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Abstract

Sensitivity measures how much the output of an algorithm changes, in terms of Hamming distance,
when part of the input is modified. While approximation algorithms with low sensitivity have been
developed for many problems, no sensitivity lower bounds were previously known for approximation
algorithms. In this work, we establish the first polynomial lower bound on the sensitivity of (randomized)
approximation algorithms for constraint satisfaction problems (CSPs) by adapting the probabilistically
checkable proof (PCP) framework to preserve sensitivity lower bounds. From this, we derive polynomial
sensitivity lower bounds for approximation algorithms for a variety of problems, including maximum
clique, minimum vertex cover, and maximum cut.

Given the connection between sensitivity and distributed algorithms, our sensitivity lower bounds
also allow us to recover various round complexity lower bounds for distributed algorithms in the LOCAL
model. Additionally, we present new lower bounds for distributed CSPs.
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1 Introduction

The notion of algorithmic sensitivity, introduced by Varma and Yoshida [VY23], measures the stability of
an algorithm’s output in Hamming distance (or the earth mover’s distance if the algorithm is randomized)
when an element in the input is added or deleted. In practical situations, low sensitivity is desirable be-
cause inputs can easily change due to noise or over time. If an algorithm has high sensitivity, it may lose
reproducibility, erode user trust, and lead to inconsistent decisions. Since this concept was introduced, low-
sensitivity algorithms have been developed for many graph problems. Some representative results include a
2-approximation algorithm for the minimum vertex cover problem with sensitivity O(1) [CHHK16,VY23],
a (1 − ε)-approximation algorithm for the maximum matching problem with sensitivity ∆O(1/ε) [YZ24],
where ∆ is the maximum degree, an additive O(n2/3)-approximation algorithm for the minimum s-t cut
problem with sensitivity O(n2/3), where the output is a vertex set [VY23], and a (1 + ε)-approximation
algorithm for the shortest path problem with sensitivity O(ε−1 log3 n) (with respect to edge contractions
instead of additions or deletions) [KY23]. Moreover, it has been shown that algorithms with low sensitivity
can be used to design online algorithms with small recourse [YI22], as well as online learning algorithms
with low regret [DY24]. Therefore, it is important to understand whether low sensitivity algorithms can be
achieved for each problem.

On the lower bound side, the only known general result that we are aware of is that any randomized al-
gorithm for finding a proper 2-coloring of a bipartite graph with n vertices requires sensitivity Ω(n) [VY23],
which follows easily from the fact that a connected bipartite graph has only two proper 2-colorings such that
the Hamming distance between them is Ω(n). Indeed, there are no known lower bounds on the sensitivity
of approximation algorithms, leaving a significant gap in our knowledge. This is especially true, since all of
the known upper bounds are derived from approximation algorithms.

In this work, we show polynomial sensitivity lower bounds for (even randomized) approximation algo-
rithms for various combinatorial problems by adapting the probabilistically checkable proofs (PCP) frame-
work [ALM+98, AS98]. We emphasize that this is the first time that lower bounds for approximation algo-
rithms have been established. We are able to derive lower bounds for a variety of combinatorial problems
through reductions, and we present some representative results next.

We start with the maximum clique problem. Consider an (inefficient) n−ε-approximation algorithm that
outputs a clique of size at most n1−ε. Its sensitivity is trivially bounded by O(n1−ε) and this is the only
known upper bound. We show that the polynomial dependency on n is necessary:

Theorem 1.1. There are universal constants ε, δ > 0 such that any algorithm for the maximum clique
problem that outputs an n−ε-approximate clique with probability 1−O(1/n) has sensitivity Ω(nδ).

We note that the lower bound also applies to the maximum independent set problem. Additionally,
our proof is information-theoretic, and the lower bounds presented in this work apply even to inefficient
algorithms.

Next, we consider the minimum vertex cover problem. As we mentioned, there exists a 2-approximation
algorithm for the minimum vertex cover problem with sensitivity O(1) [CHHK16, VY23]. We prove that
the sensitivity must increase significantly as the approximation ratio approaches one.

Theorem 1.2. There are universal constants ε, δ > 0 such that any (possibly randomized) (1+ε)-approximation
algorithm for the minimum vertex cover problem has sensitivity Ω(nδ).

It is known that computing an
√
2-approximate vertex cover is NP-hard [Kho02, SMS18]. Thus, The-

orem 1.2 implies that achieving a small approximation ratio not only makes the problem computationally
hard but also makes it impossible to achieve low sensitivity.
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Finally, we discuss the maximum cut problem, where the output is a vertex set. Trivially, the random
assignment algorithm is a 1/2-approximation algorithm with sensitivity zero, and we can obtain an (ineffi-
cient) additive Õ(

√
ε−1nm)-approximation algorithm with sensitivity O(εn) by converting a differentially

private algorithm [EKKL20]. As mentioned, the only known lower bound is that exact algorithms, which can
solve 2-coloring, must have sensitivity Ω(n) [VY23]. We show that the sensitivity must remain polynomial
as the approximation ratio approaches one:

Theorem 1.3. There exist universal constants ε, δ > 0 such that any (possibly randomized) (1 − ε)-
approximation algorithm for the maximum cut problem has sensitivity Ω(nδ).

We can obtain similar lower bounds for other constraint satisfaction problems (CSPs) including E3SAT
and 3LIN.

Although the notion of sensitivity is interesting in its own right, it has a close connection to distributed
algorithms in the LOCAL model of distributed computing [Lin92]. In this model, a network is represented
as a graph G = (V,E), where each vertex v ∈ V corresponds to an agent, and each edge e ∈ E represents
a communication link. Communication occurs in synchronous rounds. In each round, every vertex v ∈ V
receives messages from its neighbors, performs some local computation, and sends messages of arbitrary
size to its neighbors. Note that, in t rounds, a vertex can compute its output based on the topology of its
t-hop neighborhood. The goal of a distributed algorithm is for the outputs of the vertices to form a feasible
solution to the problem.

We can show that if there exists a distributed algorithm in the LOCAL model for a graph problem that
runs in t rounds, then there is an algorithm for the problem with sensitivity O(∆t), where ∆ is the maximum
degree of the graph. Building on this connection, we can recover various lower bounds on round complexity,
including an Ω(1/ε) lower bound for an n−ε-approximation algorithm for the maximum independent set
problem [BHKK16], an Ω(log n) lower bound for a (1 + ε)-approximation algorithm for the minimum
vertex cover problem for some constant ε > 0 [GS14, FFK22], and an Ω(log n) lower bound for a (1− ε)-
approximation algorithm for the maximum cut problem for some constant ε > 0 [CL23]. We note that these
lower bounds match the known upper bounds [CL23].

Moreover, we can use this observation to establish lower bounds for distributed constraint satisfaction
problems (DCSPs) [YIDK92], which can model tasks such as resource allocation and scheduling in dis-
tributed settings, including wireless networks (see the surveys [YH00, FPY18] and references therein). In
DCSPs, each variable and constraint is associated with an agent. The agent for a variable can communicate
with the agent for any constraint involving that variable, and vice versa. The goal of a distributed algorithm
is for the assignment produced by the variables to maximize the number of satisfied constraints. We can
immediately establish a round complexity lower bound of Ω(log n) for specific CSPs, such as E3SAT and
3LIN, using the corresponding sensitivity lower bounds. Moreover, we show that there exists an arbitrarily
hard CSP in the distributed setting:

Theorem 1.4. There exists an O(log log n)-ary CSP such that any distributed algorithm for the CSP that out-
puts an ω(1/ log n)-approximate solution with probability 1−O(1/n) requires Ω(log n/ log log n) rounds.

We believe this result is interesting because, apparently, it cannot be obtained by applying a gadget
reduction to known lower bounds. We hope this work sheds new light on the study of distributed approxi-
mation algorithms for graph problems and CSPs.
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1.1 Proof Overview

An instance of a constraint satisfaction problem (CSP) is a tuple (V,E,Σ,R = {Re}e∈E), where (V,E)
is a hypergraph, Σ is a finite domain (often referred to as the alphabet), and Re is a |e|-ary relation over
Σ, i.e., Re ⊆ Σ|e|. We say that an assignment σ : V → Σ satisfies a constraint on e = (v1, . . . , vk) if
(σ(v1), . . . , σ(vk)) ∈ Re. For 1 ≥ c ≥ s ≥ 0, we define MaxCSPc,s as the problem where, given a c-
satisfiable CSP instance, i.e., there exists an assignment that satisfies at least a c-fraction of the constraints,
the goal is to compute an s-satisfying assignment for the instance, i.e., an assignment that satisfies at least
an s-fraction of the constraints. Here, c and s are referred to as the completeness and soundness parameters.

We first present a sensitivity lower bound for the case where the gap between completeness and sound-
ness is extremely small. Specifically, we show that any algorithm for MaxCSP1,1−Θ(1/n) requires sensitivity
of Ω(n) for E2LIN on cycles, where each constraint is of the form x+y = 0 (mod 2) or x+y = 1 (mod 2).

Next, we gradually increase the gap in multiple rounds without reducing the sensitivity lower bound.
To do so, we adapt the probabilistically checkable proof (PCP) framework [AS98, ALM+98], which was
originally developed as a characterization of NP and have been useful for proving inapproximability results.
More specifically, we build on Dinur’s PCP construction [Din07], which consists of four steps: degree
reduction, expanderization, gap amplification, and alphabet reduction. Below, we explain each step and
describe how we modify them to ensure the sensitivity lower bound remains (almost) intact. Since the
argument for gap amplification and reduction is already covered in Dinur’s original proof, we will primarily
focus on how to analyze the increase and decrease in sensitivity.

We first note that the reduction in each step generally works as follows: Let I be a family of instances.
Consider converting a CSP instance I = (V,E,Σ,R) ∈ I to another instance I ′ = (V ′, E′,Σ′,R′).
Suppose we have an algorithm A′ for the latter. We then run A′ on I ′ to obtain an assignment σ′, and
subsequently convert σ′ : V ′ → Σ′ back into an assignment σ : V → Σ for I . Let I ′ be the family of
instances obtained from instances in I by converting them. The sensitivity of algorithms for I ′ is bounded
from below by the sensitivity for I ′, multiplied by two parameters, CI and Cσ, which are determined by the
conversion of instances and assignments, respectively. Specifically, CI represents the number of changes to
the new instance I ′ when a constraint in the original instance I is changed, and Cσ represents the number
of changes to the assignment σ for I when a value in the assignment σ′ for I ′ is altered. To maintain a large
sensitivity lower bound, CI and Cσ need to be small.

The proof of Dinur’s PCP construction proceeds by iteratively applying the following four steps; we
now sketch how they can be modified in order to preserve sensitivity.

Degree Reduction. The goal of this step is to reduce the degree of each variable to a small constant and
make the underlying graph regular. The reduction is straightforward: for each variable v ∈ V with degree
d in the original instance I , we split v into d copies, v1, . . . , vd, and connect them with an expander, adding
equality constraints on the newly introduced edges. To obtain a label for v in the original instance I , we
select one of v1, . . . , vd uniformly at random and use the label of the chosen vi in I ′.

A key feature of this transformation is that it actually increases the sensitivity lower bound by d, which
is crucial to offset the sensitivity decrease in other steps.

Expanderization. In this step, we simply superimpose an expander with a trivial constraint (satisfied by
any assignment) onto the instance I to transform the underlying graph into an expander, which is important
for the gap amplification step. We use the assignment for I ′ directly as the assignment for I .
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Gap amplification. The goal of this step is to increase the gap between completeness and soundness by a
constant factor t. Suppose the underlying graph is a d-regular expander. To achieve this, we sample a vertex
u ∈ V , perform a random walk of length O(t), and reach vertex v. We then add a constraint between u
and v over the alphabet Σ1+d+···+dt , which encodes the assignments of the t-hop neighborhoods, checking
whether the labels of the variables along the path satisfy all the constraints. (This only defines a distribution
over constraints; we convert this into an unweighted instance by multiplying the probability mass of each
constraints by dO(t) to compute the number of copies needed for the constraint.)

To recover an assignment σ for I from an assignment σ′ for I ′, for each variable u ∈ V , we gather
the labels of variables in the t-hop neighborhood via a random walk. In Dinur’s original proof [Din07], the
majority of these labels would be used as the label for u in I . However, this recovery procedure does not
allow us to preserve the sensitivity lower bound, as changing a single label could change the majority for
many variables. To smooth this transition, we would like to choose a label from a distribution weighted
according to the frequency that it occurs in this random walk. However, the possibility of returning a label
with low probability mass ruins the soundness argument. Instead, we consider a distribution only over labels
with sufficiently large probability mass. Combined with a careful conditioning argument, this allows us to
preserve the sensitivity lower bound while still increasing the gap.

Alphabet reduction. This step decreases the size of the alphabet to a small constant. To do so, while
preserving the gap, we take the Hadamard encoding of our alphabet. However, doing this converts our graph
into a hypergraph, as every constraint now depends on many Boolean variables. To remedy this, we instead
want to check whether a given assignment is close to a satisfying assignment to that constraint by examining
only a few bits of that assignment. To do so, we apply a PCP to this constraint: we introduce sets of variables
which purportedly encode the Hadamard table L of a satisfying assignment α for our constraint, as well as
variables for the Hadamard table Q of α⊗α. We then tests (via constraints) whether this is indeed the case,
using applications of the BLR linearity test [BLR93].

To recover an assignment σ for I from an assignment σ′ for I ′, for each variable u ∈ V , we consider
the bits σ′[u] which purportedly contain a label for u — a Hadamard codeword. We would like to map
σ′[u] to the closest Hadamard codeword (and hence label to u), however this would not allow us to preserve
our bound on sensitivity: consider any assignments to σ′[u] which lies on the unique decoding radius of a
codeword. Then, changing a single bit in this assignment could change which codeword σ′[u] is mapped to,
and hence which label σ assigns to u. Instead, we smooth this transition by employing a randomized thresh-
olding argument: We choose a random threshold τ ∈ [0, 1/4] (as one may recover uniquely a Hadamard
codeword which has been 1/4 corrupted) and assign σ′[u] to its closest codeword if its relative distance to
that codeword is at most τ , and to an arbitrary but fixed codeword otherwise. This smooth transition, along
with a careful conditioning argument, allows us to maintain our bound on sensitivity.

1.2 Discussions

This work presents the first sensitivity lower bounds for approximation algorithms and establishes lower
bounds for various graph problems. However, it also opens up several interesting directions for future
research.

Parallel Repetition The label cover problem is a special type of a CSP where (i) every constraint is binary
and has the so-called projection property (See Section 5 for details), and (ii) the underlying graph formed
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by the constraints is bipartite. For 1 ≥ c ≥ s ≥ 0, let LabelCoverc,s denote the problem that, given a
c-satisfiable label cover instance, the goal is to compute an s-satisfying assignment.

Parallel Repetition. [DS14,Raz95] is a powerful framework that reduces LabelCover1,1−ε to LabelCover1,ε
without increasing the arity of constraints, though it does increase the alphabet size. The reduction itself is
straightforward: for an integer parameter t ≥ 1, for every choice of t constraints, which are over Σ, we add
a new constraint over Σt that represents the conjunction of these t constraints. As a result, the number of
constraints increases from m to mt. This reduction plays a crucial role in deriving tight inapproximability
results for problems like the set cover problem [Fei98, Mos12] and systems of linear equations [Hås01].

Unfortunately, it is not clear whether the parallel repetition framework can be used to derive sensitivity
lower bounds for LabelCover1,ε from those for LabelCover1,1−ε. The challenge arises because a modifica-
tion to a label cover instance may lead to approximately mt−(m−1)t ≈ tmt−1 modifications in the instance
produced by parallel repetition. Therefore, a naive lower bound for the latter problem would be 1

tmt−1 times
that of the former problem, which becomes vacuous. An intriguing open question is whether recent tech-
niques [BMV24] can be employed to establish meaningful sensitivity lower bounds for LabelCover1,ε.

Stronger Sensitivity Bounds. The reason that the lower bounds we obtain take the form Ω(nδ) is that,
through the reductions, the instance size grows polynomially. It is known that there is a PCP of length
O(n log2 n) [BSGH+04, Din07], and an interesting question is whether we can use the PCP construction to
obtain higher lower bounds. However, note that the lower bound cannot be of the form n1−o(1), because that
would imply a lower bound of n1−o(1) for an n−ε-approximation algorithm, which contradicts the fact that
there is a trivial n−ε-approximation algorithm with sensitivity O(n1−ε).

Serial Repetition. By applying serial repetition to the label cover instance obtained from our PCP theo-
rem — i.e., by taking the ANDs of subsets of constraints —- we are able to obtain polynomial sensitivity
lower bounds against randomized algorithms which output a non-negligible approximation with high prob-
ability. When then use this lower bound to prove Theorems 1.1 and 1.4. When we are instead interested
polynomial-time tractability, rather than low sensitivity, there is not much of a difference between such
with-high-probability guarantees and and guarantees in expectation. Indeed, we can simply compute mul-
tiple assignments and take the best one that we find. However, this is not a sensitivity-preserving process.
Indeed, it is not clear whether with-high-probability guarantees and in-expectation guarantees are equiva-
lent for low-sensitivity algorithms, making it an interesting open problem to extend Theorems 1.1 and 1.4
to approximation algorithms with in-expectation guarantees.

Hardness for Polynomial-time Tractable Problems. Although our lower bound argument begins with
E2LIN, a polynomial-time tractable CSP, the CSP we obtain at the end of the PCP construction is NP-hard
(as can be verified using Schaeffer’s dichotomy theorem [Sch78]). Therefore, with the current approach,
we can only establish lower bounds for NP-hard problems. An interesting open question is whether similar
lower bounds can be established for polynomial-time tractable problems, such as finding a (1−ε)-satisfying
assignment for satisfiable E3LIN instances, where each constraint is of the form x+ y + z = 0 (mod 2) or
x+ y + z = 1 (mod 2).

Average Sensitivity. Average sensitivity [MY19,VY23] is a variation of sensitivity where we measure an
algorithm’s stability against average-case modifications to the instance. Specifically, the average sensitiv-
ity of an algorithm A on a graph G = (V,E) is defined as the average Hamming distance between A(G)
and A(G − e), where the average is over edges e ∈ E deleted from G. We note that the sensitivity of an
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algorithm provides an upper bound on average sensitivity, making the latter easier to bound. Algorithms
with low average sensitivity have been proposed for various problems, including graph problems [VY23],
dynamic programming problems [KY22b, KY22a], clustering problems [PY20, YI22], and learning prob-
lems [HY23].

An interesting question is whether the techniques developed in this work can be applied to bound average
sensitivity. Our approach heavily relies on the fact that, in the context of CSPs, the sensitivity with respect
to deleting a constraint can be lower bounded by half of the sensitivity with respect to swapping a constraint.
However, this relationship does not generally hold for average sensitivity, and a more delicate argument is
needed to account for changes in the underlying graph of a CSP instance.

1.3 Related Work

Differential privacy [Dwo06] is a fundamental concept in private data analysis, requiring that the output
distributions of an algorithm be similar for neighboring instances. Though we do not define it formally
here, it is straightforward to show that an ε-differentially private algorithm implies an algorithm with sen-
sitivity O(εn), where n is a bound on the output size. By combining this with known differentially pri-
vate algorithms, we can derive approximation algorithms with sensitivity O(εn) for the global minimum
cut problem [GLM+10], the densest subgraph problem [DLR+22], and the correlation clustering prob-
lem [CAFL+22], although this sensitivity bound is relatively weak.

Aside from the linear sensitivity lower bound for 2-coloring, the only other known lower bound we
are aware of is that any deterministic constant-factor approximation algorithm for the maximum matching
problem requires Ω(log∗ n) queries [YZ21], where log∗ n is the iterated logarithm of n. However, their
argument relies on Ramsey theory, and thus it cannot be extended to randomized approximation algorithms.

Although DCSPs have been extensively studied in the AI community [FPY18, YH00], their theoretical
aspects remain largely unexplored. One exception is the work by Butti and Dalmau [BD24], who provided a
characterization of CSPs that can be solved by a deterministic distributed algorithm in finite time, assuming
each agent lacks an identifier. We hope that our lower bound offers new insights into this problem.

Individual fairness [DHP+12] is another area which shares similarities with sensitivity. Individual fair-
ness requires that similar individuals should be assigned similar labels (more specifically, their distributions
over labels should have low statistical distance). Hence, our sensitivity bounds give lower bounds in the
case when individuals are represented as graphs and are classified according to, for example, their cliques
or cuts; such representations have been used, for example in [KHMT20].

2 Preliminaries

For positive integer n, let [n] denote the set {1, 2, . . . , n}. We use bold symbols to denote random variables.
For a real number x ∈ R, let [x]+ = max{x, 0}.

Graphs. We often use n and m to denote the number of vertices and edges in a graph when the graph is
clear from context. For a graph G = (V,E) and a vertex v ∈ V , let deg(v) denote the degree of v. For a set
E and an element e ∈ E, let E − e denote the set E \ {e}.

For a graph G = (V,E), let λi(G) denote the i-th largest eigenvalue of the adjacency matrix of G.
It is known that λ1 = d when G is d-regular. Let λ(G) = max {λ2(G), |λn(G)|}. A d-regular graph
G = (V,E) is called an (n, d, λ)-expander if λ(G) ≤ λ < d. The following lemmas guarantee the
existence of sufficiently strong expanders.
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Lemma 2.1 (see, e.g., [HLW06]). Let d ≥ 3 be an integer. Then, there exist explicit constant λ ≤ d/2 and
an explicit (polynomial-time computable) family of (n, d, λ)-expanders.

Lemma 2.2 (see, e.g., [HLW06]). If G = (V,E) is a d-regular graph and G′ = (V,E′) is a d′-regular
graph, then H = (V,E ∪ E′) is a (d+ d′)-regular graph such that λ(H) ≤ λ(G) + λ(G′).

Constraint satisfaction problems. We formally define constraint satisfaction problems (CSPs). An in-
stance of a CSP is a tuple I = (V,E,Σ,R = {Re}e∈E) consisting of a variable set V , a set of hyperedges
E over V , a finite domain Σ (also referred to as the alphabet), and a relation Re ⊆ Σ|e| for each e ∈ E. A
constraint refers to a pair (e,Re) for e ∈ E. We say that an assignment σ : V → Σ satisfies a constraint
(e = (v1, . . . , vk), Re) if (σ(v1), . . . , σ(vk)) ∈ Re. Also, we say that σ satisfies I if it satisfies all the
constraints. The goal of a CSP is, given an instance I of the CSP, to find a satisfying assignment for I .

Now, we consider an optimization version of CSPs. For a CSP instance I = (V,E,Σ,R) and an
assignment σ : V → Σ, let valI(σ) denote the fraction of constraints in I satisfied by σ. We define
costI(σ) = 1 − valI(σ) as the fraction of constraints violated by σ. Let opt(I) = maxσ:V→Σ valI(σ).
For 1 ≥ c ≥ s ≥ 0, we define MaxCSPc,s as the problem that, given an instance I = (V,E,Σ,R) with
opt(I) ≥ c, the goal is to find an assignment σ : V → Σ with valI(σ) ≥ s.1

For two instances I = (V,E,Σ, {Re}e∈E) and Ĩ = (V,E,Σ, {R̃e}e∈E) on the same underlying hyper-
graph and domain, we define the swap distance between I and Ĩ as SwapDist(I, Ĩ) := #{Re ̸= R̃e : e ∈
E}.

Sensitivity. Let I = (V,E,Σ, {Re}e∈E) be a CSP instance. For a hyperedge e ∈ E, let I − e denote
the instance (V,E − e,Σ, {Rf}f∈E−e). For two assignments σ, σ′ : V → Σ, let Ham(σ, σ′) = #{v ∈
V : σ(v) ̸= σ(v′)} denote their Hamming distance. The sensitivity of a deterministic algorithm A on I is
defined as

Sens(A, I) := max
e∈E

Ham(A(I), A(I − e)), (1)

where A(I) denotes the output assignment of A on I .
For a distribution µ over X and another distribution µ̃ over X̃ , we say that a joint distribution π over

X × X̃ is a coupling between them if the marginal distributions on the first and the second coordinates
are equal to µ and µ̃, respectively. Let Π(µ, µ̃) denote the set of all couplings between µ and µ̃. For two
distributions µ, µ̃ over assignments on the same domain, we define the earth mover’s distance between them
as

EMD(µ, µ̃) = min
π∈Π(µ,µ̃)

E
(σ,σ̃)∼π

Ham(σ, σ̃).

The sensitivity of a randomized algorithm A on a CSP instance I = (V,E,Σ,R) is defined as

Sens(A, I) := max
e∈E

EMD(A(I), A(I − e)),

where we identify random variables A(I) and A(I − e) with their distributions. Note that this definition
matches (1) when the algorithm is deterministic. For a family of algorithms A and a family of instances I
over the same domain Σ, we define

Sens(A, I) := min
A∈A

max
I∈I

Sens(A, I).

1Usually, MaxCSPc,s refers to the decision problem where the goal is to distinguish instances I with opt(I) ≥ c from instances
I with opt(I) ≤ s. However, we define it as a search problem because we are focused on the sensitivity of algorithms.
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Also, we define Sensc,s(I) := Sens(A, I), where A is the family of all possible algorithms for MaxCSPc,s.
We define a variant of sensitivity which is more convenient when studying CSPs. Let I = (V,E,Σ, {Re}e∈E)

be a CSP instance. For e ∈ E and R ⊆ Σ|e|, Ie←R denote the instance obtained from I by replacing Re

with R. Then, the swap sensitivity of a randomized algorithm A on an instance I = (V,E,Σ,R) is defined
as

SwapSens(A, I) := max
e∈E

max
R⊆Σ|e|

EMD
(
A(I), A(Ie←R)

)
.

We define SwapSens(A, I) and SwapSensc,s(I) as with sensitivity. We say that a family of instances I is
swap-closed if for any I = (V,E,Σ,R) ∈ I, e ∈ E, and R ⊆ Σ|e|, the instance Ie←R also belongs to I.
Note that for any A ∈ A and I, Ĩ ∈ I for a swap-closed family of instances I, we have EMD(A(I), A(Ĩ)) ≤
SwapSens(A, I) · SwapDist(I, Ĩ). For a family of instances I, we define SwapClo(I) as the swap-closure
of I, i.e., the family of instances obtained by (repeatedly) swapping constraints in I ∈ I.

The following lemma shows that we can reduce the problem of bounding sensitivity to that of bounding
swap sensitivity.

Lemma 2.3. For any family of algorithms A and family of CSP instances I, we have

Sens(A, I) ≥ 1

2
SwapSens(A, I).

Proof. Let A ∈ A be an algorithm that attains Sens(A, I). For any I = (V,E,Σ, {Re}e∈E) ∈ I, e ∈ E,
and R ⊆ Σ|e|, we have

EMD(A(I), A(Ie←R)) ≤ EMD(A(I), A(I − e)) + EMD(A(I − e), A(Ie←R)) ≤ 2Sens(A, I).

Hence, we have

SwapSens(A, I) ≤ max
I∈I

SwapSens(A, I) ≤ max
I∈I,e∈E,R⊆Σ|e|

EMD(A(I), A(Ie←R)) ≤ 2Sens(A, I).

3 Sensitivity-Preserving Reductions

The PCP framework can be viewed as a sequence of reductions between CSPs. Therefore, it is useful to
introduce a template for the reductions that we will use throughout our analysis.

Definition 3.1. Let I be a family of CSP instances on the same underlying hypergraph and domain. Let TI

be a procedure that transforms a CSP instance I ∈ I to another CSP instance I ′, and let Tσ be a (possibly
randomized) procedure that transforms an assignment σ′ : V ′ → Σ′ for I ′ to an assignment σ : V → Σ
for I (Tσ might depend on I). For c, s, c′, s′ ∈ [0, 1] and CI , Cσ > 0, we say that the pair (TI , Tσ) is a
(c, s, c′, s′, CI , Cσ)-sensitivity-preserving reduction for I if the following holds:

1. If opt(I) ≥ c, then opt(I ′) ≥ c′.
2. If a (possibly random) assignment σ′ for I ′ satisfies E[valI′(σ

′)] ≥ s′, then the assignment σ =
Tσ(σ

′) satisfies E[valI(σ)] ≥ s.
3. Let I, Ĩ ∈ I be two CSP instances. Then, we have SwapDist(TI(I), TI(Ĩ)) ≤ CI · SwapDist(I, Ĩ).

In particular, this implies that TI generates CSP instances on the same underlying hypergraph and
domain for any I ∈ I.

4. Let I, Ĩ ∈ I be two CSP instances and let σ′, σ̃′ be assignments for TI(I) and TI(Ĩ), respectively.
Then, we have EMD(Tσ(σ

′), Tσ(σ̃
′)) ≤ Cσ · EMD(σ′, σ̃′).
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Lemma 3.2. Let I be a swap-closed family of CSP instances on the same underlying hypergraph and the
same domain. Suppose that there exists a (c, s, c′, s′, CI , Cσ)-sensitivity-preserving reduction (TI , Tσ) for
I. Then we have

SwapSensc′,s′(SwapClo(I ′)) ≥
1

CICσ
SwapSensc,s(I),

where I ′ = TI(I) := {TI(I) : I ∈ I}.

Proof. Let A′ be an algorithm that attains SwapSensc′,s′(SwapClo(I ′)). Then, we design an algorithm
A for I using A′ as follows: Given an instance I = (V,E,Σ,R) ∈ I, we construct an instance I ′ =
(V ′, E′,Σ′,R′) = TI(I). Then, we run the algorithm A′ on I ′ to obtain a (possibly random) assignment
σ′ : V ′ → Σ′ for I ′. Then, we output an assignment σ = Tσ(σ

′) for I.
We analyze the approximation guarantee of A. Suppose optI(I) ≥ c. Then by Item 1 of Definition 3.1,

we have opt(I ′) ≥ c′. Hence, the output assignment σ′ satisfies E val(I ′,σ′) ≥ s′. By Item 2 of Defini-
tion 3.1, we have that E val(I,σ) ≥ s.

Now, we analyze the swap sensitivity of A. Let I, Ĩ ∈ I be two CSP instances with swap distance one.
Then by Item 3 of Definition 3.1, we have SwapDist(I ′, Ĩ ′) ≤ CI · SwapDist(I, Ĩ), which implies that

EMD(σ′, σ̃′) ≤ CI · SwapSens(A′, SwapClo(I ′)) = CI · SwapSensc′,s′(SwapClo(I ′)).

By Item 4 of Definition 3.1, we have EMD(Tσ(σ
′), Tσ(σ̃

′)) ≤ CICσ ·SwapSensc′,s′(SwapClo(I ′)). Hence,
we must have SwapSensc′,s′(SwapClo(I ′)) ≥ SwapSensc,s(I)/(CICσ).

4 Lower Bounds for E2LIN

Let R0, R1 ∈ Z2
2 be binary relations over Z2 such that (a, b) ∈ R0 if and only if a + b = 0 (mod 2) and

(a, b) ∈ R1 if and only a+ b = 1 (mod 2), respectively. Then, we define E2LIN as the CSP over Z2 where
only R0 and R1 are used to define the constraints. Also, let E2LINc,s be the special case of MaxCSPc,s,
where the instances are restricted to those of E2LIN. In this section, we establish a sensitivity lower bound
for E2LIN1,1−1/2n, which we will later amplify using the PCP framework.

Let In denote the set of all E2LIN instances (V,E,Z2,R) such that the graph (V,E) forms a cycle on n
vertices. Note that In is swap-closed. Let A denote the set of randomized algorithms such that the expected
number of errors on satisfiable instances in In is at most half. We show the following lower bound.

Lemma 4.1. For any even integer n ≥ 4, we have SwapSens(A, In) = Ω(n). In particular, we have
SwapSens1,1−1/2n(In) = Ω(n).

Proof. Let A ∈ A be the algorithm that attains SwapSens(A, In). Consider an instance I = (V =
(v1, . . . , vn), E,Z2, {Re}e∈E) ∈ In such that Re = R1 for every e ∈ E. Note that I is satisfiable and
any assignment violates an even number of constraints in I , and hence A must output a satisfying assign-
ment on I with probability at least 3/4 (otherwise, the expected number of errors is more than 1/4·2 = 1/2).
Note that there are only two satisfying assignments σ1, σ2 : V → Z2 for I . Without loss of generality, we
can assume that they are of the following form:

σ1(vi) =

{
0 i is odd,
1 i is even,

σ2(vi) =

{
1 i is odd,
0 i is even.

Let e = (vn/2, vn/2 + 1) and e′ = (vn, v1) and consider an instance Ĩ = Ie←R0,e′←R0 . As Ĩ is also
satisfiable, A must output a satisfying assignment on I ′ with probability at least 3/4. Note that there are
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only two satisfying assignments σ̃1, σ̃2 : V → {0, 1} for Ĩ . Without loss of generality, we can assume that
they are of the following form:

σ̃1(vi) =


0 i is odd and i ≤ n/2,

1 i is even and i ≤ n/2,

1 i is odd and i ≥ n/2 + 1,

0 i is even and i ≥ n/2 + 1,

σ̃2(vi) =


1 i is odd and i ≤ n/2,

0 i is even and i ≤ n/2,

0 i is odd and i ≥ n/2 + 1,

1 i is even and i ≥ n/2 + 1.

For every i, j ∈ {1, 2}, we have Ham(σi, σ̃j) ≥ n/2. Hence, we have

SwapSens(A, In) ≥
EMD(A(I), A(Ĩ))

SwapDist(I, Ĩ)
=

1

2
·
(
1− 1

4
− 1

4

)
· n
2
= Ω(n).

5 PCPs and Sensitivity

In this section, we show a sensitivity lower bound for a problem called LabelCover, which is a special case
of CSPs.

Definition 5.1. An instance of LabelCover is a tuple I = (U, V,E,ΣU ,ΣV ,R = {Re}e∈E), where (U ∪
V,E) forms a bipartite graph, ΣU ,ΣV are finite domains, and each relation Re ⊆ ΣL × ΣR is a projection.
Here, a projection refers to a relation of the form Re = {(a, ϕe(a)) : a ∈ ΣU} for some map ϕe : ΣU → ΣV .
For 1 ≥ c ≥ s ≥ 0, we define LabelCoverc,s as the problem that, given a label cover instance I with
opt(I) ≥ c, the goal is to find an assignment σ for I with valI(σ) ≥ s.

The goal of this section is to show the following:

Theorem 5.2. There exist universal constants ε, δ > 0 and d, k ≥ 1 such that any algorithm for LabelCover1,1−ε
on a bipartite graph of maximum degree d and a domain of size k has sensitivity Ω(nδ).

As we discussed in Section 1.1, the proof of Theorem 5.2 consists of four steps: Degree reduction,
expanderization, gap amplification, and alphabet reduction. We discuss these four steps in Sections 5.1
to 5.4, respectively. Finally, we prove Theorem 5.2 in Section 5.5.

5.1 Degree Reduction

In this section, we introduce a transformation that reduces degrees of vertices in the underlying graph of
a CSP instance. Recall that, by Lemma 2.1, there exist universal constants λ0 < d0 such that (n, d0, λ0)-
expanders can be explicitly constructed in polynomial time. Let I = (V,E,Σ,R) be a d-regular CSP
instance with m = |E|. We consider the following procedure, called DEGREEREDUCTION, to construct an
instance I ′ = (V ′, E′,Σ′,R′):

− Replace each vertex v ∈ V by d many vertices to get the new vertex set V ′. Denote the set of
new vertices corresponding to v by cloud(v). Each vertex in cloud(v) naturally corresponds with a
neighbor of v from G = (V,E).

− For each edge e ∈ E, place an “inter-cloud” edge e′ in E′ between the associated cloud vertices. This
gives exactly one inter-cloud edge per vertex in V ′. Whatever the old constraint Re on e was, put the
exact same constraint on e′.
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− For each v ∈ V , put a (d, d0, λ0)-expander on cloud(v) given by Lemma 2.1. Further, put equality
constraints on these expander edges.

We can observe that in this process each new vertex in V ′ has degree exactly equal to d0 + 1. Thus we
have created a (d0 + 1)-regular graph, as desired. Also the number of newly added edges is equal to∑

u∈V dd0/2 = d0
∑

u∈V d/2 = d0m, and hence m′ = (d0 + 1)m. Note that the domain Σ does not
change and in particular Σ′ = Σ. A depiction is given in Figure 1.

v

(a) Vertex v prior to DEGREEREDUCTION.

cloud(v)

(b) cloud(v) after DEGREEREDUCTION.

Figure 1: DEGREEREDUCTION on a vertex v with d = 4. The intra-cloud edges represent an expander with d0 = 2.

We now show how the sensitivity bound translates through the transformation.

Lemma 5.3. Let I be a swap-closed family of binary d-regular CSP instances over Σ and let I ′ =
DEGREEREDUCTION(I). Then for any ε > 0, we have

SwapSens1,1−ε′(SwapClo(I ′)) ≥ d · SwapSens1,1−ε(I),

for ε′ := ε/C, where C > 0 is a universal constant.

We note that this process indeed increases the sensitivity lower bound, which is crucial for offsetting the
sensitivity decrease in the gap amplification and alphabet reduction steps.

Proof of Lemma 5.3. Let I = (V,E,Σ,R) ∈ I and I ′ = (V ′, E′,Σ,R′) = DEGREEREDUCTION(I). We
consider an algorithm Tσ that, given an assignment σ′ : V ′ → Σ for I ′, constructs an assignment σ : V → Σ
for I by setting σ(u) = σ′(u′), where u′ ∈ V ′ is a vertex sampled from cloud(u) uniformly at random.

We show that the pair (DEGREEREDUCTION, Tσ) is a (1, 1−ε, c′ = 1, s′ = 1−ε′, CI = 1, Cσ = 1/d)-
sensitivity-preserving reduction, from which the claim follows. As the analysis for c′ = 1 and CI = 1 is
obvious, we analyze s′ and Cσ below.

Let σ′ be an assignment for I ′ with E valI′(σ
′) ≥ 1−ε′ = s′. Our goal is to show that E valI(σ) ≥ 1−ε.

We condition on σ′ = σ′ and aim to show that E[costI(σ)] ≤ C · E[costI′(σ
′)]. We then obtain the result

by unconditioning σ′.
For a vertex u ∈ V , let us define Su to be the set of vertices in cloud(u) on which σ′ disagrees with

σ(u). Suppose e = (u, v) ∈ E is one of the edges in I that are violated by σ. Let e′ be the corresponding
inter-cloud edge in E′. The key observation is that either σ′ violates the edge e′ or one of the endpoints of
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e′ belongs to Su or Sv. Thus we have

E costI(σ) ·m ≤ E

[
costI′(σ

′)m′ +
∑
u∈V

|Su|

]
.

It follows that either

a) E costI′(σ
′) ·m′ ≥ E costI(σ) ·m/2, or

b)
∑

u∈V E |Su| ≥ E costI(σ) ·m/2.

In case a), we obtain

costI′(σ
′) ·m′ ≥ E costI(σ) ·m

2
=

E costI(σ) ·m′

2(d0 + 1)
.

Hence, we have E costI(σ) ≤ C ·E costI′(σ
′) by setting C ≥ 2(d0 + 1).

To handle case b), for each label a ∈ Σ, let Cu
a = (σ′)−1(a)∩cloud(u) be the set of vertices in cloud(u)

that are labelled a by σ′ and pua = |Cu
a |

|cloud(u)| be its fraction. Then, note that

E |Su| =
∑
a∈Σ

pua|cloud(u) \ Cu
a | = |cloud(u)| ·

∑
a∈Σ

pua(1− pua),

where the first equality follows as pua is the probability that we choose label a as our label for σ, and hence
every vertex in cloud(u) \ Cu

a differs from the label given to σ. Note that every edge between Cu
a and Cu

b

for a ̸= b is violated by σ′ because they are all labelled with “equality” constraints. Then by the fact that the
cloud is an expander, there exists a constant ϕ > 0 that is determined by d0 and λ0 such that the number of
edges in cloud(u) violated by σ′ is at least

ϕ

2

∑
a∈Σ

min{|Cu
a |, |cloud(u) \ Cu

a |} =
ϕ|cloud(u)|

2
·
∑
a∈Σ

min{pua, 1− pua}

≥ ϕ|cloud(u)|
2

·
∑
a∈Σ

pua(1− pua) =
ϕ

2
E |Su|.

Therefore σ′ violates at least the following number of edges:

costI′(σ
′) ·m′ ≥ ϕ

2

∑
u∈V

E |Su|

≥ ϕE costI(σ) ·m
4

(since we are in case (b))

=
ϕE costI(σ) ·m′

4(d0 + 1)
.

Hence, we have E costI(σ) ≤ C · costI′(σ′) by setting C ≥ 4(d0 + 1)/ϕ.
Next, we analyze the value of Cσ. Let I, Ĩ ∈ I be CSP instances and let I ′ = DEGREEREDUCTION(I)

and Ĩ ′ = DEGREEREDUCTION(Ĩ). Let σ′, σ̃′ : V ′ → Σ be assignments for I ′, Ĩ ′, respectively. Let
π ∈ Π(σ′, σ̃′) such that EMD(σ′, σ̃′) = E(σ′,σ̃′)∼π Ham(σ′, σ̃′). Then, we have

EMD(σ, σ̃) ≤ E
(σ′,σ̃′)∼π

∑
u∈V

TV(σ(u) | σ′, σ̃(u) | σ̃′)
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= E
(σ′,σ̃′)∼π

∑
u∈V

1

2

∑
a∈Σ

∣∣∣∣ |(σ′)−1(a) ∩ cloud(u)|
|cloud(u)|

− |(σ̃′)−1(a) ∩ cloud(u)|
|cloud(u)|

∣∣∣∣
=

1

d
E

(σ′,σ̃′)∼π

∑
u∈V ′

1[σ′(u) ̸= σ̃′(u)]

=
EMD(σ′, σ̃′)

d
.

Hence, the choice Cσ = 1/d satisfies Item 4 of Definition 3.1.

We will need a variant of Lemma 5.3 in the alphabet reduction step, which we discuss below. First, we
note that DEGREEREDUCTION can be extended to non-regular instances by introducing deg(v) copies of
each vertex v ∈ V . Note that the resulting graph is (d0 + 1)-regular.

Marked CSPs. A marked CSP instance Î = (V,E,Σ,R, S) consists of a CSP instance (V,E,Σ,R) and
a set of marked vertices S ⊆ V .

For a marked CSP instance Î , we measure the sensitivity of an algorithm A using marked vertices only.
Specifically, we define

Sens(A, Î) = max
e∈E

Ham(A(I) |S , A(I − e) |S),

where for an assignment σ : V → Σ, σ|S : S → Σ is a restriction of σ on S. Then, we can define other
sensitivity-related notions for marked CSP instances using the definition above.

For a marked instance Î , we define DEGREEREDUCTION(Î) as a marked instance (V ′, E′,Σ,R′, S′),
where (V ′, E′,Σ,R′) = DEGREEREDUCTION(I) and S′ =

⋃
v∈S cloud(v). We can define the swap-

closed property and the swap-closure for a family of marked instances naturally. The proof of Lemma 5.3
gives the following:

Corollary 5.4. Let Î be a swap-closed family of binary marked CSP instances over Σ, where every marked
vertex has degree at least d, and let Î ′ = DEGREEREDUCTION(Î). Then for any ε > 0, we have

SwapSens1,1−ε′(SwapClo(Î ′)) ≥ d · SwapSens1,1−ε(Î),

for ε′ := ε/C, where C > 0 is a universal constant.

5.2 Expanderization

In this section, we introduce a transformation that makes the underlying graph of a CSP instance into an
expander. This subroutine, called EXPANDERIZATION, is simple. Given a binary d-regular instance I on
n variables, we just superimpose an (n, d0, λ0)-expander given by Lemma 2.1. (This may lead to multiple
edges.) On each edge of the expander we simply put a trivial constraint, i.e., a constraint that is always
satisfied. A depiction can be seen in Figure 2.

Let us now record some parameters of G′. The new graph is regular with degree d + d0 and the new
number of edges is n(d+d0)/2. Also, the new constraint graph is indeed a constant degree expander because
the new λ′ is at most d+ λ0 < d+ d0 by Lemma 2.2. Note that domain Σ does not change and so Σ′ = Σ.

We now show how the sensitivity bound translates through the transformation.
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(a) G before EXPANDERIZATION (b) G after EXPANDERIZATION

Figure 2: A graph G before and after EXPANDERIZATION. The edges of the exapnder are marked in red.

Lemma 5.5. Let I be a swap-closed family of binary d-regular instances of a CSP over Σ, and let I ′ =
EXPANDERIZE(I). Then for any ε > 0, we have

SwapSens1,1−ε′(SwapClo(I ′)) ≥ SwapSens1,1−ε(I)

for ε′ := ε/C, where C > 0 is a universal constant.

Proof. Let I = (V,E,Σ,R) ∈ I and I ′ = (V,E′,Σ,R′) = EXPANDERIZE(I). We consider a trivial
algorithm Tσ that, given an assignment σ′ for I ′, outputs σ = σ′ as an assignment for I .

We show that the pair (EXPANDERIZE, Tσ) is a (1, 1 − ε, c′ = 1, s′ = 1 − ε′, CI = 1, Cσ = 1)-
sensitivity-preserving reduction. Then the claim follows by Lemma 3.2. As the analysis for c′ = 1, CI = 1,
and Cσ = 1 is trivial, we analyze s′ below. Let σ′ be an assignment for I ′ with E valI′(σ

′) ≥ 1− ε′ = s′.
Then we have

ε′m′ ≥ E costI′(σ) ·m′ = E costI(σ) ·m = E costI(σ) ·
dm′

d+ d0
.

Hence, we get E costI(σ) ≤ εm by setting C ≥ d/(d+ d0).

5.3 Gap Amplification

In this section, we consider amplifying the gap between the completeness and soundness. Here, we use the
transformation based on graph powering, introduced by Dinur [Din07].

5.3.1 Graph Powering

Let t be an integer and I := (V,E,Σ,R = {Re}e∈E) be a CSP instance, where the graph G = (V,E) is an
(n, d, λ)-expander. We construct a new instance I ′ := (V,E′,Σ,R′ = {R′e}e∈E), where the constraint R′e
for e ∈ E is a subset of Σ1+d+···+dt × Σ1+d+···+dt . As G is d-regular, for any vertex v ∈ V , the number of
vertices at distance at most t from v is at most 1+d+ · · ·+dt. In any assignment σ′ : V → Σ1+d+···+dt for
I ′, we will think of each vertex v ∈ V as having an “opinion” about what the value of each vertex w ∈ V
at distance ≤ t should be; which is σ′(v)w. Roughly, the constraints will state that if the edge (a, b) is of
distance ≤ t from u and v then the assignment (σ′(v)a, σ′(w)b) satisfies the constraint Rab. As each vertex
now is required to answer correctly on all constraints within radius t, this should blow up the gap by O(t).

It will be convenient to define the edges E′ and the constraints {R′e}e∈E′ by the following process:
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1. Describe a distribution over edges e ∈ E′ and corresponding constraints R′e.
2. View this distribution as a weighted graph, where edges have rational weights we depending on d, |Σ|,

and t.
3. Introduce copies of the constraint Re, where the number of copies is proportional to we.

In particular, the distribution will be useful for analyzing the change in the gap and the sensitivity. In order
to describe this distribution, we will make use of following two types of random walks.

– Before Stopping Random Walk (BSRW). Pick a random vertex v ∈ V to be the start vertex. Repeat
the following: Choose a random neighbour of the current vertex, and move to that vertex, and halt
with probability 1/t.

– After Stopping Random Walk (ASRW). Let v be a given start vertex. Repeat the following: With
probability 1/t halt. If we did not halt, pick a random neighbour of the current vertex, and move to
that vertex.

We now describe the gap amplification step, which is by a reduction known as POWERING. Given an
instance I = (V,E,Σ,R = {Re}e∈E), the set E′ and the constraints {R′e}e∈E′ of the instance I ′ that we
are constructing are defined by the following distribution:

− E′: Pick a random vertex v. Perform an ASRW from v, ending at some vertex w. If the length of this
walk is greater than B := 10t log |Σ|, then do nothing. Otherwise, add an edge (v,w) to E′.

− R′e: Let e = (v, w) be the edge defined in the previous step. We describe the constraint R′e: for each
edge (a, b) traversed in the ASRW used to define e, if dG(v, a) ≤ t and dG(w, b) ≤ t, then add the
constraint (σ′(v)a, σ′(w)b) ∈ Rab to R′uv.

We note that the probability that an edge e = (v, w) is chosen in the above distribution is a multiple of
1/(n(dt)B) and we can view the distribution as a weighted CSP instance, where each weight we is a multiple
of 1/(n(dt)B). Then, we output the CSP instance I ′ obtained by copying each constraint n(dt)Bwe-many
times. Note that the underlying graph of I ′ is D := (dt)B-regular.

It remains to show that the gap increases by O(t). Although the sensitivity lower bound decreases by D
here, we will later offset this by applying degree reduction.

Lemma 5.6. Let I be a swap-closed family of binary instances of a CSP over Σ such that the underlying
graph is an (n, d, λ)-expander, and let I ′ = POWERING(I). Then for any ε = O(1/t), we have

SwapSens1,1−ε′(SwapClo(I ′)) ≥
1

8D
· SwapSens1,1−ε(I),

for
D := (dt)B, B := 10t log |Σ|, and ε′ :=

t

C|Σ|4
· ε,

where C > 0 is a universal constant.

Let I = (V,E,Σ,R) ∈ I and I ′ = (V,E′,Σ,R′) = POWERING(I). We design an algorithm Tσ that
extracts a solution σ for the original instance I from an assignment σ′ : V ′ → Σ for I ′. This will be done by
another probability distribution, using a random walk and truncating probabilities. Fix a vertex v ∈ V and
consider the following: perform a BSRW starting from v, conditioned on this walk ending within t steps.
Let w be the final vertex. This gives a probability distribution µv : Σ → R over opinions σ′(w)v of what v’s
value should be. That is, w contributes the value σ′(w)v towards what v’s value should be, weighted by the
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probability of ending at w in t steps given that we started at v. Then, we consider the truncated distribution
µ∗v, which is defined as

µ∗v(a) =

[
µv(a)− 1

10|Σ|

]
+∑

b∈Σ

[
µv(b)− 1

10|Σ|

]
+

.

In particular µ∗v(a) > 0 only if µv(a) > 1/(10|Σ|). The value of σ(v) is drawn from the distribution
µ∗v. Our goal is to show that the pair (POWERING, Tσ) is (1, 1 − ε, c′ = 1, s′ = 1 − ε′, CI = D,Cσ = 8)-
sensitivity-preserving reduction, where ε′ is as in Lemma 5.6. Then, Lemma 5.6 follows by Lemma 3.2. The
analysis for c′ and CI is clear, and hence we focus on analyzing s′ and Cσ and discuss them in Sections 5.3.2
and 5.3.3, respectively.

5.3.2 Sensitivity Increase in the Recovery Procedure

In this we section, we show the following:

Lemma 5.7. The choice Cσ = 8 satisfies Item 4 of Definition 3.1.

Proof. Let I ∈ I be an instance and I ′ be the new instance after POWERING. Let σ′, σ̃′ be two assignments
for I ′ with Ham(σ′, σ̃′) = 1. For v ∈ V , let µv, µ̃v be the distributions constructed as before from σ′ and
σ̃′, and similarly for µ∗v, µ̃

∗
v. Let σ, σ̃ be assignments for I constructed from σ′, σ̃′, respectively. We have

EMD(σ, σ̃) ≤
∑
v∈V

TV(σ(v), σ̃(v)) ≤
∑
v∈V

∥µ∗v − µ̃∗v∥1.

Let Av =
∑

a∈Σ

[
µv(a)− 1

10|Σ|

]
+

and Ãv =
∑

a∈Σ

[
µ̃v(a)− 1

10|Σ|

]
+

. Let δv,a := µ̃v(a) − µv(a).

Note that Av ≥ 9/10, Ãv ≥ 9/10 and∣∣Av − Ãv

∣∣ ≤∑
a∈Σ

∣∣∣∣[µv(a)−
1

10|Σ|

]
+

−
[
µ̃v(a)−

1

10|Σ|

]
+

∣∣∣∣
≤
∑
a∈Σ

∣∣∣∣[µv(a)−
1

10|Σ|

]
+

−
[
µv(a) + δv,a −

1

10|Σ|

]
+

∣∣∣∣
≤
∑
a∈Σ

|δv,a| = ∥µv − µ̃v∥1. (2)

Then, we have

∥µ∗v − µ̃∗v∥1 =
∑
a∈Σ

∣∣∣∣∣∣∣
[
µv(a)− 1

10|Σ|

]
+

Av
−

[
µ̃v(a)− 1

10|Σ|

]
+

Ãv

∣∣∣∣∣∣∣
=
∑
a∈Σ

∣∣∣∣∣∣∣
[
µv(a)− 1

10|Σ|

]
+

Av
−

[
µv(a) + δv,a − 1

10|Σ|

]
+

Ãv

∣∣∣∣∣∣∣
=
∑
a∈Σ

∣∣∣∣∣∣∣
Ãv ·

[
µv(a)− 1

10|Σ|

]
+
−Av ·

[
µv(a) + δv,a − 1

10|Σ|

]
+

AvÃv

∣∣∣∣∣∣∣
16



≤
∑
a∈Σ

∣∣∣∣∣∣∣
(Av ± ∥µv − µ̃v∥1) ·

[
µv(a)− 1

10|Σ|

]
+
−Av ·

[
µv(a) + δv,a − 1

10|Σ|

]
+

AvÃv

∣∣∣∣∣∣∣ (by (2))

≤
∑
a∈Σ

∣∣∣∣∣∣∣
[
µv(a)− 1

10|Σ|

]
+
−
[
µv(a) + δv,a − 1

10|Σ|

]
+

Ãv

∣∣∣∣∣∣∣+
∑
a∈Σ

∣∣∣∣∣∣∣
∥µv − µ̃v∥1 ·

[
µv(a)− 1

10|Σ|

]
+

AvÃv

∣∣∣∣∣∣∣
≤
∑

a∈Σ |δv,a|
Ãv

+
∥µv − µ̃v∥1

Ãv

≤ 4∥µv − µ̃v∥1. (since Ãv ≥ 9/10.)

Let w ∈ V be such that σ′(w) ̸= σ̃′(w) and let pv→w be the probability that we reach w from a vertex v ∈ V
in the BSRW. Note that w contributes by 2pv→w to the value of ∥µv − µ̃v∥1. Then, we have∑

v∈V
∥µ∗v − µ̃∗v∥1 ≤ 4

∑
v∈V

∥µv − µ̃v∥1 ≤ 8
∑
v∈V

pv→w = 8.

5.3.3 Gap Analysis

We now prove that the gap increases significantly when t is large (but still constant).

Lemma 5.8. Suppose ε = O(1/t). Then, the choice s′ = 1− ε′ satisfies Item 2 of Definition 3.1 for

ε′ =
t

C|Σ|4
· ε,

where C > 0 is a universal constant.

Suppose σ′ : V → Σ1+d+···+dt satisfies valI′(σ′) ≥ 1− ε′ = s′. Our goal is to show that E valI(σ) ≥
1−ε. We can handle the situation that we have a random assignment σ′ for I ′ by the conditioning argument
as in the proof of Lemma 5.3.

Let σ be the extracted assignment and let Fσ ⊆ E be the set of edges in G = (V,E) whose constraints
are violated when σ = σ. We relate the expected number of constraints violated by σ to the number
constraints violated by σ′ using the notion of a “faulty” step in the ASRW.

Definition 5.9 (Faulty step). For an assignment σ : V → Σ, a σ-faulty step in the ASRW defining an edge
e′ = (x, y) ∈ E′ is an edge (u, v) ∈ E along this path satisfying

(i) (u, v) ∈ Fσ

(ii) dG(x, u) ≤ t and σ′(x)u = σ(u)
(iii) dG(y, v) ≤ t and σ′(y)v = σ(v)

We further define a step to be σ-faulty∗ if

1. the step is faulty,
2. the number of steps in the overall walk is at most B.

17



Let Nσ and N∗σ be the numbers of σ-faulty and σ-faulty∗ steps, respectively, in the ASRW with respect.
Let S be the total number of steps. By definition, we have N∗σ = Nσ ·1[S ≤ B]. We will use this to bound
ε′ as follows

ε′ ≥ |{(u, v) ∈ E′ : (σ′(u), σ′(v)) ̸∈ R′uv}|
|E′|

= Pr
e∼E′

[σ′ violates R′e] ≥ Pr[N∗σ > 0] ≥ E[N∗σ]
2

E[(N∗σ)
2]
, (3)

where the final inequality follows by the second moment method. Let F̄ := EFσ. We will later show the
following two lemmas.

Lemma 5.10. The following holds:

E[N∗σ] ≥
tF̄

1600|Σ|2m
.

Lemma 5.11. The following holds:

E[(N∗σ)
2] ≤

(
1 +

1

1− λ/d

)
· tF̄
m

+
2t2

m2

(
(2d+ 1)F̄ + F̄ 2

)
.

Proof of Lemma 5.8. Suppose the first term in Lemma 5.11 is smaller than the second term. Then, we have(
1 +

1

1− λ/d

)
· tF̄
m

<
2t2

m2

(
(2d+ 1)F̄ + F̄ 2

)
⇔
(
1 +

1

1− λ/d

)
<

2t

m

(
(2d+ 1) + F̄

)
⇔E costI(σ) >

1

2t

(
1 +

1

1− λ/d

)
− 2d+ 1

m
.

This is a contradiction from the condition that E costI(σ) = O(1/t) (by choosing the hidden constant to be
small enough).

Now, the first term in Lemma 5.11 is larger than or equal to the second term. Then combining Lem-
mas 5.10 and 5.11, we obtain from (3)

ε′ ≥ E
σ∼σ

 1

2 · 16002|Σ|4
(
1 + 1

1−λ/d

) · tE |Fσ|
m

 ≥ tE costI(σ)

C|Σ|4
,

where C > 0 is a large enough constant. By setting ε′ = t/(C|Σ|4) · ε, we obtain E costI(σ) ≤ ε.

We will use the following fact in order to analyze Nσ.

Fact 5.12. Consider an ASRW in a graph G, conditioned on there being exactly k u → v steps. Let x,y be
the initial and final vertices of the walk. Then x and y are independent random variables, where x (resp.,
y) is distributed as a BSRW from u (resp., v).

Proof of Lemma 5.10. We first bound Nσ. Consider conditioning σ = σ and let (u, v) ∈ Fσ be a violated
edge. Then, we have

E[Nσ] = E[# σ-faulty u → v steps]

18



=
∑
k≥1

E[# σ-faulty u → v steps | exactly k u → v steps] · Pr[exactly k u → v steps]

=
∑
k≥1

kPr[u → v step is σ-faulty | exactly k u → v steps] · Pr[exactly k u → v steps], (4)

where the last equality holds because either all u → v steps are σ-faulty or not.

Claim 5.13. We have

Pr[u → v step is σ-faulty | exactly k u → v steps] ≥ 1

400|Σ|2
.

Proof. Suppose that the ASRW makes exactly k u → v steps. As (u, v) ∈ Fσ, this step is faulty if (ii) and
(iii) hold. As x and y are independent by Fact 5.12, we have Pr[(ii) and (iii)] = Pr[(ii)] · Pr[(iii)] and
as Pr[(ii)] = Pr[(iii)], it is enough to show that Pr[(ii)] ≥ 1

20|Σ| . Let x be a random vertex generated by
taking a BSRW from u, and let ℓ be the number of steps of the walk. Then by Fact 5.12,

Pr
[
dG(u,x) ≤ t and σ′(x)u = σ(u)

]
= Pr

[
dG(u,x) ≤ t and σ′(x)u = σ(u) | ℓ ≤ t

]
· Pr[ℓ ≤ t]

= Pr
[
σ′(x)u = σ(u) | ℓ ≤ t

]
· Pr[ℓ ≤ t]

≥ 1

2
· Pr
[
σ′(x)u = σ(u) | ℓ ≤ t

]
=

µu(σ(u))

2

≥ 1

20|Σ|
,

where the first inequality holds because the BSRW halts within t steps with probability 1−(1−1/t)t ≥ 1/2,
the last equality holds because the distribution on x is precisely µu — take a BSRW from u, conditioned
on stopping within t steps, and the last inequality holds because σ(u) is in the support of µ∗u, which implies
that µu(σ(u)) ≥ 1

10|Σ| .

By the claim above, we have

(4) ≥
∑
k≥1

k

400|Σ|2
· Pr[exactly k u → v steps] =

t

800|Σ|2m
,

where the last equality follows because each step is equally likely to be one of the 2m possibilities and the
expected total number of steps is t. Hence, we have

E[Nσ] ≥
t|Fσ|

800|Σ|2m

and uncoditioning σ, we have

E[Nσ] ≥
tF̄

800|Σ|2m
.

Next, we bound N∗σ. Note that

E[N∗σ] = E[Nσ · 1[S ≤ B]] = E[Nσ · (1− 1[S > B)]]

19



= E[Nσ]−E[Nσ · 1[S > B]]

≥ tF̄

800|Σ|2m
−E [Nσ · 1[S > B]], (5)

We can bound the second term as

E [Nσ · 1[S > B]] = Pr[S > B] ·E[Nσ | S > B] =

(
1− 1

t

)B

·E[Nσ | S > B]

≥ exp

(
− eB

(e− 1)t

)
·E[S | S > B] · F̄

m
(by e−x ≤ 1− e−1

e x for x ∈ [0, 1])

= exp

(
− eB

(e− 1)t

)
· (B + t) · F̄

m

≥ 1

|Σ|10e/(e−1)
· (20t log |Σ|) · F̄

m

≥ tF̄

1600|Σ|2m
, (assuming |Σ| is large enough)

Finally, by (5), we conclude that

E[N∗σ] ≥
tF̄

1600|Σ|2m
.

To prove Lemma 5.11, we use the following result, which states that the second moment of Fσ is not
too large compared to its first moment.

Lemma 5.14. We have
E |Fσ|2 ≤ (2d+ 1)F̄ + F̄ 2.

Proof. For an edge e ∈ E, let Xe be the indicator of the event that σ violates the constraint (e,Re), and let
pe = EXe be the probability of the event. For two edges e, f ∈ E, we write e ∼ f to denote that they are
incident. Note that Xe and Xf are independent if e ̸∼ f . Then, we have

E |Fσ|2 = E

(∑
e∈E

Xe

)2

= E
∑
e∈E

X2
e +E

∑
e,f∈E:e̸∼f

XeXf +E
∑

e,f∈E:e∼f
XeXf

≤ E |Fσ|+

(
E
∑
e∈E

Xe

)2

+
∑

e,f∈E:e∼f
max{pe, pf}

≤ E |Fσ|+ (E |Fσ|)2 + 2d
∑
e∈E

pe

≤ (2d+ 1)E |Fσ|+ (E |Fσ|)2

≤ (2d+ 1)F̄ + F̄ 2.

Proof of Lemma 5.11. Although the proof is similar to that of Lemma 5.2 in [Din07], we need to account
for the fact that σ is a random variable.
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Consider conditioning on σ = σ. Let Si be the indicator random variable which is 1 iff the i-th step
of the ASRW is in Fσ, and let M :=

∑∞
i=1 Si be the number of steps of the ASRW that were within Fσ.

Then, we have

E[(N∗σ)
2] ≤ E[M2] =

∞∑
i,j=1

E[SiSj ]

≤ 2

∞∑
i=1

Pr[Si = 1] ·
∑
j≥i

Pr[Sj = 1 | Si = 1]

= 2
∞∑
i=1

Pr[Si = 1]

Pr[Si = 1 | Si = 1] +
∑
j>i

Pr[Sj = 1 | Si = 1]


= 2

∞∑
i=1

Pr[Si = 1]

1 +
∑
j>i

Pr[Sj = 1 | Si = 1]

 .

Now,

Pr[Sj = 1 | Si = 1] = Pr[The ASRW takes j − i more steps] · Pr[(j − i)-th step is in Fσ]

≤
(
1− 1

t

)j−i
(
|Fσ|
m

+

(
λ

d

)ℓ−1
)
,

by Proposition 5.4 of [Din07]), as G is a (n, d, λ)-expander.
Substituting this into the previous bound, we have

E[(N∗σ)
2] ≤ 2

∞∑
i=1

Pr[Si = 1]

(
1 +

∞∑
ℓ=1

(
1− 1

t

)ℓ
(
|Fσ|
m

+

(
λ

d

)ℓ−1
))

≤ 2

∞∑
i=1

Pr[Si = 1]

(
1 + (t− 1)

|Fσ|
m

+

∞∑
ℓ=1

(
λ

d

)ℓ−1
)

(Since 1− 1/t < 1)

≤ 2

∞∑
i=1

Pr[Si = 1]

(
1 +

t|Fσ|
m

+
1

1− λ/d

)
(Since λ < d)

= 2

(
1 +

t|Fσ|
m

+
1

1− λ/d

)
E[M ]

≤ 2

(
1 +

t|Fσ|
m

+
1

1− λ/d

)
· t|Fσ|

m
.

By unconditioning σ, we obtain

E[(N∗σ)
2] ≤ 2

(
1 +

1

1− λ/d

)
· tF̄
m

+
2t2

m2 E |Fσ|2

≤
(
1 +

1

1− λ/d

)
· tF̄
m

+
2t2

m2

(
(2d+ 1)F̄ + F̄ 2

)
, (by Lemma 5.14)

which completes the proof.
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5.3.4 Sensitivity Recovery

The gap amplification step decreases the sensitivity bound by D = (dt)B , but we can offset it by combining
it with degree reduction:

Lemma 5.15. Let I be a swap-closed family of instances of a binary CSP such that the underlying graph is
an (n, d, λ)-expander, and let I ′ = DEGREEREDUCTION(POWERING(I)). Then for any ε = O(1/t), we
have

SwapSens1,1−ε′(SwapClo(I ′)) ≥ Ω
(
SwapSens1,1−ε(I)

)
,

for
ε′ :=

t

C|Σ|4
· ε,

where C > 0 is a universal constant.

Proof. The claim follows by combining Lemmas 5.3 and 5.6 and noting that every instance in POWERING(I)
is D-regular, where D is as in the statement of Lemma 5.6.

5.4 Alphabet Reduction

The previous step leaves us with a set of constraints over an alphabet of size |Σ|1+d+...+dt . In this section,
we introduce a procedure ALPHABETREDUCTION which decreases the alphabet size while preserving the
gap, and not decreasing the sensitivity by too much. This procedure is identical to the construction of
Dinur [Din07]. Our contribution is a new procedure Tσ which recovers an assignment to the instance
prior to ALPHABETREDUCTION from the instance after. This new procedure will allow us to show that
(ALPHABETREDUCTION, Tσ) is a sensitivity-preserving reduction.

We begin by recalling the ALPHABETREDUCTION of Dinur. The heart of which is the sub-routine
ASSIGNMENTTESTER, which will be ran on each edge of the original instance.

5.4.1 Assignment Tester

We say that two assignments x ∈ {0, 1}k and y ∈ {0, 1}k are δ-far if Ham(x, y) ≥ δ · k.

Lemma 5.16 (Assignment Tester [Din07]). There is a reduction which takes as input a Boolean circuit C :
{0, 1}X → {0, 1} over Boolean variables X and outputs a binary CSP instance I := (X∪T,E,Σ0,R) over
Boolean variables X and an additional set of variables T over an alphabet of size |Σ0| ≤ 26. Furthermore,
for every assignment α ∈ {0, 1}X :

− If C(α) = 1, then there exists β ∈ ΣT
0 such that (α, β) satisfies every constraint in I , otherwise

− If α is δ-far from every α∗ ∈ {0, 1}X for which C(α∗) = 1, then for every β ∈ ΣT
0 , at least a δ/48

fraction of the constraints of I are falsified by (α, β).

As it will be pertinent to our analysis, we recall the construction of the ASSIGNMENTTESTER, run on a
Boolean circuit C with input variables X .
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Variable Introduction. We construct the sets of additional Boolean variables Y and Z as follows:

1. Arithmetize the circuit C as a set of quadratic equations P such that C(x) = 1 if and only if P (x) = 1
for every P ∈ P . To do so, we introduce, for each gate g in C, a new Boolean variable yg. Let Y be
the collection of all yg variables introduced. As well, we add the following quadratic constraints to
P: for every gate g in C with children g1, g2, we add one of the following constraints:

− If g = ∧: yg1yg2 − yg = 0 if g1, g2 are the children to g.
− If g = ∨: yg1 + yg2 + yg1yg2 − yg = 0 if g1, g2 are the children to g.
− If g = ¬: yg1 + yg − 1 = 0 if g1 is the child to g.

For the remaining pairs (gi, gj) and triples (gi, gj , gk), with i ≥ j, k, for which we have not introduced
a constraint, we add a trivial constraint which is always satisfied. Let k := |X| + |Y | = |X| + |C|,
where |C| denotes the number of gates in the circuit C.

2. Introduce sets of variables L ∈ {0, 1}k and Q ∈ {0, 1}k2 , and let Z = L ∪ Q. These variables will
purportedly represent the Hadamard encoding L of an assignment α ∈ {0, 1}X∪Y and the Hadamard
encoding of α ⊗ α. We will think of L as a table indexed by strings s ∈ {0, 1}k such that L(s) =∑k

i=1 siαi, and similarly for Q; that is, Q(t) =
∑

1≤i,j≤k tijαiαj for t ∈ {0, 1}k2 .

In total, Y ∪ Z contains O(k) + 2k(k+1)-many Boolean variables.

Constraint Introduction. The purpose of the set of constraints that will be introduced is to verify that an
assignment to the variables {0, 1}X∪Y ∪Z encodes a satisfying assignment to the circuit C. We will describe
the constraints using a probabilistic language, where each edge e that is introduced will have an associated
weight. Furthermore, the edges will initially be hyperedges (involving up to 6 variables); they will be
reduced to regular edges in the sparsification step below. We will construct a weighted instance I := (X ∪
Y ∪ Z,E, {0, 1},R), by populating the edge set E and constraint set R. Every time we “introduce a
constraint” we add an edge to E and a corresponding constraint Re to R. We will then normalize the
instance by adding copies of each edge e ∈ E proportional to their weight to obtain the final instance.

1. Verify that L is a Hadamard code (of some assignment in {0, 1}k): Sample x, y ∼ {0, 1}k and check
that L(x) + L(y) = L(x+ y); that is, we are running the BLR Linearity test [BLR93] on L. That is,
for every x, y ∈ {0, 1}k we introduce a constraint which accepts iff L(x) + L(y) = L(x + y), with
associated weight w1 := 2−2k.

2. Verify that Q is a Hadamard code (of some assignment in {0, 1}k2): For every x, y ∈ {0, 1}k2 , intro-
duce a constraint which accepts iff Q(x) +Q(y) = Q(x+ y), with associated weight w2 := 2−2k

2
.

3. Verify that L and Q encode the same assignment: Let SELFCORRECT(L, x) be the procedure which
samples x′ ∼ {0, 1}k and outputs L(x+x′)−L(x′). In this step we sample x, y ∼ {0, 1}k and check
whether

SELFCORRECT(L, x)SELFCORRECT(L, y) = SELFCORRECT(Q, x⊗ y).

That is, for every x, y, x′, y′ ∈ {0, 1}k and q ∈ {0, 1}k2 , we introduce the constraint(
L(x+ x′)− L(x′)

)(
L(y + y′)− L(y′)

)
= Q(x⊗ y + q)−Q(q),

with weight w3 := 2−(4k+k2).

23



4. Verify that the assignment that is referred to by L and Q satisfies the circuit C: Sample r ∼ {0, 1}|P|
and let s0 ∈ {0, 1}, s ∈ {0, 1}k, t ∈ {0, 1}k2 be such that

∑
P∈P

rPP (x) = s0 +

k∑
i=1

sixi +
∑

1≤i,j≤k
tijxixj ,

and check whether s0 + SELFCORRECT(L, s) + SELFCORRECT(Q, t) = 0. That is, for every r ∈
{0, 1}|P|, x ∈ {0, 1}k, q ∈ {0, 1}k2 introduce the constraint

s0 + L(s+ x)− L(x) +Q(t+ q)−Q(q) = 0,

with weight w4 := 2−(|C|+k+k2), noting that |P| = |C|.
5. Verify that the assignment referred to by L and Q is the same assignment as encoded by the variables

X . Let ei denote the ith standard basis vector. Sample i ∼ [|X|] and check whether

SELFCORRECT(L, ei) = Xi.

That is, for every x ∈ {0, 1}k, and every 1 ≤ i ≤ |X|, introduce L(ei + x) − L(x) = Xi. Weight
each of these constraints by w5 := 2−k/|X|.

We convert this instance I to an unweighted instance by replacing each constraint edge pair (e,Re) of type
(i), for i ∈ [5], with wiN -many copies of it, where N is the least common multiple of 1/w1, . . . , 1/w5.
Observe that each of these constraints depend on at most 6 variables in X ∪ Y ∪ Z. Finally, as we would
like to measure swap sensitivity (rather than sensitivity) we would like to be able to recover any instance
obtained by swapping C for another circuit C of the same size (encoding a constraint in our instance).2

To accommodate this, let α be the maximum number of times that a specific L(s) or Q(q) appears in the
constraints obtained from step (4). For every s, x ∈ {0, 1}k and t, q ∈ {0, 1}k2 for which a constraint of type
(4) does not exist, we introduce a trivial (always satisfied) constraint on the variables L(s+x), L(x), Q(t+
q), Q(q), with multiplicity αw4N .

It remains to reduce these to binary constraints.

Sparsification. Let I = (X ∪ Y ∪Z,E,Σ0,R) be the instance constructed so far. We reduce these 6-ary
constraints to binary constraints by introducing an additional set of 26-ary variables W := {we : e ∈ E}.
We replace each pair of edge and constraint (e,Re) belonging to E and R as follows: Let v1, . . . , vt for
2 ≤ t ≤ 6 be the set of variables on which Re depends. Replace Re by constraints Re,i on (we, vi) for
i ∈ [t], where (a, b) ∈ Re,i if b is consistent with a and a satisfies Re. Let I = (X ∪ T,E,Σ0,R), where
T := X ∪ Y ∪ Z ∪W , be the resulting instance that we have constructed. This completes our description
of the ASSIGNMENTTESTER.

We record some useful observations.

Observation 5.17. Let C be any circuit on variables X and consider I = ASSIGNMENTTESTER(C). Then
following hold:

1. The parameters N and k depend only on the number of gates of C.
2When we apply the Assignment Tester to the constraints of our instance, we will assume that every constraint is encoded by a

circuit of the same size, by taking the maximum.
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2. Replacing C by any other circuit of the same size on the input variables X will only modify O(N)-
many constraints from (4).

3. Each X-variable has degree D := 3N/|X|, as each constraint in step (5) depends on exactly three
variables and by the sparsification step we replace each such constraint by three binary constraints.

5.4.2 Reduction Procedure

Now, we describe the procedure ALPHABETREDUCTION, building on ASSIGNMENTTESTER. Let I =
(V,E,Σ,R) ∈ I be a binary CSP instance with n variables. First, we encode the elements of Σ in binary
by applying the Hadamard code Had : Σ → {0, 1}ℓ, where ℓ := 4 log |Σ|; hence each vertex v ∈ V
is encoded by a set Xv of ℓ-many Boolean variables. For each edge e = (u, v) ∈ E we will replace the
constraint Re ⊆ Σ2 by a Boolean circuit Ce : {0, 1}2ℓ → {0, 1} such that Ce(α, β) = 1 iff there are a, b ∈ Σ
such that Had(a) = α,Had(b) = β, and (a, b) ∈ Re. Let Xe = Xu ∪Xv be the set of Boolean variables
(encoding the two endpoints of e) on which Ce depends. Finally, we will assume without loss of generality
that the size of the circuits Ce is the same for all e ∈ E by padding. In particular, by Observation 5.17, the
parameters N and k will be the same for every e ∈ E.

To generate the instance I ′ := ALPHABETREDUCTION(I), we will feed the circuit Ce that simulates
each constraint Re to the ASSIGNMENTTESTER. Let Ie = (Xe∪Te, Ee,Σ0,Re) := ASSIGNMENTTESTER(Ce).
Define the instance I ′ := (X ′ ∪ T ′, E′,Σ′ = Σ0,R′) as X ′ =

⋃
e∈E Xe, T ′ =

⋃
e∈E Te, E′ :=

⋃
e∈E Ee,

and R′ :=
⋃

e∈E Re.
The goal of this section is to show the following:

Lemma 5.18. Let I be a swap-closed family of CSP instances and let I ′ = ALPHABETREDUCTION(I).
Then we have

SwapSens1,1−ε′(SwapClo(I ′)) ≥
SwapSens1,1−ε(I)

CI · Cσ
,

where CI = N , Cσ = O(1/ log |Σ|), and ε′ ≥ ε/C for some universal constant C > 0, and parameter N
from the ASSIGNMENTTESTER.

Consider the following algorithm Tσ, which given an assignment σ′ : V ′ → Σ′ to I ′, returns an assign-
ment σ : V → Σ to I as follows. For each u ∈ V , denote by σ′[u] the restriction of σ′ to the block of
variables which represent u’s label. Then σ′[u] is a purported Hadamard codeword on ℓ = 4 log |Σ|-many
bits. Let cu be the closest codeword to σ′[u]. Consider the “Swiss cheese” S ⊆ {0, 1}ℓ obtained from the
hypercube {0, 1}ℓ by removing any point which is within the unique decoding radius (the Hamming ball
of radius ℓ/4) of any codeword; an illustration is given in Figure 3. Let δu = Ham(σ′[u], cu)/ℓ. Note that
δu ∈ [0, 1/4]. Then, we choose a threshold τ ∈ [0, 1] uniformly at random (we use this threshold for all
u ∈ V ). Then, we set σ(u) = a if 4δu ≤ τ , where a ∈ Σ is such that Had(a) = cu. Otherwise, we set
σ(u) = r, where r is an arbitrary but fixed label in Σ. Let µu be this distribution, where µu(1) denotes the
first event and µu(2) denotes the second.

We claim that (ALPHABETREDUCTION, Tσ) is a (1, 1 − ε, c′ = 1, s′ = 1 − ε′, CI = N,Cσ = 8/ℓ)-
sensitivity-preserving reduction, where ε′ = Θ(ε). The analysis for c′ is obvious. Also, CI = N suffices by
Observation 5.17. Hence, we focus on analyzing Cσ and s′ in the rest of this section.

5.4.3 Sensitivity Increase in the Recovery Procedure

We now analyze the sensitivity increase in the recovery procedure Tσ.
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Figure 3: Conceptual illustration of the “Swiss cheese” S ⊆ {0, 1}ℓ. Vertices of {0, 1}ℓ which are codewords are
indicated by red circles, and the Hamming balls of radius ℓ/4 around each one of them has been removed from {0, 1}ℓ
to form S. The random threshold τ chosen in the recovery procedure is indicated by the dashed circle.

Lemma 5.19. The choice Cσ = 8/ℓ satisfies Item 4 of Definition 3.1.

Proof. Consider any pair of assignments σ′, σ̃′ : V ′ → Σ′ such that Ham(σ′, σ̃′) = 1. As well, let σ =
Tσ(σ

′) and σ̃ = Tσ(σ̃
′). Then,

EMD(σ, σ̃) ≤
∑
u∈V

TV
(
σ(u), σ̃(u)

)
.

Suppose Ham(σ′[u], σ̃′[u]) = 1 for a vertex u ∈ V . Let cu, c̃u ∈ {0, 1}ℓ be the closest codewords to σ′[u]
and σ̃′[u], respectively. we consider two cases based on whether these codewords are the same.

Case 1. If cu = c̃u: Then,

TV(σ(u), σ̃(u)) = TV(µu, µ̃u) =
1

2

(
|µu(1)− µ̃u(1)|+ |µu(2)− µ̃u(2)|

)
=

1

2 · (ℓ/4)

(
|Ham(σ′[u], cu)− Ham(σ̃′[u], cu)|+ |Ham(σ′[u], S)− Ham(σ̃′[u], S)|

)
≤ 1

ℓ/4
· Ham(σ′[u], σ̃′[u]). (By the triangle inequality)

=
4

ℓ
.

Case 2. If cu ̸= c̃u: As Ham(σ′, σ̃′) = 1, this can only occur if σ′[u], σ̃′[u] lie on the unique decoding
radius of their respective codewords. Let a, b ∈ Σ be such that Had(a) = cu,Had(b) = c̃u. Then
σ(u), σ̃(u) take on values a, b, respectively, with probability at most 1/(ℓ/4). Then, we have

TV(σ(u), σ̃(u)) ≤
∣∣Pr [σ(u) = a

]
− Pr

[
σ̃(u) = b

]∣∣ ≤ 2

ℓ/4
=

8

ℓ
.

Hence, the claim follows.

26



5.4.4 Gap Analysis

Now we analyze the gap decrease of ALPHABETREDUCTION.

Lemma 5.20. The choice s′ = 1 − ε′ for ε′ = ε/C satisfies Item 2 of Definition 3.1, where C > 0 is a
universal constant.

Proof. Let σ′ be an assignment to I ′ with valI′(σ
′) ≥ 1 − ε′. Let σ be the assignment recovered from σ′

by Tσ. Our goal is to show that E valI(σ) ≥ 1 − ε. We can handle the situation that we have a random
assignment σ′ for I ′ by the conditioning argument as in the proof of Lemma 5.3.

(Generalizing this argument to the case where σ′ is a random assignment is straightforward.)
For e ∈ E, let εe be the probability that σ violates the constraint on e. Also, let ε′e be the fraction

of the constraints in Ie violated by σ′. Note that
∑

e∈E ε′e/m ≤ ε′. For u ∈ V , let cu ∈ {0, 1}ℓ be the
closest codeword to σ′[u]. Let au ∈ Σ be such that Had(au) = cu. Let δu = Ham(σ′[u], cu)/ℓ . Then, the
probability that σ(u) = au is

pu :=
ℓ/4− Ham(σ′[u], cu)

ℓ/4
=

1/4− δu
1/4

= 1− 4δu.

Fix an edge e = (u, v) ∈ E of I . Let (c∗u, c
∗
v) be the satisfying assignment to Ie which is closest to

(σ′[u], σ′[v]). As (c∗u, c
∗
v) is satisfying, they must be Hadamard codewords, and hence there are a∗u, a

∗
v ∈ Σ

such that Had(a∗u) = c∗u, Had(a∗v) = c∗v, and (a∗u, a
∗
v) ∈ Re. Let pe be the probability that both σ(u) = au

and σ(v) = av hold. Because we use threshold rounding, we have pe = 1−max{4δu, 4δv} = min{pu, pv}.
We consider two cases.

Case 1. (au, av) ̸∈ Re. Then at least one of a∗u ̸= au or a∗v ̸= av. Suppose without loss of generality that
the first holds. Then,

ℓ

2
≤ Ham

(
Had(a∗u), Had(au)

)
(As Hadamard codewords have distance 1/2.)

= Ham
(
c∗u, cu

)
(Had(au) = cu)

≤ Ham
(
c∗u, σ

′[u]
)
+ Ham

(
σ′[u], cu

)
≤ 2Ham

(
c∗u, σ

′[u]
)
,

where the final inequality follows as cu is the closest codeword to σ′[u]. Hence, (σ′[u], σ′[v]) is (1/8)-
far from (c∗u, c

∗
v), and hence (1/(8 · 48))-far from any satisfying assignment to Ie by Lemma 5.16. This

means ε′e ≥ 1/(8 · 48) ≥ εe/384, where the last inequality is by εe ≤ 1.

Case 2. (au, av) ∈ Re. Suppose without loss of generality that δu ≥ δv holds. Then, Ham(σ′[u], c∗u) ≥
Ham(σ′[u], cu) ≥ δuℓ holds because cu is the closest codeword to σ′[u]. Hence, σ′([u], [v]) is at
least (δu/2)-far from (c∗u, c

∗
v), and it follows that (δu/2)-far from any satisfying assignment to Ie by

Lemma 5.16. This implies ε′e ≥ δu/(2 · 48).
On the other hand, the probability that we have both σ(u) = au and σ(v) = av is pu. Hence

ϵe ≤ 1− pu = 4δu and we have ε′e ≥ εe/(2 · 48 · 4) = εe/384.

Combining the two cases, we have

ε′ =
1

m

∑
e∈E

ε′e ≥
1

m

∑
e∈E

εe
384

=
costI(σ)

384
.

Hence, we have costI(σ) ≤ ϵ by setting ε′ = ε/384.
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5.4.5 Sensitivity Recovery

Finally, we combine the ALPHABETREDUCTION procedure with DEGREEREDUCTION in order to restore
the our sensitivity bound.

Lemma 5.21. Let I be a swap-closed family of instances of a binary CSP and consider the family of
instances I ′ = DEGREEREDUCTION(ALPHABETREDUCTION(I)). Then for any ε > 0, we have

SwapSens1,1−ε′(SwapClo(I ′)) ≥ Ω
(
SwapSens1,1−ε(I)

)
,

for ε′ = ε/C for some universal constant C > 0.

Proof. Let I ′ = (X ′ ∪ T ′, E′,Σ′ = Σ0,R′) = ALPHABETREDUCTION(I) for an instance I ∈ I, where
X ′ are the vertices which represent the Hadamard encoding of the vertices of I . Let D be the maximum
degree of any X ′-vertex among all I ∈ I ′. Our aim is to apply Corollary 5.4 to I ′. Define the marked CSP
Î ′ which is I ′ with marked set of vertices S = X ′. Then by Lemma 5.18 and Corollary 5.4, we have

SwapSens1,1−ε′(SwapClo(I ′)) ≥
D · SwapSens1,1−ε(I)

CICσ

= Ω

(
N/ log |Σ| · SwapSens1,1−ε(I)

N · (1/ log |Σ|)

)
= Ω

(
SwapSens1,1−ε(I)

)
.

5.5 Proof of Theorem 5.2

Proof of Theorem 5.2. Starting with the Ω(1/n) gap between completeness and soundness from Lemma 4.1,
we gradually increase this gap by applying the reductions developed in this section.

Each round consists of Lemma 5.5, Lemma 5.15 with a sufficiently large constant t, and Lemma 5.21,
in this order, and we apply the reductions for r := O(logt n) rounds, where δ > 0 is a sufficiently small
constant. The gap amplification and subsequent degree reduction steps increase the number of vertices
by a factor of O(dt), where d is the degree of the instance at the beginning of the round, and the alphabet
reduction and subsequent degree reduction steps increase the number of vertices by a factor of 2O(k2), where
k is from ASSIGNMENTTESTER. The instance size after r rounds is

N := n ·
(
O
(
dt
)
· 2O(k2)

)r
= nO(t/ log t).

This implies n = NΩ(log t/t). Each round decreases the sensitivity lower bound by a constant. Then after r
rounds, the sensitivity lower bound becomes

n

O(1)r
= n1−O(1/ log t) = NΩ(log t/t).

Each round increases the gap between the completeness and soundness by t/C for some universal constant
C > 0. Hence by choosing the hidden constant in r to be large enough, the gap after r rounds is

Ω

(
1

n

)
·
(

t

C

)r

= Ω(1).

To obtain label cover instances, observe that the sparsification process in the alphabet reduction step gen-
erates a label cover instance. Therefore, we can obtain label cover instances simply by omitting the degree
reduction step at the end. Finally, Lemma 2.3 yields the theorem.
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6 Maximum Clique and Related Problems

A vertex set S ⊆ V in a graph G = (V,E) is called a clique if every pair of vertices in S is adjacent in G.
In the maximum clique problem, given a graph G = (V,E), the goal is to find a clique of maximum size.
We first show a sensitivity lower bound for (1− ε)-approximation algorithm for some ε > 0 in Section 6.1.
As a corollary, we also obtain a lower bound for (1 + ε)-approximation algorithm for the minimum vertex
cover problem. Then, we show a sensitivity lower bound for n−ε-approximation algorithm for some ε > 0
in Section 6.2. For a graph family G, let Clo(G) denote the deletion closure of G, i.e., the family of graphs
obtained from a graph in G by deleting edges.

6.1 Lower Bounds for (1 − ε)-Approximation Algorithms

In this section, we show the following:

Theorem 6.1. There exist universal constants ε, δ > 0 such that any (1 − ε)-approximation algorithm for
the maximum clique problem has sensitivity Ω(nδ).

For 1 ≥ c ≥ s ≥ 0, we define MaxCliquec,s as the problem that, given a graph G = (V,E) on n vertices
with a clique of size at least cn, the goal is to find a clique of size at least sn. We use the standard reduc-
tion from LabelCover to MaxClique [FGL+96], which we call FGLSS. Let I = (U, V,E,ΣU ,ΣV ,R =
{Re}e∈E) be a satisfiable label cover instance. We construct a graph G′ = (V ′, E′), where V ′ = {ve,a,b :
e ∈ E, (a, b) ∈ Re}. As for the edges in G′, we connect ve1,a1,b1 ∈ V ′ and ve2,a2,b2 ∈ V ′ by an edge if
(e1, a1, b1) and (e2, a2, b2) are consistent. For each e ∈ E, we define cloud(e) = {ve,a,b : (a, b) ∈ Re}. We
note that n′ := |V ′| = |ΣU |m. As well, it is easy to see that G′ has a clique of size m: For any satisfying
assignment σ for I , the vertex set {ve,σ(u),σ(v) : e = (u, v) ∈ E} forms a clique in G′.

Proof of Theorem 6.1. We basically follow the argument in Section 3, but we need to slightly modify it
because the target problem is not a CSP.

Let ε, δ > 0 and d, k ≥ 1 to be the ones given in Theorem 5.2. Let I be the family of satisfiable label
cover instances with n variables on finite domains ΣU ,ΣV with |ΣV | ≤ |ΣU | = k, where each variable is
incident to at most d constraints. Note that Sens1,1−ε(I) = Ω(nδ).

Let c := 1/k and let A′ be an algorithm for MaxCliquec,(1−ε)c. Using A′, we design an algorithm A for
LabelCover. Specifically, given a satisfiable instance I = (U, V,E,ΣU ,ΣV ,R) ∈ I, we first apply FGLSS
to obtain a graph G′ = (V ′, E′) of n′ vertices. Note that G′ contains a clique of size |V ′|/|ΣU | = cn′.
Then, we apply the algorithm A′ to obtain a clique C of size at least (1− ε)cn′.

Next, we describe a procedure Tσ that recovers an assignment σ for I from a clique C for G′. Let
U(C) = {u ∈ U : vuv,a,b ∈ C} and V (C) = {v ∈ V : vuv,a,b ∈ C}. It is easy to observe that for each
u ∈ U(C), there is a value au ∈ ΣU such that, if C has a vertex of the form ve,a,b with u being an endpoint
of e, then a = au. Thus, we can define σ(u) = au. For a variable u ∈ U \ U(C), we set σ(u) to be an
arbitrary but fixed value in ΣU . Similarly, for each v ∈ V (C), there is a value bv ∈ ΣV such that, if C has a
vertex of the form ve,a,b with v being an endpoint of e, then b = bv. Thus, we can define σ(v) = bv. For a
variable v ∈ V \ V (C), we set σ(v) to be an arbitrary but fixed value in ΣV .

Now, we show that the expected value of σ := Tσ(C) is at least 1 − ε. By the observation that C
may contain at most a single vertex from the cloud of each e ∈ E, it follows that there are more than
(1 − ε)cn′ = (1 − ε)m clouds in expectation from which C contains a vertex. Let F ⊆ E be the set of
edges e ∈ E such that C contains some vertex from the cloud of e. We argue that σ satisfies all edges in
F , hence they satisfy at least |F | constraints, which is a (1 − ε)-fraction of the constraints in expectation.
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Indeed, if e = (u, v) ∈ F then there is a vertex of the form ve,a,b in C. Then, (a, b) satisfies the constraint
Re by construction, and we have σ(u) = a and σ(v) = b by the choice of σ.

Next, we discuss sensitivity. Let I, Ĩ ∈ I be two instances, where Ĩ is obtained from I by deleting a
constraints. Let G′, G̃′ denote the graphs obtained from I, Ĩ , respectively, by applying FGLSS. Then, it is
easy to observe that |E′△Ẽ′| ≤ 2d|ΣU |. Let C, C̃ be the outputs of A′ on G′ and G̃′, respectively. Then,
we have

EMD(C, C̃) ≤ 2dk · Sens(A′,G′),

where G′ = Clo(FGLSS(I)). Let σ, σ̃ be the assignments constructed from C, C̃, respectively, by apply-
ing Tσ above. Then, we have

EMD(σ, σ̃) = EMD(U(C), U(C̃)) + EMD(V (C), V (C̃))

≤ 2EMD(C, C̃) = 4dk · Sens(A′,G′))

As the choice of the algorithm A′ was arbitrary, any algorithm for MaxCliquec,(1−ε)c must have sensitivity
Ω(nδ/dk) = Ω((n′)δ).

For a graph G = (V,E), a vertex set S ⊆ V is called a vertex cover if every edge in E is incident to
some vertex in S. In the minimum vertex cover problem, given a graph G = (V,E), the goal is to find a
vertex cover of the minimum size.

Corollary 6.2. There exist universal constants ε, δ > 0 such that any (1 + ε)-approximation algorithm for
the minimum vertex cover problem has sensitivity at least Ω(nδ).

Proof. First, note that the proof of Theorem 6.1 shows that there exists a universal constants c > 0 and
ε > 0 such that any algorithm for MaxCliquec,(1−ε)c has sensitivity at least n1−o(1). Also note that a vertex
set C is a clique of a graph G = (V,E) if and only if its complement C̄ := V \ C is a vertex cover of the
complement graph Ḡ = (V,

(
V
2

)
\ E).

Let A′ be an arbitrary (1 + εc)-approximation algorithm for the minimum vertex cover problem. Then,
we consider an algorithm A for the maximum clique problem that, given a graph G = (V,E), first applies
A′ to Ḡ to obtain a vertex cover S ⊆ V , and then returns a vertex set S̄. When there is a clique of size cn,
the algorithm A returns a clique of size at least

n− (1 + εc)(1− c)n = −εcn+ cn+ εc2n ≥ (1− ε)cn.

Hence, A is a (1− ε)-approximation algorithm and hence its sensitivity must be Ω(nδ).
Moreover deleting an edge from G corresponds to adding an edge to Ḡ, and hence the sensitivity bound

applies to A′.

6.2 Lower Bounds for n−ε-Approximation Algorithms

In this section, we show a sensitivity lower bound for n−ε-approximation algorithms for the maximum
clique problem for some constant ε > 0. To this end, we first apply serial repetition to get a lower bound for
ε-approximation algorithms for LabelCover for any ε > 0.

Lemma 6.3. There exists a universal constant δ > 0 such that for any ε > 0, any algorithm for MaxCSP1,ε

on t-ary instances of degree at most O(log n+ε−1 log ε−1) that succeeds with probability at least 1−O(1/n)
requires sensitivity Ω(nδ/(ε−1 log ε−1)), where t = O(log ε−1).
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Let ε′ > 0 be an arbitrary parameter and we set

t = O

(
log(1/ε′)

ε

)
and M = max

{
log

3kn

ε
· (1− ε/3)−t

3
,
3m log(nm)

t
,
3m log n2

dt

}
.

We consider a randomized transformation, called SERIALREPETITION, from label cover instances to CSP
instances. Specifically, given an instance I = (U, V,E,ΣU ,ΣV ,R = {Re}e∈E) ∈ I, we construct a
(random) instance I ′ = (U, V,E′,Σt

U ,Σ
t
V ,R

′ = {R′e}e∈E′) as follows: For i = 1, . . . ,M , sample t edges
e1, . . . , et ∈ E uniformly at random, and let e(i) be the multiset

⋃t
j=1 ej . Let R′

e(i)
be the relation obtained

by combining Re1 , . . . , Ret , i.e.,

R′
e(i)

=
{
(a1, . . . , at, b1, . . . , bt) ∈ Σt

U × Σt
V : (aj , bj) ∈ Rej ∀j ∈ [t]

}
.

Note that |E′| = M and each relation has arity at most 2t.
We show several key properties of I ′.

Claim 6.4. With probability at least 1 − ε/3, we have valI′(σ) < ε′ for any assignment σ for I ∈ I with
valI(σ) < 1− ε/3.

Proof. Let σ be an arbitrary assignment that satisfies at most a (1−ε/3)-fraction of the constraints of I . Let
Xσ

i be the indicator random variable that σ satisfies the ith constraint of I ′. Then by the Chernoff bound,
we have

Pr

[
M∑
i=1

Xσ
i ≥ 2

(
1− ε

3

)t
M

]
≤ exp

(
−1

3

(
1− ε

3

)t
M

)
≤ ε

3kn
,

by our choice of M . Finally, by a union bound, with probability at least 1 − ε/3 we have valI′(σ) ≤
2(1− ε/3)t < ε′ for any σ with valI(σ) < 1− ε/3.

Claim 6.5. With probability at least 1 − 1/n, every edge e ∈ E is used to construct at most 2tM/m
constraints in I ′.

Proof. For an edge e ∈ E, i ∈ [M ], and j ∈ [t], let Y e
i,j be the indicator that e is used to construct e(i) as

the j-th edge. By Chernoff’s bound, we have

Pr

 M∑
i=1

t∑
j=1

Y e
i,j ≥

2tM

m

 ≤ exp

(
− tM

3m

)
≤ 1

nm
.

By a union bound, with probability at most 1/n, every edge e ∈ E is used to construct at most 2tM/m
constraints in I ′.

Claim 6.6. With probability at least 1− 1/n, the instance I ′ has degree at most dtM/m.

Proof. For a variable v ∈ U ∪ V , i ∈ [M ], and j ∈ [M ], let Y v
i,j be the indicator that an edge incident to v

is used to construct e(i) as the j-th edge. Note that EY v
i,j ≤ d/2m. Hence by Chernoff’s bound, we have

Pr

 M∑
i=1

t∑
j=1

Y v
i,j ≥

dtM

m

 ≤ exp

(
−dtM

3m

)
≤ 1

n2
.

By a union bound, with probability at most 1/n, every vertex v ∈ U ∪ V is incident to at most dtM/m
constraints in I ′.
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Proof of Lemma 6.3. Let ε, δ > 0 and d, k ≥ 1 to be the ones given in Theorem 5.2. Let I be the swap-
closed family of satisfiable label cover instances with m edges and n variables on finite domains ΣU ,ΣV

with |ΣV | ≤ |ΣU | = k, where each variable is incident to at most d other variables. Note that we have
SwapSens1,1−ε(I) = Ω(nδ) (see the proof of Theorem 5.2).

Let I ′ be the swap closure of instances in the support of SERIALREPETITION(I) such that the degree
is at most dtM/m. Note that I ′ belongs to I ′ with probability at least 1− 1/n by Claim 6.6. Let A′ be an
arbitrary algorithm for I ′ that attains SwapSens1,ε′(I ′). We design an algorithm A for I which operates as
follows: Given an instance of I ∈ I, let I ′ = SERIALREPETITION(I). Then, we apply A′ on I ′ to compute
an assignment σ′, and simply output σ := σ′.

We first show that A is an algorithm for LabelCover1,1−ε on I. Recall that valI′(A′(I ′)) ≥ ε′ with
probability at least 1−O(1/n) for any I ′ ∈ I ′. Let XI′ be the indicator of the event that this happens. Let
X6.4 and X6.6 be the indicators of the events that the events of Claim 6.4 and Claim 6.6 hold, respectively.
Then, we have

E valI(A(I)) ≥ Pr[XI′ ∧X6.4 ∧X6.6] ·E[valI(A(I)) | XI′ ∧X6.4 ∧X6.6]

≥
(
1− ε

3
− 1

n
− 1

n

)
E[valI(A(I)) | XI′ ∧X6.4 ∧X6.6] (by Claim 6.4 and Claim 6.6)

≥
(
1− ε

3
− 1

n
− 1

n

)(
1− ε

3

)
(by valI′(A

′(I ′)) ≥ ε′ for I ′ ∈ I ′)

≥ 1− ε.

Next, we analyze the swap sensitivity of A. Let I, Ĩ ∈ I be two instances with swap distance one. We
consider a natural coupling between I ′ and Ĩ ′. Note that whenever I ′ satisfies the claims in Claim 6.5 and
Claim 6.6, so does Ĩ ′. Let X6.5 be the indicator of the event that the claim of Claim 6.5 holds. Then, the
swap sensitivity of A is bounded from above by

Pr[X6.5 ∧X6.6] ·
2tM

m
· SwapSens(A′, I ′) + Pr

[
X̄6.5 ∨ X̄6.6

]
· n

≤
(
1− 2

n

)
· 2tM

m
· SwapSens(A′, I ′) + 2

n
· n

≤ Oε,d,k

(
max

{
log(1/ε′)

ε′
, log n

})
· SwapSens1,ε(I ′).

Hence, we have

SwapSens1,ε′(I ′) = Ωε,d,k

 SwapSens1,1−ε(I)

max
{

log(1/ε′)
ε′ , log n

}
 = Ωε,d,k

(
nδ

log n+ log(1/ε′)
ε′

)

We obtain the claimed lower bound for swap sensitivity by replacing ε′ with ε and slightly decreasing δ.
Finally, Lemma 2.3 gives a lower bound on sensitivity.

Theorem 6.7. There exist universal constants ε, δ > 0 such that any algorithm for the maximum clique
problem that outputs an n−ε-approximate clique with probability 1−O(1/n) has sensitivity Ω(nδ).

Proof. Let ε > 0 be a parameter which will be determined later. Let δ > 0 and t ≥ 1 be the ones given in
Lemma 6.3 with ε in the statement being replaced with n−ε; in particular, t = O(ε log n). Let I be the set
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of satisfiable label cover instances with at most n variables, each relation having arity at most t, and each
variable being incident to at most d = O(nε) constraints, given by Lemma 6.3. Note that any algorithm for
I that outputs n−ε-approximate clique with probability 1−O(1/n) has sensitivity Ω(nδ).

We consider a slight modification of the FGLSS reduction described in Section 6.1. Given a CSP
instance I = (V,E,Σ,R = {Re}e∈E) ∈ I, we construct a graph G′ = (V ′, E′), where V ′ = E × Σt, as
follows: For each hyperedge e ∈ E and every assignment α ∈ Σt, add a node ve,α to V ′. Then, we connect
ve1,α1 and ve2,α2 if α1 ∈ Re1 , α2 ∈ Re2 , and α1 and α2 are consistent with all the variables shared between
e1 and e2. Note that n′ := |V ′| = m|Σ|t = mnO(ε log |Σ|) and that G′ has a clique of size m.

Let A′ be an n−ε-approximation algorithm for the maximum clique problem. Given an instance I ∈ I,
we first construct a graph G′ as above, and then compute a clique C in G′ using A′. We construct an
assignment σ for I as follows. For every variable ve,α in C, we set σ(u) = α(u) for every u ∈ e. By
the construction of the graph, σ is well defined. For u ∈ V with σ(u) undefined, we set σ(u) to be an
arbitrarily but fixed label.

We note that σ satisfies all the constraints corresponding to edges e ∈ E′ such that ve,α is included in
the clique C for some α ∈ Re. This implies that the assignment σ satisfies |C| ≥ m/nε constraints with
probability 1−O(1/n), and hence A outputs n−ε-approximate clique with probability 1−O(1/n).

Next, we analyze the sensitivity of A. When we delete a constraint in I , we change at most d2t = O(n2ε)
edges in G′. Hence, the sensitivity of A is at most O(n2ε) times the sensitivity of A′. By choosing ε ≪ δ,
the sensitivity of A′ is

Ω

(
nδ

n2ε

)
= Ω

(
nδ/2

)
= Ω

(
(n′)δ/O(ε log |Σ|+1)

)
,

which implies the claim.

A vertex set S ⊆ V is called an independent set if no two vertices u, v ∈ S have an edge between them.
In the maximum independent set problem, given a graph G = (V,E), the goal is to find an independent set
of maximum size. Because a vertex set is an independent set if and only it is a clique in the complement
graph, we obtain the following:

Corollary 6.8. There exist universal constants ε, δ > 0 such that any algorithm for the maximum indepen-
dent set that outputs an n−ε-approximate solution with probability 1−O(1/n) has sensitivity Ω(nδ).

7 Max CSPs

In this seciton, we show lower bounds for various Max CSPs. First, we consider E3SAT, which is a special
case of Boolean CSPs, where each constraint is a disjunctions of exactly 3 literals.

Theorem 7.1. There exist universal constants ε, δ > 0 such that any algorithm for E3SAT1,1−ε has sensi-
tivity Ω(nδ).

Proof. Let ε, δ > 0 and d, k ≥ 1 be as in Theorem 5.2. That is, any algorithm for LabelCover1,1−ε over a
bipartite graph of maximum degree d and over a domain of size k has sensitivity of Ω(nδ).

We consider the following transformation TI from label cover instances to SAT instances. Let I =
(U, V,E,ΣU ,ΣV ,R) be a satisfiable label cover instance with |ΣV | ≤ |ΣU | = k. We encode each label
using O(log k) bits and introduce corresponding Boolean variables. As well, we introduce a constraint
simulating Re for each e ∈ E over the corresponding Boolean variables. Let the Boolean CSP instance
that results from this procedure by denoted by Î = (V̂ , Ê, {0, 1}, R̂), and note that each hyperedge e ∈ Ê
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is of size at most O(log k). Then, we further transform it to a SAT instance I ′ = (V ′, E′, {0, 1},R′)
by converting each constraint in R̂ to an E3CNF formula. Note that we may need to add some auxiliary
variables in this step and hence V̂ is a subset of V ′. Without loss of generality we may assume that each
E3CNF formula has exactly K clauses, where K = O(log k) · 2O(log k) = O(k log k).

Suppose σ′ : V ′ → {0, 1} is an assignment for I ′. Then, there is a natural transformation Tσ that
decodes an assignment σ for I from σ′. We now show that the pair (TI , Tσ) is a (1, 1 − ε, c′ = 1, s′ =
1 − ε/K,CI = K,Cσ = 1)-sensitivity-preserving reduction. Then, the claim follows by Lemma 3.2. The
analysis for c′ and Cσ is immediate.

First, we analyze s′. Suppose that a (possibly random) assignment σ′ : V ′ → {0, 1} satisfies E valI′(σ
′) ≥

1− ε′. This implies that σ′ violates at most ε′m′ constraints in I ′ in expectation, and hence σ′ (restricted to
V̂ ) violates at most ε′Km̂ constraints in Î in expectation. It follows that σ violates at most ε′Km̂ = ε′Km
constraints, and hence E valI(σ) ≥ 1− ε′K. Then, s′ = 1− ε/K satisfies Item 2 of Definition 3.1.

Next, we analyze CI . Let I and Ĩ be two instances of LabelCover1,1−ε, where Ĩ is obtained from I by
deleting one constraint. Then, I ′ and Ĩ ′ differ by at most K constraints, and hence we can set CI = K =
O(k log k).

Next, we consider 3LIN, which is a special type of a Boolean CSP, where we identify the domain {0, 1}
with the group Z2 and each constraint is of the form x = 0, x = 1, x+ y = 0, x+ y = 1, x+ y + z = 0,
or x+ y + z = 1. For 1 ≥ c ≥ s ≥ 0, we define Max3LINc,s denote the problem that, given a c-satisfiable
instance of 3LIN, the goal is to compute an s-satisfying assignment.

Corollary 7.2. There exist universal constants ε, δ > 0 such that any algorithm for Max3LIN4/7,(1−ε)4/7
has sensitivity Ω(nδ).

Proof. Consider the following transformation TI from an instance I = (V,E, {0, 1},R) of E3SAT to an
instance I ′ = (V ′, E′,Z2,R′) of 3LIN: For each constraint of the form (l1 ∨ l2 ∨ l3), where l1, l2, l3 are
literals, we introduce seven constraints of the form l1 = 1, l2 = 1, l3 = 1, l1 + l2 = 1, l2 + l3 = 1,
l1 + l3 = 1, and l1 + l2 + l3 = 1, where we identify a negative literal x̄ with 1 + x (mod 2). In particular,
|V | = |V ′| holds.

Given an assignment σ′ : V ′ → Z2 for I ′, we simply output the corresponding assignment σ : V →
{0, 1}. It is easy to confirm that the pair (TI , Tσ) is a (1, 1−ε, 4/7, (1−ε) ·4/7, 7, 1)-sensitivity-preserving
reduction. Hence, the claim follows by Lemma 3.2.

Finally, we consider the maximum cut problem, where we are given a graph G = (V,E), and the goal
is to find a set S ⊆ V that maximizes the cut size, i.e., the number of edges between S and V \S. Using the
reduction in [TSSW00], we obtain the following sensitivity lower bound for the maximum cut problem.

Corollary 7.3. There exist universal constants c, ε, δ > 0 such that any algorithm for MaxCutc,c(1−ε) has
sensitivity Ω(nδ).

8 Distributed Algorithms

We consider the LOCAL model of distributed computing [Lin92], where a network is modeled as a graph
G = (V,E) in such a way that each vertex v ∈ V corresponds to an agent and each edge e ∈ E corresponds
to a communication link. The communication proceeds in synchronous rounds. In each round, each vertex
v ∈ V receives the messages sent from its neighbors, performs some arbitrary local computation, and sends
a message of arbitrary size to each of its neighbors. We also assume that the vertices are anonymous, —-
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i.e., they do not have identifiers — and that they each have access to an infinite string of local random bits.
The goal of a distributed algorithm is for the outputs of the vertices to form a feasible solution to the problem
that they are trying to solve. The round complexity of a distributed algorithm is the number of rounds until
it terminates. The following observation shows that if there is a distributed algorithm with small round
complexity, then we can use it to design an algorithm with low sensitivity.

Theorem 8.1. Let P be a graph problem, where the output is a vertex set. If there is a distributed algorithm
for P in the LOCAL model that runs in t rounds, then there exists an algorithm for P with sensitivity O(nt).

Proof. Let A′ be a (possibly randomized) distributed algorithm for P with round complexity t. Then, we
consider the following (centralized) algorithm A. Given a graph G = (V,E), for every vertex v ∈ V , we
simulate the process of A′ on v for t rounds, and then we collect the outputs of vertices and output them as
a solution. Clearly, the output of A has the same distribution as that of A′.

We now analyze the sensitivity of A. Let G = (V,E) be a graph and consider G̃ = G − e for some
e ∈ E. For a vertex v ∈ V , let πv denote the internal randomness of the distributed algorithm A′ on v. For
π = {πv}v∈V , let A′π denote the deterministic distributed algorithm such that the internal randomness of
v ∈ V is fixed to πv.

Now, we consider bounding the expected Hamming distance Eπ Ham(A′π(G), A′π(G̃)). Suppose a ver-
tex v ∈ V is in the outputted vertex set of exactly one of A′π(G) and A′π(G̃). Because we use the same
internal randomness between G and G̃, the edge e must belong to the t-hop neighborhood of v. However,
the number of vertices v ∈ V such that e belongs to the t-hop neighborhood is bounded by nt, and hence
we have Ham(A′π(G), A′π(G̃)) ≤ nt. Hence, we have

EMD(A(G), A(G̃)) = EMD(A′(G), A′(G̃)) ≤ E
π
Ham(A′π(G), A′π(G̃)) ≤ nt.

Corollary 8.2. Let P be a graph problem, where the output is a vertex set. If any algorithm for P on graphs
with maximum degree at most ∆ has sensitivity at least f(n), then any distributed algorithm for P must
have round complexity log∆ f(n).

Using Corollary 8.2, we can recover various known lower bounds for the LOCAL model.

Maximum independent set. Corollary 6.8 states that there exist constants ε, δ > 0 such that any algorithm
for the maximum independent set problem on graphs with maximum degree nO(ε) that outputs an n−ε-
approximate solution with probability 1 − O(1/n) has sensitivity Ω(nδ). Hence by Corollary 8.2, any
distributed algorithm for the maximum independent set problem that outputs an n−ε-approximation
solution with probability 1−O(1/n) has round complexity

Ω
(
lognO(ε) nδ

)
= Ω

(
1

ε

)
.

This matches the lower bound of [BHKK16].

Minimum vertex cover. Corollary 6.2 states that there exist ε, δ > 0 such that any (1+ε)-approximation al-
gorithm for the minimum vertex cover problem on bounded-degree graphs has sensitivity Ω(nδ). Hence
by Corollary 8.2, the round complexity of a (1 + ε)-approximation algorithm for the minimum vertex
cover problem must be Ω(log nδ) = Ω(logn). This matches the known lower bound of [GS14,FFK22].

Maximum cut. Corollary 7.3 states that there exist ε, δ > 0 such that any (1+ ε)-approximation algorithm
for the maximum cut problem on bounded-degree graphs has sensitivity Ω(nδ). Hence by Corollary 8.2,
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the round complexity of a (1 − ε)-approximation algorithm for the maximum cut problem must be
Ω(log nδ) = Ω(log n). This matches the known lower bound of [CL23].

Next, we consider distributed constraint satisfaction problems (DCSPs) [YIDK92]. In DCSPs, each
variable and constraint is associated with an agent. The agent for a variable can communicate with the agent
for any constraint involving that variable, and vice versa. The goal of a distributed algorithm is for the
assignment produced by the variables to maximize the number of satisfied constraints.

Given a CSP instance G = (V,E,Σ,R), its constraint graph is a bipartite graph on the vertex set V ∪E
where v ∈ V and e ∈ E is connected if v ∈ e. We can specialize Corollary 8.2 for DCSPs:

Corollary 8.3. Let I be a family of CSP instances. If any algorithm for I on constraint graphs with
maximum degree at most ∆ has sensitivity at least f(n), then any distributed algorithm for P must have
round complexity log∆ f(n).

Proof of Theorem 1.4. Lemma 6.3 claims that for any ε > 0, there exists a universal constant δ > 0 such
that any algorithm for MaxCSP1,ε on t-ary instances of degree at most O(log n+ ε−1 log ε−1) with success
probability 1 − O(1/n) has sensitivity Ω(nδ/(ε−1 log ε−1)), where t = O(log ε−1). Hence, by Corol-
lary 8.3, any distributed algorithms for such CSP instances must have round complexity

Ω

(
loglogn+ε−1 log ε−1

nδ

ε−1 log ε−1

)
= Ω

(
log nδ − ε−1 log ε−1

log(log n+ ε−1 log ε−1)

)
.

By replacing ϵ with 1/ log nϵ for ϵ ≪ δ, we obtain that any algorithm that outputs 1/ log nϵ-approximate
solution with probability 1−O(1/n) must have round complexity Ω(log n/ log logn).
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