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Abstract

We characterize the power of constant-depth Boolean circuits in generating uniform sym-
metric distributions. Let f : {0, 1}m → {0, 1}n be a Boolean function where each output bit of
f depends only on O(1) input bits. Assume the output distribution of f on uniform input bits is
close to a uniform distribution D with a symmetric support. We show that D is essentially one
of the following six possibilities: (1) point distribution on 0n, (2) point distribution on 1n, (3)
uniform over {0n, 1n}, (4) uniform over strings with even Hamming weights, (5) uniform over
strings with odd Hamming weights, and (6) uniform over all strings. This confirms a conjecture
of Filmus, Leigh, Riazanov, and Sokolov (RANDOM 2023).

1 Introduction

Despite being one of the simplest models of computation, NC0 circuits (i.e., Boolean circuits of
constant depth and bounded fan-in) elude a comprehensive understanding. Even very recently, the
model has been the subject of active research on the range avoidance problem [RSW22, GLW22,
GGNS23], quantum advantages [BGK18, WKST19, BGKT20, WP23, KOW24], proof verification
[GGH+07, BDK+13, KLMS16], and more.

Pertinent to this paper is the study of the sampling power of NC0 circuits. While the general
problem was considered at least as early as [JVV86], interest in the NC0 setting has seen a strong
uptick lately [Vio12b, LV11, BIL12, DW12, Vio16, Vio20, GW20, CGZ22, Vio23, FLRS23, KOW24,
SS24]. At a high level, it considers what distributions can be (approximately) produced by simple
functions on random inputs. More formally, let f(Um) denote the distribution resulting from
applying an NC0 function f : {0, 1}m → {0, 1}n to a random string drawn from Um, the uniform
distribution over {0, 1}m. Typically, m is viewed as being arbitrarily large and n is the parameter
of interest. Then the goal is to analyze the distance between f(Um) and some specific distribution.
Aside from being inherently interesting, this question has played a crucial role in applications
ranging from data structure lower bounds [Vio12b, LV11, BIL12, Vio20, CGZ22, Vio23, KOW24] to
pseudorandom generators [Vio12a, LV11, BIL12] to extractors [Vio12c, DW12, Vio14, CZ16, CS16]
to coding theory [SS24].

One recurring class of distributions in this line of work is uniform symmetric distributions (i.e.,
uniform distributions over a symmetric support). Indeed, these are precisely the distributions that
arise in an elegant connection to succinct data structures (see [Vio12b, Claim 1.8]), for example.
Moreover, this seemingly simple class is already rich enough to allow surprisingly powerful results.
For instance, NC0 circuits can sample the uniform distribution over the preimage PARITY−1(0)
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(and PARITY−1(1)), despite a celebrated result of H̊astad [H̊as86] proving that more powerful AC0

circuits require an exponential number of gates to compute PARITY. Perhaps more surprisingly,
the strategy to sample a uniform random string with even Hamming weight is extremely simple:
map the uniform random bits x1, . . . , xn to x1 ⊕ x2, x2 ⊕ x3, . . . , xn ⊕ x1 [Bab87, BL87].

A number of notable prior results already rule out specific distributions from being accurately
sampled by NC0 circuits. For example, let D{k} denote the uniform distribution over all n-bit strings
of Hamming weight k. The influential early paper of [Vio12b] showed that such shallow circuits
could not accurately sample D{k} for k = Θ(n) under certain assumptions about the input length
or accuracy tolerance; recent works [FLRS23, Vio23, KOW24] have eliminated the need for these
assumptions. Additionally, a number of results are known for uniform symmetric distributions
over multiple Hamming weights, such as the case of exclusively tail weights [FLRS23], all weights
divisible by q for fixed 3 ≤ q ≪

√
n [KOW24], and all weights above n/2 [GGH+07, Vio12b,

FLRS23] (see also [WP23]).
Despite much effort, the previous body of work proceeds in a somewhat ad-hoc fashion, with

techniques tailored to rule out specific cases. However, an exciting recent work by Filmus, Leigh,
Riazanov, and Sokolov [FLRS23] gave the following bold conjecture about the capabilities of NC0

circuits for sampling distributions, unifying prior results.

Conjecture 1.1 ([FLRS23, Conjecture 1.1]). For every d ∈ N, ε ∈ (0, 1), and large enough n, if
f : {0, 1}m → {0, 1}n is computable by an NC0 circuit of depth at most d and f(Um) is ε-close (in
total variation distance) to a uniform symmetric distribution, then f(Um) is O(ε)-close to one of
the following six distributions:

• Point distribution on 0n.

• Point distribution on 1n.

• Uniform distribution over {0n, 1n}.
• Uniform distribution over strings with even Hamming weights.

• Uniform distribution over strings with odd Hamming weights.

• Uniform distribution over all strings.

All six distributions can be sampled (exactly) by functions whose output bits each depend on
at most two input bits. Hence one may informally view the conjecture as asserting that more
input dependencies do not substantially increase the ability of NC0 circuits to generate uniform
symmetric distributions.

In this work, we confirm the conjecture of [FLRS23].

Theorem 1.2 (Consequence of Theorem 4.1). Conjecture 1.1 is true.

We emphasize that the implicit constant in the distance O(ε) in our result has no dependence on
the depth d. Additionally, note that this result is optimal up to that implicit constant. We include
a more thorough discussion of our result’s tightness in Section 4, where we present a quantitative
version of Theorem 1.2 parametrized by the locality (i.e., number of input bits each output bit
depends on) of f . The following corollary is immediate.

Corollary 1.3. For sufficiently large n, the only uniform symmetric distributions over {0, 1}n
exactly sampleable by NC0 functions are the six distributions in Conjecture 1.1.

As a contrasting example to the limitation given by Theorem 1.2, consider the next simplest
class of circuits commonly studied: AC0. Up to some exponentially small error, they are able to
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sample the uniform distribution over permutations of [n] [MV91, Hag91]. Thus by sampling 1w0n−w

for the appropriate distribution over weights w accepted (or rejected) by a symmetric function f ,
one can apply a randomly sampled permutation to output the uniform distribution over f−1(1) (or
f−1(0)) [Vio12b, Lemma 4.3].

Paper Organization. We provide a proof overview of Theorem 1.2 in Section 2. Preliminary
definitions and results are given in Section 3. The full proof of our main result is in Section 4, with
some technical proofs deferred to Section 5 and Appendix A.

2 Proof Overview

Our starting point is similar to many past works [Vio12b, Vio20, FLRS23, Vio23, KOW24]: we
reduce an arbitrary function (computable by an NC0 circuit) to a collection of structured func-
tions which are more amenable to analysis. Our results then follow by lifting insights from these
structured functions to our original function.

It will be convenient to work with the abstraction of locality. We say a function f : {0, 1}m →
{0, 1}n is d-local if every output bit depends on at most d input bits. Observe that the class of
d-local functions captures functions computable by Boolean circuits of depth O(log d) and bounded
fan-in. In particular, constant locality functions are equivalent to those computable by NC0 circuits.
Henceforth, let f : {0, 1}m → {0, 1}n be a d-local function. For simplicity, we hide minor factors in
the following discussion.

2.1 A Structured Decomposition

We will use the “graph elimination” reduction strategy of [KOW24], rephrased slightly more natu-
rally in the language of hypergraphs. Let G be the hypergraph on the output bits [n] with an edge
for each input bit connecting all of the output bits that depend on it. By assumption, each vertex
is contained in at most d edges (i.e. G has maximum degree d). Using standard hypergraph termi-
nology, we define the neighborhood of a vertex v to be the set of all vertices sharing an edge with v.
Furthermore, we call two neighborhoods N1, N2 connected if there exist vertices v1 ∈ N1, v2 ∈ N2

contained in the same edge.
By [KOW24, Proposition 5.20], there exists a set of o(n) edges whose deletion results in a

graph with Ωd(n) non-connected neighborhoods of size Od(1). In other words, there always exists
a choice of a few input bits whose conditioning upon decomposes f into a mixture of subfunctions
with substantially independent output bits.

This independence is crucial in ruling out the sampleability of various distributions by these
structured subfunctions. For example, [KOW24] used the following win-win argument to prove
strong bounds on the distance between any distribution sampleable by a local function and the
uniform distribution over n-bit strings of Hamming weight k = Θ(n), denoted D{k}. If the marginal
distributions of most independent neighborhoods noticeably differ from the corresponding marginals
of D{k}, then the errors can be combined together via a straightforward concentration bound
argument [KOW24, Lemma 4.2].

Otherwise, the marginal distributions of most independent neighborhoods N(v1), . . . , N(vr)
closely match the marginals of D{k}. Hence by conditioning on all the input bits that do not affect
the output bits v1, . . . , vr, the weight of the output becomes a sum of well-behaved independent
integer random variables. From this property, one can show ([KOW24, Claims 5.16 & 5.23]) that
with high probability many of these random variables are not constant (or even constant modulo
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q for q ≥ 3), in which case anticoncentration inequalities (e.g., [Ush86, Theorem 3] or [KOW24,
Lemma 3.7]) imply no specific output weight can be obtained with good probability. Hence the
subfunctions cannot accurately sample D{k}, so (by a union bound argument) neither can their
mixture.

Note that the distribution D{k} is a special kind of uniform symmetric distribution (i.e., uniform
distribution over a symmetric support). In this work, we need to handle more general ones; however,
many of the same ideas will drive our analysis.

2.2 Classification of Locally Sampleable Uniform Symmetric Distributions

Now we show how to handle a general uniform symmetric distribution and obtain our classification
result. For convenience, we use a non-empty set Ψ ⊆ {0, 1, . . . , n} to denote the acceptable Ham-
ming weights and use DΨ to denote the uniform distribution over strings of Hamming weights in
Ψ. Then our goal is to show that local functions cannot approximate DΨ unless Ψ is {0} (the point
distribution on 0n), {n} (the point distribution on 1n), {0, n} (uniform over {0n, 1n}), {0, 2, 4, . . .}
(uniform over strings with even parity), {1, 3, 5, . . .} (uniform over strings with odd parity), or
{0, 1, . . . , n} (uniform over all strings). We will often refer to the corresponding DΨ as the six
special distributions.

Let s ∈ Ψ be an element closest to the middle weight n/2. Note the majority of the mass of
DΨ is supported on strings roughly as close to n/2 as s is. Informally, we view DΨ as either D{s}
(uniform over the Hamming slice of weight s) or 1

2D{s} + 1
2D{n−s} (uniform over the Hamming

slices of weight s and n− s). Then the above six locally sampleable distributions can be classified
by s: either it is the endpoint (i.e., s equals 0 or n) or it is the middle point (i.e., s roughly equals
n/2). Our proof follows this intuition. If |s − n/2| > n2/3, we will show that it must be the case
of s ∈ {0, n}. Otherwise |s − n/2| ≤ n2/3, and we will show that it must be the case that Ψ is
effectively all-even, all-odd, or everything.

The |s − n/2| > n2/3 Case. This far in the tails the binomial distribution decays rapidly, so
it is not difficult to show (Claim 4.5) that half the mass of DΨ is supported on O(n1/3) different
weights. However, [FLRS23, Theorem 1.2] and [KOW24, Theorem 5.10] show that any distribu-
tion D{k} other than k = 0 or n has total variation distance 1 − Od(n

−1/2) from any d-locally
sampleable uniform symmetric distribution. Therefore, by a union bound argument (Lemma 3.3),
∥f(Um)−DΨ∥TV > 1/3 unless Ψ is one of {0}, {n}, {0, n}. We now turn to the more challenging
case.

The |s − n/2| ≤ n2/3 Case. In this case we note that DΨ is reasonably close to the uniform
distribution. (In particular, its restriction to any constant number of output bits will be quite
close.) Thus, the framework explained in Subsection 2.1 is now applicable. That is, we remove a
modest number of edges from the corresponding hypergraph to obtain one with Ωd(n) many non-
adjacent neighborhoods of size Od(1). This means that after conditioning on the removed inputs,
we will have many sets of output bits that are independent of each other.

From here we again split into cases. If many of these neighborhoods are far from uniform,
our distribution must be far from the uniform-ish DΨ. This part of the mixture will contribute
nearly equally to the distance from DΨ and from the closest special distribution. Otherwise, we
have many roughly unbiased neighborhoods N(v1), . . . , N(vr). As sketched in Subsection 2.1, if we
further condition on all the inputs that do not affect vr, . . . , vr, then the total weight of the output
becomes a sum of independent random variables. Using the fact that the overall distribution on
these neighborhoods is uniform, we can show that with high probability many of these random
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variables are not constant, and in fact for each q > 2, many are not constant modulo q. This allows
us to show (Proposition 4.9) that our distribution over weights must be continuous. In particular,
the probability that we have weight x and the probability that we have weight x+∆ for even ∆ ∈ Z
must differ by at most Od(|∆|/n) (Theorem 5.10). This implies that if f(Um) is close to DΨ, then
Ψ cannot have many instances where it contains x but not x+∆ or vice versa. By pairing up the
present x’s with missing ones, we attempt to show that the distance between f(Um) with DΨ is
comparable to the distance between DΨ and the nearest special distribution.

Unfortunately, there are two issues with this argument. The first is that our bounds on the
difference between probabilities of x and x + ∆ have error terms that are inverse polynomial in
n.1 This makes them useless if Ψ contains all of the elements of [n] within Ωd(n) of n/2. In
this case, however, the coordinates of f(Um) must match moments with the uniform distribution
(Claim 4.12). Thus, a careful argument (Proposition 4.13) can show that f(Um) cannot be much
closer to DΨ than the relevant special distribution, as a decent fraction of any mass removed from
the first “missing” Hamming slice D{s} of DΨ must be placed at even more extreme weights rather
than closer to the middle.

The other issue is simply the d-dependence of our continuity bounds. A naive application
would only be enough to show that f(Um) is Od(ε)-close to the nearest special distribution. If,
for example, Ψ = {0, 1, . . . , n/2}, we would only be able to find Ωd(

√
n) many pairs of elements to

compare and could only show that ∥f(Um)−DΨ∥TV = Ωd(1). To fix this, we use the fact that our
output distribution must match moments with the uniform distribution to show (Proposition 5.1)
that most of f(Um)’s mass has a weight distribution close in Kolmogorov distance2 to the binomial
distribution, even accounting for parity.

More specifically, we use an inductive argument (Lemma 5.5) to decompose the input space
{0, 1}m into subcubes. Aside from some negligible mass, each subcube falls into two types. A Type-
I subcube C satisfies that the output bits of f on the uniform distribution over C are nearly k-wise
independent (for an appropriately chosen parameter k) with no input bit affecting too many output
bits. Such cubes are useful, as we can leverage known results about k-wise independence fooling
threshold functions (Theorem 5.3) and the structure of low-degree F2-polynomials (Theorem 5.4)
to prove our desired Kolmogorov property in this special case (Lemma 5.2).

Alternatively, Type-II subcubes satisfy that f applied to the uniform distribution over the union
of all Type-II subcubes is far from DΨ. These correspond to the aforementioned neighborhoods
whose distributions are far from uniform, and whose contribution to the distance between f(Um)
and DΨ roughly matches that of the contribution to the distance between f(Um) and the nearest
special distribution. This is the small fraction of f(Um)’s mass that does not satisfy the desired
Kolmogorov distance property.

Combining with our continuity result, we obtain a local limit theorem (Theorem 4.7) stating
that f(Um) must be close to some mixture M of the uniform distribution over strings with even
Hamming weight and the uniform distribution over strings with odd Hamming weight. Furthermore,
observe that for any two strings, DΨ either assigns them the same mass, or assigns one of them zero
mass. Since f(Um) is close to both DΨ andM, the triangle inequality guarantees DΨ is close toM.
Then by the previous observation,M must be close to either the uniform distribution over strings
with even Hamming weight, the uniform distribution over strings with odd Hamming weight, or
the uniform distribution over all strings (Corollary 4.10). In other words, we can extract a similar
conclusion to our limit limit theorem for the nearest special distribution D: ∥f(Um)−D∥TV ≤
O(∥f(Um)−DΨ∥TV) + δ for any δ > 0, so long as n is sufficiently large in terms of δ and d.

1The following issue persists even if we sharpen the bounds to have inverse exponential error (as was done in a
previous version https://arxiv.org/pdf/2411.08183v1).

2Recall the Kolmogorov distance between two distributions P, Q is given by supt∈R |Prx∈P [x > t]−Pry∈Q[y > t]|.
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At this point, it is tempting to apply the above conclusion with δ = O(∥f(Um)−DΨ∥TV) to
conclude the proof. However, if δ is particularly small, we may not be able to guarantee n is large
enough to apply the result. Hence, we can only assume ∥f(Um)−D∥TV ≤ O(∥f(Um)−DΨ∥TV)+δ
for some sufficiently small constant δ > 0.

It remains to handle the special case of ∥f(Um)−D∥TV less than some sufficiently small con-
stant. Here, we can take advantage of strong structural properties, such as matching many moments
with the uniform distribution (Claim 4.12) and having the support of f(Um) entirely contained in
the support of D (Claim 4.11). These additional properties allow us to deduce that unless our de-
sired result already holds, the weight distribution |f(Um)| has noticeably too little mass on weights
around n/2. We can now run the previously discussed pairing argument, where we find nearby
x ∈ Ψ and x + ∆ ̸∈ Ψ for even ∆ ∈ Z, except now restricted to a small interval around n/2.
Crucially, the mass DΨ assigns to strings with weight in that interval exceeds the error from the
continuity bound, removing the dependence on d.

Previous Version. A previously posted version of this paper provided a weaker form of The-
orem 1.2 where f(Um) is only Od(ε)-close to one of the six special distributions. The approach
taken was a more technically involved form of the original pairing argument described above. In
particular, the key improvement in this version that allows us to remove the dependence on d from
the distance bound is the local limit theorem (Theorem 4.7).

3 Preliminaries

For a positive integer n, we use [n] to denote the set {1, 2, . . . , n}. We use R to denote the set of
real numbers, use N = {0, 1, 2, . . .} to denote the set of natural numbers, and use Z to denote the
set of integers. For a binary string x, we use |x| to denote its Hamming weight. We use log(x) and
ln(x) to denote the logarithm with base 2 and e ≈ 2.71828 . . . respectively.

Asymptotics. We use the standard O(·),Ω(·),Θ(·) notation, and emphasize that in this paper
they only hide universal positive constants that do not depend on any parameter. Occasionally we
will use subscripts to suppress a dependence on particular variable (e.g., Od(1)).

Probability. Let P be a (discrete) distribution. We use x ∼ P to denote a random sample x
drawn from the distribution P. If P is a distribution over a product space, then we say P is a
product distribution if its coordinates are independent. In addition, let S be a non-empty set. If S
indexes P, we use P[S] to denote the marginal distribution of P on coordinates in S. We reserve
U to denote the uniform distribution over {0, 1} and U(S) to denote the uniform distribution over
S.

For a deterministic function f , we use f(P) to denote the output distribution of f(x) given a
random x ∼ P. For every event E , we define P(E) to be the probability that E happens under
distribution P. In addition, we use P(x) to denote the probability mass of x under P, and use
supp (P) = {x : P(x) > 0} to denote the support of P. If P is a distribution over {0, 1}n, we
use |P| to denote the distribution over weights. That is, |P|(w) =

∑
x:|x|=w P(x). We additionally

define the symmetrized distribution Psym to be the distribution resulting from randomly permuting
strings x ∼ P.
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Let Q be a distribution. We use ∥P −Q∥TV = 1
2

∑
x |P(x)−Q(x)| to denote their total varia-

tion distance.3 We say P is ε-close to Q if ∥P(x)−Q(x)∥TV ≤ ε, and ε-far otherwise.

Fact 3.1. Total variation distance has the following equivalent characterizations:

∥P −Q∥TV = max
event E

P(E)−Q(E) = min
random variable (X,Y )

X has marginal P and Y has marginal Q

Pr [X ̸= Y ] .

Let P1, . . . ,Pt be distributions. Then P1 × · · · × Pt is a distribution denoting the product of
P1, . . . ,Pt. We also use Pt to denote P1 × · · · × Pt if each Pi is the same as P. For a finite
set S ⊆ [t], we use PS to denote the distribution Pt restricted to the coordinates of S. We say
distribution P is a convex combination (or mixture) of P1, . . . ,Pt if there exist α1, . . . , αt ∈ [0, 1]
such that

∑
i∈[t] αi = 1 and P(x) =

∑
i∈[t] αi · Pi(x) for all x in the sample space. When it is clear

from context, we will occasionally write mixtures more simply as P =
∑

i∈[t] αi · Pi.
We will require two inequalities about total variation distance. The first allows us to argue that

two product distributions must be far apart if their marginals do not match.

Lemma 3.2 ([KOW24, Lemma 4.2]). Let P, Q, and W be distributions over an n-dimensional
product space, and let S ⊆ [n] be a non-empty set of size s. Assume

• P[S] and W[S] are two product distributions,

• ∥P[{i}]−W[{i}]∥TV ≥ ε holds for all i ∈ S, and

• W(x) ≥ η · Q(x) holds for some η > 0 and all x.

Then
∥P −Q∥TV ≥ 1− 2 · e−ε2s/2/η.

The second states that the distance between a distribution D and a mixture of distributions
must be large if the distance between D and each individual distribution in the mixture is also
large.

Lemma 3.3 ([Vio20, Section 4.1], [KOW24, Lemma 4.3]). Let P1, . . . ,Pt and Q be distributions.
Assume there exists a value ε such that ∥Pi −Q∥TV ≥ 1−ε for all i ∈ [t]. Then for any distribution
P as a convex combination of P1, . . . ,Pt, we have

∥P −Q∥TV ≥ 1− (t+ 1) · ε.

Occasionally, we will use a different distance measure between distributions P and Q; namely,
the Kolmogorov distance

max
t

∣∣ Pr
x∼P

[x > t]− Pr
y∼Q

[y > t]
∣∣.

Locality and Hypergraphs. Let f : {0, 1}m → {0, 1}n. We say f is a d-local function if each
output bit i ∈ [n] depends on at most d output bits. If unspecified, we will always assume n,m, d
are positive integers.

We sometimes take an alternative view, using hypergraphs to model the dependency relations
in f . Let G = (V,E) be an (undirected) hypergraph. For each i ∈ V , we use IG(i) ⊆ V to denote
the set of vertices that share an edge with i. We say G has maximum degree d if |IG(i)| ≤ d holds
for all i ∈ V . Define NG(i) = {i′ ∈ V : IG(i) ∩ IG(i

′) ̸= ∅} to be the neighborhood of i. We visualize
the function f : {0, 1}m → {0, 1}n as a hypergraph on the output bits [n] with an edge for each
input bit containing all of the output bits that depend on it.

3To evaluate total variation distance, we need two distributions to have the same sample space. This will be clear
throughout the paper and thus we omit it for simplicity.
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Concentration. We will need the following standard concentration bounds.

Fact 3.4 (Hoeffding’s Inequality). Assume X1, . . . , Xn are independent random variables such that
a ≤ Xi ≤ b holds for all i ∈ [n]. Then for all δ ≥ 0, we have

max

Pr

 1

n

∑
i∈[n]

(Xi − E[Xi]) ≥ δ

 ,Pr

 1

n

∑
i∈[n]

(Xi − E[Xi]) ≤ −δ

 ≤ exp

{
− 2nδ2

(b− a)2

}
.

Fact 3.5 (Chernoff’s Inequality). Assume X1, . . . , Xn are independent random variables such that
Xi ∈ [0, 1] holds for all i ∈ [n]. Let µ =

∑
i∈[n] E[Xi]. Then for all δ ∈ [0, 1], we have

Pr

∑
i∈[n]

Xi ≤ (1− δ)µ

 ≤ exp

{
−δ2µ

2

}
.

Norms and Hypercontractivity. For a function g : {0, 1}n → {0, 1} and integer q ≥ 1, define

the norm ∥g∥q =
(
Ex∼{0,1}n [|g(x)|q]

)1/q
. We will use the following hypercontractive inequality in

several locations to control higher norms.

Lemma 3.6 ([Bon70]). For a degree-d polynomial p : {0, 1}n → R and an integer q ≥ 2, we have

∥p∥q ≤
√
q − 1

d · ∥p∥2.

Binomials and Entropy. Let H(x) = x · log
(
1
x

)
+ (1 − x) · log

(
1

1−x

)
be the binary entropy

function. We will frequently use the following estimates regarding binomial coefficients and the
entropy function.

Fact 3.7 (See e.g., [CT06, Lemma 17.5.1]). For 1 ≤ k ≤ n− 1, we have

2n·H(k/n)√
8k(1− k/n)

≤
(
n

k

)
≤ 2n·H(k/n)√

πk(1− k/n)
.

Fact 3.8 (See e.g., [Wik23a]). For any x ∈ [−1, 1], we have

1− x2 ≤ H
(
1 + x

2

)
= 1− 1

2 ln(2)

+∞∑
n=1

x2n

n · (2n− 1)
≤ 1− x2

2 ln(2)
.

Fact 3.9 (See e.g., [Wik23b, Lug17]). For 1 ≤ k ≤ n/2, we have

k∑
i=0

(
n

i

)
≤ min

{
2n·H(k/n),

(
n

k

)
· n− k + 1

n− 2k + 1

}
.

4 Classification of Locally Sampleable Distributions

In this section, we will prove a general classification result for uniform distributions with symmetric
support that can be sampled by local functions. Let Ψ ⊆ {0, 1, . . . , n} be a non-empty set. We
define DΨ to be the uniform distribution over x ∈ {0, 1}n conditioned on |x| ∈ Ψ.

We will show that if the output distribution of a local function is close to DΨ, then it is in fact
close to one of the following six specific symmetric distributions: zeros, ones, zerones, evens,
odds, and all, where
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• zeros = D{0}, ones = D{n}, and zerones = D{0,n},

• evens = D{even numbers in {0,1,...,n}} and odds = D{odd numbers in {0,1,...,n}},

• all = D{0,1,...,n}.

Theorem 4.1. Let d ∈ N and f : {0, 1}m → {0, 1}n be a d-local function with n sufficiently large
(in terms of d). Assume ∥f(Um)−DΨ∥TV ≤ ε for some Ψ ⊆ {0, 1, . . . , n}. Then

∥f(Um)−D∥TV ≤ O(ε)

for some D ∈ {zeros, ones, zerones, evens, odds, all}.

Remark 4.2. We show the qualitative tightness of Theorem 4.1 from different angles.

• The six special distributions admit local sampling schemes: zeros and ones can be sampled
by a 0-local function; all and zerones can be sampled by a 1-local function; evens and odds

can be sampled by a 2-local function.

• The lower bound on n is necessarily depending on d. If n ≤ d, then one can sample the uniform
distribution over any support S ⊆ {0, 1}n of size |S| dividing 2d. This can be achieved by
fixing a regular mapping π : {0, 1}d → S and using the d input bits to compute it. Also if n
is a power of two and d = log(n), then one can directly sample a uniform string of Hamming
weight one, which is uniform symmetric.

• The unspecified distance assumption ε cannot be replaced by a constant, i.e., local functions
are indeed able to arbitrarily closely approximate uniform symmetric distributions.

Starting from evens, we randomly flip the first c ∈ [n] output bits with probability 1/4. This
distribution is 4-local since both evens and the 1/4-biased flipping are 2-local. It is easy to
see that this distribution is at distance 2−Θ(c) to all and evens, and is much farther from
other uniform symmetric distributions. This shows that ε can be arbitrarily small even when
d is a fixed constant.

• The distance blowup from ∥f(Um)−DΨ∥TV to ∥f(Um)−D∥TV is qualitatively necessary, i.e.,
the local distribution can be closer to a uniform symmetric distribution than to one of the
six special ones. In particular, we identify the following example which rules out a bound of
the form (1 + o(1))ε.

Consider the distribution D that with probability 3/4 is evens and with probability 1/4 is
odds. Observe D can be sampled by a 3-local function via a similar strategy to that for
evens. The uniform distribution over n-bit strings of Hamming weight 0, 1, 2, or 4 mod 6 is
approximately (1/6)-close to D; however, all six special distributions are at least (1/4)-far
from D. Thus, the implicit constant in Theorem 4.1 must be at least 3/2.

To prove Theorem 4.1, we will classify Ψ into two cases and handle them separately. To this
end, define ι(Ψ) ∈ Ψ to be the Hamming weight in Ψ that is closest to the middle:

ι(Ψ) = argmin
s∈Ψ

|s− n/2|

where we break ties arbitrarily. Intuitively, since ι(Ψ) is the dominating Hamming weight under
the binomial distribution, DΨ is close to either D{ι(Ψ)} or 1

2

(
D{ι(Ψ)} +D{n−ι(Ψ)}

)
. Based on this

intuition, we divide Ψ into the following cases:

• Tail Regime: ι(Ψ) < n/2− n2/3 or ι(Ψ) > n/2 + n2/3.

9



• Central Regime: n/2− n2/3 ≤ ι(Ψ) ≤ n/2 + n2/3.

In the tail regime, we wish to show that DΨ is essentially zeros, ones, or zerones. The
following result will be proved in Subsection 4.1.

Theorem 4.3. Let f : {0, 1}m → {0, 1}n be a d-local function with n sufficiently large (in terms of
d). If ∥f(Um)−DΨ∥TV ≤ 1/3 for some Ψ in the tail regime, then DΨ ∈ {zeros, ones, zerones}.

In the central regime, we aim to show that DΨ is essentially evens, odds, or all by Theorem 4.4,
which will be proved in Subsection 4.2.

Theorem 4.4. Let f : {0, 1}m → {0, 1}n be a d-local function with n sufficiently large (in terms
of d). If ∥f(Um)−DΨ∥TV ≤ ε for some Ψ in the central regime, then ∥f(Um)−D∥TV ≤ O(ε) for
some D ∈ {evens, odds, all}.

We can now easily establish Theorem 4.1.

Proof of Theorem 4.1. We assume d ≥ 1, as otherwise f(Um) is Ω(1)-far from every uniform sym-
metric distribution other than zeros or ones, in which case

∥f(Um)−D∥TV ≤ 1 ≤ O(∥f(Um)−DΨ∥TV).

Similarly, we may assume ∥f(Um)−DΨ∥TV ≤ 1/3. Applying Theorem 4.3 or Theorem 4.4 depend-
ing on which regime Ψ is in yields the result.

4.1 Tail Regime

In this section, we deal with the regime where strings from DΨ are spread out in the tail layers,
but no weight is extremely close to the center, i.e., ι(Ψ) < n/2− n2/3 or ι(Ψ) > n/2 + n2/3 is the
Hamming weight in Ψ closest to n/2.

Theorem (Theorem 4.3 Restated). Let f : {0, 1}m → {0, 1}n be a d-local function with n suf-
ficiently large (in terms of d). If ∥f(Um)−DΨ∥TV ≤ 1/3 for some Ψ in the tail regime, then
DΨ ∈ {zeros, ones, zerones}.

The main idea is that in this regime, the output must be concentrated on few weights. Thus,
we can apply known error bounds on the individual weights, and use Lemma 3.3 to combine the
errors. We formalize this idea below.

Claim 4.5. Let Ψ ⊆ {0, 1, . . . , n} be a non-empty set satisfying |ι(Ψ) − n/2| > n2/3. If n is
sufficiently large, then there exists a non-empty set Ψ ⊆ Ψ of size |Ψ| ≤ O(n1/3) such that∥∥DΨ −DΨ

∥∥
TV
≤ 1/2.

Proof. Let Ψ = {s1, . . . , sk}, where the weights are ordered nonincreasing in their distance from
n/2. Additionally, let ℓ = Cn1/3 for a sufficiently large constant C. If k < ℓ, simply set Ψ = Ψ.
Otherwise we will show it suffices to set Ψ = {s1, . . . , sℓ}.

Consider an arbitrary index i ∈ [k], and assume without loss of generality that si ≤ n/2. Note
that |si − n/2| > n2/3 by assumption, so we in fact have si <

n
2 − n2/3. Then,

Pr
x∼DΨ

[
|x| = si

∣∣ |x| ̸∈ {s1, s2, . . . , si−1}
]
≥

(
n
si

)∑
j≤si

j≥n−si

(
n
j

) =

(
n
si

)
2
∑

j≤si

(
n
j

)
10



≥
(
n
si

)
2
(
n
si

)
n−si+1
n−2si+1

(by Fact 3.9)

≥
n− 2

(
n
2 − n2/3

)
2n

= Θ(n−1/3).

Thus,

Pr
x∼DΨ

[|x| ̸∈ {s1, . . . , sℓ}] =
ℓ∏

i=1

Pr
x∼DΨ

[
|x| ≠ si

∣∣ |x| ̸∈ {s1, s2, . . . , si−1}
]

≤
(
1−Θ(n−1/3)

)ℓ
≤ exp

{
−ℓ ·Θ(n−1/3)

}
≤ 1/2.

In other words, setting Ψ = {s1, . . . , sℓ} yields
∥∥DΨ −DΨ

∥∥
TV
≤ 1/2.

Theorem 4.6 (Combination of [FLRS23, Theorem 1.2] and [KOW24, Theorem 5.10]). Let 1 ≤
k ≤ n− 1 be an integer, and let f : {0, 1}m → {0, 1}n be a d-local function. Then∥∥f(Um)−D{k}

∥∥
TV
≥ 1−Od(n

−1/2).

We now proceed to the proof of the section’s main result.

Proof of Theorem 4.3. We will prove the contrapositive. Suppose Ψ ̸⊆ {0, n}. If |Ψ| ≤ n1/3,
let Ψ = Ψ; otherwise, let Ψ ⊆ Ψ as guaranteed by Claim 4.5. We further prune Ψ to ensure no
individual weight is sampleable by defining Ψ† = Ψ\{0, n}. Observe that our previous assumptions
imply Ψ† is non-empty. Thus, this removal changes the distribution minimally, as the support of
DΨ has size at least n, and we removed at most two elements. In particular,

∥∥DΨ† −DΨ

∥∥
TV
≤ 2

n
.

For each s ∈ Ψ†, we apply Theorem 4.6 to obtain
∥∥f(Um)−D{s}

∥∥
TV
≥ 1 − Od(n

−1/2). Since

DΨ† is the convex combination of D{s} for s ∈ Ψ†, Lemma 3.3 implies

∥f(Um)−DΨ†∥TV ≥ 1−Od

(
|Ψ†|√
n

)
≥ 1−Od

(
n−1/6

)
.

We conclude by applying the triangle inequality to deduce

∥f(Um)−DΨ∥TV ≥ ∥f(U
m)−DΨ†∥TV −

∥∥DΨ† −DΨ

∥∥
TV
−
∥∥DΨ −DΨ

∥∥
TV

≥ 1−Od

(
n−1/6

)
− 2

n
− 1

2
>

1

3
.

4.2 Central Regime

In this section, we handle the regime where some Hamming weight is very close to the center, i.e.,
n/2− n2/3 ≤ ι(Ψ) ≤ n/2 + n2/3.

Theorem (Theorem 4.4 Restated). Let f : {0, 1}m → {0, 1}n be a d-local function with n suffi-
ciently large (in terms of d). If ∥f(Um)−DΨ∥TV ≤ ε for some Ψ in the central regime, then
∥f(Um)−D∥TV ≤ O(ε) for some D ∈ {evens, odds, all}.
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A crucial structural result in our analysis of this regime is the following local limit theorem,
which says that any locally sampleable distribution close to a roughly centered uniform symmetric
distribution must also be near to a mixture of evens and odds. The proof is somewhat involved,
so we defer it to its own section (Section 5) for clarity.

Theorem 4.7. Let δ > 0 and f : {0, 1}m → {0, 1}n be a d-local function with n sufficiently large
(in terms of δ and d). Let Ψ ⊆ {0, 1, 2, . . . , n} be a set containing some element n(1/2 ± c(d, δ))
for some c(d, δ) > 0 a small enough function of d and δ. Then there exists a distributionM which
is a mixture of evens and odds so that

∥f(Um)−M∥TV ≤ O(∥f(Um)−DΨ∥TV) + δ.

The following two results used in proving Theorem 4.7 will also be useful within this section.
(Their proofs can likewise be found in Section 5.) The first allows us to reason about the distance
between two distributions A and B over {0, 1}n with B symmetric by reasoning about their weight
distributions and A’s symmetry. It is essentially a consequence of the observation that A is far
from B if A is either far from its own symmetrization or if its weight distribution noticeably differs
from B’s. Recall |A| denotes the distribution over the Hamming weight of strings x ∼ A, and Asym

denotes the distribution resulting from randomly permuting strings x ∼ A.

Lemma 4.8. Let A and B be two distributions on {0, 1}n with B symmetric. Then

∥A−B∥TV = Θ(∥|A| − |B|∥TV + ∥A−Asym∥TV).

The second result can be viewed as a continuity property of the weight distribution of f(Um)
in this section’s regime.

Proposition 4.9. Let f : {0, 1}m → {0, 1}n be a d-local function with n sufficiently large (in terms
of d). Let Ψ ⊆ {0, 1, . . . , n} be a set containing an element n(1/2± c(d)) for some c(d) > 0 a small
enough function of d. Then the distribution f(Um) can be written as a mixture aE+(1− a)X with
a = O(∥f(Um)−DΨ∥TV) so that for any even ∆ and x ∈ {0, 1, . . . , n},

∣∣Pr [|X| = x]−Pr [|X| = x+∆]
∣∣ = Od

(
|∆|
n

)
.

Here, one should view E as the “error” part of f(Um) which is far from every roughly centered
uniform symmetric distribution, while the remaining part X has a smooth weight distribution
(modulo parity constraints). These properties are ultimately inherited via the structure of the
independent neighborhoods obtained after conditioning, as sketched in Section 2. E corresponds
to neighborhoods that are far from uniform, while the smoothness of X is a consequence of the
anticoncentration properties of many roughly unbiased independent neighborhoods (formalized in
Appendix A).

We proceed with an important corollary of Theorem 4.7:

Corollary 4.10. Let δ > 0 and f : {0, 1}m → {0, 1}n be a d-local function with n sufficiently large
(in terms of δ and d). Let Ψ ⊆ {0, 1, 2, . . . , n} contain some element within n2/3 of n/2. Then
there exists a distribution D ∈ {evens, odds, all} so that

∥f(Um)−D∥TV ≤ O(∥f(Um)−DΨ∥TV) + δ.

12



Proof. For sufficiently large n, we may apply Theorem 4.7 to deduce that for some mixtureM =
η · evens+ (1− η) · odds, we have

∥f(Um)−M∥TV ≤ O(∥f(Um)−DΨ∥TV) +
δ

3
. (1)

We will show a similar upper bound for ∥f(Um)−D∥TV. This essentially follows from a number of
applications of the triangle inequality. We have

∥f(Um)−D∥TV ≤ ∥f(U
m)−DΨ∥TV + ∥DΨ −D∥TV , (2)

so it remains to bound ∥DΨ −D∥TV. We first show ∥M−D∥TV ≤ 2 ∥M−DΨ∥TV. Let S be a
partition of {0, 1}n into pairs of elements (xe, xo) such that each pair contains one element xe of
even weight and one element xo of odd weight. Then,

∥M−D∥TV =
1

2

∑
x∈{0,1}n

|M(x)−D(x)|

=
1

2

∑
(xe,xo)∈S

|M(xe)−D(xe)|+ |M(xo)−D(xo)|

= 2n−2

(∣∣∣ η

2n−1
−D(xe)

∣∣∣+ ∣∣∣∣1− η

2n−1
−D(xo)

∣∣∣∣) .

Breaking into cases, we find that

∥M−D∥TV =


1− η if D = evens,

η if D = odds,∣∣η − 1
2

∣∣ if D = all.

By choosing D appropriately, we may assume ∥M−D∥TV = ζ := min {η, |η − 1/2|, 1− η}. Simi-
larly,

∥M−DΨ∥TV =
1

2

∑
x∈{0,1}n

|M(x)−DΨ(x)|

=
1

2

∑
(xe,xo)∈S

∣∣∣ η

2n−1
−DΨ(xe)

∣∣∣+ ∣∣∣∣1− η

2n−1
−DΨ(xo)

∣∣∣∣ .
SinceDΨ is uniform, each pair (xe, xo) ∈ S either satisfiesDΨ(xe) = DΨ(xo) or one ofDΨ(xe),DΨ(xo)
is zero. Again breaking into cases,

2n−1

(∣∣∣ η

2n−1
−DΨ(xe)

∣∣∣+ ∣∣∣∣1− η

2n−1
−DΨ(xo)

∣∣∣∣) ≥

η if DΨ(xe) = 0,

1− η if DΨ(xo) = 0,

|2η − 1| if DΨ(xe) = DΨ(xo).

In other words, ∣∣∣ η

2n−1
−DΨ(xe)

∣∣∣+ ∣∣∣∣1− η

2n−1
−DΨ(xo)

∣∣∣∣ ≥ ζ

2n−1
,

so

∥M−DΨ∥TV ≥
1

2
· 2n−1 · ζ

2n−1
=

1

2
∥M−D∥TV . (3)
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Therefore,

∥DΨ −D∥TV ≤ ∥DΨ −M∥TV + ∥M−D∥TV
≤ 3 ∥M−DΨ∥TV (by (3))

≤ 3 (∥M− f(Um)∥TV + ∥f(Um)−DΨ∥TV) .

Combining with (1) and (2) yields the result.

Ideally, we would want to prove Theorem 4.4 by simply applying Corollary 4.10 with δ =
O(∥f(Um)−DΨ∥TV). However, if δ is too small, n may not be large enough (in terms of δ and d)
to satisfy the assumption of Corollary 4.10. Thus, we can only deduce that Theorem 4.4 holds unless
∥f(Um)−D∥TV is less than a small constant. Hence, we will turn our attention to this special case.
The two main consequences of such an assumption can be encapsulated in the following claims.

Claim 4.11. Let f : {0, 1}m → {0, 1}n be a d-local function. If ∥f(Um)−D∥TV < 2−d for some
D ∈ {evens, odds}, then supp (f(Um)) ⊆ supp (D).

Proof. Observe that we may write |f(x)| mod 2 as an F2-polynomial p (of the input bits) of degree
at most d. If p is not constant, then it must take each possible value with probability at least 2−d,
contradicting our distance assumption.

We call a distribution over {0, 1}n k-wise independent if the projection onto any k′ ≤ k indices
is uniformly distributed over {0, 1}k′ .

Claim 4.12. Let f : {0, 1}m → {0, 1}n be a d-local function. If ∥f(Um)−D∥TV < 2−kd for some
D ∈ {evens, odds, all} and positive integer k < n, then f(Um) is a k-wise independent distribution.

Proof. For any set T ⊆ [n] of coordinates of size k, the data processing inequality implies

2−kd > ∥f(Um)−D∥TV ≥ ∥f(U
m)[T ]−D[T ]∥TV . (4)

Note that D[T ] is the uniform distribution on {0, 1}T . On the other hand, the outputs of f on T
only depend on at most kd input bits, so the probability that f(Um)[T ] assigns to any given string
must be a multiple of 2−kd. Thus, ∥f(Um)[T ]−D[T ]∥TV is also a multiple of 2−kd. Combining this
observation with (4) yields f(Um)[T ] = D[T ], concluding the proof.

Using these claims, we will show that the distribution on weights of our sampled distribution
|f(Um)| is “missing” a noticeable amount of mass around n/2. For this, we record the observation
that we can write |f(Um)|(x) = |D|(x) + κA(x) − κS(x) for some disjoint distributions A,S and
κ := ∥|f(Um)| − |D|∥TV ≤ ∥f(Um)−D∥TV.

Proposition 4.13. Let f : {0, 1}m → {0, 1}n be a d-local function with n sufficiently large (in terms
of d). Suppose ∥f(Um)−D∥TV = λ for some D ∈ {evens, odds, all} and λ less than a sufficiently
small constant (in terms of d). Moreover, let A,S be distributions with disjoint support satisfying
|f(Um)| = |D|+ κA− κS for some κ ≤ λ. If ∥f(Um)−DΨ∥TV ≤ O(λ) for some sufficiently small
implicit constant and Ψ ⊆ {0, 1, . . . , n}, then

1. κ = Ω(λ), and

2. S assigns at least a constant fraction of its mass to weights within O(
√
n) of n/2.

Note that if the assumption ∥f(Um)−DΨ∥TV ≤ O(λ) does not hold, there is nothing left to
prove (i.e., the conclusion of Theorem 4.4 is already satisfied).
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Remark 4.14. In the following proof, we will want to apply hypercontractivity (Lemma 3.6) for
expectations over any D ∈ {evens, odds, all} (as opposed to over Un). Observe, however, that each
of these distributions is (n− 1)-wise independent. Thus, E[p(Un)] = E[p(D)] for any polynomial p
of degree at most n− 1. In particular, Lemma 3.6 still holds when q is even and q · deg(p) < n.

Similarly, we will need to apply Fact 3.4 for |D|. In the case of D = evens, for example, we
observe that

Pr
x∼|D|

[x = z] = Pr
x∼|Un|

[x = z
∣∣|x| is even] ≤ Prx∼|Un|[x = z]

Prx∼|Un|[|x| is even]
= 2 Pr

x∼|Un|
[x = z].

Thus, we may use Fact 3.4 up to some small constant loss.

Proof of Proposition 4.13. For clarity, let W = |f(Um)|. To prove the first part of the claim, we
note that by Lemma 4.8,

λ = ∥f(Um)−D∥TV = Θ
(
∥f(Um)− f(Um)sym∥TV + ∥W − |D|∥TV

)
= Θ(∥f(Um)− f(Um)sym∥TV + κ).

This means that either κ = Ω(λ) or ∥f(Um)− f(Um)sym∥TV = Ω(λ). However, if the latter is
true, then Lemma 4.8 shows that ∥f(Um)−DΨ∥TV ≥ Ω(λ). This contradicts our assumption that
∥f(Um)−DΨ∥TV ≤ O(λ) for a sufficiently small implicit constant. Henceforth, we will assume

κ = Θ(λ). (5)

We now turn to showing S assigns a constant fraction of its mass to weights close to n/2. First
note that supp (W ) ⊆ supp (|D|) by Claim 4.11. Therefore, we may assume that Ψ ⊆ supp (|D|) as
well, since replacing Ψ with Ψ ∩ supp (|D|) will not increase the distance between DΨ and f(Um).

In particular, one should view |DΨ| as the result of redistributing mass from weights in supp (|D|)\
Ψ evenly over the elements in Ψ. Since W is close to |DΨ|, we can roughly view S as corresponding
to the missing weights, and A as corresponding to the small “boost” from the redistributed mass.
A priori, it is difficult to reason about S’s distribution, as we have limited information about where
the missing weights are. However,

γ := ∥DΨ −D∥TV ≤ ∥DΨ − f(Um)∥TV + ∥f(Um)−D∥TV ≤ O(λ) (6)

is less than a small constant, so many weights around n/2 must be included in Ψ, which will receive
further weight from A. Therefore, we will proceed by arguing A assigns substantial mass to weights
in a small interval around n/2, and then convert that conclusion to one about S.

We begin by observing that all but a small constant fraction of the support of |D| in I = [n/2−√
n/10, n/2+

√
n/10] are in Ψ. Indeed by Fact 3.7 and Fact 3.8, each element of supp (|D|)∩ (I \Ψ)

contributes at least

2−n

(
n

n
2 +

√
n

10

)
≥ 2

n
(
H
(

1
2
− 1

10
√
n

)
−1

)
√

2n
(
1− 1

25n

) ≥ 1

2
√
n

to the distance ∥DΨ −D∥TV, so by (6) such elements can only consist of an O(λ)-fraction of I.
Next, note that

1 =
∑
s∈Ψ
|DΨ|(s) = γ +

∑
s∈Ψ
|D|(s),

so |DΨ|(s) = |D|(s)/(1− γ) for all s ∈ Ψ. This implies∑
x∈I

max {|DΨ|(x)− |D|(x), 0} =
∑

x∈I∩Ψ

|D|(x)
1− γ

− |D|(x)
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≥ γ
∑

x∈I∩Ψ
|D|(x)

≥ ∥DΨ −D∥TV · Ω(1− λ)

≥ Ω(∥f(Um)−D∥TV − ∥f(U
m)−DΨ∥TV) (by triangle inequality)

≥ Ω(λ). (7)

Now recall we originally assumed for some sufficiently small implicit constant that

O(λ) = ∥f(Um)−DΨ∥TV
≥ ∥W − |DΨ|∥TV (by data processing inequality)

≥
∑
x∈I

max {|DΨ|(x)−W (x), 0}

≥
∑
x∈I

max {|DΨ|(x)− |D|(x)− κA(x), 0}

≥
∑
x∈I

max {|DΨ|(x)− |D|(x), 0} − κA(x)

≥ Ω(λ)−
∑
x∈I

κA(x). (by (7))

Therefore,
∑

x∈I κA(x) = Ω(λ). Moreover, A must assign constant mass to I by (5).
Our strategy will be to leverage this fact to show S must also assign a constant fraction of

its mass to an interval of width O(
√
n) around n/2. Let r be the largest odd integer so that

2r < log(1/λ)/d. Combining with (5), we record the following equation for later convenience:

1

κ
= Θ

(
1

λ

)
= exp (O(dr)) . (8)

By Claim 4.12, we have that W matches its first 2r moments with the binomial distribution |Un|, or
equivalently, with |D|. Thus, any polynomial p of degree at most 2r satisfies E[p(W )] = E[p(|D|)].
In particular by the definition of W and the fact that for any distribution P and function q,
Ex∼P [q(x)] is a linear functional on P, we have

E[p(A)] = E[p(S)]. (9)

Suppose momentarily we were able to set p to be the indicator for the interval I. Then the
proposition would follow, since our earlier deduction about A’s distribution gives E[p(A)] = Pr[A ∈
I] = Ω(1), so (9) implies Pr[S ∈ I] = Ω(1). While this scenario is of course unrealistic, as the
indicator for I will have an unaffordably high degree, the overall idea motivates our strategy of
working with a carefully chosen polynomial p.

We morally want to choose p to approximate the indicator for I. However, we must be a bit
discerning in our choice; polynomials blow-up in their tails, so any choice of p will inevitably be a
poor approximation over the entire domain. We can distill the desired behavior for our low-degree
polynomial p into the following three constraints:

1. p puts substantial mass on weights around n/2,

2. p puts minimal mass on weights further from the center, and

3. p’s inevitable blow-up occurs as far into the tails as possible.

16



Ultimately, we set p(x) = (Tr(y/r)/y)
2 where y := (x − n/2)/

√
n and Tr is the Chebyshev

polynomial (of the first kind) Tr(cos(θ)) = cos(rθ). Intuitively, Chebyshev polynomials remain
relatively flat on the interval [−1, 1], which allows us to (partially) achieve Item 2. The division
by r “stretches” the flat region to further guarantee Item 2 and to address Item 3 by pushing
the blow-up further into the tails. Finally, the additional 1/y factor and the choice of the largest
possible (affordable) degree satisfies Item 1. We formalize these properties below.

Fact 4.15. We have that:

1. p(x) is a polynomial of degree at most 2r.

2. p(x) ≥ 1/2 when |y| ≤ 1/10.

3. p(x) ≤ min(1, 1/y2) when |y| ≤ r.

4. p(x) ≤ O(y/r)2r when |y| ≥ r.

5. p(x) ≥ 0 for all x.

Proof.

1. Recall Tr is a polynomial of degree r. Since r is odd, Tr is odd, and thus has a root at y = 0.
In particular, Tr(y/r)/y is a polynomial of degree at most r − 1.

2. Let sin(θ) = y/r. Then p(x) = | sin(rθ)/y|2. Note that |θ| ≤ 1/(5r) when |y| < 1/10, so both
sin(rθ)/(rθ) and sin(θ)/θ are in [0.99, 1]. Thus,

p(x) = | sin(rθ)/(r sin(θ))|2 = | sin(rθ)/(rθ)|2| sin(θ)/θ|−2 ≥ 1/2.

3. Note that |Tr(x)| ≤ 1 for |x| ≤ 1 and so p(x) ≤ 1/y2. Finally, as above

p(x) = | sin(rθ)/(r sin(θ))|2 ≤ 1.

4. If a = y/r we note that a = (z + z−1)/2 for some real z with 1 ≤ |z| ≤ 2|a|. Setting z = eiθ,
we can write cos(θ) = (z + z−1)/2, so Tr(a) = Tr((z + z−1)/2) = (zr + z−r)/2 ≤ (2|a|)r.

5. Note that p is a square.

Recall A must assign constant mass to I = [n/2 −
√
n/10, n/2 +

√
n/10]. Moreover, Item 2

and Item 5 imply E[p(A)] = Ω(1). In particular, for some large enough constant C, we have that
E[p(A)] > 1/C. Therefore E[p(S)] is also at least 1/C by (9).

We consider the contribution to E[p(S)] coming from three ranges: |y| ≤ C, C ≤ |y| ≤ r, and
|y| ≥ r. (If C ≥ r, we ignore the second and third ranges.) By Item 3, the contributions from the
first and second ranges are at most Pr[|S − n/2| ≤ C

√
n] and 1/C2, respectively. For the third

range, recall that 0 ≤ W (x) = |D|(x) − κS for any x ∈ supp (S). Thus, κS must assign less mass
to each point than |D| does. Therefore this contribution to E[p(S)] is at most

(1/κ) E
x∼|D|

[p(x)1{|x− n/2| > r
√
n}]

≤ (1/κ) E
x∼|D|

[p2(x)1{|x− n/2| > r
√
n}]1/2 Pr

x∼|D|

[
|x− n/2| > r

√
n
]1/2

(by Cauchy-Schwarz)

≤ (1/κ) E
x∼|D|

[
O

(
|x− n/2|/

√
n

r

)4r
]1/2

exp(−Ω(r2)) (by Item 4 & Fact 3.4)

≤ (1/κ) · r−2r ·O(r)r · exp(−Ω(r2)) (by Lemma 3.6)
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= exp(O(dr)− Ω(r2)) = exp(−Ω(r2)), (by (8))

with the last line holding for r large enough relative to d (which is achievable by enforcing λ
sufficiently small). Thus,

1

C
< E[p(S)] ≤ Pr[|S − n/2| ≤ C

√
n] +

1

C2
+ exp(−Ω(r2)),

so S must assign at least constant mass to the interval [n/2− C
√
n, n/2 + C

√
n].

We can now prove the main result of this subsection: Theorem 4.4. Recall we aim to show that
∥f(Um)−D∥TV ≤ O(∥f(Um)−D∥TV) for Ψ containing an element close to n/2. Our strategy will
be to restrict to the small error case via our local limit theorem, and then use the preceding results
to enact a pairing argument (as sketched in Section 2).

Proof. By Corollary 4.10, there exists a distribution D ∈ {evens, odds, all} so that

∥f(Um)−D∥TV ≤ O(∥f(Um)−DΨ∥TV) + δ

for some sufficiently small δ > 0. The result immediately follows if ∥f(Um)−DΨ∥TV > δ, so we
may assume ∥f(Um)−DΨ∥TV ≤ δ. In particular, we have λ := ∥f(Um)−D∥TV is less than some
sufficiently small constant. From here, we assume by contradiction that

∥f(Um)−DΨ∥TV ≤ O(λ) (10)

for a sufficiently small implicit constant.
As above, let W := |f(Um)| = |D| + κA − κS for κ := ∥W − |D|∥TV ≤ λ and A,S some

distributions with disjoint support. Once again by Claim 4.11, we have that W is supported only
on the elements in the support of |D|, and we assume without loss of generality that Ψ ⊆ supp (|D|).
This implies

1. A(x) = 0 for x ∈ supp (|D|),
2. S(x) = 0 for x ̸∈ supp (|D|), and
3. |DΨ|(x) ≥ |D|(x) for x ∈ Ψ.

Next, we apply Proposition 4.13 to deduce

λ ≥ κ ≥ Ω(λ) (11)

and S assigns at least a constant fraction of its mass to weights within an interval I of width O(
√
n)

around n/2. In particular, Item 2 gives ∑
x∈I∩supp(|D|)

S(x) ≥ Ω(1). (12)

At a high level, we aim to show there exist many nearby pairs x, y ∈ I ∩ supp (|D|) with x ̸∈ Ψ and
y ∈ Ψ. Summing over all pairs will produce the desired contradiction ∥f(Um)−DΨ∥TV = Ω(λ).

We first show there are many x ∈ I ∩ supp (|D|) with x ̸∈ Ψ. Note that |D|(x)−W (x) = κS(x)
for x ∈ supp (|D|) by Item 1. Thus,∑

x∈I∩supp(|D|)∩Ψ

S(x) ≤
∑

x∈I∩supp(|D|)∩Ψ

|DΨ|(x)−W (x)

κ
(by Item 3)
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≤ 2

κ
· ∥|DΨ| −W∥TV

≤ 2

κ
· ∥DΨ − f(Um)∥TV (by data processing inequality)

≤ 2

κ
·O(λ) = O(1). (by (10) & (11))

for some sufficiently small implicit constant. Combining with (12) yields∑
x∈I∩supp(|D|)∩Ψc

S(x) = Ω(1).

However for any x ∈ I ∩ supp (|D|) ∩Ψc, we have

S(x) =
|D|(x)

κ
= Θ

(
1

κ
√
n

)
= Θ

(
1

λ
√
n

)
.

In conclusion, it must be the case that there are Θ(λ
√
n) many x ∈ I ∩ supp (|D|) with x ̸∈ Ψ.

We consider a procedure where we take these elements one at a time and pair them with the
closest unpaired element of I ∩Ψ with the same parity. As each element only has to avoid at most
O(λ
√
n) elements that are either not in Ψ or have already been paired, we end up with Θ(λ

√
n)

disjoint pairs of elements (xi, yi) ∈ I ∩ supp (|D|) so that xi ̸∈ Ψ, yi ∈ Ψ, |xi − yi| = O(λ
√
n), and

xi and yi have the same parity. Note for any such yi ∈ I ∩Ψ, Fact 3.7 and Fact 3.8 imply

|DΨ|(yi) ≥ 2−n

(
n

n
2 +O(

√
n)

)
≥ 2n(H(

1
2
−O(n−1/2))−1)√

2n (1−O (n−1))
≥ Ω

(
1√
n

)
. (13)

Now we apply Proposition 4.9 to write W = aE + (1 − a)X where a = O(∥f(Um)−DΨ∥TV)
and ∣∣X(xi)−X(yi)

∣∣ = Od(λ/
√
n) (14)

for each i. In particular, we have that

∥f(Um)−DΨ∥TV ≥ ∥|f(U
m)| − |DΨ|∥TV (by data processing inequality)

≥ 1

2

∑
i

∣∣W (xi)− |DΨ|(xi)
∣∣+ ∣∣W (yi)− |DΨ|(yi)

∣∣
≥ 1

2

∑
i

∣∣|DΨ|(xi)− |DΨ|(yi)
∣∣− ∣∣W (xi)−W (yi)

∣∣ (by triangle inequality)

≥ 1

2

∑
i

|DΨ|(yi)− (1− a)
∣∣X(xi)−X(yi)

∣∣− a
∣∣E(xi)− E(yi)

∣∣ (since xi ̸∈ Ψ)

≥ 1

2

∑
i

Ω

(
1√
n

)
−
∣∣X(xi)−X(yi)

∣∣+ a
(∣∣X(xi)−X(yi)

∣∣− ∣∣E(xi)− E(yi)
∣∣)

(by (13))

≥ 1

2

∑
i

Ω

(
1√
n

)
−Od

(
λ√
n

)
− a [|X(xi)− E(xi)|+ |X(yi)− E(yi)|]

(by (14) and triangle inequality)

= Θ(λ
√
n) · Ω

(
1√
n

)
− a

n∑
i=0

W (i)

19



= Ω(λ)−O (∥f(Um)−DΨ∥TV) .

That is, ∥f(Um)−DΨ∥TV = Ω(λ), which contradicts our assumption that ∥f(Um)−DΨ∥TV = O(λ)
for a sufficiently small implicit constant.

5 Local Limit Theorem

In this section, we will prove that any low-depth sampleable distribution that is reasonably close
(in total variation distance) to a roughly centered uniform symmetric distribution is also close to a
mixture of evens and odds. More precisely, we show:

Theorem (Theorem 4.7 Restated). Let δ > 0 and f : {0, 1}m → {0, 1}n be a d-local function with
n sufficiently large (in terms of δ and d). Let Ψ ⊆ {0, 1, 2, . . . , n} be a set containing some element
n(1/2 ± c(d, δ)) for some c(d, δ) > 0 a small enough function of d and δ. Then there exists a
distributionM which is a mixture of evens and odds so that

∥f(Um)−M∥TV ≤ O(∥f(Um)−DΨ∥TV) + δ.

The proof of this result is in two steps. First, we will show (Proposition 5.1) that the output
weight distribution |f(Um)| is close in Kolmogorov distance to the binomial distribution, even when
restricting the weight’s parity. Then we will show (Proposition 4.9) that the distribution on |f(Um)|
satisfies a continuity property. Together these will imply that the distribution on the weights of
f(Um) is comparable to those ofM. To obtain the final result, we apply the following lemma.

Lemma (Lemma 4.8 Restated). Let A and B be two distributions on {0, 1}n with B symmetric.
Then

∥A−B∥TV = Θ(∥A−Asym∥TV + ∥|A| − |B|∥TV).

Proof. First, we prove the upper bound. By the triangle inequality,

∥A−B∥TV ≤ ∥A−Asym∥TV + ∥Asym −B∥TV = ∥A−Asym∥TV + ∥|A| − |B|∥TV .

For the lower bound, we note on the one hand by the data processing inequality that

∥A−B∥TV ≥ ∥|A| − |B|∥TV .

On the other hand by the triangle inequality,

∥A−B∥TV ≥ ∥A−Asym∥TV − ∥Asym −B∥TV ≥ ∥A−Asym∥TV − ∥|A| − |B|∥TV .

Combining, we find

3 ∥A−B∥TV ≥ (∥A−Asym∥TV − ∥|A| − |B|∥TV) + 2 ∥|A| − |B|∥TV
= ∥A−Asym∥TV + ∥|A| − |B|∥TV .

5.1 The Kolmogorov Bound

In this section, we prove the following result.
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Proposition 5.1. Let δ > 0 and f : {0, 1}m → {0, 1}n be a d-local function with n sufficiently large
(in terms of δ and d). Let Ψ ⊆ {0, 1, . . . , n} be a set containing some element n(1/2± c(d, δ)) for
some c(d, δ) > 0 a small enough function of d and δ. Then the distribution f(Um) can be written
as a mixture aE+(1−a)X with a = O(∥f(Um)−DΨ∥TV) so that for some η ∈ [0, 1] and all t ∈ R:∣∣Pr [|X| > t and |X| is even]− ηPr [|Un| > t]

∣∣ = O(δ),

and ∣∣Pr [|X| > t and |X| is odd]− (1− η)Pr [|Un| > t]
∣∣ = O(δ).

We briefly note the necessity of a in the above decomposition of f(Um). It is possible for f(Um)
to have some small part that is far from all such DΨ (where “small” depends on the distance between
f(Um) and DΨ), but the remainder of the distribution must have weight close in Kolmogorov
distance to the binomial distribution |Un|, even accounting for parity.

We begin by proving a special case. Recall a distribution D over {0, 1}n is k-wise independent
if the projection of D onto any k′ ≤ k indices is uniformly distributed over {0, 1}k′ . The following
result handles the case where f(Um) is nearly k-wise independent and none of the input degrees
are too large.

Lemma 5.2. Let k ≥ 2 be an integer, and let f : {0, 1}m → {0, 1}n be a d-local function with n
sufficiently large. Suppose that no input bit of f affects more than n/A output bits for some A > 0.
Suppose furthermore that there is a set S ⊆ [n] of size |S| ≤

√
n/A such that f(Um) is k-wise

independent on [n] \ S. Then there exists η ∈ [0, 1] so that for any δ ∈ (0, 1/2) and t ∈ R, we have∣∣Pr [|f(Um)| > t and |f(Um)| is even]− ηPr [|Un| > t]
∣∣

and ∣∣Pr [|f(Um)| > t and |f(Um)| is odd]− (1− η)Pr [|Un| > t]
∣∣

are at most

O

(
log(1/δ)O(d)d

√
Aδ

+
log(k)√

k
+ δ

)
.

In particular, we note that as long as k and A are sufficiently large, we can make the error as
small as we like.

Proof. The basic idea is to use the fact that k-wise independence fools threshold functions. In
particular, the following result says that if the output coordinates of f(Um) are k-wise independent,
then the probability that |f(Um)| (which is simply the sum of those outputs) is bigger than t will
approximate the same expression for the binomial distribution.

Theorem 5.3 ([DGJ+10]). Let D be a k-wise independent distribution on {0, 1}n, and let Un be
the uniform distribution over {0, 1}n. Then for any w1, . . . , wn, θ ∈ R, we have∣∣∣∣Pr

x∼D
[w1x1 + · · ·+ wnxn ≥ θ]− Pr

x∼Un
[w1x1 + · · ·+ wnxn ≥ θ]

∣∣∣∣ ≤ O

(
log(k)√

k

)
.

To deal with the parities, we observe that the parity of |f(Um)| is a degree at most d polynomial
over F2 in the input bits. Using the following consequence of [CHH+20, Theorem 3.1], we have
that randomizing a small number of input bits can be used to effectively re-randomize the parity
of the output.
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Theorem 5.4. Let p be a degree-d polynomial over Fn
2 and δ ∈ (0, 1/2). There exists a subset

R ⊆ [n] with |R| ≤ log(1/δ)O(d)d so that if we write p(x) = p(xRc , xR) where xR and xRc are the
coordinates in R and not in R respectively, then with probability at least 1− δ over the choice of a
random value of xRc we have that∣∣∣∣Pr

xR

[p(xRc , xR) = 1]−Pr
x

[p(x) = 1]

∣∣∣∣ < δ. (15)

That is, if we randomly fix the coordinates in Rc, then with high probability re-randomizing
the coordinates in R will essentially re-randomize the output of p.

Now, let the parity of the output of f(x) be given by the F2-polynomial p(x). Applying The-

orem 5.4 gives a set R of at most log(1/δ)O(d)d input bits. Let B ⊆ [n] be the set of output
bits affected by these input bits along with the output bits in S. Note that by our assumptions,
|B| ≤ n log(1/δ)O(d)d/A.

We set η to be the probability that p(x) = 0 over x ∼ Um and will show that

Pr [|f(Um)| > t and |f(Um)| is even] ≥ ηPr [|Un| > t]−O

(
log(1/δ)O(d)d

√
Aδ

+
log(k)√

k
+ δ

)
.

Observe that the case of odd |f(Um)| is almost identical, while the upper bounds follow from
considering the complement distribution 1n − f(Um).

Before proceeding further, we define several variables and events for the sake of future clarity.
Let C := |B|/2 −

√
|B|/δ − |S|. Let EVEN be the event that |f(Um)| is even (and similarly for

ODD). Additionally, let BIG be the event that |f(Um)[Bc]| > t−C. Finally, let GOOD be the event
that xRc satisfies (15) (and BAD be the complement event). We have

Pr [|f(Um)| > t and EVEN] ≥ Pr [BIG and |f(Um)[B]| ≥ C and EVEN]

= Pr [BIG and EVEN]−Pr [BIG and |f(Um)[B]| < C and EVEN]

≥ Pr [BIG] ·Pr
[
EVEN

∣∣ BIG]−Pr [|f(Um)[B]| < C] .

Since the coordinates of f(Um) not in B are k-wise independent by assumption, Theorem 5.3 implies

Pr [BIG] ≥ Pr
[
|Un−|B|| > t− C

]
−O

(
log(k)√

k

)
= Pr

[
|Un| > t− C + |U |B||

]
−O

(
log(k)√

k

)
≥ Pr [|Un| > t]−Pr

[
t ≤ |Un| ≤ t− C + |U |B||

]
−O

(
log(k)√

k

)
≥ Pr [|Un| > t]−max

x
|Un|(x) · E

[∣∣|U |B|| − C
∣∣]−O

(
log(k)√

k

)
≥ Pr [|Un| > t]−O

(∣∣C − |B|
2

∣∣+√|B|
√
n

+
log(k)√

k

)
. (16)

To lower bound the conditional probability Pr
[
EVEN

∣∣ BIG], it will be slightly more convenient
to upper bound Pr

[
ODD

∣∣ BIG]. For this, observe that the event BIG does not depend on any of
the input bits in R. Hence by Theorem 5.4, for all but a δ-fraction of the settings of the bits in Rc,
the probability over the bits in R that |f(Um)| is odd is at most (1− η) + δ. Therefore,

Pr
[
ODD

∣∣ BIG] = Pr
[
GOOD

∣∣ BIG] ·Pr
[
ODD

∣∣ GOOD and BIG
]
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+Pr
[
BAD

∣∣ BIG] ·Pr
[
ODD

∣∣ BAD and BIG
]

≤ Pr
[
ODD

∣∣ GOOD]+Pr
[
BAD

∣∣ BIG] ≤ (1− η) + δ +
δ

Pr [BIG]
.

Combining with (16), we have that

Pr [BIG]Pr
[
EVEN

∣∣ BIG] ≥ ηPr [|Un| > t]−O

(∣∣C − |B|
2

∣∣+√|B|
√
n

+
log(k)√

k
+ δ

)

≥ ηPr [|Un| > t]−O

(
log(1/δ)O(d)d

√
Aδ

+
log(k)√

k
+ δ

)
.

To complete our proof, it remains to bound Pr [|f(Um)[B]| < C]. We have

Pr [|f(Um)[B]| < C] ≤ Pr
[
|f(Um)[B \ S]| < |B|/2−

√
|B|/δ − |S|

]
≤ Pr

[
|f(Um)[B \ S]| < |B \ S|/2−

√
|B \ S|/δ

]
< δ,

where the final inequality follows from Chebyshev’s inequality and the observation that the outputs
in B \ S are 2-wise independent.

We note that the degree bound in Lemma 5.2 can be achieved by restricting high degree inputs,
which d-locality guarantees relatively few of. To reduce to the case where most output coordinates
are k-wise independent, we use the following lemma.

Lemma 5.5. Let f : {0, 1}m → {0, 1}n be a d-local function, k be a positive integer, and δ, κ ∈ (0, 1].
Additionally, let Ψ ⊆ {0, 1, . . . , n} contain some element within n/c of n/2 for some c sufficiently
large given the values of d, k, δ, and κ. Then there exists a partition of {0, 1}m into subcubes of
three types so that:

1. For each subcube C of Type-I there is a set of Od,k,δ,κ(1) coordinates in [n] so that the other
coordinates of f(U(C)) are k-wise independent.

2. Letting W be the union of subcubes of Type-II, we have that ∥f(U(W ))−DΨ∥TV > 1− κ.

3. The total probability mass of all subcubes of Type-III is at most δ.

We will later apply Lemma 5.5 to each subcube generated by conditioning on high degree input
coordinates. This partitions the input space {0, 1}m into subcubes, where almost all the mass is
on subcubes C such that either f(U(C)) is nearly k-wise independent with bounded degree inputs
(in which case Lemma 5.2 is applicable) or whose union W has f(U(W )) far from DΨ.

Our proof will require the following two consequences of hypercontractivity to analyze bounded-
degree polynomials. The first follows from combining Lemma 3.6 with Markov’s inequality. Recall

for f : {−1, 1}n → R, we define the norm ∥f∥2 =
(
EX∼{−1,1}n

[
|f(X)|2

])1/2
.4

Lemma 5.6 (See, e.g., [Kan17, Corollary 26]). Let K > 0. If p : {±1}n → {±1} is a degree-d
polynomial, then

Pr
X∼{−1,1}n

[|p(X)| > K · ∥p∥2] = O
(
2−(K/2)2/d

)
.

4We originally defined the norm for functions on the domain {0, 1}n, but it will be more convenient in the
subsequent proof to define it for the domain {±1}n.
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The second is a consequence of Lemma 3.6 and the Paley-Zygmund inequality.

Lemma 5.7 (See, e.g., [KKL17, Theorem 2.4]). If p : {±1}n → {±1} is a degree-d multilinear
polynomial, then

Pr
X∼{−1,1}n

[|p(X)| ≥ (1/2) · ∥p∥2] ≥ (1/2) · 9−d.

Proof of Lemma 5.5. It will be convenient to view f as a function {±1}m → {±1}n rather than
{0, 1}m → {0, 1}n (as well as Un as the uniform distribution over {±1}n and similarly for DΨ). As
this change does not affect any of our claims, we will assume it throughout the following. We also
assume throughout that n is at least a sufficiently large function of d, k, δ, κ as otherwise, we can
simply assign {±1}m to be a single cube of Type-I, noting that there are at most n coordinates
which are not k-wise independent.

We will show the lemma statement holds via induction on
⌈
log(1/δ)/ log(1/(1− 2−Bkd))

⌉
for

some sufficiently large constantB and all d, k, δ, κ. For the base case
⌈
log(1/δ)/ log(1/(1− 2−Bkd))

⌉
=

0, it must be that δ = 1, so we declare all of {±1}m to be a cube of Type-III. For the inductive
step, we assume that our result holds for all d′, k′, δ′, κ satisfying log

(
1
δ′

)
log
(

1
1−2−Bk′d′

)
 <

 log
(
1
δ

)
log
(

1
1−2−Bkd

)
 .

Our basic strategy will be an iterative decomposition of {±1}m.
Consider all of the non-constant monomials of degree at most k in the output bits whose expec-

tations when evaluated on f(Um) are non-zero. Take N = 26kd logk(L/κ) for L some sufficiently
large constant. If there are fewer than N such monomials, we can declare all of {±1}m a single
subcube of Type-I, noting that other than the at most Nk coordinates involved in these monomials,
the outputs of f(Um) are k-wise independent. Otherwise let p be the sum of N of these monomials
times the sign of their individual expectations.

Observe that each of these monomials is a function of at most kd input bits, so its expectation
is a multiple of 2−kd. In particular, this implies that E[p(f(Um))] ≥ N2−kd. On the other hand,
since it has no constant term, E[p(Un)] = 0 and Var(p(Un)) = N . Hence Lemma 5.6 implies a
concentration bound:

Pr
[
|p(Un)| > N2−kd−1

]
= Pr

[
|p(Un)| >

√
N2−kd−1 · ∥p∥2

]
≤ O

(
2−(N2−2kd−4)1/k

)
< κ/10,

where the final inequality follows from choosing L (and thus N) sufficiently large. Additionally, we
claim the restriction of DΨ to the at most Nk bits that p depends on is within a factor of two of
uniform. Indeed, let Z ⊆ [n] be the set of output bits affecting p.

Claim 5.8. For all x ∈ {±1}Z and n sufficiently large, we have DΨ[Z](x) ≤ 2 · UZ(x).

For clarity, we will finish the remainder of the proof before proving Claim 5.8. The claim implies

Pr
[
|p(DΨ)| > N2−kd−1

]
< κ/5. (17)

Moreover, take the at most Nkd input coordinates that affect the value of p. We split {±1}m into
subcubes based on all possible conditionings of these coordinates. We claim that at least a decent
fraction of them can be assigned as Type-II. In particular, note that p(f(x)) is some polynomial
q(x) of degree at most kd satisfying E[q(Um)] ≥ N2−kd. Therefore by Lemma 5.7, with probability

24



at least 2−Bkd over this conditioning (which completely determines the value of q), the resulting
subcube C satisfies

|q(C)| ≥ ∥q(Um)∥2/2 ≥ E[q(Um)]/2 ≥ N2−kd−1,

where the second inequality follows from Jensen’s inequality.
Hence, for at least a 2−Bkd-fraction of these subcubes we have that |q| ≥ N2−kd−1. In particular,

(17) implies the uniform distribution over the union of these subcubes is (1 − κ/5)-far from DΨ.
We declare all of these subcubes to be Type-II, and use our inductive hypothesis on each of the
remaining M ≤ 2Nkd subcubes with parameters κ′ = κ/(5M) and δ′ = δ/(1− 2−Bkd), noting that log

(
1
δ′

)
log
(

1
1−2−Bkd

)
 =

 log
(
1
δ

)
+ log

(
1− 2−Bkd

)
log
(

1
1−2−Bkd

)
 =

 log
(
1
δ

)
log
(

1
1−2−Bkd

)
− 1.

(If M = 0, we have already obtained our desired partition.) For each subcube i for i = 1, 2, . . . ,M ,
this gives a partition into three types such that

1. For each subcube C of Type-I there is a set of Od,k,δ,κ(1) coordinates in [n] so that the other
coordinates of f(U(C)) are k-wise independent.

2. Letting Wi be the union of subcubes of Type-II, we have that ∥f(U(Wi))−DΨ∥TV > 1− κ
5M .

3. The total probability mass of all subcubes of Type-III is at most δ′.

It remains to combine these partitions together, along with the union W ′ of Type-II subcubes
C with |q(C)| ≥ N2−kd−1. The Type-I subcubes all remain Type-I during this combination.
For Type-II subcubes, we have already shown that ∥f(U(W ′))−DΨ∥TV ≥ 1 − κ

5 . Appealing to
Lemma 3.3, we find that the union over all Type-II subcubes satisfies∥∥f(U(W1 ∪ · · · ∪WM ∪W ′))−DΨ

∥∥
TV
≥ 1− (M + 2) · κ

5M
≥ 1− κ.

We conclude by calculating that the total probability mass of all subcubes of Type-III is at most
(1− 2−Bkd)δ′ = δ, as desired.

We now prove Claim 5.8, showing that DΨ[Z](x) ≤ 2 ·UZ(x) for all x ∈ {±1}Z . This allowed us
to reason about the concentration of |p(DΨ)| using information about the concentration of |p(U)|.

Proof of Claim 5.8. For this proof, it will be more convenient to revert back to working with {0, 1}
rather than {±1}. We may restrict our attention to the weights Ψ = {s ∈ Ψ : |s− n/2| ≤ 2n/c} at
a small cost. Indeed, Fact 3.9 implies

A :=
∑

s∈Ψ:|s−n/2|> 2n
c

(
n

s

)
≤ 2 ·

∑
0≤s<n

2
− 2n

c

(
n

s

)
≤ 2 · 2n·H(

1
2
− 2

c ). (18)

Then by Fact 3.7, we have

B :=

(
n

ι(Ψ)

)
≥
(

n
n
2 −

n
c

)
≥ 2n·H(

1
2
− 1

c )√
8n
(
1
2 −

1
c

)2 . (19)

Thus,

Pr
s∼DΨ

[∣∣∣s− n

2

∣∣∣ > 2n

c

]
=

A

|supp (DΨ) |
≤ A

B
≤

√
8n

(
1

2
− 1

c

)2

· 2n(H(
1
2
− 2

c )−H( 1
2
− 1

c )).
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By Fact 3.8, we have

H
(
1

2
− 2

c

)
−H

(
1

2
− 1

c

)
=

1

2 ln(2)

∑
m≥1

(2/c)2m − (4/c)2m

m · (2m− 1)

≤ (2/c)2 − (4/c)2

2 ln(2)
≤ − 1

c2
.

Hence

Pr
s∼DΨ

[∣∣∣s− n

2

∣∣∣ > 2n

c

]
≤

√
8n

(
1

2
− 1

c

)2

· 2−n/c2 .

For sufficiently large c and n, this implies

DΨ[Z](x) ≤ Pr
s∼DΨ

[|s− n/2| > 2n/c] +DΨ[Z](x) ≤ 1

2
· UZ(x) +DΨ[Z](x),

so it remains to show DΨ[Z](x) ≤ (3/2) · UZ(x). Assume without loss of generality Z = [z]. Then
for all x ∈ {±1}z and s ∈ Ψ, if we let y ∼ D{s}[Z], we have

D{s}[Z](x) = Pr[y1 = x1] ·Pr [y2 = x2 | y1 = x1] · · ·Pr [yz = xz | yi = xi for all i ∈ [z − 1]] .

We will show each factor is at most 1
2 + λ

z for some sufficiently small constant λ > 0, so that

DΨ[Z](x) ≤ max
s∈Ψ
D{s}[Z](x) ≤

(
1

2
+

λ

z

)z

= 2−z ·
(
1 +

2λ

z

)z

≤ UZ(x) · e2λ ≤ 3

2
· UZ(x).

Consider the i-th factor in the case of xi = 1. (The case of xi = 0 is similar.) Then

Pr [yi = 1 | yj = xj for all j ∈ [i− 1]] =
s−

∑
j<i 1(xj = 1)

n− (i− 1)
≤

n
2 + 2n

c

n− z
≤ 1

2
+

λ

z

for c, n sufficiently large.

We are now ready to prove Proposition 5.1. Recall our goal is to show f(Um) can be written
as a mixture aE+(1− a)X with a = O(∥f(Um)−DΨ∥TV), where |X| is O(δ)-close in Kolmogorov
distance to the binomial distribution |Un|, even accounting for parity. Our strategy will be to use
the previously proven inductive decomposition lemma to partition the input space into structured
subcubes. Notably, one type of resulting subcube is amiable to the application of our Kolmogorov
distance / parity result (Lemma 5.2).

Proof of Proposition 5.1. We will show that for any δ > 0, we can achieve error O(δ) provided n is
big enough. We assume δ ≤ 1/2 as otherwise we can take a = 0, X = f(Um), and E arbitrary.

Let k be an integer at least log2(1/δ)/δ2 and let A = (1/δ)3 log(1/δ)Ω(d)d sufficiently large.
We begin by conditioning on every input coordinate which affects more than n/A many output
coordinates. Note that since the sum of the degrees of our coordinates is at most nd, the number
M of these coordinates is at most Ad. This leaves us with a partition of {0, 1}m into 2M subcubes.
On each of these subcubes we apply Lemma 5.5 with parameters d, k, δ, and κ = δ2−M/10. This
yields a partition of all of {0, 1}m into subcubes of types I, II, and III so that:

1. For each subcube C of Type-I there is a set of Od,k,δ(1) coordinates in [n] so that the other
coordinates of f(U(C)) are k-wise independent.
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2. Let W be the union of subcubes of Type-II. By Lemma 3.3 and the choice of κ, we have

∥f(U(W ))−DΨ∥TV > 1− (2M + 1)κ ≥ 1− δ

2
.

3. The total probability mass of all subcubes of Type-III is at most δ.

Recall that for each subcube C of Type-I, Lemma 5.2 guarantees some ηC ∈ [0, 1] such that as long
as n is sufficiently large, we have∣∣Pr [|f(U(C))| > t and |f(U(C))| is even]− ηC Pr [|Un| > t]

∣∣
and ∣∣Pr [|f(U(C))| > t and |f(U(C))| is odd]− (1− ηC)Pr [|Un| > t]

∣∣
are at most

O

(
log(1/δ)O(d)d

√
Aδ

+
log(k)√

k
+ δ

)
= O(δ).

Letting U be the union of all Type-I cubes and η be the appropriate weighted average of the ηC ’s,
we see that ∣∣Pr [|f(U(U))| > t and |f(U(U))| is even]− ηPr [|Un| > t]

∣∣ = O(δ),

and ∣∣Pr [|f(U(U))| > t and |f(U(U))| is odd]− (1− η)Pr [|Un| > t]
∣∣ = O(δ).

Furthermore, let V be the union of U and all the Type-III cubes, as well as the Type-II
cubes if their total mass is at most 4δ. We note that the same inequality will hold for f(U(V )),
which we set equal to X. If the total mass of the subcubes of Type-II is less than 4δ, we set
a = 0 and are done. Otherwise, we set a to be the total mass of these Type-II subcubes and let
E = f(U(W )), where recall W is the union over the subcubes of Type-II. However, we see by Item 2
that ∥E −DΨ∥TV ≥ 1− δ/2, so there exists an event E with mass at least 1− δ in E but at most
δ in DΨ. Moreover f(Um) = aE + (1 − a)X, so this event E has mass at least a(1 − δ) in f(Um).
Hence,

∥f(Um)−DΨ∥TV ≥ a(1− δ)− δ ≥ a/4,

where we have used the fact that a ≥ 4δ and δ ≤ 1/2. This establishes the upper bound on a and
completes our proof.

5.2 Continuity Bound

Here we prove the following proposition. It will later be combined with the Kolmogorov bound to
prove our local limit theorem.

Proposition (Proposition 4.9 Restated). Let f : {0, 1}m → {0, 1}n be a d-local function with n
sufficiently large (in terms of d). Let Ψ ⊆ {0, 1, . . . , n} be a set containing an element n(1/2±c(d))
for some c(d) > 0 a small enough function of d. Then the distribution f(Um) can be written as a
mixture aE+(1−a)X with a = O(∥f(Um)−DΨ∥TV) so that for any even ∆ and x ∈ {0, 1, . . . , n},

∣∣Pr [|X| = x]−Pr [|X| = x+∆]
∣∣ = Od

(
|∆|
n

)
.
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The proof requires machinery from [KOW24]. In particular, we recall the alternative viewpoint
of a function as a hypergraph G on the output bits [n] with an edge for each input bit containing
all of the output bits that depend on it. Observe the locality assumption implies G has maximum
degree at most d. As a consequence of [KOW24, Corollary 4.11] we have:

Corollary 5.9. Let G be a hypergraph on n vertices with maximum degree at most d. For any
increasing function F : N → N, there exists a set S of edges in G whose removal yields at least
r = n/Od,F (1)

5 vertices in G whose neighborhoods have size at most t = Od,F (1) and are pairwise
non-adjacent, and satisfies |S| ≤ r/F (t).

We will also need the following technical density comparison result, whose full generality and
proof are deferred to Appendix A.

Theorem 5.10 (Special case of Theorem A.1). Let t ≥ 1 be an integer, and let X1, . . . , Xn be
independent random variables in {0, 1, . . . , t}. For each i ∈ [n] and integer r ≥ 1, define pr,i =
maxx∈ZPr [Xi ≡ x (mod r)] and assume∑

i∈[n]

(1− pr,i) ≥ Ωt(n) holds for all r ∈ {3, 4, . . . , t}.

Then for any x ∈ Z and even ∆ ∈ Z, we have

Pr

∑
i∈[n]

Xi = x

−Pr

∑
i∈[n]

Xi = x+∆

 ≤ Ot

(
|∆|
n

)
.

Proof of Proposition 4.9. Let S be the set of input coordinates promised by Corollary 5.9, taking
F (t) to be a sufficiently large multiple of 22dt. Each setting of the variables in S produces a
subcube of the inputs. We call a subcube C weird if for at least half of the neighborhoods of
outputs promised by Corollary 5.9, the distribution of f(U(C)) on those outputs is not uniform.

Claim 5.11. Any weird subcube C satisfies

∥f(U(C))−DΨ∥TV > 1− 2−Ω(r·2−2dt).

Proof. By Corollary 5.9, the outputs of f(U(C)) on any two of the resulting neighborhoods are inde-
pendent. Moreover, each neighborhood only depends on at most dt input bits, so if its correspond-
ing marginal distribution is not uniform, it must be at least 2−dt-far from uniform. Furthermore,
Fact 3.7 and Fact 3.8 imply

η := min
x

Un(x)

DΨ(x)
≥

( n
n( 1

2
±c(d))

)
2n

≥ 2n(H(
1
2
±c(d))−1)√

8n
(
1
4 − c(d)2

) ≥ 2−Ω(n·c(d)2).

Choose c(d) to be at most a small multiple of
(
r
n

)1/2 · 2−dt. The claim then follows from applying
Lemma 3.2 to deduce

∥f(U(C))−DΨ∥TV ≥ 1− 2 · e−2−2dt−2·r/η > 1− 2−Ω(r·2−2dt).

5Recall Od,F (1) denotes a quantity whose value is constant once d and F are fixed.
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Let w be the fraction of cubes (resulting from conditioning on the variables in S) that are weird.
Combining our bound |S| ≤ r/F (t) and our choice of F = Ω(22dt) with Lemma 3.3 yields

∥f(Um)−DΨ∥TV ≥ w
(
1− 2|S|−Ω(r·2−2dt)

)
≥ w

2
.

Thus in our conclusion, we can take a = w, E to be the mixture of f applied to the weird subcubes,
and X to be f applied to the mixture of the non-weird subcubes. It remains to show that

∣∣Pr [|f(U(C))| = x]−Pr [|f(U(C))| = x+∆]
∣∣ = Od

(
|∆|
n

)
for any non-weird subcube C. Taking the mixture will yield our result.

For a non-weird subcube C, consider the r non-adjacent neighborhoods promised to us by
Corollary 5.9, and remove the (at most r/2) ones for which the output distribution is not uniform.
By renaming which neighborhoods we are considering and decreasing r by a factor of 2, we may
assume that no such neighborhoods exist.

Each neighborhood is N(vi) for some central element vi. Take a random assignment of all of
the input bits that do not affect some central element, which we call extraneous inputs. This fixes
the value of every output bit not in one of these neighborhoods, and the weight of the output bits
of vi’s neighborhood becomes a random variable Xi. Note that the total weight of the output of
f is some constant plus the sum of the Xi’s, which are independent. We would like to claim that
Theorem 5.10 can be applied to this situation with high probability.

From here, we proceed similarly to [KOW24, Claims 5.16 & 5.23]. In particular, consider vi’s
neighborhood Ni for some i and some integer modulus 3 ≤ s ≤ t. Observe that because the
distribution over f(U(C))[Ni] is uniform, the distribution of the weight modulo s conditioned on
the vthi coordinate being 1 and conditioned on the vthi coordinate being 0 are not the same. On
the other hand, conditioning on the extraneous inputs, this coordinate is equally likely to be 0 as
1. Hence it cannot be the case that Xi is always constant mod s, as this would imply that both
the distribution of |f(U(C))[Ni]| (mod s) conditioned on f(U(C))[vi] = 0 and the distribution
conditioned on f(U(C))[vi] = 1 would be equal to the distribution of Xi (mod s).

However, after fixing the extraneous inputs, Xi only depends on at most d input bits. Thus,
if it is not constant mod s, it must be at least 2−d-far from constant. Furthermore, the bits in
the neighborhood only depend on at most dt input bits, so with probability at least 2−dt over the
choice of values for the extraneous bits, Xi is at least 2−d-far from constant mod s. Finally, note
that since the neighborhoods are non-adjacent (after removing the edges in S), the extraneous bits
used to determine Xi are disjoint from the extraneous bits used to determine Xj for i ̸= j. Thus,
whether or not Xi is constant mod s is independent of whether Xj is.

By Chernoff’s inequality (Fact 3.5) and a union bound, except with probability 2−Ωd(n) over
the values of the extraneous bits, we have that there are Ωd(n) neighborhoods where Xi is at least
2−d-far from constant mod s for each 3 ≤ s ≤ t. We can now apply Theorem 5.10 to show that
if this event occurs, then the corresponding subcube C ′ defined by fixing the bits in S and the
extraneous bits satisfies∣∣Pr

[
|f(U(C ′))| = x

]
−Pr

[
|f(U(C ′))| = x+∆

]∣∣ = Od

(
|∆|
n

)
.

Taking the mixture over all such subcubes gives our result.
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5.3 Putting it Together

We are now prepared to prove Theorem 4.7 by combining our previous Kolmogorov and continuity
bounds. Recall we wish to show the existence of a distributionM which is a mixture of evens and
odds such that ∥f(Um)−M∥TV ≤ O(∥f(Um)−DΨ∥TV)+δ for any δ > 0, provided n is sufficiently
large in terms of d and δ.

Proof of Theorem 4.7. Let c > 0 be a small constant, and set δ′ = max {∥f(Um)−DΨ∥TV /c, δ} .
Then we have

∥f(Um)−DΨ∥TV ≤ cδ′. (20)

Note for any distributionM which is a mixture of evens and odds, two applications of Lemma 4.8
yield

∥f(Um)−M∥TV = Θ(∥|f(Um)| − |M|∥TV) + Θ(∥f(Um)sym − f(Um)∥TV)
= Θ(∥|f(Um)| − |M|∥TV) + Θ(∥f(Um)−DΨ∥TV − ∥|f(U

m)| − |DΨ|∥TV)
= Θ(∥|f(Um)| − |M|∥TV) +O(∥f(Um)−DΨ∥TV)

Thus, it suffices to construct a suitable M and show ∥|f(Um)| − |M|∥TV = O(δ′′) for some δ′′ =
Θ(δ′) with a sufficiently small implicit constant, since

Θ (∥|f(Um)| − |M|∥TV) = O(δ′′) ≤ δ′ ≤ 1

c
· ∥f(Um)−DΨ∥TV + δ.

We begin by applying Proposition 5.1 with the δ from that proposition taken to be κ2 for some
κ > 0 sufficiently small in terms of d and δ′′. LetM = η · evens+ (1− η) · odds for the η coming
from that result. Next, we partition {0, 1, . . . , n} into parity intervals, each of which is an interval
of length Θ(κ

√
n) intersected with either the set of even integers or the set of odd integers. In

particular, we have by Proposition 5.1 and (20) that f(Um) is O(δ′′)-close to a distribution X so
that for any parity interval I, we have that∣∣Pr [|X| ∈ I]−Pr [|M| ∈ I]

∣∣ = O(κ2). (21)

We next apply Proposition 4.9 to find that f(Um) is O(δ′′)-close to a distribution X ′ satisfying∣∣Pr
[
|X ′| = x

]
−Pr

[
|X ′| = x+∆

] ∣∣ = Od(∆/n) (22)

for any x and even ∆. Note also that ∥X −X ′∥TV = O(δ′′). We claim that this is enough to show
that ∥|X ′| − |M|∥TV is small. In particular, we have that

∥∥|X ′| − |M|
∥∥
TV

=
1

2

n∑
x=0

|Pr
[
|X ′| = x

]
−Pr [|M| = x] |

=
1

2

∑
I

∑
x∈I
|Pr

[
|X ′| = x

]
−Pr [|M| = x] |

≤
∑
I

∑
x∈I

∣∣∣∣Pr
[
|X ′| = x

]
− Pr [|X ′| ∈ I]

|I|

∣∣∣∣+ ∣∣∣∣Pr [|X ′| ∈ I]−Pr [|M| ∈ I]
|I|

∣∣∣∣
+

∣∣∣∣Pr [|M| = x]− Pr [|M| ∈ I]
|I|

∣∣∣∣ . (23)
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To analyze this, we note that Fact 3.4 implies all but O(δ′′) of the mass of |M| is supported on
O(log(1/δ′′)/κ) many parity intervals, which we call big. The total mass that |X| assigns to these
big intervals is ∑

big I
Pr [|X| ∈ I] =

∑
big I

(
Pr [|M| ∈ I] +O(κ2)

)
(by (21))

= 1−O(δ′′) +O(κ2 log(1/δ′′)/κ) = 1−O(δ′′),

with the final equality holding for κ sufficiently small. Therefore, since ∥X −X ′∥TV = O(δ′′), X ′

also assigns all but an O(δ′′)-fraction of its mass to big intervals. Hence, up to this O(δ′′) error, we
can restrict the sum in (23) to big intervals. Thus,∥∥|X ′| − |M|

∥∥
TV
≤ O(δ′′) +

∑
big I

∑
x∈I

∣∣∣∣Pr
[
|X ′| = x

]
− Pr [|X ′| ∈ I]

|I|

∣∣∣∣+ ∣∣∣∣Pr [|X ′| ∈ I]−Pr [|M| ∈ I]
|I|

∣∣∣∣
+

∣∣∣∣Pr [|M| = x]− Pr [|M| ∈ I]
|I|

∣∣∣∣ .
Clearly,∑
x∈I

∣∣∣∣Pr [|X ′| ∈ I]−Pr [|M| ∈ I]
|I|

∣∣∣∣ = |Pr
[
|X ′| ∈ I

]
−Pr [|M| ∈ I] |

≤ |Pr
[
|X ′| ∈ I

]
−Pr [|X| ∈ I] |+ |Pr [|X| ∈ I]−Pr [|M| ∈ I] |.

The first term summed over all I is at most ∥X −X ′∥TV = O(δ′′). The second term is at most
O(κ2) by (21), so summed over all big intervals is O(δ′′) (for small enough κ).

Additionally, note that∣∣∣∣Pr
[
|X ′| = x

]
− Pr [|X ′| ∈ I]

|I|

∣∣∣∣ ≤ max
y∈I
|Pr

[
|X ′| = x

]
−Pr

[
|X ′| = y

]
|.

Since x and y have the same parity in any parity interval, (22) implies this is at most

max
y∈I

Od

(
|x− y|

n

)
= Od

(
κ
√
n

n

)
= Od

(
κ√
n

)
.

Summing this over all x ∈ I givesOd(κ
2), and summing over all big intervals givesOd(κ log(1/δ

′′)) =
O(δ′′). The sum of the ∣∣∣∣Pr [|M| = x]− Pr [|M| ∈ I]

|I|

∣∣∣∣
terms can be bounded similarly. We infer that ∥|X ′| − |M|∥TV = O(δ′′), and thus by the triangle
inequality

∥|f(Um)| − |M|∥TV ≤ ∥|f(U
m)| − |X|∥TV +

∥∥|X| − |X ′|
∥∥
TV

+
∥∥|X ′| − |M|

∥∥
TV

= O(δ′′),

completing our proof.
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A Density Comparison of Sum of Integral Random Variables

The goal of this section is to prove the following density comparison result for sums of integral
random variables.

Theorem A.1. Let t ≥ 1 be an integer, and let X1, . . . , Xn be independent random variables in
{0, 1, . . . , t}. Let Φ ⊆ {2, 3, . . . , t}. Define ϕ as the least common multiple of values in [t] \ Φ.

For each i ∈ [n] and integer r ≥ 1, define pr,i = maxx∈ZPr [Xi ≡ x (mod r)] and assume6∑
i∈[n]

(1− pr,i) ≥ L > 0 holds for all r ∈ Φ. (24)

Let α =
(

L
4n(t+1)

)t2ϕ
and assume m :=

⌊
L/(16t4ϕ)

⌋
≥ 1. Then for any x ∈ Z, we have

Pr

∑
i∈[n]

Xi = x

−Pr

∑
i∈[n]

Xi = x+∆

 ≤ 22|∆|
ϕ · αm

holds for any ∆ ∈ Z that is a multiple of ϕ.

The typical setting for Theorem A.1 is when we have small t and L = Θt(n); then α is also a
constant depending only on t.

Remark A.2. The assumption of ∆ being a multiple of ϕ is necessary. If the Xi’s have some joint
congruence relation not shared with ∆, the bound can fail. Consider the case where n is even and
each Xi is uniform in {1, 3}, which violates (24) only for r = 2. Then we set x = 2n and ∆ = 1.
Since the sum is n plus twice an n-bit binomial distribution, we have Pr [

∑
iXi = x] ≈ 1/

√
n but

Pr [
∑

iXi = x+∆] = 0. However, m ≈ n and α is a constant. Hence the final bound does not
hold.

We also note that the quantitative bound of α and m can be slightly improved by tightening
our analysis. Since it does not change our final bounds by much, we choose the cleaner presentation
here.

We will need the following simple bound on the difference of nearby binomial coefficients.

6Note that if (24) holds for some r, then it also holds for r′ that is a multiple of r as Pr [Xi ≡ x (mod r′)] ≤
Pr [Xi ≡ x (mod r)]. Hence we may assume that Φ contains all the multiples of r (up to t) if r ∈ Φ.

35

http://en.wikipedia.org/w/index.php?title=B%C3%A9zout's%20identity&oldid=1179305736
http://en.wikipedia.org/w/index.php?title=B%C3%A9zout's%20identity&oldid=1179305736


Fact A.3. For any integers n, b ≥ 1, we have 2−n ·
((

n
b

)
−
(

n
b+1

))
≤ 7

n . Moreover for any integer

∆ ≥ 0, we have

2−n ·
((

n

b

)
−
(

n

b+∆

))
≤ 7∆

n
.

Proof. The moreover part follows from a telescoping sum. Hence we focus on the first bound and
divide into the following cases:

• If b < n/2, then
(
n
b

)
≤
(

n
b+1

)
and the bound trivially holds.

• If b ≥ n, then
(
n
b

)
≤ 1,

(
n

b+1

)
= 0, and the bound trivially holds.

• If n/2 ≤ b ≤ n− 1, then(
n

b

)
−
(

n

b+ 1

)
=

(
n

b

)
·
(
1− n− b

b+ 1

)
=

(
n

b

)
· 2b+ 1− n

b+ 1

≤ 2n·H(b/n)√
πb(1− b/n)

· 2b+ 1− n

b+ 1
(by Fact 3.7)

≤ 2n·H(b/n)√
n/2

· 2b+ 1− n

n/2
. (since n/2 ≤ b ≤ n− 1)

Define x = 2b
n −1. Then x ∈ [0, 1). By Fact 3.8, we have H(b/n)−1 = H

(
1+x
2

)
−1 ≤ − x2

2 ln(2)
and hence

2−n ·
((

n

b

)
−
(

n

b+ 1

))
≤ 2

−n· x2

2 ln(2) · 1√
n/2
· n · x+ 1

n/2

≤ x · 2−n· x2

2 ln(2)︸ ︷︷ ︸
A

·2
√
2√
n

+

(
2

n

)1.5

.

Writing x =

√
2 ln(2)·log(y)

n for some y ≥ 1, we transform A above into

A =

√
2 ln(2) · log(y)

n
· 1
y
≤
√

2 ln(2)

n
.

Hence 2−n ·
((

n
b

)
−
(

n
b+1

))
≤ 4
√

ln(2)

n +
(
2
n

)1.5 ≤ 7
n as claimed.

To prove Theorem A.1, we observe that intuitively
∑

i∈[n]Xi should converge to a (discrete)
Gaussian distribution with large variance. Then in this (discrete) Gaussian distribution,

• if x lies much outside the standard deviation regime around the mean, then it has small
density already;

• otherwise its density, compared with the density of x+∆, is only off by a small multiplicative
factor, which means the quantity of interest is in fact small.

We first prove a simpler case where each random variable always has a “neighboring” pair of
values in its support. Note that in this case we do not need to assume that the random variables
are bounded. Later we will reduce the case of Theorem A.1 to this setting.
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Lemma A.4. Let Y1, . . . , Ym be independent integer random variables, and let ϕ ≥ 1 be an integer.
Assume that α > 0 is a parameter such that for each i ∈ [m], there exists ui ∈ Z satisfying

Pr[Yi = ui] ≥ α and Pr[Yi = ui + ϕ] ≥ α.

Then for any y ∈ Z, we have

Pr

∑
i∈[m]

Yi = y

−Pr

∑
i∈[m]

Yi = y +∆

 ≤ 22|∆|
ϕ · αm

(25)

holds for any ∆ ∈ Z that is a multiple of ϕ.

Proof. The bound trivially holds if ∆ = 0. If ∆ < 0, then we work with negated Yi’s. Hence we
assume ∆ ≥ ϕ. By subtracting ui from Yi and y, we assume that each ui equals zero. Then we
decompose each Yi = Wi · Bi + (1 −Wi) · Zi, where Bi is uniform over {0, ϕ}, Wi be an α-biased
coin (i.e., Pr[Wi = 1] = α and Pr[Wi = 0] = 1 − α), and Zi is some integer random variable. In
addition, Wi, Bi, Zi are independent.

Now define E to be the event that
∑

i∈[m]Wi ≤ α ·m/2. Then by Fact 3.5 with δ = 1/2 and
µ = α ·m, we have

Pr[E ] ≤ e−α·m/8. (26)

For fixed W = (W1, . . . ,Wm) under which E does not happen, let S = {i ∈ [m] : Wi = 1} of size
k = |S| ≥ α ·m/2. Then for any fixed Z = (Z1, . . . , Zm), the LHS of (25) equals

Pr

[∑
i∈S

Bi = b

∣∣∣∣∣W,Z,¬E

]
−Pr

[∑
i∈S

Bi = b+∆

∣∣∣∣∣W,Z,¬E

]
,

where b = y −
∑

i/∈S Zi. Recall that each Bi is uniform over {0, ϕ}. If b is not a multiple of
ϕ, then the above quantity equals zero since ∆ is a multiple of ϕ. Otherwise, let b′ = b/ϕ and
∆′ = ∆/ϕ ≥ 1. Then the above quantity equals

2−k ·
((

k

b′

)
−
(

k

b′ +∆′

))
≤ 7∆′

k
(27)

by Fact A.3. This, combined with (26), establishes (25):

LHS of (25) ≤ Pr[E ] + E
[
1ϕ divides b · 2−k ·

((
k

b′

)
−
(

k

b′ +∆′

)) ∣∣∣∣¬E]
≤ e−α·m/8 + E

[
7∆′

k

∣∣∣∣¬E] (by (26) and (27))

≤ 8

α ·m
+

14∆′

α ·m
(since e−x ≤ 1

x and k ≥ αm/2)

≤ 22∆

ϕ · αm
(since ∆′ = ∆/ϕ ≥ 1)

= RHS of (25).

Now we prove Theorem A.1 by reducing it to Lemma A.4. To this end, we will divideX1, . . . , Xn

into many parts, and the sum within each part will have two neighboring values with noticeable
probability weights.
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Proof of Theorem A.1. Denote Φ = {r1, r2, . . . , rk} where k = |Φ| ≤ t. For each rj , let Srj ⊆ [n]
be the set of Xi’s with 1− prj ,i ≥ L/(2n), i.e.,

Srj =
{
i ∈ [n] : 1− prj ,i ≥ L/(2n)

}
.

Since 0 ≤ 1− prj ,i ≤ 1 and by (24), we have

L ≤
∑
i∈[n]

(1− prj ,i) ≤
∣∣Srj

∣∣ · 1 + (n− ∣∣Srj

∣∣) · L
2n

,

which implies
∣∣Srj

∣∣ ≥ L/2. Now we remove multiple appearances of indices across Srj ’s to make
them pairwise disjoint. Formally, for each j = 1, 2, . . . , k, we keep n′ := ⌊L/(4t)⌋ elements in Srj

and update Srj′ ← Srj′ \Srj for all j
′ > j. Since k ≤ t and originally

∣∣Srj

∣∣ ≥ L/2, each Srj contains
at least n′ elements after this pruning.

For each j ∈ [k] and i ∈ Srj , by an averaging argument, there exists ci ∈ Z/rjZ such that
Pr [Xi ≡ ci (mod rj)] ≥ 1

rj
. Hence, by another averaging argument, there exists zi ∈ {0, 1, . . . , t}

such that zi ≡ ci (mod rj) and

Pr [Xi = zi] ≥
1

rj
· 1

⌈(t+ 1)/rj⌉
≥ 1

2(t+ 1)
≥ L

4n(t+ 1)
,

where we used the fact that 0 < L ≤ n. Since i ∈ Srj , we also have Pr [Xi ≡ ci (mod rj)] ≤
1 − L

2n and hence, by an averaging argument, there exists c′i ∈ Z/rjZ such that c′i ̸= ci and
Pr [Xi ≡ c′i (mod rj)] ≥ L

2n·(rj−1) . Similarly by another averaging argument, there exists z′i ∈
{0, 1, . . . , t} such that z′i ≡ c′i (mod rj) and

Pr
[
Xi = z′i

]
≥ L

2n · (rj − 1)
· 1

⌈(t+ 1)/rj⌉
≥ L

4n(t+ 1)
.

Since both zi and z′i are in {0, 1, . . . , t}, by a final averaging argument, there exists zrj , z
′
rj such

that

1. zrj , z
′
rj ∈ {0, 1, . . . , t} and zrj ̸≡ z′rj (mod rj), and

2. at least a 1/
(
t+1
2

)
≥ 1/t2 fraction of i ∈ Srj satisfy Pr

[
Xi = zrj

]
,Pr

[
Xi = z′rj

]
≥ L

4n(t+1) .

Let n′′ =
⌈
n′/t2

⌉
=
⌈
|Srj |/t2

⌉
. Based on Item 1 and Item 2, for each j ∈ [k] we define Trj ⊆ Srj to

be of size n′′ and contain indices satisfying Item 2.
Recall that ϕ is the least common multiple of values in [t] \ Φ. Now we show that the sum of

tϕ · k random variables (tϕ from each one of Tr1 , . . . , Trk) is a random variable that satisfies the
conditions in Lemma A.4. Formally, let m = ⌊n′′/(tϕ)⌋ and arbitrarily select m disjoint subsets
T 1
rj , . . . , T

m
rj of size tϕ from each Trj . Define random variables

Yℓ =
∑
j∈[k]

∑
i∈T ℓ

rj

Xi for each ℓ ∈ [m]

and define
Y0 =

∑
i/∈

⋃
j∈[k],ℓ∈[m] T

ℓ
rj

Xi
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to be the sum of the remaining Xi’s. We will show that for each ℓ ∈ [m], there exists uℓ ∈ Z such

that both Pr[Yℓ = uℓ] and Pr[Yℓ = uℓ+ϕ] are at least α =
(

L
4n(t+1)

)t2ϕ
. Then Theorem A.1 follows

from Lemma A.4 by conditioning on Y0 and observing m =
⌊⌈
⌊L/(4t)⌋ /t2

⌉
/(tϕ)

⌋
≥
⌊
L/(16t4ϕ)

⌋
.

Fix an arbitrary ℓ ∈ [m] and define wj = zrj − z′rj for each j ∈ [k]. By Item 1, |wj | ≤ t and rj
does not divide it. Hence the greatest common divisor g of |w1|, . . . , |wk| lies in [t] \Φ, which must
divide ϕ. Thus by Bézout’s identity (see e.g., [Wik23c]), there exist s1, . . . , sk ∈ Z such that∑

j∈[k]

sj · wj = ϕ. (28)

In addition, we can assume that |sj | ≤ ϕ/g ·maxj∈[k] |wj |/g ≤ tϕ [Bru12]. Now we define uℓ as

uℓ =
∑

j∈[k]:sj<0

zrj · tϕ+
∑

j∈[k]:sj≥0

z′rj · tϕ.

Then the probability of Yℓ = uℓ is at least the probability that every Xi ∈ T ℓ
rj equals zrj if sj < 0,

and every Xi ∈ T ℓ
rj equals z′rj if sj ≥ 0. Hence by Item 2 and the independence of the Xi’s, we

have Pr [Yℓ = uℓ] ≥
(

L
4n(t+1)

)tϕ·k
≥ α as desired. To analyze uℓ + ϕ, we rewrite it as

uℓ + ϕ =
∑

j∈[k]:sj<0

(
zrj · tϕ+ sj · wj

)
+

∑
j∈[k]:sj≥0

(
z′rj · tϕ+ sj · wj

)
(by (28))

=
∑

j∈[k]:sj<0

(
z′rj · |sj |+ zrj · (tϕ− |sj |)

)
+

∑
j∈[k]:sj≥0

(
zrj · |sj |+ z′rj · (tϕ− |sj |)

)
.

(since wj = zrj − z′rj )

Hence the probability of Yℓ = uℓ + ϕ is at least the probability that |sj | (resp., tϕ − |sj |) many
Xi ∈ T ℓ

rj equal z′rj (resp., zrj ) if sj < 0, and |sj | (resp., tϕ − |sj |) many Xi ∈ T ℓ
rj equal zrj (resp.,

z′rj ) if sj ≥ 0. Therefore Pr [Yℓ = uℓ + ϕ] ≥ α follows again from Item 2 and the independence of
Xi’s.
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