
Zero-Knowledge in Streaming Interactive Proofs

Abstract

In a recent work, Cormode, Dall’Agnol, Gur and Hickey (CCC, 2024) introduced the model of
Zero-Knowledge Streaming Interactive Proofs (zkSIPs). Loosely speaking, such proof-systems
enable a prover to convince a streaming verifier that the input x, to which it has read-once
streaming access, satisfies some property, in such a way that nothing beyond the correctness of
the claim is revealed. Cormode et al. also gave constructions of zkSIPs to some specific and
notable problems of interest.

In this work, we advance the study of zero-knowledge proofs in the streaming model, by
presenting protocols that are significantly more general and more secure. We use a definition of
zero-knowledge that is a variation of that used by Cormode et al., which we find more appealing
but is technically incomparable.

Our main result is a zkSIP for any NP relation that can be decided by low-depth polynomial-
size circuits. We emphasize that this is the first general purpose protocol in this model, which
captures, as a special case, the problems considered by the prior work. We also construct a
specialized protocol for the “polynomial evaluation” problem considered in that work, with
improved parameters.

The protocols constructed by Cormode et al. have an inverse polylogarithmic simulation
error (i.e., a gap with which a bounded-space distinguisher can distinguish the simulation from
a real execution). This means that their protocols are entirely insecure if run multiple times
(say on different inputs). In contrast, our protocols achieve a negligible zero-knowledge error, a
stronger and far more robust security guarantee.
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1 Introduction

Interactive proofs [GMR89] are a fundamental computational paradigm involving two players: a
computationally powerful but untrusted prover, and a verifier, who lacks the resources to indepen-
dently perform a desired computation. Interactive proofs enable the verifier, by interacting with
the prover, to ascertain the truth of complex claims that it cannot directly compute. Crucially, the
protocol must also guard against malicious provers attempting to trick the verifier to accept false
statements.

The conceptual evolution of interactive proofs paved the way for the emergence of the astonish-
ing concept of zero-knowledge proofs [GMR89]. Such proofs enable a prover to prove the correctness
of its claim to the verifier, while disclosing no extraneous information beyond the mere fact of the
claim’s truth. This ingenious concept has had far-reaching implications and applications, both in
theory and practice.

Another branch of study in the field of interactive proofs that has drawn significant attention in
the last decade is streaming interactive proofs [CTY11, CMT12, CCM+15, GR15, CGT20]. Here,
similarly to a classical interactive proof, a computationally limited verifier uses the help of a powerful
untrusted prover to verify some claim. However, in this model the computational constraints of the
verifier are in the form of limited memory that prevent it from storing the entirety of the input,
which is read by the verifier in a sequential one-pass manner.

In a recent exciting work, Cormode et al. [CDGH24] introduced the model of zero-knowledge
streaming interactive proofs (zkSIP). Their model extends the streaming interactive proof model
by requiring that the proof be zero-knowledge. Loosely speaking, this means that a bounded space
(potentially malicious) verifier, does not learn anything in the interaction beyond the correctness
of the statement. Cormode et al. also gave constructions of such zkSIPs for several interesting
problems, which are discussed in further detail below.

We emphasize that the zkSIP model is quite challenging. In the classical setting, both partic-
ipants have full access to the input. In contrast, in the streaming scenario, the verifier reads the
input bits sequentially, and has no space to store it entirely. In particular, the verifier does not
have the luxury of full random access to the input at will.

We continue the line of work that was initiated in [CDGH24]. Jumping ahead, we present general
purpose protocols in the zkSIP model, which, moreover, achieve what we find to be a substantially
stronger notion of zero-knowledge (although formally the definitions are incomparable) and with
better parameters. This shows that the expressive power of such protocols is much broader than
shown in the original work of Cormode et al. (who gave constructions for specific problems of
interest). We elaborate on these results in Section 1.3 but first discuss the model of zero-knowledge
proofs in the streaming setting.

1.1 Streaming Zero-Knowledge Proofs

A streaming interactive proof involves a computationally unbounded prover P and a bounded-
space, probabilistic verifier V. As in the classic interactive proof model, both parties exchange
messages based on a shared input. However, the key distinction in this model is that the input is
streamed. While this poses no issue for the prover, who can store and access the entire stream, it
creates a challenge for the verifier, whose memory is limited. The prover and verifier may interact
amongst themselves while simultaneously streaming the input, and messages exchanged during the
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interaction are also sent as a stream of bits.1 At the conclusion of the interaction, the verifier
decides whether to accept or reject.2

As in the standard interactive proof model, we aim to preserve both completeness and soundness.
This means that the prover should be able to use the protocol to convince the verifier of true
statements, while any malicious prover should be unable to convince the verifier of a false claim.
The protocols constructed in our work will be doubly-efficient [GKR15, Gol18], meaning that the
honest prover runs in polynomial time. We emphasize however that we focus on statistical soundness
– even an unbounded prover (both in terms of time and space) should be unable to convince the
verifier to accept a false statement (other than with small probability).

Following Cormode et al., in some (but not all) of our protocols we will allow the communication
between the prover and verifier to be long – e.g., of length polynomial in the input. (For example,
this gives the prover the ability to resend the input to the verifier.) The verifier can access the
communication tape in a similar read-once access to the way it accesses the input - i.e., it can read
data but can only store as much as its memory allows. This should be contrasted with the standard
interactive streaming model in which communication is typically poly-logarithmic.

Following the foundational work of Goldwasser, Micali, and Rackoff [GMR89], our goal for zero-
knowledge in the streaming model is to ensure that everything observed by the verifier during its
interaction with the prover can be simulated by a machine with similar computational resources.
In other words, the verifier should be able to simulate its own view of the interaction.

Thus, loosely speaking, we say that a streaming interactive proof is zero-knowledge for space
bound s, if for any space-s (malicious) verifier there exists a simulator, with comparable space
to that used by the verifier, that generates a view that is indistinguishable to an external space-
bounded distinguisher. Morally this implies that a bounded space verifier learns no more than what
it could have generated by itself.

1.1.1 Differences from the [CDGH24] Definition

Next, we highlight some key ways in which our definition differs from that of [CDGH24].

On “White-box” Simulators. In the standard model, a very common approach for demon-
strating zero-knowledge is via rewinding. However, in the streaming model, where the input is
streamed only once, rewinding is infeasable, as the simulator has no opportunity to revisit the
input and make additional attempts.

To overcome this difficulty, Cormode et al. [CDGH24, p. 21], allowed their simulator to have
“white-box access” to the verifier. White-box access gives the simulator additional knowledge,
which may be hard to compute, of the verifier’s strategy. More specifically, they define white-box
access to the verifier V ∗ as oracle access to a function that takes as input a snapshot of V ∗’s current
state b ∈ {0, 1}s and a candidate output z ∈ {0, 1}m, and returns the maximum probability over
all inputs y ∈ {0, 1}n with which V ∗ starting with state b outputs z.

In this work we handle the inability to rewind in a conceptually different, but technically similar,
manner. Specifically, we model our simulators as read-once branching programs (ROBP). This is

1For messages that are short enough to be stored entirely in memory, it makes no practical difference whether they
are streamed or sent all at once. However, the model allows for the exchange of messages that exceed the verifier’s
memory capacity, as long as it is accessed in a streaming manner.

2Although the streaming model can naturally be extended to handle search problems, where the verifier’s output
may be any string, in this work we focus exclusively on decision problems.
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described in detail in Section 3.1. Branching programs are a well-studied computational model
in the literature, that models non-uniform bounded space algorithms. In a nutshell, the power
of branching programs over their uniform counterparts is that they can perform any desired local
computation in order to transition from state to state, as long as the computation does not involve
the input. For example, if the algorithm is currently at some state st ∈ {0, 1}s, it can immediately
transition to whatever state f(st) ∈ {0, 1}s it wishes to, even if the function f is hard to compute,
see [Gol08, Section 8.4] for additional details and motivation.

From the simulator’s perspective the verifier is fixed and so any computation relative to the
“code” of the verifier can be done for free when modeling the simulator as a branching program.3

Moreover, modeling the simulator as a branching program means that we can demonstrate zero-
knowledge against stronger malicious verifiers that are similarly modeled as ROBPs.

Modeling the simulator as an ROBP allows it to perform arbitrarily complex computations
before the input stream begins (i.e., to construct the branching program wiring). However, once
streaming starts, the simulator is constrained by the program’s structure and cannot carry out
further complex computations. This approach ensures that the limitations of the streaming model
are preserved while maintaining a meaningful notion of zero-knowledge. We emphasize that the
trivial protocol in which the prover sends the witness in the clear, is not zero-knowledge in this
model (unless the problem can be decided a priori by a read-once branching program, which is an
extremely limited model of computation).

We mention that the technical way in which our simulators use the branching program abstrac-
tion is to achieve a similar goal as in the white-box model of [CDGH24]. However, we find the
modeling via branching program to be more natural, see Section 2 for additional details.

Both our simulation approach and that of [CDGH24] employ non-uniform simulators; conse-
quently, our protocols are technically zero-knowledge only against non-uniform adversaries. While
simulating uniform Turing machines with non-uniform simulators is still a non-trivial task, it is
natural to wonder whether a uniform verifier can be simulated uniformly. It seems however that
such a uniform simulation would require developing new techniques.

Simulation Error and Space Overhead. The zero-knowledge definition of [CDGH24] only
requires the distinguishing gap (i.e., the ability to disinguish a real interaction from a simulated
one) to be any sub-constant function (i.e., o(1)). The gap actually achieved by their constructions
is not explicitly specified, but seems to be 1/polylog(n) (and their techniques are inherently limited
to a gap of at most 1/poly(n)). Thus, a malicious verifier could, with inverse-polylogarithmic
probability, distinguish a real interaction from a simulated one.

This relatively large error can be extremely problematic. Not only is the error itself non-
negligible but if one is to compose the protocol in a natural way (e.g., running it several times
on different inputs), the simulation error would quickly grow and give a meaningless guarantee.
Cormode et al. [CDGH24, Remark 4.4] point out that in the read-once setting the protocol will not
be run again on the same input, but neither their definition nor their constructions protect provers
that are involved in multiple distinct interactions.

In contrast, our zero-knowledge definition and constructions achieve negligible simulation error.
In addition, while Cormode et al. only consider malicious verifiers that use exactly the same space
as the honest verifier, our constructions allow malicious verifiers to use a larger amount of space

3Interestingly, this type of non blackbox use of the verifier is quite different from that in Barak’s celebrated
work [Bar01].
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(jumping ahead, our constructions guarantee zero-knowledge against malicious verifiers that use
quadratically more space than the honest one).

These two improvements (i.e., negligible zero-knowledge error and handling quadratic malicious
verifiers) come at a certain cost which makes our definition technically incomparable (and still, in
our opinion, much preferable). Specifically, while Cormode et al. consider malicious verifiers that
run in space that is the same as that of the honest verifier, they allow the distinguisher to use a
polynomially larger space.

In contrast, we require the distinguisher to use roughly the same amount of space as the mali-
cious verifier (i.e., quadratically more than the honest verifier). Since the distinguisher and verifier
represent different aspects of the malicious verifier (i.e., after and during the interaction, respec-
tively), we find this choice to be quite natural.

Many fundamental problems in the streaming literature derive their hardness from space con-
straints – when an algorithm has full access to the input, these problems often become trivial.
Therefore, modeling the distinguisher as a space-bounded streaming algorithm, rather than an ar-
bitrary PPT adversary, accurately captures the essence of the streaming model and its inherent
limitations.

1.2 Related Works

The core technical foundation of our zkSIP constructions lies in two novel commitment schemes.
These schemes build upon a line of research in the Bounded Storage Model (BSM), which explores
the feasibility of unconditionally secure cryptographic primitives based on adversarial storage limi-
tations [CM97, CCM98, Din01, HCR02, DHRS04, GZ19]. Like prior works, our constructions allow
for a quadratic gap between the storage capacity of the honest user and that of the adversary, a
bound that Dziembowski and Maurer [DM04] suggests may be inherent.

However, more recent work by Dodis et al. [DQW21] challenges this bound, showing that the
impossibility result of [DM04] applies to a more restrictive model than the bounded-space streaming
model. Remarkably, their construction achieves unconditional security against adversaries with
arbitrarily larger space than the honest user. Two drawbacks are that the number of communication
rounds increases linearly with (a bound on) the adversary’s space, and the scheme introduces a
correctness error. Whether their techniques can be applied in the context of zkSIP is an interesting
open question, but it seems likely that such an extension would suffer from the two aforementioned
caveats.

Note that if we allow computational cryptographic assumptions, and aim to show soundness
against computationally bounded cheating provers (i.e., provers that run in polynomial-time),
constructing zkSIPs becomes significantly easier using techniques such as Kilian’s succinct argu-
ment [Kil92]. Motivated by the incredibly rich literature that has arisen from studying the infor-
mation theoretic setting (see, e.g., [Vad99]), our focus in this work is on unconditional soundness
and zero-knowledge.

1.3 Our Results

We construct new zero-knowledge streaming protocols as described next.

zkSIP for Low-Depth NP Relations. Our main contribution is a general purpose zero-knowledge
streaming interactive proof (zkSIP) for every NP relation that can be decided by a polynomial-size
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and polylogarithmic-depth (i.e., NC) circuit.
Furthermore, as alluded to above, our protocols achieve negligible zero-knowledge and soundness

errors.

Theorem 1 (Informally stated, see Theorem 7.1). Let R be an NP relation decidable by a family
of polynomial-size polylogarithmic-depth circuits. Then, there exists a streaming interactive proof
for R with perfect completeness, negligible soundness error, honest verifier space s = polylog(n),
and polynomial communication complexity. The proof is secure against adversaries with space at
most s2−δ (for any constant δ > 0), can be simulated by ROBP simulators of similar space as the
adversary, and has a negligible zero-knowledge error. Furthermore, the prover runs in polynomial-
time given the NP witness as an auxiliary input.

We find Theorem 1 striking, as previous work only provided constructions tailored to spe-
cific problems of interest. In contrast, our work presents a general-purpose construction of zero-
knowledge protocols in the streaming setting for a very broad class of problems. This result is
highly non-trivial even when restricted to low-depth computations, and becomes even more so
when extended to non-deterministic computations.

In particular, as immediate corollaries one can derive alternate streaming zero-knowledge proofs
for all problems considered by [CDGH24]. Moreover, as discussed above, the resulting protocol also
achieves stronger notions of security (albeit uses polynomially more communication).

As another concrete example of interest, captured by Theorem 1, consider the INTERSEC-
TION problem (the complement of DISJOINTNESS). The input is (x, y) ∈ {0, 1}n × {0, 1}n
and the goal is to accept if there exists some i ∈ [n] such that xi = yi = 1. Theorem 1 yields
a streaming zero-knowledge proof for this problem in which the verifier learns only that the two
vectors intersect and nothing beyond that (in particular what is the intersection point).

zkSIP for the Polynomial Evaluation Problem (PEP). We also consider a specific problem
that was studied by [CDGH24] called the “polynomial evaluation problem”. The input in this
problem is a multilinear polynomial P : Fm → F followed by an evaluation point x ∈ Fm and
value α ∈ F.4 The goal is for the verifier to check that P (x) = α. The core challenge arises from
the fact that the point of evaluation is provided only after the polynomial has been streamed.
The interest in this problem stems from the fact that it generalizes some key problems from the
streaming literature, including the central “Index” Problem (in which the goal is, given x and then
i, to determine xi).

We give a direct protocol for PEP, which builds on the protocol of [CDGH24], but improves
several key aspects.

Theorem 2 (Informally stated, see Corollary 6.3). There exists a streaming interactive proof for
the polynomial evaluation problem (PEP) where the honest verifier’s space s as well as the total
communication complexity is polylogarithmic in the input length. The proof has perfect complete-
ness, negligible soundness error, and negligible zero-knowledge error against adversaries with space
s2−δ (for any δ > 0).

We highlight several aspects in which our construction improves upon that of [CDGH24].

4The definition of P can be extended to higher-degree polynomials. However, for clarity and ease of analysis, we
focus on multilinear polynomials in this work.
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1. Improved Communication Complexity: The protocol for the PEP by Cormode et al. re-
quires superlinear communication, whereas our protocol achieves polylogarithmic communi-
cation complexity. This resolves [CDGH24, Open Problem 2].5

2. Stronger Security Guarantees: The protocols of [CDGH24] have an o(1) completeness,
soundness and zero-knowledge errors. The o(1) terms are not specified explicitly, but in
the current constructions are 1/polylog(n) and it seems that their approach is fundametally
limited at 1/poly(n) error.

In contrast, our protocols have no completeness error and negligible soundness and zero-
knowledge error. This resolves [CDGH24, Open Problem 4].

3. Simpler and Modular Constructions: Our protocols are designed to be modular, using
our commitment schemes as black boxes. This modularity simplifies both the construction
and analysis of the protocols, enhancing their understandability. The high-level structure is
borrowed from [CDGH24], but the actual implementation of their strategy is tailored to the
specific commitment schemes that they use.

1.3.1 New Streaming Commitment Schemes

The security of our zkSIPs relies on two novel streaming commitment constructions that we con-
struct, and may be of independent interest. Our commitment schemes are quite different from
analogous schemes presented in [CDGH24], and the improved parameters that we achieve in The-
orem 2 stem from the improved commitment schemes.

Both of our commitment protocols achieve hiding and binding with information-theoretic se-
curity, without relying on any complexity-theoretic assumptions (such as the existence of one-way
functions). Instead, they depend only on the space limitations imposed on one of the parties by
the underlying streaming model. We elaborate on these commitments next.

Statistically Hiding Streaming Commitment. This interactive protocol allows a streaming
sender to commit to a value with a streaming receiver. The scheme is secure against unbounded
malicious receivers and against malicious senders whose space is at most quadratic relative to that
of an honest sender.

Theorem 3 (Informally stated, see Theorem 4.2). Let n be the security parameter and let ϵ > 0.
There exists an interactive, space-bounded binding, statistically hiding, streaming string commit-
ment, where the sender and receiver require space O(n) and O(n1+ϵ), respectively. The scheme
has negligible binding error against adversarial senders with space at most O(n2), and a negligible
hiding error against unbounded receivers. The communication complexity is O(n2).

Statistically Binding Linearly Homomorphic Streaming Commitment. This non-interactive
protocol allows a sender to commit to a vector v and later de-commit to a linear function of v, as
specified by the receiver. The scheme guarantees negligible hiding and binding errors, even against
receivers with quadratic space and unbounded senders.

5Here and below, we remind the reader that our model of zero-knowledge streaming algorithm is technically
incomparable to that of [CDGH24]. Still we believe that our model captures the underlying questions and resolves
them in a satisfactory way.
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Theorem 4 (Informally stated, see Theorem 5.8). Let n be the security parameter, and let ϵ > 0.
Then, there exists a linearly homomorphic, statistically binding, streaming commitment, where
the sender and receiver require space O(n1+ϵ). The scheme has negligible hiding error against
adversarial receivers with space at most O(n2), and a negligible binding error against unbounded
senders. The communication complexity is O(n2).

1.4 Organization

We begin in Section 2 with the technical overview. In Section 3, we formally introduce the computa-
tional models used throughout the paper, define streaming interactive proofs and zero-knowledge in
the streaming setting. Sections 4 and 5 introduce the definitions and constructions of our streaming
commitment schemes, which form the core building blocks for the zkSIPs for PEP and low-depth
NP relations. Finally, Sections 6 and 7 present these protocols and prove their correctness.

2 Technical Overview

To present our techniques, it is instructive to first present our improved protocol for the Polynomial
Evaluation Problem, also known as PEP (see Theorem 2). Recall that in PEP, the input is a
multivariate low degree polynomial P : Fm → F (over a sufficiently large finite field F), a point
x ∈ Fm and a value α ∈ F and the goal is to verify that P (x) = α. In the streaming setting this is
challenging, since the streaming algorithm first sees P and only then sees the evaluation point x.

Motivated by an easy reduction from the central Index Problem, PEP was first introduced
in [CCM+19], who also showed a streaming interactive protocol for it (which is not zero-knowledge).
Cormode et al. [CDGH24] developed a zero-knowledge variant by integrating commitment schemes
into the original protocol. In this work, we improve upon their zero-knowledge construction by
constructing new commitment schemes tailored to the streaming model, which we incorporate into
the protocol of [CDGH24]. Later, we show how we then further extend the techniques to construct
the general purpose protocol of Theorem 1.

We start by reviewing the known protocols for PEP and then proceed to describe our improve-
ments. In Sections 2.1 and 2.2, we introduce our new commitment constructions, and in Section 2.4,
we detail how these techniques are used to construct a zkSIP for every low-depth NP relation.

A Streaming Interactive Proof for PEP. In this protocol, the prover and verifier stream (i.e.,
read symbol-by-symbol) the input simultaneously. While the input is being streamed, the verifier
computes the value of the polynomial P : Fm → F at a hidden random point r ∈ Fm. Once the
input stream is complete the verifier gets the second part of the input, which is the point x ∈ Fm

and value α (recall that it needs to verify that P (x) = α). The verifier sends to the prover a line
L : F→ Fm that passes through x at 0 and through r at some random point µ ∈ F (i.e., L(0) = x
and L(µ) = r). The prover responds with the restriction of P to L, which results in a univariate
polynomial g(·) = P (L(·)). The verifier then checks that g(0) = α and that g(µ) = P (r).

Since the prover is unaware of r and µ, any attempt to deceive the verifier – by sending a
polynomial g′ ̸= g when P (x) ̸= α – can be easily detected by the verifier. To see this, recall that if
P has total degree d then both g and g′ are distinct degree-d univariate polynomials and so can agree
on no more than d points. Thus, if g′ ̸= g, the probability that g′(µ) = g(µ) = P (L(µ)) = P (r) is
very small. As a result, the verifier will detect the inconsistency with high probability and reject
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the prover’s response – thus preserving the soundness of the protocol. This means that the prover
must compute g truthfully, and the verifier can check that g(0) = α.

However, this protocol is not zero-knowledge. For example, Consider a verifier who, given a
PEP instance (P, x, α), wants to determine the value of the polynomial P at x + 1. Evaluating
P at x + 1 is at least as hard as evaluating it at x, which is not feasible for a streaming verifier.
Now, consider the following attack on the protocol described above. While streaming the input,
the verifier ignores P and only records the value of x at the end of the stream. Then, it sends the
prover the line L that connects x and x + 1. The prover responds with the restriction of P to L,
thereby revealing the value of P at x + 1 to the verifier. Thus, the verifier learns information it
could not have obtained on its own, demonstrating that the protocol is not zero-knowledge. Note
that while this demonstrates that the protocol is not zero-knowledge against adversarial attacks, it
is likely that even the honest verifier learns from the interaction, albeit inadvertently.

A Zero-Knowledge Protocol for PEP. We outline the method used in [CDGH24] to transform
the above protocol into a zkSIP. Their approach follows a well-established protocol structure using
commitments, originally introduced in [GK96] for interactive proofs in the standard model, and
proceeds as follows.

• Verifier’s Commitment. The verifier begins by committing to all the randomness it will use
throughout the protocol.

• Prover’s Commitment. The prover then sends a commitment to a message.

• Verifier’s De-commitment. The verifier de-commits its randomness.

• Prover’s De-commitment. After verifying the verifier’s de-commitment, the prover de-commits
the previously committed message.

• Verifier’s Output: The verifier uses the de-committed information to compute its output.

In the PEP protocol, before the input stream begins, the verifier commits to the point r where
it will evaluate the input polynomial. After the stream is completed, the verifier sends to the
prover the line L connecting x and r, and the prover responds with a commitment to the restricted
polynomial g = P |L. The verifier then de-commits to r, and if the de-committed value is consistent
with L, the prover de-commits to g, revealing the values the verifier needs to perform its checks.
The verifier’s commitment to r ensures two things: first, the verifier cannot retroactively choose a
line L that aligns with the input as part of an attack, and second, the value of r remains hidden
from the prover until it has already committed to g, which guarantees the soundness of the protocol.

Unfortunately, a somewhat subtle detail in the protocol described above prevents us from being
able to prove that it adheres to the definition of zero-knowledge in the streaming model despite the
limitations imposed on the verifier. Note that at the end of the protocol, the prover reveals the
polynomial g, which includes evaluations of many other points aside from x and r. While these
points are on a line that cannot be predicted by the verifier (as it is unaware of x at the time of
choosing r) and it may seem that learning the points on a fairly random line is something that the
verifier can do by itself. However, the fact that the line necessarily passes through x casts doubt
on the possibility that the verifier can indeed learn the points on this line.

To circumvent this, we have the prover commit to g using a special commitment scheme, where
it can de-commit to specific points in g and not reveal the entire polynomial. This way, the only
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points revealed to the verifier are the points from the input whose values it already knows, i.e. P (x)
and P (r).

To conclude the discussion so far, the strength of the PEP protocol is fundamentally tied to
the robustness of its commitment schemes. Cormode et al. instantiate the above framework using
commitment schemes that they develop. In this work we substantially improve these commitment
schemes, which will lead us to the improved PEP protocol (and will also be used in our protocol
for general purpose computation). Our main contribution lies in constructing more secure and
efficient commitment schemes, which form the backbone of our improved protocol. These stronger
commitments not only enhance security but also reduce communication complexity.

We next describe our new commitment constructions and then return to establishing security
of the PEP protocol.

2.1 Statistically Hiding Streaming Commitment

We present our construction for a statistically hiding streaming commitment. Recall that in such a
commitment the hiding property should hold unconditionally, whereas the binding condition need
only hold for a sender with bounded memory. The commitment constructions presented in this
and the subsequent section draw inspiration from the work of [GZ19]; however, our analysis takes
a markedly different approach.

We proceed to the implementation of our commitment scheme, focusing for simplicity on the
case of bit commitment (i.e., committing to just a single bit). Let λ denote the security parameter.
We shall aim to construct a scheme in which the honest parties use roughly λ space, but security
holds against adversaries that use roughly λ2 space.

The sender draws a random vector s ∈ {0, 1}4λ, which serves as the commitment key. The
receiver sends a matrix A ∈ {0, 1}4λ×λ as a stream to the sender row by row. The sender computes
α = sTA ∈ {0, 1}λ. Notice this can be done in small space by computing sTA =

∑
i∈[4λ] si · ai as

an accumulative sum during the streaming of A, where si is the i-th bit of s and ai is the i-th row
of A. Now observe that:

1. A is too large for the sender to hold in memory in its entirety, and

2. The vector α = sTA ∈ {0, 1}λ is shorter than s.

To commit to a bit b ∈ {0, 1}, the sender sends (r, α, β), where r ∈ {0, 1}4λ is a random vector
of the same length as the key s, and β = ⟨s, r⟩ ⊕ b (where ⟨x, y⟩ =

∑
i xi · yi (mod 2) denotes the

inner-product operator).
To de-commit, the sender sends s, and the receiver verifies that s is consistent with α and

computes the value of b as β ⊕ ⟨s, r⟩. We first show that the construction satisfies the hiding and
binding properties of a commitment, and then explain how the receiver performs the consistency
check.

The statistical hiding property of the commitment results from the fact that α is shorter than
s, and so the entropy of s is high from the receiver’s perspective. As such, by the Leftover Hash
Lemma [HILL99], the statistical distance between (r, α, β) and (r, α, ρ), where ρ is a random bit,
is small, and the latter contains no information about b.

Observe that to break the binding property, the sender would need to find s ̸= s′ such that
α = sTA = (s′)TA, which is equivalent to identifying a vector s′′ such that (s′′)TA = 0. The binding

11



property of the commitment, therefore, stems from the challenge the sender faces in locating a vector
within the kernel of A, given streaming access to A.

We prove that a space-bounded machine cannot find such a vector (with non-negligible probabil-
ity) via a series of reductions from the problem of solving systems of linear equations. Eventually,
we utilize Raz’s [Raz18] celebrated result that bounded width branching programs cannot solve
linear equations (on average).

Observe that a straightforward implementation of the consistency check, in which the receiver
verifies that α = sTA, would require the receiver to store the entire matrix A. However, since
we intend to use this commitment scheme in our zero-knowledge constructions, it is important to
simulate both the sender and the receiver within limited space, which means storing the entire
matrix A is not feasible.

To circumvent this issue, we have the receiver draw a small matrix T ∈ {0, 1}λ×τ (where τ is a
secondary security parameter, significantly smaller than λ), and as it streams A to the sender, it
computes AT ∈ {0, 1}λ×τ , which is significantly smaller than A. When the sender sends α = sTA,
the receiver computes αT , and when the sender de-commits by sending the key s, the receiver
checks that αT = sTAT , which can be done in small space.

As noted earlier, breaking the binding of the commitment requires the sender to locate a vector
in the kernel (null-space) of a matrix. With our recent modification, this matrix has an expanded
null-space because, although the number of rows in AT and A is similar, AT has fewer columns
than A. This enlargement of the null-space makes it easier for a malicious sender to find such a
vector, thereby weakening the binding property of the commitment.

This situation highlights the trade-off between the receiver’s space requirements and the binding
security of the scheme, which is adjustable through our construction’s parameters. By carefully
selecting these parameters, we can achieve a negligible binding error while maintaining minimal
space requirements for the receiver.

To extend from a single-bit commitment to an ℓ-bit string commitment, one approach is to
commit bit-by-bit. However, to avoid streaming a new matrix A for each commitment, we adopt
a more efficient method. We use a matrix S ∈ {0, 1}ℓ×4λ as the key, with each row of S acting as
a distinct bit key s. This allows us to commit to an entire ℓ-bit vector using a single matrix A.
However, because the sender needs to store the entire matrix S for de-commitment, it is important
to keep S at a manageable size.

2.2 Statistically Binding Streaming Commitment

Our second commitment construction is a linearly homomorphic vector commitment, allowing the
sender to commit to a vector v ∈ {0, 1}ℓ and then selectively de-commit to a linear function
u = L(v) ∈ {0, 1}j of the vector, revealing no information beyond the fact that the input belongs
to the subspace L−1(u). Binding should be statistical and hold even with respect to an unbounded
sender.

We proceed to describe our construction of the statistically binding linearly homomorphic com-
mitment in more detail.

Denote the security parameter by λ and let ℓ≪ λ denote the length of messages to which the
sender wants to commit. The sender starts by generating a random matrix K ∈ {0, 1}λ×ℓ whose
number of columns is equal to the length of the vector v ∈ {0, 1}ℓ to which the sender commits. The
sender streams a large, random matrix A ∈ {0, 1}λ×λ to the receiver, computing AK ∈ {0, 1}λ×ℓ
simultaneously during the streaming process. The space-bounded receiver, who cannot store the
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entirety of A, chooses a small secret matrix T ∈ {0, 1}τ×λ (where once again, τ is a secondary
security parameter, much smaller than λ), and while streaming A it computes TA ∈ {0, 1}τ×λ.
After the streaming of A has completed, the sender sends as a stream to the receiver the tuple
(r,K, β), where r ∈ {0, 1}λ is a random vector and β = rTAK + vT ∈ {0, 1}ℓ. The receiver stores
r, β and computes TAK ∈ {0, 1}τ×ℓ.

To de-commit to vTL, where L ∈ {0, 1}ℓ×j is the matrix representing the linear function ap-
plied to the committed vector, the sender transmits AKL ∈ {0, 1}λ×j . The receiver checks that
T (AKL) = (TAK)L and recovers vTL by computing βL− rTAKL ∈ {0, 1}j . Note that L can be
known to both parties in advance or sent by the receiver prior to the de-commitment stage.

Notice that the de-commitment key is given by AK, with both A and K sent to the receiver
during the commit stage. Despite this, the commitment remains hiding because the receiver is
space-bounded and cannot store all of A. Thus, intuitively, after streaming K, the entropy of the
key AK, from the receiver’s perspective, remains high.

In our analysis, we show that given any bounded-space, malicious receiver strategy, the entropy
of AK is high in expectation over A, and so, using an analysis inspired by the proof of the Leftover
Hash Lemma [HILL99], we show that the receiver’s view of the commitment is statistically close
to a random string.

Recall that the hiding requirement for this commitment is stronger than the standard hiding
property, as the scheme must ensure that after the de-commitment, no information regarding the
committed vector’s projection on the subspace orthogonal to L has leaked. To prove that our
construction satisfies this property, we show a reduction from the conventional hiding property.
Specifically, if there exists an adversary that can break the hiding property of the commitment to a
vector of length ℓ, after receiving a de-commitment to its projection on a subspace of rank j, then
we can construct an adversary that would break the hiding property of the commitment prior to
the de-commitment on vectors of length ℓ− j.

The binding property of the commitment is ensured by the fact that the matrix T , selected
by the receiver, remains concealed from the sender throughout the protocol. Compromising this
binding would require finding a matrix with the dimensions of AKL that lies within the null-space
of T , which is infeasible from an information-theoretic perspective.

Similar to the statistically hiding commitment, there is a trade-off between the receiver’s storage
capacity and the binding error of the commitment. By carefully choosing the parameters, we can
minimize the binding error while maintaining minimal space requirements for the receiver.

Polynomial Commitment. Building on the foundation of the linearly homomorphic commit-
ment, we construct a polynomial commitment, where the sender commits to a polynomial and can
later de-commit to evaluations of the polynomial at specific points based on the receiver’s queries.
This polynomial commitment is essentially a reinterpretation of the linearly homomorphic commit-
ment, with the committed vector representing the polynomial (by either evaluations or coefficients)
and polynomial evaluations corresponding to linear functions of this vector.

Note that the linearly homomorphic commitment is defined over the binary field. To use it as
a polynomial commitment for polynomials over larger fields, we focus on extension fields of the
binary field. This approach works because a linear transformation on a vector over an extension
field can be represented as a linear transformation on the binary representation of the vector over
the binary field. See Section 5.2 for details.
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2.3 Using Commitments for Zero-Knowledge

Consider the PEP protocol described in Section 2 above, and observe that the final prover message
includes the value g(µ) = P (r) where P is the input polynomial. A simulator sending an incorrect
value would lead the verifier to reject, enabling a distinguisher to easily differentiate between the
real execution and the simulated one. Thus, the simulator must be able to reproduce the value
P (r) during the simulation. The challenge is that the verifier only reveals r after the input was
streamed.

The one power that the simulator has over the prover, is that it has the code (and randomness)
of the verifier. So for example, for a rather “tame” verifier that just copies r from its random string,
the simulator can select r by itself and place it in the correct position in the verifier’s random string.

However, when dealing with an arbitrary malicious verifier, the selection of the value r might
involve an extremely complex function that is obfuscated within its code. This is where we will
take advantage of the fact that we model our simulator as a read-once branching program.

Recall that an ROBP can effectively compute any function that does not depend on the input.
Thus, we need to show that there exists a well-defined function that maps a state in the simulation
prior to the input stream, to a candidate value r′, such that, with high probability, r′ = r. If the
commitment were statistically binding, we could just argue that the commitment fully determines
the string r. Unfortunately, as the commitment is only space-bounded binding, the committed
value is not determined just by the commitment.

Thus, we would like to use the code of the verifier to extract the value of r, by continuing its
execution. The challenge is that in order to continue the execution we need to provide the verifier
with the input, but the function that we are currently computing cannot access the input.

In order to construct such a function, we propose the following. Consider a table where each
column represents a simulation state just after the commitment to r, and each row represents a pos-
sible interactive protocol transcript that follows the commitment up to the point of de-commitment.
Note that, in particular, the rows encompass every possible input to the protocol. Each entry in the
table will contain the value to which the verifier de-commits, based on the initial state represented
by the column and the protocol transcript represented by the row. The objective is to assign each
column of the table (which is our function’s input) a single value r′, such that for every given row,
with high probability over selecting a column, r′ is consistent with the value of the corresponding
table entry.

We define the function using the following (inefficient) procedure:

1. Populate the table as outlined earlier by executing the protocol for every possible input and
randomness.

2. Carefully select a small subset of rows I from the table, and determine the value of r′ for each
column based on one of the rows in I.

We use the binding property of the commitment to show that this construction meets its ob-
jective. Specifically, with high probability over the execution of the commitment to r, it holds
that r′ = r, independent of the actual input. For a detailed description and analysis, refer to
Section 6.2.1.
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2.4 Zero-Knowledge for Low-Depth NP relations

We proceed to describe our proof of Theorem 1 – a general purpose zero-knowledge streaming
interactive proof for any bounded-depth NP relation. Our strategy for doing so is to start with
an existing zero-knowledge proof in a different model, and show how to compile it, using the
commitment schemes described above, into a zero-knowledge proof in the bounded streaming model.

More specifically, the model that we consider is that of an interactive PCP (IPCP) [KR08]. A
proof-system in the IPCP model consists of a prover that first sends a PCP to which the verifier
has oracle access. The prover and verifier then exchange messages (like in an interactive proof),
and finally, based on its own randomness, the input, the prover’s messages, and the answers to its
PCP queries, the verifier decides whether to accept or reject. We will use an IPCP construction,
due to Chiesa et al. [CFS17] (building on the doubly-efficient interactive proof of [GKR15]) which
has a few properties that will be crucial for us:

1. The protocol has a verifier and simulator that use small space.

2. The interaction is of the public-coin form.

3. The verifier is “holographic” which, loosely speaking, means that it only needs to compute
linear functions of the input (specifically evaluating the input’s low-degree extension).

4. Lastly, the queries that verifier makes to both the input and PCP are non-adaptive – their
locations depend only on the verifier’s randomness (and not on responses to previous queries
nor any other message sent by the prover).

This protocol structure adapts naturally to the streaming setting. As the input is streamed,
the streaming verifier can compute the relevant linear functions that it needs to simulate. Instead
of providing the PCP as an oracle-accessible string, the streaming prover streams the PCP directly
to the verifier, who then records values at the query locations specified by the IPCP verifier. The
interactive component and the verifier’s decision process remain unchanged.

The zero-knowledge property in the IPCP constructions of [CFS17] hinges on a key aspect of
algebraic complexity: as long as the number of verifier’s queries to the PCP remains below a certain
threshold, the values at unqueried points retain randomness. Thus, limiting the number of queries,
even that of a malicious verifier, is crucial for preserving the protocol’s zero-knowledge property.

Therefore, while it is clear that the above straightforward transformation of the IPCP protocol
to a streaming setting preserves the original protocol’s completeness and soundness, it also becomes
evident that the resulting protocol loses its zero-knowledge property–even if the original IPCP was
zero-knowledge. This loss occurs because, in the streaming model, the verifier has full access to
the PCP, and the verifier’s limited space and method of access is not enough to prevent it from
extracting valuable information.

To address this issue, we incorporate our commitment schemes into the protocol similarly to
our zero-knowledge streaming interactive proof for PEP. Specifically, rather than sending the PCP
in the clear, the prover sends a commitment to the PCP, committing to each symbol individually.
When the verifier issues a query, the prover responds by de-committing only to the specified queried
locations. Due to the commitment’s hiding property, this approach ensures that no information
beyond the de-committed values is revealed.

This method naturally limits the number of queries the verifier can make, as the prover supplies
the responses, eliminating the need to impose artificial restrictions on a malicious verifier, such
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as a query limit. This approach allows us to leverage the zero-knowledge guarantees of a query-
bounded IPCP verifier without adding extra constraints. From a soundness perspective, the binding
property of the commitment ensures that the prover cannot modify the PCP values after learning
the verifier’s query locations.

This concludes the high-level strategy. We proceed to a more detailed description below.

The IPCP-to-Streaming Compiler. Given a k-round IPCP ⟨PIPCP,VIPCP⟩, we construct a
streaming protocol ⟨PS,VS⟩, where PS and VS will use PIPCP and VIPCP, respectively, as black
boxes.

The verifier VS sets the randomness r = {ri}ki=1 for VIPCP and, as in our protocol for PEP,
commits to r in the first stage using a statistically hiding streaming commitment. Since we consider
a public-coin, non-adaptive verifier, the randomness r determines the query locations for both the
input and the PCP of the IPCP verifier. Consequently, we assume that VS knows the query points
that VIPCP will use.

The input is then streamed. During the streaming of the input, VS will save the values from
the low-degree extension of the input in the locations where VIPCP will query during the protocol.
Following the input stream, PS sends to VS a statistically binding streaming commitment to the
PCP.

The streaming prover and verifier then simulate the interactive phase of the IPCP as follows.
In each round i ∈ [k] of the interaction, the verifier VS sends a de-commitment to the randomness
ri to which it committed in the beginning. The streaming prover PS forwards ri to PIPCP, which
responds with the next message βi and sends it to the verifier.

Since the verifier’s randomness determines the PCP query locations, the prover knows all query
points by the end of the IPCP interaction and sends a de-commitment to VS for each relevant PCP
evaluation. Consequently, when VIPCP issues its queries, it receives the answers directly from VS.

The Zero-Knowledge Simulator. Our goal is to demonstrate that the compiler preserves zero-
knowledge; that is, if the original IPCP protocol is zero-knowledge, then the resulting streaming
proof also retains zero-knowledge. Let SIPCP denote the zero-knowledge simulator for the IPCP
protocol. We construct a streaming simulator that interacts with a malicious streaming verifier V∗S ,
utilizing SIPCP as a component.

The simulator first engages with V∗S to obtain the commitments to {ri}ki=1, which correspond
to the messages from V∗IPCP during the interactive phase of the IPCP protocol. By applying the
same extraction technique used in the PEP simulator, it retrieves the values {r′i}ki=1, which, with
high probability, satisfy r′i = ri for all i ∈ [k]. These extracted values determine two sets of query
points: Ipcp, where the IPCP verifier queries the PCP, and Iinp, where it queries the low-degree
extension of the input. During the input stream, the simulator computes and stores the values of
the input’s low-degree extension at the points in Iinp.

The simulator now emulates SIPCP as follows. Whenever SIPCP expects the i-th message from
V∗IPCP, the simulator supplies the previously extracted value r′i. Each time SIPCP provides an answer
to a PCP query or a simulated prover message βi, the simulator records that value.

Using the stored values from the answers to the PCP queries, the simulator generates commit-
ments to the values of a PCP π that match all responses given by SIPCP to the queries from V∗IPCP.
Note that all other values in the PCP can be arbitrary, and the simulator does not need to store
commitment data for them, as it will not de-commit to those values later in the simulation.
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After simulating the PCP commitment, the simulator proceeds to emulate the interactive phase
of the streaming protocol as follows. For each i ∈ [k], the simulator receives the de-commitment
from V∗S for ri. If V∗S fails to de-commit or if ri ̸= r′i, the simulation is aborted. Otherwise, the
simulator records βi on the output tape. In the final step, the simulator writes to the output tape
the de-commitments for all PCP points in Ipcp.

Extending to Non-deterministic Low-depth Circuits. The result by Chiesa et al. [CFS17,
Theorem 11.1] provides a zero-knowledge IPCP for the GKR protocol, covering languages in NC.
We observe that this result can be extended to an IPCP for NP with similar properties.

The main idea is straightforward: the extension to NP follows naturally once we recognize that
the verifier in the protocol for NC only requires access to the low-degree extension of the input to
the circuit. In the case of NP, the input to the circuit also includes the witness, which must remain
hidden from the verifier in a zero-knowledge setting.

Therefore, it is natural for the prover to encode the witness and integrate it into the PCP. Special
attention must be given to encoding the witness to ensure that the low-degree extension does not
reveal any confidential information. To achieve this, we utilize techniques from [BSCF+17, CFS17].

Once the IPCP for an NP relation is established, we can apply our compiler to the protocol to
obtain the desired streaming protocol.

3 Streaming Zero-Knowledge: Models and Definitions

3.1 Computational Models

In this work we consider two computational models that naturally capture a bounded verifier in the
interactive streaming model, a read-once interactive Turing machine and a read-once interactive
branching program.

Read-Once Interactive Turing Machine (ROTM). A read-once interactive Turing machine
with space s(n) consists of a constant size state automaton and has access to the following five
tapes:

1. Input tape. Read-only tape, reading head starts at the left-most cell and may only move
right. At the start of the protocol, the input x ∈ {0, 1}n is written on this tape.

2. Randomness tape. Read-only tape, reading head starts at the left-most cell and may only
move right. At the start of the protocol, a string of the appropriate length is drawn at random
and written on this tape.

3. Message-receive tape. Read-only tape, reading head starts at the left-most cell and may only
move right. Each received message is written to the right of the previous message.

4. Message-send tape. Write-only tape, reading head starts at the left-most cell and may only
move right.

5. Work tape. Read and write tape. The tape consists of s cells, and the head may move left
and right.
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The input tape, the message-receive tape, and the message-send tape are mutual to both interacting
parties (where the message-receive tape of one party is the message-send tape of the other and vise
versa). Each next bit in those tapes will be written/read simultaneously by both parties when
both parties reach the appropriate state.6 The computation halts when the machine reaches one of
two halting states: Accept or Reject.7 Note that at each computation step, the machine accesses
(reads/writes) only a single tape.

In this work, we analyze streaming algorithms and protocols, where the machine is constrained
by limited memory and cannot store the entire input. Consequently, our primary focus is on the
machine’s space complexity, which, in the ROTM model, corresponds to the number of cells on
the work tape. Another important resource in interactive protocols is communication complexity.
In the context of the ROTM model, this is measured as the total length of the message-read and
message-write tapes. These two factors – space and communication complexity – are central to our
study of efficient protocols under constrained resources.

Other resources such as the time, rounds, and randomness complexities are of secondary im-
portance in this model. Nevertheless, we aim for our constructions to be efficient in these measures
as well.

Read-Once Interactive Branching Program (ROBP). A read-once branching program P
is a layered directed graph associated with a binary read-only tape of length n. The graph consists
of n edge layers. The edges in the first layer represent the outgoing edges from the start node s,
while the edges in the n-th layer lead into one of two final nodes, ta (accept) or tr (reject). Each
layer i of the graph is associated with the i-th cell of the read-only tape, and the edges are labeled
either 0 or 1.8

For a binary string σ = σ1 . . . σn, a corresponding path in the graph starts at the node s and,
for each layer i, follows the edge labeled by σi. We say that P accepts σ if the path for σ terminates
at ta.

A read-once randomized branching program is a branching program where the read-only tape
contains a string pair (x, r) where x is the input and r is a random string. The bits of x and r
may be interwoven with one another in a predetermined manner, yet maintain their internal order.
We say that P accepts x with probability p if P accepts (x, r) with probability p over a random
selection of the string r.

A k-round read-once interactive branching program is a randomized branching program where
the read-only tape contains the string tuple (x, r, {βi}ki=1) where x is the input, r is the random
string and {βi}ki=1 is a set of k messages received from an external party E. The bits of x, r, {βi}ki=1

may be interwoven into one another. In the beginning of the computation only x, r are written on
the tape and blank spaces are left for the β’s. There are k+1 graph layers which are message-send
layers, all of whose nodes include a message string. Upon arrival on the i-th message-send layer,
the message in the node is sent to E, and the bits of βi sent from E appear on the read-only tape.
Note that the first and last messages of P may be empty.

6This prevents situations such as that one party reads the input and then sends a message, where the other party
waits for the message and only then reads the input.

7This definition can easily be extended to a machine that outputs a string by adding a write-only output tape;
however, we do not utilize this extension in this work.

8Read-Once Branching Programs (ROBPs) are typically defined in a more general manner, where they are not
necessarily layered. However, the construction described here corresponds to an oblivious, layered ROBP, also known
as an Ordered Binary Decision Diagram (OBDD). For simplicity, we will refer to this as an ROBP throughout.
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In this work we also use a non-interactive read-once randomized branching program that outputs
a string. This model also has an output tape and some graph nodes may include a string. When
reaching a node with a string in the computation path, the string is concatenated to the current
content of the output tape. The output of the program is the content of the output tape at the
end of the program.

Note that the width of an ROBP, defined as the maximum number of nodes in any layer, repre-
sents the number of possible states the machine can be in after reading each input bit. Therefore,
limiting the width of an ROBP effectively restricts its available memory, analogous to constraining
the size of the work-tape of the ROTM. Since this work focuses on small-space algorithms, we
consider narrow-width ROBPs as a fitting model to capture these space limitations. Intuitively,
and this will be established in Lemma 3.3, one should think of the “space” of a ROBP computation
as logarithmic in the ROBP’s width.

Remark 3.1 (ROBP-ROTM Interaction in Protocols). Throughout this work, we sometimes con-
sider cases where one party in the interaction is a ROTM and the other is a ROBP. In this case,
each input bit will be read simultaneously by both parties, and each bit that the ROTM writes on the
message-send tape is simultaneously read by the ROBP. When the ROBP reaches a message-send
layer, the message in the node is written on the message-receive tape of the ROTM, and the ROTM
may not access the input tape or the message send tape until reading the message from the ROBP
in full.

Remark 3.2 (Running an ROBP as a sub-routine). We will sometimes consider a ROBP A that
invokes another ROBP P as a sub-routine. When doing so, we mean that the program P is simply
hardcoded within the description of A.

Let wA represent the width required by A to handle computations outside the scope of the sim-
ulation (e.g., processing the output of the simulated program), and let wP denote the width of the
simulated program itself. It follows straightforwardly that the total width required by A is at most
wA · wP .

The Power of ROBP vs ROTM. An ROBP is a non-uniform model of computation, consisting
of a family of programs designed for specific input lengths. Its power lies in its ability to compute
functions of unbounded complexity after reading each bit of the input, provided that the result of
the computation has small size (logarithmic in the ROBP’s width). For instance, the transition
between two adjacent nodes in the ROBP’s state graph can represent any two (short) states of a
ROTM’s work tape, even if the ROTM would require substantial computational effort to transition
between those states, potentially passing through much longer intermediate states. This allows
the ROBP to compute virtually any function in order to transition between states, as long as the
computation depends only on the current state and the single next input symbol that is read (and
the result remains compact).

The relationship between the space of a ROTM and the width of a ROBP is captured in the
following lemma.

Lemma 3.3. Let L be decidable by an ROTM M with space s = s(n). Then, L is decidable by a
ROBP with layer width 2s+log(s)+log(c), where c is the number of states in the automaton of M .

Proof. Construct a ROBP P where the nodes in each edge layer are all the possible configurations
of M . There are exactly c · s · 2s such configurations. Connect each node in a node layer to the two
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nodes in the following node layer that represent the state of M just before reading the next input
(or randomness or message from other party) bit.

All of our constructions feature bounded-space verifiers using the weaker model of ROTMs,
which given Lemma 3.3 is preferable due to their simplicity and uniformity. However, for security
purposes, we aim to defend against adversaries modeled as space-bounded ROBPs, which, as shown
by Lemma 3.3, is a stronger adversarial model and thus offers a better security guarantee. In the
context of zero-knowledge proofs we therefore model our malicious verifiers as ROBP. This stronger
security does introduce the requirement that our simulators must also operate within the constraints
of space-bounded ROBPs.

Still, one might wonder if for malicious verifiers that are modeled as Turing machines, it is
possible to achieve simulation via a Turing machine. Both our work and the work of Cormode
et al. do make use of the power of a non-uniform computational model and we leave the above as
an interesting open question.

Unless explicitly mentioned, any construction of a “streaming algorithm with space at most
s” refers to a construction in the ROTM model, which by the lemma above can be executed by
a ROBP with width at most 2s+O(log(s)). Similarly, by Lemma 3.3, any upper bound on ROBP’s
with width at most 2s+O(log(s)), also applies on a ROTM with space s. To simplify notation, when
we refer to an ROBP with space s, we mean an ROBP with width 2s.

3.2 Streaming Interactive Proofs

A streaming interactive protocol is a protocol between a computationally unbounded prover P, and
a bounded space, probabilistic verifier V. The input is read once simultaneously by both parties in
a streaming fashion, and the prover and the verifier interact by exchanging messages. At the end
of the interaction the verifier produces an output.

Definition 3.4. A streaming interactive proof with soundness error ϵ = ϵ(|x|) for a language L is
a streaming interactive protocol where the prover and verifier get as input x ∈ {0, 1}∗ and satisfies
the following conditions:

• Perfect Completeness: if x ∈ L, then V, following the interaction with P, must accept
with probability 1.

• ϵ-Soundness: if x /∈ L, then after interacting with any prover P∗, the verifier V must accept
with probability at most ϵ(|x|).

Remark 3.5. In the classical interactive proof setting, soundness error is often bounded by a fixed
constant, and this error can be reduced by repeating the protocol a polynomial number of times and
deciding based on the majority outcome. However, in this work, we do not consider repetition and
instead focus on analyzing the soundness error for a single execution of the protocol. Sequential
repetition is not feasible in the streaming model, as the input is streamed only once, and we do not
consider parallel repetition due to its impact on space complexity and its potential to compromise
zero-knowledge.

3.3 Zero-Knowledge in Streaming Interactive Proofs

We formally define zero-knowledge in the streaming model. In order to do so, we first define the
view of a streaming algorithm. The view of a ROTM is every bit accessed on the read tapes of
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the machine, i.e. the input tape, the randomness tape, and the message-receive tape in the order
in which it was accessed. The view of a ROBP is the content on the read tape of the machine
(which includes the input, randomness and the received messages in the order they are read). Note
that the outgoing messages and output of the machines are a deterministic function of the view as
defined above, and thus need not be included in the view.

We define streaming zero-knowledge as follows.

Definition 3.6. Let n denote the length of the input x, and let ⟨P,V⟩ be a streaming interactive
proof for a language L where V has space sV . We say that ⟨P,V⟩ is zero-knowledge with error
δ = δ(n) against adversaries with space s = s(n) if for all streaming verifiers V∗ with space at most
s there exists an ROBP streaming simulator S with space at most sS = s+O(sV), such that for all
streaming distinguishers D with space at most sD = sS +O(sV) and all x ∈ L,∣∣Pr[D(view(⟨P,V∗⟩)(x)) = 1]− Pr[D(S(x)) = 1]

∣∣ ≤ δ,

where view(⟨P,V∗⟩)(x) is the verifier’s view when interacting with the prover on input x, and S(x)
is the output of the simulator.

The rationale for setting the space constraints for the participating agents is as follows. We
ensure that the simulator has enough space to execute both the malicious and honest verifiers, and
we also allocate sufficient space for the distinguisher to run the simulator.

4 Statistically Hiding Streaming Commitment

In this section we construct a commitment scheme that will be used later in our streaming zero-
knowledge protocols. The commitment is statistically hiding and is binding with respect to any
small space algorithm (modeled as a read-once branching program (ROBP), see Section 3.1). Our
construction utilizes a celebrated result by Raz [Raz18], that solving a system of linear equations
is hard for algorithms with limited space.

We first define statistically hiding streaming commitments:

Definition 4.1. Let λ denote the security parameter. Let ℓ be the length of the string to which
we wish to commit. An

(
sS(λ, ℓ), sR(λ, ℓ), sb(λ), δh(λ), δb(λ)

)
interactive, space-bounded binding,

statistically hiding, streaming string commitment is a protocol executed in two stages called commit
and reveal, between a probabilistic ROTM sender with space sS(λ, ℓ) and a probabilistic ROTM
receiver with space sR(λ, ℓ). The commit stage is a streaming interactive protocol. The receiver,
given input λ, ℓ, streams a long string α to the sender, while saving a state h ∈ {0, 1}sR. In
response the sender, given full access to an input string m ∈ {0, 1}ℓ, random coins s and streaming
access to α, sends a commitment comm to the receiver. In the reveal stage the sender sends m and
the random coins s with which it produced comm, and the receiver verifies that comm is a valid
commitment to m by running a deterministic algorithm Verify(m, s, h, comm).

The commitment satisfies the following three conditions:

1. Correctness. If the two parties act honestly, Pr[Verify(m, s, h, comm) = 1] = 1, where the
probability is taken with respect to the coins of the receiver and the sender.

2. Statistical hiding. For any two messages m,m′ ∈ {0, 1}ℓ and any α streamed from the
receiver to the sender, the statistical distance between the distributions of comm and comm′

is at most δh.
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3. Space-bounded binding against adversarial senders with space sb(λ). For any ROBP
A with space bounded by sb(λ), the probability that given streaming access to the string
α, the machine A outputs m,m′, s, s′, com, such that m ̸= m′ and Verify(m, s, h, com) =
Verify(m′, s′, h, com) = 1 is at most δb(λ) with respect to the randomness of A and the re-
ceiver’s randomness for generating α and computing h.

The main result shown in this section is a construction of a commitment as above.

Theorem 4.2. Let ϵ > 0. For all ℓ < λ
21 , there exists a

(
sS(λ, ℓ), sR(λ, ℓ), sb(λ), δh(λ), δb(λ)

)
inter-

active, space-bounded binding, statistically hiding, streaming string commitment, where sS(λ, ℓ) =

O(ℓ · λ), sR(λ, ℓ) = O(λ1+ϵ + ℓ · λ), sb = λ2

21 , δh(λ) = 2−Ω(λ), δb(λ) = 2−Ω(λϵ) and whose communi-
cation complexity is O(λ2).

The rest of this section is devoted to the proof of Theorem 4.2.

4.1 Preliminaries and Linear Algebra Limitations for ROBP

In this subsection we present the definitions and lemmas that we will use in proving Theorem 4.2.
Note that we restrict our definitions and proofs to the binary field, and so the inner products are
all taken modulo 2.

We first state a simplified, restricted version of the Leftover Hash Lemma [HILL99], that will
suffice for us.

Lemma 4.3. Let X ⊆ {0, 1}λ. Let S,R be random variables, where S is sampled uniformly from
X and R is sampled uniformly from {0, 1}λ. Then, if |X | ≥ 1

2ϵ2
,

SD
(
(R, ⟨R,S⟩), (R,U)

)
≤ ϵ,

where SD denotes the statistical distance operator, and U is a uniform random bit.

In the proofs ahead we make use of the following simple fact:

Fact 4.4. For any y ∈ {0, 1}λ \ {0λ}, it holds that Prx∈{0,1}λ [⟨x, y⟩ = 0] = 1
2 .

The space-bounded binding property of our construction relies on Raz’s result for hardness of
learning parities. We state Raz’s theorem.

Theorem 4.5 ([Raz18, Theorem 1.1]). For any c < 1
20 , there exists an α > 0 such that the following

holds: let x be uniformly distributed over {0, 1}λ, let m ≤ 2αλ and let A be a ROBP that is given as
input a stream of samples, (a1, b1), . . . , (am, bm), where each ai is uniformly distributed over {0, 1}λ
and for every i, it holds that bi = ai · x. Assume that A has space at most cλ2 and outputs a string
x̃ ∈ {0, 1}λ. Then, Pr[x̃ = x] ≤ O(2−αλ).

We recast the problem described in Theorem 4.5 as the following game:

Definition 4.6 (Parity Learning game (PL)). Let x be uniformly distributed over {0, 1}λ. A learner
A receives a stream of m samples (a1, b1), . . . , (am, bm) where ai ∈ {0, 1}λ is chosen at random and
bi = ⟨ai, x⟩. After A finished streaming the input, it outputs a string x̃ ∈ {0, 1}λ. We say that A
won the game if x̃ = x.
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Note that by Theorem 4.5 any algorithm that uses sub-quadratic space and streams a sub-
exponential number of samples, wins the PL game with exponentially small probability.

A seemingly easier task, yet only deceptively so, is to distinguish between real linear equations
and noise. A solution to this problem can be found by winning the following game:

Definition 4.7 (Decisional Parity Learning game (DPL)). Let x be uniformly distributed over
{0, 1}λ and let β ∈ {0, 1}. A learner A receives a stream of m samples c1, . . . , cm, ci ∈ {0, 1}λ+1.
If β = 0, then ci = (ai, bi), where ai is drawn from the uniform distribution over λ bits, and
bi = ⟨ai, x⟩. If β = 1, then ci is drawn from the uniform distribution over λ + 1 bits. After A
finished streaming the input, it outputs a bit β̃ ∈ {0, 1}. We say that A won the game if β̃ = β.

Similarly to the DPL game, the Kernel Search (KS) game also tests a learner’s ability to infer
hidden structures from streamed data.

Definition 4.8 (Kernel Search game (KS)). A learner receives a stream of m samples a1, a2, . . . , am,
where ai is uniformly distributed over {0, 1}λ. Let A be a matrix such that ai is the i-th row of A.
After A finished streaming the input, it outputs a vector k ∈ {0, 1}m. We say that A won the game
if k is a non-trivial vector in the kernel of AT , i.e. k ̸= 0 and kTA = 0.

With the following chain of reductions stated in Lemmas 4.9 and 4.10, we prove that winning
the KS game is as hard as winning the DPL game which in turn is as hard as winning the PL
game. Ultimately we show that breaking the binding of our commitment is essentially equivalent
to winning the KS game, and thus by Raz’s theorem, an appropriately memory-bounded algorithm
cannot do so.

The following lemma presents the initial reduction from the KS game to the DPL game.

Lemma 4.9. Suppose there exists a space s ROBP that wins the KS game with probability ϵ after
receiving m samples. Then, there exists a ROBP with space s+m+ log ℓ that wins the DPL game

with probability 1− δ after streaming ℓ ·m samples, where ℓ = O
(
log(1/δ)

ϵ2

)
.

Proof. We shall first construct Ã with space s +m that wins the DPL game with advantage ϵ/2
after receiving m samples. Upon streaming samples ci = (ai, bi) ∈ {0, 1}λ × {0, 1}, Ã feeds ai to A
and stores the bits bi. Let b = (b1, b2, . . . , bm), and let k ∈ {0, 1}m be the output of A. If k ̸= 0m,
Ã outputs β̃ = ⟨b, k⟩, otherwise it outputs a random bit.

Note that Ã uses A and stores the vector b, and thus requires s+m space.
Consider first the case where β = 1, i.e. the ci’s come from the uniform distribution over

{0, 1}λ+1. In this case the vector b is uniform over {0, 1}m, and thus for any non-zero k that A
outputs (whether it is in the kernel of AT or not), according to Fact 4.4, Pr[⟨b, k⟩ = 1] = 1

2 . Also in

the case where A returns 0m, then Ã returns β̃ = 1 with probability 1
2 . Thus, in this case Ã wins

with probability 1
2 .

Now consider the case where β = 0, i.e. ci = (ai, bi) where bi = ⟨ai, x⟩ for some uniformly
sampled x ∈ {0, 1}λ. Thus, we can write b = Ax. With probability ϵ, A produces a vector k in the
kernel of AT . Therefore, β̃ = ⟨b, k⟩ = ⟨Ax, k⟩ = kTAx = 0 = β, and Ã wins. If A failed to produce
the vector in the kernel of AT , then by the fact that A is oblivious to x (where x is uniformly
random), Fact 4.4 gives us Pr[β̃ = 0] = Pr[⟨b, x⟩ = 0] = Pr[kTAx = 0] = Pr[⟨kTA, x⟩ = 0] = 1

2 .

From the law of total probability we get that in the case where β = 0, Ã wins with probability
1
2 + ϵ/2. Therefore, in total we get an advantage of ϵ/2.
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Now we shall construct A′ that wins the DPL game with probability 1− δ. All it has to do is

to run Ã as described earlier ℓ = O
(
log(1/δ)

ϵ2

)
times, keep score, and answer according to whether

the fraction of times Ã won out of the total games is closer to 1
2 (β = 1) or 1

2 + ϵ/2 (β = 0).
The correctness of the construction follows directly from the Chernoff bound, and the fact that

the runs of Ã are independent of one another. Note that in order to operate, A′ must maintain a
counter which costs O(log ℓ) space, and thus in total requires s+m+O(log ℓ) space.

The following lemma presents the second reduction, from the DPL game to the PL game.

Lemma 4.10. Suppose there exists a ROBP with space s that wins the DPL game with probability
1−δ after receiving m samples. Then, there exists a ROBP with space s+λ that wins the PL game
with probability 1− λ · δ after receiving λ ·m samples.

Proof. Let A be a ROBP with space s that wins the DPL game with probability 1−δ. We construct
the following bounded-space ROBP A′ that wins the PL game with probability (1 − δ)λ. A′ will
run as follows: For all i ∈ [λ], run A in the following manner. For every sample that A requires,
get a sample (a, b) and feed it with (a+ r · ei, b), where r is drawn randomly from {0, 1} and ei is
the i-th standard basis over vector of length λ. Set xi to be the output of A.

First, we note that each invocation of A requires m samples, and is invoked λ times, thus in
total A′ requires λm samples. In addition, we note that the only extra space that A′ must have
over A is for storing x, and thus requires space s+ λ.

To show that the construction is correct, we must show that if xi = 0 then b = ⟨a+ rei, x⟩ and
if xi = 1 then b is a random bit. Indeed, if xi = 0, then ⟨a + rei, x⟩ = ⟨a, x⟩ + rxi = ⟨a, x⟩ = b.
If xi = 1, then ⟨a + rei, x⟩ = ⟨a, x⟩ + rxi = b + r, which means that b is random with respect to
a+ rei i.e. Prr[⟨a+ rei, x⟩ = b] = 1

2 , as required.
Now, A′ wins the PL game if all the invocations of A result in a win in the DPL game. Since

the invocations are independent, we get that A′ wins with probability (1− δ)λ.

Combining Lemmas 4.9 and 4.10 we get the following corollary.

Corollary 4.11. Let A be a ROBP with space s that wins the KS game with probability ϵ after
streaming m samples. There exists a ROBP A′ with space s+m+ log ℓ+λ that wins the PL game

with probability 1− δλ after streaming λ ·m · ℓ samples, where ℓ = O
(
log(1/δ)

ϵ2

)
.

By combining Corollary 4.11 with Theorem 4.5, we obtain the following corollary.

Corollary 4.12. There exists β > 0 such that any ROBP with space at most λ2

21 wins the KS game
with probability at most 2−βλ, when streaming O(λ) samples.

Proof. Assume the contrary and let A be such an adversary that wins the KS with probability 2−βλ

after streaming k1λ samples for some constant k1. If so, according to Corollary 4.11 there exists
a constant k2 and a ROBP A′ that wins the PL game with probability at least 1

2 after streaming

k1k2λ
2 log(2λ) · 22βλ = 22βλ+o(λ) samples and using space λ2

21 + (k1 + 1)λ+O(log λ) (< cλ2, where
c < 1/20, for large enough λ). Note that the space of A′ does not depend on β.

Recall that according to Theorem 4.5, for this c < 1/20 there exists some α > 0 such that no
adversary with space at most cλ2 wins the PL game with non-negligible probability after streaming
at most 2αλ samples. Thus, for β = α/3, our assumption contradicts Theorem 4.5.
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4.2 Statistically Hiding Streaming String Commitment

Next, we turn to our construction of the commitment scheme.

Construction 4.13. Let ϵ > 0. Set τ = Θ(λϵ), and let T ∈ {0, 1}λ×τ be τ column vectors of
length λ drawn at random by the receiver in the beginning of the protocol. Let A ∈ {0, 1}4λ×λ
be a random matrix streamed by the receiver to the sender, row by row, and let m ∈ {0, 1}ℓ be
the message to be committed. While streaming the matrix A, the receiver computes AT and sets
h = (AT, T ) ∈ {0, 1}4λ×τ × {0, 1}λ×τ .

The Commit algorithm performed by the sender is as follows: Sample random (S, r) ∈ {0, 1}ℓ×4λ×
{0, 1}4λ. While streaming A, compute the value α = SA ∈ {0, 1}ℓ×λ. Set comm = (r, α, β), where
β = Sr +m.

The Verify algorithm performed by the receiver is as follows: Given the message m, the coins of
the sender (S, r) the commitment (r, α, β), and the internal state of the receiver (T,AT ), accept if
and only if S · (AT ) = αT , and Sr +m = β.

Note that the communication complexity of the commitment scheme is O(λ2), as the major
part of the communication is the streaming of the matrix A ∈ {0, 1}4λ×λ.

We claim that Construction 4.13 satisfies Definition 4.1 and so proves Theorem 4.2. We first
show that the commitment satisfies the space constraints of the honest parties and the correctness
requirement.

Lemma 4.14. For all ℓ, an honest execution of Construction 4.13 can be done by a ROTM sender
with space sS(λ, ℓ) = O(ℓ · λ), a ROTM receiver with space sR(λ, ℓ) = O(λ1+ϵ + ℓ · λ), and at the
end the receiver will always accept.

Proof. The only non-trivialities in the lemma are the facts that the sender computes α = SA in
space O(ℓ · λ), and the receiver computes AT in space O(λ1+ϵ + ℓ · λ) as the matrix A is streamed,
row by row. For the former, as the sender receives the k-th row of A, where k ∈ [4λ], the sender
computes a matrix Ψk ∈ {0, 1}ℓ×λ where Ψk

i,j = Si,k · Ak,j . Note that SA =
∑

k∈[4λ]Ψ
k, and so

the sender needs only to accumulate the Ψk’s, which can be done in the allotted space. As to the
latter, the receiver can compute AT row by row, as it streams the rows of A.

In order to show that the construction satisfies the hiding and binding properties we first show
that it does so for messages of length ℓ = 1. We then use this result to prove that the construction
also works for messages of length ℓ > 1.

The following two lemmas state that the construction satisfies the space-bounded binding and
statistical hiding properties, for commitments of messages of length ℓ = 1, i.e. a bit commitment.
Note that since we are considering the case where ℓ = 1 in the following proofs, the matrices
S, α from the construction are actually vectors. For notational convenience we denote the matrix
S ∈ {0, 1}1×4λ as s ∈ {0, 1}4λ.

Lemma 4.15. For ℓ = 1, Construction 4.13 is space-bounded binding against adversarial senders
with space at most sb(λ) =

λ2

21 per Definition 4.1 with δb(λ) = 2−Ω(λϵ).

Proof. Assume there exists a bounded ROBP adversary S using λ2

21 memory bits that breaks the
binding. This means that the adversary is able to find s ̸= s′ such that sTAT = αT = s′TAT .
Rewritten, this means that S can find a non-zero vector s̃ = s− s′ such that s̃TAT = 0. We shall
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separate into two cases. If s̃TA = 0, then it means that A finds a non-trivial vector in the kernel
of A and by such can win the KS game. From Corollary 4.12, we conclude that this cannot be
done with probability greater than 2−βλ for the constant β > 0 that we get from the corollary.
If s̃TA ̸= 0, then ⟨s̃TA, ti⟩ = 0 for all i ∈ [τ ], where ti is the i-th column of T . Since ti is a
random vector, according to Fact 4.4, Pr[⟨s̃TA, ti⟩ = 0] = 1

2 . Thus, Pr[s̃
TAT = 0] = 2−τ = 2−Θ(λϵ).

Applying the union bound on the two cases, the lemma follows.

Lemma 4.16. For ℓ = 1, Construction 4.13 is statistically hiding (per Definition 4.1) with δh(λ) =
2−λ.

Proof. Set matrix A ∈ {0, 1}4λ×λ and set α in the image of AT , i.e. α = sTA for some s. Let
X ⊆ {0, 1}4λ be the set of all possible pre-images for α. Since the dimension of the domain of AT

is 4λ and the dimension of the range is λ, the kernel dimension of AT is at least 3λ. Therefore,
|X| ≥ 23λ. Thus, using Lemma 4.3,

SD
(
(r, α, ⟨s, r⟩), (r, α, b)

)
≤ 2−(λ+1)

Where r is drawn uniformly at random from {0, 1}4λ and b is drawn uniformly at random from
{0, 1}.

Thus, SD
(
(r, α, ⟨s, r⟩+ 0), (r, α, ⟨s, r⟩+ 1)

)
= SD

(
com0, com1

)
≤ 2−λ, as required.

The next two lemmas state that the construction satisfies the space-bounded binding property,
and the statistical hiding property, for commitments of messages of length ℓ = o(λ). Note that
according to the structure of the commitment, we have that αi = siA, βi = ⟨si, r⟩+mi, where si is
the i-th row of S, αi is the i-th row of α, and βi,mi are the i-th entries of β,m, respectively, where
i ∈ [ℓ].

Lemma 4.17. For any ℓ < λ
21 , Construction 4.13 is space-bounded binding against adversarial

senders with space at most sb(λ) =
λ2

21 per Definition 4.1 with δb(λ) = 2−Ω(λϵ).

Proof. Assume that there exists some adversarial ROBP sender S∗ with space at most λ2

21 that
breaks the binding of the commitment. We show that we can construct a ROBP sender S∗1 with
similar space, that breaks the binding of the bit commitment, in contradiction to Lemma 4.15.

Given a stream A from the receiver, S∗1 will forward the stream to S∗, which in turn will output
m,m′, S, S′, com, where m ̸= m′ and com = (r, α, β) such that with probability at least 2−λ

ϵ

S(AT ) = S′(AT ) and Sr +m = S′r +m′ = β. In particular, sTi AT = s′Ti AT and ⟨si, r⟩ +mi =
⟨s′i, r⟩ + mi for all i ∈ [ℓ]. Since m ̸= m′, they must differ in at least a single entry i∗. Without
loss of generality, assume mi∗ = 0 ̸= m′i∗ = 1. In turn we have that ⟨si∗ , r⟩ = ⟨s′i∗ , r⟩+ 1, and so it
must be that si∗ ̸= s′i∗ . Thus, S∗1 outputs 0, 1, si∗ , s

′
i∗ , com where com = (r, αi∗ , βi∗), and by doing

so, breaks the binding of the commitment of a single bit.

Lemma 4.18. For all ℓ < λ
21 , Construction 4.13 is statistically hiding per Definition 4.1 with

δh(λ) = 2−Ω(λ).

Proof. Let ℓ < λ
21 . Fix some A streamed by the receiver and let α = SA such that αi = sTi A for

all i ∈ [ℓ]. Consider the following hybrid distributions for j ∈ {0, 1, . . . , ℓ}:

Hj =
(
r, {αi}ℓi=1, {⟨si, r⟩}

j
i=1, {bi}

ℓ
i=j+1

)
.
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Note that H0 = (r, α, b) where b ∈ {0, 1}ℓ is a random vector and Hℓ = (r, α, Sr). For all j ∈
{0, 1, . . . , ℓ− 1}, according to the data-processing inequality for statistical distance we have that

SD(Hj , Hj+1) ≤ SD
(
(r, αj , bj), (r, αj , ⟨sj , r⟩)

)
,

which according to Lemma 4.16, is further bounded by 2−(λ+1). Thus, from the triangle inequality
we get that SD(H0, Hℓ) ≤ 2−(λ−ℓ+1).

Theorem 4.2 now follows immediately from Lemmas 4.14, 4.17 and 4.18.

5 Linearly Homomorphic Statistically Binding Streaming Com-
mitment

In this section we construct a linearly homomorphic statistically binding streaming commitment.
Such a commitment enables a sender to commit to a bit vector, and later de-commit to arbitrary
linear functions of the vector, without revealing any information regarding the vector, other than
what can be inferred by the revealed linear combinations (i.e., correlations that are outside the
span of the revealed linear functions remain hidden). From this general construction we will later
deduce the polynomial commitment scheme, which is a statistically binding commitment scheme
where a sender can commit to a polynomial and later de-commit to evaluations of the polynomial
at a given set of points, while the evaluations of the polynomial at all other points remain hidden
from the receiver.

We proceed to define the linearly homomorphic commitment scheme. The linear functions of
the committed vector v to which the sender de-commits are represented as a matrix L, and so the
de-commitment is to the value vTL. Observe that in the simple case where the de-commitment
is to the entire input vector v, the matrix L is the identity matrix of size |v| × |v|. This explicit
representation of the matrix can be rather wasteful in terms of space, a precious resource in the
streaming model, and so we would like for the matrix L to have a succinct representation that could
be sent between the participating parties with minimal communication complexity, and from which
the parties can infer the values of the matrix without having to store the entire matrix explicitly.

Thus, we define the following:

Definition 5.1. An s(λ)-strongly explicit9 matrix is a family of matrices {Mλ}λ∈N, where there
exists a space-O(s(λ)) algorithm, that given a representation M̃λ of the matrix, of length |M̃λ| =
O(s(λ)), and indices i, j, outputs Mλ[i, j].

We now proceed to define our commitment scheme.

Definition 5.2. Let λ denote the security parameter and let ℓ be the length of the bit vector to
which we wish to commit. An (sS(λ, ℓ), sR(λ), sh(λ), δh(λ), δb(λ)) linearly homomorphic, statisti-
cally binding, streaming commitment is a protocol executed in two stages called the commit stage
and the reveal stage, between a probabilistic ROTM sender with space sS(λ, ℓ) and a probabilistic
ROTM receiver with space sR(λ). In the commit stage, the sender sends as a stream to the receiver
the commitment comv to its input bit vector v ∈ {0, 1}ℓ. As the receiver reads comv (which may

9The term “strongly explicit” is borrowed from similar terminology in the context of succinctly representing graphs.
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be long), it computes a function g(comv), where g : {0, 1}∗ → {0, 1}sR(λ) is a randomized function
computable in space sR(λ).

In the reveal stage the receiver sends to the sender a succinct representation L̃ of a binary
sR(λ)-strongly explicit matrix L ∈ {0, 1}ℓ×j, such that 0 ≤ j ≤ ℓ. In response, the sender sends
a key κL, which may depend on L and its internal state, and the receiver runs a deterministic
algorithm Verify(L̃, κL, g(comv)), that either outputs a bit string of length j, or rejects.

The commitment satisfies the following three conditions:

1. Correctness: If the two parties act honestly, for every v ∈ {0, 1}ℓ and L ∈ {0, 1}ℓ×j it holds
that Pr[Verify(L̃, κL, g(comv)) = vTL] = 1, where the probability is taken over the coins of the
receiver and the sender.

2. Space-bounded hiding against adversarial ROBP receivers with space sh(λ): For
any function g∗ : {0, 1}∗ → {0, 1}sh(λ) computable in space sh(λ), any 0 ≤ j ≤ ℓ, any matrix
L ∈ {0, 1}ℓ×j, and any v0, v1 such that vT0 L = vT1 L, the statistical distance between the
distributions

(
g∗(comv0), κL

)
and

(
g∗(comv1), κL

)
is at most δh(λ).

3. Statistical Binding: For any commitment com, there exists a vector v, such that for all
strongly explicit matrices L and for all κ, Pr[Verify(L̃, κ, g(com)) ∈ {reject, vTL}] > 1−δb(λ),
where the probability is taken over the receiver’s private randomness for computing g(com).

Remark 5.3 (More on the Hiding Property). Note that in case j = 0, for any v0, v1 ∈ {0, 1}ℓ, it
holds that vT0 L = vT1 L (vacuously). Indeed, in such a case the hiding property guarantees that the
committed message is fully hidden after the commit stage.

Remark 5.4 (More on the Binding Property). The binding condition states that there is a unique
value to which the sender can de-commit with non-negligible probability for a given commitment.

The commitment scheme that we construct will actually satisfy a stronger notion of hiding
than that in Definition 5.2, which will actually be more convenient to prove. Loosely speaking, the
commit stage of our construction is divided into two phases, and the commitment is in fact hiding
against unbounded adversaries, as long as the adversary can retain only sh(λ) bits in its memory
at the end of the first phase, going into the second. This is captured by the following definition.

Definition 5.5 (Strong Hiding). An (sS(λ, ℓ), sR(λ), sh(λ), δh(λ), δb(λ)) linearly homomorphic,
statistically binding, streaming commitment per Definition 5.2 satisfies strong hiding if the following
holds:

The commit stage happens in two phases. In the first phase, the sender sends to the receiver
a long string A as a stream. As the receiver reads A, it computes a function g(A), where g :
{0, 1}∗ → {0, 1}sR(λ) is a randomized function computable in space sR(λ). In the second phase the
sender sends as a stream a commitment comv to the vector v. We require that for any function
g∗ : {0, 1}∗ → {0, 1}sh(λ) (not necessarily computable in small space), any 0 ≤ j ≤ ℓ, any matrix
L ∈ {0, 1}ℓ×j, and any v0, v1 such that vT0 L = vT1 L, the statistical distance between the distributions(
g∗(A), comv0 , κL

)
and

(
g∗(A), comv1 , κL

)
is at most δh(λ).

The difference between the hiding property in Definition 5.2 and in Definition 5.5 is that the
latter is hiding against unbounded adversaries with the requirement that the adversary retains only
sh(λ) bits from the computation of A when continuing to the second phase of the commitment.
The former requires the receiver never to exceed a space of sh(λ) bit during the entire protocol.
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Proposition 5.6. Strong hiding implies the hiding property of Definition 5.2.

Proof. An adversary that breaks the “weak” hiding property of a commitment satisfying Defi-
nition 5.2 clearly does not retain more than sh(λ) bits from the computation of A since it uses
only sh(λ) space, and so it is a valid adversary per Definition 5.5 which breaks the strong hiding
property.

Committing to Multiple Messages. In the following sections, our constructions incorporate
multiple instances of the statistically hiding commitment within larger protocols. The following
lemma demonstrates that these commitments maintain their hiding property, ensuring no informa-
tion leaks between different instances or from the surrounding protocol to the commitments, even
in this context.

Lemma 5.7. Let (X,Y ), (X ′, Y ′) be joint distributions, each defined over a product space ΩX×ΩY ,
where ΩY is the space of all matrices y ∈ {0, 1}k×ℓ. Suppose the marginal distributions X,X ′ are
identically distributed and define com(y) to be the concatenation of statistically binding streaming
commitments per Definition 5.2 of the k rows of y. Then, for all space-sh ROBP distinguishers D,∣∣∣ Pr

(x,y)←(X,Y )
[D(x, com(y))] = 1]− Pr

(x,y)←(X′,Y ′)
[D(x, com(y))] = 1]

∣∣∣ ≤ k · δh.

The proof, which is straightforward, is deferred to Appendix B.1.

Main Theorem. The main result that we show in this section is a construction of a linearly
homomorphic, statistically binding, streaming commitment, which, moreover, satisfies the strong
hiding property. This is captured by the following theorem.

Theorem 5.8. Let λ be a security parameter, let ϵ > 0, let ℓ ≤ λ
8 be the length of the committed

vector v,and let j ≤ min
{
ℓ, λ

24

}
be the length of the de-committed vector of linear evaluations

of v. Then, there exists an
(
sS(λ, ℓ), sR(λ), sh(λ), δh(λ), δb(λ)

)
linearly homomorphic, statistically

binding, streaming commitment, where sS(λ, ℓ) = O(λ · (ℓ + λϵ)), sR(λ) = O
(
λ1+ϵ

)
, sh(λ) = λ2

4 ,

δh(λ) = 2−
λ
17 , δb(λ) = 2−Ω(λϵ) and whose communication complexity is O(λ2+λ · ℓ). Moreover, the

scheme satisfies strong hiding.

In Section 5.1 we present the construction of the commitment scheme and by such prove The-
orem 5.8. In Section 5.2, using our construction from Section 5.1 we construct a polynomial
commitment scheme, in which a sender can commit to a polynomial and de-commit to evaluations
of the polynomial without revealing any other information about the polynomial. The polynomial
commitment will be integrated into our streaming zero-knowledge constructions in the following
sections.

5.1 Linearly Homomorphic Statistically Binding Streaming Commitment

In this subsection we prove Theorem 5.8 by constructing an
(
sS(λ, ℓ), sR(λ), sh(λ), δh(λ), δb(λ)

)
strong linearly homomorphic, statistically binding, streaming commitment, for strings of length
ℓ and de-commitments of length j ≤ min

{
ℓ, λ

24

}
, where sS(λ, ℓ) = O(λ · ℓ), sR(λ) = O(λ1+ϵ),

sb(λ) =
λ2

4 , δh(λ) = 2−
λ
17 , and δb(λ) = 2−Ω(λϵ) with parameter ϵ > 0.
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Construction 5.9. Let ϵ > 0, let τ = Θ(λϵ), and let v ∈ {0, 1}ℓ be the bit vector to be committed.
Let L ∈ {0, 1}ℓ×j be an λ1+ϵ-strongly explicit matrix defining the linear transformation to be applied
on v known only to the receiver, where j ≤ min

{
ℓ, λ

24

}
. The sender draws uniformly at random

a matrix K ∈ {0, 1}λ×ℓ, and streams to the receiver a random matrix A ∈ {0, 1}λ×λ, row by row,
while computing and storing the matrix AK ∈ {0, 1}λ×ℓ. As the receiver receives the matrix A,
it computes TA, for some randomly selected T ∈ {0, 1}τ×λ, which is not revealed to the sender.
Subsequently, the sender sends (r,K,w) as a stream, where wT = rTAK+vT , the vector r ∈ {0, 1}λ
is drawn at random, and K is streamed column by column. As the receiver streams the matrix K,
it computes TAKL ∈ {0, 1}τ×j, and as it streams w it computes wTL ∈ {0, 1}j.

In order to de-commit, the receiver sends to the sender a succinct representation of L, and the
sender sends in response the matrix κ = AKL ∈ {0, 1}λ×j as a stream. As the receiver streams κ
it computes Tκ and rTκ. It verifies that Tκ = TAKL, and if so it outputs wTL− rTκ, otherwise
it rejects.

Note that the sender does not need to store the matrix A, and only needs enough space to
store K ∈ {0, 1}λ×ℓ, AK ∈ {0, 1}λ×ℓ, r ∈ {0, 1}λ, and w ∈ {0, 1}ℓ, all of which take O(λ · ℓ) space,
as required. The receiver does not need to store the matrices A and K, but only T ∈ {0, 1}τ×λ,
TA ∈ {0, 1}τ×λ, TAKL ∈ {0, 1}τ×j , Tκ ∈ {0, 1}τ×j , r ∈ {0, 1}λ and wTL ∈ {0, 1}j , all of which
require O(λ1+ϵ) space. Also note that the matrix TA can be computed in an online fashion in small
space from T while streaming A, as described in the proof of Lemma 4.14.

The matrix TAKL can also be computed in an online fashion in small space while streaming K
column by column, by the following method. Since the receiver has the matrix TA stored, for every
column ki of K that it streams it can compute TAki by standard matrix-vector multiplication.
Thus, we can consider the streamed columns of the matrix K as a stream of rows of the matrix
(TAK)T . Therefore, the receiver can compute LT (TAK)T (from which we can get TAKL by
transposing) as a cumulative sum of matrices of dimension j × τ , once again, as described in the
proof of Lemma 4.14.

The major part in the communication between the parties during the protocol is sending the
matrix A ∈ {0, 1}λ×λ in the beginning of the commitment, and so the communication complexity
of the protocol is O(λ2).

Note that since the representation of L does not exceed O
(
λ1+ϵ

)
bits, sending and storing it

does not add to the space complexity of either party.
We proceed to show that the construction satisfies the definition. We start with showing

correctness.

Proposition 5.10. Construction 5.9 is correct, i.e. when executed by an honest sender and re-
ceiver, the value revealed to the receiver is vTL.

Proof. Indeed, Tκ = T (AKL) = TAKL and so the receiver does not reject. Likewise, the output
of the receiver as stated in the construction satisfies wTL−rTκ = (rTAK+vT )L−rTAKL = vTL,
as required.

5.1.1 Showing the Hiding Property

For convenience, we restate the space-bounded strong hiding property of Definition 5.5 using a
game-based definition. The following description of a game between an (unbounded) distinguisher
D and a challenger captures the hiding property for this model.
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1. D sends to the challenger two vectors v0, v1 ∈ {0, 1}ℓ and a matrix L, such that vT0 L = vT1 L.

2. The challenger sends a long string A in a streaming fashion to D. The distinguisher D
computes g∗(A) for a function g∗ : {0, 1}∗ → {0, 1}sh(λ). Note that g∗ can be an arbitrary
function, as long as it outputs at most sh(λ) bit.

3. The challenger randomly chooses b ∈ {0, 1}, and sends to D a commitment comvb .

4. The challenger then sends a key κ as per Definition 5.2.

5. D outputs b′ ∈ {0, 1}.

We say that D won if b = b′. The strong hiding property of Definition 5.5, in terms of this game,
is equivalent to the claim that any distinguisher has advantage at most δh in winning the game.

Recall that, following Definition 5.5, we do not impose computational limitations on D during
the security game. In particular, in Step 2, D is allowed to compute any function g : {0, 1}∗ →
{0, 1}sh(λ), including functions that require more space than sh(λ) during their computation. The
only restriction is that by the time D receives comvb in Step 3, it may only retain at most sh(λ)
bits from the computation of g.

The hiding (resp., strong hiding) property of Definition 5.2 (resp., Definition 5.5), implies
that the commitment remains hiding even after the de-commitment, in the sense that the de-
commitment reveals only the projections of the committed vector onto the requested space, and
all other components of the vector remain hidden. In order to prove that the construction satisfies
the hiding property, we first show that if the construction is hiding before the de-commitment (i.e.,
before the projection is revealed), then it is also hiding after the de-commitment. We formalize
this idea in the following proposition:

Proposition 5.11. Let 0 ≤ η < ℓ be an integer. Suppose that Construction 5.9 is a linearly
homomorphic, statistically binding, streaming commitment for vectors of length ℓ−η, that is hiding
against streaming adversaries with space s + 2λ · η per Definition 5.2 where the receiver does not
receive a key from the sender (i.e. j = 0 as in Remark 5.3)10. Then, Construction 5.9 is a
linearly homomorphic, statistically binding, streaming commitment for vectors of length ℓ, with
de-commitments of length η (i.e. j = η) that is hiding against streaming adversaries with space s.

Proof. We may assume w.l.o.g that η > 0 since η = 0 corresponds to the case that the receiver
does not get a key κ following the commitment, and so in this case the proposition is a tautology.

Let 0 < η < ℓ. Assume that there exists a distinguisher D with space s and a matrix L ∈
{0, 1}ℓ×η such that D wins the commitment’s hiding security game with j = η, with advantage
greater than δ.

Assume w.l.o.g that L is full rank (i.e., of rank η).11 Thus, we may permute the rows of L

such that L =

(
L1

L2

)
where L1 ∈ {0, 1}(ℓ−η)×η, and L2 ∈ {0, 1}η×η is a full rank square matrix. In

particular, L−12 is well-defined.

10For consistency with the hiding condition in Definition 5.5, as per Remark 5.3, we define that for j = 0, the
distinguisher playing the game may choose in Step 1 any two vectors v0, v1 ∈ {0, 1}ℓ with no restrictions, and in
Step 4, the challenger will only send the commitment comvb and no key κ.

11We can assume this since if the rank of L were r < η, there would be η − r columns in L that are linear
combinations of the other r columns, and so could be inferred implicitly.
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Consider the following observation. For a vector x ∈ {0, 1}ℓ, we can write xT = [xT1 ||xT2 ]
where x1 are the first ℓ − η entries of x, the || sign denotes concatenation, and x2 are the last η
entries of x. For xTL = uT we have that xT1 L1 + xT2 L2 = uT , and so xT2 = (uT − xT1 L1)L

−1
2 . Let

Q =

(
L−12

−L1L
−1
2

)
, and so we can write xT = [xT1 || (uT ||xT1 )Q ].

We construct a distinguisher D̂ with space s + 2λ · η that wins the game described above for
j = 0 with advantage greater than δh with the following changes: In Step 1 the vectors v̂0, v̂1 can
be any vectors of length ℓ− η, and we skip Step 4, i.e. the challenger does not send a key κ.

We proceed to describe the distingusher D̂. To pick the vectors v̂0, v̂1 ∈ {0, 1}ℓ−η in Step 1, D̂
invokes D to produce the vectors v0, v1 ∈ {0, 1}ℓ where vT0 L = vT1 L = uT ∈ {0, 1}η. The distiguisher
D̂ then sets v̂b to be the first ℓ− η bits of vb for b ∈ {0, 1}.

In Step 2, the challenger sends to D̂ the matrix A ∈ {0, 1}λ×λ as a stream. D̂ draws a random
matrix K̃ ∈ {0, 1}λ×η and while streaming the matrix A, it computes AK̃ ∈ {0, 1}λ×η, and forwards
the matrix A to D that computes g∗(A). Denote ĝ(A) =

(
g∗(A), K̃, AK̃

)
. Note that K̃, AK̃ ∈

{0, 1}λ×η, and |g∗(A)| ≤ s, and so |ĝ(A)| ≤ s+ 2λ · η, as required.12
In Step 3 D̂ receives comv̂b = (r,K, rTAK + v̂Tb ) from the challenger, and computes K ′ =

(K̃ ||K)Q and rTA(K||K ′) + vTb . We show how D̂ computes rTA(K||K ′) + vTb . Recall that from
the observation above, we can write vTb = [ v̂Tb || (uT ||v̂Tb )Q ], and so we can rewrite rTA(K||K ′)+vTb
as

[ (rTAK + v̂Tb ) || (rTAK ′ + (uT ||v̂Tb )Q) ].

As D̂ gets rTAK + v̂Tb from the challenger, it is enough to show that it can compute rTAK ′ +

(uT ||v̂Tb )Q. This is not obvious since D̂ can compute K ′ only after it has received K from the
challenger, and this happens after the streaming of A, and so it cannot directly compute AK ′.
Nevertheless, rewritten, we have that

rTAK ′ + (uT || v̂Tb )Q = rTA(K̃ ||K)Q+ (uT || v̂Tb )Q
= (rTAK̃ + uT || rTAK + v̂Tb )Q,

where u can be computed from v0, v1, L in Step 1, rTAK̃ can be computed from the output of ĝ(A)
and r, and rTAK + v̂Tb is sent by the challenger.

The distinguisher D̂ forwards comvb = (r, (K||K ′), rTA(K||K ′) + vTb ) to D. Note that this is

indeed the input format which D expects to see from the challenger in Step 3 of the game. D̂ then
simulates Step 4 for D by feeding it with the key κ = AK̃. Recall that K ′ = (K̃||K)Q, and so

K ′ = K̃L−12 −KL1L
−1
2 ⇒ K̃ = KL1 +K ′L2 ⇒ K̃ = (K||K ′)L.

Thus, κ = A(K||K ′)L, and so κ is in the format that D expects to receive.
Finally, D̂ will return b′, the output of D.
By construction, D̂ is correct on v̂b if and only if D distinguishes vb correctly. Thus, similarly

to D, the distinguisher D̂ wins the game with advantage greater than δh, in contradiction to the
hiding property of the construction as stated in the proposition.

12Recall that we allow the computation of g∗, ĝ not to be bounded in space, as long as the output size of the
function is short.
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5.1.2 Proof of Theorem 5.8

To prove Theorem 5.8, we show that Construction 5.9 is a commitment scheme per Definition 5.2
with the parameters in the theorem statement. We use the following lemma to prove that Con-
struction 5.9 satisfies the strong hiding property of Definition 5.5.

Lemma 5.12. Let r ← {0, 1}λ, K ← {0, 1}λ×ℓ and A ← {0, 1}λ×λ, where ℓ ≤ λ
8 Let f :

{0, 1}λ×λ → {0, 1}s be an arbitrary function, where s ≤ λ2

3 . Then:

SD
(
(r,K, rTAK, f(A)), (U , f(A))

)
≤ 2−

λ
17

where U is the uniform distribution over binary vectors of length λ+ λ · ℓ+ ℓ.

The proof of Lemma 5.12, which is inspired by the proof the Leftover Hash Lemma, is deferred
to Section 5.3.

Using Lemma 5.12, we now prove the following lemma which shows that Construction 5.9 is a
statistically binding, streaming vector commitment that satisfies strong hiding.

Lemma 5.13. Let λ be a security parameter, let ϵ > 0, let ℓ ≤ λ
8 be the length of the committed

vector v, and let j ≤ min
{
ℓ, λ

24

}
be the length of the de-committed vector of linear evaluations of

v. Then, Construction 5.9 is a
(
sS(λ, ℓ), sR(λ), sh(λ), δh(λ), δb(λ)

)
statistically binding, streaming

vector commitment that satisfies strong hiding, for strings of length ℓ, where sS(λ, ℓ) = O(λ · ℓ),
sR(λ) = O(λ1+ϵ), sh(λ) =

λ2

4 , δh(λ) = 2−
λ
17 , and δb(λ) = 2−Ω(λϵ).

Proof. The construction maintains the correctness of the commitment by Proposition 5.10.
We shall argue that the construction satisfies strong hiding per Definition 5.5 for adversaries

with space up to λ2

4 . Let A be some adversary with space s ≤ λ2

3 . Let g(A) be the state of the
adversary after streaming A. By Lemma 5.12, the statistical distance between (r,K, rTAK, g(A))

and (U , g(A)) is bounded by 2−
λ
17 . Thus, we have that the commitment whereA does not receive the

key is strongly space-bounded hiding. Therefore, according to Proposition 5.11, the commitment
is hiding for any adversary A′ with space at most λ2

3 − 2λ · λ
24 = λ2

4 .
Finally, we show that the construction is statistically binding. Note that any bit string sent by

a malicious sender can be interpreted as a matrix A ∈ {0, 1}λ×λ and com = (r,K,w), and so the
unique vector v which this commitment defines is vT = wT − rTAK. Let L be the matrix chosen
by the receiver and let κ = AKL be the valid key for the commitment. By the correctness of the
construction, given κ the receiver outputs vTL. Let κ′ ̸= AKL (we can assume that κ′ is of the
correct length, otherwise the receiver rejects), and denote κ∗ = AKL − κ′ ̸= 0. For the receiver
not to reject, κ′ must satisfy Tκ′ = (TAK)L, which implies Tκ∗ = 0. This means that breaking
the commitment is at least as hard as finding a vector in the kernel of T . Note that T is drawn at
random and the adversary has no access to it. And so, by the random subset-sum principle, the
probability that any non-zero column of κ∗ is in the kernel of T is exactly 2−τ , where τ = O(λϵ) is
the number of rows of T . Thus, the probability that κ∗ ̸= 0 satisfies Tκ∗ = 0 is at most 2−Ω(λϵ), as
required.

Theorem 5.8 follows directly from Proposition 5.6 and Lemma 5.13.
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5.2 Polynomial Commitments

In this section, we use the linearly homomorphic commitment scheme of Section 5.1 to construct
a polynomial commitment scheme. In such a scheme, a sender can commit to a polynomial, and
de-commit to evaluations of the polynomial at particular points such that the de-commitment
does not reveal any other information about the polynomial. We consider the case of multivariate
polynomials, but note that the specialization to univariate polynomials will be useful for us as well.

Definition 5.14. Let λ denote the security parameter, let F = (Fλ)λ∈N be a finite field, let d =
d(λ),m = m(λ) be positive integers and let ℓ = (d+1)m·log |F|. An (sS(λ, ℓ), sR(λ), sh(λ), δh(λ), δb(λ))
statistically binding, streaming polynomial commitment is a protocol executed in two stages called
the commit stage and the reveal stage, between a probabilistic ROTM sender with space sS(λ, ℓ) and
a probabilistic ROTM receiver with space sR(λ).

In the commit stage, the sender gets as an explicit input an m-variate polynomial P : Fm → F
of individual degree d represented as a list of (d + 1)m coefficients, and sends to the receiver as
a stream a commitment comP to the polynomial P . As the receiver reads comP , it computes a
function g(comP ), where g : {0, 1}∗ → {0, 1}sR(λ) is a randomized function. In the reveal stage,
the receiver sends to the sender a set X ⊆ F of cardinality j, and in response, the sender sends
a key κ. The receiver runs a deterministic algorithm Verify(X,κ, g(comP )), that either outputs a
function f : X → F, or rejects.

The commitment satisfies the following three conditions:

1. Correctness. If the two parties act honestly, for every P : Fm → F and X ⊆ Fm, it holds
that Pr[Verify(X,κ, g(comP )) = P |X ] = 1, where P |X is the vector of evaluations of the
polynomial P over the set X, and the probability is taken with respect to the coins of the
receiver and the sender.

2. Space-bounded hiding against adversarial ROBP receivers with space sh(λ). For
any function g∗ : {0, 1}∗ → {0, 1}sh(λ) computable in small space, any set X ⊆ Fm, and
any two m-variate, individual degree d polynomials P,Q : Fm → F such that P |X = Q|X
the statistical distance between the distributions

(
g∗(comP ), κ

)
and

(
g∗(comQ), κ

)
is at most

δh(λ).

3. Statistical Binding. For any com, there exists an m-variate polynomial P of individual
degree d, such that for any set X ⊆ Fm, and any κ, it holds that Pr[Verify(X,κ, g(com)) ∈
{reject, P |X}] > 1− δb(λ), where the probability is taken over the receiver’s private random-
ness for computing g(com).

Similarly to Definition 5.2, the conditions for hiding and binding as stated in Definition 5.14
naturally encapsulate the natural notions of hiding and binding as explained in Remarks 5.3 and 5.4.
Here too, the strong hiding property can be restated as a game against a challenger, similarly to
Section 5.1.1, where in Step 1 instead of sending a matrix L and two vectors v0, v1 such that
vT0 L = vT1 L, the adversary will send a set of evaluation points X and two polynomials g0, g1 such
that g0|X = g1|X .

Observe that the evaluation of a polynomial at a particular point can be represented as a linear
function of the coefficient vector. Thus, Construction 5.9 naturally fits this purpose, with the
exception that it is an implementation of a commitment for vectors over GF(2), and we would like
to use it for polynomials that are defined over larger fields.
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We circumvent this issue by restricting our attention to extension fields of GF(2) while leveraging
the fact that linear functions over extension fields can be expressed as linear functions over the base
field. This is formalized in the following proposition.

Proposition 5.15. Let F = GF(2f ), where f ≥ 1 and fix a representation of the field. For x ∈ F
we denote by x̄ ∈ {0, 1}f the representation of x as a binary vector of length f . Any linear operation
ℓ : Fd → F can be represented as a linear operation ℓ : {0, 1}fd → {0, 1}f defined as ℓ(v) = ℓ(v),
where v ∈ Fd and v ∈ {0, 1}fd is the concatenation of the vector representations over {0, 1}f of the
d elements of v.

Proof. We show that ℓ is a linear operation over GF(2). Indeed, for scalar multiplication observe
that

ℓ(0 · v) = ℓ(0) = ℓ(0) = 0 = 0 · ℓ(v)
ℓ(1 · v) = ℓ(v) = 1 · ℓ(v).

Likewise, let v, u ∈ Fd and v, u be their representations over {0, 1}fd. Let ⊕ denote addition over
{0, 1} and let + denote addition over F. And so,

ℓ(v ⊕ u) = ℓ(v + u) = ℓ(v + u) = ℓ(v) + ℓ(u) = ℓ(v)⊕ ℓ(u) = ℓ(v)⊕ ℓ(u).

Remark 5.16. Expanding on Proposition 5.15, for F = GF(2f ) we note that a matrix L ∈ Fλ×m

representing a linear transformation L : Fλ → Fm can be expressed as a matrix L ∈ {0, 1}λ·f×m·f ,
where every entry in L becomes an f × f block in L. The (i, j)-th entry in each such block cor-
responding to a single field element v, is the j-th coordinate of the vector representation of v · ei,
where ei is the field element corresponding to the i-th basis vector of the given field representation
(and the multiplication is over F). Note that a naive quadratic time algorithm can compute the
multiplication in space linear in f . Thus, each such block is O(f)-strongly explicit.

Lemma 5.17. Let λ be a security parameter, let ϵ > 0, and let F = GF(2f ) for some f ≥ 1. Let j
be the cardinality of the set of evaluations requested by the receiver. Let the committed polynomial be
an m-variate polynomial of individual degree d, and let ℓ = (d+1)m · f . For all m, d ≥ 1 such that

log(m) ≤ λ1+ϵ and j ≤ min
{
(d+ 1)m, λ

24f

}
, there exists an

(
sS(λ, ℓ), sR(λ), sh(λ), δh(λ), δb(λ)

)
statistically binding, streaming polynomial commitment, such that sS(λ, ℓ) = O(λ · ℓ), sR(λ) =

O
(
λ1+ϵ

)
, sb(λ) =

λ2

4 , δh(λ) = 2−
λ
17 , and δb(λ) = 2−Ω(λϵ).

Proof. Using Proposition 5.15, we can commit to m-variate polynomials of individual degree d
defined over F = GF(2f ) by committing to the binary representation of (d+1)m field elements (the
polynomial’s coefficients), as a binary vector v of length (d + 1)m · f . Likewise, an evaluation of
the polynomial can be obtained by applying a linear function on v, and interpreting the result as
a binary representation of a field element.

Let L ∈ {0, 1}((d+1)m·f)×(j·f) be a matrix representing the linear transformation operating on
the binary representation of an m-variate, individual degree d polynomial defined over F, that
evaluates the polynomial over a set X of j field elements, and represented as the set X. We want
to show that L is O(f + log(m))-strongly explicit. We first argue that the matrix L′ ∈ F(d+1)m×j is
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O(f+log(m))-strongly explict, where L′ is the matrix representing the evaluation of the polynomial
over the set X, but over the field F = GF(2f ) instead of over {0, 1}.

The succinct representation of L′ will be the list of j points at which the committed polynomial
is to be evaluated, which takes up j ·f space. Recall that the rows a of L′ correspond to coefficients
of the polynomial, and columns b ∈ Fm correspond to evaluation points. Thus, the (a, b)-entry,
where a = (i1, . . . , im) corresponds to the monomial xi11 · . . . · ximm and b = (b1, . . . , bm) is the
evaluation point, is simply bi11 · . . . · bimm , which can be computed in space O(log(m) + f).

The succinct representation of L will be similar to that of L′. In order to compute the entry at
row a and column b of L, we first compute the value v ∈ F at row a′ = ⌊a/f⌋ and column b′ = ⌊b/f⌋
of L′. We return the bit at coordinate (a mod f, b mod f) of the binary block corresponding to
v as per Remark 5.16. Thus, Construction 5.9 with ℓ = (d + 1)m · f is a polynomial commitment
with the required parameters.

The hiding and binding properties follow immediately from the hiding and binding of Construc-
tion 5.9.

5.3 Proof of Lemma 5.12

In this section we prove Lemma 5.12 restated as follows.

Lemma 5.18 (Lemma 5.12, restated). Let r ← {0, 1}λ, K ← {0, 1}λ×ℓ and A← {0, 1}λ×λ, where
ℓ ≤ λ

8 Let f : {0, 1}λ×λ → {0, 1}s be an arbitrary function, where s ≤ λ2

3 . Then:

SD
(
(r,K, rTAK, f(A)), (U , f(A))

)
≤ 2−

λ
17

where U is the uniform distribution over binary vectors of length λ+ λ · ℓ+ ℓ.

The proof of Lemma 5.12 draws on several useful facts and propositions, which we state and
prove below:

Fact 5.19. Let A,B be distributions defined over a finite space Ω, and let f be some Boolean
function. Then,

Pr
(a,b)←(A,B)

[f(a, b) = 1] = Ea′←A

[
Pr

(a,b)←(A,B)
[f(a, b) = 1|a = a′]

]
Proof.

Pr
(a,b)←(A,B)

[f(a, b) = 1] =
∑
ω∈Ω

Pr
(a,b)←(A,B)

[f(a, b) = 1|a = ω] · Pr
a←A

[a = ω]

= Ea′←A

[
Pr

(a,b)←(A,B)
[f(a, b) = 1|a = a′]

]

Fact 5.20. Let A,B be some events. Then,

Pr[A] ≤ Pr[B] + Pr[A|¬B].
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Proof.

Pr[A] = Pr[A ∧B] + Pr[A ∧ ¬B]

= Pr[A|B] · Pr[B] + Pr[A|¬B] · Pr[¬B]

≤ Pr[B] + Pr[A|¬B].

Fact 5.21. Let (A,B) and (A,B′) be two joint distributions that share the similar marginal distri-
bution A. Then,

∥(A,B)− (A,B′)∥1 = EA

[ ∥∥(B|A)− (B′|A)
∥∥
1

]
.

Proof.

∥(A,B)− (A,B′)∥1 =
1

2

∑
a,b

∣∣∣∣Pr[A = a,B = b]− Pr[A = a,B′ = b]

∣∣∣∣
=

1

2

∑
a

∑
b

∣∣∣∣Pr[B = b|A = a]− Pr[B′ = b|A = a]

∣∣∣∣ · Pr[A = a]

= EA

[
1

2

∑
b

∣∣∣∣Pr[B = b|A = a]− Pr[B′ = b|A = a]

∣∣∣∣
]

= EA

[ ∥∥(B|A)− (B′|A)
∥∥
1

]
.

The following fact follows readily from the Cauchy-Schwartz inequality.

Fact 5.22. Let X ∈ {0, 1}N . Then,

∥X∥1 ≤
√
N · ∥X∥2.

Fact 5.23. Let X be a probability distribution over a space Ω of cardinality N = |Ω|, and let U be
the uniform distribution over Ω. Then,

∥X − U∥22 = ∥X∥22 −
1

N
.

Proof. Let pω = PrX [X = ω]. Then by the definition of the ℓ2 norm,

∥X − U∥22 =
∑
ω∈Ω

(
p2ω − 2

1

N
pω +

1

N2

)
=

∑
ω

p2ω − 2
1

N

∑
ω

pω +
∑
ω

1

N2

= ∥X∥22 −
1

N
.
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Corollary 5.24. Let X be a probability distribution over a space Ω of cardinality N , let U be the

uniform distribution over Ω, and let ϵ > 0. If ∥X∥22 ≤ 1+ϵ
N , then SD(X,U) ≤

√
ϵ
2 .

Proof. Recall that the collision probability of a distribution is equal to the ℓ2 norm of its pdf. And
so, by Facts 5.22 and 5.23

2 · SD(X,U) = ∥X − U∥1 ≤
√
N · ∥X − U∥2 ≤

√
N ·

√
∥X∥2 − 1

N
=

√
N · ∥X∥22 − 1 ≤

√
ϵ.

Proposition 5.25. The number of matrices A ∈ {0, 1}m×λ with rank at most r is at most 2(m+λ)·r.

Proof. Consider the following non-deterministic algorithm for constructing a matrix A ∈ {0, 1}m×λ
of rank at most r. Choose r pairs of binary vectors of length m,λ respectively, and compute the
outer product of each pair and output the sum of all products. Note that there are 2(m+λ)·r possible
different executions of the algorithm. Since every rank-r matrix can be expressed as the sum of r
rank-1 matrices, and every rank-1 matrix can be expressed by a Kronecker product of two vectors,
we get that for every possible matrix A with rank at most r, there exists an execution of the
algorithm where it outputs A.

Thus, there can be no more than 2(m+λ)·r matrices M ∈ {0, 1}m×λ with rank at most r.

Proposition 5.26. Let f : {0, 1}λ×λ → {0, 1}s be an arbitrary function and for A ∈ {0, 1}λ×λ let
Γ(A) be the set of all matrices A′ ∈ {0, 1}λ×λ such that f(A) = f(A′). Let LR be the set of all
λ× λ binary matrices with rank at most λ

4 . Then,

E
A←{0,1}λ×λ

[
Pr

A′,A′′←Γ(A)

[
(A′ ⊕A′′) ∈ LR

]]
≤ 2s−

λ2

2 .

Proof. Denote by LR⊕A the set of all matrices A′ such that A⊕A′ ∈ LR. Fix some A ∈ {0, 1}λ×λ
and consider the expression inside the expectation. Using Fact 5.19 we can write

Pr
A′,A′′←Γ(A)

[
(A′ ⊕A′′) ∈ LR

]
= E

A′←Γ(A)

[
Pr

A′′←Γ(A)

[
(A′ ⊕A′′) ∈ LR

]]
. (1)

Fix some A′ and once again consider the expression inside the expectation:

Pr
A′′←Γ(A)

[
(A′ ⊕A′′) ∈ LR

]
= Pr

A′′←Γ(A)

[
A′′ ∈ LR⊕A′

]
≤ |LR|
|Γ(A)|

≤ 2
λ2

2

|Γ(A)|
(2)

where the cardinality of LR is bounded according to Proposition 5.25.
Combining Eq. (1) and Eq. (2), we get

Pr
A′,A′′←Γ(A)

[
(A′ ⊕A′′) ∈ LR

]
≤ 2

λ2

2

|Γ(A)|
.
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Plugging in the original expression of the Lemma’s statement:

E
A←{0,1}λ×,λ

[
Pr

A′,A′′←Γ(A)

[
(A′ ⊕A′′) ∈ LR

]]
≤ EA

 2
λ2

2

|Γ(A)|


= 2

λ2

2 · EA

[
1

|Γ(A)|

]
= 2

λ2

2

∑
α∈{0,1}s

Pr
A
[f(A) = α] · 1

|f−1(α)|

= 2
λ2

2

∑
α∈{0,1}s

|f−1(α)|
2λ2 · 1

|f−1(α)|

= 2
λ2

2 · 2s · 2−λ2

= 2s−
λ2

2 .

We are now ready to prove our main lemma.

Proof of Lemma 5.12. Let Γ(A) be the set of all A′ such that f(A′) = f(A), and let Ã denote a
random variable for a uniformly sampled matrix from Γ(A). From Fact 5.21 and the definition of
statistical difference we get

SD
(
(r,K, rTAK, f(A)), (U , f(A))

)
=

1

2

∥∥∥∥(r,K, rTAK, f(A))− (U , f(A))

∥∥∥∥
1

=
1

2
E
A

[∥∥∥∥(r,K, rTAK|f(A))− (U|f(A))

∥∥∥∥
1

]
=

1

2
E
A

[∥∥∥∥(r,K, rT ÃK)− U
∥∥∥∥
1

]
= E

A

[
SD

(
(r,K, rT ÃK),U

)]
.

(3)

Using Corollary 5.24 we can bound the quantity above as follows:

E
A

[
SD

(
(r,K, rT ÃK),U

)]
≤ 1

2
E
A

[√
2λ+λ·ℓ+ℓ ·

√
∥(r,K, rT ÃK)∥22 − 2−(λ+λ·ℓ+ℓ)

]
≤ 2

λ+λ·ℓ+ℓ
2 ·

√
E
A

[
∥(r,K, rT ÃK)∥22

]
− 2−(λ+λ·ℓ+ℓ),

(4)

where the last inequality follows from the Jensen inequality, with respect to the square root function,
which is indeed concave.
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Zooming in on ∥(r,K, rT ÃK)∥22, we compute it as

∥(r,K, rT ÃK)∥22 = Pr
r1,r2,K1,K2,Ã1,Ã2

[
r1 = r2,K1 = K2, r

T
1 Ã1K1 = rT2 Ã2K2

]
= Pr

r1,r2,K1,K2,Ã1,Ã2

[
rT1 Ã1K1 = rT2 Ã2K2 | r1 = r2,K1 = K2

]
· Pr
r1,r2

[r1 = r2] · Pr
K1,K2

[K1 = K2]

= 2−λ−λ·ℓ · Pr
r,K,Ã1,Ã2

[
rT (Ã1 ⊕ Ã2)K = 0

]
.

(5)

Let LR be the set of all λ× λ matrices with rank at most λ
4 . By Fact 5.20 we have that

Pr
r,K,Ã1,Ã2

[
rT (Ã1 ⊕ Ã2)K = 0

]
≤ Pr

Ã1,Ã2

[(Ã1 ⊕ Ã2) ∈ LR] + Pr
r,K,Ã1,Ã2

[
rT (Ã1 ⊕ Ã2)K = 0 | (Ã1 ⊕ Ã2) /∈ LR

]
≤ Pr

Ã1,Ã2

[
(Ã1 ⊕ Ã2) ∈ LR

]
+ Pr

r,Ã1,Ã2

[
r ∈ Ker(Ã1 ⊕ Ã2)

T | (Ã1 ⊕ Ã2) /∈ LR
]

+ Pr
r,K,Ã1,Ã2

[
rT (Ã1 ⊕ Ã2)K = 0 | (Ã1 ⊕ Ã2) /∈ LR, r /∈ Ker(Ã1 ⊕ Ã2)

T
]
.

(6)

The quantity in the left-hand side of Eq. (6) is bounded by the sum of three expressions.
According to Proposition 5.26 the expectation over A of the first expression is bounded from above

by 2s−
λ2

2 . Note that for a matrix A ∈ {0, 1}λ×λ of rank λ
4 we have that

Pr
k←{0,1}λ

[k ∈ Ker(A)] =
|Ker(A)|

2λ
=

2λ−
λ
4

2λ
= 2−

λ
4 .

Thus, the second expression is bounded from above by 2−
λ
4 . The third expression can be written

as
Pr
K

[
uTK = 0

]
≤ 2−ℓ

where u is a non-zero vector of length λ, and the bound is due to the random subset-sum principle,
and the fact that the columns of K are independent.

By combining Eqs. (5) and (6) we get the following bound:

E
A

[
CP(r,K, rT ÃK)

]
≤ 2−(λ+λ·ℓ+ℓ) + 2s−

λ2

2
−λ−λ·ℓ + 2−(

5λ
4
+λ·ℓ) ≤ 2−(λ+λ·ℓ+ℓ) + 2−(

9λ
8
+λ·ℓ+ℓ−1),

(7)

where the second inequality results from the choice of parameters s ≤ λ2

3 and ℓ ≤ λ
8 .

Finally, combining Eq. (7) with Eq. (3) and Eq. (4) we get

SD
((

r,K, rTAK, f(A)
)
,
(
U , f(A)

))
≤ 2

λ+λ·ℓ+ℓ
2 ·

√
2−(

9λ
8
+λ·ℓ+ℓ−1) ≤ 2−

λ
17 .
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This concludes the proof of Lemma 5.12.

6 Zero-Knowledge Streaming Interactive Protocol for PEP

In this section, we present a zero-knowledge streaming interactive proof for the decision version of
the Polynomial Evaluation Problem defined as the following language.

Definition 6.1 (Polynomial Evaluation Problem). Let F be a finite field. Let P : Fm → F be
an m-variate polynomial of individual degree-d, represented as a vector of evaluations at (d+ 1)m

distinct points in F Let x ∈ Fm and α ∈ F. Then,

PEP = {(P, x, α) | P (x) = α} .

We construct a zero-knowledge streaming interactive proof for PEP using a statistically hid-
ing streaming commitment per Definition 4.1 and a polynomial commitment per Definition 5.14.
Throughout this section and the next we denote the parameters of the statistically hiding com-
mitment (resp. polynomial commitment) as

(
ssS , s

s
R, s

s
b, δ

s
b , δ

s
h

)
(resp.

(
spS , s

p
R, s

p
h, δ

p
b , δ

p
h

)
), and its

communication complexity as ccs (resp. ccp).13 Recall that s
{s,p}
S , s

{s,p}
R indicate the minimal space

required by the ROTM sender and receiver, respectively, to execute the commitment, ssb (resp. s
p
h)

is the maximal space of a malicious ROBP sender (resp. receiver) against which the commitment is

binding (resp. hiding), and that δ
{s,p}
b , δ

{s,p}
h are the binding and hiding errors of the commitments,

respectively. Note that these parameters are a function of the commitments’ security parameters
and length of the committed strings. The commitments’ security parameters and length of the
committed strings are in turn a function of the protocol’s input length n, and so in order to ab-
stract the inner workings of the commitments, we treat the parameters listed above as functions
of n. As our protocol uses abstract commitments, we implicitly assume that when instantiating
the protocol with particular commitment schemes, the prover and verifier also receive as auxiliary
input the security parameters and any other information required to execute the commitments.

By constructing a protocol for PEP, we shall prove our first main theorem:

Theorem 6.2. Let m, d ∈ N+, and let F be a finite field. Denote the space of the honest verifier
by s. Let

(
ssS , s

s
R, s

s
b, δ

s
b , δ

s
h

)
(resp.

(
spS , s

p
R, s

p
h, δ

p
b , δ

p
h

)
) be the parameters of a statistically hiding

streaming commitment per Definition 4.1 (resp. polynomial commitment per Definition 5.14), such
that ssR = O(s), spS = O(s), ssb > s, and sph > 2ssb + ssR + spS . There exists a streaming interactive
proof for the polynomial evaluation problem (PEP) for m-variate polynomials of individual degree d
defined over F with a ROTM verifier with space s = O

(
m log(|F|)

)
+ spR+ ssS that is zero-knowledge

with error 12
√
δsb + 4δph against adversaries with space ssb per Definition 3.6. The protocol satisfies

perfect completeness and has a soundness error of dm
F + δsh + δpb and communication complexity

m · log(|F|) + ccs + ccp.

From the theorem, applying our commitment schemes constructed in the previous sections, we
obtain the following corollary.

13Note that the s and p superscripts stand for “statistically hiding commitment” and “polynomial commitment”,
respectively.
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Corollary 6.3. Let n = ((d + 1)m + m + 1) · ⌈log(|F|)⌉ denote the input length. There exists a
streaming interactive proof for the polynomial evaluation problem (PEP) for m-variate polynomi-

als of individual degree d = O(polylog(n)) defined over F such that |F| = Θ(2log
2(n)), where the

verifier has space s = polylog(n) and the communication complexity is polylog(n). The proof has
perfect completeness, negligible soundness error, and negligible zero-knowledge error, secure against
adversaries with space s2−δ (for any δ > 0).

Proof. Let δ > 0. Take Constructions 4.13 and 5.9 with security parameters λ = logc(n) for some
constant c, and ϵ > 0, such that ϵ ≤ 1

2−δ −
1
2 .

Take |F| = Θ(2log
2(n)), d = O(polylog(n)),m = O(log(n)). Then, by Theorem 6.2 we get a

streaming interactive proof for the polynomial evaluation problem with an honest verifier with
space s = O

(
m log(|F|)

)
+ spR + ssS = polylog(n) + logc+3(n) + logc(1+ϵ)(n) ≤ logc(1+2ϵ)(n), for

large-enough constant c.
The protocol satisfies perfect completeness and soundness error dm

|F| +2− logc(n) +2−Ω(logcϵ(n)) =

negl(n) for c ≥ 2
ϵ . It has a zero-knowledge error of 12

√
2−Ω(logcϵ) +4 · 2−

logc(n)
17 = negl(n), for c ≥ 2

ϵ ,

against adversaries with space log2c(n) = (logc(1+2ϵ)(n))
2

1+2ϵ ≥ s2−δ.

The remaining of this section will be dedicated to proving Theorem 6.2. In Section 6.1 we shall
present our construction and show that it is a streaming interactive proof, and in Section 6.2 we
will prove that the protocol is a streaming zero-knowledge proof.

6.1 Zero-Knowledge Streaming Interactive Proof for PEP

The protocol is presented in Fig. 1.
We begin by analyzing the complexity of the protocol. used in Protocol 6.4. The prover stores

the entire input, and so requires O
(
n log(F)

)
= O

(
dm log(F)

)
space. The main space constraints of

the verifier come from the execution of the two commitment schemes. The amount of additional
storage used beyond the commitments is O

(
dm log(|F|)

)
. Thus, in total the verifier has space

complexity O
(
m log(|F|)

)
+ spR + ssS .

In terms of communication complexity, the total number of bits transferred between the parties
is the sum of the communication complexities of the two commitments, plus the single value L(1) ∈
F sent in Step 3b. Thus, in total, the communication complexity of the protocol is m · log(|F|) +
ccs + ccp.

Proposition 6.5. Protocol 6.4 satisfies perfect completeness.

Proof. Suppose P (x) = α and consider an execution of the protocol with the honest prover. In this
case, by construction, g(0) = P (x) = α and g(µ) = P (r), and so the verifier always accepts.

Lemma 6.6. Protocol 6.4 has soundness error dm
F + δsh + δpb .

Proof. Suppose P (x) ̸= α and fix a cheating prover strategy. Without loss of generality, assume
that the prover is deterministic.14

14The soundness definition of the protocol applies to all unbounded provers, and in particular to provers that have
access to the input prior to it being streamed. Thus, any such a randomized prover can be emulated by a deterministic
one which has the optimal choice of randomness hardwired.
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Protocol 6.4. Streaming interactive protocol for PEP.
Streaming Input: An m-variate polynomial P of individual degree d over field F, streamed
as a vector of evaluations at (d+ 1)m = n points, a point x ∈ Fm, a value α ∈ F.
Output: 1 if P (x) = α, otherwise 0.

1. Statistically hiding commitment stage

(a) The verifier draws at random a point r ∈ Fm.

(b) The verifier sends to the prover a commitment to r using a statistically hiding
streaming commitment per Definition 4.1.

2. Streaming stage

(a) The prover and verifier stream the input polynomial. While streaming, the verifier
evaluates P at point r using Lagrange interpolation. The prover, who has unbounded
space, records the values of P at all points in Fm.

(b) Both parties read the point x ∈ Fm at which we want to evaluate the polynomial,
and the value α ∈ F.

3. Interactive stage

(a) The verifier draws at random a non-zero field element µ ∈ F \ {0}.
(b) The verifier sends to the prover the line L : F → Fm s.t. L(0) = x and L(µ) = r.

The line is represented as a single value L(1).a

(c) Using a polynomial commitment per Definition 5.14 with security parameter λ, the
prover sends to the verifier a commitment to the univariate polynomial g : F → F,
defined as g = P |L (i.e., g(·) = P (L(·))) represented as a list of dm+ 1 coefficients.

4. De-commitment stage

(a) The verifier de-commits to r.

(b) If the verifier’s de-commitment was valid, the prover de-commits to g(0), g(µ), b

otherwise it aborts.

(c) The verifier accepts if and only if:

i. g(0) = α.

ii. g(µ) = P (r).

aSince the prover already knows the value L(0), that is enough for it to reconstruct the line.
bOnce the prover knows r, it can compute µ = L−1(r). Note that unless r = x, the function L is bijective

and so L−1 is well-defined. In the unlikely event that r = x, the verifier will have already computed P (x) and
does not need to continue the protocol.

Figure 1: Protocol 6.4: Streaming Interactive Proof for PEP



Let u, v be the values to which the prover de-commits in Step 4b, which are to be interpreted by
the verifier as g(0), g(µ) respectively. Note that these are random values that depend on the choices
of the verifier. For the prover to pass the first verifier test in Step 4(c)i the first de-committed point
must satisfy

u = α ̸= P (x),

and so any degree-dm univariate polynomial h such that h(0) = u and h(µ) = v satisfies

h ̸= P |L.

By the definition of the polynomial commitment used by the prover in Step 3c, the commitment
uniquely defines a degree-dm polynomial, which we denote by g∗. Denote by E1 the event that
the prover de-commits to evaluations u, v such that u ̸= g∗(0) or v ̸= g∗(µ) in Step 4b. By the
statistical binding of the polynomial commitment we have that

Pr[E1] = δpb .

Assume now that E1 does not occur, and so the polynomial g∗ to which the prover commits in
Step 3c satisfies g∗ ̸= P |L. Consider the following mental experiment where in Step 1b the verifier
commits to zeros, instead of the random r with which it proceeds in the protocol. We emphasize
that in this mental experiment r is still used in Step 3b, but the verifier does not commit to it in
Step 1b.

Let E2 denote the event that in the execution of the real protocol the value g∗ to which the
prover commits satisfies g∗(L−1(r)) = P (r), and let E′2 denote the same event, but in the mental
experiment. We note that since in the mental experiment, the prover is completely oblivious to the
random point r, and so if g∗ ̸= P |L, by the fundamental theorem of algebra, the probability that
E′2 will occur is at most dm

F . By the statistically hiding property of the verifier’s commitment, it
must be so that Pr[E2] ≤ Pr[E′2] + δsh. Thus, we conclude that assuming g∗ ̸= P |L, it must be that
Pr[E2] ≤ dm

F + δsh.
Hence, if E1 does not occur, then the only way to pass the first verifier test is for the prover

to commit to a polynomial g∗ ̸= PL. Then, in order to pass the second verifier test in Step 4(c)ii
(g∗(µ) = P (r)), E2 must occur. Thus, if both events do not occur, the verifier rejects. Therefore,
for the prover to fool the verifier, at least one of the events from E1, E2 must occur. The lemma
now follows from the union bound.

6.2 Protocol 6.4 is Zero-Knowledge

To show that Protocol 6.4 is zero-knowledge (under the formal requirements of Definition 3.6) we
need to show that the verifier’s view during an interaction with the prover is indistinguishable from
the output of a simulation of a space bounded machine. To specify the view we enumerate the
components that the verifier sees in the protocol, in the order that they are seen:

1. Statistically binding streaming commitment to the value r.

2. Input P, x, α.

3. Polynomial commitment to the polynomial g.

4. De-commitment to g.
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Recall that we define that every random bit of the verifier enters its view as soon as it is
queried, and so the verifier’s randomness is included in the view above, interlaced within the listed
components.

6.2.1 Extracting r from the Verifier

To show that Protocol 6.4 satisfies zero-knowledge, for any malicious verifier we construct a simu-
lator that simulates the verifier’s view when interacting with the prover.

The key difficulty with simulating the view is that while an unbounded prover can store in its
memory the entire input, a simulator cannot. This is a problem since in Step 3c of the protocol,
the simulator must commit to a polynomial g that satisfies g(µ) = P (r), for some r chosen by
the verifier, but the verifier reveals the value of r only after g has been committed. This happens
only after the streaming of the input has been completed, and by that point it is too late for the
simulator to query P at the point r. In traditional zero-knowledge proofs, the rewinding technique
can be used to recover r and then re-execute the protocol. The problem is that in the streaming
context rewinding is not an option (since the simulator can only read the input once).

Thus, rather than rewinding, we leverage the fact that the simulator (in contrast to the prover)
has full access to the code of the verifier and in particular to potential randomness that it uses. If
for example, the value of r is just taken directly from the randomness string, the simulator could
simply read it off of that. The issue with this is that we do not know how the verifier will generate
r in advance, and trying to analyze the “code” of the verifier seems to be extremely complex.

To get around this, we take advantage of our modeling of the simulator as a read-once branching
program that can execute arbitrarily complex computations in order to decide how to transition from
state to state. Hence, the simulator can compute a function r′ = r′(stV∗ , stR), where stV∗ is the
contents of the tape of the verifier when it sends the commitment, and stR is the contents of the
tape of the honest receiver of the commitment, simulated by the simulator, when it receives the
commitment. Our goal is for the function r′ to predict the value of r to which the verifier will
de-commit, depending on the state to which the parties involved in the commitment arrived at
the time of the commitment. We emphasize that the verifier is only computationally bound to the
value r and so it is not a priori clear that even an unbounded simulator can simply “break” the
commitment to extract the value.

We stress that the value of r′ depends only on the transcript that occurred prior to the streaming
of the input, while the verifier’s behavior at the time of the de-commitment can change depending
on the input stream, and the rest of the communication transcript that comes between the time
the verifier commits to r and the time it de-commits. Therefore, arguing that there exists such a
value r′ that satisfies the above is non-trivial and is captured by the following proposition.

Proposition 6.7. Fix a cheating prover V∗ with space up to ssb and denote by ρV∗ the randomness
used by V∗ to execute the statistically hiding streaming commitment in Step 1b of Protocol 6.4.
Denote by ρR the randomness used by the honest receiver to execute the commitment. Denote by
stV∗ , stR the internal state of the verifier and the receiver, respectively, after sending the commit-
ment using randomness ρV∗ and ρR. Let ρ′P , ρ

′
V∗ be the randomness of the prover and verifier,

respectively, for the execution of Steps 3 through 4a of the protocol. Let r = r(stV∗ , P, x, α, ρ′P , ρ
′
V∗)

be the value to which the verifier de-commits in Step 4a when committing with state stV∗, streaming
the input (P, x, α), and exchanging messages in Steps 3 through 4a using ρ′V∗ with the prover using
ρ′P . In case the receiver rejects the verifier’s de-commitment in Step 4a then we define r = ⊥.
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Then, there exists a function r′ : {0, 1}∗ → Fm ∪ {⊥} such that for all (P, x, α, ρ′P , ρ
′
V∗),

Pr
ρV∗ ,ρR

[(
r′(stV∗ , stR) ̸= r

)
∧
(
r ̸= ⊥

)]
≤ 3

√
δsb ,

where r = r(stV∗ , P, x, α, ρ′P , ρ
′
V∗).

The key benefit of Proposition 6.7 is that the function r′ can predict r based solely on the
commitment to r made by the verifier prior to the streaming of the input. We note that Proposition
5.4 leaves the possibility that r′ ̸= r when r = ⊥. Fortunately, this case is not problematic for us
since if r = ⊥ the simulator does not need to open its de-commitment in Step 4b.

We proceed to the proof of the proposition.

Proof of Proposition 6.7. We define the function r′ by presenting a (highly inefficient) algorithm
that computes it. We stress that while r′ is not efficiently computable, it depends only on the
internal state of the verifier and the receiver of the commitment, and so the simulator will be able
to compute it.

Since the verifier’s behaviour may depend on everything it sees during the interaction, we
catalogue the value to which it de-commits for any possible transcript of the protocol in a matrix
M , where the columns represent all the possible pairs of states (stV∗ , stR) at the time of the
commitment, and the rows represent all possible protocol executions (P, x, α, ρ′P , ρ

′
V∗) from after

the commitment up to the de-commitment (which also include the streaming of the input). Denote
the number of columns in M as n (n = 2|stV∗ |+|stR|) and the number of rows as m. The entry
Mij is the value that is de-committed by the verifier when committing with the state combination
j and continuing the protocol with execution i. If the verifier fails to properly de-commit in this
configuration, we set Mij = ⊥.

Note that the states at the time of the commitment depend on the randomness ρV∗ , ρR with
which V∗ and R execute the commitment. Thus, some state combinations may be more likely
than others. To account for that, we define a distribution w over the columns of M , such that the
probability of sampling a column j from w is equal to the probability of uniformly selecting a pair
(ρV∗ , ρR) that will result in the state combination represented by the column j.

To define r′, we must assign a single value to each column of M . If the columns were entirely
uniform (i.e., each column had the same value), this value would naturally be the sole candidate
for r′. However, the verifier may behave differently for certain rows, leading to multiple possible
candidates. To address this, we leverage the fact that the verifier is committed to r, ensuring that
its behavior cannot be arbitrary, and by such uniquely isolating a specific r′ for each column. The
following outlines the procedure for selecting this value for r′ for each column.

Let M̃ be a binary matrix of the same dimensions as M , where

M̃ij =

{
0, Mij = ⊥
1, otherwise

.

Consider the following claim.

Claim 6.7.1. Let M̃ ∈ {0, 1}m×n and let w be a distribution defined over [n] We say that row
i ∈ [m] covers column j ∈ [n] if M̃ij = 1 and that a set of rows I ⊆ [m] covers column j if there
exists a row i ∈ I that covers column j.
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For every 0 < δ ≤ 1, there exists a set I ⊆ [m] of rows such that |I| ≤ ⌈1/δ⌉, and for any row
i∗ ∈ [m],

Pr
j←w

[i∗ covers j and I does not cover j] ≤ δ.

We will use Claim 6.7.1 to show that there exists a relatively small set of rows in M that covers
(almost) all its columns, according to whose values we can set r′. The fact that the set is small will
be helpful later on.15

Proof of Claim 6.7.1. We construct the set I using the following greedy algorithm:

1. Initialize I ← ∅.

2. If there exists a row i ∈ [m] \ I such that

Pr
j←w

[i covers j and I does not cover j] > δ,

then, add i to I and goto Step 2.

3. Return I.

Denote by p[S] the probability that a column drawn from w is covered by set of rows S.
Restating the condition in Item 2 we add the row i to the set I if p[I ∪ {i}] − p[I] > δ, and so
p[I ∪{i}] > p[I]+ δ, i.e. in each iteration the probability of drawing a column j from w such that I
covers j, increases by at least δ. Since probabilities are upper bounded by 1, this implies that the
number of iterations is at most ⌈1/δ⌉. Since we add a single item in each iteration, |I| ≤ ⌈1/δ⌉, as
required.

Second, the stopping condition is exactly what we require of the set I, and so at the end of the
algorithm the set I satisfies what is required by the proposition.

Let δ =
√
δsb and let I be the set of rows in M̃ of size at most ⌈1/δ⌉ guaranteed to exist by

Claim 6.7.1, and consider this set of rows in the matrix M . Recall that M is our original matrix
which contains the de-commitment response, whereas M̃ was a binary matrix that indicated for
which entries of M the prover accepted the verifier’s de-commitments. Recall that for every row i,
the probability that a column drawn from distribution w is covered by i and not by I is at most δ.
We define the value r′(j) as follows:

• If for all i ∈ I it holds that Mij = ⊥ then set r′(j) = ⊥.

• If there exist i, i′ ∈ I such that Mij ,Mi′j ̸= ⊥ but Mij ̸= Mi′j then arbitrarily set r′(j) = Mij .

• Otherwise there exists a unique v ∈ Fm such that for all i ∈ I it holds that Mij ∈ {⊥, v}. In
this case set r′(j) = v.

We now show that r′ as defined above satisfies the proposition. To do so it will be convenient
to restate the proposition in terms of M and w. Thus, we need to show that for any row i ∈ [m],

Pr
j←w

[
r′(j) ̸= Mij ∧Mij ̸= ⊥

]
≤ 3

√
δsb .

15Jumping ahead, we will be utilizing the binding of the commitment on this set of rows, and we can only afford a
union bound on the binding error over a small set of rows.
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Note that this event may occur for two reasons: either (1) r′(j) ̸= ⊥ and the value was defined by
a row i∗ ∈ I such that Mij ̸= Mi∗j or (2) r′(j) = ⊥ as for all rows i∗ ∈ I, Mi∗j = ⊥. To account
for these cases, we write

Pr
j←w

[(
r′(j) ̸= Mij

)
∧
(
Mij ̸= ⊥

)]
=

Pr
j←w

[(
r′(j) ̸= Mij

)
∧
(
Mij ̸= ⊥

)
∧
(
r′(j) ̸= ⊥

)]
+ Pr

j←w

[(
r′(j) ̸= Mij

)
∧
(
Mij ̸= ⊥

)
∧
(
r′(j) = ⊥

)]
.

We bound each case separately.
We address the former case first, via the following claim:

Claim 6.7.2. For any two fixed rows in M , the probability over distribution w of selecting a column
in which both rows take non-⊥ values and the values disagree is at most δsb .

Proof. Assume the contrary, and so we can construct an adversarial sender with space at most
ssb that can break the binding of the commitment. The adversary will simulate the protocol on
both transcripts that correspond to the two rows of M and a random column sampled from w,
and output the two de-commitments. According to the assumption, this adversary will succeed
with probability greater than δsb , in contradiction to the binding guarantee of the commitment per
Definition 4.1.

Recall that the number of rows in I is at most ⌈1/δ⌉, and so, by the union bound and Claim 6.7.2,
given i ∈ [m], the probability over selecting a column j from distribution w such that for any i∗ ∈ I,
it holds that Mij ,Mi∗j ̸= ⊥ and Mij ̸= Mi∗j is at most |I| · δsb ≤ (1/δ + 1) · δsb ≤ 2

√
δsb . According

to the definition of r′, in the case where r′(j) ̸= ⊥, there exists i∗ ∈ I such that r′(j) = Mi∗j ̸= ⊥,
and so we have that

Pr
j←w

[(
r′(j) ̸= Mij

)
∧
(
Mij ̸= ⊥

)
∧
(
r′(j) ̸= ⊥

)]
≤ Pr

j←w

[
∃i∗ ∈ I :

(
Mi∗j ,Mij ̸= ⊥

)
∧
(
Mi∗j ̸= Mij

)]
≤ 2

√
δsb .

As for the second case, by Claim 6.7.1, and selecting the set I with δ =
√

δsb , the probability
over a selection of a column j from the distribution w that the column j is not covered by I is at
most δ, and so

Pr
j←w

[(
r′(j) ̸= Mij

)
∧
(
Mij ̸= ⊥

)
∧
(
r′(j) = ⊥

)]
≤ Pr

j←w

[
r′(j) = ⊥

]
≤

√
δsb .

This concludes the proof of Proposition 6.7.

Proposition 6.7 considered fixed ρ′P , ρ
′
V∗ , i.e. the randomness of the prover and verifier for

executing the Steps 2, 3 of the protocol. The following immediate corollary shows that it also holds
when these are chosen at random.

Corollary 6.8. Under the same setting as Proposition 6.7, there exists a function r′ : {0, 1}∗ →
Fm ∪ {⊥} such that for all inputs (P, x, α),

Pr
ρV∗ ,ρR,ρ′P ,ρ′V∗

[(
r′(stV∗ , stR) ̸= r

)
∧
(
r ̸= ⊥

)]
≤ 3

√
δsb ,
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where r = r(stV∗ , P, x, α, ρ′P , ρ
′
V∗).

Proof. Fix some input (P, x, α). Then by Proposition 6.7,

Pr
ρV∗ ,ρR,ρ′P ,ρ′V∗

[(
r′(stV∗ , stR) ̸= r(stV∗ , P, x, α, ρ′P , ρ

′
V∗)

)
∧
(
r ̸= ⊥

)]
= E

ρ′P ,ρ′V∗

[
Pr

ρV∗ ,ρR

[(
r′(stV∗ , stR) ̸= r(stV∗ , P, x, α, ρ′P , ρ

′
V∗)

)
∧
(
r ̸= ⊥

)]]
< E

ρ′P ,ρ′V∗

[
3
√
δsb

]
= 3

√
δsb .

Remark 6.9. Note that the Proposition 6.7 remains valid even if we also consider interactions
that are outside the support of the honest prover. Formally, let ViewV∗ be any distribution over
everything in the verifier’s view after the statistically hiding commitment. Then the proposition
holds also for r = r(stV∗ ,ViewV∗).

6.2.2 Constructing the Simulator

Using Proposition 6.7 we now construct our simulator SV∗ for Protocol 6.4. Let V∗ be a verifier
with space at most ssb. We construct the simulator SV∗ in Fig. 2.

Note that in order to simulate the protocol, the simulator must have enough space to simulate
the malicious verifier, the receiver of the statistically hiding commitment and the sender of the
polynomial commitment, and so in total requires space sV∗ + ssR + spS .

In the following proposition we argue that for any malicious verifier V∗, Simulator 6.10 with
access to V∗ satisfies the zero-knowledge definition for Protocol 6.4, and by such we conclude the
proof of Theorem 6.2.

Proposition 6.11. Let n denote the length of a PEP instance (P, x, α) where P is an m-variate
polynomial of individual degree d defined over a field F. Let V∗ be a malicious ROBP verifier with
space at most min

{
ssb, s

p
h

}
. Let S(P, x, α) (resp. ViewPV∗(P, x, α)) be the output of Simulator 6.10

with access to V∗ (resp. the view of V∗ when interacting with the honest prover from Protocol 6.4)
on input (P, x, α). Then, for all ROBP streaming distinguishers D with space at most sph − ssb and
all inputs (P, x, α) ∈ PEP,∣∣∣Pr[D(S(P, x, α)) = 1

]
− Pr

[
D(ViewPV∗(P, x, α)) = 1

]∣∣∣ ≤ 12
√

δsb + 4δph.

Proof. Let δ = 12
√

δsb + 4δph and assume toward a contradiction that there exist λ, a distinguisher
D, and input (P, x, α) ∈ PEP for which∣∣∣Pr[D(S(P, x, α)) = 1]− Pr[D(ViewPV∗(P, x, α)) = 1]

∣∣∣ > δ.

For convenience, we henceforth denote the distributions S(P, x, α) and ViewPV∗(P, x, α) by A
and B, respectively. We use D to construct a distinguisher D′ that breaks the hiding guarantee of
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Simulator 6.10. Simulator for PEP.
Streaming Input: An m-variate polynomial P of individual degree d over field F, streamed
as a vector of evaluations at (d+ 1)m = n points, a point x ∈ Fm, a value α ∈ F.

1. Statistically hiding commitment stage

(a) Engage with V∗ in an interactive statistically hiding streaming commitment per
Definition 4.1 and write the commitment’s transcript on the output tape.

(b) Let stV∗ , stR be the verifier’s and receiver’s state after sending the commitment,
respectively. Compute the value r′ = r′(stV∗ , stR) as per Proposition 6.7.

2. Streaming stage

(a) Stream the input, and forward it to V∗ as it is streamed. While streaming, compute
and record the value P (r′), and write the input stream on the output tape.

3. Interactive stage

(a) Get L : F→ Fm from V∗.
(b) Send to V∗ a statistically binding streaming polynomial commitment per Defini-

tion 5.14 to an arbitrary univariate polynomial g′ with the following two constraints:
g′(0) = α and g′(L−1(r′)) = P (r′), represented as evaluations at dm+1 points (e.g.,
the line passing through these two points). Write the commitment’s transcript to
the output tape.

4. De-commitment stage

(a) Get from V∗ the de-commitment to r.

(b) If the de-commitment is valid, and r = r′, write the de-commitment to g′(0),
g′(L−1(r)) on the output tape, otherwise abort.

Figure 2: Simulator 6.10: Simulator for Protocol 6.4



the polynomial commitment.
The distinguisher D′ has access to D, the malicious verifier V∗, and the input (P, x, α). Its

goal is to win the hiding security game of the polynomial commitment (see Section 5.1.1) against
the challenger. Note that according to the rules of the game, we do not need to impose any
computational limitations on the distinguisher, with the exception that at a certain point during
the streaming of the challenge, it may only retain sph bits from its computations thus far. As a
matter of fact, we will be more restrictive and the D′ that we construct does hold more than sph bits
in memory from the very beginning of the challenger’s stream. Take notice that since the malicious
verifier V∗ is limited to use at most ssh bits of memory and D at most sph−ssh, then D′ can run both
V∗ and D without exceeding its memory limitation.

We proceed to describe the distinguisher. First it needs to select the two polynomials gS , gP
from which the challenger will select its challenge, and the set of points at which the challenger will
provide the de-commitment. In order to do so it starts engaging with V∗ in the statistically hiding
commitment to the value r as per Step 1b of the protocol. While doing so it streams the transcript
of the interaction to D. Similarly to the simulator in Step 1b, D′ attempts to extract a value r′ to
which it predicts that V∗ will de-commit later on. After simulating the verifier’s commitment, it
streams the input (P, x, α) (which it has hardcoded) to both D and V∗, and continues to receive a
value from V∗ representing a line L as per Step 3b of the protocol. Now it constructs gS and gP ,
which are the polynomials to be committed by the simulator and the prover, respectively. Recall
that gS is an arbitrary polynomial represented as evaluations at (dm + 1) points that adheres
to the constraints gS(0) = α and gS(L

−1(r′)) = P (r′), and that gP = P |L. Note that since
the distinguisher has full access to P , it is able to construct gP (and therefore also gS). Since
P (x) = P (L(0)) = α, we have that gS(0) = gP(0), and so the two polynomials agree on the two
evaluation points. To conclude the first step of the game, the distinguisher D′ sends the polynomials
gS , gP and the points {0, L−1(r′)} to the challenger.

The challenger chooses one of these two polynomials at random and sends a streaming poly-
nomial commitment to the chosen polynomial. While receiving the commitment, D′ forwards the
stream to D and V∗. At this point, V∗ sends the de-commitment to r. If r ̸= r′ then D′ aborts.
Otherwise, it receives the evaluation key from the challenger, forwards it to D and gets as a response
D’s decision bit. If D claims that the distribution comes from the simulation then D′ outputs gS ,
otherwise it outputs gP .

Denote the event that D′ correctly predicts the value r by E. Note that if the challenger sends
a commitment to gS then the transcript streamed to D is exactly a transcript of a simulation,
otherwise it is a transcript of the view of the real protocol. Thus,∣∣∣Pr[D′ outputs 1 given gS , E]− Pr[D′ outputs 1 given gP , E]

∣∣∣ = ∣∣∣ Pr
a←A

[D(a) = 1, E]− Pr
b←B

[D(b) = 1, E]
∣∣∣.

Recall that by Corollary 6.8, Prb←B[¬E] ≤ 3
√

δsb . We argue that also when the polynomial
commitment is taken from the simulation, the probability of E is not far from when it is taken
from the real view.

Claim 6.11.1. Pra←A[¬E] ≤ 3
√
δsb + δph.

Proof. Assume otherwise, and construct a distinguisher that breaks the polynomial commitment’s
hiding (that does not include the key reveal). The distinguisher is similar to the one described
above, with the exception that when V∗ de-commits to r, the distinguisher outputs 1 if r′ = r and
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0 otherwise. According to the assumption, the distinguisher wins the game with probability greater
than δph, contradicting the hiding property of the polynomial commitment.

To tie it all together we use the following simple claim regarding probability distributions.

Claim 6.11.2. Let X,Y be distributions defined over the same distribution space Ω. Let E1, E2 ⊆ Ω
be events. Then,∣∣∣∣∣Pr

X
[E1]− Pr

Y
[E1]

∣∣− ∣∣Pr
X
[E1, E2]− Pr

Y
[E1, E2]

∣∣∣∣∣ ≤ Pr
X
[¬E2] + Pr

Y
[¬E2].

Proof. From the law of total probability and the triangle inequality we have that∣∣∣Pr
X
[E1]− Pr

Y
[E1]

∣∣∣ = ∣∣∣Pr
X
[E1, E2] + Pr

X
[E1,¬E2]− Pr

Y
[E1, E2]− Pr

Y
[E1,¬E2]

∣∣∣
≤

∣∣∣Pr
X
[E1, E2]− Pr

Y
[E1, E2]

∣∣∣+ Pr
X
[E1,¬E2] + Pr

Y
[E1,¬E2]

≤
∣∣∣Pr
X
[E1, E2]− Pr

Y
[E1, E2]

∣∣∣+ Pr
X
[¬E2] + Pr

Y
[¬E2].

Likewise, from the reverse triangle inequality we have that.∣∣∣Pr
X
[E1]− Pr

Y
[E1]

∣∣∣ = ∣∣∣Pr
X
[E1, E2] + Pr

X
[E1,¬E2]− Pr

Y
[E1, E2]− Pr

Y
[E1,¬E2]

∣∣∣
≥

∣∣∣Pr
X
[E1, E2]− Pr

Y
[E1, E2]

∣∣∣− ∣∣∣Pr
X
[E1,¬E2]− Pr

Y
[E1,¬E2]

∣∣∣
≥

∣∣∣Pr
X
[E1, E2]− Pr

Y
[E1, E2]

∣∣∣− Pr
X
[¬E2]− Pr

Y
[¬E2].

The claim follows.

Using Claims 6.11.1 and 6.11.2 we have that∣∣∣Pr[D′ outputs 1 given gS ]− Pr[D′ outputs 1 given gP ]
∣∣∣

≥
∣∣∣Pr[D′ outputs 1 given gS , E]− Pr[D′ outputs 1 given gP , E]

∣∣∣− Pr
A
[¬E]− Pr

B
[¬E]

=
∣∣∣ Pr
a←A

[D(a) = 1, E]− Pr
b←B

[D(b) = 1, E]
∣∣∣− Pr

A
[¬E]− Pr

B
[¬E]

≥
∣∣∣ Pr
a←A

[D(a) = 1]− Pr
b←B

[D(b) = 1]
∣∣∣− 2Pr

A
[¬E]− 2Pr

B
[¬E]

≥ δ − 2 ·
(
3
√
δsb + δph

)
− 2 · 3

√
δsb

= 2δph.

Thus, we have that D′ violates the hiding property of the polynomial commitment.
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7 Streaming Zero-Knowledge Proofs for Low-Depth Circuits

In this section we construct a zkSIP for any NP relation R that is decidable by a log-space uniform,
polynomial size, polylogarithmic depth family of circuits. We do so by constructing a generic com-
piler, that takes a perfect zero-knowledge proof in the IPCP model for R, along with a statistically
hiding streaming commitment and a statistically binding streaming commitment, and turns them
into a zkSIP for R.

We combine our compiler to (an extension of) a zero-knowledge IPCP construction for low-depth
relations, given by [CFS17], to get the following result:

Theorem 7.1. Let n denote the input length and let λ = λ(n), 0 < ϵ < 1 be security parameters. Let
R be an NP relation and let D(n), S(n) be the depth and size functions, respectively, of the circuit
family that determines R. Let L be the language defined by R. Then, there exists a streaming
interactive proof for L with perfect completeness, soundness error O(D(n) ·polylog(S(n))) ·2−Ω(λϵ),
honest verifier space O

(
D(n) · polylog(S(n)) · λ+ λ1+ϵ

)
, and communication complexity O(D(n) ·

poly(S(n)) · λ2). The proof is zero-knowledge per Definition 3.6 against adversaries with space at

most λ2

21 with zero-knowledge error O(D(n) · poly(S(n))) · 2−Ω(λϵ).

Section Organization. In Section 7.1 we lay out the definitions related to the IPCP model
and zero-knowledge that we will use in the following subsections. Our compiler turning a IPCP
to a streaming interactive proof is constructed in Section 7.2, and in Section 7.3 we show that it
preserves zero-knowledge. Finally, in Section 7.4 we prove Theorem 7.1.

7.1 Zero-Knowledge IPCP

The interactive PCP (IPCP) model, introduced by Kalai and Raz [KR08] is an amalgam of the
PCP model and the Interactive Proof model. A prover begins the protocol by sending a PCP to
which the verifier has query access, followed by a message exchange between the two parties, at
the end of which the verifier decides whether to accept or reject. Following work in the PCP and
IOP literature we consider a variant of this model, called Holographic IPCP, in which the verifier
has oracle access to the low degree extension of the input.

Definition 7.2 (Holographic IPCP). A Holographic Interactive Probabilistically Checkable Proof
(Holographic IPCP) for a language L is a public-coin interactive protocol between an unbounded
prover P and a PPT verifier V, both of which are given oracle access to a multilinear extension x̂ of
an input x, defined over a field F. The protocol proceeds as follows. The prover P sends a PCP π,
to which the verifier has oracle access. This is followed by a k-round exchange of messages between
the parties, where V’s messages are its random coins r = {ri}ki=1 and P’s messages β = {βi}ki=1

are read in full by V. At the end of the interaction, the verifier makes queries to x̂, π, and decides
whether to accept or reject according to the answers to its queries, r and β. The queries to x̂ and
π are non-adaptive, i.e. they depend only on V’s randomness, and not on the answers of previous
queries, or the messages of P.

The protocol satisfies the following conditions:

1. Completeness: for every x ∈ L the verifier accepts with probability 1.

2. ϵ-Soundness: for every x /∈ L and every prover P∗ the verifier accepts with probability at
most ϵ.
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Denote the input length as |x| = n. Denote the PCP length as |π| = ℓ = ℓ(n). Denote
the communication complexity, which includes only the messages sent by the prover during the
interactive stage (not including the PCP), by cc = cc(n) (i.e. cc = |β|). Denote the randomness
complexity of the verifier as rc = |r|, where rc = rc(n). Denote the number of verifier queries to
the input as qx and the number of verifier queries to the PCP as qπ.

From this point forward, whenever we refer to an IPCP, we specifically mean a Holographic
IPCP.

Remark 7.3. Note that since the IPCP protocol is public-coin and uses a non-adaptive verifier,
henceforth we assume without loss of generality that all honest verifier queries to the input occur
at the very beginning of the protocol, before the interaction, and all the queries to the PCP occur
at the very end of the protocol, after the interaction. This assumption will help us later on, when
we compile IPCP protocols to streaming protocols, as this better fits the structure of the streaming
protocol, where the input is streamed prior to the interaction, and the answers to the PCP queries
are provided by the prover as the last step of the protocol.

The definition of zero-knowledge that we use for the IPCP model is perfect zero-knowledge via
straightline simulators. Intuitively, this means that everything that any verifier V∗ sees during the
interaction with the prover can be perfectly simulated by a computationally bounded simulator,
that has straightline access to V∗ as defined next.

Definition 7.4. An algorithm B has straightline access to another algorithm A if B interacts with
A, without rewinding, by exchanging messages with A and also answering any oracle queries along
the way. We denote by BA(x) the output of algorithm B with straightline access to A on input x,
which includes the randomness of A.

Our goal is to construct a compiler from the IPCP model to the streaming model, where we
are mainly concerned with the space constraints of the simulator rather than its time constraints.
Thus, even if the verifier requires a super-polynomial amount of randomness, we can still consider
simulators that provide the randomness for the verifier. In practice, whenever the verifier reads a
bit from its randomness tape, it is provided by the simulator and simultaneously written on the
simulator’s output tape.

For our purposes, the importance of using a simulator with straightline access to the verifier
lies in the fact that the simulator cannot rewind the verifier, as commonly done in constructions of
zero-knowledge proofs. This is because in the streaming model, the input is only streamed once,
and so rewinding the verifier to a state in which it was prior to the input stream, after the input has
finished streaming would make the simulation task unfeasible (or at least much more challenging).

We proceed to present the definition of zero-knowledge in the IPCP model following [CFS17].

Definition 7.5. An IPCP system ⟨P,V⟩ for a language L is perfect zero-knowledge (via straightline
simulators) against query bound b with simulator overhead s : N×N→ N if there exists a simulator
algorithm S such that for every b-query algorithm V∗ and input x ∈ L, the output of the simulator
SV∗(x) and ViewPV∗(x) are identically distributed. Moreover, S must run in time O

(
s(n, qV∗(n))

)
,

where qV∗(n) is V∗’s query complexity.

Actually, a more relaxed notion of zero-knowledge in the IPCP model, which we call semi-
malicious verifier zero-knowledge, will suffice for us. A semi-malicious verifier is a verifier that
selects its random bits from any sequence that is in the support of the honest verifier.
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Definition 7.6. An IPCP system ⟨P,V⟩ for a language L is semi-malicious verifier perfect zero-
knowledge (via straightline simulators) with simulator overhead s : N × N → N if there exists a
simulator algorithm S such that for every semi-malicious verifier V∗ and input x ∈ L, the output
of the straightline simulator SV∗(x) and ViewPV∗(x) are identically distributed. Moreover, S must
run in time O

(
s(n, qV(n))

)
, where qV(n) is V’s query complexity.

Clearly, as long as the query bound b in Definition 7.5 is not less than the honest verifier’s query
complexity, then a protocol that satisfies Definition 7.5 also satisfies Definition 7.6.

7.2 From IPCP to Streaming

We describe a general transformation from proofs in the IPCP model, to proofs in the streaming
model, where if the original IPCP is zero-knowledge in the IPCP setting (as per Definition 7.5)
then the resulting streaming proof is a streaming zero-knowledge proof (as per Definition 3.6).

Similarly to our construction in Section 6, here too we construct our streaming protocol using
streaming commitments. Thus, throughout this section we let

(
shS , s

h
R, s

h
b , δ

h
h , δ

h
b

)
be the parameters

of the statistically hiding commitment (as per Definition 4.1), and let
(
sbS , s

b
R, s

b
h, δ

b
h, δ

b
b

)
be the

parameters of the statistically binding commitment (as per Definition 5.2).16 Denote by cch, ccb

the communication complexities of the statistically hiding and statistically binding commitments,
respectively. We consider all the parameters above to be functions of the input length.

The compiler from the IPCP model to the streaming model is presented in Fig. 3.
First, in Lemma 7.8, we demonstrate that the protocol is a valid interactive streaming protocol,

satisfying completeness, soundness, and the specified complexity. Then, in Section 7.3, we prove
that it is also zero-knowledge in the streaming model.

Lemma 7.8. Suppose L has a k-round IPCP protocol ⟨PIPCP,VIPCP⟩ over a field F with soundness
error δ, PCP length |π| = ℓ · log(|F|) and communication complexity cc, and an IPCP verifier with
space s that uses rc random bits and makes qx queries to the input and qπ queries to the PCP.

Let ⟨PS,VS⟩ be the output of Compiler 7.7 on ⟨PIPCP,VIPCP⟩ and commitments per Defini-
tion 4.1 and Definition 5.2. Denote the space of VS by sV . Let

(
shS , s

h
R, s

h
b , δ

h
b , δ

h
h

)
(resp.

(
sbS , s

b
R, s

b
h, δ

b
b , δ

b
h

)
)

be the parameters of a statistically hiding streaming commitment (resp. statistically hiding stream-
ing commitment), such that shR = O(sV), s

b
S = O(sV), s

h
b > sV , and sph > ssb + k · shR + qπ · sbS .

Then, ⟨PS,VS⟩ is a streaming interactive proof for L with perfect completeness, soundness error
δ+3k ·δhh+qπ ·δbb, ROTM verifier space sV = s+qπ ·sbR+k ·shS+qx · ⌈log(|F|)⌉, and communication
complexity cc+ k · cch + ℓ · ccb.

Proof. We shall first account for the amount of space that VS needs in order to execute the protocol.
For the statistically hiding commitments in Step 1b the verifier requires k · shS storage bits. To

store the input values computed in Step 2 the verifier requires qx · log(|F|) storage bits. To execute
the statistically binding commitment of all the PCP elements, in Step 3 the verifier needs to store
values related only to its query locations, and so requires qπ · sbR space. To simulate VPCP, the
verifier VS requires s memory bits. Thus, in total, VS requires s + qπ · sbR + k · shS + qx · log(|F|)
memory bits.

16Note that the h and b superscripts stand for “statistically hiding commitment” and “statistically binding com-
mitment”, respectively.
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Compiler 7.7. Compiler from an IPCP protocol to a streaming interactive protocol for a
language L.
Ingredients: A k-round IPCP protocol ⟨PIPCP,VIPCP⟩, a statistically hiding streaming com-
mitment ⟨Ss,Rs⟩, and a statistically binding commitment ⟨Sp,Rp⟩.
Output: Streaming interactive protocol ⟨PS,VS⟩.
We describe the output protocol on a given streamed input x.

1. Statistically hiding commitment stage

(a) VS draws the randomness r = {ri}ki=1 for VIPCP and saves the locations where it will
query the input (since VIPCP is non-adaptive these locations depend only on r).

(b) For all i ∈ [k], the verifier VS sends to PS a commitment to ri using the interactive
statistically hiding streaming string commitment per Definition 4.1.

2. Streaming stage

(a) The prover and verifier stream the input. While streaming, VS computes the values
of the multilinear extension of the input at all points to be queried by VIPCP. The
prover, who has unbounded space, records the entirety of the input.

3. PCP stage

(a) Using the statistically binding streaming commitment (see Definition 5.2), the prover
PS sends to the VS a commitment to each element of the PCP π generated by PIPCP.
Note that each of the PCP bits are committed separately. The verifier VS, which
already knows the points where VIPCP will query (again, using the fact that it is
non-adaptive), only stores the relevant commitment information for locations to
which it wants to query, and discards the rest.

4. Interactive stage

(a) VS and PS simulate the IPCP interactive stage using VIPCP and PIPCP. For every
round i ∈ [k], when VIPCP sends ri, it is simulated by VS by de-committing to ri to
which it committed in Step 1b. PS responds with the message βi of PIPCP in the
clear.

5. Query and decision stage

(a) The prover de-commits to all the values of the PCP that will be queried by VIPCP.
a

(b) VS outputs the decision of VIPCP, computed as follows.

i. When VIPCP queries π, the value is provided from the prover’s de-commitment
in the previous step.

ii. When VIPCP queries x̂, the value is provided by VS, which is available since it
was saved in Step 2.

aThe query locations are determined by r, which at this point is fully available to the prover.

Figure 3: Compiler 7.7: From IPCP to Streaming



The communication complexity of the streaming protocol is the communication complexity of
the original protocol, with the addition of the communication of the two commitments. Thus, in
total the communication complexity is cc+ k · cch + qπ · ccb.

Completeness follows immediately from the streaming protocol’s description together with the
correctness of the commitments and the completeness of the IPCP protocol.

Finally, we argue that ⟨PS,VS⟩ has a soundness error of δ+3k · δhh + qπ · δbb . Let x /∈ L and fix a
malicious prover P∗. By the binding condition of the statistically binding commitment used by the
prover in Step 3, the commitments uniquely define a PCP, which we denote by π∗. Let I be the
verifier’s set of PCP queries, and denote by E the event that the prover de-commits to π̃|I ̸= π∗|I .
By the statistical binding property of the statistically binding commitment, and applying the union
bound on all the queries, we have that

Pr[E] ≤ qπ · δbb .

Now consider the following slightly altered protocol using an unbounded streaming verifier. In
Step 1a the streaming verifier picks the randomness r for the IPCP verifier, as per the original
streaming protocol. In Step 1b the verifier sends to the prover k commitments to zeros. Then, in
Step 4, during the interactive stage, in every round i, the streaming verifier, using its unbounded
powers, de-commits to ri. The rest of the protocol is similar to the original.

Denote by Ei the event that the unbounded verifier fails to de-commit to ri after committing
to zero for all i ∈ [k].

Claim 7.8.1. For all i ∈ [k],
Pr[Ei] ≤ 2δhh .

Proof. Assume that there exists i ∈ [k] for which Pr[Ei] > 2δhh . Recall that in this setting both
the verifier and the prover, who act as the sender and receiver, respectively, are unbounded, and in
particular, have similar computational capabilities. Thus, if the verifier fails to de-commit to ri, it
means that there does not exist a key with which the verifier can de-commit, and since the prover
is at least as strong as the verifier, it knows that, and so it knows that the committed message is
not ri.

Therefore, we have an unbounded distinguisher D that can distinguish between a commitment
to zeros and a commitment to ri. On a commitment com, check if there exists a key that opens
com to ri. If not, output 0, and if such a key exists, output either 0 or ri, each with probability
1
2 . Note that in the case where the commitment is to ri, there must exist a key that opens the
commitment to ri. We have that∣∣∣Pr[D(comri) = 0]− Pr[D(com0) = 0]

∣∣∣ = ∣∣∣12 − (
Pr[Ei] +

1
2 · Pr[¬Ei]

)∣∣∣ = 1
2 · Pr[Ei] > δhh ,

in contradiction to the commitment’s hiding property.

Note that in the altered protocol, the prover is completely oblivious to the randomness of the
IPCP verifier (up to the point where each ri is revealed, in accordance with the IPCP protocol),
and in particular this is true at the time when the prover commits to π∗. Thus, if we also assume
that the event E does not occur, it holds that from the perspective of the inner IPCP verifier, it is
a perfect recreation of the IPCP setting. Note that even if any event Ei does occur, while it may
affect the behavior of the prover, from the perspective of the inner IPCP verifier, it is still a perfect
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recreation if the IPCP setting. Therefore, by the soundness guarantee of the IPCP protocol, we
have that in the altered protocol the IPCP verifier (and by such also the streaming verifier) accepts
with probability at most δ.

Let j ∈ {0, 1, . . . , k}, and consider a hybrid protocol such that in the j-th hybrid, in Step 1b, for
all i ∈ [j], the streaming verifier commits to ri, and the rest of the k − j commitments are to zero
vectors. Denote by Hj the event that the verifier accepts in the j-th hybrid. Note that H0 and Hk

are the events that the verifier accepts in the altered protocol and the real protocol, respectively.
According to our conclusion from above, we have that

Pr[H0] ≤ Pr[H0,¬E] + Pr[E] ≤ δ + qπ · δbb .

Assume towards a contradiction that Pr[Hk] > δ+3k ·δhh+qπ ·δbb . If so, we have that
∣∣Pr[Hk]−

Pr[H0]
∣∣ > 2k·δhh , and by such there exists j ∈ [k] such that

∣∣Pr[Hj ]−Pr[Hj−1]
∣∣ > 3δhh . By the hiding

property of the statistically hiding commitment, we have that
∣∣Pr[Hj ,¬Ej ]−Pr[Hj−1,¬Ej ]

∣∣ ≤ δhh .
Note that in the j-th hybrid, the j-th commitment is to the real rj and so Pr[Hj ,¬Ej ] = Pr[Hj ].
Thus, using the triangle inequality and Claim 7.8.1, we have the following contradiction

3δhh <
∣∣Pr[Hj ]− Pr[Hj−1]

∣∣ ≤ ∣∣Pr[Hj ]− Pr[Hj−1,¬Ej ]
∣∣+ Pr[Ej ] ≤ 3δhh .

7.3 Compiler 7.7 Preserves Zero-Knowledge

In this section we prove the following lemma.

Lemma 7.9. Let ⟨PIPCP,VIPCP⟩ be a IPCP protocol for L that is zero-knowledge per Definition 7.5,
let ⟨Sh,Rh⟩ be a statistically hiding streaming commitment per Definition 4.1, let ⟨Sb,Rb⟩ be a
statistically binding commitment per Definition 5.2, and let ⟨PS,VS⟩, be the output of Compiler 7.7
on ingredients ⟨PIPCP,VIPCP⟩, ⟨Ss,Rs⟩, ⟨Sp,Rp⟩. Then, ⟨PS,VS⟩ is a streaming interactive proof
for L that is zero-knowledge per Definition 3.6.

The general idea for proving the lemma is to construct a streaming simulator that simulates
the malicious streaming verifier’s view, using the IPCP simulator that we get from the IPCP zero-
knowledge protocol.

As a matter of fact, it suffices for us to use an IPCP that is semi-maliciously secure, even
though the streaming verifier can be arbitrarily malicious. The reason for this is that the malicious
streaming verifier begins by committing to the random coins for the underlying IPCP verifier. By
doing so, the only influence it can exert corresponds to semi-malicious behavior – it can arbitrarily
choose the honest verifier’s coins but cannot deviate beyond that.

For these reasons we rewrite Lemma 7.9 as the following equivalent lemma.

Lemma 7.10. Let ⟨PIPCP,VIPCP⟩ be a IPCP protocol for L that is semi-malicious verifier zero-
knowledge per Definition 7.6, let ⟨Sh,Rh⟩ be a statistically hiding streaming commitment per Def-
inition 4.1, let ⟨Sb,Rb⟩ be a statistically binding commitment per Definition 5.2, and let ⟨PS,VS⟩,
be the output of Compiler 7.7 on input ⟨PIPCP,VIPCP⟩. Then, ⟨PS,VS⟩ is a streaming interactive
proof for L that is zero-knowledge per Definition 3.6.

To prove Lemma 7.10 we need to show that the streaming verifier’s view during an interaction
with the prover is indistinguishable from the output of a streaming simulator, and so we first specify
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the view of the streaming verifier. To do so we enumerate the components that the verifier sees in
the protocol, in the order that they are seen:

1. Statistically binding streaming commitment to the randomness r.

2. Input x.

3. Polynomial commitment to the PCP π.

4. The messages of PIPCP.

5. De-commitments to {πq}q∈X where X is the set of the PCP query locations determined by r.

We recall that in our model, every time the verifier uses a random bit, it is written as the next bit
in the view’s transcript. Thus, all the verifier’s messages are a deterministic function of all that
preceded them in the view and need not be incorporated into the view.

We shall now construct a small-space simulator SS that simulates the view of a malicious
verifier V∗. Let ⟨PIPCP,VIPCP⟩ be a zero-knowledge IPCP protocol for L. Thus, there exists a PPT
simulator SIPCP that perfectly simulates the view of any semi-malicious IPCP verifier V∗IPCP, when
it is given straightline black box access to V∗IPCP.

We present the following small-width branching-program simulator SS with access to a streaming
verifier V∗S in Fig. 4.

Let sS be the amount of space that SIPCP requires in order to run, and sV∗ the amount of space
that V∗S requires to run. From its description, we see that Simulator 7.11 requires enough space to
run the statistically hiding streaming commitment k times, Scomm, SIPCP, and V∗S . This requires a
total space of

sS + sV∗ + k · shR + qπ · sbS .

We shall now argue that the output of Simulator 7.11 is indistinguishable from the streaming
verifier’s view when interacting with the streaming prover.

Proposition 7.12. Let n denote the length of the input x. Let V∗ be a malicious streaming verifier
with space at most sV∗ = min

{
shb , s

b
h

}
. Let S(x) (resp. ViewPV∗(x)) be the output of Simulator 7.11

with access to V∗ (resp. the view of V∗ when interacting with the honest prover from the output
of Compiler 7.7) on input x. Then, for all ROBP distinguishers D with space at most sbh and all
inputs x ∈ L, ∣∣∣Pr[D(S(x)) = 1

]
− Pr

[
D(ViewPV∗(x)) = 1

]∣∣∣ ≤ 9k
√
δhb + ℓ · δbh.

Proof. Consider S(x) (resp. ViewPV∗(x)) as a joint distribution A,B (resp. (A′, B′)), where B (resp.
B′) is the distribution of the commitments to the PCP values that are not opened at the end of
the protocol, and A (resp. A′) is the distribution of everything else in the simulator’s transcript
(resp. the verifier’s view).

Let S̃(x) be a joint distribution (Ã, B̃), such that the marginal distributions Ã and A are
identically distributed. Define B̃ as follows. The distribution B̃ is supported on Supp(B′) ∪ {⊥}
for all ωA ∈ Supp(A′), ωB ∈ Supp(B′), define

Pr
(a,b)←(Ã,B̃)

[b = ωB|a = ωA] = Pr
(a,b)←(A′,B′)

[b = ωB|a = ωA].

59



60
Simulator 7.11. Simulator for Compiler 7.7, where ⟨PIPCP,VIPCP⟩ is an IPCP over a field
F that is semi-malicious verifier zero-knowledge with simulator SIPCP. The simulator has the
code of V∗ as a fixed auxiliary input.
Streaming Input: x ∈ L.

1. Statistically hiding commitment stage

(a) Engage with V∗ in k interactive statistically hiding streaming commitments as in
Definition 4.1 and write the commitments’ transcript on the output tape.

(b) For all i ∈ [k], let stiV∗ , stiR be the verifier’s and receiver’s state after sending
the i-th commitment, respectively. Compute the value r′i = r′(stiV∗ , stiR) using
Proposition 6.7.

(c) Determine the set Ipcp of locations where the IPCP verifier will query the PCP, as
well as the set Iinp of points where the verifier will query the low-degree extension
of the input. If r′i = ⊥, then set it to some arbitrary value.

2. Streaming stage

(a) Stream the input, forward it to V∗S and compute and record all the values at the
points in set Iinp. Recall that a value of the low-degree extension of the input can be
computed in small space in a streaming manner, using online Lagrange interpolation.

(b) As the input is being streamed, copy it to the output tape.

3. IPCP simulation stage

(a) Run SIPCP. Whenever SIPCP expects the i-th message from V∗IPCP, feed it with r′i.
Whenever SIPCP queries the input, provide it with the appropriate value stored in
the previous step.

(b) Store the simulated output ({βi}ki=1, {πq}q∈Ipcp) of SIPCP where βi are the simulated
prover messages and πq are the answers to the PCP queries.

4. PCP commitment stage

(a) Generate an arbitrary PCP π that agrees with all values {πq}q∈Ipcp in the output of
SIPCP from Step 3). Concretely, we fix the values of the PCP outside of Ipcp to be
zero.

(b) Using that statistically binding commitment (see Definition 5.2) commit to the PCP
π, where each bit of π is committed separately.

5. Interactive stage For i ∈ [k] rounds:

(a) Get a de-commitment from V∗S to ri. If the verifier fails to de-commit (ri = ⊥), or
if r′i ̸= ri, abort the simulation.

(b) Write βi on the output tape.

6. De-commitment stage

(a) De-commit to all the PCP values in the query set Ipcp.

(b) Write the de-commitment on the output tape.

Figure 4: Simulator 7.11: Simulator for Output of Compiler 7.7



Also define for all ωA ∈ Supp(A′)

Pr
(a,b)←(Ã,B̃)

[b = ⊥|a = ωA] = 0,

and for all ωA ∈
(
Supp(Ã) \ Supp(A′)

)
, define

Pr
(a,b)←(Ã,B̃)

[b = ⊥|a = ωA] = 1.

Thus, we get that for all ωb ∈ Supp(B̃),

Pr
b←B̃

[b = ωB] =
∑

ωa∈Supp(A′)

Pr
(a,b)←(A′,B′)

[b = ωB|a = ωA]· Pr
a←Ã

[a = ωA]+
∑

ωA∈Supp(Ã)\Supp(A′)

Pr
Ã
[a = ωA]·IωB=⊥,

where IωB=⊥ is an indicator that equals 1 if ωb = ⊥, else 0.
By Lemma 5.7, we get that for all streaming distinguishers D with space at most sbh,∣∣∣Pr[D(S(x)) = 1]− Pr[D(S̃(x)) = 1]

∣∣∣
=

∣∣∣ Pr
(a,b)←(A,B)

[D(a, b)] = 1|a = ω]− Pr
(a,b)←(Ã,B̃)

[D(a, b)] = 1|a = ω]
∣∣∣

≤ ℓ · δbh.

Note that by the construction of the simulator and the fact that the inner simulator SIPCP

simulates the IPCP verifier’s view perfectly, we have that as long as the simulator predicts the
verifier’s randomness correctly in Step 1b, the output of the simulator, excluding the commitments
to the PCP entries that are not revealed, is identical to the view of the verifier.

Let E be the event that simulator predicts the verifier’s randomness correctly. By Proposi-
tion 6.7 and applying the union bound on all k verifier commitments, we have that PrViewP

V∗ (x)
[¬E] ≤

k · 3
√
δhb . Similarly, by Remark 6.9 we have that PrS̃(x)[¬E] ≤ k · 3

√
δhb .

Thus, formally, the conditional distributions (A′|E) and (Ã|E) are identical, and so by the

definition of B̃ we get that (S̃(x)|E) and (ViewPV∗(x)|E) are also identical. Therefore, for all
distinguishers D,∣∣∣Pr [D(S̃(x)) = 1

]
− Pr

[
D(ViewPV∗(x)) = 1

]∣∣∣
≤

∣∣∣Pr [D(S̃(x)) = 1|E
]
− Pr

[
D(ViewPV∗(x)) = 1|E

]∣∣∣
+
∣∣∣ Pr
S̃(x)

[E]− Pr
ViewP

V∗ (x)
[E]

∣∣∣+ Pr
S̃(x)

[¬E] + Pr
ViewP

V∗ (x)
[¬E]

≤ 9k
√
δhb .
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In total, by the triangle inequality, we have that∣∣∣Pr[D(S(x)) = 1
]
− Pr

[
D(ViewPV∗(x)) = 1

]∣∣∣
≤

∣∣∣Pr[D(S(x)) = 1
]
− Pr

[
D(S̃(x)) = 1

]∣∣∣+ ∣∣∣Pr[D(S̃(x)) = 1
]
− Pr

[
D(ViewPV∗(x)) = 1

]∣∣∣
≤ 9k

√
δhb + ℓ · δbh,

as required.

7.4 Bringing It All Together: zkSIP for Low-Depth NP Relations

We start with the following theorem by Chiesa et al. from which we get a zero-knowledge proof for
any language that is decidable by a family of low-depth circuits. To align with our requirements,
we state the theorem in the context of holographic IPCPs that are zero-knowledge against semi-
malicious verifiers. The original paper presents the theorem for malicious verifiers, which inherently
includes the semi-malicious setting we are considering. Although the term “holographic” is not
explicitly used in the original paper, it is clear that the theorem applies to this context as well.

Theorem 7.13 ([CFS17, Theorem 11.1]). Let L be a language decidable by a family of O(logS(n))-
space uniform Boolean circuits of size S(n) and depth D(n). Then L has a (public-coin and non-
adaptive) Holographic Interactive PCP that is perfect zero-knowledge against all semi-malicious
verifiers. The proof has a soundness error 1

2 . Its round complexity, query complexity, and verifier
space is D(n) · polylog(S(n)), and the proof complexity is D(n) · poly(S(n)). The simulator runs
in space poly(D(n), log(S(n))).

By applying the techniques from [CFS17] with minor adjustments to the construction it is
straightforward to extend the IPCP to non-deterministic low-depth computations. This is captured
by the following theorem.

Theorem 7.14. Let R be an NP relation decidable by a family of O(logS(n))-space uniform
Boolean circuits of size S(n) and depth D(n), and let L ∈ NP be the language defined by R. Then
L has a (public-coin and non-adaptive) Holographic Interactive PCP that is perfect zero-knowledge
against all semi-malicious verifiers. The proof has a soundness error 1

2 . Its round complexity,
query complexity, verifier space and simulator space is poly(D(n) · polylog(S(n))), and the proof
complexity is poly(D(n) · poly(S(n))).

As the proof is a simple extension of the techniques of [CFS17], we provide a proof sketch in
Appendix A.

We are now ready to prove our main theorem, Theorem 7.1.

Proof of Theorem 7.1. Let R be an NP relation determined by a log(S(n))-space uniform family of
circuits of size S(n) = poly(n) and depth D(n) = O(polylog(n)) and let L ∈ NP be the language
defined by R. By Theorem 7.14, L has a perfect semi-malicious zero-knowledge IPCP protocol
where the honest verifier space, the honest verifier’s randomness, communication complexity, round
complexity and the simulator space are O(D(n) ·polylog(S(n))). The PCP proof length is O(D(n) ·
poly(S(n))).
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The soundness error of the IPCP protocol is 1
2 , so we apply t = polylog(n) parallel independent

repetitions to reduce the soundness error to negl(n). Each repetition includes both the PCP string
and the subsequent interactive part of the protocol. This increases all the relevant parameters by
a factor of t, except for the round complexity. It is important to note that semi-malicious zero-
knowledge is preserved under parallel repetition, unlike fully malicious zero-knowledge, as discussed
in [GK96].

Let λ, ϵ be security parameters such that λϵ ≥ log2(n) and λ = Ω(D(n) · polylog(S(n))). Take
Construction 4.13 for a streaming statistically hiding commitment with parameters shS = O

(
λ ·

D(n) · polylog(S(n))
)
, shR = O

(
λ1+ϵ + λ ·D(n) · polylog(S(n))

)
, shb = λ2

21 , δ
h
h = 2−Ω(λ), δhb = 2−Ω(λϵ),

and take Construction 5.9 for a streaming statistically binding commitment with parameters sbS =

O
(
λ1+ϵ

)
, sbR = O

(
λ1+ϵ

)
, sbh = λ2

4 , δbh = 2−Ω(λ), δbb = 2−Ω(λϵ)

Apply Compiler 7.7 with the ingredients above to get a zero-knowledge streaming interactive
proof for L with perfect completeness, soundness error negl(n)+O(t ·D(n) ·polylog(S(n))) ·2−Ω(λϵ),
honest verifier space O

(
t · D(n) · polylog(S(n)) · λ + λ1+ϵ

)
, and communication complexity O(t ·

D(n) · poly(S(n)) · λ2).
By Proposition 7.12, the proof is zero-knowledge per Definition 3.6 against adversaries with

space λ2

21 with zero-knowledge error O(D(n) · poly(S(n))) · 2−Ω(λϵ)

Choose λ = logc(n) for a large-enough constant c, and we get the following corollary.

Corollary 7.15. Let R be an NP relation decidable by a polynomial-size, polylogarithmic-depth log-
space uniform family of circuits, and let δ > 0. There exists a zero-knowledge streaming interactive
proof for R with perfect completeness, soundness error negl(n), honest verifier space s = polylog(n),
and communication complexity poly(n). The proof is zero-knowledge against adversaries with space
s2−δ, with a negligible zero-knowledge error.
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A PZK Holographic IPCP for Low-Depth NP Relations

Given a semi-malicious verifier PZK Holographic IPCP for low-depth uniform boolean circuits,
denoted ⟨P,V⟩, we construct a semi-malicious verifier PZK Holographic IPCP for low-depth NP
relations, denoted by ⟨P ′,V ′⟩.

Let F and H ⊆ F be the parameters over which the original holographic IPCP holds such that
|H| is greater than the runtime of V (polylogarithmic in the case of low-depth circuits).

We proceed to describe the IPCP relative to an input x and witness w. Assume without loss
of generality that |x| = |w| = 2m for some m ∈ N,17 and let x̂ : Fm → F be the individual-degree

17Otherwise pad with zeros.
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|H| − 1 extension of x, where the m-dimensional boolean hypercube contains the values of x, and
the other |H|m−2m entries are zeros.18 Let ŵ : Fm → F be a randomized individual-degree |H|−1
extension of w, for {0, 1} ⊊ H ⊊ F. Let x̂w : Fm+1 → F be an individual-degree (at most) |H| − 1
extension of (x,w), defined as x̂w(b, α) = b · x̂(α) + (1− b) · ŵ(α), for b ∈ F, α ∈ Fm.

The protocol ⟨P ′,V ′⟩ relative to the input x and witness w proceeds by running ⟨P,V⟩ relative
to the concatenated input (x,w). The PCP sent by P ′ includes the PCP π̃ of P, along with other
components to be specified later. When V queries the PCP, V ′ redirects the query to π̃. Whenever
V makes an input query to x̂w at point (b, α) ∈ F× Fm, the verifier V ′ provides it with the answer
in the following manner. Any point (b, α) in x̂w can be computed by a simple linear combination
of x̂(α) and and ŵ(α). In order to get x̂(α), it simply queries its input (observe that this indeed
constitutes holographic access to the input). Clearly, in order to preserve zero-knowledge, the
verifier may not query ŵ on any value in {0, 1}m, and so if V requests to see a point there, V ′
immediately accepts. Intuitively, because ŵ was padded with random elements, for up to |H| − 1
queries, querying ŵ outside of the boolean hypercube does not yield any information about w.
Thus, if V requests a legal (i.e., not a Boolean-valued) point in the low-degree extension of the
witness, V ′ obtains the requested value as discussed next.

Obviously, if V ′ requests the value directly from P ′, it will not maintain the soundness the
protocol. Likewise, if P ′ sends all of ŵ as a part of the PCP in the beginning, then a malicious
verifier could query ŵ in the boolean hypercube, and by such learn the witness. To circumvent
this, P ′ will send as a part of the PCP an “algebraic commitment” to ŵ, whose binding and hiding
properties resolve the issues described above. Then P ′ can de-commit at the specific queried point
without revealing more information about ŵ.

In more detail, the algebraic commitment consists of an (m + m′)-variate polynomial Z :
Fm+m′ → F, such that for all α ∈ Fm, it holds that

∑
β∈Gm′ Z(α, β) = ŵ(α), for some G ⊊ F. Thus,

in order to prove the claim ŵ(α) = v, the prover and verifier will engage in the zero-knowledge
Sumcheck protocol, per [BSCF+17, Theorem 5.3] on the claim

∑
β∈Gm′ Z(α, β) = v. Note that

for the execution of the zero-knowledge Sumcheck, the prover must provide an auxiliary random
polynomial π of the appropriate dimension and degree, which will be appended to the PCP.

In sum, the PCP sent by the prover P ′ will contain the original PCP of P, the algebraic
commitment to ŵ as the polynomial Z, and the auxiliary random polynomials {πi} (one polynomial
for each query). Note that in addition to the protocol as specified thus far, V ′ will need to perform
a low-degree test on Z, and query them using a self-correction procedure.19

We now proceed to give a proof sketch that the protocol above is indeed a semi-honest verifier
perfect zero-knowledge Holographic IPCP.

Completeness. The perfect completeness of ⟨P ′,V ′⟩ relies on the perfect completeness of ⟨P,V⟩
and that of the zero-knowledge interactive proof of [BSCF+17].

Soundness. A soundness error in ⟨P ′,V ′⟩ may arise from four sources. The first is the constant
error of ⟨P,V⟩. Second, recall that according to our definition of ⟨P ′,V ′⟩, if V queries a forbidden

18For our streaming purposes, we may assume that without loss of generality the IPCP verifier has access to such an
extension of x as specified, since when converted into a streaming verifier, it can compute any point in the low-degree
extension in small space given streaming access to x.

19Chiesa et al. [CFS17] offer a comprehensive account of this technique. A detailed example of a similar protocol
appears in their proof of [CFS17, Theorem 7.2], which presents the PZK-IPCP protocol for NEXP.
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value, V ′ immediately accepts. Thus, each such query incurs an error of
(
2
F
)m

, which is (at most)
an inverse polynomial in our parameter regime. Third, the execution of the zero-knowledge proof
for each value of ŵ has an inverse polynomial error, and lastly, more inverse polynomial errors
may occur during the low-degree testing, and the self-correction algorithm used to query the PCP.
Recall that the number of queries performed by the verifier is bounded by its runtime, which, in the
case of protocols over circuits of polylogarithmic depth, is polylogarithmic. Thus, after applying
the union bound on all of the above, we are still left with a constant error. In order to reduce the
error we may use repetition, in which case we can reduce the error to become negligible, while not
incurring a significant increase in the other parameters of the protocol.20

Semi-Malicious Zero-Knowledge. To argue zero-knowledge, we construct a simulator. The
simulator S ′ for ⟨P ′,V ′⟩ will run the simulator S of ⟨P,V⟩. When V ′ makes the i-th query to ŵ, the
simulator S ′ will use the efficient conditional sampling algorithm of Ben-Sasson et al. [BSCF+17,
Corollary 4.10] to provide a sample {vi} from a random polynomial R of dimension and degree
similar to those of ŵ, conditioned on all the samples vj , j ∈ [i − 1] that it has already provided.
It will then use the simulator of [BSCF+17] to simulate the zero-knowledge Sumcheck protocol for
the value vi.

We show that S ′ simulates the view of V ′ perfectly. Consider S ′′ that operates similar to S ′, but
has full access to ŵ, and instead of sending random values, it would send the real ones. In this case
it is clear that the simulation is perfect since all other simulators provide perfect simulation. Now,
as mentioned earlier, due to the padding of ŵ, given a limited number of queries, it is distributed
uniformly. Thus, the distribution produced by S ′ is identical to that produced by S ′, which in turn
is identical to the real view of the verifier.

B Deferred Proofs

B.1 Proof of Lemma 5.7

Lemma B.1 (Lemma 5.7, restated). Let (X,Y ), (X ′, Y ′) be joint distributions, each defined over
a product space ΩX × ΩY , where ΩY is the space of all matrices y ∈ {0, 1}k×ℓ. Suppose the
marginal distributions X,X ′ are identically distributed and define com(y) to be the concatenation
of statistically binding streaming commitments per Definition 5.2 of the k rows of y. Then, for all
space-sh ROBP distinguishers D,∣∣∣ Pr

(x,y)←(X,Y )
[D(x, com(y))] = 1]− Pr

(x,y)←(X′,Y ′)
[D(x, com(y))] = 1]

∣∣∣ ≤ k · δh.

Proof. First, consider the following claim.

Claim B.1.1. For any streaming distinguisher D with space sh,∣∣∣ Pr
y←Y

[D(com(y)) = 1]− Pr
y←Y ′

[D(com(y)) = 1]
∣∣∣ ≤ k · δh.

Proof. We first claim that for any two fixed matrices y, y′ ∈ {0, 1}k×ℓ and any streaming distin-

20Recall that semi-malicious zero-knowledge is closed under parallel repetition.
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guisher D with space sh,∣∣∣Pr[D(com(y)) = 1]− Pr[D(com(y′)) = 1]
∣∣∣ ≤ k · δh.

Assume the contrary and let y, y′ be matrices and D be a distinguisher for which the claim does
not hold. Consider for all i ∈ [k] the hybrid matrix (y, y′)i which consists of the first i rows of y
and the last k− i rows of y′. Note that (y, y′)k = y and (y, y′)0 = y′. If so, there exists i ∈ [k] such
that ∣∣∣Pr[D(com((y, y′)i)) = 1]− Pr[D(com((y, y′)i−1)) = 1]

∣∣∣ > δh.

Construct the following streaming distinguisher D′ with space sh that has the first i− 1 rows of
y and the last k−i rows of y′ hardcoded and streaming access to D. Given a streaming commitment
of a vector v ∈ {0, 1}ℓ, for all j ∈ [i− 1], the distinguisher D′ will stream commitments of the i− 1
rows of y to D, followed by the input streaming commitment to v and streaming commitments to
the last k − i rows of y′. The output of D′ will correspond to that D. Thus, by construction, D′
distinguishes with probability greater than δh between comyi and comy′i

, in contradiction to the
hiding property of the statistically binding commitment.

Since we showed that the claim is true for all fixed pairs of matrices y, y′ ∈ {0, 1}k×ℓ, the lemma
follows from an averaging argument, details follow.

Suppose there exist distributions Y and Y ′ over matrices for which D distinguishes with some
gap ϵ. Assuming wlog that Pr[D(Y ) = 1] > Pr[D(Y ′) = 1], this means that:

Pr[D(Y ) = 1]− Pr[D(Y ′) = 1] ≥ ϵ.

We can rewrite this as:

Ey←Y,y′←Y ′
[
Pr[D(y) = 1]− Pr[D(y′) = 1]

]
≥ ϵ.

Which means in turn that there exist fixed strings y and y′ for which Pr[D(y) = 1] − Pr[D(y′) =
1] ≥ ϵ.

By the law of total probability and the definition of conditional probability, we have that∣∣∣ Pr
(x,y)←(X,Y )

[D(x, com(y))] = 1]− Pr
(x,y)←(X′,Y ′)

[D(x, com(y))] = 1]
∣∣∣

=
∣∣∣ ∑
ω∈ΩX

(
Pr

(x,y)←(X,Y )
[D(x, com(y))] = 1|x = ω] · Pr

x←X
[x = ω]

− Pr
(x,y)←(X′,Y ′)

[D(x, com(y))] = 1|x = ω] · Pr
x←X′

[x = ω]
)∣∣∣.

Let Dx be a distinguisher that has x hardcoded and runs on input com(y) similarly to D on
(x, com(y)). Since X,X ′ are identically distributed, we can upper-bound the expression above by∑

ω∈ΩX

Pr
x←X

[x = ω] ·
∣∣∣ Pr
(x,y)←(X,Y )

[Dx(com(y))] = 1|x = ω]− Pr
(x,y)←(X′,Y ′)

[Dx(com(y))] = 1|x = ω]
∣∣∣,

which, using Claim B.1.1, can be upper bounded by k · δh.
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