficiently large constant C since t = O(log u) (where one of the ε0 terms comes from fixing
the seed in the condensing step of Item 1), and seed length

d = |YCond|+ |YBExt|+
t∑

i=0

|Yi| ≤ CCond log(n/ε0) + dt + (t+1)CSamp log(n
′/ε0) ≤ C log u · log(n/ε0)

provided that C is large enough (again since t = O(log u)), as desired. We used Equation (8) to
bound dt and obtain the last inequality.

Time complexity. It remains to analyze the time complexity of Ext. If k ≥ C log2(n/ε0) with C
a sufficiently large constant, then Item 1 takes time Õ(n). Item 2 takes time t · Õ(n) = Õ(n), since
t = O(log u) = O(log n) and each averaging sampler Sampi is computable in time Õ(n). Item 3
takes time t ·Õ(n) = Õ(n), since Ext0 and each Exti from Lemma 2.14 are computable in time Õ(n).
Therefore, Ext is computable in overall time Õ(n) in this case.

Otherwise, if k < C log2(n/ε0), then Item 1 takes time Õ(n) after a preprocessing step corre-
sponding to finding a primitive element of Fq with q ≤ poly(n/ε0). As discussed above, Item 2
takes time Õ(n). Item 3 takes time Õ(ℓ0) = Õ(n) after a preprocessing step, and so Ext is com-
putable in overall time Õ(n) after a preprocessing step. Moreover, if the preprocessing step for Ext0
consists in finding primitive elements of j fields Fq with orders q ≤ poly(n/ε0), then by the above
the preprocessing step for Ext consists in finding primitive elements of j + 1 fields Fq with orders
q ≤ poly(n/ε0).

Denote by log(i) the function that iteratively applies log a total of i times (so log(1)n = log n,
log(2)n = log log n, and so on). Denote by log∗ the iterated logarithm. Then, we have the following
corollary.

Corollary 5.10. There exists a constant C > 0 such that the following holds. Let n be any
positive integer and i any positive integer such that log(i)n ≥ 6C. Then, for any k ≤ n and
any ε ≥ n3 · 2−k/2C·i there exists a strong (k, ε)-seeded extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m
with seed length d ≤ C log(i)n · log(n/ε) and output length m ≥ k/2C·i. Furthermore,
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1. if k ≥ 2C·i · log2(n/ε), then Ext is computable in time Õ(n);

2. if k < 2C·i · log2(n/ε), then Ext is computable in time Õ(n) after a preprocessing step which
corresponds to finding primitive elements of i fields Fq of orders q ≤ poly(n/ε) powers of 2.

Consequently, if we choose i to be the largest integer such that log(i)n ≥ 6C (which satisfies
i ≤ log∗n) we get a strong (k, ε)-seeded extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with seed length
d ≤ 6C2 log(n/ε) and output length m ≥ k/2C log∗n for any error ε ≥ n3 · 2−k/2C log∗n. If k ≥
2C log∗n · log2(n/ε), then Ext is computable in time Õ(n). Otherwise, Ext is computable in time Õ(n)
after a preprocessing step which corresponds to finding primitive elements of i ≤ log∗n fields Fq of
orders q ≤ poly(n/ε).

Proof. We iteratively apply Lemma 5.9 i times. Let c, C > 0 be the constants guaranteed by
Lemma 5.9. For the first application of the lemma, we take Ext0 : {0, 1}n × {0, 1}d0 → {0, 1}m0

to be the strong (k0 = 0.7n, ε0) extractor from Lemma 2.14 with m0 = k0/20 and ε0 ≥ 2−ck0/100

to be defined later. The corresponding seed length is d0 ≤ 2m0 + 4 log(n/ε0) + 4, which satisfies
d0 ≤ k0, and so the initial value of u is u0 = d0/ log(n/ε0) ≤ k0. Denote by Ext1 the resulting strong
seeded extractor. In the second application of Lemma 5.9, we instantiate Ext0 with Ext1 instead to
obtain a new strong seeded extractor Ext2, and so on. For each j ∈ [i], we obtain a family of strong
(k, εj)-seeded extractors Extj : {0, 1}n ×{0, 1}dj → {0, 1}mj parameterized by k with output length
mj = mj−1(ck), error

εj = C log uj−1 · εj−1(ck)

and seed length

dj = C log uj−1 · log(n/εj−1(ck)) = C log uj−1 · log
(
n · C log uj−1

εj

)
,

where

uj =
dj

log(n/εj)

= C log uj−1 ·
(
1 +

logC

log(n/εj)
+

log log uj−1

log(n/εj)

)
≤ C log uj−1 ·

(
1 +

logC

log n
+

log log uj−1

log n

)
≤ 3C log uj−1.

The last inequality uses the fact that uj−1 ≤ u0 ≤ n for all j.
Recall that from the corollary statement that i is such that log(i)n ≥ 6C. We show by induction

that uj ≤ 3C log(j) n + 3C log(6C) for all j = 0, . . . , i. This is immediate for the base case j = 0,
since u0 ≤ k0 ≤ n. For the induction step, note that

uj+1 ≤ 3C log uj ≤ 3C log(3C log(j) n+ 3C log(6C))

≤ 3C log(2 · 3C log(j) n) = 3C log(j+1) n+ 3C log(6C),

as desired. This implies that

dj = uj · log(n/εj) ≤ 6C log(j) n · log(n/εj)
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and

εj = C log uj−1 · εj−1(ck) ≤ (6C)j

 j−1∏
j′=0

log(j
′) n

 · ε0(cjk)

for all j ∈ [i]. We may assume that C is large enough that log a ≤
√
a for all a ≥ C, in which case∏j−1

j′=0 log
(j′) n ≤

∏j−1
j′=0 n

2−j′ ≤ n2 since log(j
′) n ≥ C for all j′ ≤ i by hypothesis. Therefore, we

obtain final output length
mi = m0(c

ik) = k/2O(i),

final error εi satisfying

ε0(ck) ≤ εi ≤ (6C)i · n2 · ε0(cik) ≤ n3 · ε0(cik),

where the last inequality uses that log(i)n ≥ 6C, and final seed length

di ≤ 6C log(i)n · log(n/εi).

We now instantiate ε0(c
ik) = ε/n3. Note that ε0(cik) ≥ 2−0.7ci+1k/100 as required for the choice

of Ext0 above so long as ε ≥ n3 · 2−0.7ci+1k, which holds by the corollary’s hypothesis if C is a large
enough constant. With this choice of ε0(cik) we get final error εi ≤ n3 · ε0(cik) = ε. In fact, we can
make εi larger so that εi = ε, in which case the final seed length satisfies

di ≤ 6C log(i)n · log(n/ε),

as desired.

Time complexity. Finally, we discuss the time complexity of Ext. Note that the initial choice for
Ext0 is computable in time Õ(n0). Therefore, if k ≥ 2C·i log2(n/ε) for a sufficiently large constant
C > 0, then the conditions of Item 1 of Lemma 5.9 are satisfied for all i applications of this lemma,
and so Ext will be computable in time Õ(n). Otherwise, the condition in Item 1 holds and so Ext is
computable in time Õ(n) after a preprocessing step, since we always have u ≤ n in each application
of the lemma. By Lemma 5.9, the preprocessing amounts to finding primitive elements of i fields
Fq with orders q ≤ poly(n/ε0) = poly(n/ε).

To obtain our final theorem, we use block source extraction to increase the output length of the
extractor from Corollary 5.10, following a strategy of Zuckerman [Zuc97].

Theorem 5.11. There exist constants c, C > 0 such that the following holds. For any integers n and
k ≤ n and any ε ≥ Cn3 ·2−k/ log k there exists a strong (k, ε)-seeded extractor Ext : {0, 1}n×{0, 1}d →
{0, 1}m with seed length d ≤ C log(n/ε) and output length m ≥ ck. Furthermore,

1. if k ≥ 2C log∗n · log2(n/ε), then Ext is computable in time Õ(n);

2. if k < 2C log∗n · log2(n/ε), then Ext is computable in time Õ(n) after a preprocessing step which
corresponds to finding log∗ n primitive elements of fields Fq of orders q ≤ poly(n/ε) powers
of 2.

Proof. Define ε′ = ε/6 and let X be an arbitrary (n, k)-source. The extractor Ext behaves as follows
on input X:
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1. Apply a strong (k, k′, (ε′)2)-condenser Cond : {0, 1}n×{0, 1}dCond → {0, 1}n
′
to X, with output

min-entropy rate k′ ≥ 0.95n′ and seed length dCond = CCond log(n/ε
′). If k ≥ 2C log∗n ·

log2(n/ε), we instantiate Cond with the lossless KT strong (k, k′, ε′)-condenser (Theorem 3.10).
Otherwise, we instantiate Cond with the lossy RS strong (k, k′, ε′)-condenser (Theorem 3.11).
By the second part of either Theorem 3.10 or Theorem 3.11, we get that with probability
at least 1 − ε′ over the choice of the seed y we obtain an output X ′ that is ε′-close to an
(n′, k′)-source with k′ ≥ 0.95n′. As in previous arguments, we work under such a good fixing
of y from here onwards and account for the probability ε′ of selecting a bad seed in the final
extractor error later on.

2. Write X ′ = X1 ◦ X2 with |X1| = |X2| = n′/2. Choose the constant c > 0 in the theorem
statement small enough so that log(1/ε′) ≤ log(1/ε) + 3 ≤ ck + 3 ≤ 0.05k, which means that
n′/2−0.05k− log(1/ε′) ≥ 0.4n′. Then, combining Item 1 with Lemma 2.24, (instantiated with
t = 2, ∆ = 0.05k, and ε = ε′) via the triangle inequality, X ′ is 3ε′-close to an ((n′/2, n′/2), 0.8)-
block source.

3. Apply block source extraction to X1 ◦ X2. More precisely, let Ext1 : {0, 1}n1 × {0, 1}d1 →
{0, 1}m1 be the strong (k1 = 0.8n1, ε1)-seeded extractor from Corollary 5.10 instantiated
with i = 2 and n1 = n′/2, which yields ε1 = ε ≥ n3

1 · 2−c1k1 , d1 ≤ C1 log log k1 · log(n′/ε),
and m1 ≥ c1k1, for constants c1, C1 > 0 guaranteed by Corollary 5.10. Furthermore, let
Ext2 : {0, 1}n2 × {0, 1}d2 → {0, 1}m2 be the strong (k2 = 0.8n2, ε2)-seeded extractor from the
“Consequently” part of Corollary 5.10 and n2 = n′/2, which yields ε2 = n3

2 · 2−k2/2C2 log∗k2 ,
d2 ≤ C2 log(n

′/ε), and m2 ≥ k2/2
C2 log

∗k2 , for a constant C2 > 0 guaranteed by Corollary 5.10.
This choice of parameters ensures that m2 ≥ d1. Indeed, since k ≥ k1 = k2 ≥ 0.4n′, to see
that m2 ≥ d1 it suffices to check that

0.4k

2C2 log
∗k

≥ d1 = C1 log log k · log(n′/ε1).

Since ε1 = ε′ = ε/5 and log(n′/ε1) = O(log(k/ε′)) = O(log k + k/ log k) = O(k/ log k), it is
enough that

k ≥ C ′
1 · 2C2 log

∗k log log k · k

log k

for a sufficiently large constant C ′
1 > 0, which holds whenever k is larger than some appro-

priate absolute constant. Instantiating Lemma 2.23 with Ext1 and Ext2 above yields a strong
(k1 = 0.8n1, k2 = 0.8n2, ε1 + ε2)-block-source extractor BExt : {0, 1}n1 ×{0, 1}n2 ×{0, 1}d2 →
{0, 1}m1 .

Since X ′ is 3ε′-close to an (n1, n2, 0.8)-block source, we conclude that

YBExt ◦ BExt(X ′, YBExt) ≈3ε′+ε1+ε2 Ud2+m1 . (9)

We define the output of our final strong extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m1 to be
BExt(X ′, YBExt). Since ε1, ε2 ≤ ε′, Equation (9) implies that

YCond ◦ YBExt ◦ Ext(X,YCond ◦ YBExt) ≈5ε′ Ud+m1 .

This means that Ext is a strong (k, ε′ + 5ε′ = ε)-seeded extractor with seed length d = |YCond| +
|YBExt| = O(log(n/ε)) and output length m1 ≥ c1k1 ≥ c′1k for an absolute constant c′1 > 0, where
one of the ε′ terms in the error comes from fixing the seed in the condensing step of Item 1.
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Time complexity. Finally, we analyze the time complexity of Ext. If k ≥ 2C log∗n · log2(n/ε),
then Item 1 runs in time Õ(n). In Item 3, Ext1 and Ext2 are both computable in time Õ(n) under
this lower bound on k, and thus so is BExt. We conclude that Ext runs in time Õ(n). Otherwise, if
k < 2C log∗n · log2(n/ε), then Item 1 runs in time Õ(n) after a preprocessing step, and Ext1 and Ext2
in Item 3 run in time Õ(n) after a preprocessing step. Therefore, overall, Ext runs in time Õ(n)
after a preprocessing step.
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