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Abstract

We characterize the power of constant-depth Boolean circuits in generating uniform sym-
metric distributions. Let f : {0, 1}m → {0, 1}n be a Boolean function where each output bit of
f depends only on O(1) input bits. Assume the output distribution of f on uniform input bits is
close to a uniform distribution D with a symmetric support. We show that D is essentially one
of the following six possibilities: (1) point distribution on 0n, (2) point distribution on 1n, (3)
uniform over {0n, 1n}, (4) uniform over strings with even Hamming weights, (5) uniform over
strings with odd Hamming weights, and (6) uniform over all strings. This confirms a conjecture
of Filmus, Leigh, Riazanov, and Sokolov (RANDOM 2023).

1 Introduction

Despite being one of the simplest models of computation, NC0 circuits (i.e., Boolean circuits of
constant depth and bounded fan-in) elude a comprehensive understanding. Even very recently, the
model has been the subject of active research on the range avoidance problem [RSW22, GLW22,
GGNS23], quantum advantages [BGK18, WKST19, BGKT20, WP23, KOW24], proof verification
[GGH+07, BDK+13, KLMS16], and more.

Pertinent to this paper is the study of the sampling power of NC0 circuits. While the general
problem was considered at least as early as [JVV86], interest in the NC0 setting has seen a strong
uptick lately [Vio12b, LV11, BIL12, DW12, Vio16, Vio20, GW20, CGZ22, Vio23, FLRS23, KOW24,
SS24]. At a high level, it considers what distributions can be (approximately) produced by simple
functions on random inputs. More formally, let f(Um) denote the distribution resulting from
applying an NC0 function f : {0, 1}m → {0, 1}n to a random string drawn from Um, the uniform
distribution over {0, 1}m. Typically, m is viewed as being arbitrarily large and n is the parameter
of interest. Then the goal is to analyze the distance between f(Um) and some specific distribution.
Aside from being inherently interesting, this question has also played a crucial role in applications
ranging from data structure lower bounds [Vio12b, LV11, BIL12, Vio20, CGZ22, Vio23, KOW24] to
pseudorandom generators [Vio12a, LV11, BIL12] to extractors [Vio12c, DW12, Vio14, CZ16, CS16]
to coding theory [SS24].

One recurring class of distributions in this line of work is uniform symmetric distributions (i.e.,
uniform distributions over a symmetric support). Indeed, these are precisely the distributions that
arise in an elegant connection to succinct data structures (see [Vio12b, Claim 1.8]), for example.
Moreover, this seemingly simple class is already rich enough to allow surprisingly powerful results.
For example, NC0 circuits can sample the uniform distribution over the preimage PARITY−1(0)
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(and PARITY−1(1)), despite a celebrated result of H̊astad [H̊as86] proving that more powerful AC0

circuits require an exponential number of gates to compute PARITY. Perhaps more surprisingly,
the strategy to sample a uniform random string with even Hamming weight is extremely simple:
map the uniform random bits x1, . . . , xn to x1 ⊕ x2, x2 ⊕ x3, . . . , xn ⊕ x1 [Bab87, BL87].

A number of notable prior results already rule out specific distributions from being accurately
sampled by NC0 circuits. For example, let Dk denote the uniform distribution over all n-bit strings
of Hamming weight k. The influential early paper of [Vio12b] showed that such shallow circuits
could not accurately sample Dk for k = Θ(n) under certain assumptions about the input length
or accuracy tolerance; recent works [FLRS23, Vio23, KOW24] have eliminated the need for these
assumptions. Additionally, a number of results are known for uniform symmetric distributions
over multiple Hamming weights, such as the case of exclusively tail weights [FLRS23], all weights
divisible by q for fixed 3 ≤ q ≪ √n [KOW24], and all weights above n/2 [GGH+07, Vio12b,
FLRS23] (see also [WP23]).

Despite much effort, the previous body of work proceeds in a somewhat ad-hoc fashion, with
techniques tailored to rule out specific cases. However, an exciting recent work by Filmus, Leigh,
Riazanov, and Sokolov [FLRS23] gave the following bold conjecture about the capabilities of NC0

circuits for sampling distributions, unifying prior results.

Conjecture 1.1. Let f : {0, 1}m → {0, 1}n be computable by an NC0 circuit. If f(Um) is ε-close
(in total variation distance) to a uniform symmetric distribution and n is sufficiently large, then
f(Um) is O(ε)-close to one of the following six distributions:

• Point distribution on 0n.

• Point distribution on 1n.

• Uniform distribution over {0n, 1n}.
• Uniform distribution over strings with even Hamming weights.

• Uniform distribution over strings with odd Hamming weights.

• Uniform distribution over all strings.

All six distributions can be sampled (exactly) by functions whose output bits each depend on
at most two input bits. Hence one may informally view the conjecture as asserting that more
input dependencies do not substantially increase the ability of NC0 circuits to generate uniform
symmetric distributions.

In this work, we confirm the conjecture of [FLRS23] as follows.

Theorem 1.2 (Consequence of Theorem 4.1). Let d be a fixed constant, and suppose f : {0, 1}m →
{0, 1}n is computable by an NC0 circuit of depth at most d. If f(Um) is ε-close (in total variation
distance) to a uniform symmetric distribution and n is sufficiently large, then f(Um) is O(ε)-close
to one of the six distributions in Conjecture 1.1.

Note that this result is optimal up to the implicit constant in O(ε). We include a more thor-
ough discussion of our result’s tightness in Section 4, where we present a quantitative version of
Theorem 1.2 parametrized by the locality (i.e., number of input bits each output bit depends on)
of f . The following corollary is immediate.

Corollary 1.3. For sufficiently large n, the only uniform symmetric distributions over {0, 1}n
exactly sampleable by NC0 functions are the six distributions in Conjecture 1.1.
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As a contrasting example to the limitation given by Theorem 1.2, consider the next simplest
class of circuits commonly studied: AC0. Up to some exponentially small error, they are able to
sample the uniform distribution over permutations of [n] [MV91, Hag91]. Thus by sampling 1w0n−w

for the appropriate distribution over weights w accepted (or rejected) by a symmetric function f ,
one can apply a randomly sampled permutation to output the uniform distribution over f−1(1) (or
f−1(0)) [Vio12b, Lemma 4.3].

Paper Organization. We provide a proof overview of Theorem 1.2 in Section 2. Preliminary
definitions and results are given in Section 3. The full proof of our main result is in Section 4, with
some technical proofs deferred to the appendices.

2 Proof Overview

Our starting point is similar to many past works [Vio12b, Vio20, FLRS23, Vio23, KOW24]: we
reduce an arbitrary function (computable by an NC0 circuit) to a collection of structured func-
tions, which are more amenable to analysis. Our results then follow by lifting insights from these
structured functions to our original function.

It will be convenient to work with the abstraction of locality. We say a function f : {0, 1}m →
{0, 1}n is d-local if every output bit depends on at most d input bits. Observe that the class of
d-local functions captures functions computable by Boolean circuits of depth O(log d) and bounded
fan-in. In particular, constant locality functions are equivalent to those computable by NC0 circuits.
Henceforth, let f : {0, 1}m → {0, 1}n be a d-local function. For simplicity, we hide minor factors in
the following discussion.

2.1 A Structured Decomposition

We will use the “graph elimination” reduction strategy of [KOW24]. View the inputs and outputs
of f as the right and left vertices, respectively, of a bipartite graph. Following their terminology,
we define the neighborhood of a left vertex v as the set of all left vertices adjacent to any right
vertex that v is adjacent to. Furthermore, we call two neighborhoods N1, N2 connected if there
exist left vertices v1 ∈ N1, v2 ∈ N2 and right vertex u such that both v1 and v2 are adjacent to
u. By [KOW24, Corollary 4.11], there exists a relatively small set of right vertices whose deletion
results in a graph with Ωd(n) non-connected neighborhoods of size Od(1). In other words, there
always exists a choice of a few input bits whose conditioning upon decomposes f into a mixture of
subfunctions with substantially independent output bits.

This independence is crucial in ruling out the sampleability of various distributions by these
structured subfunctions. For example, [KOW24] used the following win-win argument to prove
strong bounds on the distance between any distribution sampleable by a local function and the
uniform distribution over n-bit strings of Hamming weight k = Θ(n), denoted Dk. If the marginal
distributions of most independent neighborhoods noticeably differ from the corresponding marginals
of Dk, then the errors can be combined together via a straightforward concentration bound argu-
ment [KOW24, Lemma 4.2].

Otherwise, the marginal distributions of most independent neighborhoods closely match the
marginals of Dk. Hence by conditioning on all the input bits that do not affect output bits in
these neighborhoods, the weight of the output becomes a sum of well-behaved independent integer
random variables. From this property, one can show ([KOW24, Claims 5.16 & 5.23]) that with high
probability many of these random variables are not constant (or even constant modulo q for q ≥ 3),
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in which case anticoncentration inequalities (e.g., [Ush86, Theorem 3] or [KOW24, Lemma 3.7])
imply no specific output weight can be obtained with good probability. Hence the subfunctions
cannot accurately sample Dk, so (by a union bound argument) neither can their mixture.

Note that the distribution Dk is a special kind of uniform symmetric distribution (i.e., uniform
distribution over a symmetric support). In this work, we need to handle more general ones; however,
many of the same ideas will drive our analysis.

2.2 Classification of Locally Sampleable Uniform Symmetric Distributions

Now we show how to handle a general uniform symmetric distribution and obtain our classification
result. For convenience, we use a non-empty set Ψ ⊆ {0, 1, . . . , n} to denote the acceptable Ham-
ming weights and use DΨ to denote the uniform distribution over strings of Hamming weights in
Ψ. Then our goal is to show that local functions cannot approximate DΨ unless Ψ is {0} (the point
distribution on 0n), {n} (the point distribution on 1n), {0, n} (uniform over {0n, 1n}), {0, 2, 4, . . .}
(uniform over strings with even parity), {1, 3, 5, . . .} (uniform over strings with odd parity), or
{0, 1, . . . , n} (uniform over all strings). We will often refer to the corresponding DΨ as the six
special distributions.

Let s ∈ Ψ be an element closest to the middle weight n/2. Note the majority of the mass of
DΨ is supported on strings roughly as close to n/2 as s is. Informally, we view DΨ as either Ds

(uniform over the Hamming slice of weight s) or 1
2Ds +

1
2Dn−s (uniform over the Hamming slices

of weight s and n− s). Then the above six locally sampleable distributions can be classified by s:
either it is the endpoint (i.e., s equals 0 or n) or it is the middle point (i.e., s roughly equals n/2).
Our proof follows this intuition. If s = o(n) or s = (1 − o(1))n, we will show that it must be the
case of s ∈ {0, n}. Otherwise o(n) ≪ s ≪ (1 − o(1))n, and we will show that it must be the case
of s ≈ n/2 and Ψ is effectively all-even, all-odd, or everything.

The s = o(n) or s = (1− o(1))n case is essentially handled by [FLRS23]. For completeness, we
give a simple (albeit quantitatively weaker) argument that suffices for our purposes. Our treatment
(Theorem 4.3) is similar to [Vio20] and is presented in Appendix B.

Now we turn to the more interesting case where o(n)≪ s≪ (1− o(1))n and aim to show that
DΨ is essentially uniform over even parities, odd parities, or everything. In this scenario, since s
is relatively far from the boundaries, the framework explained in Subsection 2.1 is now applicable.
However, we need a number of new ideas since Ψ is unstructured in general. For illustration and
to introduce these new ingredients, we start with some concrete examples.

The Mixture of Opposite Hamming Slices. The first illustrating example is when Ψ contains
opposite Hamming slices, both of which are significant. For concreteness, consider Ψ = {n/3, 2n/3}.
To rule out this possibility, we follow the previous outline to reduce the local function f to more
structured local functions where one has many small neighborhoods that are not connected. Assume
after this graph elimination process, we obtained a local function g with many non-connected
neighborhoods of small sizes. Since the marginal distribution of coordinates of DΨ is an unbiased
coin, one may attempt to classify these neighborhoods by their distance to unbiased distributions
as in Subsection 2.1; then use their independence to derive a 1− e−Ωd(n) bound when they are far
from being unbiased, and use anticoncentration inequalities to show that the output of g rarely hits
the desired Hamming weights when they are almost unbiased.

The second case indeed works. The first case, however, unfortunately fails, the reason for which
is that g being far from unbiased does not necessarily mean that f cannot sample from DΨ. For
example, f could use one uniform bit to choose to sample from Dn/3 or D2n/3, where g only needs
to handle the former without the need to approximate DΨ itself. Though this example is artificial
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since [Vio23, KOW24] have ruled out local sampling schemes for Dn/3, the argument is oblivious
to this and cannot work for more contrived examples that are similar in spirit to the above one.

To get around this, we observe that though the individual marginals of DΨ are unbiased,
their joint distribution is far from any biased distribution (in fact, any product distribution, but
focusing only on biased ones is sufficient for us). Hence we alter the criteria of our two cases
for handling the behavior on marginals. We call a neighborhood Type-1 if it is not close to any
biased distribution, and a neighborhood Type-2 if it is close to some biased distribution. (Note that
these definitions are slightly different from those used in [KOW24].) At this point, if g has many
small non-connected Type-1 neighborhoods, then it is (1− e−Ωd(n))-far from both Dn/3 and D2n/3,

which, by a union bound, means it is also (1 − e−Ωd(n))-far from any mixture of Dn/3,D2n/3 and,
particularly, DΨ = D{n/3,2n/3}. On the other hand, we can similarly argue that the Hamming weight
of a Type-2 neighborhood is a random variable with noticeable variance, since the Hamming weight
of the biased distribution that it implicitly approximates has such a property. Therefore, if g has
many small non-connected Type-2 neighborhoods, the previous argument using anticoncentration
inequalities still works.

We remark that technically, the Hamming weight of a biased distribution has noticeable variance
only if the bias itself is not extremely close to 0 or 1. Fortunately we can ignore those (Claim 4.10)
by truncating the tail of Ψ. Since o(n)≪ s≪ (1− o(1))n, this does not incur much error. In fact,
this is the only place where we actually use the assumption that o(n)≪ s≪ (1− o(1))n.

The Majority Distribution. The second interesting example is the majority case where DΨ

is uniform over strings that have more ones than zeros, i.e., Ψ = {n/2 + 1, n/2 + 2, . . . , n}. Note
that this distribution is not close to any of the six special distributions, and thus, if we believe that
the classification result is indeed true, it cannot be approximated by local distributions. Results
are known on distinguishing this distribution with local functions [GGH+07, Vio12b, FLRS23];
however, their arguments do not seem to generalize.

To prove that any local function’s output is far from DΨ, we still follow the previous outline to
obtain a d-local function g that has n/Cd non-connected neighborhoods of size Cd, where Cd ≫ 1
is a large constant depending only on d from the graph elimination results. As before, if many
of these neighborhoods are Type-1, then we readily obtain (Lemma 4.12) a 1 − e−Ωd(n) distance
bound by their independence. To handle the case where most of these neighborhoods are Type-2,
we recall that past work [Vio12b, KOW24] used anticoncentration inequalities to show that the
local distribution cannot hit the support of the desired distribution with as much mass as it is
supposed to.

However this simply does not work, since Ψ covers a consecutively wide range of Hamming
weights that significantly exceeds the amount of independence we could use in g. More precisely,
g only has n/Cd independent small neighborhoods, hence their Hamming weight sum is essentially
a discrete Gaussian of variance Ωd(n). Due to the random shift from other neighborhoods that we
cannot control, the support of this distribution can, in the worst case, completely lie in Ψ which
has range n/2. Therefore, we cannot hope to establish a similar result saying with high probability
the output of g does not hit the support of DΨ.

To circumvent this, we explore the sharp threshold phenomenon in Ψ. Observe that the range
of Ψ, though wide, has a sharp cutoff at Hamming weight n/2. This should not happen in a
distribution that behaves like a Gaussian, unless the cutoff appears at the tail. In other words, we
expect to see that in the probability density function of the Hamming weight of the output of g,
the mass on the right boundary of n/2 does not differ from the mass on the left boundary of n/2,
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in contrast to DΨ. To be more precise, we consider the potential function

φ = Pr
[
|X| ∈ [n/2 + 1, n/2 +

√
n]
]
− C ′

d ·Pr
[
|X| ∈ [n/2−√n, n/2]

]
,

where C ′
d is another large constant depending on d. Let φ1 be φ when X ∼ DΨ and φ2 be φ when

X is the output of g. Then obviously φ1 is roughly 1. However φ2 should be od(1): since g has
many small non-connected Type-2 neighborhoods, the Hamming weight distribution of g can be
shown to be a Gaussian-like distribution with variance n/Cd. If the mean of the distribution is
≪ n/2 + Θd(

√
n), then φ2 is negative since C ′

d is sufficiently large and the two intervals in the
definition are consecutive. On the other hand if the mean is ≫ n/2 + Θd(

√
n), then φ2 is od(1) by

standard concentration for the left-hand side of φ2. In summary, this shows that φ1 − φ2 is always
at least 1− od(1), which implies a 1/C ′

d distance bound since φ has range bounded by C ′
d. Later it

is put together with the Type-1 analysis by a union bound.

A Unified Construction of the Potential Function. Let PΨ be the distribution over Ham-
ming weights of strings drawn from DΨ. To extend the analysis of the above majority distribution
to a general Ψ, the key point is to discover the threshold phenomenon in Ψ and to construct the
corresponding potential function to separate PΨ from a discrete Gaussian P with variance Θ(n)
and an unknown mean. To this end, we follow the same approach to select some Hamming weights
S ⊆ Ψ and T ⊆ {0, 1, . . . , n} \Ψ, then define

φ = Pr[|X| ∈ S]−Θ(1) ·Pr[|X| ∈ T ].

To ensure φ is large under PΨ, S needs to take a significant amount of mass in PΨ. To ensure
φ is small under P, S and T should not be too far apart (Lemma 3.9), i.e., elements in S should
be paired with distinct elements in T such that the distance of each pair is not too large. Guided
by this intuition, we construct S and T in a greedy way: we iteratively pick out s ∈ Ψ, t /∈ Ψ to
update S, T , where the selected pair needs to minimize the distance |s− t|. If we select K pairs in
total, then the absolute distance between each pair is O(K) by a simple induction argument and
the minimality of the distance of each pair upon selection. Therefore, we only need to make sure
K is small while φ is large, say at least δ, under PΨ.

For this purpose, we truncate the δ-tail and only look for (s, t) pairs thereinto. Formally, let
0 ≤ ℓ ≤ r ≤ n be such that Hamming weights in [ℓ, r] cover 1−δ fraction of 2n. Then we iteratively
pick out s ∈ Ψ ∩ [ℓ, r] and t ∈ [ℓ, r] \ Ψ while minimizing their distance |s − t| until φ ≫ δ under
PΨ. Similarly, if we selected K pairs, the distance of each pair is at most O(K). In addition, since
we have removed the δ-tail, we can show (Claim 4.17) that every Hamming slice in Ψ ∩ [ℓ, r] has

probability mass≫ δ
√

log(1/δ)√
n

under the uniform distribution (and thus under PΨ by its definition).

Therefore K ≪
√
n/ log(1/δ). Crucially, this additional log factor helps us in upper bounding φ

under the discrete Gaussian P. Let ∆ = s− n/2. Then

P(s) ≈ 2−∆2/n/
√
n and P(t) ≈ P(s+K) ≈ 2−(∆+K)2/n/

√
n.

Thus

• if ∆≫
√
n log(1/δ), then P(s)− C ′

d · P(t) ≤ P(s)≪ δ/
√
n,

• otherwise ∆≪
√
n log(1/δ) and P(s)−Θ(1) ·P(t) ≈

(
2−∆2/n −Θ(1) · 2−(∆+K)2/n

)
/
√
n < 0,

which implies that φ≪ K · δ/√n≪ δ under P.
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One caveat here is that the actual Hamming weight distribution of the sum of small non-
connected Type-2 neighborhoods may embed a periodic pattern. For example, P may be a discrete
Gaussian on even numbers, which is exactly the case in the locally sampleable distributionD{0,2,4,...}.
Luckily, by the argument for ruling out periodic Hamming slices in [KOW24], periods other than
two are also ruled out for P (Lemma 4.13). Therefore, we only need to additionally make sure the
selected pairs (s, t) have an even distance (Lemma 4.16), since otherwise we may have P(s) ≈ 1/

√
n

but P(t) = 0 when s and t have different parities.

Extremely Small Error Regime. Combining the above arguments, we can prove a weaker
classification result: if the local distribution P is ε-close to DΨ where there exists some s ∈ Ψ
such that o(n) ≪ s ≪ (1 − o(1))n, then it is

(
Od(ε) + e−Θd(n)

)
-close to the uniform distribution

or the uniform distribution over even / odd Hamming weights. The additional exponentially small
factor comes from analyzing Type-2 neighborhoods (Lemma 4.13), where an additive e−Θd(n) is
used to rule out the atypical case that the Hamming weight distribution is not Gaussian-like due to
correlations outside those non-connected Type-2 neighborhoods. While this seems inevitable in our
current analysis framework, this factor is minor when ε is not extremely small. To further shave
it, we explore the structure of d-local functions from different angles.

Let ε≪ e−Θd(n). Assume our distribution P is ε-close to DΨ and is
(
Od(ε) + e−Θd(n)

)
-close to

the uniform distribution. Let δ ≪ Od(ε) + e−Θd(n) be the distance between DΨ and the uniform
distribution. Then we will use the variance V of the Hamming weight of DΨ to show (Theorem 4.9)
that δ is in fact Od(ε). On the one hand, since P is extremely close to the uniform, its (pairwise)
marginals should be perfectly unbiased by granularity (Lemma 4.21). Hence V ≥ n/4 − n2 · ε
where n/4 is the variance of the Hamming weight of P. On the other hand, since DΨ is already
e−Θd(n)-close to the uniform distribution, it shall not miss central Hamming weights. In fact, every
m /∈ Ψ must be ≫ Θd(n). Therefore we can upper bound V ≤

(
n/4−Θd(n

2) · δ
)
/(1 − δ) by

comparing the variance calculation of DΨ and the uniform distribution. Then δ ≤ Od(ε) follows
from rearranging.

Now we turn to the case that our distribution is
(
Od(ε) + e−Θd(n)

)
-close to the uniform distri-

bution over strings of even (or odd) Hamming weights. Then the above argument still works if Ψ
contains only even numbers. Otherwise Ψ may include some odd Hamming weights and thus make
the upper bound on V larger than n/4. To amend this, we show (Lemma 4.22) that P supports on
strings with even Hamming weights and thus we can discard odd weights in Ψ without increasing
the distance ε. Then the previous argument carries over. To this end, we notice that the Hamming
weight of P has degree d over F2 because f is d-local. Hence by granularity, the expectation of the
Hamming weight parity is an integer multiple of 2−d, which has to be zero as the distance ε≪ 2−d.

Putting Everything Together. Combining the above new ideas, we now give a streamlined
proof outline for proving the classification result in the regime where there exists some s ∈ Ψ such
that o(n)≪ s≪ (1− o(1))n. Assume the output of a d-local function f is close to DΨ.

• First we apply the graph elimination results (Proposition 4.6) to reduce the d-local function
f to a number of more structured functions g, where each g is d-local and has Ωd(n) non-
connected neighborhoods of size Od(1).

• Then we classify each such neighborhood as Type-1 or Type-2, depending on whether its
output distribution is far from any biased distribution.

– If g has Ωd(n) Type-1 non-connected small neighborhoods, then we show (Lemma 4.12)
that the output of g is extremely far from DΨ by their independence.
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– Otherwise we have Ωd(n) Type-2 non-connected small neighborhoods. Unless DΨ is close
to the uniform distribution, uniform over even strings, or uniform over odd strings, we
can construct (Lemma 4.16) a potential function φ such that its expectation is large
under the Hamming weight distribution of DΨ but is small under any Gaussian-like
distribution on even or on odd numbers. Then we show (Lemma 4.13) that the Hamming
weight distribution of g’s output is typically a sum of independent integral random
variables that mimics a discrete Gaussian over odd or even numbers, which means φ is
indeed small under this distribution.

• Combining the large distance bound from the Type-1 case and the noticeable deviation of the
expected value of φ from the Type-2 case, we show (Theorem 4.8) that the output of f is
relatively far from DΨ. Since this contradicts the starting assumption, we must have that DΨ

is close to one of the three special distributions, implying that the output of f is also close
to the very distribution.

• Finally we use additional treatment (Theorem 4.9) sketched above to further sharpen the
bound.

3 Preliminaries

For a positive integer n, we use [n] to denote the set {1, 2, . . . , n}. We use R to denote the set of
real numbers, use N = {0, 1, 2, . . .} to denote the set of natural numbers, and use Z to denote the
set of integers. For a binary string x, we use |x| to denote its Hamming weight.

We use log(x) and ln(x) to denote the logarithm with base 2 and e ≈ 2.71828 . . . respectively.
For a ∈ N, we use tow(a) to denote the power tower of base 2 and order a, where

tow(a) =

{
1 a = 0,

2tow(a−1) a ≥ 1.

Asymptotics. We use the standard O(·),Ω(·),Θ(·) notation, and emphasize that in this paper
they only hide universal positive constants that do not depend on any parameter.

Probability. We reserve U to denote the uniform distribution over {0, 1}, and more generally for
γ ∈ [0, 1], reserve Uγ to denote the γ-biased distribution, i.e., Uγ(1) = γ = 1 − Uγ(0). Note that
U = U1/2.

Let P be a (discrete) distribution. We use x ∼ P to denote a random sample x drawn from the
distribution P. If P is a distribution over a product space, then we say P is a product distribution
if its coordinates are independent. In addition, for any non-empty set S ⊆ [n], we use P|S to denote
the marginal distribution of P on coordinates in S. For a deterministic function f , we use f(P) to
denote the output distribution of f(x) given a random x ∼ P.

For every event E , we define P(E) to be the probability that E happens under distribution
P. In addition, we use P(x) to denote the probability mass of x under P, and use supp (P) =
{x : P(x) > 0} to denote the support of P.

Let Q be a distribution. We use ‖P −Q‖
TV

= 1
2

∑
x |P(x)−Q(x)| to denote their total varia-

tion distance.1 We say P is ε-close to Q if ‖P(x)−Q(x)‖
TV
≤ ε, and ε-far otherwise.

1To evaluate total variation distance, we need two distributions to have the same sample space. This will be clear
throughout the paper and thus we omit it for simplicity.
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Fact 3.1. Total variation distance has the following equivalent characterizations:

‖P −Q‖
TV

= max
event E

P(E)−Q(E) = min
random variable (X,Y )

X has marginal P and Y has marginal Q

Pr [X 6= Y ] .

Let P1, . . . ,Pt be distributions. Then P1 × · · · × Pt is a distribution denoting the product of
P1, . . . ,Pt. We also use Pt to denote P1×· · ·×Pt if each Pi is the same as P. For a finite set S ⊆ [t],
we use PS to denote the distribution Pt restricted to the coordinates of S. We say distribution P
is a convex combination of P1, . . . ,Pt if there exist α1, . . . , αt ∈ [0, 1] such that

∑
i∈[t] αi = 1 and

P =
∑

i∈[t] αi · Pi.
We will use several inequalities from [KOW24] about total variation distance. The first shows

that distance is largely preserved under conditioning.

Fact 3.2 (See e.g., [KOW24, Fact 4.1]). Assume P is ε-close to Q, and let P ′,Q′ be the distributions
of P,Q conditioned on some event E, respectively. Then for any function f ,

∥∥f(P ′)− f(Q′)
∥∥
TV
≤ 2ε

Q(E) .

The second allows us to argue that the distance between a distribution D and a mixture of
distributions must be large if the distance between D and each individual distribution in the mixture
is also large.

Lemma 3.3 ([KOW24, Lemma 4.3]; see also [Vio20, Section 4.1]). Let P1, . . . ,Pt and Q be distri-
butions. Assume there exists an event E and values ε1, ε2 such that for each i ∈ [t],

• either ‖Pi −Q‖TV ≥ 1− ε1 holds,

• or Pi(E) ≤ ε2 and Q(E) ≥ 1− ε3 hold.

Then for any distribution P as a convex combination of P1, . . . ,Pt, we have

‖P −Q‖
TV
≥ 1− (t+ 1) · ε1 − ε2 − ε3.

Finally, we will require the following lemma. It shows that two coupled random vectors with
identical marginal distributions will still have Hamming weight mismatch (even modulo an integer)
as long as parts of their entries are independent.

Lemma 3.4 ([KOW24, Lemma 4.4]). Let (X,Y, Z,W ) be a random variable where X,Z ∈ {0, 1}
and Y,W ∈ {0, 1}t−1. Let q ≥ min {3, t+ 1} be an integer.2 Assume

• X is independent from (Z,W ) and Z is independent from (X,Y ),

• (X,Y ) and (Z,W ) have the same marginal distribution and is ε-close to U t
γ for some γ ∈

(0, 1/2]3 and

ε ≤ γ

4q
· 2−50γ(t−1)/q2 .

Then we have
Pr [X + |Y | ≡ Z + |W | (mod q)] ≤ 1− γ

2q
· 2−50γ(t−1)/q2 .

We also follow much of the terminology and notation from [KOW24] below.

2If q ≥ t + 1, then one may instead apply Lemma 3.4 with modulus t + 1, since X + |Y | ≡ Z + |W | (mod q) is
equivalent to X + |Y | = Z + |W | for q ≥ t+ 1.

3Lemma 3.4 holds for γ ∈ [1/2, 1) as well, with γ replaced by 1−γ in the bounds. This can be achieved by simply
flipping zeros and ones of (X,Y, Z,W ). This trick carries over the ε-closeness to U t

1−γ and preserves the congruence.
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Locality. Let f : {0, 1}m → {0, 1}n. For each output bit i ∈ [n], we use If (i) ⊆ [m] to denote the
set of input bits that the i-th output bit depends on. We say f is a d-local function if |If (i)| ≤ d
holds for all i ∈ [n]. Define Nf (i) = {i′ ∈ [n] : If (i) ∩ If (i

′) 6= ∅} to be the neighborhood of i, which
contains all the output bits that have potential correlation with the i-th output bit. For each input
bit j ∈ [m], we use degf (j) = |{i ∈ [n] : j ∈ If (i)}| to denote the number of output bits that it
influences.

We say output bit i1 is connected to i2 if If (i1) ∩ If (i2) 6= ∅. We say neighborhood Nf (i1)
is connected to Nf (i2) if there exist i′1 ∈ Nf (i1) and i′2 ∈ Nf (i2) such that If (i

′
1) ∩ If (i

′
2) 6= ∅.

As such, every output bit is independent of any non-connected output bit, and the output of a
neighborhood has no correlation with any non-connected neighborhood of it. When f is clear from
the context, we will drop subscripts in If (i), Nf (i), degf (j) and simply use I(i), N(i), deg(j).

Bipartite Graphs. We sometimes take an alternative view, using bipartite graphs to model
the dependency relations in f . Let G = (V1, V2, E) be an undirected bipartite graph. For each
i ∈ V1, we use IG(i) ⊆ V2 to denote the set of adjacent vertices in V2. We say G is d-left-bounded
if |IG(i)| ≤ d holds for all i ∈ V1. Define NG(i) = {i′ ∈ V1 : IG(i) ∩ IG(i

′) 6= ∅} to be the left
neighborhood of i.

We say left vertex i1 is connected to i2 if IG(i1)∩ IG(i2) 6= ∅. We say left neighborhood NG(i1)
is connected to NG(i2) if there exist i′1 ∈ NG(i1) and i′2 ∈ NG(i2) such that IG(i

′
1) ∩ IG(i

′
2) 6= ∅.

For each j ∈ V2, we use degG(j) = |{i ∈ V1 : j ∈ IG(i)}| to denote its degree. When G is clear from
the context, we will drop subscripts in IG(i), NG(i), degG(j) and simply use I(i), N(i), deg(j).

It is easy to see that the dependency relation in f : {0, 1}m → {0, 1}n can be visualized as a
bipartite graph G = Gf where [n] is the left vertices (representing output bits of f) and [m] is
the right vertices (representing input bits of f), and an edge (i, j) ∈ [n] × [m] exists if and only
if j ∈ If (i). The notation and definitions of If (i), Nf (i), degf (j) are then equivalent to those of
IG(i), NG(i), degG(j).

As mentioned in Section 2, it will be useful to reduce a general d-local function to one having
many non-connected neighborhoods of small size by deleting a few input bits.

Theorem 3.5 ([KOW24, Corollary 4.11]). Let λ, κ ≥ 1 be parameters (not necessarily constant)
and let F (·) be an increasing function. Let G = ([n], [m], E) be a d-left-bounded bipartite graph.

Define

F̃ (x) =
1

d
· exp

{
32d4x2 · F (2d · x)

}
. (1)

Assume H(·) is an increasing function and H(x) ≥ F̃ (x) for all x ≥ L where L ≥ 1 is some
parameter not necessarily constant. If H(x) ≥ 2x for x ≥ L and

F (x) ≥ 1 holds for all x ≥ 1 and κ ≥ λ ≥ d ·H(2d+2)(L), (2)

where H(k) is the iterated H of order k4, then there exists S ⊆ [m] such that deleting those right
vertices (and their incident edges) produces a bipartite graph with r non-connected left neighborhoods
of size at most t satisfying

|S| ≤ r

F (t)
and r ≥ n

λ
and t ≤ κ.

Observe that in Theorem 3.5, even if F is a constant function, F̃ (and hence H) will grow faster
than an exponential function. This implies that the lower bound on κ and λ will (at least) be a
tower-type blowup in d. Surprisingly, this is necessary [KOW24, Appendix A.2].

4H(1)(x) = H(x) and H(k)(x) = H(H(k−1)(x)) for k ≥ 2.
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Note that in the language of functions, Theorem 3.5 reduces d-local function into (d, r, t)-local
functions, as defined below.

Definition 3.6 ((d, r, t)-Local Function). We say g : {0, 1}m → {0, 1}n is a (d, r, t)-local function
if g is a d-local function with r non-connected neighborhoods of size at most t.

Binomials and Entropy. Let H(x) = x · log
(
1
x

)
+ (1 − x) · log

(
1

1−x

)
be the binary entropy

function. We will frequently use the following estimates regarding binomial coefficients and the
entropy function.

Fact 3.7 (See e.g., [CT06, Lemma 17.5.1]). For 1 ≤ k ≤ n− 1, we have

2n·H(k/n)

√
8k(1− k/n)

≤
(
n

k

)
≤ 2n·H(k/n)

√
πk(1− k/n)

.

Fact 3.8 (See e.g., [Wik23a]). For any x ∈ [−1, 1], we have

1− x2 ≤ H
(
1 + x

2

)
= 1− 1

2 ln(2)

+∞∑

n=1

x2n

n · (2n− 1)
≤ 1− x2

2 ln(2)
.

Density Comparison. We will need the following comparison result for the probability density
function of the sum of independent random variables. It is a special case of the more general
Theorem A.1; the proof and discussion on tightness and typical parameter choices are deferred to
Appendix A.

Lemma 3.9. Let t ≥ 1 be an integer, and let X1, . . . , Xn be independent random variables in
{0, 1, . . . , t}. For each i ∈ [n] and integer r ≥ 1, define pr,i = maxx∈ZPr [Xi ≡ x (mod r)] and
assume ∑

i∈[n]
(1− pr,i) ≥ L > 0 holds for all r ≥ 3.

Let m =
⌊
L/(32t4)

⌋
and α =

(
L

4n(t+1)

)2t2
. Then for any x ∈ Z and 0 ≤ κ1, κ2 ≤ α ·m/128,

Pr



∑

i∈[n]
Xi = x


− C ·Pr



∑

i∈[n]
Xi = x+∆


 ≤

√
32

α ·m · e
−2κ2

holds for any ∆ ∈ Z and C ∈ R satisfying

|∆| ≤ 2
√
κ1 · αm is an even number and C ≥ 2 · e12·(

√
κ1κ2+κ1).

4 Classification of Locally Sampleable Hamming Slices

In this section, we will prove a general classification result for uniform distributions with symmetric
support that can be sampled by local functions. Let Ψ ⊆ {0, 1, . . . , n} be a non-empty set. We
define DΨ to be the uniform distribution over x ∈ {0, 1}n conditioned on |x| ∈ Ψ.

We will show that if the output distribution of a local function is close to DΨ, then it is in fact
close to one of the following six specific symmetric distributions: zeros, ones, zerones, evens,
odds, and all, where
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• zeros = D{0}, ones = D{n}, and zerones = D{0,n}.

• evens = D{even numbers in {0,1,...,n}} and odds = D{odd numbers in {0,1,...,n}}.

• all = D{0,1,...,n}.

Theorem 4.1. Let f : {0, 1}m → {0, 1}n be a d-local function. Assume ‖f(Um)−DΨ‖TV ≤ ε for
some Ψ ⊆ {0, 1, . . . , n} and n ≥ tow(900(d+ 1)). Then

‖f(Um)−D‖
TV
≤ tow(850(d+ 1)) · ε

for some D ∈ {zeros, ones, zerones, evens, odds, all}.

Remark 4.2. We show the qualitative tightness of Theorem 4.1 from different angles.

• The six special distributions admit local sampling schemes: zeros and ones can be sampled
by a 0-local function; all and zerones can be sampled by a 1-local function; evens and odds

can be sampled by a 2-local function.

• The lower bound on n is necessarily depending on d. If n ≤ d, then one can sample the uniform
distribution over any support S ⊆ {0, 1}n of size |S| dividing 2d. This can be achieved by
fixing a regular mapping π : {0, 1}d → S and using the d input bits to compute it. Also if n
is a power of two and d = log(n), then one can directly sample a uniform string of Hamming
weight one, which is uniform symmetric.

• The unspecified distance assumption ε cannot be replaced by a constant, i.e., local functions
are indeed able to arbitrarily closely approximate uniform symmetric distributions.

Starting from evens, we randomly flip the first c ∈ [n] output bits with probability 1/4. This
distribution is 4-local since both evens and the 1/4-biased flipping are 2-local. It is easy to
see that this distribution is at distance 2−Θ(c) to all and evens, and is much farther from
other uniform symmetric distributions. This shows that ε can be arbitrarily small even when
d is a fixed constant.

• The distance blowup from ‖f(Um)−DΨ‖TV to ‖f(Um)−D‖
TV

is qualitatively necessary, i.e.,
the local distribution can be closer to a uniform symmetric distribution than to one of the
six special ones. In particular, we identify the following example which rules out a bound of
the form (1 + o(1))ε.

Consider the distribution D that with probability 3/4 is evens and with probability 1/4 is
odds. Observe D can be sampled by a 3-local function via a similar strategy to that for
evens. The uniform distribution over n-bit strings of Hamming weight 0, 1, 2, or 4 mod 6 is
approximately (1/6)-close to D; however, all six special distributions are (1/4)-far from D.
Thus, the implicit constant in Theorem 4.1 must be strictly greater than 1.

To prove Theorem 4.1, we will classify Ψ into several cases and handle them separately. To this
end, define ι(Ψ) ∈ Ψ to be the Hamming weight in Ψ that is closest to the middle:

ι(Ψ) = argmin
s∈Ψ

|s− n/2|

where we break ties arbitrarily. Intuitively, since ι(Ψ) is the dominating Hamming weight under
the binomial distribution, DΨ is close to either Dι(Ψ) or

1
2

(
Dι(Ψ) +Dn−ι(Ψ)

)
, where we recall that

Dk is the uniform distribution over the Hamming slice of weight k. Based on this intuition, we
divide Ψ into the following cases:
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• Tail Regime: ι(Ψ) ≤ n/2d+2 or ι(Ψ) ≥ n− n/2d+2.

• Central Regime: n/2d+2 < ι(Ψ) < n− n/2d+2.

In the tail regime, we wish to show that DΨ can only be zeros, ones, or zerones. This is
formalized by the following consequence of [FLRS23, Theorem 1.2]. For completeness, we include
a simple self-contained proof in Appendix B.

Theorem 4.3. Let f : {0, 1}m → {0, 1}n be a d-local function where n ≥ 22
8·(d+1)2

. Assume
‖f(Um)−DΨ‖TV ≤ 1/2 for some Ψ in the tail regime. Then DΨ ∈ {zeros, ones, zerones}.

In the central regime, we aim to show that DΨ is essentially evens, odds, or all by Theorem 4.4,
which will be proved in Subsection 4.1.

Theorem 4.4. Let f : {0, 1}m → {0, 1}n be a d-local function where n ≥ tow(900(d+1)). Assume
‖f(Um)−DΨ‖TV ≤ ε for some Ψ in the central regime. Then

‖f(Um)−D‖
TV
≤ tow(850(d+ 1)) · ε

for some D ∈ {evens, odds, all}.

Combining Theorem 4.3 and Theorem 4.4, we can now establish Theorem 4.1.

Proof of Theorem 4.1. First note that the bound in Theorem 4.1 is trivial if ε ≥ tow(850(d+1))−1.
Hence we assume without loss of generality that ε < tow(850(d + 1))−1 ≤ 1/2. If Ψ is in the tail
regime, then by Theorem 4.3, we have DΨ ∈ {zeros, ones, zerones}. Hence by setting D = DΨ,
we have ‖f(Um)−D‖

TV
≤ ε ≤ tow(850(d + 1)) · ε. If Ψ is in the central regime, then the bound

follows directly from Theorem 4.4.

4.1 Central Regime

In this section, we deal with the central regime where strings from DΨ are spread out in the middle
layers, i.e., n/2d+2 < ι(Ψ) < n− n/2d+2 where ι(Ψ) is the Hamming weight in Ψ closest to n/2.

Theorem (Theorem 4.4 Restated). Let f : {0, 1}m → {0, 1}n be a d-local function where n ≥
tow(900(d+ 1)). Assume ‖f(Um)−DΨ‖TV ≤ ε for some Ψ in the central regime. Then

‖f(Um)−D‖
TV
≤ tow(850(d+ 1)) · ε

for some D ∈ {evens, odds, all}.

Recall that g is a (d, r, t)-local function if (1) g is a d-local function, and (2) it has r non-
connected neighborhoods of size at most t. The high-level idea underlying the proof of Theorem 4.4
is to use graph elimination results from [KOW24] to reduce an arbitrary d-local function to a
mixture of (d, r, t)-local functions with r as a small multiple of n and t as a large constant. This
additional structure will make the analysis substantially easier. After proving bounds for each
of the subfunctions, we amalgamate them into one for the original function via a union bound
argument. We will first prove the following distance lower bounds for (d, r, t)-local functions in
Subsection 4.1.1.
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Proposition 4.5. Let Ψ be in the central regime and assume ‖DΨ −D‖TV ≥ δ holds for all
D ∈ {evens, odds, all}, where

δ ≥ exp

{
−n/

(
230(dt+1) · n/r

)3(t+1)2
}

and n ≥
(
230(dt+1) · n/r

)6(t+1)2

and r ≥ 2100(dt+1).

Then there exists a function φ : {0, 1}n → R such that − exp
{
2100(dt+1)3 · (n/r)4(t+1)2

}
≤ φ(x) ≤ 1

holds for all x ∈ {0, 1}n.
Moreover, let g : {0, 1}m → {0, 1}n be an arbitrary (d, r, t)-local function and define Pg = g(Um).

Then either
‖Pg −DΨ‖TV ≥ 1− n2 · exp

{
−r/220(dt+1)

}

or
E

X∼DΨ

[φ(X)]− E
X∼Pg

[φ(X)] ≥ δ · 2−120 − (t+ 1) · exp
{
−r/220(dt+1)

}
.

We remark that in [KOW24], the potential function φ is merely the indicator function of the
support of the desired distribution, which has tiny probability mass in the actual d-local distribu-
tion. Since our Ψ is arbitrary in the central regime, the actual construction of φ in Proposition 4.5
is much more delicate and is no longer a simple indicator function.

To reduce the actual d-local function to a (d, r, t)-local function, we use graph elimination results
from [KOW24] as before.

Proposition 4.6. Let f : {0, 1}m → {0, 1}n be a d-local function. There exists a set S ⊆ [m] such
that any fixing of input bits in S reduces f to a (d, r, t)-local function g where

|S| ≤ r

230(dt+1)
and r ≥ n

tow(600d)
and t ≤ tow(600d).

Proof. The statement is trivial when d = 0 since then we can set S = ∅, r = n, t = 0. For d ≥ 1,
we apply Theorem 3.5. Set F (x) = 230·(dx+1). Then

F̃ (x) =
1

d
· exp

{
32d4x2 · 230d·(2d2x+1)

}
.

Define H(x) = 22
2x

and let L = 500d. By setting

κ = λ = tow(600d) ≥ d ·H(2d+2)(L),

the conditions in Theorem 3.5 are satisfied, yielding the result.

In [KOW24], Lemma 3.3 is used to combine Proposition 4.6 and Proposition 4.5. Here we need
Lemma 4.7, which is a slight strengthening of Lemma 3.3, since we have a potential function that
is not necessarily an indicator of an event. Nevertheless, the proof carries over and is deferred to
Appendix C.

Lemma 4.7. Let P1, . . . ,Pℓ and Q be distributions. Let φ be a function with output range [a, b]
where a < b. Assume for each i ∈ [ℓ],

either ‖Pi −Q‖TV ≥ 1− η1 or E
X∼Q

[φ(X)]− E
X∼Pi

[φ(X)] ≥ η2.

Then for any distribution P as a convex combination of P1, . . . ,Pℓ, we have

‖P −Q‖
TV
≥ η2

b− a
− (ℓ+ 1) · η1.
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At this point, we can prove Theorem 4.8, a weaker version of Theorem 4.4 equipped with an
additional assumption on ε being not too small.

Theorem 4.8. Let f : {0, 1}m → {0, 1}n be a d-local function where n ≥ tow(900(d+1)). Assume
‖f(Um)−DΨ‖TV ≤ ε for some Ψ in the central regime and

ε ≥ exp

{
− n

tow(750(d+ 1))

}
.

Then
‖f(Um)−D‖

TV
≤ tow(750(d+ 1)) · ε

for some D ∈ {evens, odds, all}.
Proof. Let δ = tow(750(d+ 1)) · ε, which satisfies

δ ≥ exp

{
− n

tow(800(d+ 1))

}
. (3)

Assume towards a contradiction that ‖f(Um)−DΨ‖TV > δ for all D ∈ {evens, odds, all}.
First we reduce f to (d, r, t)-local functions. By Proposition 4.6, we find a set S ⊆ [m] such

that any fixing ρ of input bits in S reduces f to a (d, r, t)-local function fρ where

|S| ≤ r

230d(t+1)
and r ≥ n

tow(600d)
and t ≤ tow(600d). (4)

Then we use Proposition 4.5 to analyze each fρ. Since n ≥ tow(900(d+1)), by (3) and (4), the
conditions in Proposition 4.5 holds. Hence, by Proposition 4.5, there exists a function φ : {0, 1}n →
R, which depends only on Ψ, such that

(1) a := 1− tow(700(d+ 1)) ≤ φ(x) ≤ 1 =: b holds for all x ∈ {0, 1}n,
(2) for each fρ, define Pg = g(Um) then either

∥∥Pfρ −DΨ

∥∥
TV
≥ 1− n2 exp

{
−r/220d(t+1)

}
=: 1− η1

or

E
X∼DΨ

[φ(X)]− E
X∼Pfρ

[φ(X)] ≥ δ/2120 − exp

{
− n

tow(700(d+ 1))

}
≥ δ/2130 =: η2.

Note that the above bounds are simplified using (4) and n ≥ tow(900(d+ 1)).
Finally we use Lemma 4.7 with P = f(Um), Q = DΨ, and P1, . . . ,Pℓ being the output distri-

butions of fρ’s, as well as the parameters a, b, η1, η2 defined above. Then we have

‖f(Um)−DΨ‖TV ≥
δ/2130

tow(700(d+ 1))
−
(
2|S| + 1

)
· n2 exp

{
−r/220d(t+1)

}

≥ δ/2130

tow(700(d+ 1))
− n2 · exp

{
−r/225d(t+1)

}
(by (4))

≥ δ/2130 − δ/2200

tow(700(d+ 1))
(by (4), n ≥ tow(900(d+ 1)), and (3))

> δ/tow(750(d+ 1)) = ε,

which is a contradiction.
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To further lift the assumption on ε, we need to explore extra properties of local functions. This
is handled in the following Theorem 4.9, the proof of which is presented in Subsection 4.1.2.

Theorem 4.9. Let f : {0, 1}m → {0, 1}n be a d-local function where n ≥ tow(900(d+1)). Assume
‖f(Um)−DΨ‖TV ≤ ε for some Ψ in the central regime and

ε ≤ exp

{
− n

tow(800(d+ 1))

}
.

Then
‖f(Um)−D‖

TV
≤ tow(850(d+ 1)) · ε

for some D ∈ {evens, odds, all}.

The full version of Theorem 4.4 follows from the combination of Theorem 4.8 and Theorem 4.9.

Proof of Theorem 4.4. If ε ≥ exp {−n/tow(750(d+ 1))}, then we apply Theorem 4.8. Other-
wise we have ε < exp {−n/tow(750(d+ 1))} ≤ exp {−n/tow(800(d+ 1))}, from which we apply
Theorem 4.9.

4.1.1 Analysis of More Structured Local Functions

In this part, we prove Proposition 4.5, which concerns the more structured (d, r, t)-local functions.
For convenience, we additionally assume d, t ≥ 1 in the restated version of Proposition 4.5 below.
This immediately implies the original statement by shifting by one, since any (d, r, t)-local function
is also (d′, r, t′)-local for any t′ ≥ t and d′ ≥ d.

Proposition (Proposition 4.5 Restated). Let d ≥ 1, t ≥ 1, and r ≥ 2100dt. Assume Ψ is in the
central regime and assume ‖DΨ −D‖TV ≥ δ for all D ∈ {evens, odds, all}, where

δ ≥ exp

{
−n ·

(
230dt · n/r

)−3t2
}

and n ≥
(
230dt · n/r

)6t2
.

Then there exists a function φ : {0, 1}n → R such that − exp
{
2100dt

3 · (n/r)4t2
}
≤ φ(x) ≤ 1 holds

for all x ∈ {0, 1}n.
Moreover, let g : {0, 1}m → {0, 1}n be an arbitrary (d, r, t)-local function and define Pg = g(Um).

Then either
‖Pg −DΨ‖TV ≥ 1− n2 · exp

{
−r/220dt

}

or
E

X∼DΨ

[φ(X)]− E
X∼Pg

[φ(X)] ≥ δ · 2−120 − t · exp
{
−r/220dt

}
.

To prove Proposition 4.5, we fix a (d, r, t)-local function g : {0, 1}m → {0, 1}n, where r and t are
parameters to be plugged in later. Recall that for each i ∈ [n], its neighborhood Ng(i) ⊆ [n] is the
set of output bits that share common input bits with the i-th output. Let ε ∈ [0, 1] be a parameter
to be optimized later. We classify each N(i) = Ng(i) of size si = |N(i)| into the following cases:

• Type-1. Pg|N(i) is not ε-close to Usi
s/n for each n/2d+3 ≤ s ≤ n− n/2d+3.

• Type-2. Pg|N(i) is ε-close to Usi
s/n for some n/2d+3 ≤ s ≤ n− n/2d+3.
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The classification of Type-1 and Type-2 neighborhoods is different from the ones in [KOW24], where
they only have a single unique biased distribution to compare with. The definition here takes into
consideration all noticeable Hamming weights since DΨ can be a mixture of very different biased
distributions, e.g., if Ψ = {n/3, 2n/3}, then DΨ is roughly a uniform mixture of the 1/3-biased and
2/3-biased distributions, which is not close to any product distribution.

Recall that Ψ being in the central regime means there exists some s ∈ Ψ such that n/2d+2 <
s < n−n/2d+2. Hence focusing only on the Hamming weights within range [n/2d+3, n−n/2d+3], as
in the definition of Type-1 and Type-2 neighborhoods, does not differ too much. This is formalized
by Claim 4.10 and is proved in Appendix C.

Claim 4.10. If Ψ is in the central regime, then Ψ 6= ∅ and
∥∥DΨ −DΨ

∥∥
TV
≤ 8 · exp

{
−n · 2−(d+4)

}
,

where Ψ =
{
s ∈ Ψ: n/2d+3 ≤ s ≤ n− n/2d+3

}
.

If g has many small non-connected Type-1 neighborhoods, then we show that Pg is extremely
far from DΨ, and thus DΨ by Claim 4.10, in Lemma 4.12. This is proved via a simple reduction
to the analysis of Type-1 neighborhoods in the single Hamming slice case in [KOW24], quoted as
Lemma 4.11 below.

Lemma 4.11 ([KOW24, Lemma 5.14]). Assume there are r′ ≥ 1 non-connected Type-1 neighbor-
hoods. Then

‖Pg −Dk‖TV ≥ 1− 2
√
2n · exp

{
−ε2r′/2

}
.

Lemma 4.12. Assume there are r′ ≥ 1 non-connected Type-1 neighborhoods. Then

‖Pg −DΨ‖TV ≥ 1− 4n1.5 · exp
{
−ε2r′/8

}
− 8 · exp

{
−n · 2−(d+4)

}
.

Proof. Let Ψ =
{
s ∈ Ψ: n/2d+3 ≤ s ≤ n− n/2d+3

}
, which is non-empty by Claim 4.10. For each

s ∈ Ψ, we apply Lemma 4.11 to obtain ‖Pg −Ds‖TV ≥ 1 − 4
√
n · exp

{
−ε2r′/8

}
. Since DΨ is the

convex combination of Ds for s ∈ Ψ, we have

∥∥Pg −DΨ

∥∥
TV
≥ 1− 4n1.5 · exp

{
−ε2r′/8

}
,

where we used Lemma 3.3 and the fact that |Ψ| < n. Then the final bound follows from Claim 4.10
and a triangle inequality.

If g has many small non-connected Type-2 neighborhoods, we show that the Hamming weight
of Pg is the convex combination of sums of many independent bounded random integers with
additional congruence properties.

This “open-boxes” the proofs of [KOW24, Lemmas 5.15 & 5.22]. The key point here is that
ε only needs to be mildly small depending on d and t to obtain the congruence properties by
Lemma 3.4, since every s in the definition of a Type-2 neighborhood is bounded away from the
boundary (i.e., 1/2d+3 ≤ s/n ≤ 1− 1/2d+3). The proof of Lemma 4.13 is deferred to Appendix C.

Lemma 4.13. Assume there are r′ ≥ 1 non-connected Type-2 neighborhoods of size at most t.
If ε ≤ 2−3t−d−3, then the distribution of the Hamming weight of X ∼ Pg can be decomposed as∑

ρ λρ · Pρ where

1.
∑

ρ λρ = 1 and each λρ ≥ 0;
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2. each Pρ = Xρ +
∑

j∈[r′]Xρ,j where Xρ is a fixed integer and Xρ,1, . . . , Xρ,r′ are independent
random variables in {0, 1, . . . , t},

3. we say ρ is bad if there exists some integer q ≥ 3 such that
∑

j∈[r′](1 − pρ,q,j) ≤ 2−7t−d · r′,
where pρ,q,j = maxx∈ZPr [Xρ,j ≡ x (mod q)]. Then

∑
bad ρ λρ ≤ t · exp

{
−2−7t−d−2 · r′

}
.

Note that Item 3 from Lemma 4.13 does not guarantee any congruence property for modulus
2. This suggests that we should handle even and odd numbers in Ψ separately. Indeed, in the
following Lemma 4.14 we show that if DΨ is not close to evens, odds, and all, then either its even
part is far from evens or its odd part is far from odds. We remark that Lemma 4.14 also works
for Ψ not in the central regime.

Lemma 4.14. Let Γ and Ξ be the set of even and odd numbers in Ψ respectively. Define γ =
|supp (DΓ) |/2n−1 and ξ = |supp (DΞ) |/2n−1. Then DΨ can be decomposed as γ

γ+ξ · DΓ + ξ
γ+ξ · DΞ.

5

In addition, if ‖DΨ −D‖TV ≥ δ ≥ 0 for every D ∈ {evens, odds, all}, then

either
γ · ‖DΓ − evens‖

TV

γ + ξ
=

γ(1− γ)

γ + ξ
≥ δ

12
or

ξ · ‖DΞ − odds‖
TV

γ + ξ
=

ξ(1− ξ)

γ + ξ
≥ δ

12
. (5)

Proof. The decomposition follows directly from the fact that DΨ,DΓ,DΞ are uniform distributions
over their supports respectively. Since supp (DΓ) ⊆ supp (evens), supp (DΞ) ⊆ supp (odds), and
Ψ 6= ∅, we have

0 ≤ γ ≤ 1, 0 ≤ ξ ≤ 1, and γ + ξ > 0. (6)

Now we can express ‖DΨ −D‖TV. Starting with D = all and by Fact 3.2, we have

‖DΨ − all‖
TV

= 1− |supp (DΨ) |
2n

= 1− |supp (DΓ) |+ |supp (DΞ) |
2n

= 1− γ + ξ

2
.

Let δ′ = δ/3 ∈ [0, 1/3]. Since ‖DΨ − all‖
TV
≥ δ ≥ δ′, this gives

γ + ξ ≤ 2 · (1− δ′). (7)

For D = evens, we work directly with the definition of total variation distance:

‖DΨ − evens‖
TV

=
1

2

(∣∣∣∣
|supp (DΓ) |
|supp (DΨ) |

− |supp (DΓ) |
2n−1

∣∣∣∣+
2n−1 − |supp (DΓ) |

2n−1
+
|supp (DΞ) |
|supp (DΨ) |

)

=
1

2
·
(∣∣∣∣

γ

γ + ξ
− γ

∣∣∣∣+ 1− γ +
ξ

γ + ξ

)
,

which implies

δ′ ≤
{
1− γ γ + ξ ≤ 1,
ξ

γ+ξ γ + ξ > 1.
(8)

Similarly by inspecting D = odds, we have

δ′ ≤
{
1− ξ γ + ξ ≤ 1,
γ

γ+ξ γ + ξ > 1.
(9)

In addition, by Fact 3.2, the equalities in (5) hold and the inequalities follows from solving the
following optimization problem, which is proved in Appendix C.

5Even if, say, DΓ is undefined due to Γ = ∅, this decomposition is still valid, since then γ = 0 and DΨ = DΞ.
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Claim 4.15. Given constraints (6), (7), (8), and (9), we have γ2+ξ2

γ+ξ ≤ 1− δ′/2.

Assuming (5) is false, then we should have

γ(1− γ)

γ + ξ
+

ξ(1− ξ)

γ + ξ
= 1− γ2 + ξ2

γ + ξ
<

δ

6
=

δ′

2
,

which, however, contradicts Claim 4.15.

Given Lemma 4.14, we can focus on the even part or the odd part of Ψ. Say, the even part
Γ of Ψ witnesses a large deviation from evens. Then we construct a potential function φ such
that (1) its expectation is small under each typical Pρ, and (2) it is large under DΓ. In retrospect,
the potential function was defined to be the indicator of the support of the desired distribution in
[KOW24, Lemmas 5.15 & 5.22], where (2) held trivially and (1) followed from anticoncentration
(i.e. [Ush86, Theorem 3] or [KOW24, Lemma 3.7]). Since here we have an unstructured Γ, it is
much more delicate to construct such a potential function and verify conditions (1) and (2).

Informally, φ is constructed to indicate part of the Hamming weights in Γ (iℓ’s in Lemma 4.16)
and subtracts some nearby Hamming weights that are not covered by Γ (jℓ’s in Lemma 4.16). To
guarantee (1), we will use density comparison results (Lemma 3.9); for (2), we will make sure that
the set of indicated weights in Γ consists of a noticeable probability mass in DΓ.

Lemma 4.16. Assume n ≥ 210 and δ1, δ2 ∈ (0, 1) satisfying δ1(1 − δ2) ≤ 2−100 and δ1 ≤ δ2. Let
Γ ⊂ {0, 1, . . . , n} be non-empty and contain only even numbers. If ‖DΓ − evens‖

TV
≥ δ2, then

there exist i1, . . . , iK , j1, . . . , jK such that

1. i1, . . . , iK , j1, . . . , jK are distinct even numbers in {0, 1, . . . , n},
2. PrX∼DΓ

[|X| ∈ {i1, . . . , iK}] ≥ δ1/60 and PrX∼DΓ
[|X| ∈ {j1, . . . , jK}] = 0,

3. K ≤ 1 + 8

√
n/ log

(
1

δ1(1−δ2)

)
and |iℓ − jℓ| ≤ 4K holds for each ℓ ∈ [K].

Proof. For each m ∈ {0, 1, . . . , n}, define

wtm = 2−n+1

(
n

m

)
and wt≤m = 2−n+1

∑

i≥0

(
n

m− 2i

)
and wt≥m = 2−n+1

∑

i≥0

(
n

m+ 2i

)
.

For even m’s, wtm captures the Hamming weight distribution of evens.
Let γ =

∑
m∈Γ wtm, which equals |supp (DΓ) |/2n−1. Then

Pr
X∼DΓ

[|X| = m] = wtm/γ for each m ∈ Γ. (10)

In addition, by Fact 3.2, we have

‖DΓ − evens‖
TV

=
∑

even m/∈Γ
wtm = 1− γ ≥ δ2 > 0. (11)

If δ1γ ≤ 2−n+1, then we set K = 1 and select arbitrary i1 ∈ Γ, j1 /∈ Γ such that |i1 − j1| = 2. Since
‖DΓ − evens‖

TV
> 0, such a pair always exists. Then Lemma 4.16 follows immediately from (10)

and the fact that wtm ≥ 2−n+1 for every even m.
From now on we assume δ1γ > 2−n+1. Define

mL = min {even m : wt≤m ≥ δ1γ/4} and mR = max {even m : wt≥m ≥ δ1γ/4} .
Note that mL and mR are well-defined. We will need the following estimate for the binomial weights
sandwiched between them. The proof of Claim 4.17 is a direct but tedious calculation on binomial
coefficients and is deferred to Appendix C.
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Claim 4.17. mL ≤ n/2−√n and mR ≥ n/2 +
√
n. Furthermore, for each even m ∈ [mL,mR], we

have wtm ≥ δ1γ
√

log(1/(δ1γ))

16
√
n

.

Define

I = {m ∈ Γ: mL ≤ m ≤ mR} and J = {even m : mL ≤ m ≤ mR} \ I.

We will select i1, . . . , iK from I and j1, . . . , jK from J . First observe that

∑

m∈I
wtm ≥

∑

m∈Γ
wtm − wt≤mL−2 − wt≥mR+2 ≥ γ − δ1γ/2 ≥ δ1γ/2, (12)

which, combined with (10), implies that the first half of Item 2 will be eventually satisfied if we
keep picking out ik’s from I. We describe the actual process separately depending on whether J is
abundant.

The |J | ≥ √n/9 Case. We will simply select (ik, jk) iteratively until Item 2 is satisfied, and each
pair is selected to minimize their absolute distance to guarantee Item 3.

• Initialize I0 = I and J0 = J .

• For each k = 0, 1, 2, . . ., if
∑

ℓ∈[k] wtiℓ ≥ δ1γ/16, then set K = k and terminate; otherwise
define Ik+1 ← Ik \ {ik} , Jk+1 ← Jk \ {jk} then continue, where

(ik, jk) = argmin
(i,j)∈Ik×Jk

|i− j| .

By Claim 4.17 and the definition of I, we know that if the process does not terminate at time k,
then

δ1γ

16
>
∑

ℓ∈[k]
wtiℓ ≥ k · δ1γ

√
log(1/(δ1γ))

16
√
n

≥ k ·
δ1γ

√
log
(

1
δ1(1−δ2)

)

16
√
n

,

where we used γ ≤ 1 − δ2 from (11). This means that the process must terminate before k > 1 +√
n/ log

(
1

δ1(1−δ2)

)
. Since |J | ≥ √n/9 and δ1(1−δ2) ≤ 2−100, we have |J | ≥ 1+

√
n/ log

(
1

δ1(1−δ2)

)
,

which implies that we will never run out of jk before termination and the above process is indeed
valid. This argument, combined with (10) and the definition of each Ik and Jk, already verifies
Item 1, Item 2, and the first half of Item 3. For the second half of Item 3, a simple induction
argument shows that the k-th selected pair has distance at most 4k − 2, which is at most 4K as
desired.

The |J | < √n/9 Case. Here, the naive greedy selection approach may not work since we may
not have a sufficient amount of jk’s to pair with ik’s. However, by (11), the total weight in J is
also noticeable:

∑

m∈J
wtm ≥

∑

even m/∈Γ
wtm − wt≤mL−2 − wt≥mR+2 ≥ δ2 − δ1γ/2 ≥ δ1γ/2, (13)

where for the last inequality we used δ1γ ≤ δ1 ≤ δ2. If we cleverly select pairs until
∑

ℓ wtjℓ is large
enough,

∑
ℓ wtiℓ should also be large since |J | itself is small and hence wtiℓ ,wtjℓ shouldn’t be off by

much. Now we describe the actual process.
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• Initialize I0 = I and J0 = J .

• For each k = 0, 1, 2, . . ., if
∑

ℓ∈[k] wtjℓ ≥ δ1γ/2 or
∑

ℓ∈[k] wtiℓ ≥ δ1γ/60, then set K = k and
terminate; otherwise define Ik+1 ← Ik \ {ik} , Jk+1 ← Jk \ {jk} then continue, where ik, jk are
selected as follows:

(A) if there exists i ∈ Ik, j ∈ Jk that n/2 ≤ i < j, then (ik, jk) = argmin(i,j)∈Ik×Jk
n/2≤i<j

|i− j|,

(B) else if there exists i ∈ Ik, j ∈ Jk that n/2 ≥ i > j, then (ik, jk) = argmin(i,j)∈Ik×Jk
n/2≥i>j

|i−j|,

(C) else if Ik 6= ∅ and Jk 6= ∅, then (ik, jk) = argmin(i,j)∈Ik×Jk
|i− j|,

(D) else, by (13), we must have Ik = ∅. Then the process errs.

To prove the validity of the above process, we first show that the process does not err. Since
each wtm,m ∈ J is also lower bounded by Claim 4.17,

∑
ℓ∈[k] wtjℓ ≥ δ1γ/2 will be satisfied before

k > 1 + 8

√
n/ log

(
1

δ1(1−δ2)

)
by the same argument as in the previous case. On the other hand,

Claim 4.17 also implies that |I|+ |J | ≥ √n− 1. Since |J | < √n/9, we have |I| > 8
√
n/9− 1, which

is larger than 1 + 8

√
n/ log

(
1

δ1(1−δ2)

)
as δ1(1− δ2) ≤ 2−100 and n ≥ 210. Hence we never run out

of ik in Item (D) before termination and the above process does not err. This argument, combined
with the definition of each Ik and Jk, already verifies Item 1, the second half of Item 2, and the first
half of Item 3. The second half of Item 3 can be analogously established by an induction argument
that the k-th selected pair has distance at most 4k − 2 ≤ 4K.

All that remains is the first half of Item 2, i.e.,
∑

ℓ wtiℓ is large upon termination. To this end,
we relate each wtik and wtjk by Claim 4.18.

Claim 4.18. For any time k before termination, we have wtik ≥ wtjk/30.

Proof. If (ik, jk) is obtained in Item (A) or Item (B), then by the definition of wt, we have wtik >
wtjk ≥ wtjk/8 immediately. Now we assume that (ik, jk) is obtained in Item (C). We will show that
both ik and jk are within range [n/2−√n, n/2 +√n], from which we have the desired relation:

wtik
wtjk

=

(
n
ik

)
(
n
jk

) ≥
(

n
n/2−√

n

)
(

n
n/2

) ≥ 2n·(H(1/2−1/
√
n)−1)

√
8 · (1− 4/n)/π

(by Fact 3.7 and the range of ik, jk)

≥ 2−4

√
8/π
≥ 1

30
. (by Fact 3.8)

If ik < n/2−√n, then jk > ik since otherwise we should be in Item (B). In addition, every even
m ∈ [n/2 −√n, n/2] is either selected already or contained in Jk. To see this, if there exists m ∈
[n/2−√n, n/2]∩Ik and m > jk, then we should be Item (B); if there exists m ∈ [n/2−√n, n/2]∩Ik
and m < jk, then we cannot pick ik < n/2−√n ≤ m since |ik − jk| > |m− jk| in Item (C). Now
observe that there are at least

√
n/2 − 1 even numbers in [n/2 − √n, n/2]. Since we assumed

|J | < √n/9, at least 7√n/18− 1 of the even numbers in [n/2−√n, n/2] must be in I and they are
all selected before. By Claim 4.17, this means

∑

ℓ∈[k−1]

wtiℓ ≥
(
7
√
n

18
− 1

)
· δ1γ

√
log(1/(δ1γ))

16
√
n

≥ δ1γ

60
,

which means that we should have terminated already. This gives a contradiction.
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If jk < n/2 − √n, then every even number m ∈ [n/2 − √n, n/2] is either selected already or
contained in Jk, since otherwise we would be in Item (B). Then the same argument follows. The
possibility that ik > n/2 +

√
n or jk > n/2 +

√
n can also be ruled out analogously.

Given Claim 4.18, we always have
∑

ℓ∈[k] wtiℓ ≥ δ1γ/60 upon termination. This, combined with
(10), establishes the first half of Item 2 and completes the proof.

By identical reasoning, we can also handle odd numbers. In addition, by relaxing the bounds,
we can remove 2−100 from the assumption to get a cleaner statement.

Corollary 4.19. Assume n ≥ 210 and δ1, δ2 ∈ (0, 1) satisfying δ1 ≤ δ2. Let Γ ⊂ {0, 1, . . . , n} (resp.,
Ξ ⊂ {0, 1, . . . , n}) be non-empty and contain only even (resp., odd) numbers. If ‖DΓ − evens‖

TV
≥

δ2 (resp., ‖DΞ − odds‖
TV
≥ δ2), then there exist i1, . . . , iK , j1, . . . , jK such that

1. i1, . . . , iK , j1, . . . , jK are distinct even (resp., odd) numbers in {0, 1, . . . , n},
2. Pr [|X| ∈ {i1, . . . , iK}] ≥ δ1/2

106 and Pr [|X| ∈ {j1, . . . , jK}] = 0 where X ∼ DΓ (resp.,
X ∼ DΞ),

3. K ≤ 1 + 8

√
n/
(
100 + log

(
1

δ1(1−δ2)

))
and |iℓ − jℓ| ≤ 4K holds for each ℓ ∈ [K].

Proof. Simply apply Lemma 4.16 with δ′1 = δ1 · 2−100 then δ′1(1− δ2) ≤ δ′1 ≤ 2−100.

We are now in the position of proving Proposition 4.5.

Proof of Proposition 4.5. Let Γ and Ξ be the set of even and odd numbers in Ψ respectively. By
Lemma 4.14,

DΨ =
γ

γ + ξ
· DΓ +

ξ

γ + ξ
· DΞ where γ = |supp (DΓ) |/2n−1 and ξ = |supp (DΞ) |/2n−1.

In addition, either

γ · ‖DΓ − evens‖
TV

γ + ξ
≥ δ

12
where ‖DΓ − evens‖

TV
= 1− γ, (14)

or ξ
γ+ξ · ‖DΞ − odds‖

TV
≥ δ/12.

Assume we are in the former case and the latter can be handled analogously. To construct the
function φ, we apply Corollary 4.19 with δ1 = δ2 = 1 − γ and obtain i1, . . . , iK , j1, . . . , jK . Then
we define φ : {0, 1}n → R by

φ(x) =





1 |x| ∈ {i1, . . . , iK} ,
−C |x| ∈ {j1, . . . , jK} ,
0 otherwise,

where C = exp
{
2100dt

3 · (n/r)4t2
}
.

The range of φ is obviously from −C to 1 and

E
X∼DΨ

[φ(X)] =
γ

γ + ξ
·
(

Pr
X∼DΓ

[|X| ∈ {i1, . . . , iK}]− C · Pr
X∼DΓ

[|X| ∈ {j1, . . . , jK}]
)

(by Item 1 of Corollary 4.19)

≥ γ

γ + ξ
·
(
(1− γ)/2106 − 0

)
(by Item 2 of Corollary 4.19)
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=
γ(1− γ)

γ + ξ
· 2−106. (15)

In addition, we have

K ≤ 1 + 8

√
n/

(
100 + log

(
1

γ(1− γ)

))
≤ √n. (16)

Now we turn to the (d, r, t)-local function g. Recall that by definition, it has at least r non-
connected neighborhoods of size at most t. Set ε = 2−3t−d−3 as the distance threshold for classifying
Type-1 and Type-2 neighborhoods. If at least r′ = ⌈r/2⌉ of them are Type-1, then we apply
Lemma 4.12 and obtain

‖Pg −DΨ‖TV ≥ 1− 4n1.5 · exp
{
−r/26t+2d+10

}
− 8 · exp

{
−n/2d+4

}
≥ 1− n2 · exp

{
−r/220dt

}
,

where we used the fact that d, t ≥ 1, r ≤ n, and n ≥ 210. Otherwise at least r′ = ⌈r/2⌉ of them are
Type-2. In this case, we evaluate the expectation of φ under Pg by first decomposing the Hamming
weight distribution of Pg by Lemma 4.13, then applying Lemma 3.9 to each typical decomposed
distribution. Formally, by the definition of φ, we first observe that

E
X∼Pg

[φ(X)] = Pr
X∼Pg

[|X| ∈ {i1, . . . , iK}]− C · Pr
X∼Pg

[|X| ∈ {j1, . . . , jK}] . (17)

Then by Lemma 4.13, the Hamming weight distribution of X ∼ Pg is
∑

ρ λρ · Pρ where each
Pρ = Xρ +

∑
k∈[r′]Xρ,k is a sum of independent random variables Xρ,1, . . . , Xρ,r′ in {0, 1, . . . , t}

together with a constant Xρ. Recall that we say ρ is good if

∑

k∈[r′]
(1−max

x∈Z
Pr [Xρ,k ≡ x (mod q)]) > 2−7t−d · r′ holds for all integer q ≥ 3, (18)

and bad otherwise. Then Lemma 4.13 also proves

∑

bad ρ

λρ ≤ t · exp
{
−2−7t−d−2 · r′

}
≤ t · exp

{
−2−20dt · r

}
. (19)

Since C ≥ 0, by (17) and (19), we have

E
X∼Pg

[φ(X)] ≤ t · exp
{
−2−20dt · r

}
+
∑

good ρ

λρ ·
∑

ℓ∈[K]

Gρ,ℓ, (20)

where

Gρ,ℓ = Pr



∑

k∈[r′]
Xρ,k = iℓ −Xρ


− C ·Pr



∑

k∈[r′]
Xρ,k = jℓ −Xρ


 .

Putting all the parameters into Lemma 3.9, we can show that each Gρ,ℓ is small. This is formalized
in Claim 4.20 and will be proved later.

Claim 4.20. For any good ρ and ℓ ∈ [K], we have Gρ,ℓ ≤ γ(1−γ)
K·(γ+ξ) · 2−200.

Putting Claim 4.20 into (20), we obtain

E
X∼Pg

[φ(X)] ≤ t · exp
{
−r/220dt

}
+K · γ(1− γ)

K · (γ + ξ)
· 2−200.
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Therefore

E
X∼DΨ

[φ(X)]− E
X∼Pg

[φ(X)] ≥ γ(1− γ)

γ + ξ
· 2−110 − t · exp

{
−r/220dt

}
(by (15))

≥ δ · 2−120 − t · exp
{
−r/220dt

}
(by (14))

as desired.

Finally we prove Claim 4.20, which is a direct calculation based on Lemma 3.9.

Proof of Claim 4.20. Following the notation in Lemma 3.9, let n = r′, x = iℓ−Xρ, and ∆ = |iℓ−jℓ|,
where ∆ is an even number by Item 1 of Corollary 4.19 as needed by Lemma 3.9. By (18), we set
L = 2−10dt · r′. Since d, t ≥ 1, r′ ≥ r/2, and r ≥ 2100dt, we have

m =

⌊
2−10dt · r′

32t4

⌋
≥ 2−30dt · r and α =

(
2−10dt · r′
4n(t+ 1)

)2t2

≥ 2−30dt3 · (r/n)2t2 .

Hence
α ·m ≥ 2−60dt3 · n · (r/n)1+2t2 ≥ 2−60dt3 · n · (r/n)3t2 , (21)

where we used the fact that r ≤ n and t ≥ 1. Let

κ1 =
∆2

4αm
,

which already satisfies |∆| ≤ 2
√
κ1 · αm as demanded by Lemma 3.9. Now we expand ∆2 and

obtain a simpler formula to work with:

∆2 ≤ 16K2 (by Item 3 of Corollary 4.19)

≤ 16 ·
(
1 + 8

√
n/

(
100 + log

(
1

γ(1− γ)

)))2

(by (16))

≤ 32 ·
(
1 + 64n/

(
100 + log

(
1

γ(1− γ)

)))
(since (a+ b)2 ≤ 2 · (a2 + b2))

= 32 ·
(
1 + 64n/

(
100 + log

(
1

γ + ξ

)
+ log

(
γ + ξ

γ(1− γ)

)))

≤ 32 ·
(
1 + 64n/

(
99 + log

(
γ + ξ

γ(1− γ)

)))
(since γ, ξ ∈ [0, 1])

≤ 215 ·min

{
n, 1 + n/

(
1 + ln

(
γ + ξ

γ(1− γ)

))}
, (22)

where for the last inequality we used the fact that ln
(

γ+ξ
γ(1−γ)

)
≥ ln

(
γ+ξ
γ

)
> 0.

Obviously κ1 ≥ 0. Now we verify κ1 ≤ α ·m/128 as follows:

κ1 ·
128

α ·m =
25∆2

α2m2
≤ 215n

α2m2
≤ 215 · n

2−120dt3 · n2 · (r/n)6t2 (by (22) and (21))

≤ 2180dt
3 · (n/r)6t2

n
≤ 1. (since d, t ≥ 1 and n ≥

(
230dt · n/r

)6t2
)
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Define

κ2 =

(
1 + ln

(
γ + ξ

γ(1− γ)

))
· 210dt3 · (n/r)t2 ,

which is at least 1 since n ≥ r and ln
(

γ+ξ
γ(1−γ)

)
≥ ln

(
γ+ξ
γ

)
> 0. Now we verify κ2 ≤ α ·m/128:

κ2 ·
128

α ·m ≤
27 ·

(
1 + ln

(
γ+ξ

γ(1−γ)

))
· 210dt3 · (n/r)t2

2−60dt3 · n · (r/n)3t2 (by (21))

≤ 27 · (1 + ln (4/δ)) · 210dt3 · (n/r)t2

2−60dt3 · n · (r/n)3t2 (by (14))

≤ (1 + log(1/δ)) · 220dt3 · (n/r)t2

2−60dt3 · n · (r/n)3t2 (since d, t ≥ 1)

≤ 1. (since n ≥ r and log(1/δ) ≤ n ·
(
230dt · n/r

)−3t2
)

To verify C ≥ 2 · e12·(
√
κ1κ2+κ1), we first bound κ1κ2:

κ1κ2 =
∆2κ2
4αm

≤
213 ·

(
1 + n/

(
1 + ln

(
γ+ξ

γ(1−γ)

)))
·
(
1 + ln

(
γ+ξ

γ(1−γ)

))
· 210dt3 · (n/r)t2

2−60dt3 · n · (r/n)3t2
(by (22) and (21))

=
213 ·

(
1 + n+ ln

(
γ+ξ

γ(1−γ)

))

2−70dt3 · n · (r/n)4t2 ≤ 213 · (1 + n+ ln(4/δ))

2−70dt3 · n · (r/n)4t2 (by (14))

≤ 220 · n
2−70dt3 · n · (r/n)4t2 (since log(1/δ) ≤ n ·

(
230dt · n/r

)−3t2 ≤ n)

= 220 · 270dt3 · (n/r)4t2 . (23)

Since κ2 ≥ 1, we also have κ1 ≤ κ1κ2 ≤ 220 · 270dt3 · (n/r)4t2 by (23). Therefore

2 · e12·(
√
κ1κ2+κ1) ≤ 2 · exp

{
12 · 2 · 220 · 270dt3 · (n/r)4t2

}
≤ exp

{
2100dt

3 · (n/r)4t2
}
= C

as desired. Finally we conclude

Gρ,ℓ ·K ≤
√

32

α ·m ·K · e
−2κ2 (by Lemma 3.9)

≤
√

32

2−60dt3 · n · (r/n)3t2 ·
√
n · exp

{
−2 ·

(
1 + ln

(
γ + ξ

γ(1− γ)

))
· 210dt3 · (n/r)t2

}

(by (16) and (21))

≤ γ(1− γ)

γ + ξ
·
√

32

2−60dt3 · (r/n)3t2 · exp
{
−2 · 210dt3 · (n/r)t2

}

≤ γ(1− γ)

γ + ξ
·
√

32

2−60dt3 · (r/n)3t2 · exp
{
−300dt3 − 2t2 ln(n/r)

}
(since d, t ≥ 1 and n ≥ r)

≤ γ(1− γ)

γ + ξ
· 240dt3 · e−300dt3 ≤ γ(1− γ)

γ + ξ
· 2−200 (since d, t ≥ 1)

as claimed.
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4.1.2 Extremely Small Error Regime

In this section, we handle the case when f(Um) is extremely close to DΨ and prove Theorem 4.9.

Theorem (Theorem 4.9 Restated). Let f : {0, 1}m → {0, 1}n be a d-local function where n ≥
tow(900(d+ 1)). Assume ‖f(Um)−DΨ‖TV ≤ ε for some Ψ in the central regime and

ε ≤ exp

{
− n

tow(800(d+ 1))

}
.

Then
‖f(Um)−D‖

TV
≤ tow(850(d+ 1)) · ε

for some D ∈ {evens, odds, all}.

Given the assumption in Theorem 4.9, Theorem 4.8 guarantees that f(Um) is already exponen-
tially close to evens, odds, or all. Since f is d-local and thus every output bit is of granularity
2−d, this implies that the distribution of any small number of output bits is exactly uniform. For
our purposes, we only need to prove it for every pair of two as in the following Lemma 4.21, which
naturally generalizes.

Lemma 4.21. Let f : {0, 1}m → {0, 1}n be a d-local function where n ≥ 3. Let X ∼ f(Um)
and assume ‖f(Um)−D‖

TV
≤ 2−2d−1 for some D ∈ {evens, odds, all}. Then E[Xi] = 1/2 and

E[XiXj ] = 1/4 hold for any distinct i, j ∈ [n].

Proof. Assume without loss of generality d ≥ 1, since otherwise f(Um) is a point distribution and
its distance to D is at least 1− 2−(n−1) > 1/2.

Since f is d-local, the probability density function of Xi has granularity 2−d. Hence E[Xi] is
a multiple of 2−d. Since n ≥ 2, the marginal distribution of the i-th coordinate of D is unbiased.
If E[Xi] 6= 1/2, then |E[Xi]− 1/2| ≥ 2−d, which, by Fact 3.1, implies ‖f(Um)−D‖

TV
≥ 2−d and

contradicts the assumption.
Similarly, E[XiXj ] is a multiple of 2−2d and the joint distribution of the i-th and j-th coordinates

of D is unbiased since n ≥ 3. If E[XiXj ] 6= 1/4, then |E[XiXj ]− 1/4| ≥ 2−2d, which implies
‖f(Um)−D‖

TV
≥ 2−2d and contradicts the assumption.

We will also need the following lemma, which shows that the support of f(Um) has a consistent
parity provided that it is sufficiently close to evens or odds.

Lemma 4.22. Let f : {0, 1}m → {0, 1}n be a d-local function. Assume for some D ∈ {evens, odds}
we have

‖f(Um)−D‖
TV

< 2−d. (24)

Then supp (f(Um)) ⊆ supp (D).

Proof. Assume D = evens and the argument is identical for the D = odds case. Define function
g : {0, 1}m → {0, 1} as the parity of f ’s output, i.e., g(x) = |f(x)| (mod 2) where |f(x)| is the
Hamming weight of f(x). To show supp (f(Um)) ⊆ supp (D), it suffices to show that g is the
constant zero function.

Assume towards a contradiction that g is non-zero, and assume without loss of generality that
x1x2 · · ·xℓ is a maximal monomial in g. Note that we consider the constant 1 as a monomial with
degree 0. Since f is d-local, g has degree d over F2. This means ℓ ≤ d. Hence

‖f(Um)−D‖
TV
≥ Pr

x∼Um
[f(x) has odd Hamming weight] (Fact 3.1)
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= E
x∼Um

[g(x)] (by the definition of g)

= E
xℓ+1,...,xm

[
E

x1,...,xℓ

[g(x) |xℓ+1, . . . , xm]

]

≥ E
xℓ+1,...,xm

[
2−ℓ
]

(since g(x) is non-zero degree ℓ conditioned on xℓ+1, . . . , xm)

= 2−d,

which contradicts (24).

Now we prove Theorem 4.9.

Proof of Theorem 4.9. Note that the strong distance bound implies a weaker distance bound:

‖f(Um)−DΨ‖TV ≤ ε ≤ exp

{
− n

tow(750(d+ 1))

}
.

Then we can apply Theorem 4.8 and obtain a primitive bound

‖f(Um)−D‖
TV
≤ tow(750(d+ 1))

exp {n/tow(750(d+ 1))} ≤ exp

{
− n

tow(800(d+ 1))

}
(25)

for some D ∈ {evens, odds, all}.
Define a potential function φ : {0, 1}n → R by

φ(x) =
(
|x| − n

2

)2
=

n2

4
+ (1− n) ·

∑

i∈[n]
xi + 2 ·

∑

1≤i<j≤n

xixj .

Now we do a case analysis and boost the bound in (25).

The D = all Case. In this setting, we will use EX∼DΨ
[φ(X)] as an intermediate to establish

Theorem 4.9. First we present a lower bound:

E
X∼DΨ

[φ(X)] ≥ E
X∼f(Um)

[φ(X)]− n2

4
· ‖f(Um)−DΨ‖TV (since 0 ≤ φ ≤ n2/4)

=
n

4
− n2

4
· ‖f(Um)−DΨ‖TV (by Lemma 4.21 and (25))

≥ n

4
− n2

4
· ε. (26)

To derive an upper bound, we first use triangle inequality to obtain

‖DΨ − all‖
TV
≤ ε+

tow(750(d+ 1))

exp {n/tow(750(d+ 1))} ≤ exp

{
− n

tow(800(d+ 1))

}
. (27)

Since DΨ is all conditioned on the Hamming weight being in Ψ, by Fact 3.2 and (27), we have

‖DΨ − all‖
TV

=
∑

m/∈Ψ
2−n ·

(
n

m

)
≤ exp

{
− n

tow(800(d+ 1))

}
.

This implies that |m− n/2| ≥ n/tow(800(d+ 1)) for every m /∈ Ψ, since otherwise we have

exp

{
− n

tow(800(d+ 1))

}
≥ 2−n ·

(
n

n/2− n/tow(800(d+ 1))

)
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≥ 1√
8n
· 2n·(1−H(1/2−1/tow(800(d+1))) (by Fact 3.7)

≥ 1√
8n
· 2−4n/tow(800(d+1))2 > exp

{
− n

tow(800(d+ 1))

}
,

which is a contradiction. Therefore, we get an upper bound estimate:

E
X∼DΨ

[φ(X)] =
∑

m∈Ψ

(
m− n

2

)2
·

(
n
m

)

|supp (DΨ) |
(by the definition of DΨ)

=
2n

|supp (DΨ) |
·
(
∑

m

(
m− n

2

)2
·
(
n
m

)

2n
−
∑

m/∈Ψ

(
m− n

2

)2
·
(
n
m

)

2n

)

≤ 2n

|supp (DΨ) |
·
(
∑

m

(
m− n

2

)2
·
(
n
m

)

2n
− n2

tow(800(d+ 1))2

∑

m/∈Ψ

(
n
m

)

2n

)

=
1

1− ‖DΨ − all‖
TV

·
(
n

4
− n2

tow(800(d+ 1))2
· ‖DΨ − all‖

TV

)
.

Combining this with (26) and n ≥ tow(900(d+ 1)), we have

‖DΨ − all‖
TV
≤ ‖DΨ − all‖

TV

1− ‖DΨ − all‖
TV

≤ n2ε/4

n2/tow(800(d+ 1))2 − n/4
≤ ε · tow(850(d+ 1))/4,

which implies

‖f(Um)− all‖
TV
≤ ε+ ε · tow(850(d+ 1))/4 ≤ tow(850(d+ 1)) · ε

as desired.

The D ∈ {evens, odds} Case. We prove for the evens case and the other one is analogous. By
Lemma 4.22 and (25), we know that supp (f(Um)) ⊆ supp (evens). Let Γ ⊆ Ψ be the even numbers
in Ψ. Then both supp (f(Um)) and supp (DΓ) are subsets of supp (evens). We will use EX∼DΓ

[φ(X)]
as the intermediate.

By Fact 3.1, we have ‖f(Um)−DΓ‖TV ≤ ‖f(Um)−DΨ‖TV ≤ ε and hence the lower bound
calculation in (26) works for Γ as well:

E
X∼DΓ

[φ(X)] ≥ n

4
− n2

4
· ε.

Then similar to the D = all case, we have an analogous (27):

‖DΓ − evens‖
TV
≤ exp

{
− n

tow(800(d+ 1))

}
,

which, combined with Fact 3.2, implies

‖DΓ − evens‖
TV

=
∑

even m/∈Γ
2−n+1 ·

(
n

m

)
≤ exp

{
− n

tow(800(d+ 1))

}
.

An almost identical calculation using Fact 3.7 shows that |m− n/2| ≥ n/tow(800(d+1)) for every
even m /∈ Γ. Hence we have a similar upper bound estimate

E
X∼DΓ

[φ(X)] ≤ 1

1− ‖DΓ − evens‖
TV

·
(
n

4
− n2

tow(800(d+ 1))2
· ‖DΓ − evens‖

TV

)
,

which also implies the final bound by rearranging.
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A Density Comparison of Sum of Integral Random Variables

The goal of this section is to prove Theorem A.1, which generalizes Lemma 3.9.

Theorem A.1. Let t ≥ 1 be an integer, and let X1, . . . , Xn be independent random variables in
{0, 1, . . . , t}. Let Φ ⊆ {2, 3, . . . , t}. Define φ as the least common multiple of values in [t] \ Φ.

For each i ∈ [n] and integer r ≥ 1, define pr,i = maxx∈ZPr [Xi ≡ x (mod r)] and assume6

∑

i∈[n]
(1− pr,i) ≥ L > 0 holds for all r ∈ Φ. (28)

Let m =
⌊
L/(16t4φ)

⌋
and α =

(
L

4n(t+1)

)t2φ
. Then for any x ∈ Z and 0 ≤ κ1, κ2 ≤ α ·m/128,

Pr



∑

i∈[n]
Xi = x


− C ·Pr



∑

i∈[n]
Xi = x+∆


 ≤

√
32

α ·m · e
−2κ2

holds for any ∆ ∈ Z and C ∈ R satisfying

|∆| ≤ φ
√
κ1 · αm is a multiple of φ and C ≥ 2 · e12·(

√
κ1κ2+κ1).

The typical setting for Theorem A.1 is when we have small t and L = Θt(n); then α is also a
constant depending only on t.

Remark A.2. We emphasize that Theorem A.1 is qualitatively tight in various aspects.

6Note that if (28) holds for some r, then it also holds for r′ that is a multiple of r as Pr [Xi ≡ x (mod r′)] ≤
Pr [Xi ≡ x (mod r)]. Hence we may assume that Φ contains all the multiples of r (up to t) if r ∈ Φ.
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• The assumption of ∆ being a multiple of φ is necessary. If Xi’s have some joint congruence
relation which does not share with ∆, the bound can fail. Consider the case where n is
even and each Xi is uniform in {1, 3}, which violates (28) only for r = 2. Then we set
x = 2n and ∆ = 1. Since the sum is n plus twice an n-bit binomial distribution, we
have Pr [

∑
iXi = x] ≈ 1/

√
n but Pr [

∑
iXi = x+∆] = 0. Hence the final bound does

not hold unless κ2 is only constant, in which case we should use Littlewood-Offord-type
anticoncentration results (e.g. [Ush86, Theorem 3]).

• The assumption on κ1, κ2 is necessary. Consider the case where each Xi is an unbiased coin.

– If κ1 ≫ n, we can set x = n/2 and ∆ = n. Then Pr [
∑

iXi = x] ≈ 1/
√
n but

Pr [
∑

iXi = x+∆] = 0. Hence the final bound does not hold unless κ2 is constant,
in which case we should use standard anticoncentration results (e.g. [Ush86, Theorem
3]).

– If κ2 ≫ n, we can set x = n and ∆ = 1. Then Pr [
∑

iXi = x] = 2−n ≫ 2−κ2 but
Pr [

∑
iXi = x+∆] = 0. Hence the final bound simply cannot hold.

• The trade-off between C and the final bound is essentially optimal. Consider the case where
each Xi is an unbiased coin.

– If κ1 ≫ κ2, we set x = n/2 and ∆ =
√
κ1n. Then Pr [

∑
iXi = x] ≈ 1/

√
n and

Pr [
∑

iXi = x+∆] ≈ 2−κ1/
√
n, which means the final bound holds only if C ≫ 2κ1 .

– If κ2 ≫ κ1, we set x = n/2 +
√
κ2n −

√
κ1n and ∆ =

√
κ1n. Then Pr [

∑
iXi = x] ≈

2−κ2+
√
κ1κ2/

√
n and Pr [

∑
iXi = x+∆] ≈ 2−κ2/

√
n, which means the final bound holds

only if C ≫ 2
√
κ1κ2 .

We also note that the quantitative bound of α and m can be slightly improved by tightening our
analysis. Since it does not change our final bounds by much, we choose the cleaner presentation
here.

We will use the following standard concentration inequalities.

Fact A.3 (Hoeffding’s Inequality). Assume X1, . . . , Xn are independent random variables such that
a ≤ Xi ≤ b holds for all i ∈ [n]. Then for all δ ≥ 0, we have

max



Pr


 1

n

∑

i∈[n]
(Xi − E[Xi]) ≥ δ


 ,Pr


 1

n

∑

i∈[n]
(Xi − E[Xi]) ≤ −δ






 ≤ exp

{
− 2nδ2

(b− a)2

}
.

Fact A.4 (Chernoff’s Inequality). Assume X1, . . . , Xn are independent random variables such that
Xi ∈ [0, 1] holds for all i ∈ [n]. Let µ =

∑
i∈[n] E[Xi]. Then for all δ ∈ [0, 1], we have

Pr



∑

i∈[n]
Xi ≤ (1− δ)µ


 ≤ exp

{
−δ2µ

2

}
.

To prove Theorem A.1, we observe that intuitively
∑

i∈[n]Xi should converge to a (discrete)
Gaussian distribution with large variance. Then in this (discrete) Gaussian distribution,

• if x lies much outside the standard deviation regime around the mean, then itself has small
density already,
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• otherwise, its density, compared with the density of x+∆, is only off by a small multiplicative
factor, which means the above quantity is in fact negative given the presence of C.

We first prove a simpler case where each random variable always has a “neighboring” pair of
values in its support. Note that in this case we do not need to assume that the random variables
are bounded. Later we will reduce the case of Theorem A.1 to this setting.

Lemma A.5. Let Y1, . . . , Ym be independent integer random variables and let φ ≥ 1 be an integer.
Assume that α > 0 is a parameter such that for each i ∈ [m], there exists ui ∈ Z satisfying

Pr[Yi = ui] ≥ α and Pr[Yi = ui + φ] ≥ α.

Then for any y ∈ Z and 0 ≤ κ1, κ2 ≤ α ·m/128,

Pr



∑

i∈[m]

Yi = y


− C ·Pr



∑

i∈[m]

Yi = y +∆


 ≤

√
32

α ·m · e
−2κ2 (29)

holds for any ∆ ∈ Z and C ∈ R satisfying

|∆| ≤ φ
√
κ1 · αm is a multiple of φ and C ≥ 2 · e12·(

√
κ1κ2+κ1).

Proof. If ∆ < 0, then we work with negated Yi’s. Hence we assume ∆ ≥ 0. By subtracting ui from
Yi and y, we assume that each ui equals zero. Then we decompose each Yi = Wi ·Bi+(1−Wi) ·Zi,
where Bi is uniform over {0, φ}, Wi be an α-biased coin (i.e., Pr[Wi = 1] = α and Pr[Wi = 0] =
1− α), and Zi is some integer random variable. In addition, Wi, Bi, Zi are independent.

Now define E to be the event that
∑

i∈[m]Wi ≤ α ·m/2. Then by Fact A.4 with δ = 1/2 and
µ = α ·m, we have

Pr[E ] ≤ e−α·m/8. (30)

For fixed W = (W1, . . . ,Wm) that E does not happen, let S = {i ∈ [m] : Wi = 1} of size k = |S| ≥
α ·m/2. Then for any fixed Z = (Z1, . . . , Zm), the LHS of (29) equals

Pr

[
∑

i∈S
Bi = b

∣∣∣∣∣W,Z,¬E
]
− C ·Pr

[
∑

i∈S
Bi = b+∆

∣∣∣∣∣W,Z,¬E
]
,

where b = y−∑i/∈S Zi. Recall that each Bi is uniform over {0, φ}. If b is not a multiple of φ, then
the above quantity equals zero since ∆ is a multiple of φ. Otherwise, let b′ = b/φ and ∆′ = ∆/φ.

Then the above quantity equals 2−k ·
((

k
b′

)
− C ·

(
k

b′+∆′

))
. We will show that

(
k

b′

)
− C ·

(
k

b′ +∆′

)
≤ 2√

k
· 2k · e−2κ2 , (31)

which, combined with (30), establishes (29):

LHS of (29) ≤ Pr[E ] + E

[
1φ divides b · 2−k ·

((
k

b′

)
− C ·

(
k

b′ +∆′

)) ∣∣∣∣¬E
]

≤ e−α·m/8 + E

[
2√
k
· e−2κ2

∣∣∣∣¬E
]

(by (30) and (31))

≤ e−α·m/8 +

√
8

α ·m · e
−2κ2 (since k ≥ α ·m/2)
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≤
√

32

α ·m · e
−2κ2 (since κ2 ≤ α·m

128 )

= RHS of (29).

To prove (31), we first observe that our assumption on κ1, κ2 guarantees that κ1, κ2 ≤ k/64.
Then we divide into the following cases:

• If b′ ≤ 0, then LHS of (31) ≤ 1, which is smaller than the RHS of (31) due to κ2 ≤ k/64.

• If 1 ≤ b′ ≤ k/2−∆′/2, then
(
k
b′

)
≤
(

k
b′+∆′

)
and thus (31) holds due to C ≥ 1.

• If k/2−∆′/2 ≤ b′ ≤ k/2+
√
κ2 · k, then let δ1 = b/k and δ2 = (b+∆′)/k. Define x1 = 2δ1−1

and x2 = 2δ2 − 1. Then

−1

4
≤ −∆′

k
≤ x1 ≤ 2

√
κ2
k
≤ 1

4
and 0 ≤ x1 +

2∆′

k
= x2 ≤

3

4
, (32)

where we used the fact that 0 ≤ ∆′ ≤ √κ1 · αm ≤
√
2κ1 · k ≤ k/4 and

√
κ2 · k ≤ k/8. Hence

3
8 ≤ δ1 ≤ 5

8 ,
1
2 ≤ δ2 ≤ 7

8 , and

LHS of (31) ≤ 2k·H(δ1)

√
πk · δ1(1− δ1)

− C · 2k·H(δ2)

√
8k · δ2(1− δ2)

(by Fact 3.7)

≤ 2k·H(δ1)

√
πk · 15/64

− C · 2k·H(δ2)

√
8k · 1/4

(by (32))

≤ 2k·H(δ1)

√
πk · 15/64

·
(
1− C

2
· 2k·(H(δ2)−H(δ1))

)
. (33)

Since δ1 =
1+x1
2 and δ2 =

1+x2
2 , then by Fact 3.8, we have

H(δ2)−H(δ1) = −
1

2 ln(2)

+∞∑

n=1

x2n2 − x2n1
n · (2n− 1)

= −x22 − x21
2 ln(2)

+∞∑

n=1

n−1∑

i=0

x2i1 x
2(n−1−i)
2

n · (2n− 1)

= −2∆′ · (x1 +∆′/k)
k ln(2)

+∞∑

n=1

n−1∑

i=0

x2i1 x
2(n−1−i)
2

n · (2n− 1)
(since x2 = x1 + 2∆/k)

≥ −2∆′ · (2
√

κ2/k +∆′/k)

k ln(2)

+∞∑

n=1

n−1∑

i=0

(1/16)2i(3/4)2(n−1−i)

n · (2n− 1)
(by (32))

≥ −4∆′ · (2
√

κ2/k +∆′/k)

k ln(2)

≥ −4
√
2κ1 · (2

√
κ2 +

√
2κ1)

k ln(2)
(since ∆′ ≤

√
2κ1 · k)

≥ −12 · (√κ1κ2 + κ1)

k ln(2)
.

Putting this back to (33), we have

2k·(H(δ2)−H(δ1)) ≥ e−12·(√κ1κ2+κ1) ≥ 2/C,

which implies that the LHS of (31) is at most zero.
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• If b′ ≥ k/2 +
√
κ2 · k, then let x = 2

√
κ2/k. Since

√
κ2 · k ≤ k/8, we have 0 ≤ x ≤ 1/4 and

LHS of (31) ≤
(
k

b′

)
≤
(

k

(1 + x) · k/2

)
≤ 2k·H((1+x)/2)

√
πk · (1− x2)/4

(by Fact 3.7)

≤ 2√
k
· 2k·H((1+x)/2) ≤ 2√

k
· 2k · e−k·x2/2 (by Fact 3.8)

=
2√
k
· 2k · e−2κ2 .

We remark that it is possible to prove Lemma A.5 by a local limit theorem for unbiased coins,
removing the case analysis and explicit estimates on binomial coefficients. However, standard local
limit results (e.g., [Pet12, SW22]) have a uniform error term which will be scaled by C in the LHS
of (29), this makes the RHS of (29) dependent also on C. To avoid such a complication, we choose
to work on the binomials directly.

Now we prove Theorem A.1 by reducing it to Lemma A.5. To this end, we will divideX1, . . . , Xn

into many parts, and the sum within each part will have two neighboring values with noticeable
probability weights.

Proof of Theorem A.1. Denote Φ = {r1, r2, . . . , rk} where k = |Φ| ≤ t. For each rj , let Srj ⊆ [n]
be the set of Xi’s with 1− prj ,i ≥ L/(2n), i.e.,

Srj =
{
i ∈ [n] : 1− prj ,i ≥ L/(2n)

}
.

Since 0 ≤ 1− prj ,i ≤ 1 and by (28), we have

L ≤
∑

i∈[n]
(1− prj ,i) ≤

∣∣Srj

∣∣ · 1 +
(
n−

∣∣Srj

∣∣) · L
2n

,

which implies
∣∣Srj

∣∣ ≥ L/2. Now we remove multiple appearances of indices across Srj ’s to make
them pairwise disjoint. Formally, for each j = 1, 2, . . . , k, we keep n′ := ⌊L/(4t)⌋ elements in Srj

and update Srj′ ← Srj′ \Srj for all j
′ > j. Since k ≤ t and originally

∣∣Srj

∣∣ ≥ L/2, each Srj contains
enough number of elements when we keep only n′ of them.

For each j ∈ [k] and i ∈ Srj , by an averaging argument, there exists ci ∈ Zrj/Z such that
Pr [Xi ≡ ci (mod rj)] ≥ 1

rj
. Hence, by another averaging argument, there exists zi ∈ {0, 1, . . . , t}

such that zi ≡ ci (mod rj) and

Pr [Xi = zi] ≥
1

rj
· 1

⌈(t+ 1)/rj⌉
≥ 1

2(t+ 1)
≥ L

4n(t+ 1)
,

where we used the fact that 0 < L ≤ n. Since i ∈ Srj , we also have Pr [Xi ≡ ci (mod rj)] ≤
1 − L

2n and hence, by an averaging argument, there exists c′i ∈ Zrj/Z such that c′i 6= ci and

Pr [Xi ≡ c′i (mod rj)] ≥ L
2n·(rj−1) . Similarly by another averaging argument, there exists z′i ∈

{0, 1, . . . , t} such that z′i ≡ c′i (mod rj) and

Pr
[
Xi = z′i

]
≥ L

2n · (rj − 1)
· 1

⌈(t+ 1)/rj⌉
≥ L

4n(t+ 1)
.

Since both zi and z′i are in {0, 1, . . . , t}, by a final averaging argument, there exists zrj , z
′
rj such

that
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1. zrj , z
′
rj ∈ {0, 1, . . . , t} and zrj 6≡ z′rj (mod rj),

2. at least 1/
(
t+1
2

)
≥ 1/t2 fraction of i ∈ Srj satisfies Pr

[
Xi = zrj

]
,Pr

[
Xi = z′rj

]
≥ L

4n(t+1) .

Let n′′ =
⌈
n′/t2

⌉
=
⌈
|Srj |/t2

⌉
. Based on Item 1 and Item 2, for each j ∈ [k] we define Trj ⊆ Srj to

be of size n′′ and contain indices satisfy Item 2.
Recall that φ is the least common multiple of values in [t] \ Φ. Now we show that the sum of

tφ · k random variables (tφ from each one of Tr1 , . . . , Trk) is a random variable that satisfies the
conditions in Lemma A.5. Formally, let m = ⌊n′′/(tφ)⌋ and select m disjoint subsets T 1

rj , . . . , T
m
rj

of size tφ from each Trj . Define random variables

Yℓ =
∑

j∈[k]

∑

i∈T ℓ
rj

Xi for each ℓ ∈ [m]

and define
Y0 =

∑

i/∈
⋃

j∈[k],ℓ∈[m] T
ℓ
rj

Xi

to be the sum of the rest of Xi’s. We will show that for each ℓ ∈ [m], there exists uℓ ∈ Z such that

both Pr[Yℓ = uℓ] and Pr[Yℓ = uℓ + φ] are at least α =
(

L
4n(t+1)

)t2φ
. Then Theorem A.1 follows

from Lemma A.5 by conditioning on Y0 and observing m =
⌊⌈
⌊L/(4t)⌋ /t2

⌉
/(tφ)

⌋
≥
⌊
L/(16t4φ)

⌋
.

Fix an arbitrary ℓ ∈ [m] and define wj = zrj − z′rj for each j ∈ [k]. By Item 1, |wj | ≤ t and rj
does not divide it. Hence the greatest common divider g of |w1|, . . . , |wk| lies in [t] \Φ, which must
divide φ. Thus by Bézout’s identity (see e.g., [Wik23c]), there exist s1, . . . , sk ∈ Z such that

∑

j∈[k]
sj · wj = φ. (34)

In addition, we can assume that |sj | ≤ φ/g ·maxj∈[k] |wj |/g ≤ tφ [Bru12]. Now we define uℓ as

uℓ =
∑

j∈[k] : sj<0

zrj · tφ+
∑

j∈[k] : sj≥0

z′rj · tφ.

Then the probability of Yℓ = uℓ is at least the probability that every Xi ∈ T ℓ
rj equals zrj if sj < 0,

and every Xi ∈ T ℓ
rj equals z′rj if sj ≥ 0. Hence by Item 2 and the independence of Xi’s, we have

Pr [Yℓ = uℓ] ≥
(

L
4n(t+1)

)tφ·k
≥ α as desired. To analyze uℓ + φ, we rewrite it as

uℓ + 1 =
∑

j∈[k] : sj<0

(
zrj · tφ+ sj · wj

)
+

∑

j∈[k] : sj≥0

(
z′rj · tφ+ sj · wj

)
(by (34))

=
∑

j∈[k] : sj<0

(
z′rj · |sj |+ zrj · (tφ− |sj |)

)
+

∑

j∈[k] : sj≥0

(
zrj · |sj |+ z′rj · (tφ− |sj |)

)
.

(since wj = zrj − z′rj )

Hence the probability of Yℓ = uℓ + φ is at least the probability that |sj | (resp., tφ − |sj |) many
Xi ∈ T ℓ

rj equal z′rj (resp., zrj ) if sj < 0, and |sj | (resp., tφ − |sj |) many Xi ∈ T ℓ
rj equal zrj (resp.,

z′rj ) if sj ≥ 0. Therefore Pr [Yℓ = uℓ + φ] ≥ α follows again from Item 2 and the independence of
Xi’s.
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B Exposition for the Tail Regime

For completeness, we prove in this section the following version of Theorem 4.3, establishing a
large distance bound between f(Um) and every DΨ /∈ {zeros, ones, zerones} in the tail regime.
Note that Theorem 4.3 follows immediately from Lemma B.1. Recall that we define ι(Ψ) =
argmins∈Ψ |s− n/2|, breaking ties arbitrarily.

Lemma B.1. Let f : {0, 1}m → {0, 1}n be a d-local function. Assume n ≥ 22
8·(d+1)2

and

1. ι(Ψ) ≤ n/2d+2 or ι(Ψ) ≥ n− n/2d+2,

2. and Ψ ∩ {1, 2, . . . , n− 1} 6= ∅.

Then ‖f(Um)−DΨ‖TV > 1/2.

We remark that similar results were proved by [Vio20] and [FLRS23]. Here our argument is
analogous to the degree reduction approach presented in [Vio20] (see also [FLRS23, Section 1.1.1]).
It is possible to improve Lemma B.1 via the approach in [FLRS23] based on the robust sunflower
lemmas [Ros14, ALWZ21, BCW21, Rao19]. Since doing so does not improve the final Theorem 4.1,
we choose to proceed with simpler arguments.

Our proof iteratively finds maximal non-connected output bits and then fixes the input bits
that they depend on. If at some point we found many output bits that are not constantly zero or
one, then we prove a distance bound via arguments like [KOW24, Lemma 4.2]. Otherwise upon the
termination of the process, we fixed all the output bits which is a point distribution far from DΨ.
This is, in spirit, a graph elimination result like the ones that are used extensively in [KOW24].

The argument here is significantly simpler due to the fact that DΨ is far from the middle layers
and any non-constant output bit will deviate a lot from its expected marginal distribution. Indeed,
the marginals of DΨ are (ι(Ψ)/n)-biased, (1 − ι(Ψ)/n)-biased, or the mixture of the two. Since
|1/2− ι(Ψ)/n| ≥ 1/2−2−d−2, where 2−d−2 is much smaller than the granularity 2−d of each output
bit of a d-local function, we expect large distance error analogous to the cases in Subsection 2.1.

Now we present the formal proof.

Proof of Lemma B.1. For convenience, we set up some notation. For every function g : {0, 1}m →
{0, 1}n, we define Ag = {i ∈ [n] : Ig(i) = ∅} to be the set of constant output bits, where we recall
that Ig(i) is the set of input bits that the i-th output bit of g depends on. We also define Bg ⊆ [n]\Ag

to be an arbitrary maximal set of non-connected non-constant output bits, i.e., Ig(i) ∩ Ig(i
′) = ∅

for any distinct i, i′ ∈ Bg and each i ∈ Bg is not a constant output.
We will represent the iterative conditioning sketched above by a rooted tree T as follows:

• Each node of T is labeled by a function from {0, 1}m to {0, 1}n, where the root is f with
depth zero.

• For a node g ∈ T of depth k,

– if Bg = ∅ (i.e., g is a constant function), then we say g is a constant leaf,

– if |Bg| ≥ Ck where Ck is a parameter to be tuned later, then we say g is a highly
independent leaf,

– otherwise 1 ≤ |Bg| < Ck and define Tg =
⋃

i∈Bg
Ig(i) ⊆ [m]. Then g is an internal node

with 2|Tg | many child nodes labeled by gρ for all ρ ∈ {0, 1}Tg , where gρ is g after fixing
input bits in Tg by ρ.
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Since each Bg is maximal, Tg influences every output bit in [n] \ Ag. Thus the locality of gρ
is at least decreased by one from g. This means each node at depth k is (d − k)-local and T has
depth at most d. Later we will prove the following claim, which establishes distance bounds for
every node in T .
Claim B.2. Assume n ≥ exp

{
Ck · 4k

}
holds for all k ∈ {0, 1, . . . , d}. If Ck+1 ≥ Ck · 8d−k+1 for all

k ∈ {0, 1, . . . , d− 1}, then for any node g ∈ T of depth k, we have

‖g(Um)−DΨ‖TV ≥ 1− 3 · exp
{
−Ck · 4−(d−k)

8

}
. (35)

We now complete the proof of Lemma B.1 assuming Claim B.2. Set each Ck = 2 · 8(k+1)·(d+1).

Since we additionally assumed n ≥ 22
8·(d+1)2

in Lemma B.1, the conditions in Claim B.2 are satis-
fied. Then by Claim B.2 with k = 0, we have

‖f(Um)−DΨ‖TV ≥ 1− 3 · e−2d+1
> 1/2

as desired.

Proof of Claim B.2. We proceed by induction on T in a bottom-up fashion.

Constant Leaves. We first analyze the base case where g is a constant leaf of depth k. Since
DΨ is the uniform distribution over its support, the distance of DΨ to g(Um), a point distribution,
is at least 1− 1/n by Item 2, which verifies (35) assuming n ≥ exp

{
Ck · 4k

}
.

Highly Independent Leaves. Now we turn to the other base case where g is a highly inde-
pendent leaf of depth k, i.e., g has s ≥ Ck many non-connected non-constant output bits, which
we assume without loss of generality is [s]. For each i ∈ [n], let Xi denotes the i-th output bit of
g. By the definition of Bg, random variables X1, . . . , Xs are not constantly zero or one. Since g is
(d− k)-local, we know 2−(d−k) ≤ E[Xi] ≤ 1− 2−(d−k) for each i ∈ [s], which implies that

min




∑

i∈[s]
E[Xi],

∑

i∈[s]
(1− E[Xi])



 ≥ 2−(d−k) · s. (36)

For Y = (Y1, . . . , Yn) ∈ {0, 1}n, define E(Y ) to be the event that 2−(d−k)/2 ≤ 1
s

∑
i∈[s] Yi ≤

1−2−(d−k)/2. Since X1, . . . , Xs are independent due to the non-connectivity, by Fact A.4 and (36),
we have

Pr[E(g(Um))] = 1−Pr


1
s

∑

i∈[s]
Xi < 2−(d−k)/2


−Pr


1
s

∑

i∈[s]
(1−Xi) < 2−(d−k)/2




≥ 1− 2 · exp
{
−s · 2−(d−k)

8

}
. (37)

On the other hand, for any 0 ≤ s ≤ n/2d+2 and Z = (Z1, . . . , Zn) ∼ D{s} = Ds (i.e., a uniformly
random string of Hamming weight s), we have

Pr[E(Z)] ≤ Pr


1
s

∑

i∈[s]
Zi ≥ 2−(d−k)/2


 ≤ Pr


1
s

∑

i∈[s]

(
Zi −

s

n

)
≥ 2−(d−k)/4




(since E[Zi] = s/n ≤ 2−d−2 ≤ 2−(d−k)/4)
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≤ exp

{
−s · 4−(d−k)

8

}
, (38)

where for the last inequality we used Fact A.3 and the fact that Fact A.3 holds for draw-without-
replacement experiments as well (see e.g., [Hoe94, BLM13]). Similarly, for any n−n/2d+2 ≤ s ≤ n
and Z ′ = (Z ′

1, . . . , Z
′
n) ∼ Ds, we have

Pr[E(Z ′)] ≤ Pr


1
s

∑

i∈[s]

(
Z ′
i −

s

n

)
≤ −2−(d−k)/4


 ≤ exp

{
−s · 4−(d−k)

8

}
. (39)

By Item 1, DΨ is the mixture of Ds for s ≤ n/2d+2 or s ≥ n − n/2d+2. Hence, combining (38)
and (39), we have Pr[E(DΨ)] ≤ exp

{
−s · 4−(d−k)/8

}
. Then by (37) and Fact 3.1, since s ≥ Ck, we

obtain

‖g(Um)−DΨ‖TV ≥ 1− 3 · exp
{
−Ck · 4−(d−k)

8

}
,

which verifies (35).

Internal Nodes. Finally we proceed to the inductive case where g is an internal node of depth
k. Since |Bg| ≤ Ck and g is (d− k)-local, we know that |Tg| ≤ (d− k) · |Bg| ≤ (d− k) · Ck. Hence
g(Um) is the convex combination of 2|Tg | ≤ 2(d−k)·Ck many gρ(Um)’s of depth k + 1, which, by
induction hypothesis, satisfies

‖gρ(Um)−DΨ‖TV ≥ 1− 3 · exp
{
−Ck+1 · 4−(d−k−1)

8

}
.

Then by Lemma 3.3, we verify (35) as follows:

‖g(Um)−DΨ‖TV ≥ 1−
(
1 + 2(d−k)·Ck

)
· 3 · exp

{
−Ck+1 · 4−(d−k−1)

8

}

≥ 1− 3 · exp
{
−Ck+1 · 4−(d−k)

2
+ 2 · (d− k) · Ck

}

≥ 1− 3 · exp
{
−Ck · 4−(d−k)

8

}
,

where we used the assumption that Ck+1 ≥ Ck · 8d−k+1.

C Missing Proofs in Section 4

Here, we put omitted proofs from Section 4. We will require the following bounds on the sum of
binomial coefficients.

Fact C.1 (See e.g., [Wik23b, Lug17]). For 1 ≤ k ≤ n/2, we have

k∑

i=0

(
n

i

)
≤ min

{
2n·H(k/n),

(
n

k

)
· n− k + 1

n− 2k + 1

}
.
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Proof of Lemma 4.7

Proof of Lemma 4.7. The proof is similar to the proof of Lemma 3.3. Let T ⊆ [ℓ] be the set of
distributions such that ‖Pi −Q‖TV ≥ 1 − η1. By Fact 3.1, for each i ∈ T there exists an event Ei
such that Pi(Ei)−Q(Ei) ≥ 1− η1. This means

Pi(Ei) ≥ 1− η1 and Q(Ei) ≤ η1 for i ∈ T . (40)

Define the function f to be the indicator function of the event
∨

i∈T Ei, i.e., f(x) = 1 if some Ei
happens on sample x; and f(x) = 0 if otherwise.

By subtracting φ by a, we assume a = 0 and b > 0. By multiplying φ and η2 by 1/b, we
assume a = 0 and b = 1, i.e., φ ranges in [0, 1]. Define function g = max {f, 1− φ}, which ranges
in [0, 1]. We remark that g becomes the indicator function of (¬E) ∨∨i∈T Ei if φ is the indicator
function of an event E as in Lemma 3.3. Let P =

∑
i∈[ℓ] αi · Pi be the convex combination and let

η′ = EX∼Q [φ(X)]. Then
0 ≤ E

X∼Pi

[φ(X)] ≤ η′ − η2 for i /∈ T . (41)

Hence

E
X∼P

[g(X)] =
∑

i∈T
αi · E

X∼Pi

[g(X)] +
∑

i/∈T
αi · E

X∼Pi

[g(X)]

≥
∑

i∈T
αi · E

X∼Pi

[f(X)] +
∑

i/∈T
αi · E

X∼Pi

[1− φ(X)] (by the definition of g)

≥
∑

i∈T
αi · Pi(Ei) +

∑

i/∈T
αi · E

X∼Pi

[1− φ(X)] (by the definition of f)

≥ (1− η1) ·
∑

i∈T
αi + (1− (η′ − η2)) ·

∑

i/∈T
αi (by (40) and (41))

≥ 1 + η2 − η′ − η1. (by (41) and since
∑

i∈[ℓ] αi = 1 and each αi ≥ 0)

We also have

E
X∼Q

[g(X)] ≤ E
X∼Q

[f(X) + 1− φ(X)] (since both f and 1− φ are non-negative)

≤ 1− E
X∼Q

[φ(X)] +
∑

i∈T
Q(Ei) (by the definition of f)

≤ 1− η′ + ℓ · η1. (by (40))

Hence

η2 − (ℓ+ 1) · η1 ≤ E
X∼P

[g(X)]− E
X∼Q

[g(X)] =
∑

x

g(x) · (P(x)−Q(x))

≤
∑

x : P(x)≥Q(x)

g(x) · (P(x)−Q(x))

≤
∑

x : P(x)≥Q(x)

(P(x)−Q(x)) (since g(x) ∈ [0, 1])

= ‖P −Q‖
TV

(by Fact 3.1)

as desired.
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Proof of Claim 4.10

Proof of Claim 4.10. Since Ψ is in the central regime, by definition n/2d+2 ≤ ι(Ψ) ≤ n − n/2d+2.
Hence ι(Ψ) ∈ Ψ by construction. By Fact C.1, we have

A :=
∑

s∈Ψ: s<n/2d+3 or s>n−n/2d+3

(
n

s

)
≤ 2 ·

∑

0≤s<n/2d+3

(
n

s

)
≤ 2 · 2n·H(1/2d+3). (42)

Then by Fact 3.7, we have

B :=

(
n

ι(Ψ)

)
≥
(

n

n/2d+2

)
≥ 2n·H(1/2d+2)

√
8n/2d+2

. (43)

Since DΨ is simply DΨ conditioned on the Hamming weight being at least n/2d+3 and at most
n− n/2d+3. By Fact 3.2, we have

∥∥DΨ −DΨ

∥∥
TV

= Pr
X∼DΨ

[
|X| < n/2d+3 or |X| > n− n/2d+3

]

=
A

|supp (DΨ) |
≤ A

A+B
≤ A

B
(by the definition of DΨ)

≤ 2
√
8n/2d+2 · 2−n·(H(1/2d+2)−H(1/2d+3)). (by (42) and (43))

By Fact 3.8, we have

H(1/2d+2)−H(1/2d+3) =
1

2 ln(2)

∑

m≥1

(
−1 + 2−(d+2)

)2m −
(
−1 + 2−(d+1)

)2m

m · (2m− 1)

≥
(
1− 2−(d+2)

)2 −
(
1− 2−(d+1)

)2

2 ln(2)
≥ 2−(d+3)

ln(2)
.

Hence

∥∥DΨ −DΨ

∥∥
TV
≤ 8
√
n · 2−(d+3) · exp

{
−n · 2−(d+3)

}
≤ 8 · exp

{
−n · 2−(d+4)

}
,

where we used
√
x ≤ ex/2 for the last inequality.

Proof of Lemma 4.13

Proof of Lemma 4.13. The proof follows closely with the proofs of [KOW24, Lemmas 5.15 & 5.22].
By rearranging indices, we assume without loss of generality thatN(1), . . . , N(r′) are non-connected
Type-2 neighborhoods of sizes 1 ≤ s1, . . . , sr′ ≤ t. Sample Z ∼ Um and set X = (X1, . . . , Xn) =
g(Z). Define

K =
∑

i/∈N(1)∪···∪N(r′)

Xi and ∆j =
∑

i∈N(j)

Xi for each j ∈ [r′].

Then |X| = K +
∑

j∈[r′]∆j .

Let R = [m] \ (I(1) ∪ · · · ∪ I(r′)) be the set of input bits that do not affect the first r′ output
bits. Define ρ ∈ {0, 1}R as the entries of Z in R. For each ρ, we define λρ = 2−|R|, Xρ being
K conditioned on ρ, and Xρ,j being ∆j conditioned on ρ. Then Item 1 trivially holds. Now we
verify Item 2: first observe that for every i /∈ N(1)∪ · · · ∪N(r′), Xi depends on I(i) ⊆ [m] which is
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contained in R and fixed by ρ. HenceXρ is indeed a fixed integer. In addition, since N(1), . . . , N(r′)
are non-connected neighborhoods, ∆1, . . . ,∆r′ depend on disjoint subsets of [m]. Since ρ simply
fixes some input bits in [m], they remain independent conditioned on ρ, which means Xρ,1, . . . , Xρ,r′

are independent. Finally, each Xρ,j is an integer ranging between 0 and |N(j)|, where the latter is
at most t by our assumption.

To prove Item 3, for each ρ, j and q ≥ 3, we define

pρ,q,j = max
x∈Z

Pr [Xρ,j ≡ x (mod q)] = max
x∈Z

Pr [∆j ≡ x (mod q) | ρ] .

By a similar argument to [KOW24, Claim 5.16], we obtain the following claim.

Claim C.2. Eρ[(pρ,q,j)
2] ≤ 1− 2−7t−d+2 holds for any j ∈ [r′] and q ≥ 3.

Proof. We only highlight the difference from the proof of [KOW24, Claim 5.16]. Since N(j) is Type-
2, by definition, Pg|N(j) is ε-close to the γ-biased distribution where γ = s/n for some n/2d+3 ≤
s ≤ n− n/2d+3. Hence 2−(d+3) ≤ γ ≤ 1− 2−(d+3).

Then we apply Lemma 3.4 with γ and modulus q = min {q, t+ 1} here. Let γ∗ = min {γ, 1− γ}.
Since 2−(d+3) ≤ γ∗ ≤ 1/2 and 2 ≤ q ≤ t+ 1, we have

γ∗

4q
· 2−50γ∗(t−1)/q2 ≥ 2−(d+3)

4(t+ 1)
· 2−7(t−1) =

2−7t−d+2

t+ 1
≥ 2−7t−d+1 ≥ ε,

which implies Eρ[(pρ,q,j)
2] ≤ 1− 2−7t−d+2 by Lemma 3.4.

Given Claim C.2, we have Eρ[1− pρ,q,j ] ≥ 2−7t−d+1. Since pρ,q,j ’s are independent over random
ρ for fixed q, by Fact A.4 we have

Pr



∑

j∈[r′]
(1− pρ,q,j) ≤ 2−7t−d · r′


 ≤ exp

{
−2−7t−d−2 · r′

}
.

Recall that we say ρ is bad if for some q ≥ 3 the above event happens. By Item 2, we can
additionally assume q ≤ t+ 1 since pρ,q,j = pρ,t+1,j for all q ≥ t+ 1. By the union bound, we have

Pr [ρ is bad] ≤ t · exp
{
−2−7t−d−2 · r′

}

as stated in Item 3.

Proof of Claim 4.15

Proof of Claim 4.15. We first handle the case γ + ξ ≤ 1. Then (8) and (9) become γ ≤ 1− δ′ and

ξ ≤ 1− δ′. Hence γ2+ξ2

γ+ξ ≤ max {γ, ξ} ≤ 1− δ′ as desired.
Now we assume γ + ξ > 1. Then the constraints are

0 ≤ γ, ξ ≤ 1, 1 < γ + ξ ≤ 2 · (1− δ′), ξ ≥ δ′ · γ
1− δ′

, γ ≥ δ′ · ξ
1− δ′

.

By symmetry, assume without loss of generality γ ≤ ξ. Observe that if ξ < 1 and γ+ξ < 2 ·(1−δ′),
then we can increase γ, ξ by a small multiple that still satisfies the constraints but increases the
optimization objective. Hence we safely assume that either ξ = 1 or γ + ξ = 2 · (1− δ′).
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• If ξ = 1, then γ+ ξ ≤ 2 · (1− δ′) implies γ ≤ 1− 2δ′ and γ ≥ δ′·ξ
1−δ′ implies γ ≥ δ′

1−δ′ . Then the
objective is

γ2 + ξ2

γ + ξ
=

γ2 + 1

γ + 1
= γ + 1 +

2

γ + 1
− 2 ≤ 1− 2δ′ + 2δ′2

1− δ′

≤ 1− δ′/2. (since δ′ ≤ 1/3)

• If γ+ ξ = 2 · (1− δ′), then ξ ≤ 1 implies γ ≥ 1− 2δ′. In addition, γ ≤ 1− δ′ since we assumed
γ ≤ ξ. Then the objective is

γ2 + ξ2

γ + ξ
=

4 · (1− δ′)2 − 2γ(2− 2δ′ − γ)

2 · (1− δ′)
=

γ2

1− δ′
− 2γ + 2 · (1− δ′)

≤ (1− 2δ′)2

1− δ′
− 2 · (1− 2δ′) + 2 · (1− δ′) =

1− 2δ′ + 2δ′2

1− δ′

≤ 1− δ′/2

as well.

Proof of Claim 4.17

We first prove the following estimate on wt≤m.

Lemma C.3. For all m ∈ {0, 1, . . . , n}, we have wt≤m = wt≥n−m. Assume n ≥ 35 and m =
(n− c)/2 for some 0 ≤ c ≤ n. Then

2−17 · 4−c2/n ≤ wt≤m ≤ wtm ·
n+ 1

c+ 1
.

Proof. The first equality relation follows from the definition of wt≤m and wt≥n−m. For the upper
bound, we first note that the bound trivially holds for m = 0 (i.e., c = n). Hence we assume m ≥ 1
and observe that

wt≤m = 2−n+1
∑

i≥0

(
n

m− 2i

)
≤ 2−n+1

∑

i≤m

(
n

i

)
≤ 2−n+1 ·

(
n

m

)
· n−m+ 1

n− 2m+ 1
(by Fact C.1)

= wtm ·
n−m+ 1

n− 2m+ 1
≤ wtm ·

n+ 1

n− 2m+ 1
= wtm ·

n+ 1

c+ 1
. (since m = (n− c)/2)

For the lower bound, we first observe that, if 0 ≤ c ≤ n − 10, we have 5 ≤ m ≤ n/2 and thus
m− 2 ⌊√m⌋ ≥ 1 and m− 2

√
m ≥ 0. Then

wt≤m ≥ 2−n+1

⌊√m⌋∑

i≥0

(
n

m− 2i

)
≥ 2−n+1 · √m ·

(
n

m− 2 ⌊√m⌋

)

≥ 2−n+1 · √m · 2
n·H

(

m−2
√
m

n

)

√
8m

(by Fact 3.7 and 1 ≤ m− 2 ⌊√m⌋ ≤ n/2,m− 2
√
m ≥ 0)

=
2−n

√
2
· 2n·H

(

1−(c+4
√
m)/n

2

)

(since m = (n− c)/2)

≥ 1√
2
· 2−(c+4

√
m)2/n (by Fact 3.8)
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≥ 1√
2
· 2−

(

c+4
√

n/2
)2

/n
(since m ≤ n/2 and c ≥ 0)

≥ 2−17 · 4−c2/n. (since (a+ b)2 ≤ 2a2 + 2b2)

Now if n− 10 < c ≤ n, then wt≤m ≥ wt0 = 2−n+1. On the other hand, c2 ≥ n2/2 as n ≥ 35. Hence

the bound 2−17 · 4−c2/n ≤ 2−17 · 2−n ≤ wt≤m also holds.

Now we prove Claim 4.17.

Proof of Claim 4.17. We first show that

mL ≤ n/2−
√
n log(1/(δ1γ))/8. (44)

Since γ ≤ 1 − δ2 from (11), this implies that mL ≤ n/2 − √n as δ1γ ≤ δ1(1 − δ2) ≤ 2−100. Let

M =
⌊
n/2−

√
n log(1/(δ1γ))/8

⌋
and let m∗ ∈ {M,M − 1} be the largest even number at most

M . It is equivalent to show wt≤m∗ ≥ δ1γ/4. Define c = n− 2m∗ and observe that

0 ≤
√
n log(1/(δ1γ))/4 ≤ c ≤ 4 +

√
n log(1/(δ1γ))/4 ≤

√
n log(1/(δ1γ))/3 ≤ n

since δ1γ > 2−n+1 and n ≥ 210. Hence by Lemma C.3, we have

wt≤m∗ ≥ 2−17 · 4−c2/n ≥ 2−17 · (δ1γ)2/3 ≥ δ1γ/4

since δ1γ ≤ δ1(1− δ2) ≤ 2−100. Therefore for any mL ≤ m ≤ n/2, we have

wtm ≥ wtmL
≥ n− 2 ·mL + 1

n+ 1
· wt≤mL

(by Lemma C.3)

≥ n− 2 ·mL + 1

n+ 1
· δ1γ

4
≥
√
n log(1/(δ1γ))/4

n
· δ1γ

4
(by the definition of mL and (44))

=
δ1γ
√
log(1/(δ1γ))

16
√
n

.

The bound on mR and the case n/2 ≤ m ≤ mR can be proved in an analogous way.
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