
Maximum Circuit Lower Bounds for Exponential-time
Arthur Merlin

Lijie Chen*

UC Berkeley
lijiechen@berkeley.edu

Jiatu Li†
MIT

jiatuli@mit.edu

Jingxun Liang
CMU

jingxunl@andrew.cmu.edu

November 17, 2024

Abstract

We show that the complexity class of exponential-time Arthur Merlin with sub-exponential
advice (AMEXP/2nε) requires circuit complexity at least 2n/n. Previously, the best known such
near-maximum lower bounds were for symmetric exponential time by Chen, Hirahara, and
Ren (STOC’24) and Li (STOC’24), or randomized exponential time with MCSP oracle and
sub-exponential advice by Hirahara, Lu, and Ren (CCC’23).

Our result is proved by combining the recent iterative win-win paradigm of Chen, Lu,
Oliveira, Ren, and Santhanam (FOCS’23) together with the uniform hardness-vs-randomness
connection for Arthur-Merlin protocols by Shaltiel-Umans (STOC’07) and van Melkebeek-
Sdroievski (CCC’23). We also provide a conceptually different proof using a novel "critical
win-win" argument that extends a technique of Lu, Oliveira, and Santhanam (STOC’21).

Indeed, our circuit lower bound is a corollary of a new explicit construction for properties
in coAM. We show that for every dense property P ∈ coAM, there is a quasi-polynomial-time
Arthur-Merlin protocol with short advice such that the following holds for infinitely many n:
There exists a canonical string wn ∈ P ∩ {0, 1}n so that (1) there is a strategy of Merlin such
that Arthur outputs wn with probability 1 and (2) for any strategy of Merlin, with probability
2/3, Arthur outputs either wn or a failure symbol ⊥. As a direct consequence of this new
explicit construction, our circuit lower bound also generalizes to circuits with an AM ∩ coAM
oracle. To our knowledge, this is the first unconditional lower bound against a strong non-
uniform class using a hard language that is only "quantitatively harder".

*Lijie Chen is supported by a Miller Research Fellowship.
†Jiatu Li is supported by MIT Akamai Presidential Fellowship and the National Science Foundation under Grant

CCF-2127597.

i

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 182 (2024)

mailto:lijiechen@berkeley.edu
mailto:jiatuli@mit.edu
mailto:jingxunl@andrew.cmu.edu

Contents

1 Introduction 1
1.1 Our Results . 1

1.1.1 Maximum Circuit Lower Bound for AMEXP 1
1.1.2 Hitting Dense coAM Properties . 2

1.2 Related Works on Explicit Construction Algorithms 3

2 Technical Overview 4
2.1 Bypassing the Half-exponential Barrier: the Iterative Win-win Paradigm 5
2.2 Warmup: A Win-win Argument . 9
2.3 Proof via Iterative Win-win with Advice . 11
2.4 Proof via Critical Win-win . 12
2.5 Open Problems . 17

3 Preliminaries 17
3.1 Circuits and Oracle Circuits . 17
3.2 Arthur-Merlin Protocols . 18
3.3 The Recursion Theorem . 19
3.4 Reed-Muller Code . 19
3.5 Verification of Computation . 20
3.6 HSG with AM Reconstruction . 20

4 Circuit Lower Bounds from Theorem 1.3 21

5 Hitting Dense coAM Properties via Iterative Win-win 24
5.1 Proof of Theorem 1.3 . 24

6 Hitting Dense coAM Properties via Critical Win-win 28
6.1 Local Hitting Set Generator . 28
6.2 Strong PCP from Reed-Muller Code . 29
6.3 Pseudodeterministic Construction with Local HSG 30

A Proof of Lemma 4.3 40

B Uniform Hardness-vs-Randomness for AM 41

C Strong PCP with Reed-Muller-encoded Proofs 42
C.1 Definitions and Tools . 43
C.2 Low-Degree Testing . 44
C.3 Zero-on-Subcube . 45
C.4 Algebrization . 48
C.5 Putting Things Together . 49

D On the RMV Generator 52

ii

1 Introduction

Proving circuit lower bounds for uniform complexity classes is one of the central problems in
complexity theory. Despite that (following a simple counting argument) almost all Boolean func-
tions f : {0, 1}n → {0, 1} require 2n/n-size circuit to compute [Sha49], the progress on proving
explicit circuit lower bounds has been relatively slow.

The progress on proving exponential lower bounds (thereby matching Shannon’s counting
argument) is even more limited. Kannon [Kan82] proved that Σ3E ∩ Π3E requires maximum
(2n/n) size circuits, the complexity of the hard function was later improved to ∆3E = EΣ2P by
Miltersen, Vinodchandran, and Watanabe [MVW99], via a simple binary search argument. This
was essentially all we knew before until last year.

The limited progress was due to the lack of techniques for proving exponential-size circuit
lower bounds. There has been much progress on proving super-polynomial-size circuit lower
bounds (see Section 2.1 for details), which all follow the famous “win-win” paradigm. However,
it has been observed [MVW99] that this “win-win” paradigm could not give exponential-size
lower bounds.1

A recent work by Chen, Hirahara, and Ren [CHR24], following a new technique called “iter-
ative win-win paradigm” (originally developed by [CLO+23] for pseudo-deterministic construc-
tion of primes), proved that Σ2E (as well as S2E with one-bit advice) requires 2n/n-size circuits.
Their results were later simplified and strengthened by Li [Li24], showing that S2E (with no
advice) requires maximum circuit complexity on all but finitely many input lengths. With a dif-
ferent approach, Hirahara, Lu, and Ren [HLR23] also proved a maximum circuit lower bound
for BPEMCSP with 2εn bits of advice.

One surprising feature of the recent work [CHR24, Li24] is that their proofs relativizes. Given
the limitations of relativizing proofs (for example, no relativizing proofs can prove the super-
polynomial-size lower bound for MAEXP [BFT98]), a natural question is whether we can combine
the techniques behinds [CHR24, Li24] (e.g., the iterative win-win paradigm) with non-relativizing
proof techniques to make further progress on proving exponential-size circuit lower bounds.

1.1 Our Results

1.1.1 Maximum Circuit Lower Bound for AMEXP

In this work, we make progress on the question above by combining the non-relativizing tech-
niques of arithmetization (specifically, the uniform hardness vs. randomness trade-off for AM [SU07,
vS23]) and the iterative win-win paradigm [CLO+23, CHR24]. We show that AMEXP∩ coAMEXP
with a sub-exponential amount of advice requires maximum circuit complexity.

Theorem 1.1. (AMEXP∩ coAMEXP)/2nε ̸⊂ SIZE[2n/n] for any constant ε ∈ (0, 1).

Compared with previous works [CHR24, Li24] where the same maximum circuit lower bound
was proved for S2E, our lower bound is proved for the smaller class AMEXP∩ coAMEXP. Indeed,
S2E is a randomized version of ENP, while AMEXP∩ coAMEXP is a randomized version of NEXP∩
coNEXP. So in a sense, our result is much closer to NEXP than the previous one. On the other
hand, our lower bound for AMEXP ∩ coAMEXP requires a sub-exponential amount of advice,
while the lower bound in [Li24] requires no advice.

1We note that exponential-size circuit lower bounds have more applications compared to super-polynomial-size
circuit lower bounds: 2Ω(n)-size lower bounds for E imply that P = BPP [NW94, IW97], while super-polynomial
lower bounds for E only give that BPP can be derandomized in sub-exponential time.

1

Moreover, our circuit lower bound not only holds for Boolean circuits, but also generalizes to
circuits with an AM∩ coAM oracle2.

Theorem 1.2. For any language L ∈ AM∩ coAM, (AMEXP∩ coAMEXP)/2nε ̸⊂ SIZEL[2n/n].

To the best of our knowledge, this is the first unconditional lower bound against a strong
non-uniform class with a hard language that is only quantitatively harder (in terms of time
complexity) than the non-uniform class.3 In comparison, most of the existing unconditional lower
bounds require qualitatively stronger hard languages; for instance, Σ2E ⊈ SIZE[2n/n] [CHR24,
Li24] requires a hard language in a high level of the exponential-time hierarchy.

This lower bound can also be interpreted as a trade-off between time and non-uniformity. It
means that it is impossible to speed up an arbitrary (AM∩ coAM)-style algorithm with relatively
short non-uniform advice using even near-maximum non-uniform advice.

Arthur-Merlin classes. An Arthur-Merlin protocol for a language L [BM88, GS89] is a two-party
constant-round interactive proof system where a computationally unbounded prover (called Mer-
lin) aims to convince a probabilistic polynomial-time verifier (called Arthur) that x ∈ L for a
string x owned by both parties. A strategy of Merlin is a function that given a partial transcript
of the protocol, outputs the next message to send to Arthur. The protocol should be sound in the
sense that the verifier rejects any strategy of Merlin with high probability if x /∈ L, and complete
in the sense that there is a strategy of Merlin that could convince Arthur with high probability if
x ∈ L (see Section 3.2 for a formal definition).

The class (AMEXP∩ coAMEXP)/α(n) consists of languages L such that both L and L are decid-
able by 2poly(n)-time Arthur-Merlin protocols where both parties receive an α(n)-bit non-uniform
advice on input length n.

1.1.2 Hitting Dense coAM Properties

Recent developments on maximum circuit lower bounds highlight a folklore view that proving
a circuit lower bound for exponential-time classes is equivalent to designing an algorithm that
explicitly constructs hard truth table [Kor22, CHR24, Li24].

More formally, consider the property Πhard defined as the set of strings that are not truth
tables of circuits of size at most 2n/n. If (for instance) there is a deterministic polynomial-time
algorithm that given 12n

outputs a string ttn ∈ Πhard ∩ {0, 1}2n
for infinitely many n, we can

define Lhard as:
x ∈ Lhard ⇐⇒ the x-th bit of tt|x| is 1,

so that Lhard ∈ E := DTIME[2n] (by calling the deterministic algorithm) and Lhard /∈ SIZE[2n/n]
(by the definition of Πhard).

This connection can be adapted to AMEXP lower bounds with suitable technical definitions:
If there is a single-valued Arthur-Merlin protocol (with short non-uniform advice) that given 12n

outputs a string in Πhard ∩ {0, 1}2n
for infinitely many n, we can obtain the lower bound in

2Note that SIZEL[s(n)] refers to languages that admit a family of size-s(n) circuits with L-oracle gates. Since L
oracle gates could have unbounded fan-in, the size of the circuits is defined as the number of wires. For a concrete
example, one may think of a factoring oracle, i.e., given positive integers N and k encoded in binary, it decides whether
there is a divisor d of N such that 2 ≤ d ≤ k.

3Here we only consider lower bounds against non-uniform classes that are at least as strong as general Boolean
circuits. In restricted circuit settings, it is known (for instance) that exponential-size uniform-AC0 requires sub-
exponential-size non-uniform AC0 circuits, which follows from the AC0 upper and lower bound for the parity function
[Ajt83, FSS84, Yao85, Has86].

2

Theorem 1.1. Similarly, we can obtain the lower bound in Theorem 1.2 if we replace Πhard with
the property ΠL

hard that contains maximally hard truth tables against L-oracle circuits. Here, a
single-valued Arthur-Merlin protocol outputs a canonical string with high probability if Arthur
does not reject during the interaction (see Section 3.2 for a formal definition).

Note that Πhard and ΠL
hard are decidable in coAM. Moreover, by Shannon’s counting argument

[Sha49] (also see Appendix A), Πhard and ΠL
hard are both dense properties. Indeed, both our lower

bounds follow from the following general result: We show that for every dense coAM property
P, there is a single-valued Arthur-Merlin protocol with short non-uniform advice that given 1n

outputs a canonical xn ∈ P ∩ {0, 1}n for infinitely many n ∈N. Formally:

Theorem 1.3 (Main Theorem). Let k > 1 be an arbitrary constant and P ∈ coAM be a language such
that |Pn| ≥ 2n−1 for every n ∈ N. There is a sequence of strings {xn ∈ {0, 1}n}n∈N and an Arthur-
Merlin algorithm A that runs in time 2logO(k) n and takes 2log1/k n bits of advice {αn}n∈N such that the
following properties hold:

• (Conformity). For every n ∈N, there is a strategy of Merlin such that Pr[A(1n, αn) = xn] = 1.

• (Resiliency). For every n ∈ N and any string ζn ∈ {0, 1}2log1/k n
, there is a string yn ∈ {0, 1}n

such that for any strategy of Merlin, Pr[A(1n, ζn) ∈ {yn,⊥}] ≥ 2/3.

• (Hitting). For infinitely many n ∈N, xn ∈ P.

Here, conformity and resiliency formalize the intuition of a non-uniform single-valued Arthur-
Merlin algorithm with arbitrary (i.e. possibly non-Boolean) output; see Section 3.2 for a formal
definition. We also note that besides being single-valued, our Arthur-Merlin protocol enjoys an
additional nice property that could be useful for other applications: The AM protocol is partially
single-valued (i.e. either rejects or outputs a canonical string) even if it is given incorrect advice.

We will formally prove in Section 4 that our circuit lower bounds (see Theorems 1.1 and 1.2)
follow from the main theorem. In Section 5 and Section 6, we will provide two proofs of the main
theorem that are different both conceptually and technically (also see Section 2 for an overview
and related discussion).

1.2 Related Works on Explicit Construction Algorithms

Our main theorem (see Theorem 1.3) is also interesting in its own right as an unconditional
explicit construction algorithm for any dense property in coAM, contributing to a recent program
of solving explicit construction problems using techniques from complexity theory. We provide
a summary of related works from the perspective of explicit construction problems for dense
properties in P, BPP, and stronger classes.

• Dense property in P: Chen et al. [CLO+23] (built on an earlier result [OS17]) proved that
for any dense property Π decidable in P, there is a randomized polynomial-time algorithm
that for infinitely many n, it outputs a canonical string in Π ∩ {0, 1}n with high probability
given 1n.4 In particular, there is an efficient algorithm that constructs a canonical n-bit
prime given 1n for infinitely many n.5

4This is also known as a pseudodeterministic algorithm [GG11], i.e., a randomized algorithm that outputs canonical
solutions with high probability.

5Note that primality is a dense property by the prime number theorem, and is decidable in P by the AKS primality
test [AKS04].

3

• Dense property in BPP: Oliveira and Santhanam [OS17] proved similar pseudodetermin-
istic algorithms exist for any dense properties decidable in BPP, but only achieves sub-
exponential running time. Subsequently, Lu, Oliveira, and Santhanam [LOS21] constructed
a polynomial-time pseudodeterministic algorithm that takes an O(nε)-bit advice for the
same problem.

• Range avoidance: Range avoidance problem [KKMP21, Kor22, RSW22] refers to the search
problem that given a multi-output circuit C : {0, 1}n → {0, 1}m satisfying m > n, outputs a
string y ∈ {0, 1}m outside of the range of C, i.e., C−1(y) = ∅. Deterministic (and pseudode-
terministic) algorithms for range avoidance are known to imply circuit lower bounds. Chen,
Hirahara, and Ren [CHR24] proved that there is a single-valued search-S2P/1 algorithm6

for range avoidance that works on infinitely many input lengths, which was improved by
Li [Li24] to a fully uniform search-S2P algorithm (i.e. avoiding the 1-bit advice) that works
on all input lengths.7

Note that the range avoidance problem is a non-unary explicit construction problem, i.e., the
input is not of form 1n. One can also consider the unary version of it, i.e., the input circuit C is
restricted to uniform family {Cn}n∈N of circuits.8 Solving unary range avoidance is just to hit
the dense coNP property Πavoid defined as

Πavoid :=
{

y ∈ {0, 1}n | n ∈N, C−1
n (y) = ∅

}
.

Therefore, our main theorem extends the sequence of works to the explicit construction of prop-
erties beyond (unary) range avoidance to arbitrary dense coNP properties.9

2 Technical Overview

In this section, we will first revisit the important conceptual ideas and technical ingredients
leading to recent breakthroughs in pseudodeterministic constructions [CLO+23] and exponential
circuit lower bounds [CHR24, Li24]. We will explain the iterative win-win paradigm in Section 2.1
introduced in [CLO+23, CHR24], which will be adapted to our setting and sketch the first proof
of Theorem 1.3 (see Sections 2.2 and 2.3). We will then introduce an alternative technique called
the criticial win-win argument that sketchs the second proof of Theorem 1.3 in Section 2.4. Readers
who are already familiar with the iterative win-win paradigm can skip directly to Section 2.2.

We stress that our two proofs of Theorem 1.3 are technically incomparable, and they highlight
two conceptually different approaches to bypassing the half-exponential barrier (see Section 2.1
and [MVW99, CHR24]). We believe that these two techniques (or combined in some way) will
lead to stronger results in circuit lower bounds and explicit construction problems.

6S2P is a subclass of ZPPNP ⊆ Σ2P; interested readers are referred to [CHR24] and references therein.
7There have also been many works on solving special cases of the range avoidance problem [RSW22, GLW22,

GGNS23, CHLR23], as well matrix rigidity [AC22, BHPT24] (which is reducible to range avoidance, see [Kor22]).
8That is, there is a polynomial-time Turing machine outputting Cn given 1n. Note that (pseudo-)deterministic

algorithms for the unary range avoidance problem suffice to imply circuit lower bounds (see, e.g., [RSW22, CHR24]).
9We also note that the (non-unary) range avoidance problem is unlikely to be solvable by even non-uniform non-

deterministic search algorithms [ILW23, CL24]; for this reason, it is unlikely to improve the search-S2P algorithm
of [CHR24, Li24] to a single-valued AM algorithm (even with advice) as otherwise one can derandomize AM using
non-uniformity to obtain a non-uniform non-deterministic search algorithm for the range avoidance problem.

4

2.1 Bypassing the Half-exponential Barrier: the Iterative Win-win Paradigm

Before delving into our techniques of proving Theorem 1.3, we first review why a vanilla win-
win argument is unable to prove exponential circuit lower bounds, and how a recent iterative
win-win paradigm bypasses this barrier.

Win-win arguments. Win-win arguments are widely used in complexity theory to prove un-
conditional circuit lower bounds against general circuits. The idea goes as follows. Given an
(inefficient) brute-force algorithm BF for finding a hard truth table (e.g. via diagonalization), we
find a suitable problem Q and ask whether Q has large circuit complexity. If so, we obtain a
circuit lower bound for Q; otherwise, we speedup the brute-force algorithm BF using the efficient
circuit for Q and thus obtain a non-trivial algorithm for finding hard truth tables, which also
leads to a circuit lower bound.

A standard example is Kannan’s theorem [Kan82]. The brute-force algorithm BF is a language
Ldiag ∈ Σ3E that requires super-polynomial size circuits via diagonalization, and the problem Q
is SAT. If SAT /∈ P/ poly we already obtain a circuit lower bound for NP ⊆ Σ2E; otherwise,
Karp-Lipton theorem [KL80] shows that the polynomial hierarchy collapses to its second level
(in particular, Σ2E = Σ3E), and thus Ldiag ∈ Σ2E. In both cases, we obtain a super-polynomial
circuit lower bound for Σ2E. The lower bound can be improved to (for example) S2E [Cai07]
using the same approach by invoking a stronger Karp-Lipton style collapse.

Indeed, a similar argument can be adapted to solve other explicit construction problems be-
yond circuit lower bounds, with an interesting example of pseudodeterministic constructions of
large primes [OS17, LOS21].10 Recall that a pseudodeterministic construction refers to a random-
ized algorithm that (given 1n) outputs a canonical n-bit primes with high probability.

Instead of the Karp-Lipton collapse, [OS17] uses a reconstructive pseudorandom generator
from the hardness-vs-randomness paradigm [IW01, TV07]. The brute-force algorithm BF enu-
merates all n-bit strings and outputs the first prime, which can be implemented in PSPACE. It
then asks whether a PSPACE-complete problem LTV is in BPP. If so, PSPACE = BPP and thus
BF can be implemented by a polynomial-time randomized algorithm. Otherwise, we can obtain,
from the hardness of LTV, a pseudorandom generator with seed length nε that fools uniform
algorithms via the uniform hardness-vs-randomness paradigm [IW01, TV07]. Since primes are
dense and the primality test is in P [AKS04], the pseudorandom generator must hit an n-bit
prime, and thus we can output a canonical prime in sub-exponential time by enumerating all the
seeds and outputting the first prime from the outputs of the pseudorandom generator.

The half-exponential barrier. The win-win arguments we mentioned above all run into a “half-
exponential barrier”, as pointed out in [MVW99] (also see [CHR24]). Intuitively, it means that
the two cases in the win-win argument are competing with each other, which prevents us from
proving exponential lower bounds (or polynomial-time explicit construction) in both cases.

Take Kannan’s theorem as an example. Suppose that we want to prove an exponential cir-
cuit lower bound for Σ2E. If we perform a win-win argument on whether SAT /∈ SIZE[s(n)] for
(say) s(n) = 2nε

rather than s(n) = nω(1) to improve the lower bound when SAT /∈ SIZE[s(n)],
we will encounter a sub-exponential overhead for the Karp-Lipton collapse in the case that
SAT ∈ SIZE[s(n)], which prevents us from proving an exponential lower bound for Σ2E. By

10Recall that the result of [OS17] (and the subsequent improvement from [CLO+23]) can be used to hit any dense
property in P, and the construction of primes follows from the AKS primality test [AKS04] and the prime number
theorem. For concreteness, we stick to the construction of large primes in the introduction.

5

a careful calculation of parameters, it turns out that the best we can hope is to set s(n) such that
s(s(poly(n))) ≤ 2n, leading to a so-called half-exponential lower bound. Similarly, [OS17, LOS21]
can only construct large primes psueodeterministically in half-exponential time.

Perspective: Construction of dense property and an input-length-pair-wise win-win argument.
It turns out that a new interpretation of the win-win argument in [OS17, LOS21] serves as the
key idea for bypassing the half-exponential barrier [CLO+23, CHR24, Li24]. Concretely:

• Both tasks above (i.e. proving circuit lower bounds and generating large primes) can be
viewed as designing an efficient single-valued algorithm to hit a uniform dense property
P. For the construction of primes, P is the set of primes and is decidable in P [AKS04];
for exponential circuit lower bounds, P is the set of strings that are not the truth tables of
2n/n-size circuits, which is known to be in coNP. This view is highlighted in recent works
on the range avoidance problem, see, e.g., [Kor22, RSW22, CHLR23].11

• Instead of identifying a problem Q and designing two algorithms for two possible outcomes
of whether Q is hard or easy (the win-win argument), we can indeed interpret the standard
win-win argument as designing one algorithm unifying the two algorithms so that it always
“wins”. That is, the new algorithm always correctly outputs a canonical string in P on
infinitely many input lengths.

In more detail, let An, Am be two different algorithms, the unified algorithm considers two
disjoint infinite sets of input lengths {n0, n1, . . . } and {m0, m1, . . . }. It simulates An(1ni)
on each input length ni (i ∈ N), and simulates Am(1mi) on each input length mi.12 These
two algorithms are designed so that for each i ∈ N, either it (simulating An) is correct
on the input length ni, or it (simulating Am) is correct on the input length mi. In other
words, it performs an “input-length-pair-wise” win-win argument between each pair of
input lengths ni and mi. Indeed, this view has been found useful in proving circuit lower
bounds against ACC0 [Che24] (following [MW20]).

For concreteness, consider ni+1 = 2ni and mi = 2n0.1
i . Let BF be a brute-force algorithm for

hitting the property P that runs in (say) exponential time.13 Intuitively, the unified algorithm
performs a win-win argument on each pair (ni, mi) of input lengths by considering whether the
“computation history” of BF(1ni) is “hard”. It works differently according to the input length:

• On the input length mi (i ∈ N), it assumes that the “computation history” of BF(1ni) is

“hard”, and utilizes this hardness to hit the dense property P (say in time 2O(ni) = 2mo(1)
i)

with a suitable hardness-vs-randomness framework (e.g. [TV07, NW94, IW01]).

• On the input length ni (i ∈ N), it assumes that the “computation history” of BF(1ni) is not
“hard”, and tries to speed up the brute-force algorithm BF(1ni).

If we can figure out suitable definitions of “computation history” and “hardness”, and apply
a hardness-vs-randomness framework accordingly, this algorithm will work on either the input
length ni or mi for each i ∈N, unifying the two cases of the win-win argument. Indeed, one can
verify that [OS17] can be interpreted as such an algorithm using the PRG in [TV07].

11In particular, hitting the set of strings that are not the truth tables of small circuits is reducible to the range
avoidance problem [Kor22], which serves as the main technical ingredient leading to [CHR24, Li24].

12Recall that the explicit construction problem has a unary input. Also, note that we should define these two sets
so that the algorithm can decide uniformly whether the input length is one of ni or one of mi.

13The complexity measure may not be time complexity, but (for instance) alternation in Kannan’s theorem [Kan82].
We use time complexity only for illustrative purposes.

6

Insight: amortizing the cost of win-win. Once adapted to the input-length-pair-wise view on
the win-win argument, it is natural to ask whether it is beneficial to perform a “win-win-win
argument” on 3-tuples of input lengths (rather than pairs), or even play with more “wins”.
The rationale is that the half-exponential barrier comes with the “self-competing” nature of two
possible outcomes of the win-win argument, and if we introduce more outcomes and amortize
the overhead among different input lengths, we may achieve better bounds.

Iterative win-win paradigm. Indeed, the answer is positive. A framework called the itera-
tive win-win paradigm was introduced in [CLO+23], which improved the half-exponential time
pseudodeterministic algorithm in [OS17, LOS21] to a polynomial-time algorithm. Subsequently,
[CHR24] proved maximum circuit lower bounds for Σ2E and S2E/1 following the same paradigm,
improving the half-exponential lower bounds of Kannan [Kan82].

As the name indicates, the iterative win-win approach performs a win-win argument itera-
tively with super-constantly many cases instead of only two cases.14 The basic idea is as follows.
Let n0, n1, . . . , nℓ be an increasing sequence of input lengths where n0 is sufficiently large. We
start with the brute-force algorithm BF that runs in (say) exponential-time, and ask whether its
“computation history” on input length n0 is “moderately hard”.

• (Win). If the computation history on input length n0 is not even “moderately hard”, we can
improve the brute-force algorithm BF (on input length n0) to polynomial time.

• (Improve). Otherwise, we utilize the moderately hard computation history to obtain a moder-
ately better algorithm on input length n1 following a hardness-vs-randomness framework15,
treat it as the new brute-force algorithm, and proceeds the same win-win argument on
input length n1.

Note that the exact meaning of a “moderately hard” “computation history” will be clear when
we instantiate the framework with [CLO+23, CHR24].

The key observation is that the improvements in the case (Improve) could accumulate over
iterations, and thus if the sequence of input lengths n0, n1, . . . , nℓ grows sufficiently fast (say
ni+1 = nβ

i for a large constant β) and ℓ is sufficiently large (say ℓ = log n0), the final “brute-
force” algorithm on input length nℓ will be very efficient. By splitting the input lengths into
infinitely many disjoint sequences ⟨n0, n1, . . . , nℓ⟩, we can obtain a polynomial-time algorithm that
is guaranteed to be correct on at least one ni for each of such sequence.

Instantiations of iterative win-win. The biggest technical challenge is to identify the exact
meaning of being a “moderately hard” computation history and find the hardness-vs-randomness
framework allowing us to gain improvement with the hardness of the computation history.

Construction of primes. For the pseudodeterministic construction of primes [CLO+23], the
“win-or-speedup” is carried out by the uniform non-black-box hardness-vs-randomness frame-
work developed by Chen and Tell [CT22], which builds on the interactive proof system due to

14Note that the new perspective is crucial as it is unclear how to come up with super-constantly many cases and
specify super-constantly many different algorithms in the standard win-win arguments.

15The intuition is that the hardness-vs-randomness framework will provide a pseudorandom generator (or hitting
set generator, HSG for short) over {0, 1}n1 with a non-trivial seed length from the computation history of BF(1n0) so
that the “moderately better” algorithm on the input length n1 can enumerate all the seeds and find out a string with
the property P ∩ {0, 1}n1 .

7

Goldwasser, Kalai, and Rothblum [GKR15]. Intuitively, the Chen-Tell framework allows us to
construct a hitting set HC from an inefficient parallel computation C.16, such that given a dense
polynomial-time decidable property that HC fails to hit, one can simulate the computation C by
a randomized polynomial-time algorithm.17 The win-win argument goes as follows.

• (Win). Recall that the brute-force algorithm BF0 for finding the smallest n0-bit prime is
highly parallel, we instantiate the Chen-Tell framework with the computation BF0(1n0) and
obtain an HSG (hitting set generator) H0 with output length n1. If H0 fails to hit any n1-bit
prime, we can simulate BF0(1n0) by a randomized polynomial-time algorithm.

• (Improve). If H0 hits an n1-bit prime, we obtain a slightly more efficient algorithm BF1(1n1)
by enumerating H0 and returning the first n1-bit prime.

Notice that the slightly more efficient algorithm BF1 in (Improve) case is still highly parallel,
one can iteratively perform the win-win argument as discussed above to obtain BF2,BF3, . . . ,BFℓ
on input lengths n2, n3, . . . , nℓ, where (according to the time complexity of the hitting set genera-
tor) the running time of BFi+1 is polynomially bounded by the running time of BFi. This means
that BFi runs in time exp{poly(n0) · exp(O(i))}. By setting ni+1 := nβ

i for a large constant β and
ℓ := ⌈log n0⌉, then

nℓ = nβ⌈log n0⌉

0 ≥ 2βlog n0 = 2nlog β
0

the running time of BFℓ would be

exp{poly(n0) · exp(O(log n0))} = exp(poly(n0)) ≤ poly(nℓ).

Therefore, we can obtain a polynomial-time (pseudodeterministic) algorithm that correctly finds
primes on infinitely many input lengths: Either BFℓ is correct on the input 1nℓ , or for some i < ℓ
we can “win” by simulating BFi(1ni) using a randomized polynomial-time algorithm.

Circuit lower bounds. Recall that proving circuit lower bounds is equivalent to an explicit
construction of canonical hard truth tables (and the property consisting of hard truth tables is a
dense property). For the maximum circuit lower bound for Σ2E (and S2E) [CHR24], the win-win
argument utilizes a reduction called hardness condensation (see, e.g., [BS06]), which takes a truth
table of length T = 2n hard against size S and constructs a truth table of length T′ = 2n′ hard
against size S′, where n′ could be much smaller than n but S′ ≈ S.18

Let n0, n1, . . . , nℓ be a sequence of input lengths. We also assume all ni’s are powers of 2 and
let mi be such that ni = 2mi . On input length n = 2m, we want to find a canonical truth table of
length n that is hard against 2m/m size circuits. Starting with a brute-force algorithm BF0 that
enumerates and returns the first hard truth table, we perform the following win-win argument:

• (Win). If the computation history of BF0 on input length n0 = 2m0 (which is of length
exponential in n0) is the truth table of a poly(n1)-size circuit, we can simulate the brute-
force algorithm in Σ2P (and even S2P/1, with a more careful argument) by guessing the
circuit and verifying the computation (⋆).

16More formally, the inefficient parallel computation is modeled as a highly uniform, large size (e.g. exponential
size), and low-depth layered circuit, see [CT22, CLO+23] for a formal definition.

17The original Chen-Tell hitting set generator only allows a quasi-polynomial-time algorithm for simulating C,
which is improved in [CLO+23] using a better pseudorandom generator from [SU05].

18To see that this fits into the iterative win-win paradigm we described above, one can also view hardness con-
denseation as a hardness-vs-randomness framework, as it solves a derandomization task of generating a hard truth
table (of length T′ ≪ T) using a hard truth table (of length T).

8

• (Improve). Otherwise, the computation history of BF0 has circuit complexity poly(n1) ≫
2m1 /m1. By hardness condensation (⋄), we can obtain a maximally hard truth table of
length n1 = 2m1 , which is moderately more efficient than the brute-force algorithm.

A careful inspection of a hardness condensation algorithm implicit in [Kor22] shows that it fits
perfectly into the win-win argument: both the verification of its computation (⋆) and the hard-
ness condensation procedure (⋄) can be implemented into Σ2P and even S2P/1. Moreover, by
defining the computation history carefully, we can iteratively perform the win-win argument
above to obtain algorithms BF1,BF2, . . . ,BFℓ on input lengths n1, n2, . . . , nℓ, where BFℓ(1nℓ) runs
in polynomial time, and thus an algorithm that correctly finds hard truth tables on infinitely
many input lengths.

A “just-win” proof of S2E lower bounds. In a recent paper, Li [Li24] obtained an almost-
everywhere and fully uniform maximum circuit lower bound for S2E using an elegant and ele-
mentary proof without relying on the win-win argument. The proof is inspired by the result in
[CHR24], with an additional observation that (intuitively) we will just fall into the (Win) case if
we use a specific brute-force algorithm via the hardness condensation procedure in [Kor22] and
define the computation history of it carefully.19

2.2 Warmup: A Win-win Argument

Can we directly apply the hardness condensation procedure [Kor22] used in [CLO+23, Li24] to
obtain a circuit lower bound for AMEXP, rather than Σ2E or S2E? Korten’s hardness conden-
sation procedure runs in PNP (see, e.g., [Kor22, RSW22]). A natural idea would be to design
a better algorithm for the hardness condensation procedure (say, a single-valued Arthur-Merlin
algorithm, which would give circuit lower bounds for AMEXP) for the range avoidance problem.
Unfortunately, there has been evidence that such an algorithm does not exist.20

Again, viewing the task of proving circuit lower bounds (e.g. Theorem 1.1) as a derandom-
ization problem, i.e., pseudodeterministically hitting the dense coNP property consisting of hard
truth tables, brought insights on what tools we should look for. Recall that [CLO+23] performs
an (iterative) win-win argument using the uniform and instance-wise Chen-Tell HSG [CT22], it is
natural to ask whether we should use a similar instance-wise HSG fooling (co-)nondeterministic
computation.21

Fortunately, a recent work by van Melkebeek and Mocelin Sdroievski [vS23] (inspired by the
Chen-Tell HSG [CT22]) provides a uniform and instance-wise hardness-vs-randomness connec-
tion for AM that is suitable for our application. By combining the PCP theorem (see, e.g., [AB09])
for non-deterministic computation and a hitting set generator [SU07] with Arthur-Merlin recon-
struction, they proved that:

19Note that both [CHR24] and [Li24] indeed prove stronger results: they designed a single-valued algorithm (in the
functional version of S2P or S2P/1) solving the range avoidance problem (see, e.g., [Kor22, RSW22]), which is known
to imply circuit lower bounds (for S2E or S2E/1).

20It is proved in [CL24] that the range avoidance problem cannot be solved by non-uniform non-deterministic
search algorithms under plausible cryptographic assumptions. Since a single-valued Arthur-Merlin algorithm can be
derandomized using non-uniformity by a standard argument (see, e.g., [AB09]), the range avoidance problem is also
unlikely to be solvable by a single-valued Arthur-Merlin algorithm.

21Our Theorem 1.3 can indeed hit any dense coAM property, where coNP ⊆ coAM. This is crucial for proving
Theorem 1.2 as the dense property for proving it will be a coAM property rather than a coNP property; see Section 4
for more details.

9

Theorem 2.1 (informal, see Theorem 5.1). There is an efficient algorithm HSG and an efficient Arthur-
Merlin protocol Rec such that the following holds. Let n, m ∈ N, T ≤ 2poly(n), M be a time-T Turing
machine, and α be a string. For every poly(m)-size coAM circuit that rejects at most a 1/3-fraction of its
inputs, as least one of the following two conditions holds:

• (Hit). HSG(n, m, M, α) runs in time poly(T) and outputs a multset H ⊆ {0, 1}m such that
D(z) = 1 for some z ∈ H.

• (Reconstruction). The Arthur-Merlin protocol Rec(n, m, M, α, D, x) works as follows: If M(α) halts
in time T and outputs x, there is a strategy of Merlin that makes Arthur always accept; otherwise,
Arthur rejects with high probability regardless of Merlin’s strategy.

Intuitively, we treat M(α) (the computation of M on input α) as a potential “hard computa-
tion”, and show that either we can produce a hitting set fooling a coAM circuit D, or it is indeed
not a “hard computation” as M(α) can be simulated by a fast Arthur-Merlin protocol Rec that
takes D as its input.22

Sub-exponential time algorithm from a win-win argument. As a warmup, we first explain
how to construct a non-trivial pseudodeterministic algorithm for hitting dense coAM property
using Theorem 2.1 and a vanilla win-win argument.

Let BF be the brute-force algorithm that enumerates all n-bit strings x1, x2, . . . , x2n in lexi-
cographic order, checks whether xi ∈ P in exponential time by enumerating all witnesses and
outputs the lexicographically first string in the property P. We will use BF as the machine
M in Theorem 2.1 to obtain a hitting set for the dense property P decidable in coAM. Let
m = m(n) = nc for a sufficiently large constant c. On input length m, it plugs BF and 1n (as
M and α) into Theorem 2.1 to construct a hitting set H ⊆ {0, 1}m in time 2poly(n). Then there will
be two cases.

• Case 1: Hitting. Suppose that H hits the property P for infinitely many input lengths m, i.e.,
there is an index r such that the r-th string in H is also in P. Let r∗ be the lexicographically
first such r. Then the following deterministic algorithm in time 2poly(n) with poly(n) bits of
advice r∗ will hit the property P infinitely often: On input length m, it simulates BF(1n),
constructs the hitting set H, and outputs the r∗-th string in H. This deterministic algorithm
runs in 2m0.1

time and takes m0.1 bits of advice if c is chosen to be sufficiently large.

• Case 2: Reconstruction. Suppose that the hitting set generator fails to hit the property P on
all but finitely many input lengths m. Fix any n and m = m(n). By Theorem 2.1, we can
verify whether BF(1n) outputs x for any x ∈ {0, 1}n by the Arthur-Merlin protocol Rec,
where the distinguisher D is the coAM property P. This leads to an efficient single-valued
AM protocol that simulates BF(1n) on input length n by letting Merlin send the correct
output x of BF(1n) that is the lexicographically first n-bit string in P by the definition of BF.

We can also view it in the “input-length-pair-wise” perspective: Let n1, n2, . . . and m1, m2, . . .
be two disjoint sequences of input lengths defined as mi := nc

i , ni+1 := mc
i , for each i ∈ N, our

unified algorithm simulates the algorithm in the former case on input lengths mi, and simulates
the algorithm in the latter case on input lengths ni. By a win-win argument on each pair (ni, mi)
of input lengths, our unified algorithm is correct on infinitely many input lengths.

22There are two caveats. The reconstruction protocol Rec runs in slightly super-polynomial time due to overhead in
the hitting set generator [SU07]. Moreover, the version of hardness-vs-randomness connection we will need is slightly
different from the one in [vS23]; concretely, we will need HSG and Rec to work not only for a fixed time bounded
T = T(n), but also when T (encoded in binary) is given in their inputs. Details are given in Appendix B.

10

A technical challenge: hardness of deciding the property. Recall that a vanilla win-win argu-
ment (including the result above) is subject to the half-exponential barrier (see Section 2.1). Can
we bypass the barrier using the iterative win-win paradigm in [CLO+23]?

A key difference between our task of hitting dense coAM properties and the task of hitting
dense P properties considered in [CLO+23] is that we cannot decide the coAM property we need
to hit efficiently by a deterministic algorithm (unless AM = P). Recall that in the (Improve) case
of the iterative win-win argument in [CLO+23], we can construct a moderately more efficient
deterministic algorithm constructing primes by enumerating over the hitting set, testing their pri-
mality, and outputting the first prime in the hitting set (see Section 2.1); this ensures that the
improvement in the case (Improve) could accumulate over iterations. However, in our setting,
it is unclear how to construct this “moderately more efficient algorithm” without the ability to
decide the property.

In this paper, we provide two different approaches to partially resolve the issue by allowing
the algorithm to take a short advice (see Theorem 1.3). The first proof follows from adapting the
iterative win-win paradigm [CLO+23] to algorithms with short advice; see Section 2.3 and 5. The
second proof follows from a novel critical win-win argument that bypasses the half-exponential
barrier without performing a win-win argument on super-constantly many cases; see Section 2.4
and 6. As far as we can tell, these two proofs are technically incomparable and interesting as
they provide two conceptually different approaches to bypass the half-exponential barrier.

2.3 Proof via Iterative Win-win with Advice

Recall that in the vanilla win-win argument (see Section 2.2), the algorithm in the (Hitting)
case takes short advice and runs in sub-exponential time. In this subsection, we will briefly
explain how to improve the running time to quasi-polynomial by adapting the iterative win-win
paradigm [CLO+23] to work with algorithms that take short advice.

Let n0, n1, . . . , nℓ be a sequence of input lengths. Let BF0(1n) be the brute-force algorithm that
finds the lexicographically first length-n string in the property P we want to hit. Similar to the
win-win argument in Section 2.2, we plug BF0 and 1n0 (as M and α) into Theorem 2.1 to construct
a candidate hitting set H0 ⊆ {0, 1}n1 in time 2poly(n0). There are two cases:

• (Win). If H0 fails to hit the property P, i.e., H0 is not a hitting set fooling P ∈ coAM, we know
by Theorem 2.1 that the reconstruction AM protocol Rec will simulate BF0(1n0) efficiently.
(Indeed, Rec runs in quasi-polynomial time, see Theorem 5.1 for the formal statement.)

• (Improve). Otherwise, we obtain a 2poly(n0)-time deterministic algorithm BF1 that outputs a
string in P ∩ H0 that takes a poly(n0)-bit advice α1. If we set n1 ≫ n0 (e.g., n1 = nβ

0 for a
large constant β), BF1(1n1)α1 runs moderately faster than the brute-force algorithm.

The crucial observation is that in the (Improve) case, we can keep performing the win-win
argument as Theorem 2.1 is “instance-wise”, i.e., it allows the machine M to take an input α
rather than only 1n. For simplicity of presentation, we assume that BF1 takes both 1n1 and α1
as its input (rather than advice). We plug BF1 and (1n1 , α1) (as M and α) into Theorem 2.1 to
construct a candidate hitting set H1 ⊆ {0, 1}n2 in time (2poly(n0))O(1), and consider the two cases:

• (Win). If H1 fails to hit the property P, i.e., H1 is not a hitting set fooling P ∈ coAM
(on the input length n2), we know by Theorem 2.1 that the AM protocol Rec will simulate
BF1(1n1 , α1) efficiently, where (1n1 , α1) is given to the AM protocol as a part of its input.
Compared to the (Win) case above, we will only obtain a single-valued AM protocol hitting

11

P given α1 as its advice instead of a fully uniform AM protocol; nevertheless, this suffices
to prove Theorem 1.3.

• (Improve). Otherwise, we obtain a (2poly(n0))O(1)-time deterministic algorithm BF2 that
outputs a string in P ∩ H1 that takes two advice strings: the advice α1 for BF1 to compute
the hitting set generator H1, and an advice string α2 of length O(poly(n0)) that identifies a
string in P ∩ H1.

This win-win argument can be iteratively performed over super-constantly many input lengths.
That is, for each i ≥ 1:

• BFi takes α1, . . . , αi−1, αi as advice, where α1, . . . , αi−1 are used to simulate BFi−1,23

• Hi ⊆ {0, 1}ni+1 is the hitting set obtained by plugging BFi and (1ni , α1, . . . , αi) (as M and α)
into Theorem 2.1.

• BFi first obtains the hitting set Hi−1 using BFi−1 and (1n−1, α1, . . . , αi−1), and uses αi to
identify a length-ni string in Hi−1 ∩ P.

This will lead to Theorem 1.3 by carefully tracking the time and advice complexity of BFi and
setting the sequence n0, . . . , nℓ according.

2.4 Proof via Critical Win-win

We now introduce an alternative approach to speed up the derandomization algorithm in Sec-
tion 2.2, which we call a critical win-win argument. Rather than using the hardness-vs-randomness
connection in Theorem 2.1 in black-box, it exploits special properties of the specific hitting set
generator [SU07] underlying Theorem 2.1, and combines it with a strong and Reed-Muller-based
PCP [Par21] (also see Appendix C).

Insight: the amount of hardness. Instead of introducing more cases in win-win arguments to
amortize the cost as in the iterative win-win paradigm, the critical win-win argument is inspired
by the observation that we can reduce the cost by considering the exact “amount of hardness”
we need for derandomization. This observation has been used by Lu, Oliveira, and Santhanam
[LOS21] to improve the explicit construction algorithm in [OS17] and subsequently by Hirahara,
Ren, and Lu [HLR23] to prove circuit lower bounds, while the idea can be dated back to the
circuit lower bound for MA [San09].

We explain the idea using the result of [LOS21] as an example. Recall that in [OS17] (see
Section 2.1) a sub-exponential time algorithm for generating canonical primes is constructed
by performing a win-win argument on whether PSPACE = BPP. If PSPACE ̸= BPP, we can
construct a PRG GLTV

m : {0, 1}poly(m) → {0, 1}n that is guaranteed to hit the set of primes by
plugging in a PSPACE-complete language LTV into the framework in [TV07]; specifically, the
PRG will utilize the truth table of LTV on the input length m = nε for some constant ε ∈ (0, 1). It
will take 2poly(m) time to produce the truth table via brute force, which leads to a sub-exponential
time overhead in the final algorithm to generate a canonical prime number in [OS17].

The first observation in [LOS21] is that by providing the lexicographically first seed w such
that GLTV

m (w) is prime as advice, it suffices to evaluate GLTV
m on a single seed for generating a

23Note that in [CLO+23], the sequence of brute-force algorithms are represented by different Turing machines, and
they need to track the growth of the description lengths. We introduce a trick that allows us to represent BF0, . . . ,BFℓ
as a single Turing machine using the recursion theorem; see Section 5.1 for more details.

12

canonical prime number. Moreover, the PRG used in [TV07] (which is essentially the Nisan-
Wigderson PRG [NW94]) is local in the sense that it allows us to output GLTV

m (w) given the seed
w with poly(m) queries to LTV

m : {0, 1}m → {0, 1} (rather than reading the entire truth table).
Therefore, we can get rid of the 2poly(m) overhead if we can compute LTV

m efficiently.
Crucially, it is observed in [LOS21] that it benefits to consider the exact amount of hardness of

LTV
m . Intuitively, it is proved in [TV07] that if LTV

m is hard for Tc-time probabilistic algorithms
for some constant c > 1, then GLTV

m : {0, 1}poly(m) → {0, 1}n fools any T-time algorithm for every
function T. The flexibility in the hardness-vs-randomness connection allows us to consider what
is the “minimum”24 T∗(n) such that LTV ∈ BPPTIME[T∗(n)], which characterizes “the exact
amount of hardness” of LTV,25 and use both the (probabilistic time) upper and lower bound for
LTV. Concretely, we will set m so that T∗(m) = poly(n) such that:

1. The T∗(m)-time upper bound allows us to evaluate LTV efficiently, and thus by the locality
of the PRG in [TV07], we can output a canonical prime GLTV

m (w) with high probability given
w as advice in probabilistic time poly(m) · T∗(m) = poly(n).

2. The (roughly T∗(m) time) lower bound for LTV makes sure that LTV
m will hit the set of

primes on the input length n (as long as T∗(m) ≥ nδ for a sufficiently large constant δ) by
the hardness-vs-randomness framework in [TV07].

Therefore, by considering the exact amount of hardness and using both the upper and lower
bounds, [LOS21] improved the algorithm generating a canonical prime to polynomial time.

Locality of the HSG. Recall that the time bottleneck of the algorithm in Section 2.2 appears in
the “hitting” case. Suppose that the hitting set H constructed BF(1n) using Theorem 2.1 hits an
m-bit string in P, we need to compute the entire hitting set H within time 2poly(n) to output a
canonical element in H ∩ P, resulting in an unaffordable exponential running time in m.

Based on the first observation in [LOS21], it is natural to ask whether it is overkill to generate
the entire hitting set. Fortunately, similar to the PRG used in [LOS21], the hitting set construction
[SU07] underlying Theorem 2.1 is local in the sense that it allows us to output a single element
in H more efficiently. Opening up the proof of Theorem 2.1 (also see Theorem 5.1), we can see
that H is constructed by plugging the computation history of BF(1n) (as a certain PCP proof) into
the hitting set generator in [SU07]. Given oracle access to the computation history of BF(1n)
and a seed i, we can compute the i-th string in H within time poly(m) (see Theorem 6.1 for the
formal statement). As we can store the index i in the advice, the “hitting” case can be improved
to poly(m) time if we can implement the oracle access to the computation history of BF(1n)
efficiently.

Critical win-win argument. The crucial idea of our critical win-win argument is to define a
suitable notion of the “amount of hardness”.

Instead of identifying a language as in [LOS21], our result is based on the “input-length-
pair-wise” perspective of win-win arguments (see Section 2.1). Let Hn,m be a hitting set over
m-bit strings constructed from the computation history of BF(1n). We will play with three input
lengths n, m, m + 1 such that

24More formally, we need to find T∗(n) such that LTV ∈ BPPTIME[T∗(n)] \ BPPTIME[nb · (T∗(n))δ]/δ log T∗(n) in
[LOS21] for some constants b and δ. We will ignore the formality and say “minimum” T∗(n) informally here.

25Note that T∗(n) = nω(1) as PSPACE ̸= BPP and LTV is PSPACE-complete.

13

• Hn,m hits an m-bit string in P, and

• Hn,m+1 fails to hit any (m + 1)-bit string in P,

We will call (n, m) a critical pair. To gain some intuition, one may think about the case where
Hn,t hits a t-bit string in P for every t ≤ m, and fails to hit any t-bit string in P for every t > m;
in this simplified setting, the critical pair (n, m) captures the exact amount of “hardness” of the
computation history of BF(1n) that can be used for derandomization (on the task of hitting P).

The crucial observation leading to the critical win-win argument is that for each critical pair
(n, m), we can efficiently construct (with short advice) a canonical m-bit string in Hn,m ∩ P with
a suitable hardness-vs-randomness framework. Intuitively, the algorithm can “reconstruct” the
computation history of BF(1n) from the failure of hitting P using Hn,m+1, and output a string
in Hn,m ∩ P according to an index encoded in the advice using the locality of the hitting set
generator.26 Formally, we will design a single-valued Arthur-Merlin algorithm Criticalα such that
for each critical pair (n, m), Critical(1n, 1m)αm constructs a canonical m-bit string in Hn,m ∩ P, runs
in time 2polylog(m), and takes a short advice string αm.27

Assume that such an algorithm Critical exists. We consider the following three cases:

• Case 1: Easy Reconstruction. If there are infinite many pairs (n, m) such that m ≤ 2logk n and
Hn,m fails to hit P, we can instantiate the original algorithm for “the reconstruction case” in
Section 2.2. Namely, we directly run the reconstruction protocol in Theorem 2.1 to simulate
BF(1n) and output the lexicographically first n-bit string in P.

• Case 2: Easy Hitting. If for some large constant β, there are infinitely many pairs (n, m) such
that m ≥ 2nβ

and Hn,m hits m, we can instantiate the original algorithm for “the hitting case”
in Section 2.2. It naively simulates BF(1n), computes the entire hitting set Hn,m, and outputs
the lexicographically first string in P (according to a short advice string). The simulation of
BF(1n) requires 2nO(1)

= 2polylog(m) time.

• Case 3: Critical Hitting. Otherwise, for all but finite many n, Hn,m hits P for all m ≤ 2logk n,
and Hn,m fails to hit P for some m ≤ 2nβ

. Therefore for any sufficiently large n, there is an
m ∈ [2logk n, 2nβ

] such that Hn,m hits P and Hn,m+1 fails to hit P, or equivalently, (n, m) forms
a critical pair. This means that for infinitely many m, there is an n such that

– 2logk n ≤ m ≤ 2nβ
,

– (n, m) is a critical pair.

On each such input length m, if we take as advice the corresponding input length n and
the advice αm for Critical on the critical pair (n, m), we can simulate Critical(1n, 1m)αm and
output a canonical m-bit string in Hn,m ∩ P in time 2polylog(m+1) = 2polylog m.

A closer look at Theorem 2.1: How can locality help? To explain how this algorithm σcrit
works, we need to take a closer look at how the uniform hardness-vs-randomness connection for
AM [vS23] (also see Theorem 2.1 and Appendix B) is proved. The key technical ingredient is the

26Here, the specific mean of “reconstruction” will be explained below when we formally describe the theorem.
27In the previous algorithm in Section 2.2 and the iterative win-win framework, the parameter m should be bounded

by 2polylog(n) to make sure the protocol in the “reconstruction” case is efficient enough (with running time 2polylog(m) =

2polylog(n)) for input length n. This is no longer required as we will run the reconstruction protocol on input length m
instead of n in the new algorithm, which is the key to avoiding iterative win-win.

14

hitting set generator in [SU07] (see Theorems 3.5 and 6.1). Intuitively, it works as follows: Let p
be an m-variate low-degree polynomial over F := Fq, it either generates a valid hitting set fooling
coAM based on p, or (given oracle access to an coAM circuit that it fails to fool) reconstructs p.
Here, the reconstruction of p is achieved by an AM commit-and-evaluate protocol which consists
of two AM protocols σc and σe that informally works as follows:

• In σc, Merlin will commit to a low-degree polynomial gα : Fm → F, and Arthur will output
a string α that is supposed to be a commitment made by Merlin;

• In σe, Arthur (given the commitment α and an x ∈ Fm) will ask Merlin to send some y ∈ F,
which is supposed to the evaluation gα(x) of the committed polynomial.

It is ensured that if the HSG constructed from p fails, then: There is a strategy of Merlin that
commits to p in σc and makes Arthur output y = p(x) in σe, and for any strategy of Merlin,
once it commits, the evaluation protocol will be single-valued. That is, once Merlin commits a
polynomial gα, it will have to faithfully reveal y = gα(x) in σe(α, x) since attempting to reveal
any value other than gα(x) will be rejected by Arthur with high probability; see Theorem 3.5 for
a formal description.28

The commit-and-evaluate reconstruction protocol makes it possible to verify any NTIME[T]
language L by an AM protocol in time polylog(T): We plug the (low-degree extension of) the PCP
proof for an inefficient deterministic computation as the polynomial p into the HSG so that if the
HSG fails, we can achieve random access to the PCP proof by a commit-and-evaluate protocol,
which (together with the PCP verifier in time polylog(T)) implies fast simulation NTIME[T] by
an Arthur-Merlin protocol. More concretely, Arthur will ask Merlin to commit to a polynomial
encoding a PCP proof, and then simulate the PCP verifier (where queries to the proof are imple-
mented by the evaluation protocol σe).29 In particular, we can prove Theorem 2.1 by letting L be
the verification of the deterministic computation “M(α) = x”.

How can we make use of the locality property of the HSG in [SU07] to design the algorithm
σcrit? Suppose that (n, m) is a critical pair, i.e., Hn,m hits P but Hn,m+1 fails to hit P, our goal is to
construct a canonical string in Hn,m ∩ P. A natural idea is to mimic the proof of Theorem 2.1. Re-
call that Hn,m is defined as the HSG in [SU07] where p is the computation history of BF(1n) in the
form of a (Reed-Muller-encoded) PCP proof. Since Hn,m+1 fails to hit P, the reconstruction pro-
tocol provides oracle accesses to a polynomial that is supposed to be the (Reed-Muller-encoded)
computation history of BF(1n). By running the PCP verifier, Arthur can make sure that Mer-
lin commits to a correct computation history, and thus σe provides efficient oracle access to the
committed computation history. By the locality of the HSG, we can then output the i-th string in
Hn,m given i efficiently. This implies that we can output a canonical string in Hn,m ∩ P if we take
an advice string i such that the i-th string in Hn,m is in P.

A flaw, and the solution using certain PCP systems. However, there is a subtle flaw in the
argument. Although Merlin cannot change the polynomial once it is committed, it does not
prevent Merlin from committing to another polynomial other than the polynomial p used to
generate the HSG. Therefore, if there are multiple valid computation histories (in the form of
PCP proofs), Arthur will accept when Merlin commits to a polynomial encoding any of the
computation histories, which makes the protocol not single-valued. We stress that even though

28For readers familiar with cryptography, this is functionally similar to a commitment scheme with local opening
(e.g. the commitment scheme in Kilian’s protocol [Kil92]).

29Again, this is very similar to the construction of Kilian’s succinct argument scheme [Kil92].

15

in Theorem 2.1 we only want to simulate deterministic Turing machines in AM whose computation
pattern is unique, there could still be multiple valid PCP proofs for verifying the computation,
which may make the protocol being not single-valued.

To resolve this issue, we need to look for a suitable definition of the computation history
(in the form of a PCP proof) such that it is in some sense unique; that is, if the prover deviates
from a canonical PCP proof, the verifier will reject with noticeable probability. If this is possible,
Merlin can only commit to the canonical PCP proof (for verifying the computation of BF(1n))
while running the reconstruction protocol (utilizing the failure of hitting Hn,m), and thus the
final protocol will be single-valued by the correctness of the commit-and-evaluate protocol.

Fortunately, it turns out that a strong and canonical PCP with Reed-Muller-encoded proofs
(see Theorem 6.2) suffices, and it can be constructed from the standard algebraic proof of the
PCP theorem [BFLS91, AS98, ALM+98, BS05, Par21] with certain technical modifications (see
Appendix C). A PCP system for an NP relation R is said to be strong and canonical if for each
input x and each witness w such that R(x, w) is true, there is a canonical PCP proof Π = Π(x, w)
satisfying that

1. the verifier accepts with probability 1 if the proof is Π, and

2. for some constant α ∈ (0, 1), the verifier rejects with probability at least α · δ if the proof is
δ-far from Π.

Compared to a standard PCP system, a strong and canonical PCP ensures that if a proof oracle
is accepted, it is likely to be close to the unique canonical proof oracle.

We can now sketch why this will resolve the aforementioned issue. Since the proof oracle
of the PCP verifier in Theorem 6.2 is a Reed-Muller code word30, if we define the computation
history as the canonical proof oracle in Theorem 6.2 and plug it (as the polynomial p) into the
HSG in [SU07] (also see Theorems 3.5 and 6.1), the reconstruction protocol (in case that the HSG
fails) ensures that if Merlin commits to a polynomial gα different from p (i.e. the polynomial
encoding the canonical PCP proof), either g is noticeably far from any low-degree polynomial or
(by Schwartz-Zippel lemma) g is very far from p. In the former case, Arthur can detect it using
standard low-degree testing (see, e.g., Theorem C.4); in the latter case, the PCP verifier will reject
it with noticeable probability. Therefore, by performing these two tests, Arthur can force Merlin
to commit to the desired polynomial p, and thus make the protocol single-valued.31

Additional technical issues. It is worth noting that to implement the idea above, we need to
ensure that the (Reed-Muller encoded) proof oracle of the PCP system (see Theorem 6.2) and the
low-degree polynomial p in hitting set generator [SU07] are using the same parameters (i.e. field
size, degree, and the number of variables). This requires a careful inspection of both proofs and
several changes to them; in particular, we need to work with a Reed-Muller-based PCP with fields
of size that is exponentially larger than that of the usual setting. We provide a formal description
of our PCP system in Theorem 6.2 and a self-contained proof in Appendix C (with an overview
of all changes we made). We also provide an exposition of the hitting set generator [SU07] in
Appendix D highlighting the properties to be checked and the changes to be made.

30Indeed, the PCP proof in [BSGH+06, Par21] is not a single Reed-Muller code word but the concatenation of several
Reed-Muller code words. This is a minor technical issue and we refer readers to Appendix C for more details.

31One may suspect that a strong and canonical PCP (i.e. not necessarily Reed-Muller encoded) should suffice, as
we can either define the PCP system as the composition of it and the low-degree extension, or view the hitting set
generator as the composition of it and the low-degree extension. Unfortunately, neither of the approaches works: the
composition of a strong and canonical PCP and the low-degree extension may not necessarily be strong and canonical,
and the composition of a local hitting set generator and the low-degree extension may not necessarily be local.

16

2.5 Open Problems

An immediate open question stemming from our work is whether we can reduce the length of
the non-uniform advice from Theorem 1.1, or even remove it, to obtain a uniform exponential
circuit lower bound for AMEXP. Note that [BFT98] showed that MAE requires half-exponential-
size circuits, but it is unclear how to adapt our techniques to improve this lower bound.

Another open problem is whether we can obtain exponential lower bounds for AME =
AMTIME[2O(n)] instead of AMEXP (here we allow the sub-exponential amount of advice). The
main technical issue that prevents us from proving such a lower bound is that the reconstruc-
tion procedure for the hitting set generator in [SU07] has a quasi-polynomial overhead from
collapsing a logarithmic-round protocol to a constant-round protocol [BM88]; see Section 2 for
details.

Finally, it is interesting to understand the strength of our techniques: iterative win-win ar-
gument and critical win-win argument. Can we adapt these techniques to prove new results in
complexity theory? Is there a barrier (e.g. relativization [BGS75] or algebrization [AW09]) that
prevents us from proving (say) EXP/2nε ̸⊂ SIZE[2n/n] or AMEXP ̸⊂ SIZEAM∩coAM[2n/n] using
these techniques? Note that our proof does not relativize due to the usage of the PCP theorem,
but it may algebrize under a suitable definition.

Acknowledgement

We thank Hanlin Ren and Ryan Williams for helpful discussion.

3 Preliminaries

Notation. For any language L, we use Ln to denote L ∩ {0, 1}n. We use L(x) to denote the bit
indicating whether x ∈ L, i.e., x ∈ L if and only if L(x) = 1.

We say that a string x ∈ {0, 1}n is δ-far from a string y ∈ {0, 1}n if the relative Hamming
distance between x and y is at least δ (i.e., Pri∈[n][xi ̸= yi] ≥ δ), and a function f is δ-far from a
function g if Prx[f (x) ̸= g(x)] ≥ δ. We may identify a function f : Fm → F (or g : {0, 1}n →
{0, 1}) and its truth table tt(f) ∈ F|F|

m
(or tt(g) ∈ {0, 1}2n

).

3.1 Circuits and Oracle Circuits

Throughout this paper, we define circuits to be fan-in two Boolean circuits where each gate
can compute an arbitrary Boolean function f : {0, 1}2 → {0, 1} (see [AB09, Juk12] for formal
definitions). The size of a circuit is defined as the number of gates in the circuit.

Let L ⊆ {0, 1}∗ be a language. We define L-oracle circuits to be Boolean circuits consisting of
both fan-in two gates computing arbitrary Boolean functions f : {0, 1}2 → {0, 1} and unbounded
fan-in oracle gates deciding L. More precisely, a fan-in m L-oracle gate has n input wires and an
output wire such that given an input x ∈ {0, 1}m, it outputs L(x). An L-oracle circuit can contain
fan-in m L-oracle gates for any m.

Note that as L-oracle circuits may have oracle gates with unbounded fan-in, the size of an
L-oracle circuit is defined as the number of wires (instead of the number of gates) in the circuit.

17

3.2 Arthur-Merlin Protocols

Let L ⊆ {0, 1}∗ be a language. An Arthur-Merlin protocol for L [BM88, GS89] is a two-party
constant-round interactive proof σ(x, P, V), where a computationally unbounded prover P (called
Merlin) aims to convince a probabilistic polynomial-time verifier V (called Arthur) that x ∈ L for
a string x owned by both parties.

We say that a strategy of Merlin is the next-message function of the prover used in the protocol
σ = σ(x, P, V). The protocol is said to be sound if for every x /∈ L and every strategy of Merlin,
Arthur rejects with probability at least 2/3. It is said to be complete if for every x ∈ L, there is a
strategy of Merlin such that verifier accepts with probability at least 2/3. The soundness error
can be boosted to exponentially small by running the protocol parallelly and taking a majority
vote, and the completeness error can be boosted to 0 (see [AB09, Remark 8.15]). Note that one
can define Arthur-Merlin protocols for promise problems rather than languages accordingly.

Given a strategy τ of Merlin, we use στ(x) to denote the output of the protocol on the input x
when the prover sends messages according to τ. Note that στ(x) is a random variable depending
on the random tape of Arthur.

AM protocols with arbitrary output. We need to define Arthur-Merlin protocols with arbitrary
output, where Arthur either outputs ⊥ (i.e. rejection) or a string.

• An Arthur-Merlin protocol with non-Boolean output is said to be partially single-valued
(PSV) with error ε ≤ 1/3 if for every input, there is a string y such that the verifier outputs
⊥ or y with probability 1− ε for every strategy of Merlin.32

• For every single-valued function f : {0, 1}∗ → {0, 1}∗, an Arthur-Merlin protocol conforms
to f with error δ ≤ 1/3 if, for every input x, there is a strategy of Merlin such that Arthur
outputs f (x) with probability at least 1− δ.

• Moreover, we say an Arthur-Merlin protocol computes f (with PSV error ε and conformity
error δ) if it is PSV with error ε and conforms to f with error δ.

Similar to the Boolean output case (see [AB09, Remark 8.15]), the PSV error can be boosted to
exponentially small by parallel repetition, and the conformity error can be boosted to 0. In case
that ε = 1/3 (resp. δ = 0), we may drop the error parameter ε (resp. δ).

Non-uniform AM protocols. Note that by round reduction results (see [BM88, GS89]), we can
simulate an O(1)-round AM protocol by a two-round public-coin protocol (in which Arthur
speaks first and sends his internal randomness) with polynomial time overhead.

Let r = r(n) = poly(n) be the length of Arthur’s random string and p = p(n) be the length
of Merlin’s message. We define a non-uniform AM protocol, or an AM circuit, as a Boolean
circuit A : {0, 1}n × {0, 1}r × {0, 1}p → {0, 1} where given any input x, any random string
u ∈ {0, 1}r, and response m ∈ {0, 1}p to the message u from Merlin, Arthur accepts if and only
if A(x, u, m) = 1. We define A(x) = 1 if over a uniformly random u← {0, 1}r, with probaility at
least 2/3, A(x, u, m) = 1 for some m ∈ {0, 1}p; we define A(x) = 0 if over a uniformly random
u ← {0, 1}r, with probability at least 2/3, A(x, u, m) = 0 for every m ∈ {0, 1}p. Note that it is
possible that A(x) ̸= 0 and A(x) ̸= 1; we say that an AM circuit A is total if A(x) ∈ {0, 1} for
every input x.

32Note that here we do not impose any restriction on the string y; a trivial protocol where Arthur always rejects is
also considered to be PSV.

18

Similarly, we can define a coAM circuit as A : {0, 1}n × {0, 1}r × {0, 1}p → {0, 1}. We say
A(x) = 1 if over a uniformly random u ← {0, 1}r, with probability at least 2/3, A(x, u, m) = 1
for every m ∈ {0, 1}p; and we say A(x) = 0 if over a uniformly random u ← {0, 1}r, with
probability at least 2/3, A(x, u, m) = 0 for some m ∈ {0, 1}p. It is said to be total if A(x) ∈ {0, 1}
for every x.

3.3 The Recursion Theorem

We say that two Turing machines N0, N1 are polynomially equivalent, denoted by N0 ≡p N1, if for
every input x, b ∈ {0, 1}, and T ∈ N, if Nb(x) halts in T steps, N1−b(x) halts in poly(T) steps
and N0(x) = N1(x). Clearly, it is an equivalence relation.

Theorem 3.1. Let M(⟨N⟩, x) be a Turing machine whose first input is parsed as the encoding of a Turing
machine N. Then there is a Turing machine QM such that QM(x) ≡p M(⟨QM⟩, x).

Proof of Theorem 3.1. Let D be the following Turing machine: Given any input (⟨N⟩, x), where
⟨N⟩ is the encoding of a Turing machine N, it constructs the encoding of the Turing machine
N(⟨N⟩, ·), and simulates M(⟨N(⟨N⟩, ·)⟩, x). Let QM(x) := D(⟨D⟩, x). Notice that

M(⟨QM⟩, x) ≡p M(⟨D(⟨D⟩, ·)⟩, x) (Definition of QM)
≡p D(⟨D⟩, x) (Definition of D)
≡p QM(x). (Definition of QM)

Note that the second equivalence also relies on the correctness and efficiency of the simulation
of a Turing machine given its encoding.

Using Theorem 3.1 we can design recursive algorithms, i.e., algorithms using the encoding of
a Turing machine that is polynomially equivalent to itself. To see this, we first define M(⟨N⟩, x),
where M is the algorithm and ⟨N⟩ is supposed to be its own encoding. Then we can apply
Theorem 3.1 to obtain QM(x). Clearly, the first input of the Turing machine M(⟨QM⟩, ·) is fixed
to be the encoding of QM, which is polynomially equivalent to M(⟨QM⟩, ·).

Moreover, if the running time of M(⟨N⟩, x) is bounded by T(n) for any fixed Turing machine
N, sufficiently large n, and x ∈ {0, 1}n, the recursive algorithm we obtain will also run in time
T(n), following the definition.

3.4 Reed-Muller Code

Let q be a prime power, d < q, and r ≥ 1. An r-variate degree-d Reed-Muller code over Fq,
denoted by RMr,d,q, is the set of polynomials p : Fr

q → Fq over Fq with total degree at most d. In
particular, we define RSd,q := RM1,d,q be the Reed-Solomon code with degree d over Fq.

We will need the following standard encoding (i.e. low-degree extension) and local decoding
algorithms for Reed-Muller code (see, e.g., [AB09]).

Lemma 3.2 (Low-degree extension). Let f : {0, 1}n → {0, 1} be a function, d = nO(1), q = dO(1) be
prime power. There is a unique degree-d polynomial p : Fr

q → Fq with r = O(n/ log d) variables and a
polynomial-time computable encoding I : {0, 1}n → Fr

q such that for every x ∈ {0, 1}n, p(I(x)) = f (x).
Moreover, there is a polynomial-time algorithm such that given f as a string of length 2n, it outputs

the polynomial p as a string of length qr⌈log q⌉.

19

Lemma 3.3 (Local decoding of Reed-Muller code). There is a probabilistic polynomial-time oracle
algorithm Dec such that given any input x ∈ Fr

q and non-adaptive oracle accesses to a function f̂ : Fr
q →

Fq that is ε-close to some p ∈ RMr,d,q, where ε < (1− d/q)/4− 1/q,

Pr[Dec f̂ (x) = p(x)] ≥ 1− δ

for some δ = O(1/(εq)).

3.5 Verification of Computation

We will need an efficient verification of deterministic computation, which can be easily con-
structed from PCP theorems. For some technical reasons, we need to have a uniform verifier that
works given a time bound T encoded in binary as a part of its input, instead of only for a time
bound T(n) that is fixed in advance. Nevertheless, this is implicitly given in proofs of the PCP
theorems, see, e.g., [BSGH+06, Har04].

Theorem 3.4. Let M be a Turing machine. There is a probabilistic polynomial-time oracle algorithm VOM
such that the following holds. Let x ∈ {0, 1}n and T ≥ n be a time bound encoded in binary.

• (Completeness). If M(x) halts in T steps and accepts, then there is an oracle O : {0, 1}O(log T) →
{0, 1} such that Pr[VOM (x, T) = 1] = 1. Moreover, there is a deterministic algorithm Prf that given
(x, T) such that M(x) halts in T steps and accepts, outputs the truth table of an oracle O in time
poly(T) that makes the verifier always accept.

• (Soundness). Otherwise, for every O : {0, 1}O(log T) → {0, 1}, Pr[VOM (x, T) = 1] ≤ 1/3.

The verifier tosses O(log T) random bits and makes O(1) non-adaptive queries to the oracle O.

3.6 HSG with AM Reconstruction

Now we formally describe the hitting set generator we will need in both proofs.

Theorem 3.5 ([SU07]). Let r, d and h be parameters such that r is a power of d and h is a prime power.
Let q := h100 and m := h1/100. There is an algorithm RMV and a pair of Arthur-Merlin protocols (σc, σe)
described as follows.

• Let p ∈ RMr,h,q. RMVh,d(p) outputs a sequence S = (y1, . . . , ys) of m-bit strings of size s = qO(r)

in time qO(r), which is intended to be a hitting set for coAM circuits.

• σc takes a coAM circuit D : {0, 1}m → {0, 1} as input, and outputs33 a string α ∈ {0, 1}ℓ called
the commitment in time poly(|D|, ℓ), where ℓ = O(h10d log q + h10(r/d) log q).

• σe takes x ∈ Fr
q, the circuit D, and the commitment α ∈ {0, 1}ℓ (which is intended to be generated

by σc), and outputs34 some y ∈ Fq in time hO(d log2
d r) and O(1) rounds.

The algorithms satisfy the following properties.

33We note that the protocol σc itself is not necessarily PSV and may not conform to any function.
34Similarly, the protocol σe itself is not necessarily PSV and may not conform to any function.

20

• (Conformity). If D rejects every element from RMVh,d(p), then there is a pair of strategies (τc, τe)
of Merlin in σc and σe such that given x ∈ Fr

q,

Pr
[
στe
e (x, D, α := στc

c (D)) = p(x)
]
= 1.

Moreover, τc and τe can be simulated by deterministic polynomial-time (in the communication com-
plexity of σc and σe, respectively) machines given oracle accesses to p.35

• (Resiliency). If D rejects at most a 1/3-fraction of its inputs, then for any commitment α ∈ {0, 1}ℓ,
there is a unique gα ∈ Fr

q → Fq such that for every x ∈ Fr
q and every strategy τe of Merlin,

Pr
[
στe
e (x, D, α) ∈ {gα(x),⊥}

]
≥ 1− o(1).

The AM protocols (σc, σe) is called a commit-and-evaluate protocol, where Merlin commits to a
function p ∈ RMr,h,q (i.e., a string encoded by Reed-Muller code) in σc, and Arthur could evaluate
the function (i.e., locally open the string that Merlin commited to) using σe given the commitment
of Merlin in σc. Theorem 3.5 ensures that if the hitting set generator using a polynomial p ∈
RMr,h,q fails to hit a dense property D, then the following conditions hold.

• Merlin has a strategy to commit to p so that for every x, Arthur accepts and outputs p(x)
in the evaluation phase on input x.

• Once making a commitment, any attempt of Merlin to deviate from the commited polyno-
mial in the evaluation phase will be detected by Arthur for any input x.

Note that while the hitting set generator in Theorem 3.5 only works with low-degree poly-
nomials, it can be easily adapted to an arbitrary Boolean function via low-degree extension (see
Lemma 3.2) and local decoding of Reed-Muller code (see Lemma 3.3). We will explain the details
in the subsequent sub-sections.

4 Circuit Lower Bounds from Theorem 1.3

In this section, we prove our circuit lower bounds (see Theorem 1.1 and Theorem 1.2) from the
main theorem (see Theorem 1.3). Recall that the main theorem provides a single-valued Arthur-
Merlin algorithm for hitting dense coAM properties.

Theorem 1.3 (Restated). Let k > 1 be an arbitrary constant and P ∈ coAM be a language such that
|Pn| ≥ 2n−1 for every n ∈ N. There is a sequence of strings {xn ∈ {0, 1}n}n∈N and an Arthur-Merlin
algorithm A that runs in time 2logO(k) n and takes 2log1/k n bits of advice {αn}n∈N such that the following
properties hold:

• (Conformity). For every n ∈N, there is a strategy of Merlin such that Pr[A(1n, αn) = xn] = 1.

• (Resiliency). For every n ∈ N and any string ζn ∈ {0, 1}2log1/k n
, there is a string yn ∈ {0, 1}n

such that for any strategy of Merlin, Pr[A(1n, ζn) ∈ {yn,⊥}] ≥ 2/3.

• (Hitting). For infinitely many n ∈N, xn ∈ P.
35Recall that the notation στ means the (probabilistic) output of the protocol when the prover sends messages

according to the strategy τ.

21

Proof of Theorem 1.1. We first prove the circuit lower bound against deterministic circuits. This
essentially follows from the folkore view of circuit lower bounds as algorithms finding hard truth
tables (see, e.g., [Kor22, CHR24]). We provide a self-contained proof for completeness.

Theorem 1.1 (Restated). (AMEXP∩ coAMEXP)/2nε ̸⊂ SIZE[2n/n] for any constant ε ∈ (0, 1).

Proof. Let kε := 2⌈ε−1⌉. We define Pcc be the language as follows:

• For any string z ∈ {0, 1}N , let n = ⌊log N⌋, z ∈ Pcc if and only if there is no Boolean circuit
C : {0, 1}n → {0, 1} of size 2n/n such that the length-2n prefix of z is the truth table of C.

Clearly, Pcc ∈ coNP ⊆ coAM. Moreover, by a counting argument (see [Sha49, Lup58, FM05]), we
know that |Pcc

N | ≥ 2N−1 for every N ∈N.
Let A be the Arthur-Merlin algorithm and {xN ∈ {0, 1}N}N∈N be the strings in Theorem 1.3

for k := kε and P := Pcc. By the hitting property, we know that there is an infinite sequence
N⃗ = {N1, N2, . . . } of input lengths such that xN ∈ P for any N ∈ N⃗.

We define the language Lcc as follows. Let n ∈N.

1. If there is an N ∈ N⃗ such that 2n ≤ N < 2n+1, fix the smallest such N ∈ N⃗ and for every
z ∈ {0, 1}n, z ∈ Lcc if and only if the z-th bit36 of xN is 1. In other words, xN is the truth
table of Lcc on input length n.

2. Otherwise, Ln := ∅.

We will show that Lcc ∈ (AMEXP∩ coAMEXP)/2nε \ SIZE[2n/n].

Claim 4.1. Lcc ∈ (AMEXP∩ coAMEXP)/2nε .

Proof. We first describe the advice. For every n ∈N, we consider two cases:

1. If there is an N ∈ N⃗ such that 2n ≤ N < 2n+1, fix the smallest such N ∈ N⃗, the advice βn
consists of a bit b := 1, N (encoded in O(log N) = O(n) bits), and the advice αN for the
algorithm A in Theorem 1.3 on input length N. The total advice complexity is at most

1 + O(n) + 2log1/k N = O(n) + 2(n+1)1/k ≤ 2nε
.

2. Otherwise, the advice βn consists of a bit b := 0 and a padding string 0ℓ, where ℓ = 2nε − 1.

The AMEXP algorithm for Lcc (resp. Lcc) with advice {βn}n∈N works as follows. Let n ∈N be
an input length and z ∈ {0, 1}n be an input. The algorithm first parses the advice as (b, N, αN).
Arthur immediately rejects (resp. accepts) if b = 0. Otherwise, Arthur and Merlin simulate
A(1N , αN) and generate the output xN ∈ {0, 1}N . Arthur accepts if and only if the z-th bit (when
we identify bits of length n and numbers in [2n]) of xN is 1 (resp. is 0).

We only analyze the algorithm for Lcc; the analysis of the algorithm for Lcc is similar. The
algorithm is clearly sound and complete on input length n in Item 2 we discussed above. There-
fore, it remains to consider the case that there is an N ∈ N⃗ such that 2n ≤ N < 2n+1. Fix the
smallest such N ∈ N⃗.

• (Completeness). Suppose that z ∈ Lcc, then the z-th bit of xN is 1. By the conformity of A
in Theorem 1.3, there is a strategy of Merlin such that given (1N , αN), the protocol outputs
xN with probability 1. Therefore, as long as Merlin simulates the strategy, A(1N , αN) = xN
and Arthur will accept z.

36Here, we identify a string of length n with an index in [2n].

22

• (Soundness). Suppose that z /∈ Lcc, then the z-th bit of xN is 0. It remains to prove that for
any strategy τ of Merlin in our AMEXP algorithm given the input z, Arthur will reject with
probability at least 2/3.

Let E be the event that the simulation of Aτ(1N , αN) outputs xN or ⊥. By the definition of
Lcc, we know that

Pr[Arthur rejects | E] = 1

as the z-th bit of xN is 0. By the resiliency of A in Theorem 1.3, we also know that Pr[¬E] ≤
1/3. Therefore, in our algorithm, Arthur will accept z with probability at most

Pr[Arthur accepts] ≤ Pr[Arthur accepts | E] · Pr[E] + Pr[¬E] ≤ 1/3.

Claim 4.2. Lcc /∈ SIZE[2n/n].

Proof. It follows directly from the hitting property of A in Theorem 1.3 and the definition of the
language that Lcc requires maximum circuit complexity on input lengths in

n⃗ := {n | ∃N ∈ N⃗, 2n ≤ N < 2n+1}.

This completes the proof.

Proof of Theorem 1.2. Next, we generalize the lower bound to circuits with an AM ∩ coAM
oracle (see Section 3.1 for the definition of oracle circuits). Since the proof is essentially the same
as Theorem 1.1, we will only sketch the proof.

Theorem 1.2 (Restated). For any language L ∈ AM∩ coAM, (AMEXP∩ coAMEXP)/2nε ̸⊂ SIZEL[2n/n].

We will need the following lemma that is similar to the standard counting argument for
circuits without oracle gates [Sha49, Lup58, FM05]. The proof of the lemma is similar to the
proof in [FM05]; for completeness, we provide a proof sketch in Appendix A.

Lemma 4.3. There are at most 2s(O(1)+⌈log(n+s)⌉) different L-oracle circuits of size s.

Proof Sketch of Theorem 1.2. Fix L ∈ AM ∩ coAM. The only change from the proof of Theorem 1.1
is that we will define the property Pcc as the truth tables hard against L-oracle circuits. More
formally, we will define Pcc as the following language:

• For any string z ∈ {0, 1}N , let n = ⌊log N⌋, z ∈ Pcc if and only if there is no L-oracle circuit
CL : {0, 1}n → {0, 1} of size 2n/n such that the length-2n prefix of z is the truth table of C.

It remains to check that Pcc ∈ coAM and |Pcc
N | ≥ 2N−1 for every N ∈ N. Note that |Pcc

N | ≥ 2N−1

directly follows from Lemma 4.3, as the number of L-oracle circuits of size s := 2n/n is at most

2s(O(1)+⌈log(n+s)⌉) ≤ 2(2
n/n)·(O(1)+n−Ω(log n)) ≤ 22n−1 ≤ 2N−1.

To see that Pcc ∈ coAM, one need to construct a polynomial-time Arthur-Merlin protocol for
Pcc, as follows. Let x ∈ {0, 1}N be any input and n = ⌊log N⌋.

• Merlin sends an L-oracle circuit C : {0, 1}n → {0, 1} of size at most 2n/n as well as a list

Lu := ⟨(qu
1 , bu

1), (q
u
2 , bu

2), . . . , (qu
ℓ , bu

ℓ)⟩

for each u ∈ {0, 1}n, where ℓ ≤ 2n/n is the number of oracle gates in C. The length of qu
i is

the fan-in of the (topological) i-th oracle gate in C.

23

• Arthur first verifies that for each u ∈ {0, 1}n and j ∈ [ℓ], if on the input u, the (topological)
first j− 1 oracle gates have inputs qu

1 , . . . , qu
j−1 and outputs bu

1 , . . . , bu
j−1, then the j-th oracle

gate has input qu
j .

• Recall that one can reduce the error probability of the AM protocol for L to exponentially
small via parallel repetition [BM88]. Arthur and Merlin simulate the protocol for L to verify
that for every u ∈ {0, 1}n and j ∈ [ℓ], L(qu

j) = bu
j . Note that they can simulate all ℓ queries

concurrently so that it remains a constant-round protocol.

• Arthur accepts if none of the checks above fails and C(u) = xu for every u ∈ {0, 1}n when
the queries and answers to the oracle gate are specified by the list Lu as we discussed above.

The soundness and completeness of the protocol are straightforward.

5 Hitting Dense coAM Properties via Iterative Win-win

In this section, we prove the main theorem following the iterative win-win paradigm.
We will need a uniform hardness-vs-randomness for AM using the HSG in Theorem 3.5.

Similar results have been obtained in [SU07] using an instance-checker for E-complete (or EXP-
complete) languages. For the purpose of performing an iterative win-win argument, we will
need to achieve a smooth tradeoff between hardness and randomness, in the sense that the HSG
and the reconstruction Arthur-Merlin protocol not only work for a fixed time bound T(n), but
also work when both algorithms are given a time bound T in binary. Indeed, this is implicit in a
recent construction due to van Melkebeek and Mocelin Sdroievski [vS23].

Theorem 5.1 (Implicit in [vS23]). There is an algorithm HSG and an Arthur-Merlin protocol Rec such
that the following holds. Let n, m, T ∈N be such that n ≤ m ≤ T, M be a Turing machine in a standard
encoding such that |M| ≤ log log T, α be a string of length at most m, and D : {0, 1}m → {0, 1} be
a poly(m)-size coAM circuit that rejects at most a 1/3-fraction of its inputs. Then HSG(n, m, T, M, α)
runs in time poly(T) and outputs a multiset H ⊆ {0, 1}m of size poly(T) such that one of the following
two conditions holds.

• (Hit). There exists a z ∈ H such that D(z) = 1.

• (Reconstruct). The Arthur-Merlin protocol Rec(n, m, T, M, α, D, x) runs in mO((log log T)2) time
and has O(1) rounds such that the following holds:

– (Completeness). If M(α) halts in time T and outputs x ∈ {0, 1}n, there is a strategy of the
prover such that the verifier accepts with probability 1.

– (Soundness). Otherwise, for any strategy of the prover, the verifier rejects with probability at
least 1/2.

For completeness, we provide a self-contained proof in Appendix B.

5.1 Proof of Theorem 1.3

Now we are ready to formally prove Theorem 1.3.

24

Theorem 1.3 (Restated). Let k > 1 be an arbitrary constant and P ∈ coAM be a language such that
|Pn| ≥ 2n−1 for every n ∈ N. There is a sequence of strings {xn ∈ {0, 1}n}n∈N and an Arthur-Merlin
algorithm A that runs in time 2logO(k) n and takes 2log1/k n bits of advice {αn}n∈N such that the following
properties hold:

• (Conformity). For every n ∈N, there is a strategy of Merlin such that Pr[A(1n, αn) = xn] = 1.

• (Resiliency). For every n ∈ N and any string ζn ∈ {0, 1}2log1/k n
, there is a string yn ∈ {0, 1}n

such that for any strategy of Merlin, Pr[A(1n, ζn) ∈ {yn,⊥}] ≥ 2/3.

• (Hitting). For infinitely many n ∈N, xn ∈ P.

Proof of Theorem 1.3. Let n0 be sufficiently large. We define n(0)
0 := n0 and for every t ≥ 1,

n(t)
0 := 22n(t−1)

0 .

Let β = O(k) be a large constant to be determined later. For each t ≥ 0, we define the sequence
n⃗(t) = (n(t)

1 , n(t)
2 , . . . , n(t)

ℓ) by

n(t)
i+1 := 2logβ(n(t)

i),

where ℓ = ℓ(n(t)
0) = ⌈log log(n(t)

0)⌉. Notice that

n(t)
ℓ = 2logβℓ (n(t)

0) = 22polylog(n(t)0)

≪ n(t+1)
0

for sufficiently large n0, and therefore n⃗(0), n⃗(1), n⃗(2), . . . are disjoint sequences of increasing num-
bers. We will describe the behavior of our algorithm on input lengths n⃗(t)

ℓ , and prove that for

every t ∈ N, there is an i ≤ ℓ(n(t)
0) such that our algorithm correctly hits a canonical string of

length n(t)
i . Since our algorithm are uniform over all t ∈ N, we will fix a t ∈ N and omit the

superscript (t) in the rest of the proof if there is no ambiguity.

Algorithm BFi and HSG Hi. For i ∈ {0, 1, . . . , ℓ}, we define an algorithm BFi that takes an
advice αi of length at most c · i · nc

0 for some fixed constant c, a time bound Ti, and a hitting
set Hi constructed from the computation history of BFi(1ni)αi . Note that although we define
BF0, . . . ,BFℓ as different algorithms for simplicity, it will be guaranteed that it can be imple-
mented by a single Turing machine; in other words, there is a Turing machine BF such that for
every i ∈ [ℓ] and any advice αi, BF(1ni , αi) and BFi(1ni)αi output the same answer in the same
time complexity up to a polynomial overhead.

• BF0(1n0) enumerates all possible strings of length n0 and outputs the lexicographic first
string x ∈ Pn0 . Since P ∈ coAM ⊆ EXP, BF0(1n0) runs in time 2nc′

0 for a fixed constant c′.

• For every i ∈ {0, 1, . . . , ℓ}, we define Hi ⊆ {0, 1}ni+1 be the hitting set generator constructed
from the computation history of BFi(1ni)αi . Concretely, let BF be the uniform Turing ma-
chine as mentioned above, Hi is defined as the multiset generated by

HSG(ni, ni+1, Ti,BF, (1ni , αi)), (1)

where HSG is the algorithm in Theorem 5.1. (Note that Theorem 5.1 requires the description
length of the Turing machine |BF| ≤ log log Ti. Indeed, since BF will be a single Turing
machine, we will have |BF| = O(1)≪ log log Ti.)

25

• For every i ∈ [ℓ], let ji ∈ [|Hi−1|] be the smallest index such that the ji-th string in Hi−1 has
the property Pni , and ji can be fixed arbitrarily if there is no such index, e.g., ji := 1. Let αi :=
(j1, j2, . . . , ji) be the advice to BFi. The algorithm BFi(1ni)αi constructs Hi−1 and outputs the
ji-th string in Hi−1. Note that in the definition of algorithm BFi(1ni)αi (i.e. BF(1ni , αi) we
need to know the description of BF in order to evaluate HSG in Equation (1); this can be
done using a standard trick in the proof of the recursion theorem, see our remark below
for (∇).

• For every i ∈ {0, 1, . . . , ℓ}, we define Ti := 2nc′
0 ·ci+1

+ nc
i , where c is a sufficiently large

constant to be determined later. For every i ∈ [ℓ], the advice complexity of BFi is

i

∑
j=1

O
(
log |Hj|

)
=

i−1

∑
j=0

O(log Tj) ≤ O(log ni) + O(nc′
0 · ci+2) ≤ nO(1)

0 . (2)

Remark on (∇). Now we formally describe how to define the Turing machine BF that uses
its own code. We first define a Turing machine M(⟨N⟩, (1n, α)) whose first input is the code of a
Turing machine N. It simulates the algorithm BF(1n, α) described above in the following sense:
whenever we need the code of BF, we plugin ⟨N⟩. By the recursion theorem (see Theorem 3.1),
there is a Turing machine QM such that for every input (1n, α), QM(1n, α) = M(⟨QM⟩, (1n, α)),
and moreover, if M(⟨QM⟩, (1n, α)) halts in T steps, QM(1n, α) halts in dTd steps for some absolute
constant d. We define BF(1n, α) = QM(1n, α).

Time Complexity. Recall that BFi(1ni) := BF(1ni , αi), and we want to ensure BFi(1ni)αi runs
in time Ti, where

Ti := 2nc′
0 ·ci+1

+ nc
i .

Note that this holds for i = 0: M(⟨BF⟩, 1n0) is simply the brute-force algorithm running in
time 2nc′

0 which ignores the code of BF, and by Theorem 3.1 we know that BF(1n0) runs in time
d2nc′

0 d ≤ T0 if c is chosen to be sufficiently large.
Assume that BFi(1ni , αi) runs in time Ti. Then by the construction of M we know that

M(⟨BF⟩, (1ni+1 , αi+1)) runs in TO(1)
i time, where the polynomial overhead is from Theorem 5.1.

Therefore, BF(1ni+1 , αi+1) runs in time dTO(d)
i ≤ Ti+1 for a sufficient large constant c.

Note that since ℓ = ⌈log log n0⌉, BFℓ(1nℓ)αℓ runs in time

Tℓ = 2nc′
0 ·cℓ+1

+ nc
ℓ.

Recall that log(ni+1) = logβ(ni) and thus (for sufficiently large β)

nℓ = 2logβℓ n0 ≥ 22log2 n0 ≥ 2nc
0·cℓ+1

,

we can see that Tℓ ≤ nO(1)
ℓ . Therefore we will win (for this fixed t) if Hℓ−1 contains an element

with property Pnℓ
.

Algorithm Reci. Now we consider the case that BFℓ(1nℓ)αℓ /∈ Pnℓ
. Note that BF0(1n0) ∈ Pn0

as it is the brute-force algorithm. Therefore, there is an i < ℓ such that BFi(1ni)αi ∈ Pni but

26

BF0(1ni+1)αi+1 /∈ Pni+1 , and in such case, Hi ⊆ {0, 1}ni+1 must fail to hit any string in Pni+1 . Recall
that

Hi := HSG(ni, ni+1, Ti,BF, (1ni , αi))

where HSG is the algorithm in Theorem 5.1. We then know by Theorem 5.1 that there is an
Arthur-Merlin protocol such that given (ni, ni+1, Ti,BF, (1ni , αi), P, x), Arthur accepts honest Mer-
lin if BF(1ni+1 , αi) halts in Ti steps and outputs x, and rejects any dishonest Merlin with probabil-
ity at least 2/3 otherwise. (Note that BF(1ni+1 , (1ni , αi)) indeed runs in time Ti, as we discussed
above.)

We define Rec(1ni , αi) be the following Arthur-Merlin protocol: Merlin sends x ∈ {0, 1}ni and
they simulates the protocol above on (ni, ni+1, Ti,BF, (1ni , αi), P, x); Arthur rejects if Arthur (in
the protocol above) rejects, and outputs x if Arthur (in the protocol above) accepts. Recall that
Rec in Theorem 5.1 runs in time

nO((log log Ti)
2)

i+1 ≤ 2O(logβ ni(log log Ti)
2) ≤ 2logO(k) ni

and has O(1) rounds. The advice complexity of Reci is nO(1)
0 (see Equation (2)), which is bounded

by

nO(1)
i−1 ≤ 2logO(1/β) ni ≤ 2log1/(10k) ni .

for sufficiently large β = O(k).

Iterative Win-Win. Now we describe our final algorithm. Fix any t ≥ 0, we define bi = b(t)i ∈
{0, 1} as

bi :=


1 i = ℓ and BFℓ(1ni)αi ∈ Pnℓ

,
1 i < ℓ and Hi fails to hit Pni+1 ,
0 otherwise.

Our algorithm will take an advice (αi, bi) on input length ni. The canonical output of our algo-
rithm xn is defined as

xn :=


0n n ̸= n(t)

i for all (t, i)
0n n = n(t)

i and b(t)i = 0

BFi(1n(t)
i)

α
(t)
i

n = n(t)
i and b(t)i = 1

The algorithm σP is describe in Algorithm 1.
Note that we will choose parameter β = O(k) to be sufficiently large. Since both BFℓ and

Reci run in time at most 2logO(k) n and have advice complexity at most 2log1/(10k) n, we know that the
protocol σP (see Algorithm 1) runs in time 2logO(k) n and have advice complexity at most 2log1/k n.
It remains to check the conformity, resiliency, and hitting properties of the protocol.

Claim 5.2 (Conformity). For every input length n, there is a strategy for Merlin such that σP(1n) = xn
with probability 1.

Proof. If n ̸= n(t)
i for every t ≥ 0 and i ≤ ℓ(n(t)

0), or n = n(t)
i but b(t)i = 0, Arthur will output

0n = xn without any interaction with Merlin. Now fix any t ≥ 0, consider the case that n = n(t)
i

and b(t)i = 1. If i = ℓ, Arthur will output BF(1ni)α = xn. Otherwise, Arthur and Merlin will
simulate Rec(1ni , αi). By the definition of bi, we know that Hi fails to hit the property P on input
length ni+1, and therefore by Theorem 5.1, there is a strategy of Merlin in Rec(1ni , α) such that
Arthur accepts and outputs BFi(1ni)αi = xn with probability 1.

27

Algorithm 1: Arthur-Merlin protocol σP for Theorem 1.3

1 Input 1n and an advice (αi, bi) of length at most 2log1/k n as discussed above
2 Output ⊥ or x ∈ {0, 1}n

3 If n ̸= n(t)
i for any t ≥ 0 and i ≤ ℓ(n(t)

0), output 0n and halt;
4 If bi = 0, output 0n and halt;

5 Let t ≥ 0, i ≤ ℓ(n(t)
0) such that n = n(t)

i . (We ignore the superscript (t) from now on.)
6 if i = ℓ then
7 Simulate BF(1nℓ , αℓ);
8 else
9 Simulate Rec(1ni , αi);

Claim 5.3 (Resiliency). For every input length n, and any advice ζn, there is a string yn ∈ {0, 1}n such
that for any strategy of Merlin, Pr[σP(1n, ζn) ∈ {yn,⊥}] ≥ 3/5.

Proof. Fix any n and ζ = (α̂, b̂). If b̂ = 0 or n ̸= n(t)
i for every t ≥ 0 and i ≤ ℓ(n(t)

0), Arthur will
output 0n without any interaction with Merlin, and thus we can define yn := 0n. Now fix any
t ≥ 0 and consider the case that n = n(t)

i and b̂ = 1. If i = ℓ, Arthur will simulate BF(1n, α̂)
without any interaction with Merlin, and thus we can define yn := BF(1n, α̂). Otherwise, Arthur
and Merlin will simulate Rec(1n, α̂). By Theorem 5.1, we know that for any strategy of Merlin,
Rec(1n, α̂) will output either ⊥ or BF(1n, α̂) with probability at least 3/5, and therefore we can
define yn := BF(1n, α̂).

Claim 5.4 (Hitting). For every t ≥ 0, there is an i ≤ ℓ(n(t)
0) such that x

n(t)
i
∈ P.

Proof. Fix any t ≥ 0. If BFℓ(1nℓ)αℓ ∈ P, we know that σP(1nℓ , (αℓ, b)) =: xni ∈ P. Otherwise, since
BF0(1n0) ∈ P, there must be an i < ℓ such that BFi(1ni)αi ∈ P but BFi+1(1ni+1)αi /∈ P. By the
definition of αi we know that Hi must fail to hit the property P on input length ni+1. In that case,
we will have BFi(1ni)αi := xni ∈ P.

Note that one can reduce the resiliency error (see Claim 5.3) to 1/3 by repetition. This com-
pletes the proof.

6 Hitting Dense coAM Properties via Critical Win-win

In this section, we provide an alternative proof of the main theorem using a novel critical win-win
argument. We will first introduce two technical ingredients, namely a local hitting set generator
implicit in [SU07] and a strong PCP verifier from Reed-Muller Code, in Section 6.1 and Sec-
tion 6.2. Then we will explain critical win-win argument and prove Theorem 1.3 in Section 6.3.

6.1 Local Hitting Set Generator

A key observation is that the RMV hitting set generator (see Section 3.6) is local, in the sense that
there is an efficient oracle algorithm that given an index i, outputs the i-th string in the HSG with
oracle accesses to the Reed-Muller encoded function f .

28

Theorem 6.1 (Local HSG with arbitrary field size, implicit in [SU07]). Let r, d and h be parameters
such that r is a power of d and h is a prime power. Suppose d = O(1) and h = poly(r). Let q be a prime
power with h100 ≤ q ≤ 2hO(1)

and h be a parameter with h1/100 ≤ m ≤ q1/100. There is an algorithm
RMV and a pair of Arthur-Merlin protocols (σc, σe) described as follows.

• (Locality). Let p ∈ RMr,h,q. There is an oracle algorithm RMVh,d that takes a seed z ∈ {0, 1}O(r log q)

and p as oracle, outputs a string in {0, 1}m in time poly(m). The collection of all RMV
p
h,d(z) is

intended to be a hitting set for coAM circuits.

• σc takes a coAM circuit D : {0, 1}m → {0, 1} as input, and outputs a string α ∈ {0, 1}ℓ called the
commitment in time poly(|D|, ℓ), where ℓ = poly(m).

• σe takes x ∈ Fr
q, the circuit D, and the commitment α ∈ {0, 1}ℓ (which is intended to be generated

by σc), and outputs some y ∈ Fq in time mO(d log2
d r) and O(1) rounds.

The algorithms satisfy the following properties.

• (Conformity). If D rejects every element from RMVh,d(p), then there is a pair of strategies (τc, τe)
of Merlin in σc and σe such that given x ∈ Fr

q,

Pr
[
στe
e (x, D, α := στc

c (D)) = p(x)
]
= 1.

Moreover, τc and τe can be simulated by deterministic polynomial-time (in the communication com-
plexity of σc and σe, respectively) machines given oracle accesses to p.37

• (Resiliency). If D rejects at most a 1/3-fraction of its inputs, then for any commitment α ∈ {0, 1}ℓ,
there is a unique gα ∈ Fr

q → Fq such that for every x ∈ Fr
q and every strategy τe of Merlin,

Pr
[
στe
e (x, D, α) ∈ {gα(x),⊥}

]
≥ 1− o(1).

The theorem can be obtained from making a few straightforward modifications on the con-
struction from [SU07], we include a proof sketch in Appendix D.

6.2 Strong PCP from Reed-Muller Code

Instead of using the standard PCP system (see Theorem 3.4) in the iterative win-win argument,
we will need the a proof system with additional properties that can be composed with the local
hitting set generator.

Theorem 6.2. There is a constant α ∈ (0, 1) such that for any Turing machine M, there is a constant
c ≥ 1 and a probabilistic polynomial-time oracle verifier VOM satisfying the following. Let x ∈ {0, 1}n,
T ≥ n be a time bound encoded in binary, r, h ≥ 1 and q be a power of a prime p = O(1), such that
r = Θ(log T/ log log T), h ≥ nc · Tc/r, hc ≤ q ≤ T.

• Given input (x, T, r, h, q) to the verifier VOM , the proof oracle O is supposed to be a sequence of poly-
nomials f1, f2, . . . , f6r+8 ∈ RM3r+3,h,q. The verifier tosses O((r + h) log q) random coins, generates
k = O(rh) non-adaptive queries (i1, x1), (i2, x2), . . . , (ik, xk) ∈ [6r + 8] × F3r+3

q , and decides in
poly(r, h, log q) time whether to accept the proof given answers fi1(x1), fi2(x2), . . . , fik(xk) ∈ Fq.

37Recall that the notation στ means the (probabilistic) output of the protocol when the prover sends messages
according to the strategy τ.

29

• (Completeness). If M(x) halts in T steps and accepts, there is a unique oracle O∗ such that
Pr[VO

∗
M (x, T, r, h, q) = 1] = 1. We call this oracle O∗ = (f ∗1 , f ∗2 , . . . , f ∗6r+8) the canonical proof

corresponding to the input (x, T, r, h, q).

• (Soundness). If M(x) does not halt in T steps, or M(x) rejects, then for every oracle O =
(f1, f2, . . . , f6r+8), Pr[VOM (x, T, r, h, q) = 1] ≤ 1− α.

• (Strong soundness). If M(x) halts in T steps and accepts, then for every oracleO = (f1, f2, . . . , f6r+8),
if for any constant δ ∈ (0, 1), fi is δ-far from the i-th polynomial f ∗i in the canonical proof for some
i ∈ [6r + 8], then

Pr[VOM (x, T, r, h, q) = 1] ≤ 1− α · δ,

where α ∈ (0, 1) is a universal constant.

The proof system is implicit in the standard algebraic proof of the PCP theorem (see, e.g.,
[BSGH+06] and [Par21] for the strong soundness) with some minor technical modification. For
completeness, we provide a self-contained proof of the theorem as well as a summary of the
changes we need to make in Appendix C.

6.3 Pseudodeterministic Construction with Local HSG

Theorem 1.3 (Restated). Let k > 1 be an arbitrary constant and P ∈ coAM be a language such that
|Pn| ≥ 2n−1 for every n ∈ N. There is a sequence of strings {xn ∈ {0, 1}n}n∈N and an Arthur-Merlin
algorithm A that runs in time 2logO(k) n and takes 2log1/k n bits of advice {αn}n∈N such that the following
properties hold:

• (Conformity). For every n ∈N, there is a strategy of Merlin such that Pr[A(1n, αn) = xn] = 1.

• (Resiliency). For every n ∈ N and any string ζn ∈ {0, 1}2log1/k n
, there is a string yn ∈ {0, 1}n

such that for any strategy of Merlin, Pr[A(1n, ζn) ∈ {yn,⊥}] ≥ 2/3.

• (Hitting). For infinitely many n ∈N, xn ∈ P.

Proof. The proof starts by constructing a hitting set Hn,m for each pair of parameters (n, m) with
n ≤ m:

• Let the Turing machine BF be the brute-force algorithm to hit the property P: On any input
length n, BF(1n) enumerates all the possible strings x of length n, checks whether x ∈ P in
exponential time (as P ∈ coAM ⊆ EXP) and outputs the lexicographic first string in P. The
running time of BF(1n) is bounded by T(n) := 2nO(1)

.

• Let the Turing machine BFdec be the decision version of BF: On any input (1n, w), BFdec(1n, w)
checks whether w is the output of BF(1n).

• Let r, h be parameters with r := Θ(log T(n)/ log log T(n)) and h := nc · T(n)c/r (where
c is the constant defined in Theorem 6.2), and let q := 2100nβ

where β is a constant to
be determined in Lemma 6.3. It’s easy to check both r and h are polynomials in n.
By Theorem 6.2, the Turing machine BFdec has a strong PCP corresponding to the input
(1n,BF(1n)) and parameters (T(n), r, h, q). Let O∗ = (f ∗1 , . . . , f ∗6r+8) be the canonical proof,
where f ∗i ∈ RM3r+3,h,q for each i.

30

• Let d > 0 be a constant. For each f ∗i ∈ RM3r+3,h,q, by Theorem 6.1, RMV
f ∗i
h,d,m determines a

multi-set Si of m-bit strings, where each element is indexed by an O(r log q)-bit seed.

• The hitting set Hn,m is defined as the union of all the sets Si. Each element of Hn,m (suppose
it comes from Si) has a unique index consisting of the encoding of i and the index of this
element in Si. By Theorem 6.1, assuming oracle access to O∗, we can compute Hn,m(s), the
element in Hn,m indexed by seed s, within time poly(m), as long as m ≤ q1/100.

With the RMV reconstruction protocol in Theorem 6.1, there is an Arthur-Merlin protocol that
computes any f ∗i (x) on any input x efficiently in case that the hitting set generator fails:

Lemma 6.3. For any constant c > 0, there is an Arthur-Merlin protocol σeval, such that for any n ≤ m,
i ≤ 6r + 8 and x ∈ Fr

q (where q and r are defined as before), σeval(n, m, i, x) computes f ∗i (x) with PSV
error m−c. The running time of σeval(n, m, i, x) is either

• mO(log n) when Hn,m fails to hit P, or

• mO(1) · 2nβ
when Hn,m hits P. Here β > 1 is a constant that only depends on P.

There is also an Arthur Merlin protocol σbf such that σbf(n, m) computes BF(1n) with the same running
time and PSV error as above.

The second bullet of Lemma 6.3 is relatively easy as Merlin can send the entire description of
polynomials (f ∗1 , . . . , f ∗6r+8) to Arthur. The intuition of the first bullet of Lemma 6.3 is that when
Hn,m fails to hit P, one can run RMV reconstruction protocol together with the PCP verifier of
BFdec(1n,BF(1n)) to compute both the oracle O∗ and the output BF(1n). We defer the proof of
Lemma 6.3 to the end of this subsection and proceed with the proof of Theorem 1.3 first.

For any n, m, we say (n, m) forms a critical pair38, if m is the largest integer in
[
n, 2nβ

]
(where

β is the constant in Lemma 6.3), such that Hn,m hits P (or m = n and Hn,m′ fails to hits Pm′ for

any m′ ∈
[
n, 2nβ

]
). We will consider the following two different cases based on the distributions

of different types of critical pairs:

• Case 1: Easy reconstruction. If there are infinite many critical pairs (n, m) such that m ≤
2logk n, we can run the reconstruction σbf(n, m + 1) in Lemma 6.3 to compute BF(1n) within
time mO(log n) = 2polylog(n).

• Case 2: Critical Hitting. Otherwise, all but finite many critical pairs (n, m) satisfy m ≥
2logk n. For each such critical pair, either Hn,m+1 fails to hit P or m = 2nβ

, and we can
use σeval(n, m + 1, i, x) in Lemma 6.3 to compute the oracle O∗ at any f ∗i (x) in mO(logn) =

2polylog(m) time in both cases. Then, using the facts that Hn,m hits P and Hn,m is local, we
can compute an element of Hn,m ∩ P also in 2polylog(m) time.

Below, we exhibit our protocols for each case separately:

38Our definition of critical pair here is slightly different from the definition in Section 6.3 to minimize the redun-
dancy in the formal proof. The definition here allows us to unify Case 2 (“Easy Hitting”) and Case 3 (“Critical
Hitting”) in Section 2.4.

31

Case 1: Easy reconstruction. Suppose that there are infinitely many critical pairs (n, m) such
that m ≤ 2logk n. We define the following Arthur-Merlin protocol σrec which takes inputs of form
1n with (logk n + 1) bits of advice:

• Step 1: Making pairs. On an input 1n, Arthur reads the advice to get an integer m̃ ∈
[1, 2logk n + 1] which is supposed to be the integer m that forms a critical pair with n. (We
use m̃ = 2logk n + 1 to denote the case m > 2logk n.) Arthur halts and outputs 0n immediately
if m̃ = 2logk n + 1.

• Step 2: Reconstruction. Arthur runs the reconstruction protocol σbf(n, m̃+ 1) in Lemma 6.3
for m̃Cbf log n time with the help of Merlin to compute BF(1n), where Cbf > 0 is the constant
in Lemma 6.3 such that σbf(n, m̃ + 1) runs in m̃Cbf log n time if Hn,m̃+1 fails hit P. (Arthur will
reject immediately if the protocol runs for m̃Cbf log n time without termination.)

• Canonical output: The canonical output xn ∈ {0, 1}n on the input length n is defined as the
lexicographic first n-bit string with property P (i.e. the output of BF(1n)) when m ≤ 2logk n,
or 0n when m > 2logk n. It is clear that xn hits P for infinitely many n by the assumption
that there are infinitely many critical pairs (n, m) such that m ≤ 2logk n and the definition of
BF(1n).

Claim 6.4 (Efficiency). For every input length n, σrec(1n) takes (logk n + 1) bits of advice and runs in
2logO(k) n time.

Proof. The running time is dominated by the reconstruction step, which takes at most m̃Cbf log n =

2logO(k) n time. Moreover, the only advice in σrec appears in the first step where Arthur use advice
to encode the integer m̃ ∈ [1, 2logk n + 1], which takes (logk n + 1) bits.

Claim 6.5 (Conformity). For every input length n, if σrec is given the desired advice as we discussed
above, there is a strategy for Merlin such that σrec(1n) outputs xn with probability 1.

Proof. Assume the advice is correct (m̃ = m), with m̃ ≤ 2logk n (otherwise Arthur will halt and
output 0n =: xn). Then, Merlin’s strategy is to perform honestly during the protocol σbf(n, m̃+ 1).
As (n, m) is a critical pair, Hn,m̃+1 must fail to hit P, which means σbf(n, m̃ + 1) terminates within
m̃O(log n) time and Arthur outputs BF(1n) canonically.

Claim 6.6 (Resiliency). For every input length n, for any advice ζn and Merlin’s strategy, σrec(1n)/ζn

rejects or outputs canonically with probability at least 2/3.

Proof. If the advice m̃ = 2logk n + 1, Arthur will reject immediately. Whichever the advice m̃
is, as long as m̃ ≤ 2logk n, Arthur will run the protocol σbf(n, m̃ + 1) which computes BF(1n)
with PSV error m̃−c < 1/3. Hence, whichever the strategy of Merlin and no matter whether
σbf(n, m̃ + 1) can terminate within time m̃Cbf log n or not, Arthur will either reject or output BF(1n)
with probability at least 2/3, as desired.

32

Case 2: Critical Hitting. In the remaining case, there are infinite many critical pairs (n, m) such
that m > 2logk n, we define the following Arthur-Merlin protocol σhit which takes inputs of form
1m with O

(
2log1/k m) bits of advice:

• Step 1: Making pairs. On an input 1m, Arthur reads the advice to get an integer ñ ∈
[1, 2log1/k m + 1], which is supposed to be the smallest n that forms a critical pair with m.
(We use ñ = 2log1/k m + 1 to indicate the case that n does not exist or n ≥ 2log1/k m.) Arthur
halts and outputs 0m immediately if ñ = 2log1/k m + 1.

• Step 2: Hitting. Arthur reads the advice to get an O(ñ)-bit index s̃ which is supposed
to be the lexicographic first seed s such that Hñ,m(s) ∈ P. By Theorem 6.1, Arthur uses
the local algorithm RMV

p
h,d to compute Hñ,m(s̃) with oracle O∗. Whenever Arthur need to

query the oracle O∗ for f ∗i (x), Merlin and Arthur simulate the protocol σeval(ñ, m + 1, i, x)
in Lemma 6.3 for mCeval log ñ steps to compute f ∗i (x), i.e., Arthur halts and outputs 0m when
σeval(ñ, m+ 1, i, x) exceeds this time bound. Arthur accepts and outputs the output string of
local algorithm in Theorem 6.1 if all Arthur accepts in all simulations of σeval(ñ, m + 1, i, ·).

• Canonical output: The canonical output xm is defined as the string in Hn,m ∩ P with lex-
icographic smallest seed (or 0m when there is no n such that (n, m) is a critical pair and
n < 2log1/k m).

Claim 6.7 (Efficiency). σhit(1m) takes O
(
2log1/k m) bits of advice and runs in time 2O(log2 m).

Proof. The advice consists of the encoding of ñ and an O(ñ)-bit seed s, which is O(ñ) = O
(
2log1/k m)

bits in total. Moreover, as the local algorithm in Theorem 6.1 takes poly(m) time where each
query to the oracle σeval(ñ, m + 1, i, x) takes mCeval log ñ time (recall that Arthur immediately halts
if the simulation of σeval exceeds the time bound), the total time complexity is mO(log ñ) =

2O(log2 m).

Claim 6.8 (Conformity). For every input length m, if σhit is given the desired advice as we discussed
above, there is a strategy for Merlin such that σhit(1m) outputs canonically with probability 1.

Proof. Assume the advice is correct (ñ = n and s̃ = s) with ñ < 2log1/k m (otherwise Arthur
will halt and output 0m =: xm). Merlin’s strategy is to perform honestly in any simulation
of the protocol σeval(ñ, m + 1, i, x) (see Lemma 6.3), which ensures that each σeval(ñ, m + 1, i, x)
terminates within mCeval log ñ time:

• When m < 2nβ
, as (n, m) forms a critical pair, Hñ,m+1 must fail to hit P, which means

σeval(ñ, m + 1, i, x) terminates within mCeval log ñ time;

• When m = 2nβ
, even if Hñ,m+1 hits P with the running time of σeval(ñ, m + 1, i, x) being

mO(1)2ñβ
, it is still bounded by mCeval log ñ as m = 2nβ

.

Hence, Arthur can get the correct f ∗i (x) whenever Arthur and Merlin simulate σeval(ñ, m+ 1, i, x),
and will output Hñ,m(s̃) with probability 1.

Claim 6.9 (Resiliency). For every input length m, for any advice ζm = (ñ, s̃) and any Merlin’s strategy,
σhit(1m)/ζm rejects or outputs Hñ,m(s̃) with probability at least 2/3.

33

Proof. Suppose ñ ≤ 2log1/k m, otherwise Arthur will reject directly. Then, for any strategy of Mer-
lin, Arthur either rejects or outputs f̃ ∗i (x) when performing σeval(ñ, m + 1, i, x) with probability
(1 − m−c) as σeval has PSV error m−c in Lemma 6.3.39 As Arthur will query Õ∗ for at most
poly(m) times, by choosing a sufficiently large constant c > 0 and using union bound, we can
make sure that Arthur either rejects or outputs the correct f̃ ∗i (x) for all oracle queries with prob-
ability at least 2/3, which means Arthur either rejects or outputs Hñ,m(s̃) with probability at least
2/3.

Combining the protocols σrec and σhit for two cases, we conclude the proof of Theorem 1.3.

Finally, we prove Lemma 6.3 to conclude this subsection.

Lemma 6.3 (Restated). For any constant c > 0, there is an Arthur-Merlin protocol σeval, such that for
any n ≤ m, i ≤ 6r + 8 and x ∈ Fr

q (where q and r are defined as before), σeval(n, m, i, x) computes f ∗i (x)
with PSV error m−c. The running time of σeval(n, m, i, x) is either

• mO(log n) when Hn,m fails to hit P, or

• mO(1) · 2nβ
when Hn,m hits P. Here β > 1 is a constant that only depends on P.

There is also an Arthur Merlin protocol σbf such that σbf(n, m) computes BF(1n) with the same running
time and PSV error as above.

Proof. Both σeval and σbf consist of three parts: a commitment protocol σc, an evaluation protocol
σe and a verification protocol σv.

In the protocol σc(n, m), Merlin will commit to a proof oracleO = (f1, . . . , f6r+8) of BFdec(1n,BF(1n)).
He will commits in different ways depending on whether Hn,m hits P, as follows:

• Merlin first sends a bit b ∈ {0, 1} indicating whether Hn,m hits P.

• If b = 0, meaning that Hn,m fails to hit P, then for all 1 ≤ i ≤ 6r + 8, Merlin commits
to the polynomial fi ∈ RM3r+3,h,q by the RMV commitment protocol in Theorem 6.1 with
parameters h, d, m.40 Arthur prepares a co-nondeterministic circuit D, which is the poly(m)-
sized (randomized) circuit accepting all the m-bit strings in P.

• If b = 1, Merlin will send the entire description of polynomials (f1, · · · , f6r+8) to Arthur.

In the evaluation protocol σe, Arthur takes Merlin’s commitment a from σc as a part of the
input, and try to evaluate fi(x) on any input (n, m, i, x). Specifically:

• If b = 0, Arthur runs the RMV evaluation protocol in Theorem 6.1 to compute fi(x).

• If b = 1, Arthur computes fi(x) directly from the description of fi.

Finally, in the verification protocol σv(n, m, a), Arthur checks whether O is the canonical proof
O∗ by running the PCP oracle verifier VOBFdec

. Specifically, Arthur first runs low-degree test for all
the polynomials in O. Then, Merlin sends a string w which is supposed to be BF(1n), and Arthur
simulates the PCP oracle verifier VOBFdec

on the input ((1n, w), T(n), r, h, q). Whenever Arthur
needs to query the oracle O for the value of fi(x), he runs the evaluation protocol σe(n, m, i, x, a).

39Here, f̃ ∗i is analogue of f ∗i but with respect to ñ, i.e., the polynomial in the canonical proof of BFdec(1ñ,BF(1ñ)).
The notation Õ∗ is defined similarly.

40Parameters r, h, q follow the same definition as in the definition of Hn,m.

34

Arthur accepts and outputs w if all the protocols σe(n, m, i, x, a) accept and the PCP verifier VOBFdec

accepts.
Combining all three protocols, σbf and σeval are constructed as follows: In σbf(n, m), Arthur

and Merlin will first perform σc(n, m) to get the commitment a, and then run σv(n, m, a) (which
requires execution of σc as a oracle) to output BF(1n). In σeval(n, m, i, x), they first run σc and σv
as in σbf(n, m); if σv(n, m, a) accepts, they further run σe(n, m, i, x, a) to compute f ∗i (x).

Below, we check the efficiency, conformity and PSV error of σbf and σeval to complete the
proof.

Claim 6.10 (Efficiency). The running time of both σbf and σeval are either mO(log n) when Hn,m fails to
hit P, or mO(1) · 2nβ

when Hn,m hits P, where β > 0 is a constant that only depends on the language P.

Proof. When Hn,m fails to hit P, σc and σe are RMV commit-and-evaluation protocols, within time
mO(log n). In the verification protocol σv, Arthur runs low-degree test and PCP verifier, which take
poly(m) time and call the oracle O for at most poly(m) times. Combining them, both σbf and
σeval terminate within mO(log n) time.

When Hn,m hits P, σc and σe are brute-force algorithms for sending and evaluating O within
2nβ

time for some constant β > 0. The total running time of σbf and σeval will be mO(1)2nβ
.

Claim 6.11 (Conformity). There is a strategy of Merlin such that σbf(n, m) outputs BF(1n) with prob-
ability 1, and σeval(n, m, i, x) outputs f ∗i (x) with probability 1.

Proof. Merlin’s strategy is to send b honestly, to commit to the canonical proofO∗, and to perform
honestly in the RMV evaluation protocols. By the conformity of RMV reconstruction protocol
in Theorem 6.1, Arthur will get the correct value f ∗i (x) whenever he performs the evaluation
protocol σe(n, m, i, x, a) when b = 0, and clearly when b = 1 as well. By the completeness of
strong PCP, VO

∗
BFdec

will accept and output BF(1n) with probability 1, which means both σbf and
σeval will output correctly with probability 1.

Claim 6.12 (PSV error). For any strategy of Merlin, σbf(n, m) will output {BF(1n),⊥} with probability
at least Ω(1), and σeval(n, m, i, x) will output { f ∗i (x),⊥} with probability at least Ω(1).

Proof. We first shows that, whichever the strategy of Merlin is, after the commitment step σbf(n, m),
there are polynomials O = (f1, . . . , f6r+8) depending on the commitment a, such that Arthur will
output { fi(x),⊥} with probability 1−m−c when performing σe(n, m, i, x, a), where c > 0 is any
fixed constant. Actually, this can be proved by the resiliency of RMV reconstruction protocol in
Theorem 6.141 when b = 0; and it is also clear when b = 1, as Merlin sends the description of
polynomials (f1, . . . , f6r+8) directly to Arthur.

Now, in the verification protocol σv, Arthur will query O for at most poly(m) times. By taking
sufficiently large c > 0 and using union bound, we can make sure Arthur either rejects or gets
the value fi(x) for each query to O with probability at least Ω(1). The output of σv will depend
on the proof oracle O:

• If the committed proof O is the canonical one O∗, then similar to the proof of conformity,
Arthur will either output BF(1n) or reject with probability at least Ω(1).

• If the committed proof O is not the canonical one O∗, then either some function fi is
actually not a Reed-Muller codeword in RM3r+3,h,q (which will be rejected during the low-
degree test with probability Ω(1/r)) or at least one pair of (fi, f ∗i) is at least 1/2-far by the

41We need to repeat the reconstruction protocol for Theorem 6.1 for poly(m) times to boost the resiliency to 1−m−c.

35

property of Reed-Muller code (which means VOBFdec
will reject with probability at least Ω(1)

by the strongness of PCP in Theorem 6.2).

Combining the two cases together, we get AM algorithms σbf and σeval as desired with PSV error
Ω(1) and conformity error 0.

Finally, we concludes the proof of Lemma 6.3 by noting that Lemma 6.3 requires a stronger
PSV error m−c, which can be achieved by parallel repetition of the protocol σbf and σeval con-
structed above for O(c · log(m)) times without significantly increasing the running time.

References

[AB09] Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cam-
bridge University Press, 2009.

[AC22] Josh Alman and Lijie Chen. Efficient construction of rigid matrices using an NP
oracle. SIAM Journal on Computing, March 2022.

[Ajt83] M. Ajtai. Σ1
1-formulae on finite structures. Annals of Pure and Applied Logic, 24(1):1–48,

July 1983.

[AKS04] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. Primes is in P. Annals of Math-
ematics, 160(2):781–793, 2004.

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
Proof verification and the hardness of approximation problems. Journal of the ACM,
45(3):501–555, May 1998.

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new character-
ization of NP. Journal of the ACM, 45(1):70–122, January 1998.

[AW09] Scott Aaronson and Avi Wigderson. Algebrization: A new barrier in complexity
theory. ACM Transactions on Computation Theory, 1(1):2:1–2:54, February 2009.

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking com-
putations in polylogarithmic time. In Proc. 23rd ACM Symposium on Theory of Com-
puting (STOC), pages 21–32, 1991.

[BFT98] H. Buhrman, L. Fortnow, and T. Thierauf. Nonrelativizing separations. In Proc. 13th
Computational Complexity Conference (CCC), pages 8–12, 1998.

[BGS75] Theodore Baker, John Gill, and Robert Solovay. Relativizations of the P =?NP ques-
tion. SIAM Journal on Computing, 4(4):431–442, December 1975.

[BHPT24] Amey Bhangale, Prahladh Harsha, Orr Paradise, and Avishay Tal. Rigid matrices
from rectangular PCPs. SIAM Journal on Computing, 53(2):480–523, April 2024.

[BM88] László Babai and Shlomo Moran. Arthur-merlin games: A randomized proof sys-
tem, and a hierarchy of complexity class. Journal of Computer and System Sciences,
36(2):254–276, April 1988.

36

[BS05] Eli Ben-Sasson and Madhu Sudan. Simple PCPs with poly-log rate and query com-
plexity. In Proc. 37th ACM Symposium on Theory of Computing (STOC), pages 266–275,
2005.

[BS06] Joshua Buresh-Oppenheim and Rahul Santhanam. Making hard problems harder.
In Proc. 21st Computational Complexity Conference (CCC), pages 73–87, 2006.

[BSGH+06] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan.
Robust PCPs of proximity, shorter PCPs, and applications to coding. SIAM Journal
on Computing, 36(4):889–974, January 2006.

[Cai07] Jin-Yi Cai. Sp
2 ⊆ ZPPnp. Journal of Computer and System Sciences, 73(1):25–35, February

2007.

[Che24] Lijie Chen. Nondeterministic quasi-polynomial time is average-case hard for ACC
circuits. SIAM Journal on Computing, pages 19–332, February 2024.

[CHLR23] Yeyuan Chen, Yizhi Huang, Jiatu Li, and Hanlin Ren. Range avoidance, remote
point, and hard partial truth table via satisfying-pairs algorithms. In Proc. 55th ACM
Symposium on Theory of Computing (STOC), pages 1058–1066, 2023.

[CHR24] Lijie Chen, Shuichi Hirahara, and Hanlin Ren. Symmetric exponential time requires
near-maximum circuit size. In Proc. 56th ACM Symposium on Theory of Computing
(STOC), pages 1990–1999, 2024.

[CL24] Yilei Chen and Jiatu Li. Hardness of range avoidance and remote point for re-
stricted circuits via cryptography. In Proc. 56th ACM Symposium on Theory of Comput-
ing (STOC), pages 620–629, 2024.

[CLO+23] Lijie Chen, Zhenjian Lu, Igor C. Oliveira, Hanlin Ren, and Rahul Santhanam.
Polynomial-time pseudodeterministic construction of primes. In Proc. 64th IEEE
Symposium on Foundations of Computer Science (FOCS), pages 1261–1270, 2023.

[CT22] Lijie Chen and Roei Tell. Hardness vs randomness, revised: Uniform, non-black-box,
and instance-wise. In Proc. 63rd IEEE Symposium on Foundations of Computer Science
(FOCS), pages 125–136, 2022.

[FM05] Gudmund Skovbjerg Frandsen and Peter Bro Miltersen. Reviewing bounds on the
circuit size of the hardest functions. Information Processing Letters, 95(2):354–357, July
2005.

[FSS84] Merrick Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the
polynomial-time hierarchy. Mathematical systems theory, 17(1):13–27, December 1984.

[GG11] Eran Gat and Shafi Goldwasser. Probabilistic search algorithms with unique answers
and their cryptographic applications. Preprint ECCC:TR11-136, October 2011.

[GGNS23] Karthik Gajulapalli, Alexander Golovnev, Satyajeet Nagargoje, and Sidhant Saraogi.
Range avoidance for constant depth circuits: Hardness and algorithms. In Proc.
26th International Conference on Approximation Algorithms for Combinatorial Optimiza-
tion Problems and 27th International Conference on Randomization and Computation (AP-
PROX/RANDOM), 2023.

37

[GKR15] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computa-
tion: Interactive proofs for muggles. Journal of the ACM, 62(4):27:1–27:64, September
2015.

[GLW22] Venkatesan Guruswami, Xin Lyu, and Xiuhan Wang. Range avoidance for low-depth
circuits and connections to pseudorandomness. In Proc. 25th International Conference
on Approximation Algorithms for Combinatorial Optimization Problems and 26th Interna-
tional Conference on Randomization and Computation (APPROX/RANDOM), 2022.

[GS89] Shafi Goldwasser and Michael Sipser. Private coins versus public coins in interactive
proof systems. Advances in Computing Research, 5:73–90, 1989.

[Har04] Prahladh Harsha. Robust PCPs of proximity and shorter PCPs. PhD thesis, Mas-
sachusetts Institute of Technology, 2004.

[Has86] J Hastad. Almost optimal lower bounds for small depth circuits. In Proc. 18th ACM
Symposium on Theory of Computing (STOC), pages 6–20, 1986.

[HLR23] Shuichi Hirahara, Zhenjian Lu, and Hanlin Ren. Bounded relativization. In Proc.
38th Computational Complexity Conference (CCC), pages 1–45, 2023.

[ILW23] Rahul Ilango, Jiatu Li, and R. Ryan Williams. Indistinguishability obfuscation, range
avoidance, and bounded arithmetic. In Proc. 55th ACM Symposium on Theory of Com-
puting (STOC), pages 1076–1089, 2023.

[IW97] Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits:
Derandomizing the XOR lemma. In Proceedings of the Twenty-Ninth Annual ACM
Symposium on the Theory of Computing, El Paso, Texas, USA, May 4-6, 1997, pages 220–
229. ACM, 1997.

[IW01] Russell Impagliazzo and Avi Wigderson. Randomness vs time: Derandomization
under a uniform assumption. Journal of Computer and System Sciences, 63(4):672–688,
December 2001.

[Juk12] Stasys Jukna. Boolean Function Complexity: Advances and Frontiers, volume 27 of Algo-
rithms and Combinatorics. Springer, Berlin, Heidelberg, 2012.

[Kan82] Ravi Kannan. Circuit-size lower bounds and non-reducibility to sparse sets. Infor-
mation and Control, 55(1):40–56, October 1982.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended
abstract). In Proc. 24th ACM Symposium on Theory of Computing (STOC), pages 723–
732, 1992.

[KKMP21] Robert Kleinberg, Oliver Korten, Daniel Mitropolsky, and Christos Papadimitriou.
Total functions in the polynomial hierarchy. In Proc. 12th Innovations in Theoretical
Computer Science (ITCS), 2021.

[KL80] Richard M. Karp and Richard J. Lipton. Some connections between nonuniform and
uniform complexity classes. In Proc. 12th ACM Symposium on Theory of Computing
(STOC), pages 302–309, 1980.

38

[Kor22] Oliver Korten. The hardest explicit construction. In Proc. 63rd IEEE Symposium on
Foundations of Computer Science (FOCS), pages 433–444, 2022.

[Li24] Zeyong Li. Symmetric exponential time requires near-maximum circuit size: Sim-
plified, truly uniform. In Proc. 56th ACM Symposium on Theory of Computing (STOC),
pages 2000–2007, 2024.

[LOS21] Zhenjian Lu, Igor C. Oliveira, and Rahul Santhanam. Pseudodeterministic algo-
rithms and the structure of probabilistic time. In Proc. 53rd ACM SIGACT Symposium
on Theory of Computing (STOC), pages 303–316, 2021.

[Lup58] Oleg Borisovich Lupanov. The synthesis of contact circuits. In Doklady Akademii
Nauk, volume 119, pages 23–26, 1958.

[MVW99] Peter Bro Miltersen, N. V. Vinodchandran, and Osamu Watanabe. Super-polynomial
versus half-exponential circuit size in the exponential hierarchy. In Proc. 5th Interna-
tional Conference on Computing and Combinatorics (COCOON), pages 210–220, 1999.

[MW20] Cody D. Murray and R. Ryan Williams. Circuit lower bounds for nondeterminis-
tic quasi-polytime from a new easy witness lemma. SIAM Journal on Computing,
49(5):STOC18–300, January 2020.

[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. Journal of Computer and
System Sciences, 49(2):149–167, October 1994.

[OS17] Igor C. Oliveira and Rahul Santhanam. Pseudodeterministic constructions in subex-
ponential time. In Proc. 49th ACM SIGACT Symposium on Theory of Computing (STOC),
pages 665–677, 2017.

[Par21] Orr Paradise. Smooth and strong PCPs. Computational Complexity, 30(1):1, January
2021.

[RSW22] Hanlin Ren, Rahul Santhanam, and Zhikun Wang. On the range avoidance problem
for circuits. In Proc. 63rd IEEE Symposium on Foundations of Computer Science (FOCS),
pages 640–650, 2022.

[San09] Rahul Santhanam. Circuit lower bounds for Merlin–Arthur classes. SIAM Journal on
Computing, 39(3):1038–1061, January 2009.

[Sch80] Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial iden-
tities. Journal of the ACM, 27(4):701–717, October 1980.

[Sha49] Claude. E. Shannon. The synthesis of two-terminal switching circuits. The Bell System
Technical Journal, 28(1):59–98, January 1949.

[SU05] Ronen Shaltiel and Christopher Umans. Simple extractors for all min-entropies and
a new pseudorandom generator. Journal of the ACM, 52(2):172–216, March 2005.

[SU07] Ronen Shaltiel and Christopher Umans. Low-end uniform hardness vs. randomness
tradeoffs for am. In Proc. 39th ACM Symposium on Theory of Computing (STOC), pages
430–439, 2007.

[TV07] Luca Trevisan and Salil Vadhan. Pseudorandomness and average-case complexity
via uniform reductions. Computational Complexity, 16(4):331–364, December 2007.

39

[vS23] Dieter van Melkebeek and Nicollas Mocelin Sdroievski. Instance-wise hardness ver-
sus randomness tradeoffs for arthur-merlin protocols. In Proc. 38th Computational
Complexity Conference (CCC), pages 1–36, 2023.

[Yao85] Andrew Chi-Chih Yao. Separating the polynomial-time hierarchy by oracles. In Proc.
26th IEEE Symposium on Foundations of Computer Science (FOCS), pages 1–10, 1985.

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In Proc. Interna-
tional Symposiumon on Symbolic and Algebraic Computation (EUROSAM), pages 216–
226, 1979.

A Proof of Lemma 4.3

Lemma 4.3 (Restated). There are at most 2s(O(1)+⌈log(n+s)⌉) different L-oracle circuits of size s.

Proof. It suffices to show that for each L-oracle circuit of size s, there is a “program” for a well-
defined computing device that can be described in (s + 1)(O(1) + log(n + s)) bits that is func-
tionally equivalent to the circuit. Indeed, we will prove this by modifying the construction in
[FM05, Section 2].

Let n be the number of input bits and s be the size (i.e. number of wires) of an oracle circuit.
An (L-oracle) stack program is described by a sequence of instructions in one of the four forms:
“push i” (for i ∈ [n + s]), “pass”, “call”, and “op j” (for j ∈ [16]). The execution of a stack program
is described as follows. Let x ∈ {0, 1}n be the input. Let S, A be two stacks and O be a table of
length n + s. Initialize S← ∅, A← ∅, Oi ← xi for every i ∈ [n], and Oi := 0 for i > n.

• push i: Push Oi ∈ {0, 1} to the stack S.

• pass: Let t ∈ {0, 1} be the top of S. Pop the stack S, and push t to A.

• call: Let u be the string obtained by concatenating the bits in A. Empty the stack A, and
push L(u) to S.

• op j: Let t1, t2 ∈ {0, 1} be the two bits on the top of S. Pop t1 and t2 out of S. Push opj(t1, t2)

to S, where opj : {0, 1}2 → {0, 1} is the j-th (out of 16) binary Boolean function.

The output of a stack program is top of S after running all instructions.
We will show that an L-oracle circuit of size s can be converted into a stack program with s

push operations and at most 2s other operations42, which can be easily encoded using s · ⌈log(n+
s)⌉+ O(s) bits.

The convertion can be done by the following algorithm. Fix any topological order of gates
g1, g2, . . . , gm, where m ≤ s− 1. For i = 1, 2, . . . , m:

• Let di be the number of in-wires of gi, we enumerate j = 1, 2, . . . , di.

– If the j-th in-wire is from the k-th input bit, write an instruction “push k”.

– If the j-th in-wire is from gk, write an instruction “push (n + k)”.

• If gi is an oracle gate, write di copies of the instruction “pass”, followed by “call”.

42Recall that the size of an oracle circuit is defined as the number of wires in the circuit.

40

• If gi is a gate computing opj : {0, 1}2 → {0, 1}, write an instruction op j.

The correctness of the convertion algorithm is straightforward. Moreover, since each wire will
create exactly one “push” operation, there are exactly s “push” operations. This implies that there
are at most s “pass” and “op” operations, and at most s “call” operations.

B Uniform Hardness-vs-Randomness for AM

Theorem 5.1 (Restated). There is an algorithm HSG and an Arthur-Merlin protocol Rec such that the
following holds. Let n, m, T ∈ N be such that n ≤ m ≤ T, M be a Turing machine in a standard
encoding such that |M| ≤ log log T, α be a string of length at most m, and D : {0, 1}m → {0, 1} be
a poly(m)-size coAM circuit that rejects at most a 1/3-fraction of its inputs. Then HSG(n, m, T, M, α)
runs in time poly(T) and outputs a multiset H ⊆ {0, 1}m of size poly(T) such that one of the following
two conditions holds.

• (Hit). There exists a z ∈ H such that D(z) = 1.

• (Reconstruct). The Arthur-Merlin protocol Rec(n, m, T, M, α, D, x) runs in mO((log log T)2) time
and has O(1) rounds such that the following holds:

– (Completeness). If M(α) halts in time T and outputs x ∈ {0, 1}n, there is a strategy of the
prover such that the verifier accepts with probability 1.

– (Soundness). Otherwise, for any strategy of the prover, the verifier rejects with probability at
least 1/2.

Proof. Let M′(α, x, T) be the following Turing machine: Given any (α, x, T), it simulates M(α) for
T steps and accepts if and only if M(α) halts and outputs x. Note that M′ runs in time at most
T2. Let Prf be the algorithm in Theorem 3.4 with M := M′, we define π := Prf((α, x, T), T2) be
the PCP proof for M′(α, x, T) = 1, where π : {0, 1}O(log T) → {0, 1}.

Let h be the smallest power of two such that h ≥ m100, q := h100, d := O(1) be a power of
two, and r = O(log |π|/ log h) so that there is a unique low-degree extension for π in Fq with
degree h and r variables (see Lemma 3.2). We assume without loss of generality that r is a power
of d, r = O(d log T/ log h), and h = m100 (as we can always ignore some bits of a hitting set). Let
p : Fr

q → Fq be the unique low-degree extension of π with degree h and an efficient encoding
I : [|π|] → Fr

q such that for every x ∈ [|π|], p(I(x)) = πx. We define H ⊆ {0, 1}m be the hitting
set of size qO(r) = poly(T) from RMVh,d(p) in Theorem 3.5 using aforementioned parameters.

Fix any coAM circuit D : {0, 1}m → {0, 1}. Suppose that D(z) = 0 for every z ∈ H, i.e., we are
not in the “(Hit)” case. Then the reconstruction Arthur-Merlin protocol Rec(n, m, T, M, α, D, x)
works as follows:

1. Arthur and Merlin simulate the commit protocol σc in Theorem 3.5, and outputs a commit-
ment γ ∈ {0, 1}ℓ of length ℓ = O(hO(d)r log q) = poly(m, log T). The protocol runs in time
poly(|D|, ℓ) = poly(m, log T). Honest Merlin is supposed to commit to the polynomial
p : Fr

q → Fq as defined above.

2. Let VOM′ be the verifier in Theorem 3.4 for the Turing machine M′. Arthur simulates the
verifier VOM′((α, x, T), T2) and for each query qi ∈ [poly(T)] made by the verifier, they sim-
ulate σe(I(qi), D, γ) and use the output of the protocol σe mod 2 as the answer to the oracle
query. Arthur rejects immediately if it rejects in the simulation of σe.

3. Arthur accepts if and only if VM′ accepts.

41

Efficiency. Note that the verifier VOM′ runs in time poly(n, |α|, log T) and makes O(1) queries to
its oracle, for each of which Arthur and Merlin need to simulate σe in time

hO(d log2
d r) = mO(log2(log T/ log m)) = mO((log log T)2).

and O(1) rounds. Therefore, the whole protocol runs in time mO((log log T)2) and has O(1) rounds.

Completeness. Suppose that M(α) terminates in T steps and outputs x ∈ {0, 1}n. By the
definition of M′ we know that M′(α, x, T) terminates in T2 steps and accepts. In this case, Merlin
could commit to the polynomial p : Fr

q → Fq as mentioned above, so that for every x ∈ [|π|],
there is a strategy for Merlin such that σe(I(x), D, γ) = p(I(x)) = π[x] with probability 1, by
the perfect completeness of the commit-and-evaluate protocol in Theorem 3.5. Therefore, by the
perfect completeness of the verifier (see Theorem 3.4), VOM′((α, x, T), T2) = 1 with probability 1.
This means that Arthur will accept in the protocol Rec(n, m, T, M, α, D, x) with probability 1.

Soundness. Suppose that either M(x) does not terminate in T steps or it does not output x ∈
{0, 1}n. By the definition of M′ we know that M′(α, x, T) terminates in T2 steps and rejects. Fix
any strategy of Merlin in Rec, which consists of a strategy τc for σc in Step 1 of Rec, and a strategy
τe for σe in Step 2 of Rec. Fix any commitment γ ∈ {0, 1}ℓ in Step 1. By the resiliency of the
commit-and-evaluate protocol in Theorem 3.5, we know that there exists a function g : Fr

q → Fq
such that στe

e (u, D, γ) ∈ {g(u),⊥} with probability at least 1 − o(1) (over the randomness of
Arthur in Step 2 of Rec.)

Let E1 be the event that στe
e (I(qi), D, γ) ∈ {⊥, g(I(qi))} for some query qi made in Step 2 of

the protocol Rec in the simulation of VOM′ . Similarly, let E2 be the event that στe
e (I(qi), D, γ) =⊥.

Notice that:

• Pr[Rec accepts | E1, E2] = 0, by the definition of Rec.

• Pr[Rec accepts | E1,¬E2] ≤ 1/3. This is because given E1 ∧ ¬E2, στe(I(qi), D, γ) = g(I(qi)),
and thus Arthur accepts if and only if the verifier VOg

M′ ((α, x, T), T2) accepts for the oracle
Og : {0, 1}O(log T) → {0, 1} defined as Og(x) := g(I(x)) mod 2. Recall that M′(α, x, T)
terminates in T2 steps rejects, and the acceptance probability follows from the soundness
of the verifier (see Theorem 3.4).

Therefore, we have

Pr[Rec accepts] ≤ Pr[¬E1] + Pr[Rec accepts | E1, E2] + Pr[Rec accepts | E1,¬E2] < 1/2.

This completes the proof.

C Strong PCP with Reed-Muller-encoded Proofs

Theorem 6.2 (Restated). There is a constant α ∈ (0, 1) such that for any Turing machine M, there
is a constant c ≥ 1 and a probabilistic polynomial-time oracle verifier VOM satisfying the following. Let
x ∈ {0, 1}n, T ≥ n be a time bound encoded in binary, r, h ≥ 1 and q be a power of a prime p = O(1),
such that r = Θ(log T/ log log T), h ≥ nc · Tc/r, hc ≤ q ≤ T.

• Given input (x, T, r, h, q) to the verifier VOM , the proof oracle O is supposed to be a sequence of poly-
nomials f1, f2, . . . , f6r+8 ∈ RM3r+3,h,q. The verifier tosses O((r + h) log q) random coins, generates
k = O(rh) non-adaptive queries (i1, x1), (i2, x2), . . . , (ik, xk) ∈ [6r + 8] × F3r+3

q , and decides in
poly(r, h, log q) time whether to accept the proof given answers fi1(x1), fi2(x2), . . . , fik(xk) ∈ Fq.

42

• (Completeness). If M(x) halts in T steps and accepts, there is a unique oracle O∗ such that
Pr[VO

∗
M (x, T, r, h, q) = 1] = 1. We call this oracle O∗ = (f ∗1 , f ∗2 , . . . , f ∗6r+8) the canonical proof

corresponding to the input (x, T, r, h, q).

• (Soundness). If M(x) does not halt in T steps, or M(x) rejects, then for every oracle O =
(f1, f2, . . . , f6r+8), Pr[VOM (x, T, r, h, q) = 1] ≤ 1− α.

• (Strong soundness). If M(x) halts in T steps and accepts, then for every oracleO = (f1, f2, . . . , f6r+8),
if for any constant δ ∈ (0, 1), fi is δ-far from the i-th polynomial f ∗i in the canonical proof for some
i ∈ [6r + 8], then

Pr[VOM (x, T, r, h, q) = 1] ≤ 1− α · δ,

where α ∈ (0, 1) is a universal constant.

Our construction of the verifier VOM mostly follows from the standard poly-logarithmic PCP
using Reed-Muller code (see, e.g., [Par21]). A subtle difference is that we will need the field size
q to be as large as T ≥ 2n, while in the standard setting, it is usually set to be Θ(log T).43

We will follow the strong PCP construction from Reed-Muller code in [Par21, Section 5] (also
see [BS05, Har04]), with several modifications:

1. The two main components of the PCP construction, namely low-degree testing and zero-
on-the-subcube, needs to be updated to work with finite fields of large size. The original
verifier involves queries to the projection of polynomials to a random line, which has a
time overhead proportional to the field size. We need to treat the projection as a univariate
polynomial and apply the decoding of the Reed-Solomon code (see Appendix C.2 and C.3).

2. The original PCPP (PCP of Proximity) protocol in [Par21] for the circuit evaluation prob-
lem assumes an explicit access to the circuit. In our case, however, the circuit is of size
poly(T) and thus we can only assume an oracle access to it. Nevertheless, this can be
solved by a standard algebrization technique (see Appendix C.4 for more details) with a
careful verification of the strongness and canonicity of the PCP proof.

3. In the construction of [Par21], the first proof oracle f1 has only r variables instead of 3r +
3 variables. One can obtain a sound PCP by simply ignoring the last 2r + 3 variables.
However, to ensure the strong soundness of the PCP verifier, we need to apply an additional
individual degree testing (see Appendix C.5 for more details).

4. There is a bug in the proof of [Par21] regarding the uniqueness of the “division witness”
(see Proposition C.5 and the discussion below). We fixed this bug for our purpose of
proving Theorem 6.2 by introducing an additional “individual-degree check”.

C.1 Definitions and Tools

We start with some useful definitions. Let F = Fq. A function f : Fr → Fk defined as f (x) :=
(f1(x), . . . , fk(x)) is a k-dimension vector-valued polynomial of degree h if for every i ∈ [k],
fi ∈ RMr,h,q. We denote the set of all k-dimension vector-valued polynomials of degree h as
RMk

r,h,q. Similarly, we define RSk
h,q := RMk

1,h,q. The (Hamming) distance between f , g ∈ RMk
r,h,q is

defined as δ(f , g) := Prx[f (x) ̸= g(x)].

43We note that making q to be as large as T ≥ 2n will greatly increase the length of the PCP proof, which is not
helpful in the standard setting, while it is necessary in our critical win-win argument.

43

We define a line L through Fr with intercept x ∈ Fr and slope h ∈ Fr to be L := {x+ ih | i ∈ F}.
Let Lr,q be the set of all such lines. A uniformly random line is defined by sampling the intercept
and slope uniformly over Fr. The restriction of f to a line L, denoted by f |L : F → Fr, is the
function f |L(i) := f (x + ih).

Proposition C.1. If f ∈ RMr,h,q, then f |L ∈ RSh,q for any line L.

Lemma C.2 (Schwatz-Zippel Lemma [Sch80, Zip79]). For any finite field F = Fq and intergers r, h,
if f ∈ RMr,h,q is a non-zero polynomial, then Prx←Fm [f (x) = 0] ≤ h/|F|.

C.2 Low-Degree Testing

Proposition C.3 ([Par21, Proposition 5.5]). Assume that F = Fq for q > 25k. Let g : Lr,q ×Fh → Fk

be an arbitrary oracle such that for each line L, gL := g(L, ·) ∈ RSk
h,q. If f : Fr → Fk is δ-far from being

in RMk
r,h,q, then over a uniformly random line L and a uniformly random u ∈ F, f |L(u) ̸= gL(u) with

probability at least δ/40.

The following low-degree testing algorithm is a straightforward improvement of [Par21, Al-
gorithm 5.6] when the field size q is large.

Theorem C.4 (Low-Degree Testing). Let F = Fq for q > 25k, r, h ≥ 1, and δ ∈ (0, 1). There is an
algorithm such that given oracle access to f : Fr → Fk, it tosses O((r + h) log q) random coins, makes
h + 2 non-adaptive oracle queries, runs in time poly(r, h, log q) such that:

• (Completeness). If f ∈ RMk
r,h,q, the algorithm accepts with probability 1.

• (Soundness). If f is δ-far from RMk
r,h,q, the algorithm rejects with probability at least δ/40.

Proof. Let f = (f1, . . . , fk) : Fr → Fk. The algorithm works as follows: It uniformly samples a
line L = {x + it | i ∈ F} using O(r log q) random bits, and m = h + 2 points u1, . . . , um ∈ F

using O(m log q) random bits. It makes m oracle queries f |L(u1), , . . . , fL(um) ∈ Fk. For each
i ∈ [k], it computes the unique univariate polynomial gi ∈ RSh,q such that for every j ∈ [h + 1],
gi(uj) = fL(uj)i by Lagrange interpolation. The algorithm accepts if and only if for every i ∈ [k],
gi(um) = fL(um)i.

To prove the completeness of the algorithm, we can see that if f ∈ RMk
r,h,q, then by Proposi-

tion C.1 for every line L, f |L ∈ RSk
h,q. This means that for every i ∈ [k], fi|L is of degree h, and

thus the polynomial gi from Lagrange interpolation agrees with fi|L.
Now assume that f is δ-far from RMk

r,h,q. Let ĝ : Lr,q × Fh → Fk be the oracle that minimizes
Pru[ĝL(u) ̸= f |L(u)] for every line L, where ĝL := g(L, ·) ∈ RSk

h,q. By Proposition C.3, we know
that over a uniformly random line L and u ∈ F, Pr[gL(u) ̸= f |L(u)] ≥ δ/40. Now we fix any
u1, . . . , uh+1 ∈ F. Over a uniformly random line L and um, let g = (g1, . . . , gk) ∈ RSk

h,q, where gi
is obtained from Lagrange interpolation as described above, then

Pr
L,um

[g(um) ̸= f |L(um)] ≥ Pr
L,u

[ĝL(u) ̸= f |L(u)] ≥ δ/40.

This means that with probability at least δ/40, there is an i ∈ [k] such that gi(um) ̸= f |L(um)i, in
which case the algorithm rejects.

44

C.3 Zero-on-Subcube

The Zero-on-Subcube (ZoS) problem is defined as follows. Fix a finite field F = Fq, r, h ≥ 1, and
H ⊆ F. Given a polynomial f ∈ RMr,h,q, the ZoS problem is to decide whether f (x) = 0 for all
x ∈ Hr. Let ZoSr,h,q,H be the set of all such polynomials.

Proposition C.5 ([Par21, Fact 5.10]). Let F = Fq, r, h ≥ 1, H ⊆ F, and f ∈ RMr,h,q. Then f ∈
ZoSr,h,q,H if and only if there are P = (P1, . . . , Pr) ∈ RMr

r,h,q and Q = (Q1, . . . , Qr) ∈ RMr
r,h−|H|,q such

that for every i ∈ [r]:

Pi−1(x) = µ(xi) ·Qi(x) + Pi(x),
Pr(x) = 0,

where P0 := f and µ ∈ RS|H|,q is defined as µ(z) := Πu∈H(z− u).
Moreover, For every f ∈ ZoSr,h,q,H, there is a unique pair (P = (P1, . . . , Pr), Q = (Q1, . . . , Qr))

satisfying the condition above such that for every i ∈ [r], the individual degree of xi in Pi is at most
|H| − 1.

It it claimed in [Par21] that (P, Q) is unique even without the individual degree constraint
we mentioned in the “moreover” part, which does not look right to us. We resolved this issue
by introducing the constraint and performing an additional “individual-degree testing” (see the
proof of Theorem C.6) based on Proposition C.5.

Proof of Proposition C.5. The equivalence is implicit in [BS05]; for completeness, we provide a
proof here. Note that (⇐) is straightforward. If such (P, Q) exists, then

f (x) = ∑
i∈[r]

µ(xi)Qi(x),

and the LHS is clearly zero on Hm since µ(xi) = 0 for all i ∈ [r] and xi ∈ H.
Now we prove the other direction by constructing (P1, Q1), . . . , (Pr, Qr) inductively. Indeed,

we will further ensure in the construction that x1, . . . , xi have individual degrees at most |H| − 1
in Pi. Let P0 := f . Assume that we have already constructed Pi−1 such that x1, . . . , xi−1 have
individual degree at most |H| − 1. Note that we can view Pi−1 as a univariate polynomial over
the ring F[x1, . . . , xi−1, xi+1, . . . , xn]. Therefore, by division with remainder, there are polynomials
Qi, Pi such that

Pi(x) = µ(xi) ·Qi(x) + Pi(x)

satisfying that the individual degree of xi in Pi(x) is at most |H| − 1. (Recall that µ is a univariate
polynomial of degree |H|.)

Now we show that Pr(x) = 0. For each x ∈ Hm, we have

Pr(x) = f (x)−∑
i≤r

µ(xi)Q(x) = 0−∑
i≤r

0 = 0.

Note that each variable has individual degree at most |H| − 1. This immediately implies that
Pr(x) is the zero polynomial.

It remains to prove the uniqueness. Towards a contradiction, we assume that there are two
such pairs (P, Q) and (P′, Q′) satisfying the individual degree requirement. Let P = (P1, . . . , Pr),
Q = (Q1, . . . , Qr), P′ = (P′1, . . . , P′r), and Q′ = (Q′1, . . . , Q′r). Clearly if Q = Q′ then P = P′. Let i
be the smallest index such that Qi ̸= Q′i, then:

Pi−1(x) = P′i−1(x) = µ(xi)Qi(x) + Pi(x) = µ(xi)Q′i(x) + P′i (x),

45

which means that
Pi(x)− P′i (x) = µ(xi)(Q′i(x)−Qi(x)).

However, this is impossible as xi has has degree at most |H| − 1 in the LHS and has degree at
least |H| in the RHS.

For f ∈ ZoSr,h,q,H, we call the unique P ∈ RMr
r,h,q, Q ∈ RMr

r,h−|H|,q in Proposition C.5 the
division witness of f ∈ ZoSr,h,q,H.

Theorem C.6 (Modification over [Par21, Lemma 5.13]). There is an absolute constant β > 0 such that
the following holds. Let F = Fq, r, h ≥ 1, H ⊆ F, such that q ≥ 10 ·max{|H|, h} and β ≤ 1/4− h/q.
There is an algorithm V f ,P,Q

ZoS such that given oracle access to f : Fr → F, and P = (P1, . . . , Pr), Q =
(Q1, . . . , Qr) ∈ Fr → Fr, it tosses O((r + h + |H|) log q) random coins, makes O(r|H| + h) non-
adaptive oracle queries, runs in time poly(r, h, log q, |H|) such that:

• (Completeness). If f ∈ ZoSr,h,q,H and (P, Q) is its division witness, the algorithm always accepts.

• (Strong soundness). Let (f ′, P′, Q′) be the tuple satisfying f ′ ∈ ZoSr,h,q,H with division witness
(P′, Q′) that minimizes

δ := max{δ(f , f ′), δ(P, P′), δ(Q, Q′)}.
Then the algorithm rejects with probability at least βδ.

Proof. The verifier works as follows.

1. (Low-degree check). Run the algorithm in Theorem C.4 on f , P, and Q. This is to check
that f and P are polynomials of degree at most h, and Q is of degree at most h− |H|.

2. (Division witness). Let m = 10|H|. We uniformly sample z ∈ Fr and u1, . . . , um ∈ F.

(a) (Individual degree check). For each i ∈ [r] we perform the following test. Let L be the
line with intercept z and slope ei, where ei

i = 1 and ei
j = 0 for every j ̸= i. That is, L

is the line parallel to the i-th axis passing though z. We query Pi|L(u1), . . . , Pi|L(um).
Let g be the unique degree-(|H| − 1) polynomial such that g(ui) = Pi|L(ui) for every
i ≤ |H| using Lagrange interpolation. We then check whether g(ui) = Pi|L(ui) for
every i ∈ [m].

(b) (Division check). For each i ∈ [r], and check whether

Pi−1(z) = µ(zi) ·Qi(z) + Pi(z),

where P0 := f and µ(x) := ∏u∈H(x− u).
(c) (Identity check). Check that Pr(z) = 0.

The algorithm accepts if it passes all the checks. The randomness complexity, query complexity,
and time complexity of the algorithm are obvious. The completeness of the algorithm follows
directly from Theorem C.4 and Proposition C.5. Therefore, it suffices to prove the soundness.

Case 1. We define f̂ ∈ RMr,h,q that minimizes δ(f̂ , f) =: δ f , P̂ ∈ RMr
r,h,q that minimizes δ(P̂, P) =:

δP, and Q̂ ∈ RMr
r,h−|H|,q that minimizes δ(Q̂, Q) =: δQ. Suppose that max(δ f , δP, δQ) ≥ 1/8.

Clearly, δ ≥ max(δ f , δP, δQ). By Theorem C.4, the low-degree check fails with probability at least
1/320 ≥ βδ, if we choose β ≤ 1/320. Therefore, we can assume in the rest of the proof that
f , P, Q are (1/8)-close to f̂ , P̂, Q̂, respectively.

46

Case 2. Suppose that there is an i ∈ [r] such that xi has individual degree at least |H| in P̂i(x).
Let L be the line with intercept z that is parallel to the i-th axis, and zj =: (z1, . . . , zi−1, uj, zi+1, . . . , zr)

for every j ∈ [m]. Note that Pi|L(ui) = Pi(zj). Since the marginal distribution of zj is uniformly
random over Fr, and P̂i is (1/4)-close to Pi, we know that Pr[P̂i(zj) ̸= Pi(zj)] ≤ 1/8 and

E
z,u1,...,um

 ∑
j∈[m]

I
[

P̂i(zj) ̸= Pi(zj)
] ≤ m

8
.

By Markov inequality, we know that with probability at least 2/3,

∑
j∈[m]

I
[

P̂i(zj) ̸= Pi(zj)
]
≤ 3m

8
. (3)

Since P̂i(x) has total degree at most h, we know that for every univariate polynomial g of
degree at most |H| − 1, δ(P̂i|L, g) ≥ 1−max{|H|, h}/q ≥ 1/2. Fix any u1, . . . , u|H| and let g be
the unique degree-|H| polynomial such that g(uj) = Pi|L(uj) for every j ∈ [|H|]. Over uniformly
random u|H|+1, . . . , um, we know that the expected number of indices |H|+ 1 ≤ j ≤ m such that
g(uj) = P̂i|L(uj) is at most (m− |H|)/2. By Markov inequality, we know that with probability at
least 2/3:

∑
j∈[m]

I
[

P̂i(zj) = g(uj)
]
≤ 3(m− |H|)

4
≤ 3m

8
(4)

By the union bound, we know that with probability at least 1/3, we will have both (3) and (4);
this implies that there is a j ∈ [m] such that Pi(zj) ̸= g(uj), in which case the individual degree
check fails. The acceptance probability is at most β if we set β ≤ 1/3.

Case 3. Suppose that (P̂, Q̂) is not the division witness of f̂ ∈ ZoSr,h,q,H. Since P̂ satisfies the
individual degree requirement in Proposition C.5, either there is an i ∈ [r] such that P̂i−1(x) ̸=
µ(xi) · Q̂i(x) + P̂i(x), or P̂r(x) ̸= 0. In the former case, we know by Schwatz-Zippel Lemma (see
Lemma C.2) that over a uniformly random z← Fr,

Pr
z
[P̂i−1(z) ̸= µ(zi) · Q̂i(z) + P̂i(z)] ≥ 1− h

q
.

By the union bound and the closeness of P, Q to P̂, Q̂, we can show that

Pr
z
[Pi−1(z) ̸= µ(zi) ·Qi(z) + Pi(z)] ≥

1
4
− h

q
≥ β,

i.e., the division check fails with probability at least β. Similarly, if P̂r(x) ̸= 0, the identity check
fails with probability at least δ.

Case 4. It remains to consider the case that (P̂, Q̂) is a division witness of f̂ ∈ ZoSr,h,q,H. In such
case, we know that δ = max{δ f , δP, δQ}. By Theorem C.4, we know that the low-degree check
must fail with probability at least max{δ f , δP, δQ}/40 ≥ βδ if we set β ≤ 1/40.

47

C.4 Algebrization

Note that the verifier for ZoS in Theorem C.6 can be regarded as a satisfiability algorithm in
the algebraic setting. In this sub-section, we show how to reduce the verification of uniform
computation to ZoS and thus deduce Theorem 6.2. As this step is quite standard, we will only
present proof sketches of the claims.

Cook-Levin witness. Recall the standard reduction from program verification to succinct 3-
CNF satisfiability. This essentially follows from the proof of the Cook-Levin theorem.

Theorem C.7 (Folklore). Let M be a Turing machine. Let x ∈ {0, 1}n, and T ≥ n be a time bound
encoded in binary. There is a 3-CNF formula φx,T(z) with ℓ = O(T2) clauses over ℓ = O(T2) variables
such that it is satisfiable if and only if M(x) halts in T steps and accepts. In particular, if M(x) halts in
T steps and accepts, there is a unique satisfying assignment for φx,T(z).

Moreover, for some constant d ∈N depending on M, there is an AC0
d circuit Cx,T of size poly(n, log T)

such that given (i1, i2, i3, c1, c2, c3) ∈ [ℓ3]× {0, 1}3, it outputs 1 if and only if there is a clause containing
the i1-th, the i2-th, and i3-th variables in φx,T, and it is not satisfied after we set them to be ¬c1,¬c2,¬c3,
respectively.

Furthermore, there is a uniform algorithm in time poly(n, log T) such that given x, T, it outputs the
description of the circuit Cx,T.

Proof Sketch. Consider an O(T)× T computation tableaux whose i-th column is supposed to be
the configuration of M(x) on the i-th step (see, e.g., [AB09]). For each entry in the tableax, we add
O(1) clauses to check the correctness of its local transition. We introduce O(T) clauses to check
that the input configuration is correct, and O(T) clauses to check that the final configuration is a
halting and accepting configuration. The uniqueness of the satisfying assignment follows from a
careful design of the clauses.

We then show that the circuit Cx,T is an AC0 circuit of size poly(n, log T). Assume that the
computation tableaux is of size H × T, where H = O(T). Without loss of generality, we assume
that both H = 2h and T = 2t are a power of two. Moreover, we assume that for each entry
(j, k) ∈ [H] × [T] of the computation tableaux, we need S = 2s variables and C = 2c clauses
to check local consistency based on the finite control of the Turing machine M, where S, C =
O(1). Let bin(x) be the binary encoding of x. Given an index i, we can locate the i-th variable,
i.e., knowing that it is the l-th variable for the entry (j, k) in the computation tableaux, where
bin(i) = bin(j) ◦ bin(k) ◦ bin(l). For simplicity, we identify the index i and the location (j, k, l) of
the i-th variable.

We now describe in more detail how the 3-CNF formula φx,T is defined. For each (j, k), the
variable z(j,k,1) is supposed to be the symbol on the computation tableaux at (j, k), or equivalently,
the j-th symbol on the tape in the k-th step of the execution of M(x); the variable z(j,k,2) = 1 if and
only if the head is at this location; the variable z(j,k,3) = 1 if and only if the location is not blank
(i.e. ⊥); the other variables encode in binary the internal state in case that z(j,k,2) = 1, and are all
zero if z(j,k,2) ̸= 0. It can be verified that under this encoding, the circuit Cx,T(i1, i2, i3, c1, c2, c3)
can be constructed using O(1) addition, subtraction, and comparison operations over numbers
encoded in binary, and therefore can be simulated by (polynomial-time uniform) AC0 circuits.

Algebrization of circuits. We now describe the standard algebrization of circuits. Let C :
{0, 1}n → {0, 1} be an AC0 circuits of size s and depth d, F = Fq be a finite field, and H ⊆ F be
a subset of size h.

48

For simplicity, we will choose h = 2k to be a power of two, and thus we can identify H and
{0, 1}k. Let I : H → {0, 1}k be any bijection. We define IH : F→ Fk be the polynomial

IH(z)j = ∑
u∈H

∏
u′∈H\{u}

I(u)j(z− u′)
u− u′

.

Notice that IH(z) is of degree at most |H|, and for every u ∈ H, IH(u) = I(u) ∈ {0, 1}k.
Without loss of generality we assume that k divides n. Let r := n/k. From the function

I : H → {0, 1}k we described above, we can induce a bijection between Hr and {0, 1}n; we
identify Hr and {0, 1}n using the bijection. We will need the following standard algebrization of
circuits.

Lemma C.8. There is a unique polynomial Ĉ ∈ RMr,sd·h,q such that for every x ∈ Hr, Ĉ(x) = C(x) ∈
{0, 1}. Moreover, there is a polynomial-time algorithm such that given the description of C and any
x ∈ Fr, it outputs Ĉ(x) ∈ F.

Proof Sketch. By replacing AND gates using multiplications and NOT gates using x 7→ 1− x, we
can construct a polynomial P : Fn → F of degree sd such that for every z = (z1, . . . , zn) ∈ Fn

such that z1, . . . , zn ∈ {0, 1}, P(z) = C(z) ∈ {0, 1}. The polynomial Ĉ is constructed as follows.
Let x = (x1, . . . , xr) ∈ Fr, we define

Ĉ(x) = P(IH(x1), IH(x2), . . . , IH(xr)).

The correctness of the construction is easy to verify.

C.5 Putting Things Together

Now we are ready to prove Theorem 6.2 by combining the Cook-Levin reduction from verification
of computation of satisfiability (see Theorem C.7), the algebrization of circuits (see Lemma C.8),
and the protocols for ZoS (see Theorem C.6) and low-degree testing (see Theorem C.4).

Theorem 6.2 (Restated). There is a constant α ∈ (0, 1) such that for any Turing machine M, there
is a constant c ≥ 1 and a probabilistic polynomial-time oracle verifier VOM satisfying the following. Let
x ∈ {0, 1}n, T ≥ n be a time bound encoded in binary, r, h ≥ 1 and q be a power of a prime p = O(1),
such that r = Θ(log T/ log log T), h ≥ nc · Tc/r, hc ≤ q ≤ T.

• Given input (x, T, r, h, q) to the verifier VOM , the proof oracle O is supposed to be a sequence of poly-
nomials f1, f2, . . . , f6r+8 ∈ RM3r+3,h,q. The verifier tosses O((r + h) log q) random coins, generates
k = O(rh) non-adaptive queries (i1, x1), (i2, x2), . . . , (ik, xk) ∈ [6r + 8] × F3r+3

q , and decides in
poly(r, h, log q) time whether to accept the proof given answers fi1(x1), fi2(x2), . . . , fik(xk) ∈ Fq.

• (Completeness). If M(x) halts in T steps and accepts, there is a unique oracle O∗ such that
Pr[VO

∗
M (x, T, r, h, q) = 1] = 1. We call this oracle O∗ = (f ∗1 , f ∗2 , . . . , f ∗6r+8) the canonical proof

corresponding to the input (x, T, r, h, q).

• (Soundness). If M(x) does not halt in T steps, or M(x) rejects, then for every oracle O =
(f1, f2, . . . , f6r+8), Pr[VOM (x, T, r, h, q) = 1] ≤ 1− α.

• (Strong soundness). If M(x) halts in T steps and accepts, then for every oracleO = (f1, f2, . . . , f6r+8),
if for any constant δ ∈ (0, 1), fi is δ-far from the i-th polynomial f ∗i in the canonical proof for some
i ∈ [6r + 8], then

Pr[VOM (x, T, r, h, q) = 1] ≤ 1− α · δ,

where α ∈ (0, 1) is a universal constant.

49

Proof. Now we fix a machine M, an input x ∈ {0, 1}n, and T ≥ n. We will choose the constant c
to be sufficiently large, and the absolute constant α ∈ (0, 1) to be sufficiently small. Let φ(z) =
φx,T(z) be the 3-CNF formula, ℓ = O(T2), and C = Cx,T : [ℓ]3×{0, 1}3 → {0, 1} be the AC0 circuit
in Theorem C.7. Let r = Θ(log T/ log log T), h ≥ nc · Tc/r, q ∈ [hc, T], and F = Fq.

Algebrization. Let H ⊆ F be a subset such that |H|r ≥ ℓ and {0, 1} ⊆ H. Without loss of
generality, we assume that |H| is a power of two and |H|r = ℓ. Fix any bijection I : H →
{0, 1}log |H| such that I(0) = 0log |H| and I(1) = 0 ◦ 1log |H|−1 and thus we can identify H and
{0, 1}log |H|. Let C′ be an AC0 circuit with input length 3 log ℓ + 3 log |H|, such that for each
(i1, i2, i3, c1, c2, c3) ∈ ({0, 1}log ℓ)3 × ({0, 1}log |H|)3, it outputs 0 if c1, c2, c3 /∈ {0, 1}, and output
C(i1, i2, i3, c1, c2, c3) otherwise44. By Theorem C.7, we know that M(x) halts in T steps and accepts
if and only if there is an e : [ℓ]→ {0, 1} such that for every i1, i2, i3 ∈ Hr, c1, c2, c3 ∈ H,

C′(i1, i2, i3, c1, c2, c3) · (e(i1)− c1) · (e(i2)− c2) · (e(i3)− c3) = 0.

Moreover, if M(x) halts in T steps and accepts, the function e : [ℓ]→ {0, 1} satisfying the property
above is unique.

Let Ĉ : Fr → F be the polynomial in Lemma C.8 for the circuit C′; it satisfies that for every
u ∈ (Hr)3 × H3, where we identify Hr and [ℓ], Ĉ(u) = C′(u) ∈ {0, 1}. For a function e : [ℓ] →
{0, 1}, we define ê ∈ RMr,r(|H|−1),q be the unique polynomial such that ê(u) = e(u) ∈ {0, 1} for
every u ∈ Hr, i.e.,

ê(x1, . . . , xr) := ∑
v1,...,vr∈H

∏
v′1 ̸=v1,...,v′r ̸=vr

e(v1, . . . , vr)
∏j(xj − v′j)

∏j(vj − v′j)
.

From the discussion above, we know that M(x) halts in T steps and accepts if and only if the
polynomial Fê : F3r+3 → F defined as

Fê(z1, z2, z3, b1, b2, b3) := Ĉ(z1, z2, z3, b1, b2, b3) · (ê(z1)− b1) · (ê(z2)− b2) · (ê(z3)− b3) (5)

is zero on the subcube H3r+3, where z1, z2, z3 ∈ Fr and b1, b2, b3 ∈ F. Moreover, recall that Ĉ is
of degree at most |H| · poly(n, log T) and ê is of degree at most r(|H| − 1), we know that Fê is of
degree at most |H|4 · r · poly(n, log T). Note that(

|H|4 · r · polylog T
)r
≤ ℓ4 · (log T)O(r) ≤ Tc ⇒ |H|4 · r · poly(n, log T) ≤ h

for sufficiently large c, and therefore Fê ∈ RMr,h,q.

Description of VM. Now we are ready to describe the verifier VM formally. It is given the oracle
access to a sequence of polynomials f1, f2, . . . , f6r+8 : F3r+3 → F. It is supposed to be as follows:
f1 is the encoded assignment ê for some assignment e for φ(z), f2 is the polynomial Fê defined
in Equation (5), and f2, . . . , f6r+8 are supposed to be the division witness of Fê ∈ ZoS3r+3,h,q,H.
A caveat is that as ê is an r-variate polynomial while f1 is a (3r + 3)-variate polynomial, the
individual degrees of the last 2r + 3 variables in f1 are supposed to be 0. The verifier works as
follows:

44Here, c1, c2, c3 ∈ {0, 1} means that c1, c2, c3 ∈ {0log |H|, 0 ◦ 1log |H|−1}; recall that we identify H and {0, 1}log |H| by
the bijection I fixed above.

50

1. (Low-degree check). Run the algorithm in Theorem C.4 on f1 and f2 to check that they
are of degree at most r(|H| − 1) and h, respectively. We then uniformly sample x =
(x1, . . . , x3r+3) ∈ F3r+3 and u ∈ F and perform the following check:

(a) (Individual degree check). For every i ∈ [r + 1, 3r + 3], we define

xi := (x1, . . . , xi−1, u, xi+1, . . . , x3r+3)

and check whether f1(xi) = f1(x).

2. (Consistency check). For a uniformly random x ∈ F3r+3, let x = (z1, z2, z3, b1, b2, b3) ∈
(Fr)3 ×F3, check

f2(x) = Ff1(x) := Ĉ(z1, z2, z3, b1, b2, b3) · (f1(z1)− b1) · (f1(z2)− b2) · (f1(z3)− b3),

where in f1(zi) we fix all but the first r variables to be 0.

3. (ZoS check). Run the algorithm in Theorem C.6, where f is instantiated with Fê ∈ RM3r+3,h,q
and P, Q are instantiated with f2, f3, . . . , f6r+8.

The verifier accepts if it passes all the checks. Note that the randomness complexity, query
complexity, and decision complexity of VM is easy to verify.

Completeness and the canonical proof. Suppose that M(x) halts in T steps and accepts, we
know by the discussion above that there is a unique function e : [ℓ] → {0, 1} (representing an
assignment for φ) such that φ(e) = 1, and thus Fê ∈ ZoS3r+3,h,q,H. We define the canonical proof
as f ∗1 := e, f ∗2 := Fê, and f ∗3 , . . . , f ∗6r+8 to be the division witness of Fê ∈ ZoS3r+3,h,q,H. By the
completeness of Theorem C.6, it is easy to see that if M(x) halts in T steps and accepts, the
verifier VM given the canonical proof accepts with probability 1.

Soundness and strong soundness. Now we prove the soundness and strong soundness of the
verifier VM. Fix any oracle O = (f1, . . . , f6r+8) and let f ′1 ∈ RM3r+3,r(|H|−1),q, f ′2 ∈ RM3r+3,h,q be the
closest polynomials to f1 and f2, respectively. Let δ ≤ 1/8 be a constant.

Case 1 (failing low-degree check). Suppose that f1 is (δ/2)-far from f ′1, or f2 is (δ/2)-far
from f ′2, then by Theorem C.4, the algorithm rejects with probability at least δ/80, which is at
least αδ if we set α < 1/80.

Case 2 (failing individual degree check). Suppose that there is an i ∈ [r + 1, 3r + 3] such
that the i-th variable has individual degree at least 1 in f ′1. Fix this i. By the union bound, we
know that with probability at least 1/2 over a uniformly random x = (x1, . . . , x3r+3) ∈ F3r+3 and
u ∈ F, let xi := (x1, . . . , xi−1, u, xi+1, . . . , x3r+3), we will have f ′1(x) = f1(x) and f ′1(xi) = f1(xi).
Since f ′1 is of degree at most h, we know that if we set all but the i-th variables uniformly at
random, with probability at least 1− h/q = 1− o(1), the obtained univariate polynomial will
be a non-zero univariate polynomial of degree at most h. This means that with probability
1− o(1), we will have f ′1(x) ̸= f ′1(xi), and by the union bound, we know with probability at least
1/2− o(1), f1(x) ̸= f1(xi) and the verifier will reject.

51

Case 3 (failing consistency check). Suppose that f ′2 ̸= Ff ′1
, then by Schwartz-Zippel lemma

(see Lemma C.2) we know that δ(f ′2, Ff ′1
) ≥ h/q = 1− o(1). Since δ(f1, f ′1) ≤ 1/8, δ(f2, f ′2) ≤ 1/8,

and Ff1(x) makes three queries to f1 where each query is uniformly distributed, we know by
the union bound that over a uniformly random x ∈ F3r+3, with probability at least 1/2− o(1),
f2(x) ̸= Ff1(x) and thus the consistency check fails. The rejection probability is at least α if we
set α < 1/2− o(1).

Case 4 (soundness). Suppose that M(x) does not halt in T steps, or M(x) rejects, we know
that φ(z) (from Theorem C.7) is unsatisfiable. Let α′ be the constant α in Theorem C.6. We will
set α < α′/10. Suppose, towards a contradiction, that the ZoS check passes with probability
larger than α, then we know that f2 is not (α/α′)-far from a degree-h polynomial f ′′2 that is zero
on the subcube H3r+3. Therefore, δ(f ′2, f ′′2) ≤ 1/8+ α/α′ < 1− h/q, and thus by Schwartz-Zippel
lemma (see Lemma C.2) we know that f ′2 = f ′′2 . Furthermore, since f ′2 = Ff ′1

by Case 3, we know
by the definition of Ff ′1

that there is an assignment that makes φ(z) accepts, which leads to a
contradiction.

Case 5 (strong soundness). Suppose that M(x) halts in T steps and accepts, but for some
i ∈ [6r+ 8], δ(fi, f ∗i) > δ. Fix i to be the smallest such index. Let α′ be the constant in Theorem C.6
and α < α′/10, we consider the following cases.

1. Suppose that i = 1, we will show that f2 is (α/α′)-far from being a degree-h polynomial
f ′′2 that is zero on the subcube H3r+3, and thus the ZoS check fails with probability at least
α. Towards a contradiction we assume that δ(f2, f ′′2) ≤ α/α′, then δ(f ′2, f ′′2) ≤ 1/8 + α/α′ <
1− h/q, therefore by Schwartz-Zippel lemma (see Lemma C.2), f ′2 = f ′′2 . Recall that by
Case 3 we have f ′2 = Ff ′1

, and since f ′2 is zero on the subcube H3r+3, we know that for every
z1, z2, z3 ∈ Hr and b1, b2, b3 ∈ {0, 1},

C(z1, z2, z3, b1, b2, b3) · (f ′1(z1)− b1) · (f ′1(z2)− b2) · (f ′1(z3)− b3) = 0,

which further means that f ′1 restricting to Hr (i.e. [ℓ]) is a satisfying assignment of φ(z).
Note that by Theorem C.7 the satisfying assignment is unique. Since f ′1 is of degree r(|H| −
1), we know by the uniqueness of low-degree extension45 that f ′1 = f ∗1 , and thus δ(f1, f ∗1) ≤
δ/2, a contradiction.

2. Suppose that i > 1, then by δ(f1, f ′1) ≤ δ/2 we know that f ′1 = f ∗1 . Note that after Case 3
we know that f ′2 = Ff ′1

= Ff ∗1 = f ∗2 , which implies that i > 2. Recall that f ∗2 is zero on the
subcube H3r+3. By the strong soundness of the ZoS check (see Theorem C.6), we know that
it must fail with probability at least δα′ ≥ δα.

In either case, the verifier rejects with probability at least δα.

D On the RMV Generator

In this section, we sketch the proof of Theorem 6.1 to complete the proof in Section 6.3. In the
following, we assume the reader is familiar with the proofs of Theorem 3.5 in [SU07].

45Recall that by Case 2 we already ensure that all but the first r variables of f ′1 are of degree 0.

52

Theorem 6.1 (Restated). Let r, d and h be parameters such that r is a power of d and h is a prime power.
Suppose d = O(1) and h = poly(r). Let q be a prime power with h100 ≤ q ≤ 2hO(1)

and h be a parameter
with h1/100 ≤ m ≤ q1/100. There is an algorithm RMV and a pair of Arthur-Merlin protocols (σc, σe)
described as follows.

• (Locality). Let p ∈ RMr,h,q. There is an oracle algorithm RMVh,d that takes a seed z ∈ {0, 1}O(r log q)

and p as oracle, outputs a string in {0, 1}m in time poly(m). The collection of all RMV
p
h,d(z) is

intended to be a hitting set for coAM circuits.

• σc takes a coAM circuit D : {0, 1}m → {0, 1} as input, and outputs a string α ∈ {0, 1}ℓ called the
commitment in time poly(|D|, ℓ), where ℓ = poly(m).

• σe takes x ∈ Fr
q, the circuit D, and the commitment α ∈ {0, 1}ℓ (which is intended to be generated

by σc), and outputs some y ∈ Fq in time mO(d log2
d r) and O(1) rounds.

The algorithms satisfy the following properties.

• (Conformity). If D rejects every element from RMVh,d(p), then there is a pair of strategies (τc, τe)
of Merlin in σc and σe such that given x ∈ Fr

q,

Pr
[
στe
e (x, D, α := στc

c (D)) = p(x)
]
= 1.

Moreover, τc and τe can be simulated by deterministic polynomial-time (in the communication com-
plexity of σc and σe, respectively) machines given oracle accesses to p.46

• (Resiliency). If D rejects at most a 1/3-fraction of its inputs, then for any commitment α ∈ {0, 1}ℓ,
there is a unique gα ∈ Fr

q → Fq such that for every x ∈ Fr
q and every strategy τe of Merlin,

Pr
[
στe
e (x, D, α) ∈ {gα(x),⊥}

]
≥ 1− o(1).

Theorem 6.1 is almost identical to Theorem 3.5, with two differences below:

• In Theorem 6.1, the hitting set is required to be locally constructable: Given any seed z ∈
{0, 1}O(r log q), we can compute the element in the hitting set indexed by z in poly(m) time.

• In Theorem 6.1, we allow an exponentially large field size q ≤ 2rO(1)
and an exponentially

long output length m ≤ q1/100.

Below, we will first review the proof of Theorem 3.5 in [SU07], and then show how to modify the
proof to support the two additional requirements.

The construction in [SU07]. The construction relies on the following local extractor.

Definition D.1 (Local extractor for subsets [SU07, Definition 3.5]). Let C be a set, t, m ∈ N. A
(k, ε) local C-extractor is an oracle function E : {0, 1}t → {0, 1}m for which the following holds:

1. for every random variable X distributed on C with min-entropy at least k, EX(Ut) is ε-close
to uniform, and

46Recall that the notation στ means the (probabilistic) output of the protocol when the prover sends messages
according to the strategy τ.

53

2. E runs in poly(m, t) time.

Lemma D.2 ([SU07, Lemma 3.7], implicit in [SU05]). Fix parameters r < h, and let C = RMr,h,q

be a Reed-Muller code. Set k = h5. There is an explicit (k, 1/k) local C-extractor E with seed length
t = O(r log q) and output length h = k1/5.

Based on the local extractor, given a polynomial p : Fr
q → Fq of degree h, the hitting set

RMVh,d(p) is constructed recursively. Specifically, it is the union of the following two parts:

• (Direct part). As p ∈ RMr,h,q is a Reed-Muller codeword, the local extractor in Lemma D.2
defines a function Ep : {0, 1}t → {0, 1}m for t = O(r log q). We put all the 2t outputs of Ep

into the hitting set RMVh,d(p).

• (Recursive part). If r > d, let B = Fr/d. By grouping each consecutive r/d variables, we
can view p as a function p : Bd → F. Consider all dqr−r/d possible functions pL : B → F

obtained by fixing all but one variables in p to arbitrary values in B. We also put all the
hitting sets RMVh,d(pL) for these functions pL : Fr/d → F into RMVh,d(p).

This recursion process defines the hitting set RMVh,d(p). The recursion tree has depth logd r,
where a node with depth ℓ has at most dqr/dℓ children, hence the total number of nodes is

bounded by ∏
logd r−1
ℓ=0 (dqr/dℓ) = dlogd r · q∑

logd r−1
ℓ=0 r/dℓ ≤ qO(r). As each node contributes a direct

part of size at most 2t = qO(r), the hitting set RMVh,d(p) has at most qO(r) elements, and can be
computed within time qO(r). For every node u of the recursion tree, we use Hu to denote the
direct part this nodes contributes to RMVh,d(p). (Thus, RMVh,d(p) is simply the union of all the
Hu.)

Locality of the hitting set. In the following, we will argue that the locality of the hitting set
RMVh,d(p) follows from the locality of the extractor in Lemma D.2.

First, we assign an O(r log q)-bit index for each of the qO(r) elements in RMVh,d(p): the prefix
of O(r log q) bits specifies the node u in the recursion tree such that Hu contains this element,
and the remaining t = O(r log q) bits is the index of this element within Hu.

Then, given an seed z ∈ {0, 1}O(r log q), we can compute the element in RMVh,d(p) with index
z in poly(m) time. We first determine a node u in the recursion tree by z’s prefix zpre within
time poly(r log q). Then, we obtain the oracle for the polynomial pu at u by fixing some of the
variables in the oracle of p. Finally, assuming oracle access to pu, the elements indexed by z in
the hitting set can be computed from the t-bit suffix zsuf of z in Hu via the local extractor Epu(zsuf)
within time poly(m, r log q), as desired.

Larger field size and output lengths. We also claim that all the arguments in [SU07] naturally
generalize to support a larger field size and a longer output length.

The output length is controlled by the local extractor in Lemma D.2, which by default outputs
strings of length h. To use Lemma D.2 to output longer strings, we view the set C = RMr,h,q as
a subset of RMr, max{h,m}, q and set parameter k = max{h, m}5. Then, by Lemma D.2, we have
a (k, 1/k) local RMr,h,q-extractor with output length m.47 Moreover, increasing k to max{h, m}5

would not cause an unaffordable running time or inefficient reconstruction, as in Theorem 6.1
the running times in all the efficiency conditions are measured in m instead of h.

47If m < h, the extractor in Lemma D.2 has output length max{h, m} = h; we can simply retain the first m bits of
each output.

54

To support a larger field size q = 2hO(1)
, we note that in the proof of [SU07], whenever the

running time depends on the field size, the dependence is a multiplicative factor of polylog(q) =
hO(1), which is consistent with Theorem 6.1. The only exception is in the low-degree test: [SU07]
uses a low-degree test with running time poly(q, r) for functions in Fq with r variables. By
replacing this low-degree test with a faster one (e.g., Theorem C.4), the running time is reduced
to poly(r, h, log q) = poly(h) too, as desired.

55
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

