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Abstract

Understanding the power and limitations of classical and quantum information, and
how they differ, is an important endeavor. On the classical side, property testing of
distributions is a fundamental task: a tester, given samples of a distribution over a
typically large domain such as {0, 1}n, is asked to verify properties of the distribution.
A key property of interest in this paper is the support size both of distributions, a
central problem classically [Valiant and Valiant STOC’11], as well, as of quantum states.
Classically, even given 2n/16 samples, no tester can distinguish between distributions of
support size 2n/8 from 2n/4 with probability better than 2−Θ(n), even with the promise
that they are flat distributions.

In the quantum setting, quantum states can be in a coherent superposition of many
states of {0, 1}n, providing a global description of probability distributions. One may ask
if coherence can enhance property testing. A natural way to encode a flat distribution
is via the subset states, |ϕS⟩ = 1/

√
|S|
∑

i∈S |i⟩. We show that coherence alone is not
enough to improve the testability of support size.

1. Coherence limitations. Given 2n/16 copies, no tester can distinguish between
subset states of size 2n/8 from 2n/4 with probability better than 2−Θ(n).

Our result is more general and establishes the indistinguishability between the subset
states and the Haar random states leading to new constructions of pseudorandom and
pseudoentangled states, resolving an open problem of [Ji, Liu and Song, CRYPTO’18].

The hardness persists even when allowing multiple public-coin AM provers for a
classical tester.

2. Classical hardness with provers. Given 2O(n) samples from a classical dis-
tribution and 2O(n) communication with multiple independent AM provers, no
classical tester can estimate the support size up to factors 2Ω(n) with probability
better than 2−Θ(n). Our hardness result is tight.

In contrast, coherent subset state proofs suffice to improve testability exponentially,
3. Quantum advantage with certificates. With polynomially many copies and

subset state proofs, a tester can approximate the support size of a subset state of
arbitrary size.
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Some structural assumption on the quantum proofs is required since we show that
4. Collapse of QMA. A general proof cannot information-theoretically improve

testability of any quantum property whatsoever.
Our results highlight both the power and limitations of coherence in property testing,

establishing exponential quantum-classical separations across various parameters. We
also show several connections and implications of the study of property testing, in
particular, in establishing quantum-to-quantum state transformation lower bounds, and
to disentangler lower bounds.
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1 Introduction

Testing whether a given object has a desired property, or is far from it, is a fundamental task
both in the classical and quantum settings [Gol17, MW16], possessing myriad important
applications, e.g., [Din07, DEL+22, PK22]. In this context, understanding the resources
(e.g., number of copies of a state or samples, efficiency of tester, etc) needed to test a given
property is a central goal of property testing. A key property of interest in this paper is
the support size of both distributions, a central property classically [Val11, VV11, HR22],
as well as of quantum states [AKKT20, JW23].

In testing properties of classical probability distributions, one is given access to a distri-
bution via its samples. The study on what properties can be understood with a small number
of samples can be traced back to the work of Fisher et al. [FCW43] and Turing [Goo53]. In
many computer science problems, we are faced with high-dimensional distributions, which
can be seen as assigning probabilities to {0, 1}n. A rich theory of property testing of dis-
tributions has emerged, and we now know the sample complexity of many properties of
interest [R+10, Val11, Rub12, Gol17, Can20, Can22]. There, one quickly learns that several
properties require 2Ω(n) samples to be testable, e.g., distinguishing the support size between
two families of distributions can require exponentially many samples even if they have vastly
different support sizes and are promised to be flat distributions.

Theorem 1.1 (Failure of Classical Testing (Informal)). Even given 2n/16 copies, no tester
can distinguish between flat distributions of size 2n/8 from 2n/4 with probability better than
2−Θ(n).

This kind of strong lower bound is pervasive in property testing of distributions [BFF+01,
BDKR02, RRSS07, VV11, VV17, Rub12, HR22], and it establishes severe limitations on
our ability to test classical information. Roughly speaking, this is not surprising since by
accessing a probability distribution via samples, we do not get a “global” hold on it, but
rather, we just get random local pieces of it. In contrast, quantum mechanics allows us
to manipulate objects that are global in the sense they are in superposition of possibly
many different states of {0, 1}n. This phenomenon is known as coherence, and it is one of
the fundamental pillars of quantum mechanics. We can then ask what improvements the
setting of quantum information can provide, more specifically, whether this global nature
of coherence can lead to substantial improvements in distinguishing vastly different support
sizes.

How much can coherence help property testing?

We show that coherence alone cannot help. A quantum analog of a flat probability
distribution is a subset state, namely, a quantum state of the form 1/

√
|S|
∑

i∈S |i⟩ for some
S ⊆ {0, 1}n. In words, this state is a uniform superposition over some set S. These states
are natural in their own right and they are commonly used in quantum complexity [VW16,
JW23]. More precisely, we prove the following result analogous to the classical case.

Theorem 1.2 (Failure of Testing with Coherence (Informal)). Even given 2n/16 copies, no
tester can distinguish between subset states of size 2n/8 from 2n/4 with probability better than
2−Θ(n).
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We obtain the above result from a more general theorem about subset states. In par-
ticular, we show that subset states are actually indistinguishable from Haar random states,
provided their support is not too small nor too big.

Theorem 1.3. Let H = Cd be a Hilbert space of dimension d ∈ N, µ be the Haar measure
on H, and S ⊆ [d] of size s. Then for any k ∈ N,∥∥∥∥∥

∫
ψ⊗kdµ(ψ)− E

S⊆[d],|S|=s
ϕ⊗kS

∥∥∥∥∥
1

≤ O

(
k2

d
+

k√
s
+
sk

d

)
,

where ϕS =
(

1√
s

∑
i∈S |i⟩

)(
1√
s

∑
i∈S⟨i|

)
.

The above theorem leads to a new construction of pseudorandom states (PRS), which is
an important primitive with broad applications in quantum cryptography [Kre21, KQST23],
resolving an open problem from the seminal work of Ji, Liu and Song [JLS18]. It also leads
to a new construction of pseudoentangled states [ABF+24]. At the technical level, the
proof Theorem 1.3 goes via spectral graph theory by analyzing some matrices in the so-
called Johnson association scheme [Del75].1

Given that both classical and quantum property testing models fail spectacularly for
our task, one can ask if there are other approaches to property testing.

How to go beyond the standard property testing models?

Very much like NP enhances P (and QMA enhances BQP) with adversarial proofs, one can
enhance the standard property testing models with proofs (or certificates, i.e., “structured”
proofs in this paper), namely, additional adversarial information intended to help testability.
Here, we will consider the power and limitations of proofs and also interaction with provers
in the context of property testing. One can imagine that a powerful untrustworthy entity
prepares samples (or copies) together with certificates so that a less powerful entity can be
convinced of a property, ideally using substantially fewer resources.

Classically, we show that even with exponentially many samples and interacting with
exponentially many independent public-coin AM provers for exponentially many rounds,
classical property testing still fails,

Theorem 1.4 (Failure of Classical Testing with Certificates (Informal)). Even given 2Ω(n)

samples of a classical flat distribution and interaction with 2Ω(n) AM provers in 2Ω(n) rounds,
no classical tester can estimate the support size up to factors 2Ω(n) with probability better
than 2−Θ(n).

At the heart of our proof of the above lower bound is a connection to fast mixing of high-
dimensional expanders [AJK+22]. This lower bound technique is quite general and holds
even given any promise (say intended to make verification easier) on families of certifying
distributions, which, in particular, captures the above public-coin AM lower bound with
multiple independent provers with multiple rounds of interactions.

In fact, we show in the classical case, for distinguishing flat distributions of different
support sizes, the proof provides no power—an optimal strategy for the honest provers is
just to provide more samples by proofs.

1These matrices also naturally arise in the study of complete high-dimensional expanders.
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Theorem 1.5 (Classical Certification Offer No Advantage (Informal)). Given any public-
coin AM protocol of communication cost of p bits, let the sample complexity distinguishing
flat distribution of support size s and 2s with a constant advantage be t. Let t′ be the sample
complexity without proofs. Then, p+ t ≥ Ω(t′).

In sharp contrast to the classical case, the presence of polynomially many flat adversarial
certificates (i.e., subset states) can dramatically reduce the number of copies for a property
to be testable showing that coherence can also be extremely powerful.

Theorem 1.6 (Effective Quantum Certified Testing (Informal)). With just polynomially
many (i.e., nO(1)) copies and subset state proofs (i.e., certificates of flat amplitudes), a tester
can with high probability either approximate the support size of a subset state of arbitrary
size, or detect that the certificates are malicious.

Note that the above model corresponds to a QMA type tester with structured proofs
(subset states in this case). It is natural to ask if the same result can be achieved with a
general (adversarial) proof instead of assuming additional structure on the proofs. Surpris-
ingly, the answer is an emphatic no, and this holds for any quantum property whatsoever.
More precisely, we show the following severe information theoretic limitation on property
testing with a general proof.

Theorem 1.7 (Informal). A general (adversarial) proof cannot improve quantum property
testing. More precisely, a general quantum proof can be replaced by at most polynomially
many extra input states.

Theorem 1.7 is obtained using the de-Merlinization ideas of Aaronson [Aar06, HLM17],
so we do not claim technical novelty, but rather just make explicit their surprising impli-
cation to quantum property testing with a general proof. We point out that this result is
an information theoretic result since the above process of replacing a proof can incur an
exponential increase in the running time of a tester.

We also show how the study of property testing with structured proofs, sometimes even
with very strong promises, can have interesting consequences to quantum-to-quantum state
transformation lower bounds. One example of a quantum-to-quantum state transformation
lower bound that can be deduced from our work is the following.

Theorem 1.8 (Hardness of Absolute Amplitudes Transformation (Informal)). Any trans-
formation that takes k copies of an arbitrary n-qubit quantum state |ψ⟩ =

∑
x∈{0,1}n αx|x⟩

and produces a single n-qubit output state at least 0.001 close to
∑

x∈{0,1}n |αx| |x⟩ requires
k = 2Ω(n).

We also discuss how the study of quantum property testing has implications to dis-
entangler lower bounds in Section 9. This gives a concrete approach to attack Watrous’
disentangler conjecture [ABD+08].

This paper is organized as follows. In Section 1.1, we survey related work on quantum
and classical property testing. In Section 1.2, we provide more details on the connection of
our results with pseudorandomness and pseudoentanglement. In Section 2 and Section 3, we
recall basic notation and terminology, and formally introduce some of the property testing
models studied in this work. In Section 4, we give an overview on some of our technical
results explaining, in particular, the role of the spectral analysis in the Johnson scheme
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and the use of fast mixing of high-dimensional expanders mentioned above. In Section 5,
we establish the limitations of coherence, proving Theorem 1.2 and Theorem 1.3. We also
provide additional results on indistinguishability of ensemble of quantum states that is not
via Haar random states. In Section 6, we show the limitations of testing classical distri-
butions leading to Theorem 1.4 and Theorem 1.5. In Section 7, we show that a general
proof cannot improve quantum property testing leading to Theorem 1.7. In Section 8, we
show that subset state proofs can substantially improve testability leading to Theorem 1.6.
In Section 9, we conclude with a description of how quantum property testing complexity
relates to standard computational complexity, and to problems with quantum input.

1.1 Related Work on Property Testing

There is a vast body of work studying property testing both in the classical and quan-
tum settings, e.g., see the surveys [MW16, Gol17, Can20]. In the quantum setting, prop-
erty testing of oracles has been more extensively investigated. There is by now a di-
verse and powerful set of query lower bound techniques which includes the polynomial
method [BBC+01], adversary method [Amb00], generalized adversary method [HLS07], and
others [AA18, AKKT20, ABK+21]. In the area of property testing of oracles, the analogous
problem to testing support size is known as approximate counting. Approximately counting
the weight of a classical oracle with a quantum QMA proof was considered by Aaronson et
al. in [AKKT20]. They focused on distinguishing oracle weight w from 2w and established
strong lower bounds using Laurent polynomials. They also considered the setting without
proofs, but with access to subset states encoding the support of the classical oracle or access
to a unitary that can produce it, also obtaining lower bounds. Subsequently, Belovs and
Rosmanis [BR20] established lower bounds for approximate counting in the setting without
proofs in the regime w versus (1+ε)w for small ε ∈ (0, 1). In [DGRMT22], Dall’Agnol et al.
investigate the power of adversarial quantum proofs in the study of property testing of uni-
taries. More recently, Weggemans [Weg24] showed additional lower bounds for testing some
unitary properties with proofs and advice. The literature on property testing of quantum
states rather than oracles (or unitaries) seems to be much sparser.

Property testing of classical probability distributions has been extensively studied [R+10,
Val11, Rub12, Can20, Can22]. The case of testability of support size of distributions, or
closely related notions such as entropy, uniformity, essential support, etc, are very natural,
and they have been investigated in many works, including for flat distributions. Valiant and
Valiant’s Θ(N/ logN) bounds on testing support size of general distribution of domain size
N is widely considered as a cornerstone of the area [VV11].

The notion of proofs is pervasive in theoretical computer science, and it was also studied
in many forms in property testing. In [CG18], Chiesa and Gur investigate the power of
adversarial certificates for property testing of probabilities distributions. They considered
analogues of NP and MA, where certificates are bit strings. They also considered analogues
of single prover interactive proofs AM and IP. They show that their corresponding NP, MA,
and AM models can at most provide a quadratic advantage in general, whereas IP can give
an exponential improvement. Following Chiesa and Gur’s work, there are several works
focusing on the upper bounds on property testing of general distribution including support
size for various interactive proof models [HR22, HR23]. Here in our classical lower bounds,
we consider multiple provers, whose certificates are probability distributions satisfying any
desired (convex) promise intended to help testability (see Section 3 for the precise details).
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In particular, we consider interaction with multiple independent AM provers. Our technique
based on fast mixing of high-dimensional expanders yields tight lower bounds.

1.2 Quantum Pseudorandomness from Our Results

We now explain the implications of Theorem 1.3 above for quantum pseudorandomness and
pseudoentanglement. We recall some of the context about these concepts along the way.

Pseudorandom States. Pseudorandom quantum states (PRS) are a keyed family of
quantum states that can be efficiently generated and are computationally indistinguishable
from Haar random states, even when provided with polynomially many copies. PRSs have
a wide range of applications including but not limited to statistically binding quantum bit
commitments [MY22b] and private quantum coins [JLS18]. Notably, for certain applica-
tions like private quantum coins, PRSs represent the weakest primitive known to imply
them. Moreover, PRSs imply other quantum pseudorandom objects, such as one-way state
generators (OWSGs) [JLS18, MY22a] and EFI pairs (efficiently samplable, statistically far
but computationally indistinguishable pairs of quantum states) [BCQ23, MY22b]. Although
all the existing PRS constructions rely on quantum-secure pseudorandom functions (PRFs)
or pseudorandom permutations (PRPs), PRSs may be weaker than PRFs [KQST23].

Since the initial proposal of pseudorandom states [JLS18], various constructions have
been investigated [BS19, AGQY22, BS20, ABF+24, BBSS23]. Randomizing the phase was
essential in the security proofs for all of these constructions. It is then natural to ask if it is
possible to construct PRS without varying the phases, and indeed, Ji, Liu, and Song raised
this question and conjectured that PRS can be constructed using subset states.

Consider a n-qubit system, represented by a 2n dimensional Hilbert space. For any
function t(n) = ω(poly(n)) and t(n) ≤ s ≤ 2n/t(n) and k = poly(n), the distance between
k copies of a Haar random state and k copies of a random subset state of size s is negligible
as per the above theorem. This range for the subset’s size is tight, as otherwise efficient
distinguishers exist between copies of a Haar random state and a random subset state.

An immediate corollary of Theorem 1.3 above is the following:

Corollary 1.9 (Pseudorandom States). Let {PRPk : [2n] → [2n]}k∈K be a quantum-secure
family of pseudorandom permutations. Then the family of states

{
1√
s

∑
x∈[s]|PRPk(x)⟩

}
k∈K

is a PRS on n qubits for t(n) ≤ s ≤ 2n/t(n) and any t(n) = ω(poly(n)).

Tudor and Bouland [GTB23] indepdentently discovered a subset state PRS construction.
Their analysis uses representation theory.

Pseudoentanglement. A closely related notion to the PRSs is that of pseudoentangled
states studied recently by [ABF+24]. Here we call a PRS h(n)-pseudoentangled if for any
state |ϕ⟩ from the PRS, |ϕ⟩ in addition satisfies that its entanglement entropy across all cut
is O(h(n)).2 Note that for a Haar random state, the entanglement entropy is near maximal
across all cuts [HLW06]. It’s observed in [ABF+24] that a subset state with respect to set S

2In [ABF+24], another notion was considered. Roughly speaking, a pseudoentangled state ensemble
consists of two efficiently constructible and computationally indistinguishable ensembles of states which
display a gap in their entanglement entropy across all cuts.
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has entanglement entropy at most O(log |S|) across any cut for some function h(n) : N → N,
since the Schmidt rank of a subset state is at most |S| across any cut. Therefore the subset
states with small set size are good candidates for pseudoentangled states, which they left as
an open problem. As a corollary to our PRS result regarding subset state, we resolve this
open problem.

Corollary 1.10 (Pseudoentangled States). Let PRPk : [2n] → [2n] be a quantum-secure
family of pseudorandom permutations. For any h(n) = ω(log n) and h(n) = n − ω(log n),
we have the following h(n)-pseudoentangled state from subset state of size s = 2h(n), 1√

s

∑
x∈[s]

|PRPk(x)⟩


k∈K

.

For a PRS, it is easy to see that if for some cut the entanglement entropy of a state
|ϕ⟩ is O(log n), then |ϕ⟩ can be distinguished from Haar random states with polynomially
many copies using swap test. In this sense, the above pseudoentangled state construction is
optimal.

2 Preliminaries

General. We adopt the Dirac notation for vectors representing quantum states, e.g.,
|ψ⟩, |ϕ⟩, etc. All the vectors of the form |ψ⟩ will be unit vectors. Given any pure state
|ψ⟩, we adopt the convention that its density operator is denoted by the Greek letter with-
out the “ket”, e.g. ψ = |ψ⟩⟨ψ|. The set of density operators in an arbitrary Hilbert space H
is denoted D(H), and the set of pure states is denoted by S(H). For a mixed state denoted
by capital letters, e.g., Ψ,Φ, we quite often treat it as a set of states together with some
underlying distribution on the set. For mixed state Ψ, there can be many different ways to
express it as a distribution on pure states. Normally, we fix some explicit set that will be
clear from the context. So Ψ,Φ will have both the set interpretation and the density matrix
interpretation. The Haar measure is referred to the uniform measure on the unit sphere of
Cd. For Hermitian matrices A,B, we adopt the notation A ⪯ B or B ⪰ A to denote the
Loewner order, i.e.,

A ⪯ B ⇐⇒ B ⪰ A ⇐⇒ ⟨ψ|B −A|ψ⟩ ≥ 0,∀ψ.

Given any matrix M ∈ Cn×n denote by ∥M∥1 the trace norm, which is the sum of
the singular values of M . The trace distance between two quantum states σ, ρ, denoted
D(σ, ρ) := ∥σ−ρ∥Tr is ∥ρ−σ∥1/2. Two states with small trace distance are indistinguishable
to quantum protocols.

Fact 2.1. If a quantum protocol accepts a state ϕ with probability at most p, then it accepts
ψ with probability at most p+ ∥ϕ− ψ∥Tr.

We write x ≲ y to denote that there is a small constant c ≥ 1, such that x ≤ cy. For any
set S, let A(S, k) := {(i1, i2, . . . , ik) ∈ Sk : ij ̸= ij′ for j ̸= j′}. We also adopt the notation
Sn for the symmetric group. For two disjoint sets A,B, we use A⊔B to denote their union,
emphasizing that A and B are disjoint.
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Let nk := n(n− 1) · · · (n− k + 1). A simple calculation reveals that for k = O(
√
n),

nk

(n− k + 1)k
− 1 ≤

(
n+ k − 1

n− k + 1

)k
− 1 = O

(
k2

n

)
.

We will use this bound without referring to this calculation. Given any pure quantum state
ρ over systems A,B, the entanglement entropy over the cut A : B is the von Neumann
entropy of the reduced density matrix of system A (or B), i.e., −Tr(ρA log ρA).

Entropy and KL-divergence. Consider some discrete space Ω and a probability measure
γ over Ω. If the random variable X is drawn from γ, we denote it by X ∼ γ. We let lnx
and log x stand for the natural logarithm of x and the logarithm of x to base 2, respectively.
For any distribution γ over some discrete space Ω, the entropy function

H(γ) = E
x∈Ω

γ(x) log
1

γ(x)
.

Recall that the Kullback-Leibler divergence (KL-divergence) between two distributions
µ0, µ1 over Ω is defined by the following formula

KL(µ0 ∥µ1) =
∑
x∈Ω

µ0(x) log
µ0(x)

µ1(x)
.

If two random variables X0, X1 obey µ0 and µ1, respectively, we also use KL(X0 ∥X1) to
denote the KL-divergence between the two distributions. The KL-divergence satisfies the
following chain rule:

KL(X0Y0 ∥X1Y1) = KL(X0 ∥X1) + E
x∼X0

[
KL

(
Y0 | X0 = x

Y1 | X1 = x

)]
.3

Flatness. A distribution µ is called flat if it is uniform over its support. There is one
natural way to encode a classical distribution over a discrete domain X into a pure quantum
state over the Hilbert space CX . That corresponds to the so-called subset state.

Definition 2.2 (Subset States/Flat States). We say that |ψ⟩ ∈ Cd is a subset state (or,
equivalently, a flat state) if |ψ⟩ is the uniform superposition over some subset S ⊆ [d],

|ψ⟩ = 1√
|S|

∑
i∈S

|i⟩.

3 Property Testing Models

We now formally state some definitions and models for property testing we will use. Note
that the definitions are made focusing on information theoretic measures like sample com-
plexity. Some remarks on time complexity will be discussed in the final section.

3Here, we use the fraction-like notation to also denote the KL-divergence for aesthetics, as we are com-
paring two conditional distributions. The numerator in the fraction-like notation corresponds to the first
argument in the standard notation.
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Classical Property Testing Models. We start with the classical setting. In the property
testing for classical distribution, one is given an unknown probability distribution ν where
the only way to access ν is to draw independent samples. The goal is to test whether the
unknown distribution ν satisfies certain property, e.g., whether ν has large support size or
not.

Let ∆d be the probability simplex in Rd, i.e.,

∆d :=

{
(p1, . . . , pd) ∈ Rd :

d∑
i=1

pi = 1 and p1, . . . , pd ≥ 0

}
.

Analogously, for a finite set S, we denote by ∆S the probability simplex in RS . Recall that
a property of classical probability distributions is defined as follows.

Definition 3.1 (Property of Classical Distributions). A property is any family of probability
distributions P = ⊔dPd where Pd ⊆ ∆d.

Definition 3.2 (Standard Classical Property Testing Model). For d ∈ N, let k = k(d) :
N → N, 1 ≥ a > b ≥ 0. A property P = ⊔Pd belongs to propBPPa,b[k] if there exists a
verifier V such that for every ν ∈ ∆d,

(i) if ν ∈ Pd, then V with k independent samples from ν accepts with probability at least
a, and

(ii) if ν ∈ ∆d is ε-far in statistical distance from Pd, then V with k independent samples
from ν accepts with probability at most b.

Even though we use propBPP in our notation for the model, we just take the “bounded-
error” and “probabilistic”, there is nothing polynomially bounded here. The sample com-
plexity can be unbounded and the running time can be unbounded. This is a somewhat
common abuse of notation to avoid introducing too many notations.

Next, we proceed to discuss the classical property testing model enhanced with classical
certificates. In the most standard notion of the Merlin-Arthur (MA) type proof, fix some
property P, one expect that for any ν ∈ Pd, there is an honest proof π ∈ {0, 1}p that
convince the verifier to accept with high probability after making k samples. On the other
hand, for ν ∈ ∆d far from P, no proof should fool the verifier to accept with high probability.

Definition 3.3 (Classical Property Testing with MA Proofs). For d ∈ N, let k = k(d), p =
p(d) : N → N, 1 ≥ a > b ≥ 0. A property P = ⊔Pd belongs to propMAa,b[k, p] with respect
to certificates set S = {0, 1}p if there exists a verifier V such that for every ν ∈ ∆d,

(i) if ν ∈ Pd, then there exist π ∈ S such that

Pr
x1,...,xk∼ν⊗k

[V (x1, . . . , xk, π) accepts] ≥ a,

(ii) if ν is ε-far from Pd in statistical distance, then for every π ∈ S,

Pr
x1,...,xk∼ν⊗k

[V (x1, . . . , xk, π) accepts] ≤ b.

A much stronger notion usually referred to as the public-coin Arthur-Merlin (AM) model,
in its greatest generality, involves m provers and r rounds of communication. In each round,
Arthur sends m independently uniformly random bit strings of length p to each of the
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m Merlins who have no information about each other’s communication, and each Merlin
responds with a single bit (without loss of generality). After the r rounds of communication,
Arthur should be able to decide whether the unknown distribution ν ∈ P or far from it.
Any such AM protocol Π gives rise to some distribution on the communication transcript
π ∈ {0, 1}rm(p+1) between Arthur and Merlins, satisfying that in each round, the random bits
send are uniformly random; and the communications with each Merlin are independent of
each and only depends on communication history between the current Merlin and Arthur.
Fix any valid AM protocol Π, we can let µΠ ∈ ∆{0,1}rm(p+1) be the distribution on the
communication transcript generated by Π.

Definition 3.4 (Classical Property Testing with AM Proofs). For d ∈ N, let k = k(d),m =
m(r), p = p(d), r = r(d) : N → N, 1 ≥ a > b ≥ 0. A property P = ⊔Pd belongs to
propAM(m, r)a,b[k, r(mp+m)],

(i) if ν ∈ Pd, there exists a r-round, m-prover, AM-protocol Π, where in each round Arthur
can send p uniformly random bits and get 1 bit answer, such that

Pr
x1,...,xk∼ν⊗k,π∼µΠ

[V (x1, . . . , xk, π) accepts] ≥ a,

(ii) if ν is ε-far from Pd in statistical distance, for any r-round, m-prover, AM-protocol Π,
where in each round Arthur can send p uniformly random bits and get 1 bit answer,

Pr
x1,...,xk∼ν⊗k,π∼µΠ

[V (x1, . . . , xk, π) accepts] ≤ b.

Analogously, we can define the private-coin Arthur Merlin model, whose more famil-
iar name is the interactive proof system (IP). Consider propIP(m, r)a,b[k, p] which is like
propAM(m, r)a,b[k, p], wherein the verifier has private random coins. Consequently, in each
round, the verifier’s message can depend on the private coin and the communication tran-
script so far. Abbreviate propIPa,b[k, p] = propIP(1, poly(n))a,b[k, p], the standard single
prover, polynomial-rounds interactive proofs.

The principle of our notations is that the parenthesis ( ) are for the parameters inherent
to the proof system, including number of provers and number of rounds of communication
allowed, in the given order; while the square brackets [ ] are for the complexity-related pa-
rameters including number of samples, and the total communications between the provers
and the verifier, in the given order order; and finally the subscripts are for the complete-
ness and soundness parameters in the given order, that are very sometimes omitted for
completeness being 2/3 and soundness being 1/3.

Quantum Property Testing Models. We now move to the quantum setting. Recall
that S(Cd) denotes the set of pure states in Cd. First, we review the notion of properties
of quantum states.

Definition 3.5 (Property of Quantum States). A property is any family of subsets P = ⊔dPd
where Pd ⊆ S(Cd).

The standard quantum property testing model is defined as follows.

Definition 3.6 (Standard Quantum Property Testing Model). For d ∈ N, let k = k(d) :
N → N, 1 ≥ a > b ≥ 0. A property P = ⊔Pd belongs to propBQPa,b[k] if there exists a
verifier V such that for every |ψ⟩ ∈ Cd,
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(i) if |ψ⟩ ∈ Pd, then V (|ψ⟩⊗k) accepts with probability at least a, and
(ii) if |ψ⟩ is ε-far from Pd in trace distance, then V (|ψ⟩⊗k) accepts with probability at most

b.

This model can be enhanced with certificates as follows.

Definition 3.7 (Quantum Property Testing with Certificates). For d ∈ N, let k = k(d), p =
p(d) : N → N, 1 ≥ a > b ≥ 0. A property P = ⊔Pd belongs to propQMA(m)a,b[k,mp] if there
exists a verifier V such that for every |ψ⟩ ∈ Cd,

(i) if |ψ⟩ ∈ Pd, then there exist m certificates |ϕ1⟩, . . . , |ϕm⟩ ∈ C2p such that V (|ψ⟩⊗k ⊗
|ϕ1⟩ ⊗ · · · ⊗ |ϕm⟩) accepts with probability at least a, and

(ii) if |ψ⟩ is ε-far from Pd (in trace distance), then then for every |ϕ1⟩, . . . , |ϕm⟩ ∈ C2p ,
V (|ψ⟩⊗k ⊗ |ϕ1⟩ ⊗ · · · ⊗ |ϕm⟩) accepts with probability at most b.

We will also consider the promised version of these models in which we have a pair of
properties (PYES,PNO). Then PYES will be the property of interest, and the item (ii) in the
above definitions will only care about distributions or states from PNO. For simplicity, one
can think of PNO as a subset of distributions or states ε-far from PYES. In reality, PNO is
often relaxed so that with respect to some probability measure µ, PNO has measure close to
1 being ε-far from PYES.

4 Technical Overview of Our Results

Our results intersect many fields: classical and quantum property testing; the power and lim-
itations of classical and quantum proofs; the nature of classical versus quantum information
via the role of coherence; cryptography via PRSs and entanglement via pseudoentanglement.
At the heart of some of our technical results are connections to spectral graph theory via
the Johnson scheme and also to fast mixing of high-dimensional expanders. We now give an
overview of some of these connections, and precise technical details are left to the relevant
sections.

4.1 Johnson Scheme and Limitations of Coherence

We will now discuss how subset states of the form |ϕS⟩, devoided of negative and imaginary
phases by definition, can be indistinguishable from Haar random states over the sphere Cd.
This indistinguishability happens whenever the subset size |S| is not too small nor too large.
In turn, this implies that subset states of vast different support sizes are indistinguishable
since they are both indistinguishable from Haar random states.

The key technical contribution is realizing a connection to the so-called Johnson scheme
and conducting a spectral analysis using it to obtain the above indistinguishability. Recall
that the matrices of the Johnson scheme J ([d], k) have rows and columns indexed by sets
from

([d]
k

)
. Moreover, given a matrix D on the scheme, each entry D(A,B) only depends on

the size of the intersection A∩B. For t ∈ {0, 1, . . . , k}, one defines a basis matrix Dt, whose
rows and columns are indexed by elements in

([d]
k

)
as follows

Dt(A,B) =

{
1 if |A ∩B| = t

0 otherwise
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for everyA,B ∈
([d]
k

)
. It follows that any matrix D in the Johnson scheme can be decomposed

as D =
∑d

t=0 αtDt, where each αt is a scalar. This association scheme has a variety of
remarkable properties,4 but we will be mostly concerned with the spectral properties of Dt.

Now, we proceed to give an idea of how the Johnson scheme arises in the analysis. The
starting point is the well-known fact that the expectation over Haar random states

∫
ψ⊗kdµ

is equal to5(
d+ k − 1

k

)−1 1

k!

∑
π∈Sk

∑
i⃗∈[d]k

|⃗i⟩⟨π(⃗i)| ≈
(
d+ k − 1

k

)−1 1

k!

∑
π∈Sk

∑
i⃗∈A([d],k)

|⃗i⟩⟨π(⃗i)| =: Ψ̃,

where the last approximation assumes k ≪
√
d. Although the matrix on the RHS

is not in the Johnson scheme, note that its only non-zero entries have a fixed value
and occur on entries indexed by row (i1, . . . , ik) and column (j1, . . . , jk) if and only if
|{i1, . . . , ik} ∩ {j1, . . . , jk}| = k. This means that this matrix can be written as Dk ⊗ J ,
where J is a k!× k! all-ones matrix.

Next, we turn our attention to uniform average of subset states of a fixed size s. As
before, it will be convenient to work with tuples of distinct indices as

Φ̃ = E
S:|S|=s

 1

sk

∑
i⃗,⃗j∈A(S,k),

|⃗i⟩⟨⃗j|

 ,
and the approximation error is small provided k ≪

√
s. Note that

Φ̃((i1, . . . , ik), (j1, . . . , jk)) =
1

sk
Pr

|S|=s
[⃗i, j⃗ ∈ A(S, k)] =

1

sk

(
d−2k+t
s−2k+t

)(
d
s

) , (4.1)

where t = |{i1, . . . , ik} ∩ {j1, . . . , jk}|. Since s and k are fixed, this means that the entries
only depend on the size of the intersection of the set of elements in the tuples, and thus
Φ̃ =

∑k
t=0 αtDt ⊗ J , for scalars αt. To compute the trace distance between Ψ̃ and Φ̃

in order to conclude that these states are close, we rely on the spectral properties of the
Johnson scheme. We also show the indistinguishability of some ensembles with dense support
(see Section 5.4), but this time, it is not via indistinguishability from Haar.

4.2 Fast Mixing of High-dimensional Expanders and Classical Limitations

Suppose our goal is to distinguish flat distributions of support size s, the yes-case, from
those with support size w ≫ s, the no-case. Suppose these distributions are on [N ], where
N = 2n. We can imagine that we have a complete simplicial complex X = ∪wi=1X(i),
with X(i) =

(
[N ]
i

)
. Taking t independent samples from a flat distribution with support

S ∈ X(s) is approximately the same as taking a uniform subset of size t from S provided
t ≪

√
s. In the yes-case, each flat distribution, represented by a set S, has an associated

certifying distribution πS . We can think that we choose a set S ∈ X(s) uniformly at random
with its corresponding certificate. This naturally gives rise to a pair of coupled random
variables (S = S,Π = πS). Now sampling from Π induces a conditional distribution on

4It forms a commutative algebra of matrices under addition and matrix multiplication.
5A normalized version of the projector onto the symmetric subspace.
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S|Π; equivalently, we have a distribution µ on X(s). This possibly very sparsely-supported
distribution corresponds to how much we learned from the proof. Now, we take a uniformly
random subset T of size t from S. The connection to fast mixing of high-dimensional
expanders now emerges. We recall that the complete simplicial complex X is a very strong
HDX. A well known random walk on X is the Down walk Di→i−1, defined for every i ∈
{2, . . . , w}, as walk operator from X(i) to X(i− 1)

Di→i−1(A,B) =

{
1
i if A ⊆ B

0 otherwise

In this language, observe that T is distributed as µDs→s−1Ds−1→s−2 . . . Dt+1→t. The close-
ness of T to uniform on X(t) is given by how fast the down random walk mixes starting
with distribution µ on X(s). Roughly speaking, since sampling T as above is statistically
similar to sampling a uniform set from X(t), this means that the certificate was not very
informative, and this will allow us to deduce lower bounds on distinguishing the yes, and no
cases. We illustrate this fast mixing from µ on X(s) to close to uniform on X(t) in Fig. 1.

. . . . . .

. . . . . .

Down Random Walk

X(s) layer
(s-sized sets)

X(t) layer
(t-sized sets)

Figure 1: Mixing to uniform measure on X(t) with Down random walk starting from X(s). Gray vertices on top
indicate support of initial measure on X(s), whereas gray vertices on the bottom indicate the support on X(t).

It is easy to see that if µ was just a delta distribution on a single set S, then mixing
cannot happen. Therefore, we need to also ensure that sampling Π leaves us with enough
entropy on µ so that mixing happens. In trying to help the verification protocol as much as
possible, we can assume that the certifying distributions only come from a desired promised
convex set, and this proof technique is oblivious to this choice. In particular, we can consider
that the certifying distributions come from multiple AM provers and the lower bound still
applies.

4.3 Coherence Strikes Back via Certificates

As discussed above, coherence alone is not enough to imply distinguishability between subset
states of vastly different support size. In contrast, coherence in the form of additional
(adversarial) certifying subset states will enable us to give a multiplicative approximation
to the support size of an arbitrary subset state |ψS⟩ regardless of the size of S ⊆ {0, 1}n.

An honest prover will consider an arbitrary sequence of nested sets such that {0, 1}n =
S0 ⊇ S1 ⊇ S2 ⊇ · · · ⊇ Sℓ = S and |Si| / |Si−1| = 1/2 for every i ∈ [ℓ] (we assumed that |S|
is a power of two for convenience). For each Si, the prover will send multiple copies of |ϕSi⟩
and |ϕSc

i∩Si−1⟩. We show that with multiple purported copies of |ϕSi−1⟩, |ϕSi⟩, |ϕSc
i∩Si−1⟩ it

is possible to test if
|Si|
|Si−1|

=
1

2
± δ,
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or reject if the prover is dishonest. We illustrate the expected nested sequence of subset
states below.

|ϕS0⟩

|ϕS1
⟩

...

|ϕSℓ−1
⟩

|ϕSℓ
⟩ |ϕSc

ℓ∩Sℓ−1
⟩

|ϕSc
2∩S1

⟩

|ϕSc
1∩S0

⟩

Coherence allows us to recursively apply this with enough control on the errors so that
we obtain the telescoping conclusion

|S| = |S0|
|S1|
|S0|

|S2|
|S1|

· · · |Sℓ|
|Sℓ−1|

=

(
1

2
± δ

)ℓ
2n.

Since t is at most n, we obtain a non-trivial multiplicative approximation to |S| with δ =
1/poly(n).

5 Testing without Certificates: A Fiasco

In this section, we illustrate some natural examples of untestable quantum properties.

5.1 The Lower Bound Meta-Technique

To start, we review the generic lower bound technique on the power of a tester in distin-
guishing two collections of quantum states A and B, representing states with and without
certain abstract properties, respectively. If there is a tester that distinguishes between any
state in A from any state in B, then by linearity, it should distinguish any distributions
over states from A and B. In other words, it implies the distinguishability of ensembles.
By the contrapositive, if the distinguishability of ensembles fails for any pair of ensembles,
this means that there is no tester distinguishing A and B. This meta-technique for indistin-
guishability is standard in the quantum as well as the classical setting.6 The key innovations
are the ensembles for which we show indistinguishability results.

Lemma 5.1 (Pointwise Distinguishability Implies Ensemble Distinguishability). Let A,B ⊆
Cd and 1 ≥ a > b ≥ 0. If there exists a measurement M such that

∀|ϕ⟩ ∈ A, Tr(Mϕ⊗k) ≥ a, and,

∀|ϕ⟩ ∈ B, Tr(Mϕ⊗k) ≤ b.

6Suitably stated for probability distributions in the classical setting.
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Then for any distributions µA, µB on A and B, respectively, we have

Tr(MρA) ≥ a and Tr(MρB) ≤ b,

where ρA = EµAϕ⊗k and ρB = EµBϕ⊗k.

Proof. By linearity, we have

Tr(MρA) = EµA Tr(Mϕ⊗k) ≥ a,

where the last inequality follows from the assumption. An analogous computation establishes
that Tr(MρB) ≤ b, concluding the proof.

By the contrapositive of Lemma 5.1, one obtains the following lemma asserting that it
suffices to find indistinguishable ensembles to rule out the existence of a property tester.

Lemma 5.2 (Ensemble Indistinguishability Implies Pointwise Indistinguishability). Let
A,B ⊆ Cd. If there exist distributions µA, µB on A and B, respectively, such that

∥ρA − ρB∥1 < ε,

where ρA = EµAϕ⊗k and ρB = EµBϕ⊗k. Then there is no measurement M satisfying

Tr(Mϕ⊗k) ≥ a, ∀|ϕ⟩ ∈ A, and Tr(Mϕ⊗k) ≤ b, ∀|ϕ⟩ ∈ B,

with b− a ≥ ε.

5.2 Warm-ups: Product States v.s. Nonproduct States

Here, we show that testing productness, i.e., given a state |ψ⟩ determine if it’s a (multipartite)
product state or (1 − ε)-far from being a product state, is impossible. Based on the previ-
ous discussion, to rule out a property tester, one needs to come up with indistinguishable
ensembles. For example, consider the following two ensembles:

Ek1 = {|ψ⟩⊗k : |ψ⟩ ∈ S(Cd)};

Ek0 =
{ 1√

k!

∑
π∈Sk

|ψπ(1)⟩ · · · |ψπ(k)⟩ : |ψ1⟩, . . . , |ψk⟩

are the first k columns of a Haar random unitary U ∈ Cd×d}.

Note that states from the first ensemble are k-partite product, while states from the second
ensemble have small overlap with any product state. We consider the Haar measure on
states for Ek1 and the Haar measure on unitaries for Ek0 . Note that Eψ∈Ek

1
ψ and Eψ∈Ek

0
ψ

are both invariant under the action of U⊗k for any unitary U since the corresponding Haar
measures are invariant. By Schur’s lemma from representation theory [S+77], we have

E
ψ∈Ek

1

ψ = E
ψ∈Ek

0

ψ.

By Lemma 5.2, no tester has any advantage testing product states and those far from
being product using a single copy. We remark that it is known that insisting on perfect
completeness means accepting everything because the product states span the entire space.
This example rules out any other possible test giving up perfect completeness.
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5.3 Subset States v.s. Haar Random States

Testing productness is impossible with one copy, but is achievable with two copies of the
state [HM13]. In this section, we demonstrate a property impossible to test even with
polynomially many copies, that is subset states of fixed size. In particular, we show that
testing the size s of the subset is impossible by considering the naive ensembles for different
support size s, ℓ ∈ [N ]:

E1 =

{
ϕS =

1√
|S|

∑
i∈S

|i⟩ : |S| = s

}
,

E0 =

{
ϕS =

1√
|S|

∑
i∈S

|i⟩ : |S| = ℓ

}
.

The key technical result will be:

Theorem 5.3 (Theorem 1.3 restated). Let H = Cd be a Hilbert space of dimension d ∈ N,
µ be the Haar measure on H, and S ⊆ [d] of size s. Then for any k ∈ N,∥∥∥∥∥

∫
ψ⊗kdµ(ψ)− E

S⊆[d],|S|=s
ϕ⊗kS

∥∥∥∥∥
1

≤ O

(
k2

d
+

k√
s
+
sk

d

)
,

where ϕS =
(

1√
s

∑
i∈S |i⟩

)(
1√
s

∑
i∈S⟨i|

)
.

In the above theorem, the subset state is compared with Haar random states, which
by triangle inequality translates to a comparison between subset state of different subset
sizes. The theorem itself implies new construction of quantum pseudorandom states as
explained in the introduction. Note that the theorem is optimal in the following sense:
When the subset size s = O(poly(n)) is small, collision attacks illustrate that measuring
some subset state in the computational basis of support size s for O(

√
s) times, a collision

will be observed, that distinguishes subset state from Haar random state. When the support
size is large, in particular, if s = Ω(d/poly(n)), then the overlap between the subset state
and the uniform superposition of the computational basis will be significant, i.e., 1/poly(n).
Then with polynomially many copies, the subset state will be distinguishable from the Haar
random state.

As a corollary of Lemma 5.2 and Theorem 1.3, we have the following.

Theorem 5.4 (Failure of Standard Testing). Even given ⌈2n/16⌉ copies, no tester can distin-
guish between subset states of size ⌈2n/8⌉ from ⌈2n/4⌉ with probability better than O(2−n/16).

So for the task of distinguishing subset state of very different support size, even with
exponentially many copies, the advantage is still exponentially small.

Proof. Let d = 2n, k = ⌈2n/16⌉, s = ⌈2n/8⌉, and s′ = ⌈2n/4⌉. Set

A = {ϕS | S ⊆ [d], |S| = s} and B =
{
ϕS | S ⊆ [d], |S| = s′

}
.
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Let µA and µB be uniform distributions on A and B, respectively. By Theorem 1.3 and
triangle inequality, we obtain

∥ρA − ρB∥1 ≤
∥∥∥∥ρA −

∫
ψ⊗kdµ(ψ)

∥∥∥∥
1

+

∥∥∥∥∫ ψ⊗kdµ(ψ)− ρB

∥∥∥∥
1

≤ O

(
k2

d
+

k√
s
+
sk

d
+

k√
s′

+
s′k

d

)
≤ O

(
1

2n/16

)
,

where the last inequality follows from our choices of d,k,s, and s′. Now, applying Lemma 5.2
to ρA and ρB, we conclude the proof.

We now set off to prove Theorem 1.3. There will be three steps: 1. Give an approximant
of the Haar random states; 2. Give an approximant of the random subset state; 3. Show
that the two approximants are indistinguishable.

Approximate the Mixture of Haar Random States. First, let’s look at the Haar
random state. A well-known fact by representation theory gives an explicit formula for the
mixture of Haar random states, Ψ =

∫
ψ⊗kdµ, where µ is the Haar measure. For a detailed

proof, see for example [Har13].

Fact 5.5.∫
ψ⊗kdµ =

(
d+ k − 1

k

)−1

· 1

k!

∑
π∈Sk

∑
i⃗∈[d]k

|⃗i⟩⟨π(⃗i)|.

Instead of working with Ψ directly, we look at the operator Ψ̃ = ΠΨΠ, where Π is the
projection onto the subspace of

span{|⃗i⟩ : i⃗ ∈ A([d], k)} ⊆ H⊗k.

Recall that A([d], k) is the set of k-tuples of [d] without repeated elements. Immediately,

Ψ̃ =

(
d+ k − 1

k

)−1

· 1

k!

∑
π∈Sk

∑
i⃗∈A([d],k)

|⃗i⟩⟨π(⃗i)|. (5.1)

As long as k is small, we expect that Ψ ≈ Ψ̃. This is simple and known. For completeness,
we present a proof.

Proposition 5.6. ∥Ψ− Ψ̃∥1 = O(k2/d).

Proof. Consider the following decomposition of Ψ := Ψ̃ +R. Note that

R = (I −Π)Ψ(I −Π).
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It’s clear that Ψ̃ and R are both positive semi-definite, and Ψ̃R = 0. Therefore, the nonzero
eigenspaces of Ψ correspond to those of Ψ̃ and R, respectively. Consequently,∥∥∥Ψ− Ψ̃

∥∥∥
1
= 1− ∥Ψ̃∥1 = 1− dk

(d+ k − 1)k

= 1− d

d+ k − 1
· d− 1

d+ k − 2
· · · d− k + 1

d

≤ O

(
k2

d

)
.

Approximate the Mixture of Random Subset State. Next, we turn to random subset
states. Let Φ = E|S|=s ϕ

⊗k
S , and consider ΠΦΠ, but normalized.7 In particular,

Φ̃ = E
S:|S|=s

 1

sk

∑
i⃗,⃗j∈A(S,k),

|⃗i⟩⟨⃗j|

 .
Analogous to Proposition 5.6, we have

Proposition 5.7. ∥Φ− Φ̃∥1 = O(k/
√
s).

Proof. Let γ be the uniform distribution over subset S ⊆ [d] of size s,∥∥∥∥∥∥
∫
S

 1

sk

∑
i⃗,⃗j∈Sk

|⃗i⟩⟨⃗j| − 1

sk

∑
i⃗,⃗j∈A(S,k)

|⃗i⟩⟨⃗j|

 dγ

∥∥∥∥∥∥
1

≤
∫
S

∥∥∥∥∥∥ 1

sk

∑
i⃗,⃗j∈Sk

|⃗i⟩⟨⃗j| − 1

sk

∑
i⃗,⃗j∈A(S,k)

|⃗i⟩⟨⃗j|

∥∥∥∥∥∥
1

dγ ≤ O

(
k√
s

)
.

All that is left to do is to show that ∥Φ̃ − Ψ̃∥1 is small. Fix any i⃗, j⃗ ∈ A([d], k), and
let ℓ = ℓ(⃗i, j⃗) be the total number of distinct elements in the union of the elements of the
vectors i⃗, j⃗. Then the (⃗i, j⃗)’th entry of Φ̃ is

Φ̃(⃗i, j⃗) =
1

sk
Pr

|S|=s
[⃗i, j⃗ ∈ A(S, k)] =

1

sk

(
d−ℓ
s−ℓ
)(

d
s

) =
sℓ

sk · dℓ
. (5.2)

Comparing the Approximants.

Proposition 5.8. For any k ≪ s ≤ d, it holds that

∥Φ̃− Ψ̃∥1 = O

(
sk

d

)
.

Proof. Let

D = Φ̃− (d+ k − 1)k

dk
Ψ̃.

7Although in the case of Haar random state we didn’t normalize, this doesn’t really matter. Our choice
is for simplicity of proof.
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This factor is chosen so that D(⃗i, j⃗) = 0 for any i⃗ and j⃗ such that j⃗ = π(⃗i) for some
permutation π. By triangle inequality,

∥Φ̃− Ψ̃∥1 ≤ ∥D∥1 +
∥∥∥∥Ψ̃− (d+ k − 1)k

dk
Ψ̃

∥∥∥∥
1

,

where the second term is bounded by O(k2/d).
We turn to D. Let j⃗ ∼ i⃗ to denote that j⃗ is a permutation of i⃗. Note that for any i⃗ ∼ j⃗,

D(⃗i, ·) = D(⃗j, ·), and similarly D(·, i⃗) = D(·, j⃗). Therefore D = D̃ ⊗ J where J ∈ Ck!×k! is
the all 1 matrix and D̃ ∈ C(

[d]
k )×(

[d]
k ), s.t. for any A,B ∈

([d]
k

)
,

D̃(A,B) = D(⃗i, j⃗), i⃗, j⃗ contain A and B, respectively.

Next, decompose D̃ :=
∑k−1

t=0 αtDt, where in view of (5.2),

αt =
(s− k) · · · (s− 2k + t+ 1)

d · · · (d− 2k + t+ 1)
,

Dt(A,B) =

{
1 |A ∩B| = t,

0 otherwise.

Dt is the adjacency matrix for the well-studied generalized Johnson graphs [Del73]. In
particular, we will need the following fact (explained in Appendix).

Fact 5.9. For any 0 ≤ t ≤ k − 1, and for k = O(
√
d)

∥Dt∥1 ≲
(
d− k

k − t

)(
d

t

)
2k−t.

Assisted by the above fact, we can bound ∥D∥1 for sk = O(d) as below,

∥D∥1 = k!∥D̃∥1 ≤ k!

k−1∑
t=0

αt∥Dt∥1 ≲ k!

k−1∑
t=0

sk−t

d2k−t
· dk

t!(k − t)!
· 2k−t

=
k−1∑
t=0

(
2s

d

)k−t(k
t

)
=

(
1 +

2s

d

)k
− 1 ≲ O

(
2sk

d

)
.

Theorem 1.3 follows by triangle inequality on Propositions 5.6-5.8.

5.4 Indistinguishability of Support Size in the Dense Regime

We have discussed that subset state with small support of fixed size are information-
theoretically indistinguishable from Haar random states. This fact rules out property testing
distinguishing general states with support size s0 = ω(poly(n)) and s1 = 2n/ω(poly(n)).
Then one may hope that property testing for large support size (constant density) may be
possible.8 In this section, we adapt a similar proof to show that this is also impossible.

8In the sparse regime for s = O(poly(n)), one can learn the state.
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In particular, we consider the following two ensembles for parameters s, t, p ∈ (0, 1):

E1 =

{
ϕS =

1√
|S|

∑
i∈S

|i⟩ : |S| ≈ pd

}
,

E0 =

ϕS,T =
1√
2|S|

∑
i∈S

|i⟩ − 1√
2|T |

∑
j∈T

|j⟩ : |S| ≈ sd, |T | ≈ td, S ∩ T = ∅

 .

To be precise, the underlying distributions of the two ensembles are:
(i) For E1, sample state ϕS by letting i ∈ S w.p. p for all i ∈ [d] independently at random;
(ii) For E0, sample state ϕS,T by the following process: For each i ∈ [d] independently,

sample a uniformly random r ∈ [0, 1], then let i ∈ S if r < s; let i ∈ T if s ≤ r < s+ t.
Choose p, s, t ∈ (0, 1) to be some constant such that√

s

2
−
√
t

2
=

√
p. (5.3)

The choice is made so that states from the two ensembles have about the same overlap with
|µ⟩ =

∑
i∈[d]|i⟩/

√
d. Otherwise, comparing with |µ⟩ will be a valid attack distinguishing the

two ensembles. On the other hand, this overlap condition is the only thing matters: In E0,
there are positive part and negative part, it is totally fine to have both parts positive, the
analysis works equally well. Such examples explain in general why it is hard to test density
in the dense regime.

For concreteness, one can set s = 8p, and t = 2p in (5.3). The support size of a random
state from E1 will be pd ± εd almost surely for arbitrarily small constant ε > 0; while the
support size of a random state from E0 will be (s + t)d ± εd almost surely. Note that
s + t = 10p, i.e., states in E0 has 10 times larger support size than E1. A slight abuse of
notation, we also use E0, E1 to denote the mixed state for states of the average state E0, E1,
respectively. Our goal is to show that

∥E0 − E1∥ = negl(n).

Approximant of E1. We consider approximant of the average of state from E1,

E1 E ′
1 E ′′

1 .
Π flatten

Recall Π be the projection onto the subspace span{|⃗i⟩ : i⃗ ∈ A([d], k)}, then E ′
1 = ΠE1Π. In

the approximant E ′′
1 , we pretend that the “amplitudes” do not depend on |S|, in other words

we “flatten” the distribution that we sample the state. In particular,

E1 = E
S

|S|−k(∑
i∈S

|i⟩

)⊗k(∑
i∈S

⟨i|

)⊗k
 ;

E ′
1 = E

S

|S|−k ∑
i⃗,⃗j∈A(S,k)

|⃗i⟩⟨⃗j|

 ;

E ′′
1 = E

S

(pd)−k ∑
i⃗,⃗j∈A(S,k)

|⃗i⟩⟨⃗j|

 .
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We compare E1 and E ′
1 as follows

∥E1 − E ′
1∥ ≤ E

S
|S|−k

∥∥∥∥∥∥
∑
i⃗,⃗j∈Sk

|⃗i⟩⟨⃗j| −
∑

i⃗,⃗j∈A(S,k)

|⃗i⟩⟨⃗j|

∥∥∥∥∥∥
≤ O

(
E
S

√
k2

|S|

)
= O

(
k√
d

)
.

Next compare E ′
1 and E ′′

1 , we claim

∥E ′′
1 − E ′

1∥ ≤ O

(
k

d2/5

)
. (5.4)

Consider the interval L = pd ± d3/5. By Chernoff Bound, the probability that |S| ̸∈ L is
exp(−Ω(d1/5)). Then (5.4) is a direct conclusion from the following two bounds.

1. For S ∈ L,∥∥∥∥∥∥(|S|−k − (pd)−k)
∑
i⃗,⃗j∈Sk

|⃗i⟩⟨⃗j|

∥∥∥∥∥∥ = |S|k · |S|
k − (pd)k

(|S|pd)k

≤
(
1 +

k2

|S|

)((
1 +

1

pd2/5

)k
− 1

)

≤ O

(
k

d2/5

)
.

2. For S ̸∈ L,

∑
S:|S|̸∈L

Pr[S]

∥∥∥∥∥∥(pd)−k
∑
i⃗,⃗j∈Sk

|⃗i⟩⟨⃗j|

∥∥∥∥∥∥ ,
∑

S:|S|̸∈L

Pr[S]

∥∥∥∥∥∥|S|−k
∑
i⃗,⃗j∈Sk

|⃗i⟩⟨⃗j|

∥∥∥∥∥∥ ≤ exp(−Ω(d1/5)).

If follows that

∥E1 − E ′′
1 ∥ ≤ O

(
k

d2/5

)
.

For any i⃗, j⃗ ∈ A([d], k), compute the entry of E ′′(⃗i, j⃗) explicitly. Note the entry depends
only on ℓ = |⃗i ∪ j⃗|,

⟨⃗i|E ′
1 |⃗j⟩ = pℓ−k · d−k. (5.5)

Approximant of E0. We consider approximant of the average of state from E0 completely
analogously (and a lot more tedious) to E1,

E0 E ′
0 E ′′

0 .
Π flatten
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In particular,

E0 = E
S,T


 1√

2|S|

∑
i∈S

|i⟩ − 1√
2|T |

∑
j∈T

|j⟩

⊗k 1√
2|S|

∑
i∈S

⟨i| − 1√
2|T |

∑
j∈T

⟨j|

⊗k
 ;

E ′
0 = ΠE0Π;

E ′′
0 = Π

 E
S,T


 1√

2sd

∑
i∈S

|i⟩ − 1√
2td

∑
j∈T

|j⟩

⊗k 1√
2sd

∑
i∈S

⟨i| − 1√
2td

∑
j∈T

⟨j|

⊗k

Π.

The analysis would also be completely analogous to that of E1. We omit the calculations
here,

∥E0 − E ′′
0 ∥ ≤ O

(
k

d2/5

)
.

Now we compute the entry for E ′′
0 explicitly. Fix any i⃗, j⃗ ∈ A([d], k), let ℓ = ℓ(⃗i, j⃗) be

the total number of distinct elements in vectors i⃗ union j⃗. Let a := 2(ℓ− k), b := 2k− ℓ. So
a is the number of elements that appeared only in i⃗ or j⃗, while b is the number of elements
that appeared in both i⃗ and j⃗. Then

⟨⃗i|E ′′
0 |⃗j⟩ =

a∑
ℓ1=0

b∑
ℓ2=0

(
a

ℓ1

)(
b

ℓ2

)(
1√
2sd

)ℓ1+2ℓ2

sℓ1+ℓ2
(

−1√
2td

)a−ℓ1+2(b−ℓ2)
ta−ℓ1+b−ℓ2

=
a∑

ℓ1=0

b∑
ℓ2=0

(
a

ℓ1

)(
b

ℓ2

)(
s√
2sd

)ℓ1 ( 1√
2d

)2ℓ2 ( −t√
2td

)a−ℓ1 ( 1√
2d

)2(b−ℓ2)

=
a∑

ℓ1=0

(
a

ℓ1

)(
s√
2sd

)ℓ1 ( −t√
2td

)a−ℓ1 b∑
ℓ2=0

(
b

ℓ2

)(
1

2d

)b
=

(
s√
2sd

− t√
2td

)a(1

d

)b
=

(√
p

d

)a(
1

d

)b
=
pℓ−k

dk
. (5.6)

Indistinguishability of the Two Ensembles Note, E ′′
0 = E ′′

1 by (5.5) and (5.6). By
triangle inequality,

∥E0 − E1∥ ≤ O

(
k

d2/5

)
= negl(n).

5.5 Quantum and Classical Property Testing

Property testing for classical distribution can be viewed as a degenerated version of property
testing for quantum states. To make this point precise, we encode classical distributions as
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states and show that lower bounds on quantum property testing imply lower bounds for
property testing of classical distributions.

Let A ⊆ ∆N be a collection of probability distributions in RN . We say that |ψ⟩ has
classical shadow in A if |ψ⟩ =

∑N
i=1 αi|i⟩ satisfying (|α1|2 , . . . , |αN |2) ∈ A. This definition

generalizes to mixed states, i.e., ψ has classical shadow in A if ψ can be expressed as some
mixture of pure states where each pure state has a classical shadow in A. Now a further
generalization to reflect more than one “samples” from classical distribution, a general state
ρ has a classical k-shadow in A if for some distribution λ on the ℓ2-unit sphere of CN and
k ∈ N, the state ρ can be expressed as

ρ = E|ψ⟩∼λ (|ψ⟩⟨ψ|)⊗k ,

with every |ψ⟩ ∼ λ has a shadow in A. So quantum states with k-shadow of A corresponds
to the natural quantum counterparts for a mixture D of distributions in A from where k
samples will be drawn. Precisely, let Λ be the channel that measures each copy |ψ⟩⟨ψ| in
the standard computational basis. Then the effect of Λ is to make k samples from a random
distribution ν ∈ D.

Claim 5.10. If ρ has a classical k-shadow in A ⊆ ∆N , then

Λ(ρ) = Eν∼D

(
N∑
i=1

νi|i⟩⟨i|

)⊗k

, (5.7)

where D is some distribution on A.

Using Theorem 1.3 and Claim 5.10, we deduce the following lower bound.

Corollary 5.11 (Failure of Standard Classical Testing). Even given ⌈2n/16⌉ samples of
a flat distribution, no tester can distinguish between support size ⌈2n/8⌉ from ⌈2n/4⌉ with
probability better than O(2−n/16).

Proof. Consider two ensemble of subset states ρA and ρB with subset sizes ⌈2n/8⌉ and ⌈2n/4⌉,
respectively. From Theorem 1.3, we deduce that ∥ρA − ρB∥1 ≤ O(2−n/16). Note that Λ does
not increase the trace distance, so ∥Λ(ρA)− Λ(ρB)∥1 ≤ O(2−n/16) concluding the proof.

6 Testing with Classical Certificates: Another Fiasco

In this section, we discuss property testing for classical distribution in the presence of classi-
cal certificates. We deliberately choose the word certificates to contrast the notion of proofs
in the definition of propMA.

Our investigation in this section focuses on the concrete problem: establishing lower
bounds for certifying the support size, the classical counterpart to the subset state problem.
We consider the problem GapSupps,ℓ, that is to distinguish the following two ensembles:

Definition 6.1 (The Gap Support Size Problem). The GapSupps,ℓ = (Pyes,Pno), where

(YES) E1 = {uniform distribution on support S : S ⊆ [N ], |S| = s}
(NO) E0 = {uniform distribution on support S : S ⊆ [N ], |S| = ℓ}.

Since GapSupps,ℓ can be thought of as a special case of quantum state property due
to Section 5.5, we think N as some exponentially large quantity, and let n = logN .
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6.1 Lower Bounds on Classical Testing with Proofs via HDX Fast Mixing

Our main result in the section is the following.

Theorem 6.2 (Classical Indistinguishability for Subset Distribution with Certificates). For
some parameter s = ω(poly(n)), given any proof of length p and allowing t samples, then
the verifier can distinguish GapSupps,2s with an advantage at most

O

(√
tp

s
+
t2

s

)
.

Remark 6.3 (Optimality). The above lower bound is tight in general. To see this, note that
one obvious strategy that the honest prover can do is to send set T consisting of p elements
from the support of size s at the cost about p log(N/p) communication complexity. In the
yes case, the probability of seeing a collision with T sampling s/p elements is (1 − p/s)s/p;
while in the no case, the probability seeing a collision with T in the samples is (1− p/2s)s/p.
The two probabilities can differ by Ω(1).

Our proof relies on the connection to the fast mixing of high-dimension expander, which
is just a simplicial complex, i.e., a downward closed set system. A random Down walk from a
vertex v in a high-dimensional expander representing some set S roughly corresponds to make
a small number of samples of the flat distribution on S. Fast mixing on a high-dimension
expander roughly says that the Down walk from some vertex v at some high level mixes
very fast, in another words, if the number of samples is small, it looks like random samples
from a uniform distribution. To obtain the tight bound, it is crucial analyze precisely how
fast the Down walk mixes.

Proof. Suppose we are assisted with a proof of length p. For any string Π ∈ {0, 1}p, let FΠ

denote the set of S ∈ E1 such that the faithful prover will provide the proof Π. Now there
will be two situations, one with a faithful prover, one with the adversarial prover:
(Yes) Consider the YES distribution indicated by its support S chosen randomly from E1.

Let Π be the faithful proof associated with S. The verifier will sample t elements from
the distribution. Overall, the verifier observes X1, X2, . . . , Xt together with the proof
Π.

(NO) Suppose a uniformly random distribution indicated by its support S′ is chosen from
E0. The adversary will send a proof Π′ to the verifier with probability |FΠ′ |/

(
N
s

)
,

independent to S′. The verifier samples t elements from the uniform distribution on
S′ together with the adversary proof Π′. So the verifier sees Y1, Y2, . . . , Yt together
with an adversarial proof Π′.

Let ν1 and ν0 denote the distribution on samples together with the proofs that the
verifier sees in the YES and NO case, respectively.

Now, note that for t ≪ s, the probability that X1, X2, . . . , Xt consist some colli-
sion is O(t2/s). Therefore in YES case, we can alternatively think of the distribution of
X1, X2, . . . , Xt,Π, as follows
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Modified Faithful Process (To generate ν̃1 on X1, X2, . . . , Xt,Π):
(i) Sample Π with probability |FΠ|/

(
N
s

)
;

(ii) Sample S ∈ FΠ at random;
(iii) Sample a subset T ⊆ S of size t uniformly at random;
(iv) Let X1, X2, . . . , Xt be some uniformly random permutation τ on T .

ν ν̃.collisionless

The new distribution, denoted ν̃1, differs from the old ν1 in statistical distance by
O(t2/s). Analogously, consider the distribution on ν̃0 which differs from ν0 in statistical
distance at most O(t2/s) described below,

Modified Adversarial Process (To generate ν̃0 on Y1, Y2, . . . , Yt,Π′):
(i) Sample Π′ based on |FΠ′ |/

(
N
s

)
;

(ii) Sample R ∈ E0 uniformly at random;
(iii) Sample a subset S′ ∈ R uniformly at random of size s;
(iv) Sample a subset T ′ ⊆ S′ of size t uniformly at random;
(v) Let Y1, Y2, . . . , Yt be some uniformly random permutation τ ′ on T .

In the above description for ν̃0, step (iii) is redundant as sampling t-subset T ′ from an
s-subset S′ that itself is a random subset of R is the same as sampling a t-subset T ′ from
R directly. Furthermore, the overall distribution of T ′ is uniform over t-subset of [N ] (and
S′ will be a uniform s-subset of [N ]). This redundancy is introduced for the purpose of
analysis.

Therefore, ν̃1 corresponds to essentially what the verifier reads in the YES case, and ν̃0
corresponds to what the verifier reads in the NO case. Based on the discussion so far, to
prove our claimed bound in the theorem

∥ν0 − ν1∥ ≤
√
tp

2s
+O(t2/s),

it suffices to show

∥ν̃0 − ν̃1∥1 ≤
√
tp

2s
. (6.1)
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Now we justify the inequality (6.1).

2∥ν̃0 − ν̃1∥2
(1)

≤ KL(ν0 ∥ ν1) = KL(ΠTτ ∥Π′T ′τ ′)

(2)
= KL(Πτ ∥Π′τ ′) + E

π,σ
KL

(
T | Π = π, τ = σ

T ′ | Π′ = π, τ ′ = σ

)
(3)
= E

π
KL

(
T | Π = π

T ′ | Π′ = π

)
(4)
= E

π
KL

(
T | Π = π

T ′

)
(5)

≤ E
π

t

s
KL

(
S | π

S′

)
(6)

≤ tp

s
, (6.2)

where (1) uses Pinsker’s inequality, and note there is a natural bijection between Π, T, τ and
Π, X1, X2, . . . , Xt (analogously for Π′, T ′, τ ′ and Π′, Y1, Y2, . . . , Yt); (2) is by Chain rule for
KL-divergence; (3) holds because Πτ and Π′τ ′ have the same distribution and the random
permutation τ (τ ′) is independent from T,Π (T ′,Π′); (4) holds because in the adversary
case the proof is independent with T ; (5) invokes a divergence contraction result Lemma 6.4
that we explain later; and (6) holds because S′ is uniform over

(
[N ]
s

)
as S, and by definitions

of mutual information and KL-divergence,

E
π
KL((S | π) ∥S) = I(S; Π) ≤ H(Π) ≤ p.

The missing technical component for the above proof is the following divergence contrac-
tion lemma, which is studied in the theory of higher-dimensional expanders. In particular,
it is an application of the more general theorems proved in [CGM19, AJK+22].

Lemma 6.4 (Divergence contraction). Let µ0 be the uniform distribution over
(
[N ]
s

)
, and

µ1 be some distribution over
(
[N ]
s

)
. Consider the following random process for i ∈ {0, 1}:

(i) Sample S from µi,
(ii) Sample subset T of size t from S uniformly at random.

The above random process introduces a distribution λi. Then

KL(λ1 ∥λ0) ≤
t

s
·KL(µ1 ∥µ0). (6.3)

For completeness, we provide a self-contained proof using a language consistent with our
discussion so far, where (6.3) is replaced with a slightly weaker bound:

KL(λ1 ∥λ0) ≤
t

s− t+ 1
·KL(µ1 ∥µ0).

Note that for our application, t ≤ O(
√
s), thus, t/s and t/(s − t + 1) are essentially the

same. For the tighter bound, see [AJK+22, Thoerem 5].
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Proof. Consider the random variables X1, X2, . . . , Xs which are obtained by drawing a ran-
dom subset S from µ1, and then permute the elements by a random permutation τ . Similarly,
the random variables Y1, Y2, . . . , Ys will be obtained by first drawing a random subset S′ from
µ0, then randomly order the elements in the subset by τ ′. Note that

KL(X1X2 . . .Xs ∥Y1Y2 . . . Ys) = KL(τS ∥ τ ′S′)

= KL(τ ∥ τ ′) + E
σ
KL

(
S | τ = σ

S′ | τ ′ = σ

)
= KL(S ∥S′) = KL(µ1 ∥µ0),

where the second step follows the chain rule, and third step holds as the permutations τ, τ ′

are independent of S, S′. Analogously,

KL(X1X2 . . .Xt ∥Y1Y2 . . . Yt) = KL(λ1 ∥λ0).

By chain rule, for any ℓ ≤ s,

KL(X1X2 . . . Xℓ ∥Y1Y2 . . . Yℓ) =
ℓ∑
i=1

E
x∈A([N ],s)

KL

(
Xi | X<i = x<i

Yi | Y<i = x<i

)
.

Now we need the following claim.

Claim 6.5 (cf. Theorem 4 [AJK+22]). For any x ∈ A([N ], s) and 1 ≤ i ≤ s,

KL

(
Xi | X<i = x<i

Yi | Y<i = x<i

)
≤ 1

s− i+ 1
·KL

(
XiXi+1 . . . Xs | X<i = x<i

YiYi+1 . . . Ys | Y<i = x<i

)
. (6.4)

The proof of the claim is deferred to the appendix. With the claim, we can finish the
proof.

KL(λ1 ∥λ0) =
t∑
i=1

E
x∈A([N ],s)

KL

(
Xi | X<i = x<i

Yi | Y<i = x<i

)
.

≤
t∑
i=1

1

s− i+ 1
· E
x∈A([N ],s)

KL

(
XiXi+1 . . . Xs | X<i = x<i

YiYi+1 . . . Ys | Y<i = x<i

)

≤
t∑
i=1

1

s− i+ 1
·KL(X1X2 . . . Xs ∥Y1Y2 . . . Ys)

≤ t

s− t+ 1
·KL(µ1 ∥µ0).

In Theorem 6.2, the lower bound is stated for GapSupps,2s, the YES case corresponds to
the distribution of the smaller support size, and the NO case corresponds to the distribution
of the larger support size. The support size of the NO case is somewhat arbitrary, and one
can consider GapSupps,ℓ for ℓ > 2s, or simply GapSupps,N where the NO case is simply the
uniform distribution over [N ] (no ensemble at all). This a-priory makes the distinguishing
task easier, but the same analysis holds and results in the same asymptotic bound, i.e.,
allowing t samples it’s impossible to distinguish YES case from uniform distribution with
an advantage better than O(

√
tp/s+ t2/s).

One can also consider GapSupp2s,s, i.e., the NO case having the smaller support size.
This case is also captured by the same analysis. However, when the NO case has a smaller
support size, it admits a much stronger lower bound that trivializes the problem. We discuss
this case in Section 6.4.
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6.2 A Generalization: Testing with Structured Classical Certificates

Note that in our proof to Theorem 6.2, regardless of whether the proof Π associated with
each subset S is fixed or randomized, the analysis is exactly the same as long as (i) in the
modified faithful process, the joint distribution of the proof and the distribution indicated
by S are set correctly; (ii) in the modified adversarial process, the marginal distribution
of Π′ is set correctly. Therefore, our analysis is robust. We discuss the implication of the
robustness formally.

Stated in the most general way, our lower bound technique works for certificates coming
from any promised (intended to help testability) convex subset C of the probability simplex
∆S in RS , where S is an arbitrary finite set representing all the possible certificates. In
view of the proof to Theorem 6.2, Π can be any random variable depending only on the
distribution µ1 ∈ E1 to test. In other words, an element from ∆S may represent some
certificate on a YES input µ1. A certificate can be the proof from the prover in the case of
propMA model stated in Theorem 6.2, and can be the entire communication transcript in
the case of the (public coin) propAM model.

Starting from the trivial example, the delta-distributions on S = {0, 1}p, i.e., distribu-
tions supported on a single element in S. Such distributions correspond to the case where
for a fixed input, there is a fixed proof of length m. Therefore, we can let ∆MA

p denote the
set of delta-distributions on S,

∆MA
p = {singleton distribution ∈ ∆S : S = {0, 1}p} .

Allowing the convex hull of ∆MA, we obtain all distributions ∆S—indeed a trivial example.
This model captures MA proofs: Because for any MA protocol, in the yes case there is
a delta-distribution corresponding to the honest MA proof that will be accepted with high
probability. In the no case, no proof will be accepted with high probability. Therefore for any
mixed strategy from conv

(
∆MA), the verifier will reject with high probability. Consequently,

we can give an alternative definition of the MA type property testing model.

Definition 6.6 (Classical Property Testing with MA Type Certificates). Let k = k(d), p =
p(d) : N → N, 1 ≥ a > b ≥ 0. A property P = ⊔Pd belongs to propMAa,b(k, p) with respect
to certificates C = conv

(
∆MA
p

)
if there exists a verifier V such that for every µ ∈ ∆d,

(i) if ν ∈ Pd, then there exist µ ∈ C such that

Pr
x1,...,xk∼µ⊗k,y∼µ

[V (x1, . . . , xk, y) accepts] ≥ a,

(ii) if ν is ε-far from Pd (in statistical distance), then for every certificate µ ∈ C such that

Pr
x1,...,xk∼µ⊗k,y∼µ

[V (x1, . . . , xk, y) accepts] ≤ b.

Replacing conv
(
∆MA) in Definition 6.6 by any other convex set C ⊆ ∆p, one obtains C

type certificates. Then Theorem 6.2 can be stated in a more generalized way.

Theorem 6.7 (Indistinguishability for Subset Distribution with Structured Certificates).
For some parameter s = ω(poly(n)), given any certificates of type C ⊆ ∆p and allowing t
samples, GapSupps,2s with an advantage at most

O

(√
tp

s
+
t2

s

)
.
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We now instantiate C to certificates arising from a valid AM protocol—the communi-
cation transcripts. To illustrate, suppose Z = {0, 1}p where p = rn + r, and consider
r-round AM protocols where the verifier sends n uniformly random bits to the prover and
receives 1 answer bit at each round. A distribution µ on Z naturally defines random vari-
ables R1A1 . . . RrAr, where each Ri takes values in {0, 1}n and Ai ∈ {0, 1}, such that
Pr[(R1 = r1, A1 = a1, . . . , Rr = rr, Ar = ar)] = µ(r1, a1, . . . , rr, ar). The collection of
distributions encoding valid AM protocols of this form is given by

∆AM
p =

{
µ ∈ ∆Z :

∀i, r1, . . . , ri, (Ri |R1 = r1 . . . Ri−1 = ri−1 is uniform)

and (Ai | R1 = r1 . . . Ri = ri is fixed)

}
.

Analogous to the discussion in the last paragraph, taking conv
(
∆AM
p

)
captures the power

of AM provers.
For another more structured example, suppose S is equal to the Cartesian product

Z × · · · × Z with m copies, we can take C = conv
(
{µ⊗k | µ ∈ ∆Z}

)
. In words, C is

the convex hull of of i.i.d. distributions. Using this notation, we can for instance take
conv

(
{µ⊗m : µ ∈ ∆AM}

)
, or conv

(
{µ⊗m1

1 ⊗ · · · ⊗ µ⊗mℓ
ℓ : µ1, . . . , µℓ ∈ ∆AM}

)
. This can be

thought of as capturing AM with multiple independent provers. Analogously, propAM(m)
for multiple provers.

It then follows that

Corollary 6.8. For propAM tester with even unbounded independent provers and unbounded
rounds, to solve GapSupps,ℓ with a constant advantage, where ℓ > s, the sample complexity
t and the proof complexity p, must satisfy

t(p+ t) = Ω(s).

6.3 An IP Protocol

In the previous subsection, we proved a tight lower bound for GapSupp with classical certifi-
cates. The lower bounds holds even when allowing public-coin AM type certificates. In this
section, we point out that the public-coin restriction is important as there is a very efficient
private-coin AM tester, i.e., two-turn IP tester. This tester is adapted from [HR22].

Theorem 6.9 (cf. [HR22]). There is a private-coin AM tester, e.g. Algorithm 6.10, for
GapSuppN

3
, 2N

3
using O(1) samples and O(1) communication.

Algorithm 6.10: A Private-coin IP Tester for GapSuppN/3,2N/3
Input: Unknown distribution µ

Arthur:
(i) Make k samples from µ for some large enough constant k, denote the set of elements

sampled from µ by S;
(ii) Make k samples uniformly at random from [N ], denote the set R;
(iii) Send the set M := S ∪R to Merlin in a random order.

Merlin: Merlin return a subset M ′ ∈M such that M ′ =M ∩ suppµ

Accept if |M ′| ≤ 1.5k and S ⊆M ′.
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Proof. For large enough N , almost surely, the set M contains 2k elements. If the prover is
honest, M ′ = M ∩ suppµ. If suppµ = N/3, by chernoff bound, |M ′| ≤ |S| + |R|/2 with
probability at least 1− exp(−Ω(k)). This establishes the completeness case.

In the soundness case, suppµ ≥ 2N/3. Then with probability 1 − exp(−Ω(k)), |M ∩
suppµ| ≥ |S| + 7|R|/12 = 1.5k + k/12. To fool Arthur, Merlin needs to send |M ′| ≤ 1.5k,
thus with probability 1− exp(−Ω(k)),

∣∣(M ∩ suppµ) \M ′∣∣ ≥ k

12
.

However, the verifier has no information about which element in M ∩ suppµ is in S, that
is M ′ is determined by M ∩ suppµ and independent of S. Note that S is just a uniformly
random subset of M ∩ suppµ of size k. Thus, with probability at most exp(−Ω(k)), S ⊆
M ′. It concludes that in the soundness case, Arthur accepts with probability at most
exp(−Ω(k)).

Note that simply treating the quantum object subset state as a distribution, the above
protocol implies an IP protocol for testing the subset state with small support size.

6.4 One-sidedness of the GapSupp

So far, we considered the upper and lower bounds for GappSupps,ℓ, where s < ℓ. In words,
we wanted to test that the flat distribution has a small support. We now justify this choice.
In particular, suppose we want to test whether a given distribution has large support, e.g.,
consider GapSuppℓ,s for ℓ > s, then the proof does not improve the testability at all no
matter how long it is.

Theorem 6.11. Consider two ensembles of distributions for some parameters ℓ≫ s. Given
t = o(

√
s) samples from the distribution, there is no tester that can solve GapSuppℓ,s with

proof of arbitrary length.

Proof. Given any proof π, take a random distribution µL ∈ Fπ where L is the support of
µL. Let ν0 be the distribution on t samples that a tester sees when first sample µL ∈ Fπ,
then sample t elements from µL.

Consider an adversarial strategy. Given proof π, the adversary chooses µL ∈ Fπ; then
he chooses S ⊆ L with |S| = s. Provide the distribution µS ∈ E1 to the tester. Let ν1 be
the distribution of what tester sees when sample t elements from such experiment.

It’s easy to see that as long as t≪
√
s, ν0 is statistically close to ν1.

Note that this argument can be adapted even if we consider interactive proof rather than
the propMA model. Suppose there is some interactive proof type tester Π that accepts the
uniform distribution with high probability. Now for any distribution µS , where S is of small
support. As long as the sample complexity s≪

√
N is in the non-collision regime. There is a

trivial adversary strategy: Inductively, say at round t, τt is the transcript communicated be-
tween the verifier and the prover so far. Maybe the verifier will make a few additional sample
St ∼ µ and roll some dice Rt, and send message mt = mt(τt, R1, R2, . . . , Rt, S1, S2, . . . , St).
The adversary prover receiving mt would simply respond pretending the underlying distri-
bution is uniform.
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Corollary 6.12. To test uniformity, the sample complexity is Ω(
√
N) even in the PropIP

model.

7 Testing with a General Quantum Proof: Yet Another Fiasco

In Section 6, we discussed at length that for the GapSupp problem, assisted with a standard
MA type proof, or even some very general structured certificates which include AM type
proof, would not improve the testability unless the certificates are exponentially long.

One might ask how general such phenomenon is, if it holds for any property, and for
any certificates even structured ones. Our answer is two-fold: There are good news and
bad news. For MA type proof, in fact, for QMA type proof, the proof would not improve
the testability significantly for any property of interest. We prove that quantum proof does
not increase testability, and it subsumes the classical proof. This fact is adapted from the
de-Merlinization ideas of Aaronson [Aar06] and the follow-up work of Harrow et al. [HLM17].

Let us review some well-known facts on quantum information.

Fact 7.1 (Gentle Measurement Lemma [Win99]). Let ρ be a quantum state and 0 ⪯ Λ ⪯ I.
Then ∥∥∥∥∥ρ−

√
Λρ

√
Λ

TrΛρ

∥∥∥∥∥
2

Tr

≤
√
Tr(I − Λ)ρ. (7.1)

Fact 7.2 (Quantum Union Bound [Aar06]). Suppose M1 = {Λ1, I − Λ1},M2 = {Λ2, I −
Λ2}, . . . ,Mn = {Λn, I − Λn} are some 2-outcome POVM measurements, where Λi corre-
sponds to accept. Let ρ be some (mixed or pure) quantum state, such that

TrΛiρ ≥ 1− ε, i ∈ {1, 2, . . . , n}.

Apply M1,M2, . . . ,Mn to ρ sequentially, then

Pr[∃i, Mi rejects] ≤ n
√
ε.

Gap Amplification for propBQP,propQMA. We collect some facts on gap amplification
for propBQP and propQMA.

Theorem 7.3 (Gap amplification). For any 0 < α < β < 1, and ε ≥ 0 such that 1− 2ε >
β − α, let γ = β − α. Then,

propBQPα, β[k,w] ⊆ propBQP1−ε, ε

[
O

(
k

γ2
log

1

ε

)
, O

(
w

γ2
log

1

ε

)]
. (7.2)

propQMAα, β[k,w] ⊆ propQMA1−ε, ε

[
O

(
k

γ2
log

1

ε

)
, O

(
w

γ2
log

1

ε

)]
. (7.3)

For any 0 < ε < 1/2,

propQMA1−ε, ε[k,w] ⊆ propQMA1−t
√
ε, εt [kt, w]. (7.4)
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Proof. (7.2) is the standard amplification by running the tester multiple of times and apply
chernoff bound; and (7.3) is the standard amplification for QMA model by asking for more
copies of the state and longer proof using the fact that in the soundness case, no proof can
fool the verifier.

(7.4) is the amplification that use fresh copies of quantum states but reuse the quantum
proof. In particular, suppose T is a tester for propQMA1−ε,ε[k,w], then the new tester T ′ is
as follows

(i) Run T for t times, each time with a fresh k copies of the target state and reuse the
quantum witness.

(ii) Accept only if all the t run of T accepts.
Clearly the new tester T ′ uses kt copies of the state and asks for a witness of length w.
Suppose the given state |ψ⟩ ̸∈ P, then soundness of T ′ becomes εt by the soundness of T .
As for the completeness, it follows Fact 7.2, the quantum union bound, that a single T
rejects with probability at most ε, thus the t sequential run has at least one reject with
probability at most t

√
ε.

De-Merlinization for propQMA in the Small-soundness Regime. Next we show
that suppose the soundness is exponentially small in propQMA, then the quantum witness
can be removed.

Theorem 7.4 (Partial de-Merlinization). For any 0 < ε < 1, and 0 < δ < 1− ε,

propQMA1−ε, δ[k,w] ⊆ propBQP (1−ε)2

4
, 2δ·2

w

1−ε

[k]. (7.5)

Proof. Suppose we have a measurement M = {Λ, I − Λ} corresponding to a tester for
propQMA1−ε,δ[k,w]. Then we can write down the implications of what it means,
(Yes) If |ϕ⟩ ∈ P, then there is some |π⟩ ∈ C2w ,

Tr
(
Λ(ϕ⊗k ⊗ π)

)
≥ 1− ε. (7.6)

(No) If |ϕ⟩ ̸∈ P, then for any |π⟩ ∈ C2w ,

Tr
(
Λ(ϕ⊗k ⊗ π)

)
≤ δ. (7.7)

Call the register indicating the proof π as P , let e1, e2, . . . , e2w be the computational basis
for P , take

d := 2w, ρ := ϕ⊗k, Λi := ⟨ei|PΛ|ei⟩P , Λ̃ = E
i
Λi.

Let Π be the projector onto

H := span

{
|σ⟩ : Λ̃σ > 1− ε

2d

}
,

and Π⊥ denote the projector onto the subspace orthogonal to H. Immediately,

2d

1− ε
Λ̃ ⪰ Π. (7.8)
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We show that {Π, I −Π} is the ideal measurement for propBQP.
In the (Yes) case, we have the witness |π⟩ satisfying (7.6). Let

ρ̃ :=
Π⊥ρΠ⊥

TrΠ⊥ρ
.

Then,

1− ε

2d
≥ Tr Λ̃ρ̃ (By definition of Π⊥)

=

∑
iTrΛ(ρ̃⊗ |ei⟩⟨ei|)

d
(By definition of Λ̃)

=
TrΛ(ρ̃⊗ I)

d

≥ TrΛ(ρ̃⊗ π)

d
(I ⪰ π)

≥ TrΛ(ρ⊗ π)− ∥ρ⊗ π − ρ̃⊗ π∥Tr
d

. (By Fact 2.1)

Combining the above calculation with (7.6), we obtain(
1− ε

2

)2

≤ ∥ρ⊗ π − ρ̃⊗ π∥2Tr = ∥ρ− ρ̃∥2Tr ≤ TrΠρ,

where the last step follows the gentle measurement lemma Fact 7.1.
We now turn to the (No) case.

TrΠρ ≤ 2d

1− ε
Tr Λ̃ρ (By (7.8))

=
2d

1− ε
E
i
TrΛ(ρ⊗ |ei⟩⟨ei|)

≤ 2dδ

1− ε
. (By (7.7))

Since the verifier can construct Π based on M. That finishes our proof.

A Full De-Merlinization for propQMA. Putting the previous results together, one can
deMerlinize any propQMA tester.

Corollary 7.5 (Full de-Merlinization). For any 0 < α < β < 1, and ε ≥ 0 such that
1− 2ε > β − α, let γ = β − α. Then

propQMAα, β[k, p] ⊆ propBQP1−ε, ε

[
kp log p ·O

(
1

(β − α)2
log

1

ε

)]
. (7.9)

Proof. The theorem now follows (7.3)-(7.5) by setting the parameters properly. In particular,
choose some large enough constant C, set

γ = β − α, δ = C−2p−2, t =
Cp

2γ2
, W = O

(
p

γ2
log

1

δ

)
,
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Then

propQMAα, β[k, p]

⊆ propQMA1−δ, δ

[
O

(
k

γ2
log

1

δ

)
, W

]
(By (7.3) in Theorem 7.3)

⊆ propQMA 1
2
, δt

[
O

(
kt

γ2
log

1

δ

)
, W

]
(By (7.4) in Theorem 7.3)

⊆ propBQP 1
16
, 4δt2W

[
O

(
kt

γ2
log

1

δ

)]
. (By Theorem 7.4)

For large enough C, we have 4δt2W < 1/32. Now theorem follows as

propQMAα, β[k, p] ⊆ propBQP 1
16
, 1
32

[
O

(
kt

γ2
log

1

δ

)]
⊆ propBQP1−ε,ε

[
O

(
kt

γ2
log

1

δ
log

1

ε

)]
,

where the last inclusion is due to (7.2).

8 Testing with Structured Quantum Certificates: A Triumph

In the previous section, we announced the bad news that general QMA proofs would not
improve testability for any properties significantly. We now turn to the good news: With
naturally structured quantum certificates, one can increase the testability for testing subset
state of different sizes dramatically. This is in sharp contrast to the classical problem
GapSupp, as in Section 6.2, we proved that structured certificates in an abstract manner
as convex subset of ∆S gives almost no gain in terms of testability when the certificates is
short.

We focus on one natural restriction: Restricting the certificates to be subset states.
Namely, both honest and adversary prover can only send subset state. We define the corre-
sponding property testing model propQMAsubset(m)a,b[k, pm] analogously to Definition 3.7.

Definition 8.1 (Quantum Property Testing with Certificates). For d ∈ N, let k = k(d), p =
p(d) : N → N, 1 ≥ a > b ≥ 0. A property P = ⊔Pd belongs to propQMAsubset(m)a,b[k,mp] if
there exists a verifier V such that for every |ψ⟩ ∈ Cd,

(i) if |ψ⟩ ∈ Pd, then there exist m subset states |ϕ1⟩, . . . , |ϕm⟩ ∈ C2p such that V (|ψ⟩⊗k ⊗
|ϕ1⟩ ⊗ · · · ⊗ |ϕm⟩) accepts with probability at least a, and

(ii) if |ψ⟩ is ε-far from Pd (in trace distance), then then for any subset states
|ϕ1⟩, . . . , |ϕm⟩ ∈ C2p, V (|ψ⟩⊗k ⊗ |ϕ1⟩ ⊗ · · · ⊗ |ϕm⟩) accepts with probability at most
b.

This section aims to prove that (adversarial) flat quantum certificates allow us to obtain
a multiplicative approximation to the support size of a flat state. More precisely, we show
the following.

Theorem 8.2 (Effective Quantum Certified Testing). With just polynomially many (i.e.,
poly(n)) copies and certificates of flat amplitudes, a polynomial time quantum tester can,
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(i) either certify the support size of an arbitrary subset state (the target state) is s within
a (1± ε) multiplicative factor for any constant ε > 0,9

(ii) or detect that the certificates are malicious.

Note that it suffices to consider the case where there is only one copy of the target state.
We show that if the target state has the correct support size s, which is part of the proof, the
certificates are accepted with a probability exponentially close to 1; while if the prover tries
to fool the verifier that the target state has support size s which is ε-far from the correct one,
then the verifier will reject with a probability constant away from 1. Theorem 8.2 implies
that with polynomial size certificates (at least restricted), the ensembles studied in Section 5
are distinguishable, using even just a single copy of the state.

For simplicity, assume that 2n/s is a power of 2. Our testing strategy is simple. However,
a lot of care needs to be taken to handle the adversarial situation. Therefore, we start by
presenting the overall idea.

8.1 Proof Outline

Let ρ = ϕT be the target subset state with support T , for which we want to certify its
support size. The prover will send classical ℓ supposedly equal to n − log s. Furthermore,
the prover will be asked to provide for i = 1, 2, . . . , ℓ states ϕi supposedly equal to some
subset state ϕSi , such that

T = Sℓ ⊆ Sℓ−1 ⊆ · · · ⊆ S1 ⊆ S0 = [2n],

|Si| = 2|Si+1|, i = 0, 1, 2, . . . , ℓ− 1.

The task reduces to testing whether indeed the support of the given states halves each time.
This motivates a key technical lemma establishing that the support size of two subset states,
|ϕH⟩ and |ϕS⟩, satisfies S = |H|/2 . The intent is that S ⊂ H and |S| / |H| ≈ 1/2.

Lemma 8.3 (Support Halving Lemma (informal)). Suppose |ϕH⟩, |ϕS⟩, |ϕS′⟩ are subset
states satisfying

(i) |⟨ϕS |ϕS′⟩|2 = 1
poly(n) ,

(ii)
∣∣∣|⟨ϕH |ϕS⟩|2 − 1

2

∣∣∣ = 1
poly(n) ,

(iii)
∣∣∣|⟨ϕH |ϕS′⟩|2 − 1

2

∣∣∣ = 1
poly(n) .

Then, we have

|S|
|H|

=
1

2
± 1

poly(n)
.

It is evident how the above lemma will be used to design an algorithm to approximate
the support size of a subset state |ϕT ⟩. We will apply the support halving lemma iteratively.
Start with i = 0, S0 = {0, 1}n; for any i ≥ 0, Si+1 can be any subset satisfying T ⊂ Si+1 ⊂ Si
and

|Si+1|
|Si|

=
1

2
± 1

poly(n)
, (8.1)

9Or even any ε = Ω(1/poly(n)).
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which will be guaranteed using a test that implements Lemma 8.9. Then, we obtain the
telescoping multiplication

|Sℓ| ≈ |S0|
|S1|
|S0|

|S2|
|S1|

· · · |Sℓ|
|Sℓ−1|

=
1

2ℓ

(
1± 1

poly(n)

)ℓ
|S0| .

As long as the 1/poly(n) is small enough, (1 + 1/poly(n))ℓ = 1 ± ε. Therefore T = Sℓ has
size about 2n−ℓ.

To obtain good estimates on

⟨ϕSi , ϕSi+1⟩, ⟨ϕSi , ϕS′
i+1

⟩, ⟨ϕSi+1 , ϕS′
i+1

⟩

for i = 0, 1, 2, . . . , ℓ− 1, we will ask to prover to provide many copies of each of these subset
states. In particular, the prover should supply collections of copies of states

Φi,Ψi, i = 1, 2, . . . , ℓ,

where Φi corresponds to m copies of states ϕSi , and Ψi corresponds to m copies of states
ϕS′

i
. Supposedly, S′

i = Si−1 \Si. Then Chernoff bound tells us that with probability at most
exp(−Ω(m/poly(n))), the estimate differs from the actual correlation by at most 1/poly(n).
Hence choose m = poly(n) would suffice.

8.2 δ-tilted States and Symmetry Test

The first challenge to face is that once we are dealing with proofs that are supposed to supply
copies of the same states, we need to deal with the adversarial situation where the proofs
are not the same states. Here we bring the δ-tilted states and symmetry test from [JW23,
Section 4].

Definition 8.4 (δ-tilted states). A collection of states |ψ1⟩, |ψ2⟩, . . . , |ψk⟩ defined on a same
space is an δ-tilted state if there is a subset R ⊆ [k] such that |R| ≥ (1 − δ)k and for any
i, j ∈ R,

D(|ψi⟩, |ψj⟩) ≤
√
δ.

Furthermore, we call |ψi⟩ a representative state for any i ∈ R, and the subset {|ψi⟩ : i ∈ R}
the representative set.

The symmetry test are used to test if the collection of states Φ provided by the prover
are essentially the same, i.e., being δ-tilted, or not.

Algorithm 8.5: Symmetry Test
Input: Φ = {ϕ1, ϕ2, . . . , ϕm}, a collection of pure states for some even number m.

(i) Sample a random matching π within 1, 2, . . . ,m.
(ii) SwapTest on the pairs based on the matching π.

Accept if all SwapTests accept.

Theorem 8.6 (Symmetry Test [JW23]). Suppose Ψ is not an δ-tilted state. Then the
symmetry test passes with probability at most exp(−Θ(δ2m)). On the contrary, for 0-tilted
state Ψ, the symmetry test accepts with probability 1.
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For a collection of states Φ, one can view it as a mixed state, or simply a set. We will
take both perspectives. Next, we collect some facts about δ-tilted collection Φ. The first
one states that we can combine two δ-tilted states into one in the natural way.

Proposition 8.7 (Tensorization of tilted states [JW23]). If Ψ is an δ-tilted state and Φ is
a γ-tilted state, and |Ψ| = |Φ| = m. Then Ψ⊗ Φ is an (δ + γ)-tilted state, where

Ψ⊗ Φ = {ψi ⊗ ϕi : Ψ = {ψ1, ψ2, . . . , ψm},Φ = {ϕ1, ϕ2, . . . , ϕm}}.

The second fact states that the bahavior of δ-tilted states is like that of any representative
state. This fact has two folds: If Ψ is viewed as mixed states, Ψ is close to its representative
state in trace distance; if Ψ is viewed as sets, then concentration holds.

Proposition 8.8 ([JW23]). For any quantum algorithm A, let A(|ψ⟩) denote the probability
that A accepts |ψ⟩. Let Ψ be an δ-tilted state, and |ψ⟩ any representative state of Ψ. Then

|A(|ψ⟩)−A(Ψ)| ≤ 3
√
δ. (8.2)

Furthermore, when apply A to Ψ, let α be the fraction of accepted executions of A. Then

Pr[|α−A(Ψ)| ≥
√
δ] ≤ exp(−δ|Ψ|/2), (8.3)

and therefore,

Pr[|α−A(|ψ⟩)| ≥ 4
√
δ] ≤ exp(−δ|Ψ|/2). (8.4)

8.3 Subset Test

We now proceed to prove the support halving lemma, and present the subset test which will
help us test (8.1).

Lemma 8.9 (Support Halving Lemma). Let µ ∈ (0, 1) be a constant and δ ∈ (0, Cµ4),
where C > 0 is universal constant. Suppose |ϕH⟩, |ϕS⟩, |ϕS′⟩ are subset states satisfying

(i) |⟨ϕS |ϕS′⟩|2 ≤ δ,
(ii)

∣∣∣|⟨ϕH |ϕS⟩|2 − µ
∣∣∣ ≤ δ,

(iii)
∣∣∣|⟨ϕH |ϕS′⟩|2 − (1− µ)

∣∣∣ ≤ δ.

Then, we have

|S|
|H|

= (µ±O(δ1/4)).

Proof. Using the first assumption, we have

δ ≥ |⟨ϕS |ϕS′⟩|2 = |S ∩ S′|2

|S| |S′|
. (8.5)

The second assumption states that

δ ≥
∣∣∣|⟨ϕH |ϕS⟩|2 − µ

∣∣∣ = ∣∣∣∣∣ |S ∩H|2

|S| |H|
− µ

∣∣∣∣∣ ,
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in particular, it implies

µ− δ ≤ |⟨ϕH |ϕS⟩|2 =
|S ∩H|2

|S| |H|
≤ min

{
|H|
|S|

,
|S|
|H|

,
|S ∩H|
|H|

}
, (8.6)

since |S ∩H| ≤ min {|S| , |H|}. Similarly, from the third assumption

δ ≥
∣∣∣|⟨ϕH |ϕS′⟩|2 − µ

∣∣∣ = ∣∣∣∣∣ |S′ ∩H|2

|S′| |H|
− (1− µ)

∣∣∣∣∣
we obtain

(1− µ)− δ ≤ |⟨ϕH |ϕS′⟩|2 ≤ min

{
|S′|
|H|

,
|H|
|S′|

,
|S′ ∩H|

|H|

}
. (8.7)

Using bounds from Eq. (8.6) and Eq. (8.7) in Eq. (8.5), we get

δ

(µ− δ)((1− µ)− δ)
≥ |S ∩ S′|2

|H|2
≥ |S ∩ S′ ∩H|2

|H|2
. (8.8)

Let γ = |S ∩H| / |S| and γ′ = |S′ ∩H| / |S′|. From the second and third assumptions,
we have

1± 2δ =
|S ∩H|2

|S| |H|
+

|S′ ∩H|2

|S′| |H|

= γ
|S ∩H|
|H|

+ γ′
|S′ ∩H|

|H|

= γ
|(S \ S′) ∩H|

|H|
+ γ′

|(S′ \ S) ∩H|
|H|

+ (γ + γ′)
|S ∩ S′ ∩H|

|H|

= γα+ γ′β + (γ + γ′)
|S ∩ S′ ∩H|

|H|
= γα+ γ′β +O(

√
δ), (8.9)

where the O(
√
δ) bound follows from Eq. (8.8), and we set α = |(S \ S′) ∩H| / |H| and

β = |(S′ \ S) ∩H| / |H|. In view of (8.8) and (8.6), we have

α ≥ µ−O(
√
δ)

and similarly, using (8.8) and (8.7),

β ≥ (1− µ)−O(
√
δ).

Since 1 ≥ α + β and α, β ≥ 0, we decude that α = µ ± O(
√
δ) and β = (1 − µ) ± O(

√
δ).

Using (8.9) for the first equality, and since µ = Ω(δ1/4), and γ, γ′ ≤ 1,

1±O(
√
δ) = γα+ γ′β = γµ+ γ′(1− µ)±O(

√
δ) ≤ 1− µ(1− γ)±O(

√
δ),

we conclude that γ ≥ 1−O(δ1/4). From this, we get |S ∩H| = (1−O(δ1/4)) |S|. Using the
second assumption, we get

δ ≥

∣∣∣∣∣ |S ∩H|2

|S| |H|
− µ

∣∣∣∣∣ =
∣∣∣∣(1−O(δ1/4))2

|S|
|H|

− µ

∣∣∣∣ = ∣∣∣∣(1−O(δ1/4))
|S|
|H|

− µ

∣∣∣∣ ,
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or

O(δ) ≥
∣∣∣∣ |S||H|

− (1±O(δ1/4))µ

∣∣∣∣ ,
as desired.

Below is a formal description of the subset test that incorporates our setting and imple-
ments Lemma 8.9 as a test for (8.1). The parameter γ will be specified later.

Algorithm 8.10: SubSet Test
Input: Collections of states Φ1,Φ2,Ψ2, and a target density some constant µ ∈ (0, 1).
Supposedly, the three collections corresponds to some subset state ϕH , ϕS , ϕS′ , respectively.
Take the following steps:

(i) Partition the each of collections into two parts of equal size:

Φ1 = Φ′
1 ⊔ Φ′′

1, Φ2 = Φ′
2 ⊔ Φ′′

2, Ψ2 = Ψ′
2 ⊔Ψ′′

2.

(ii) Estimate |⟨ϕH | ϕS⟩|2: Applying m/2 swap tests on {Φ′
1} ⊗ {Φ′

2}. Let the fraction
of accepted pairs be α.

(iii) Estimate |⟨ϕH | ϕS′⟩|2: Applying m/2 swap tests on {Φ′′
1} ⊗ {Ψ′

2}. Let the fraction
of accepted pairs be β.

(iv) Estimate |⟨ϕS | ϕS′⟩|2: Applying m/2 swap tests on {Φ′′
2} ⊗ {Ψ′′

2}. Let the fraction
of accepted pairs be ζ.

Accept if all the inequalities hold: |(2α− 1)−µ| ≤ γ; |(2β− 1)− (1−µ)| ≤ γ; |2ζ − 1| ≤ γ.

8.4 Subset Support Certification Algorithm and Analysis

Now we present a formal description of the algorithm that used to certify support size of a
given target state. Set the parameters:
ε, the estimate error tolerance parameter in Theorem 8.2, ≤ 1/2.
δ, the symmetry test error tolerance parameter as used in Lemma 8.9, = ε16/(3202n8).
γ, the subset test error tolerance parameter, = ε8/(80n4).
m, the size of each collections Φi,Ψi, = O(n16/ε32).

Algorithm 8.11: Subset State Support Test
Input:ρ,Φ0,Φ1,Ψ1,Φ2,Ψ2 . . .Φℓ,Ψℓ

Apply one of the following tests:
(i) Symmetry Test on (Φi,Ψi), for all i;
(ii) (Even) Subset Test on (Φ2i,Φ2i+1,Ψ2i+1), for all 0 < i < ℓ/2;
(iii) (Odd) Subset Test on (Φ2i+1,Φ2i+2,Ψ2i+2), for all 0 ≤ i < ℓ/2;
(iv) Swap Test on ρ and a random state ϕ ∈ Φℓ.

Accept if the chosen test accepts.

Proof of Theorem 8.2. Now we show the above Subset State Support Test satisfies Theo-
rem 8.2. The completeness is straightforward. The (i) symmetry test and (iv) swap test
will pass with probability 1. In (ii) and (iii), each Subset Test will passes will proba-
bility 1 − exp(−Ω(γ2m)). Overall, the test pass with probability 1 − ℓ exp(−Ω(γ2m)) =
1− exp(−Ω(n8)), certifying the subset state has size N/2ℓ.
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In the adversarial case, we consider the possible ways that the adversary may cheat and
show eventually the testing will catch these cheats.

Case 1: Attack caught by (i) Symmetry Test. If any collection Φi,Ψi of the states is
not δ-tilted, then by Theorem 8.6, with probability at most exp(−Ω(δ2m)) = exp(−Ω(1)),
it passes the symmetry test. From now on, assume that all the collections are δ-tilted.

Case 2: Attack caught by (iv) Swap Test. Consider Φℓ, take any representative state
ϕ ∈ Φℓ. Suppose that ϕ corresponds to some subset state ϕS with |S| ̸∈ (1± ε2)|T |, then

|⟨ϕS | ρ⟩|2 ≤ 1− ε2 ⇒ Pr[Swap Test accepts (ϕS , ρ)] ≤ 1− ε2

2
.

Suppose ϕ is a representative state. Then by definition with probability at least 1 − δ, a
random state ϕ′ in Φℓ satisfies D(ϕ′, ϕS) ≤

√
δ, or in other words |⟨ϕS , ϕ′⟩|2 ≥ 1−δ. Therefore,

ϕ′ corresponds to a subset state of size ̸∈ (1± ε2)(1± δ)|T |. Hence the probability that any
other representative state passes the swap test is at most 1+(1−ε2)(1−δ)

2 . We can conclude,
with probability at least

(1− δ) ·
(
1− 1 + (1− ε2)(1− δ)

2

)
≥ ε2

2
− δ,

the swap test rejects. Consequently, from now on we further assume that all the representa-
tive states in Φℓ corresponds to a subset state of support size s ∈ (1± ε2)|T |, as otherwise
the accepting probability will be a constant away from 1.

Case 3: Attack caught by (ii)-(iii) Subset Test. Pick some arbitrary representative state
ϕi of Φi for i = 0, 1, . . . , ℓ, let si be the support size for each ϕi, then

s0 ·
s1
s0

· s2
s1

· · · sℓ
sℓ−1

= sℓ ∈ (1± ε2)|T |. (8.10)

To cheat, the adversary can tell a wrong estimate of |T |, meaning 2−ℓ|N | ̸∈ (1± ε)|T |.

Claim 8.12. If the adversary tells a wrong estimate of |T |. Then for some i ≥ 1, either,

si
si−1

≥ 1

2
+

ln(1 + ε2)

ℓ
,

or,

si
si−1

≤ 1

2
− ε2

2ℓ
.

Proof. For the purpose of contradiction, suppose the claim is false. That is for all i, the
fraction between si and si−1 is very close to 1/2. Consider two possible situation, first, if
2−ℓN > (1 + ε)|T |, then

sℓ ≥
(
1

2
− ε2

2ℓ

)ℓ
s0 ≥ (1− ε2)(1 + ε)2−ℓs0 > (1− ε2)(1 + ε)|T | > (1 + ε2)|T |.

This contradicts (8.10). Second, if 2−ℓN < (1− ε)|T |, then

sℓ ≤
(
1

2
+

ln(1 + ε2)

2ℓ

)ℓ
s0 ≤ 2−ℓs0 exp(ln(1 + ε2)) = (1 + ε2)2−ℓs0 < (1− ε2)|T |,

again, contradicting (8.10).
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W.l.o.g., say i = 1 is an index satisfying the above claim. We show that the (odd) subset
test rejects with high probability. In the subset test, each collection is partitioned into two
parts of equal size,

Φ1 = Φ′
1 ⊔ Φ′′

1, Φ2 = Φ′
2 ⊔ Φ′′

2, Ψ2 = Ψ′
2 ⊔Ψ′′

2.

By definition, each part will be a 2δ-tilted state. Furthermore, by Proposition 8.7 they form
three collections of 4δ-tilted states,

Γ0 := Φ′
1 ⊗ Φ′

2, Γ1 := Φ′′
1 ⊗Ψ′

2, Γ2 := Φ′′
2 ⊗Ψ′′

2.

In subset test, Γ0,Γ1,Γ2 will be fed to swap test and estimate s2/s1. By Claim 8.12,

s2
s1

̸∈ 1

2
± ε2

2ℓ
.

Let κ = Θ(ε2/(2ℓ)), then one of the following must be true by Lemma 8.9,
(i) |⟨ϕ2, ψ2⟩|2 ≥ κ4,
(ii) ||⟨ϕ1, ϕ2⟩|2 − 1

2 | ≥ κ4,
(iii) ||⟨ϕ1, ψ2⟩|2 − 1

2 | ≥ κ4.

Without loss of generality say (i) hold. Then∣∣∣∣Pr[SwapTest(ϕ1, ϕ2) accept]− 1

2

∣∣∣∣ ≥ κ4/2. (8.11)

By Proposition 8.8, the estimate ζ from Γ0 will be

Pr
ζ

[
|ζ − Pr[SwapTest(ϕ1, ϕ2) accept|] ≥ 4

√
4δ
]
= exp(−Ω(δm))

(8.11)
=⇒ Pr

ζ

[
|2ζ − 1| ≤ κ4 − 16

√
δ
]
= exp(−Ω(δm)). (8.12)

Choose suitable parameters that satisfy,

γ ≤ κ4 − 16
√
δ, κ4 ≥ 17

√
δ.

Hence, the probability that the subset test accepts is exp(−Ω(δm)) = exp(−Ω(n8)).

8.5 Discussion

Let us review some of our indistinguishability results in Section 5 and Section 6, we want
to emphasize some remarkable perspectives of our upper bound result.

First in Section 5, we pointed out that there is no tester with any advantage for testing
productness with a single copy of a given state |ψ⟩. What if proofs are allowed? It is
immediate that the honest prover can give another copy of |ψ⟩ as the proof, then by product
test [HM13], the verifier can distinguish product states and those far from being product.
The unsatisfying feature is that the role of the proof is very limited, it serves as just another
copy of the state. Quantitatively, if we count the total number of resources used in the
algorithm, i.e., the proof complexity plus the given state |ψ⟩, then proofs gain us nothing!
Because with two copies of the state, one can carry out product test anyways. Therefore the
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more interesting question would be to demonstrate properties for which without proof the
copy complexity is super-polynomial but with polynomial-size proofs the copy complexity
becomes polynomial. This is what our example illustrates.

Second, think about the lower bound that we presented in Section 6 for distinguishing
the flat distribution of support size s and 2s. That would be the classical counterpart of the
quantum property for which we demonstrate the power of proofs. However, in this classical
setting, the power of proofs is completely gone! To see this note that Θ(

√
s) samples are

necessary and sufficient for distinguishing flat distribution of support size either s or 2s.
With certificates, on the other hand, our lower bound in Theorem 6.2 shows that only when
the certificate length is Ω(

√
s), the certificate can reduce the sample complexity. However,

the total resources needed, i.e., certificate length plus sample complexity is Ω(
√
s), match

that without certificates. In fact, recall that in Remark 6.3, the optimal proof strategy is to
send some extra samples.

Finally, for the “productness” example in Section 5, the best prover strategy would make
proof an additional copy, not really providing any extra power; for the subset state, with flat
certificates we can estimate the support size using exponentially smaller amount of resources.
What about the other ensembles with different support size. It is not hard to see that a
proof helps using analogous strategy: Ask the prover to provide certificates that will be
subset state of size ≈ pd, which as we have seen is testable with with flat certificate. In fact,
in the dense regime, the flat certificate can be further relaxed to nonnegative amplitudes
certificates [JW23] using their sparsity test.

8.6 Lower Bounds for Quantum-to-Quantum State Transformation

We now discuss how the study of quantum property testing protocols even under very strong
assumptions on the structure of the proofs can have interesting consequences for quantum-
to-quantum state transformation. To this end, we will suppose that we have obtained the
following results for some quantum property P.
(i.) Testability under Certificates. We managed to design a tester with quantum proofs

for property P using “few” copies of the input state, but assuming that the honest
proofs satisfy the strong promise of being a chosen function of the state being tested.

(ii.) propBQP Hardness. We also managed to show that property P requires “many”
copies to be tested (using only copies of the state to be tested).

Now we can consider a quantum-to-quantum transformation that takes a certain number
of copies of a state and produces a state that is (close to) the chosen function (mentioned
above) of the input states. Note that combining this hypothetical transformation with the
tester for P with the promised structured proofs (from the first item above) yields a tester
(using only copies the input state) for property P. We illustrate this scenario in Fig. 2.
By appealing to the second item above, we would deduce that “many” copies are needed to
implement this quantum-to-quantum transformation. Curiously, these considerations also
illustrate that the study of quantum-to-classical results can have implications for quantum-
to-quantum results.

For instance, using the above template, we can deduce the following quantum-to-
quantum transformation lower bounds. The first about transforming the amplitudes of
a quantum state into their absolute values.

Corollary 8.13 (Hardness of Absolute Amplitudes Transformation). Any transformation
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|ψ⟩
|ψ⟩
......
|ψ⟩
|ψ⟩
|ψ⟩
...
|ψ⟩

Transformation

Property Tester
with Proofs 0/1 output bit

Figure 2: A pictorial representation of combining a quantum-to-quantum state transformation that generates suitable
proofs with a property tester promised to receive copies of the input quantum state, as well as, these suitable (struc-
tured) proofs. This combination yields a property tester (depicted as the dashed enclosing box) using only copies of
the input state and no proofs.

that takes k copies of an arbitrary n-qubit quantum state |ψ⟩ =
∑

x∈{0,1}n αx|x⟩ and produces
a single n-qubit output state at least 0.001 close to ||ψ|⟩ :=

∑
x∈{0,1}n |αx| |x⟩ requires k =

2Ω(n).

For the absolute function, we consider distinguishing the subset state and the random
binary phase state. The propBQP hardness follows Section 5.4 where we showed that to
distinguish the subset state and the “two-mode” state requires 2Ω(n) copies. The testability
under certificates is simple. For any subset state |ψ⟩, take |ϕ⟩ such that D(|ϕ⟩, ||ψ|⟩) ≤ ε,
then swap test accepts |ψ⟩ and |ϕ⟩ with probability at least 1− ε2/2. However for a random
two-mode state ψ, swap test accepts |ψ⟩, ||ψ|⟩ w.p. 1/2 + o(1) almost surely. So for any
|ϕ⟩ that is ε close to ||ψ|⟩, D(ψ, |ψ|) ≤ 1/2 + ε + o(1). Meaning that if we can construct
the absolute-value state using a small number of copies, we can distinguish subset state and
random binary phase state with a small number of copies.

The second transformation lower bound is for mapping the amplitudes to their complex
conjugates follows Theorem 1.3.

Corollary 8.14 (Hardness of Amplitude Conjugation Transformation (Informal)). Any
transformation that takes k copies of an arbitrary n-qubit quantum state |ψ⟩ =∑

x∈{0,1}n αx|x⟩ and produces a single n-qubit output state at least 0.001 close to∑
x∈{0,1}n α

∗
x|x⟩ requires k = 2Ω(n).

9 Property Testing Complexity Classes and Hierarchy

Finally, we take the opportunity to define some obvious property testing complexity classes
regarding the information theoretic sample/copy complexity. Consider some property P =
⊔PN , where PN can be a subset of S(CN ) or ∆N . In the following, we only give a subset of
the complexity classes for properties of quantum states, and the complexity classes regarding
properties of classical distributions can be defined totally analogous.

Definition 9.1 (Property Testing Complexity Class). Let n = log(N), fix some constant
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c = 2/3, s = 1/3,

propBQP := propBQPc,s [poly(n)] ;

propEXP := propBQPc,s
[
2poly(n)

]
;

PropMA := PropMAc,s [poly(n),poly(n)] ;

propMAexp := propMAc,s
[
poly(n), 2poly(n)

]
;

propQMA(k) := propQMA(k)c,s[poly(n),poly(n)];
propQMA := propQMA(1);

propQMAexp := propQMA(1)c,s
[
poly(n), 2poly(n)

]
;

propAM(m, r) := propAM(m, r)c,s[poly(n), poly(n)];

propIP := propIP(1, poly(n))c,s[poly(n),poly(n)];
propMIP := propIP(poly(n), poly(n))c,s[poly(n),poly(n)];

...

For notations, we do not make any distinction between testing classical distribution or
quantum states. It is normally very clear from the context if the problem of interest is to
test classical distribution or to test quantum states. This notation could be less standard
for the context of sublinear algorithms, as for us propBPP is polynomial with respect to
n = log(N), where N is the size of the discrete probability space in the case of property
testing for classical distributions. Our choice is more natural in the context of this paper, as
testing probability distribution can be viewed as a degenerated version of testing quantum
states.

Some of the notations propBPP, propQMA, etc. are used for both the property testing
models as well as the property testing complexity classes. This is a somewhat common
abuse of notation. To give an alert for the unfamiliar readers, consider the following two
statement, for some property P,

(i) P ∈ propQMA,
(ii) propQMA(P) = exp(Ω(n)).

In the first case, propQMA is a complexity class. P ∈ propQMA is an upper bound result, i.e.,
P can be tested using poly(n) copies assisted with a QMA type prover. On the other hand,
in the second case, propQMA is the property testing model, and propQMA(P) = exp(Ω(n))
is a lower bound result, meaning that in the propQMA model, one needs exp(Ω(n)) copies
to test P.

Now we collect some obvious relationship regarding these complexity classes either fol-
lows easily from the definition or from the results proved in the previous sections. Let ALL
denote the set of all properties.

Proposition 9.2. For both classical distribution and quantum state properties

propEXP = ALL. (9.1)

Proof. The statement holds for both quantum and classical properties, because exponen-
tially many samples/copies are sufficient for learning to quantum states and classical distri-
bution [OW16, HHJ+16, dlVKM07].
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This proposition justifies our definition of the property testing class propMAexp and
propQMAexp, where the number of samples is polynomial instead of exponential. It turns
out that propQMAexp is also a trivial upper bounds for any quantum state properties.

Proposition 9.3. For quantum state properties,

propQMAexp = ALL. (9.2)

Proof. The statement holds because the the prover can send a classical description of the
state |ψ⟩ to test. Then the verifier can prepare a state |ϕ⟩ based on the classical description
and use swap test to check if the classical description is the correct. In particular, set
δ = 1/ exp(poly(d)). Estimate the overlap |⟨ϕ | ψ⟩|2.

For |ψ⟩ ∈ P, the honest prover sends a correct description of |ψ⟩ up to the precision δ =
1/ exp(poly(d)), thus |⟨ψ | ϕ⟩|2 ≥ 1− δ. Therefore, |ϕ⟩ is δ close to P. Given k = polylog(d)
many copy of |ψ⟩, the probability that all k swap test passes is

(1−O(δ))k = 1− 1/ exp(poly(d)).

On the other hand, for |ψ⟩ ε-far from P, if the verifier lies by giving some |ϕ⟩ that is δ
close to P, then |⟨ψ | ϕ⟩|2 ≤ 1− ε+o(ε). Therefore all the swap test passes with probability
at most

(1− ε+ o(ε))k = exp(−εk),

which is tiny for any constant ε.

One may wonder if an analogous statement is true for classical distribution properties.
As we see in Theorem 6.2, it is not: There are untestable classical properties regardless
of the proof length (which certainly can be a classical description of some quantum state).
Therefore, this is another example of how quantum coherence enlarges the testability.

Fact 9.4. For property testing of classical distribution,

propMAexp ̸= ALL.

An interesting question we left for future investigation is whether there are other inter-
esting upper bound for an arbitrary quantum properties. In view of Proposition 9.3 and the
classical result MIP = NEXP, a concrete question is the following

Problem 9.5. Is it true that

propMIP = ALL?

In terms of the proof system, the seminar work of Goldwasser and Sipser proved a sur-
prising result IP = AM(1, poly(n)) [GS86], i.e., public-coin interactive proof system is as
powerful as the private-coin proof system. However, in view of Theorem 6.9 and Corol-
lary 6.8, private-coin is significantly more powerful in property testing for both classical
distribution and quantum states,

propAM(1, poly(n)) ⊊ propIP. (9.3)

Finally, Corollary 7.5 implies the following collapses

44



Fact 9.6. For property testing of quantum states and distributions, MA and QMA type proof
does not increase testability,

propQMA = propBQP. (9.4)
propMA = propBPP. (9.5)

In the context of property testing for distributions, (9.3) and (9.5) are proved by
Chiesa and Gur [CG18] using different arguments. In fact, the key ingredient to Corol-
lary 7.5 is a witness preserving gap amplification happening in Theorem 7.4, and
propAM(poly(n), poly(n)) admits such gap amplification since the interaction between the
verifier and the provers is independent with the samples from the classical distribution or
measurements on the copies of quantum state, therefore, we actually have a very strong
collapse in terms of complexity classes

propAM(poly(n), poly(n)) = propBPP. (9.6)
propAM(poly(n), poly(n)) = propBQP. (9.7)

Interestingly, the question whether multiple unentangled provers help property testing
for quantum states remains. Can we de-Merlinize propQMA(2) as well?

Problem 9.7. Is it true that

propQMA = propQMA(2)?

We remark that a negative answer rules out input dimension efficient disentanglers, and
it could potentially lead to a full resolution of the disentangler conjecture (depending on the
strength of the parameters it achieves).10 This happens because if such a dimension efficient
disentangler existed, then we would have the collapse propQMA = propQMA(2), since we
would be able to simulate propQMA(2) in propQMA by “breaking” the entanglement of the
proof. The advantage of the property testing model compared to the other information the-
oretical model (e.g. black box model), is we actually know propQMA = propBQP. Showing
lower bounds for propBQP could potentially be a much easier task. A positive answer is
also extremely interesting. Note that naively, the de-Merlinization strategy does not work
for propQMA(2). So a positive answer can provide deeper quantum information insight on
separable states, which may lead to progress in the problem regarding the power of QMA(2)
itself.

9.1 Information Theoretic versus Computation Constrained Models

The study of property testing can be broadly divided into two main categories: information
theoretic and computation constrained testing. In the former category, no computation
assumption is made about the tester, one can think the tester is computationally unbounded.
In the latter category, we impose that a tester has to be generated uniformly by a Turing
machine, and it has to obey the computation resource constraints of the corresponding
complexity class (e.g., in this model a tester for propQMA is required to be a BQP verifier).
In particular, these models can capture the following behavior regarding property testing
and computation complexity.

10A formal statement of the disentangler conjecture can be found in [ABD+08]. Roughly speaking, it says
that a quantum channel that maps quantum states to approximately separable states that is approximately
surjective must have its input dimension exponential on the output dimension.
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(i) Information theoretic: captures the inherent limitations imposed by quantum/classical
information theory regardless of any computation limitations on a tester.

(ii) computation constrained with

• quantum input states: captures decision problems with quantum inputs under
resource constraints.

• classical input states: captures standard complexity classes.

propBQP

propQMA

propQMA(k)

=

propBQP

propQMA

propQMA(k)

QMA(k)

QMA

BQP

Standard Complexity Classes

Information Theoretic Property Testing Computation Constrained Property Testing

Figure 3: We depict the relationships among property testing both in the information theoretic models (on the upper
left), the computation constrained models (on the upper right), and the standard complexity classes (on the bottom)
for the case of BQP, QMA, and QMA(k). Line segments from bottom to top indicate containments (i.e., the model
on top can test at least all the properties its connecting bottom model can).

Remark 9.8. Any language or promise problem in a complexity (or computability) class with
classical inputs gives rise to two disjoint collection of bit strings Lyes and Lno consisting in
yes and no instances, respectively. We remark that the information theoretic version of the
class propBPP and propBQP trivially capture them.

Remark 9.9. By considering classical input states in the complexity constrained models of
property testing, we can ask whether a classical bit string (given as input state to be tested)
is a yes or no instance of a language or promise problem. Therefore, these models capture
standard complexity classes. Under the assumption BQP ̸= QMA, we have propBQP ̸=
propQMA for their computation constrained models.

Remark 9.10. In contrast, for the information theoretic models, we have the collapse
propBQP = propQMA. This means that a general quantum proof cannot substantially im-
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prove information theoretic testability of quantum properties (they can at best reduce poly-
nomially the number of copies of the input state, or improve the efficiency of the tester).

We summarize the above remarks in Fig. 3.

9.2 Summary of Our Information Theoretic in terms of Property Testing
Classes

In Fig. 4, we provide a visual summary of some of our information theoretic results for
support size Theorems 1.2, 1.4 and 1.6 in terms of the property testing classes.

Coherent States

propQMAsubset(poly(n))

propQMA

propBQP

Classical Distribution

propMAflat
(
2Ω(n)

)

propMA

propBPP

propAM
(
2Ω(n)

)

Model Strength

Figure 4: A pictorial representation of the limitations in distinguishing support size of flat coherent quantum states
(depicted on the left column) and flat classical distributions (on the right column). Dashed boxes indicate that the
model fails in this task whereas a solid box indicates that the model succeeds.
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A Divergence Contraction

In this section, we finish the proof of Lemma 6.4. It remains to establish Claim 6.5. Before
we prove Claim 6.5, we need to introduce some definitions and recall several facts about
elementary symmetric polynomials and KL-divergence.

Auxiliary Definitions and Facts. Recall that the downwalk operator from
(
[N ]
s

)
to
(
[N ]
t

)
is defined as follows

Ds→t(S, T ) :=


1

(st)
, T ⊆ S;

0, otherwise,

for every S ∈
(
[N ]
s

)
to T ∈

(
[N ]
t

)
. Thus, viewing the distributions λi, µi in Lemma 6.4 as row

vectors, then λi = µiDs→t

Definition A.1 (Generating polynomial). Given a distribution µ on
(
[N ]
s

)
, its generating

polynomial Pµ ∈ R[X1, X2, . . . , XN ] is

Pµ(X) :=
∑

S⊆[N ]:|S|=s

µ(S)
∏
i∈S

Xi.
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The well-known MacLaurin’s inequality on elementary symmetric polynomials [Mac30]
reads: For nonnegative X1, X2, . . . , XN , and integers s ≥ t > 0,(

E
S∈([N ]

s )

∏
i∈S

Xi

)1/s

≤

(
E

T∈([N ]
t )

∏
i∈T

Xi

)1/t

. (A.1)

An immediate corollary is that for the uniform distribution µ, its generating polynomial Pµ
is log-concave on nonnegative inputs.

The next lemma about KL-divergence minimization follows from duality theory of con-
vex optimization.

Lemma A.2 (See Appendix B of [SV14]). Given a distribution µ on
(
[N ]
s

)
, and a distribution

q : [N ] → R, then

inf
ν:([N ]

s )→R
{KL(ν ∥µ) : q = νDs→1} = − log

(
inf

x1,x2,...,xN>0

Pµ(x)

(x
q(1)
1 x

q(2)
2 · · ·xq(N)

N )s

)
. (A.2)

Proof of Claim 6.5. Now we are ready to prove Claim 6.5. Without loss of generality,
say xi = i. Let µ′1, µ′0 be the induced distribution of µ, µ1 on

({i,i+1,...,N}
s−i+1

)
conditioning on

[i] ⊆ S, S′. Then µ′0 is uniform on
({i,i+1,...,N}

s−i+1

)
. Let q := µ′1Ds−i+1→1, then

KL

(
XiXi+1 . . . Xs | X<i = x<i

YiYi+1 . . . Ys | Y<i = x<i

)
= KL(µ′1 ∥µ′0)
≥ inf

µ′′1

{KL(µ′′1 ∥µ′0) : µ′′1Ds−i+1→1 = q}

= − log

(
inf

zi,zi+1,...,zN>0

Pµ′0(z)

(z
q(i)
i z

q(i+1)
i+1 · · · zq(N)

N )s−i+1

)

≥ − log

 inf
zi,zi+1,...,zN>0

(
Ej∈{i,i+1,...,N} zj

z
q(i)
i z

q(i+1)
i+1 · · · zq(N)

N )

)s−i+1
 .

where the second step is due to Lemma A.2; the third step is due to MacLaurin’s inequality.
Set zi = (N − s+ 1)qi, then

KL(µ′1 ∥µ′0) ≥ −(s− i+ 1)
N∑
j=i

q(j) log
qj

1/(N − s+ 1)

= (s− i+ 1)KL(µ′1Ds−i+1→1 ∥µ′0Ds−i+1→1)

= (s− i+ 1)KL

(
Xi | X<i = x<i

Yi | Y<i = x<i

)
.
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B Spectra of Dt from Johnson Scheme

The spectra of Dt is known [Del73]. In particular, fix any 0 ≤ t ≤ k − 1, there are k + 1
distinct eigenvalues λ0, λ1, . . . , λk, such that

λ0 =

(
k

t

)(
d− k

k − t

)
,

λj =

min{j,k−t}∑
ℓ=max{0,j−t}

(−1)ℓ
(
j

ℓ

)(
k − j

k − t− ℓ

)(
d− k − j

k − t− ℓ

)
, j = 1, 2, . . . , k,

with multiplicity

m0 = 1,

mj =

(
d

j

)
−
(

d

j − 1

)
, j = 1, 2, . . . , k.

For us, we simplify λj for k = O(
√
d),

|λj | ≲
(
k−j
t−j
)(

k
t

) λ0, j = 1, 2, . . . , t,

|λj | ≲
(
j
t

)
(k − t)!(

k
t

)
(k − j)!

· 1

dj−t
λ0, j = t+ 1, . . . , k.

We bound ∥Dt∥1 as follows

∥Dt∥1 = λ0 +
k∑
j=1

mj |λj |

≲ λ0

1 +

t∑
j=1

dj

j!

(
k−j
t−j
)(

k
t

) +

k∑
j=t+1

dt

j!

(
j
t

)
(k − t)j−t(

k
t

)


≲ λ0

1 +
dt

kt
+

k∑
j=t+1

dt

kt

(
k − t

j − t

)
≤ λ0

(
1 +

dt

kt
2k−t

)
=

(
k

t

)(
d− k

k − t

)(
1 +

dt

kt
2k−t

)
≲

(
k

t

)(
d− k

k − t

)
dt

kt
2k−t =

(
d

t

)(
d− k

k − t

)
2k−t.

This proves Fact 5.9.
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