
Truly Supercritical Trade-offs for Resolution, Cutting Planes,
Monotone Circuits, and Weisfeiler–Leman

Susanna F. de Rezende
Lund University

Noah Fleming
Memorial University

Duri Andrea Janett
University of Copenhagen

and Lund University

Jakob Nordström
University of Copenhagen

and Lund University

Shuo Pang
University of Copenhagen

November 21, 2024

Abstract

We exhibit supercritical trade-off for monotone circuits, showing that there are functions computable
by small circuits for which any circuit must have depth super-linear or even super-polynomial in the
number of variables, far exceeding the linear worst-case upper bound. We obtain similar trade-offs in
proof complexity, where we establish the first size-depth trade-offs for cutting planes and resolution
that are truly supercritical, i.e., in terms of formula size rather than number of variables, and we also
show supercritical trade-offs between width and size for treelike resolution.

Our results build on a new supercritical width-depth trade-off for resolution, obtained by refining
and strengthening the compression scheme for the Cop-Robber game in [Grohe, Lichter, Neuen &
Schweitzer 2023]. This yields robust supercritical trade-offs for dimension versus iteration number
in the Weisfeiler–Leman algorithm, which also translate into trade-offs between number of variables
and quantifier depth in first-order logic. Our other results follow from improved lifting theorems that
might be of independent interest.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 185 (2024)

Contents

1 Introduction 1
1.1 Supercritical Trade-offs in Circuit Complexity . 1
1.2 Supercritical Trade-offs in Proof Complexity . 2
1.3 Trade-offs for the Weisfeiler–Leman Algorithm . 3
1.4 Techniques . 4
1.5 Related Work . 5
1.6 Organisation of This Paper . 5

2 Preliminaries and Proof Overview 5
2.1 The Cop-Robber Game . 5
2.2 The Weisfeiler–Leman Algorithm . 6
2.3 Proof Complexity Basics and Resolution . 7
2.4 Supercritical Width-Depth Trade-off for Resolution . 7
2.5 Tight Lifting and Supercritical Trade-offs for Resolution 8
2.6 Tight Lifting and Supercritical Trade-offs for Monotone Circuits and Cutting Planes . . . 9

3 Compressed Cop-Robber Game and the Formula 12
3.1 Graph Compression and Compressed Tseitin Formula 12
3.2 The Compressed Game . 15
3.3 From Narrow Proofs to Cop Strategies . 15

4 Lower Bound Proof for the Cop-Robber Game 17
4.1 Preparations . 17
4.2 The Key Lemma . 20
4.3 Proof of Cop-Robber Lower Bound . 23

5 Lifting Theorem for Treelike Resolution 24

6 Lifting Theorem for Resolution 27

7 Lifting Theorem for Cutting Planes and Circuits via Triangle DAGs 29
7.1 Set Up: Full Image Lemma and Triangle Lemma . 30
7.2 Proof of Lifting Theorem . 32
7.3 Proof of Triangle Lemma . 35

8 Concluding Remarks 37

A Proof of the Weisfeiler-Leman Result from the Cop-Robber Game 42
A.1 Preliminaries on the Cai–Fürer–Immerman Construction 42
A.2 Proof of Translation from the Cop-Robber Game to the Weisfeiler–Leman Algorithm . . 42

B Proof of Full Image Lemma 44

1 Introduction

1 Introduction

Computational complexity aims to understand the amount of resources—such as running time or memory—
required in order to solve computational problems. An important regime is to understand how sets of
resources interact: can they be optimized simultaneously or are there problems where there is necessarily
a trade-off, when optimizing one resource leads to a substantial increase in the others? Traditionally, the
strongest trade-offs between two complexity measures, say µ and ν, have been of the following form: it
is possible to solve the problem with a small value for µ and with a small value for ν, but optimizing µ
causes ν to increase to nearly the value obtained from the brute-force worst-case algorithm (see Figure 1a).
In this setting, robust trade-offs have been established, where we cannot even approximately optimize µ
without a blow-up for ν (corresponding to a tall infeasible region in Figure 1).

Razborov [Raz16] and the earlier works [BBI16, BNT13] show that trade-offs exist which go far
beyond this regime, where optimizing one measure causes the other to increase beyond its worst-case value
(see Figure 1b). These supercritical trade-offs have mostly appeared in proof complexity [BBI16, Ber12,
BNT13, Raz16, Raz17, Raz18, BN20, FPR22, BT24, CD24] and finite model theory [BN23, GLN23].
Recent papers [GGKS20, FGI+21, FPR22] have raised the question of whether there are supercritical
trade-offs in circuit complexity, which brings us to the main contribution of this paper.

ν

µ

µworst

νworst

(a)

ν

µ

µworst

νworst

(b)

infeasible

Figure 1: An illustration of trade-offs. Blue dots represent provable upper bounds on measures µ and ν. Proofs
with measures in the shaded region are ruled out by the trade-off, where µworst and νworst are the worst-case
upper bound on µ and ν, respectively. Figure 1a illustrates a non-supercritical trade-off and Figure 1b illustrates a
supercritical one.

1.1 Supercritical Trade-offs in Circuit Complexity

Perfect matching is one of the classical problem in complexity theory. Although it has been known to
be solvable in polynomial time for nearly 70 years [Edm65], many questions about its computational
complexity remain unresolved, in particular regarding its monotone complexity. In a breakthrough result
in 1985, Razborov [Raz85] proved the first super-polynomial size lower bound for monotone circuits—
Boolean circuits with only AND and OR gates—for two functions: k-clique and bipartite perfect matching.
(Independently, Andreev [And85] showed an exponential size lower bound for a different function.) A few
years later, Alon and Boppana [AB87] improved the lower bound for k-clique to exponential for large k.

For bipartite perfect matching, however, we still have no better size lower bounds. Raz and Wigder-
son [RW92] proved a depth-Ω(n) lower bound, where n is the number of vertices of the graph and the
function has Θ(n2) inputs. This lower bound is tight, as there are monotone circuits that compute bipartite
perfect matching in depth O(n) (and size 2O(n)). In fact, this rather straightforward upper bound remains
the best known to this day. Are there monotone circuits computing bipartite perfect matching in size
nO(logn)? If so, why have we not yet been able to find them? And if not, why have we not been able to
prove a stronger lower bound?

One possible answer to these questions could be that we have not been able to prove exponential lower
bounds because they are simply not true, and that we have not been able to find smaller monotone circuits

1

TRULY SUPERCRITICAL TRADE-OFFS

computing perfect matching because they look different. We know already that if there is a monotone
circuit of size nO(logn) that computes bipartite perfect matching then it must have depth at least Ω(n). But
what if any monotone circuit of size nO(logn) requires even larger depth, say depth nΩ(logn)? This could
sound like an absurd hypothesis—how can a small circuit require super-linear depth? It is natural to ask,
as was done in [GGKS20, FGI+21, FPR22], if there are any monotone functions that exhibit this kind of
supercritical trade-off behavior, where small circuits exist but any small circuit requires super-linear depth.
We prove this is the case, even for the stronger model of monotone real circuits, where gates can compute
any monotone function from two real numbers to a real number.

Theorem 1.1 (Monotone circuit trade-offs). There are N -variate Boolean functions fN with either of
the following properties:

(1) fN is computable by monotone circuits of size s = poly(N), but any monotone (real) circuit
computing fN of size at most s1.4 must have depth at least N2.4.

(2) fN is computable by monotone circuits of size s = quasipoly(N), but any monotone (real) circuit
computing fN of size at most s · exp

(
(logN)1.9

)
must have depth super-polynomial in N .

The functions we present that exhibit this behavior actually come from new supercritical trade-offs in
the neighboring field of proof complexity.

1.2 Supercritical Trade-offs in Proof Complexity

The Tseitin formulas—unsatisfiable systems of mod 2 linear equations—were used to prove the first proof
complexity lower bounds in [Tse68]. Since then, these formulas have played a central role in establishing
lower bounds for, and understanding the reasoning power of proof systems; see [FP22] for a survey. A
notable exception is the cutting planes proof system, which captures the types of reasoning achievable
when memory is limited to halfspaces. The original paper on cutting planes [Chv73] conjectured that the
Tseitin formulas were hard to prove in cutting planes, and this was reiterated in [BP98, Juk12]. While
lower bounds on the size of cutting planes proofs have appeared for a variety of formulas [Pud97, BPR95,
FPPR22, HP17, Sok24, GGKS20], this conjecture remained open.

In a surprising turn of events, Dadush and Tiwari [DT20] exhibited short (quasi-polynomial size)
cutting planes proofs of the Tseitin formulas. Notably, these proofs also have quasi-polynomial depth,
far exceeding the linear worst-case upper bound. This raised the question of whether the depth of any
small cutting planes proof of the Tseitin formulas must be supercritical [BFI+18, FGI+21, FPR22], which
would give a partial explanation as to why these proofs took so long to find.

Progress on this question was made in [BGH+06, FGI+21], by showing that any cutting planes proof
of the Tseitin formulas on n variables requires depth Ω(n); and in [FPR22, BT24], by constructing families
of CNF formulas which exhibit supercritical size-depth trade-offs for cutting planes. The latter result is
somewhat unsatisfactory, however, as the trade-off is supercritical only in the number of variables and not
in the size of the formula. This differs from the upper bound in [DT20], which is supercritical in terms of
the formula size as well. We refer to trade-offs that are supercritical in the input size—rather than in the
number of variables—as truly supercritical. In this work, we give the first size-depth trade-offs for cutting
planes that are truly supercritical.

Theorem 1.2 (Cutting planes trade-offs). There are 3-CNF formulas FN of size S(FN) over N variables
with either of the following properties:

(1) Resolution refutes FN in size S(FN ⊢⊥) = poly(N), but any cutting planes refutation of size at
most S(FN ⊢⊥)1.4 has depth at least S(FN)2.4.

(2) Resolution refutes FN in size S(FN ⊢⊥) = quasi-poly(N), but any cutting planes refutation of
size at most S(FN ⊢⊥) · exp

(
(logN)1.9

)
has depth at least super-polynomial in N .

As cutting planes simulates resolution, this also implies the first truly supercritical size-depth trade-offs
for resolution. In fact, most trade-offs in proof complexity so far are not truly supercritical (with the

2

1 Introduction

exception of [BBI16, Ber12, BNT13]). In this work, we also obtain truly supercritical trade-offs for other
combinations of complexity measures, which we state next.

The seminal work [Raz16] provides formulas for which any low-width treelike resolution proof must
have size that is doubly-exponential in the number of variables. Again, the lower bound is not supercritical
in terms of the formula size. We establish a truly supercritical width-size trade-off for treelike resolution.

Theorem 1.3 (Width-size trade-offs). There are CNF formulas FN of size S(FN) = poly(N) over N
variables with either of the following properties:

(1) Resolution refutes FN in width W (FN ⊢⊥) = o (logN), but any treelike refutation of width at
most 1.4W (FN ⊢⊥) has size at least exp

(
S(FN)2.4

)
.

(2) Resolution refutes FN in width W (FN ⊢⊥) = o
(
(logN)3/2

)
, but any treelike resolution refutation

of width at most W (Fn ⊢⊥) + 40 logN
log logN has size at least exp

(
S(FN)ω(1)

)
.

Underlying each of these results is the first truly supercritical width-depth trade-off that is non-trivially
robust; the aforementioned results then follow by applying several (new or improved) lifting theorems.
Prior to our work, the only truly supercritical trade-off for width versus depth was due to Berkholz [Ber12];
however, this trade-off has no robustness—it holds only for the minimum width—and it therefore cannot
be used to obtain other supercritical trade-offs.

Theorem 1.4 (Width-depth trade-offs). For any constants C and δ ∈ (0, 1), there are 4-CNF formulas
FN of size S(FN) = Θ(N) over N variables which have resolution refutations of width w = ⌊ n

2 lnn⌋+ 3,
with either of the following properties:

(1) N = poly(n) and any refutation of width at most w + C has depth exponential in poly(S(FN)).
(2) N = o(2n/2) and any refutation of width at most (1 + δ)w has depth super-linear in S(FN).

1.3 Trade-offs for the Weisfeiler–Leman Algorithm

Surprisingly, all of the results above are obtained by studying the well-known Weisfeiler–Leman algorithm
for classifying graphs and, more generally, relational structures. This algorithm appears as a subroutine in
Babai’s celebrated graph isomorphism result [Bab16], and has also been connected to machine learning
[MRF+19, Gro21, MLM+23] and many other areas [Kie20, GLNS23]. The 1-dimensional version of the
algorithm applied to graphs, known as color refinement, starts by coloring all vertices according to their
degree. This coloring is then iteratively refined by distinguishing vertices if their multisets of neighborhood
colors differ. The process stops when a stable coloring is reached, i.e., no further pair of vertices of the
same color gets different colors. The k-dimensional version of the algorithm (k-WL) instead performs
colorings of k-tuples of vertices, or of elements in more general relational structures. Another parameter
of interest is the iteration number, which is the number of refinement steps until the coloring stabilizes.

It is easy to see that the iteration number of k-WL is at most nk − 1, and this can be slightly im-
proved [KS19, LPS19, GLN23]. For a long time, the best lower bound was linear [Für01] until the
sequence of works [BN23, GLN23] showed that nΩ(k) iterations can be necessary. These results are
actually slightly stronger in that they provide robust trade-offs between dimension and iteration number,
but they only hold for relational structures of much higher arity than graphs. A stronger Ω(nk/2) lower
bound was finally proven in [GLNS23] for pairs of graphs distinguishable in dimension k, but the authors
left it as an open problem to turn this into a robust trade-off. Such a result is the starting point of our work.

Theorem 1.5 (Weisfeiler–Leman trade-offs). For all c, k with 1 ≤ c ≤ k − 1, and for n large enough,
there are pairs of graphs of size n that can be distinguished by k-dimensional Weisfeiler–Leman, but for
which even (k + c− 1)-dimensional Weisfeiler–Leman requires Ω

(
nk/(c+1)

)
iterations.

By the well-known equivalence between Weisfeiler–Leman and fragments of first order logic with
counting [CFI92], our result also implies trade-offs between variable number and quantifier depth there.

3

TRULY SUPERCRITICAL TRADE-OFFS

y1 y2 ym–1 ym· · ·

· · ·

· · ·

⊕ ⊕ ⊕ ⊕ ⊕ ⊕

x1 x2 x3 xn–2 xn–1 xn

(a) Hardness condensation

y1 y2 ym–1 ym· · ·

· · ·x1 x2 x3 xn–2 xn–1 xn

(b) Variable compression

Figure 2: Hardness condensation in Figure 2a substitutes the x-variables with an XOR over some y-variables,
while variable compression in Figure 2b substitutes with y-variables directly. Note that m≪ n.

1.4 Techniques

Most of the previously known supercritical trade-offs are based on hardness condensation [Raz16], which
works by substituting the variables of a problem instance with XOR gadgets over a much smaller set
of variables (cf. Figure 2a), and then showing that the substituted instance remains essentially as hard,
although the number of variables has decreased substantially. This technique transferred from proof
complexity to finite model theory in [BN23] to prove the Weisfeiler–Leman trade-offs discussed above.

The recent result [GLNS23] instead relies on a new technique of graph compression, where vertices are
identified via an equivalence relation, together with the standard approach of analyzing Weisfeiler–Leman
via the Cop-Robber game [ST93]. Here, dimension corresponds to number of Cops in play, and iteration
number to (game-)rounds. Lower bounds for Weisfeiler–Leman follow from strong Robber strategies,
and the bounds become supercritical when these strategies continue to work even when the game is
played on the compressed graph. In proof complexity, the number of Cops and rounds approximately
correspond to resolution width and depth for Tseitin formulas [GTT20]. Because the correspondence is
not exact, [GLNS23] does not give proof complexity results.

Using a refined graph compression and analysis, we obtain (Theorem 1.5) Weisfeiler–Leman trade-offs
which are robust. Thanks to this robustness, we are able to translate these results into truly supercritical
width-depth trade-offs for resolution, exporting the technique of [GLNS23] to proof complexity, as
advocated in that paper. In contrast to hardness condensation, the resulting compressed Tseitin formula is
obtained by substituting each variable with one of the new variables in a structured way (see Figure 2b).
We believe that the tool of variable compression, interesting in its own right, may find more applications
in proof complexity.

The remaining trade-offs in this paper are obtained by proving and applying new lifting theorems to
our width-depth trade-off. Lifting is a framework for deriving lower bounds for stronger computation
models from those for weak ones. In particular, the lifting theorems of [GGKS20, LMM+22] convert
lower bounds on resolution width to lower bounds on the size of monotone (real) circuits, which in turn
imply lower bounds for cutting planes. However, the parameters of these theorems are insufficient to
obtain supercritical trade-offs from Theorem 1.4. We therefore establish an improved, tight lifting theorem
for both monotone circuits and cutting planes. The key to the proof is a new way of approximating a
combinatorial triangle by structured rectangles, from which we can extract clauses. We also provide an
even tighter lifting for resolution size, which has a simple proof based on random restriction. Lastly, we
prove a lifting theorem for treelike resolution that turns a depth lower bound into a size lower bound and
simultaneously increases the width. We believe that these lifting results should be of independent interest.

4

2 Preliminaries and Proof Overview

1.5 Related Work

In concurrent work, Göös, Maystre, Risse and Sokolov [GMRS24] report supercritical size-depth trade-
offs for monotone circuits, resolution and cutting planes. Their approach is similar in that they also start
with a truly supercritical width-depth trade-off and apply lifting to obtain size-depth trade-offs, but their
width-depth trade-off is very different from ours, and relies on a novel, interesting formula construction.

In terms of parameters, their formulas have resolution proofs in width O(log n), but any proof in width
up to nϵ has supercritical depth, making their width-depth trade-off extremely robust. This robustness
allows them to apply existing lifting theorems as a black box to obtain functions that are computable by
monotone circuits of size nO(logn) but where any monotone circuit of polynomial depth has exponential
size. While our results are not nearly as robust, we obtain a blow-up in size even for circuits with depth
polynomial in the size upper bound, and our proof complexity trade-offs apply for constant-width proofs.
In this sense, the two are incomparable. In addition, we give results for the Weisfeiler–Leman algorithm
and prove tight lifting theorems.

Our Weisfeiler–Leman and resolution width-depth trade-offs were announced at the Oberwolfach
workshop Proof Complexity and Beyond in March 2024. Building on that work, Berkholz, Lichter and
Vinall-Smeeth [BLVS24] also obtained a truly supercritical width-size trade-off for treelike resolution.
Our treelike resolution trade-off came afterward, with a different technique and improved parameters.

1.6 Organisation of This Paper

This rest of this paper is structured as follows. The preliminaries and a proof overview are presented in
Section 2. In Section 3, we define the compressed Cop-Robber game and show how it relates to resolution.
In Section 4, we prove the round lower bound on the game. We then prove our lifting theorem for treelike
resolution in Section 5 and for resolution in Section 6. In Section 7 we prove our tight general lifting
theorem and finally, in Section 8, we discuss some open problems.

2 Preliminaries and Proof Overview

In this section, we present an overview of the components needed to obtain our trade-off results stated in
Section 1 and explain how they fit together. We begin with some notation and general definitions.

For a, b ∈ N+ with a ≤ b, we use the notation [a, b] := {a, a+1, . . . , b}, and [a] = {1, . . . , a}. Given
k ∈ N+ and a, b ∈ [k] with a > b, we write [a, b] := {a, a+ 1, . . . , k} ∪ {1, 2, . . . , b}. We call sets [a, b],
where a, b ∈ [k], cyclic intervals modulo k. In this paper, log(·) are base 2 and ln(·) are base e.

All graphs in this paper are simple. For a graph G = (V,E) and a vertex subset W ⊆ V , G|W denotes
the induced subgraph on W . Given F ⊆ E, we write V (F) for the set of all vertices incident to an edge
in F . By a path in a graph, we always mean simple paths, i.e., a sequence of distinct vertices where
consecutive ones are connected by an edge.

We begin by introducing the Cop-Robber game [ST93], which underpins the proof of our width-depth
and Weisfeiler–Leman trade-offs.

2.1 The Cop-Robber Game

We describe the rectk-Cop-Robber game. The Cops and the Robber stay on vertices of a graph G and can
see each other. Initially, the Robber is at a vertex, and all k Cops are lifted from the graph (in a helicopter).
A game round unfolds as follows:

(1) If there is no lifted Cop, the Cops choose and lift one. Then they signal a vertex v to the Robber.
(2) The Robber uses a path in G to move from his position w1 to another vertex w2 while avoiding the

Cops on the graph.
(3) A lifted Cop lands at the signaled vertex v.

5

TRULY SUPERCRITICAL TRADE-OFFS

The game ends when a Cop lands at the Robber’s position.
In Section 3 and Section 4, we analyze a variant called the compressed Cop-Robber game [GLNS23].

It is played on a graph added with equivalence relations on vertices and edges, which are obtained as
follows. First, a vertex equivalence relation is chosen. For equivalent vertices, the incident edges are then
identified one by one, and we take the transitive closure of this identification to get an equivalence relation.
In the specific instance we analyze, the graph is a cylinder (a grid where columns are cycles) with k rows
and roughly nk columns where vertices on the same row are identified periodically, using a different
period in every row. We generalize the construction in [GLNS23] by selecting the row periods based
on a parameter c ≤ k − 1; see Definition 3.4 and Definition 3.9. The original construction corresponds
to c = 2.

The rules in the compressed game are subtler (see Definition 3.11). In particular, the Robber must
avoid all vertices equivalent to those occupied by Cops. On the uncompressed cylinder, k + 1 Cops have
an obvious strategy: block off the middle of the graph—forming a police cordon of sorts—and then march
towards the robber in lockstep. With more Cops, and with the compression providing Cop copies on the
equivalent vertices, they can potentially do better. Despite that, we prove the following theorem.

Theorem 2.1 (Cop-Robber). For any parameters k = k(n) and c = c(n) where 1 ≤ c ≤ k − 1 and
2 ≤ k < n/(2 lnn), there are degree-4 graphs {Gn} and a compressed Cop-Robber game on Gn where
k + 1 Cops can win, but the Robber can survive Ω(nk) rounds against k + c Cops.

The novelty of our analysis, in comparison to [GLNS23], lies in having the Robber play against a virtual
stronger opponent, formalized in the notion of virtual cordons associated with the Cops (Definition 4.8).
The transition of (the set of) virtual cordons over a game round is easier to analyze (see, for example,
Lemma 4.11), which allows us to show a strategy for the Robber to survive for Ω

(
nk
)

rounds.

2.2 The Weisfeiler–Leman Algorithm

We define the Weisfeiler–Leman algorithm on graphs; see the survey [Kie20] for further explanations.
A graph G = (V,E, c) where c : V → N is vertex colored. Given k ≥ 2 and a vertex colored graph
G = (V,E, c), the k-dimensional Weisfeiler–Leman algorithm [WL68, IL90] iteratively refines a coloring
of the k-tuples of vertices. We denote the coloring after the ith round by χ(i) : V k → C, where C is a
finite set. In the initial round, the color χ(0)(u⃗) of a tuple u⃗ = (u1, . . . , uk) is its own isomorphism class,
where we say (u1, . . . , uk) is isomorphic to (v1, . . . , vk) if the map ui 7→ vi preserves vertex colors and is
an isomorphism between the induced subgraphs of the two tuples. We use u⃗ [v/uj] to denote the k-tuple
obtained by substituting uj with v in u⃗, i.e., (u1, . . . , uj−1, v, uj+1, . . . , uk). In round i, the coloring
χ(i)(u⃗) of a tuple u⃗ is obtained by appending a multiset of tuples to χ(i−1)(u⃗):

χ(i)(u⃗) :=
(
χ(i−1)(u⃗),

{{(
χ(i−1)(u⃗ [v/u1]), . . . , χ

(i−1)(u⃗ [v/uk])
)
| v ∈ V (G)

}})
.

The algorithm stabilizes after round t if any two tuples that have the same color in round t, i.e., χ(t)(u⃗) =
χ(t)(v⃗), get the same color in round t+ 1, i.e., χ(t+1)(u⃗) = χ(t+1)(v⃗). The minimum such t is called the
iteration number on G.

The algorithm can be used to distinguish a pair of colored graphs G,H by comparing the colorings
χ(i)(G) and χ(i)(H).We say that k-dimensional Weisfeiler–Leman distinguishes G and H in t rounds if
for some color c, the number of tuples that have color c in χ(t)(G) is different from the number of such
tuples in χ(t)(H).

By applying standard translations (see Appendix A), Theorem 2.1 gives the following trade-off for
Weisfeiler–Leman algorithms, which is an explicit version of Theorem 1.5.

Theorem 2.2 (Weisfeiler–Leman trade-offs, explicit). For all c and k with 1 ≤ c ≤ k − 1, if n is large
enough, there are n-vertex graph pairs distinguished by k-dimensional Weisfeiler–Leman, but for which
(k + c− 1)-dimensional Weisfeiler–Leman requires at least

(
2−(c+10)k−3n

)k/(c+1) iterations.

6

2 Preliminaries and Proof Overview

Using the equivalence between the k-dimensional Weisfeiler–Leman algorithm and the (k+1)-variable
fragment of first order logic with counting [CFI92, Theorem 5.2], Theorem 2.2 also implies a trade-off
between the number of variables and quantifier depth. Namely, there is a graph pair distinguishable in the
(k + 1)-variable fragment of first order logic with counting, but a lower bound of

(
2−(c+10)k−3n

)k/(c+1)

on the quantifier depth applies up to the (k + c)-variable fragment.

2.3 Proof Complexity Basics and Resolution

Let us review some standard definitions from proof complexity. For a more comprehensive presentation
of this material, see, e.g., [Kra19, BN21]. A literal is a Boolean variable x or its negation x. It will
sometimes be convenient to use the notations x1 = x and x0 = x. A clause is a disjunction of literals
D = x1 ∨ · · · ∨ xk, which we require to be over pairwise disjoint variables. We call the number of literals
appearing in a clause D the width W(D) of D. We call a clause of width at most k a k-clause. A CNF
F = D1 ∧ · · · ∧Dm is a conjunction of clauses, the formula width W (F) is the maximal width of clauses
in F , the clause size |F | is the number of clauses in F (viewed as a set of clauses), and formula size S(F)
is the sum of width over the clauses in F . We call F a k-CNF if all clauses are k-clauses. We denote by
Vars(F) the set of variables appearing in a formula F .

A resolution refutation π : F ⊢⊥ of an unsatisfiable CNF formula F is an ordered sequence of clauses
π = (D1, . . . , Ds), where Ds is the empty clause containing no literals denoted by ⊥, and each Di is a
clause in F , or derived from some specified Dj and Dk, where j, k < i, using the resolution rule

C ∨ x D ∨ x
C ∨D

. (2.1)

We associate a DAG Gπ with every resolution refutation π as follows. There is a vertex vi ∈ V (Gπ) for
every i ∈ [s], and directed edges (vj , vi), (vk, vi) ∈ E(Gπ) if and only if Di was derived from Dj and
Dk by resolution.

The size (or length) S (π) of a refutation π is the number of clauses s in it. By width W(π) of a
refutation π, we mean the width of the largest clause in π. Lastly, the depth D(π) of a refutation π is
the number of edges in the longest path in its associated DAG Gπ. We also consider the above measures
for refuting a CNF formula F , by taking the minimum over all refutations of F . That is, S(F ⊢⊥) :=
minπ:F ⊢⊥{S (π)}, W (F ⊢⊥) := minπ:F ⊢⊥{W(π)}, and D(F ⊢⊥) := minπ:F ⊢⊥{D(π)} are the size,
width, and depth of refuting F , respectively.

2.4 Supercritical Width-Depth Trade-off for Resolution

Our first technical contribution is the following truly supercritical width-depth trade-off for resolution.

Theorem 2.3 (Width-depth trade-offs, general). Let k = k(n), c = c(n) be any integer parameters such
that 3 ≤ c ≤ k− 1 < n

2 lnn . Then for all n, there is a linear-size 4-CNF formula F with between 2k2nc+1

and 40k2(2n)c+1 variables, which has a resolution refutation of width k + 3 and size O(k2(4n)k), but
for which any refutation of width at most k + c has depth at least Ω(nk).

This theorem will be proven through the connection to the compressed Cop-Robber game which we
make formal in Section 3. The formula FN in the theorem is a Tseitin Formula [Tse68] after a variable
projection operation, also defined in the next section. The Tseitin Formula is defined for any simple
graph G where each vertex v ∈ V (G) is labeled 0 or 1 so that the labels sum to an odd number. A vertex
labeled 1 is said to have an odd charge. The formula has a variable xe for every edge e ∈ E(G) and
is defined to be the CNF containing, for all v ∈ V (G), the clauses expressing that the sum of the edge
variables incident to v has parity equal to the label of v.

The two examples in Theorem 1.4 follow from Theorem 2.3 by taking k(n) := ⌊n/(2 log n)⌋ and
setting: (1) c(n) to be a large constant, and (2) c(n) to be ⌊1+δ

2 k⌋.

7

TRULY SUPERCRITICAL TRADE-OFFS

2.5 Tight Lifting and Supercritical Trade-offs for Resolution

The framework for obtaining our other proof and circuit complexity trade-offs from the width-depth
trade-off is lifting which is based on composition with functions, which we refer to as gadgets. For CNF
formulas, there can be multiple ways of representing its composition with a gadget as a CNF formula.
Therefore, for the gadgets g we are interested in, we will denote by g(F) a specific CNF encoding of the
composition of the CNF formula F with the gadget g.

In this paper, we consider two gadgets: XORm : {0, 1}m → {0, 1}, defined asXORm(x1, . . . , xm) =⊕
i∈[m] xi, and INDm : [m]× {0, 1}m → {0, 1}, defined as INDm(x, y) = yx. Given a CNF formula F

over variables x1, . . . , xn, we denote by XORm(F) the CNF formula obtained by substituting each xi by
yi,1⊕ · · ·⊕ yi,m where yi,j is a new propositional variable, and then expanding it out in CNF. For instance,
if m = 2 then the clause x4 ∨ x5 yields 4 clauses:

y4,1 ∨ y4,2 ∨ y5,1 ∨ y5,2 , y4,1 ∨ y4,2 ∨ y5,1 ∨ y5,2 , (2.2)
y4,1 ∨ y4,2 ∨ y5,1 ∨ y5,2 , y4,1 ∨ y4,2 ∨ y5,1 ∨ y5,2 . (2.3)

Note that the width ofXORm(F) ism·W (F) and the number of clauses is |XORm(F)| ≤ 2(m−1)·W(F)|F |.
Our lifting theorem for treelike resolution, which we prove in Section 5, uses composition with the

XORm gadget. Observe that the resolution refutation in its conclusion has small depth and simultaneously
smaller width. This decrease in width is essential for obtaining our width-size trade-off.

Theorem 2.4 (Lifting for treelike resolution). Let F be a CNF formula and let m ≥ 2. If there is a
width-w, size-s treelike resolution refutation for XORm(F), then there is a width-

(
w

m−1

)
, depth-log s

resolution refutation of F .

We can now apply this theorem to our width-depth trade-off to obtain the supercritical trade-offs for
treelike resolution.

Theorem 2.5 (Width-size trade-offs, general). For any m = m(n) ≥ 3, k = k(n) ∈ [4, n
2 lnn], and

ε = ε(n) ∈ (4k , 1−
1
k), there are 4m-CNF formulas FN with N variables and formula size O(16m ·N),

where 2k2n⌊εk⌋m ≤ N ≤ 40k2(2n)⌊εk⌋m, which are refutable in width m(k + 3) resolution, but for
which any treelike refutation of width at most (m− 1)(1 + ε)k has size at least 2Ω(nk).

Proof. Let F be the 4-CNF formulas from Theorem 2.3 with parameter c := ⌊εk⌋ − 1 ∈ [3, k − 1],
and define FN := XORm(F). Then S (FN) = O(24(m−1) · 4m · S (F)) = O(24m ·m · |Vars(F)|) =
O(16m ·N), and since F is refutable in width k + 3, a line-by-line simulation via xi = yi,1 ⊕ . . .⊕ yi,m
gives a refutation of FN in width m(k + 3). Now suppose π is a treelike refutation of FN in width
(m− 1)(1 + ε)k and size s, then by Theorem 5.3, there is a refutation of F in width (1 + ε)k and depth
log s. The theorem follows since Theorem 2.3 implies that log s = Ω(nk).

Note that Theorem 1.3 follows immediately from Theorem 2.5 by taking k(n) := ⌊n/(2 log n)⌋ and
setting: (1) m := 256, ε := 0.41, and (2) m := ⌊

√
n⌋, ε := 100√

n
.

Now, as a warm up for the lifting theorems for monotone circuits and cutting planes in Section 2.6, we
prove an even tighter result for resolution. For this theorem, we consider the following composition of a
CNF formula with the indexing gadget.1 Let F be a CNF formula over variables z1, . . . , zn. To obtain the
CNF formula INDm(F), we start with substituting in F every occurrence of zi by

(xi,1 → yi,1) ∧ . . . ∧ (xi,m → yi,m) , (2.4)

where xi,j and yi,j are new propositional variables, and we expand it out to CNF. Moreover, we would
like to include xi,1 ∨ . . . ∨ xi,m for each i to ensure that xi,j = 1 for at least one j ∈ [m]; but to keep
the width of the formula small, we instead use extension variables to encode each of these clauses as a
3-CNF formula with ≤ m clauses. Note that the width of INDm(F) is 2W (F) and the number of clauses
is |INDm(F)| ≤ mW(F)|F |+ nm. Using this gadget, we obtain our lifting theorem for resolution.

1Other standard encodings work as well, but this one ensures the formula width increase by at most a factor 2.

8

2 Preliminaries and Proof Overview

Theorem 2.6 (Lifting for resolution). For any m,n ≥ 1 and n-variate CNF formula F , if INDm(F) has
a resolution refutation of size S and depth d, then F has a resolution refutation of width ⌊log(m+1)/2 S⌋
and depth d.

In this theorem, the size-width relation is nearly tight (see Lemma 2.7 below), and there is no increase
in depth. Moreover, the theorem holds for any gadget size, and the proof, which we defer to Section 6, is
simple—based on a random restriction argument.

By a standard step-by-step simulation we obtain the following upper bound for refuting INDm(F).
We include the proof for the sake of completeness.

Lemma 2.7. For any m,n ≥ 1 and n-variate CNF formula F , if F has a resolution refutation of width w
and size s ≥ n, then INDm(F) has a resolution refutation of size O(s ·mw+1).

Proof. The proof is a standard step-by-step simulation. Let F be a CNF formula over variables z1, . . . , zn
and let Π be a resolution refutation of F in width w and size s. We start by deriving

∨
j∈[m] xi,j for

all i ∈ [n] from the axioms in INDm(F), which can be done in O(nm) steps. We then simulate Π

step by step, keeping the invariant that for every clause C =
∨

ℓ∈[w′] z
βℓ
iℓ

in Π, we derive, for each
J = (j1, . . . , jw′) ∈ [m]w

′ , the clause CJ =
∨

ℓ∈[w′](xiℓ,jℓ ∨ yβℓ
iℓ,jℓ

). This holds for the axioms by
definition of INDm(F). Suppose it holds for clause C ∨ zi and D ∨ zi, and let w′ be the width of D ∨ C.
Then for any J = (j1, . . . , jw′) ∈ [m]w

′ and any j ∈ [m] we can derive (D ∨ C)J ∨ xi,j in one step by
resolving over variable yi,j . Finally, we can derive (D ∨ C)J in m steps by resolving (D ∨ C)J ∨ xi,j for
all j ∈ [m] with

∨
j∈[m] xi,j . This give a total of mw′+1 +m = O(mw+1) steps per new clause in Π.

We can now apply Theorem 2.6 to our width-depth trade-off to obtain supercritical size-depth trade-offs
for resolution.

Theorem 2.8 (Resolution size-depth trade-offs, general). For any m = m(n), k = k(n), and c = c(n)
such that 3 ≤ c ≤ k − 1 < n

2 lnn , there are 8-CNF formulas Fn with O(mk2(2n)c+1) variables and
formula size S(Fn) = O(m4k2(2n)c+1) which resolution can refute in size O(mk+4k2(4n)k), but for
which any refutation of size at most

(
m+1
2

)k+c has depth at least Ω(nk).

Proof. Let FN = INDm(F), where F is the formula obtained from Theorem 2.3, our supercritical width-
depth trade-off, for the parameters c, k and n. Note that FN is a 8-CNF formula of size O(m4k2(2n)c+1).
Since by Theorem 2.3 F has a resolution refutation of width k + 3 and size O(k2(4n)k), we have by
Lemma 2.7 that INDm(F) has a resolution refutation of size O(mk+4k2(4n)k). The lower bounds follows
from combining the lifting theorem (Theorem 2.6) and the width-depth trade-off (Theorem 2.3).

2.6 Tight Lifting and Supercritical Trade-offs for Monotone Circuits and Cutting Planes

A monotone real circuit is a Boolean circuit whose gate-set includes all monotone functions of the form
f : R× R→ R. It has n input gates x1, . . . , xn and must output a bit in {0, 1}. Note that monotone real
circuits are an extension of traditional monotone circuits.

We define the more general (semantic) version of cutting planes, to which our lower bounds also
apply. A semantic cutting planes refutation of a system of linear inequalities Ax ≥ b is a sequence of
inequalities {cix ≥ di}i∈[s], with ci ∈ Zn, di ∈ Z, such that the final inequality is the contradiction 0 ≥ 1,
and for every i ∈ [s], cix ≥ di either belongs to Ax ≥ b or follows from two previous inequalities by
a semantic deduction step, that is, from ax ≥ b and a′x ≥ b′ we can derive any cx ≥ d which satisfies
(ax ≥ b)∧(a′x ≥ b′) =⇒ cx ≥ d for every x ∈ {0, 1}n. The size of a semantic cutting planes refutation
is s, the number of inequalities in the sequence. One may view a semantic cutting planes proof as a DAG
with one vertex per inequality such that the leaves are the inequalities belonging to Ax ≥ b, the root is
0 ≥ 1, and every non-leaf vertex has two incoming edges the vertices from which it was derived. The
depth of a semantic cutting planes proof is the longest root-to-leaf path in this DAG.

Like previous DAG lifting theorems, it will be convenient to work with the following top-down
definitions of these models—rectangle- and triangle-DAGs solving (total) search problems. A search

9

TRULY SUPERCRITICAL TRADE-OFFS

problem is a relation S ⊆ D×O where for every input x ∈ D, there is at least one output o ∈ O such that
(x, o) ∈ S. We start by defining shape-DAGs [GGKS20], which are a generalisation of rectangle-DAGs
introduced in [Raz95] and simplified in [Pud10, Sok17].

Definition 2.9 (Shape-DAG). Let F ⊆ D be a family of sets, which we call the “shapes” of the DAG,
and S ⊆ D ×O be a search problem. An F -DAG solving S is a fan-in ≤ 2 rooted directed acyclic graph
where each vertex v is labeled with a shape Sv ∈ F such that the following hold:

1. Root. The distinguished root r is labelled with the “full” shape Sr = D.
2. Non-Leaves. If u has children v, w then Su ⊆ Sv ∪ Sw.
3. Leaf. If ℓ is a leaf of the DAG then there is some o ∈ O such that Sℓ ⊆ S−1(o).

The size of an F-DAG is the number of nodes it contains, and the depth is the length of the longest
root-to-leaf path in the DAG.

For a bipartite input domain X × Y , a rectangle R = RX ×RY is a product set, where RX ⊆ X
and RY ⊆ Y . A triangle is a subset T ⊆ X × Y that can be written as T = {(x, y) | aT (x) < bT (y)}
for some labeling of the rows aT : X → R and columns bT : Y → R by real numbers. A rectangle-DAG
is a shape-DAG where the set of shapes F is the set of all rectangles over the input domain. Similarly, a
triangle-DAG is a shape-DAG where F is the set of all triangles. Note that because any rectangle is also a
triangle, a rectangle-DAG is a special case of a triangle-DAG.

We now introduce the two types of search problems that allow us to relate triangle- and rectangle-
DAGs to cutting planes and monotone circuits. Let F = C1 ∧ · · · ∧ Cm be an unsatisfiable CNF formula
on n variables. The falsified clause search problem for F is the following total search problem: given
z ∈ {0, 1}n, find an i ∈ [m] such that the clause Ci is falsified by z. Formally, we define the relation
Search(F) ⊆ {0, 1}n × [m] by

(z, i) ∈ Search(F)⇐⇒ Ci(z) = 0 . (2.5)

We are sometimes interested in bipartite input domains, so given a partition of the variables of F , where
we define the relation SearchX,Y (F) ⊆ (X × Y) × [m] by ((x, y), i) ∈ Search(F) ⇐⇒ Ci(z) = 0. It
is not difficult to see that for any CNF formula F and any partition of its variables, a semantic cutting
planes refutation of F implies, for any partition of the variables of F , a triangle-DAG for SearchX,Y (F)
of the same size and depth; indeed, any halfspace az ≥ b defines a triangle H := {z ∈ {0, 1}n | az < b}.
Similarly, a resolution refutation of F implies a rectangle-DAG for SearchX,Y (F) of the same size and
depth.

Given a total or partial monotone function f : {0, 1}n → {0, 1}, the monotone Karchmer–Wigderson
search problem [KW90] mKW(f) ⊆ (f−1(1)× f−1(0))× [n] is defined as

((x, y), i) ∈ mKW(f)⇐⇒ xi > yi . (2.6)

The DAG-like version of the monotone Karchmer–Wigderson relation [Raz95, Pud10, Sok17] implies
that there is a monotone circuit (respectively, monotone real circuit) computing f if and only if there is a
rectangle-DAG (respectively, triangle-DAG) solving mKW(f) of the same size and depth.

For our lifting theorems we need to compose search problems with gadgets. Given a search problem
S ⊆ {0, 1}n ×O and a gadget g : D → {0, 1}, we can define S ◦ gn ⊆ Dn ×O to be the relation where
(x, o) ∈ S ◦ gn if and only if (z, o) ∈ S, where zi = g(xi) for i ∈ [n]. We also consider the search
problem SearchX,Y (INDm(F)), where X corresponds to the x-variables, and Y to the y-variables of
INDm(F). By a standard reduction [Gál01, Raz90], there is a way of translating between the composed
search problems; see e.g. [GGKS20] for a proof.

Fact 2.10. Let F be an unsatisfiable k-CNF on ℓ clauses and n variables, let m = m(n) be a parameter
and N = ℓ · (2m)k. There is a partial monotone function f : {0, 1}N → {0, 1} such that

10

2 Preliminaries and Proof Overview

1. Search(F) ◦ INDn
m reduces to mKW(f). In particular, an F-DAG solving mKW(f) implies an

F-DAG solving Search(F) ◦ INDn
m of the same size and depth.

2. mKW(f) reduces toSearchX,Y (INDm(F)). In particular, anF -DAG solving SearchX,Y (INDm(F))
implies an F-DAG solving mKW(f) of the same size and depth.

We now state our lifting theorem from resolution to triangle-DAGs.

Theorem 2.11 (Lifting for triangle-DAGs). Let F be an n-variate unsatisfiable CNF formula, and let
m,w ∈ N, δ > 0 be arbitrary parameters satisfying w ≤ n, 0 < δ < 1 − 1

logm and m ≥ (50nδ)2/δ. If
there is a triangle-DAG of size 1

2m
(1−δ)w and depth d solving Search(F) ◦ INDn

m, then F has a resolution
refutation of width w and depth dw.

We prove this theorem in Section 7. Combining this lifting theorem with our width-depth trade-off for
resolution (Theorem 2.3) we obtain the supercritical size-depth trade-offs for monotone (real) circuits.

Theorem 2.12 (Monotone circuit trade-offs, general). For any integers c = c(n), k = k(n),m = m(n)
and real number δ = δ(n) ∈ (0, 0.9) such that 3 ≤ c ≤ k − 1 < n

2 logn and m ≥ (50nδ)2/δ, the following
holds for sufficiently large n. There are N -variate functions fN over N = O(m4k2(2n)c+1) variables
computable by a monotone circuit with size at most O(mk+4k2(4n)k), but for which any monotone real
circuit with size at most 1

2m
(1−δ)(k+c) must have depth at least Ω(nk/k).

Proof. Let F be the 4-CNF formula obtained from Theorem 2.3, our supercritical width-depth trade-off,
for the parameters c, k and n. Consider the partial monotone function gN : {0, 1}N → {0, 1} obtained by
applying Fact 2.10 to F . We have that N = O(m4k2(2n)c+1). Since by Theorem 2.3, F has a resolution
refutation of width k+3 and size O(k2(4n)k), we have by Lemma 2.7 that mKW(gN) can be solved by a
rectangle-DAG of size O(mk+4k2(4n)k), where we use the fact that a resolution refutation of F implies a
rectangle-DAG solving SearchX,Y (INDm(F)) in the same size, and that by Fact 2.10 mKW(gN) reduces
to SearchX,Y (INDm(F)). This implies that there is a monotone circuit of the same size computing gN .
Let fN be the total function, which extends gN , computed by this circuit.

Now, if there is a monotone real circuit of size s and depth d computing fN , then there is a triangle-
DAG of size s and depth d solving mKW(fN), and hence also mKW(gN). By Fact 2.10 this implies
there is a triangle-DAG solving Search(F) ◦ INDn

m in the same size and depth. Finally, combining the
triangle-DAG lifting theorem (Theorem 2.11) and the width-depth trade-off (Theorem 2.3) we conclude
that if s ≤ 1

2m
(1−δ)(k+c) then d = Ω(nk/(k + c)) = Ω(nk/k).

We can obtain a similar supercritical trade-off for cutting planes.

Theorem 2.13 (Cutting planes trade-offs, general). For any integers c = c(n), k = k(n),m = m(n)
and real number δ = δ(n) ∈ (0, 0.9) such that 3 ≤ c < k < n

2 logn and m ≥ (50nδ)2/δ, the following
holds for all n. There are unsatisfiable 3-CNF formulas FN of size N = O(m4k2(2n)c+1) that can be
refuted in resolution in size O(mk+4k2(4n)k), but for which any semantic cutting planes refutation in
size at most 1

2m
(1−δ)(k+c) must have depth at least Ω(nk/k).

This theorem can be proven along the same lines as Theorem 2.12, by applying the lifting theorem
(Theorem 2.11) to the width-depth trade-off (Theorem 2.3) together with Fact 2.10, and using Lemma 2.7
for the upper bound. The only caveat is that this would give us a 8-CNF formula. In order to obtain a
3-CNF formula, we need to define a 3-CNF version of INDm(F), denoted by ĨNDm(F). Let F be a CNF
formula over variables z = z1, . . . , zn, then the formula ĨNDm(F) is over variables xi,j and yi,j where
i ∈ [n] and j ∈ [m], the extension variables to write each of the clauses

∨
j∈[m] xi,j , for i ∈ [n], as a

3-CNF formula, along with variables xC,J and yC,J for every C ∈ F and every J ∈ [m]W(C). The clauses
in ĨNDm(F) consist of: a 3-CNF encoding of

∨
j∈[m] xi,j for every i ∈ [n]; for every C =

∨
ℓ∈[w] z

βℓ
iℓ

in F and every J = (j1, . . . , jw) ∈ [m]w, a 3-CNF encoding of (
∧

ℓ∈[w] xiℓ,jℓ) → xC,J , a 2-clause
xC,J → yC,J , and a 3-CNF encoding of yC,J →

∨
ℓ∈[w] y

βℓ
iℓ,jℓ

. Note that if F is a w-CNF formula, then
ĨNDm(F) has O(w · |F | ·mw + nm) variables and clauses.

11

TRULY SUPERCRITICAL TRADE-OFFS

We observe two basic facts about ĨNDm(F). First, every size-s resolution refutation of INDm(F) can
be made into a size-O(s+ |ĨNDm(F)|) refutation of ĨNDm(F). This is because INDm(F) can be derived
from ĨNDm(F) in linear size. Secondly, for both rectangle- and triangle-DAGs (or any shape-DAG that is
closed under taking intersection with rectangles), the search problem SearchX,Y (INDm(F)) reduces to
SearchX̃,Ỹ (ĨNDm(F)), where X̃ corresponds to the x-variables, and Ỹ to the y-variables of ĨNDm(F).
Indeed, we can fix a pair of injective maps ϕX : {0, 1}X → {0, 1}X̃ and ϕY : {0, 1}Y → {0, 1}Ỹ
which extend every assignment on X ∪ Y to one on X̃ ∪ Ỹ according to the semantic meaning of
the new variables. Let O be the set of possible outputs of SearchX,Y (INDm(F)), which we view as
the set of clauses of INDm(F). Similarly, let Õ be the set of clauses of ĨNDm(F). We can define an
injective map ϕÕ : Õ → O which given a clause in ĨNDm(F) outputs the clause INDm(F) it came from.
Therefore, given an F -DAG, where F is a shape-DAG closed under taking intersections with rectangles, Γ̃
solving SearchX̃,Ỹ (ĨNDm(F)), we can create an F -DAG Γ solving SearchX,Y (INDm(F)) with the same
topology, as follows. For each node in Γ̃—which is a subset of {0, 1}X̃×{0, 1}Ỹ —we take its intersection
with ϕX({0, 1}X) × ϕY ({0, 1}Y) and view it as a subset of {0, 1}X × {0, 1}Y via ϕ−1

X × ϕ−1
Y , giving

the corresponding node of Γ. It is not hard to see that Γ is an F-DAG for SearchX,Y (INDm(F)).

Proof of Theorem 2.13. Let FN = ĨNDm(F), where F is the formula obtained from Theorem 2.3, our
supercritical width-depth trade-off, for the parameters c, k and n. Note that FN is a 3-CNF formula that
has O(m4k2(2n)c+1) variables and clauses. Since by Theorem 2.3, F has a resolution refutation of width
k + 3 and size O(k2(4n)k), we have by Lemma 2.7 that INDm(F), and hence also ĨNDm(F), has a
resolution refutation of size O(mk+4k2(4n)k).

Now, if there is a semantic cutting planes refutation of FN of size s and depth d, then there is a triangle-
DAG solving SearchX,Y (INDm(F)) of size s and depth d, using the fact above that SearchX,Y (INDm(F))

reduces to SearchX̃,Ỹ (ĨNDm(F)). By Fact 2.10 this gives a triangle-DAG solving Search(F) ◦ INDn
m of

the same size and depth. Finally, combining the triangle-DAG lifting theorem (Theorem 2.11) and the
width-depth trade-off (Theorem 2.3), we conclude that if s ≤ 1

2m
(1−δ)(k+c) then d = Ω(nk/(k + c)) =

Ω(nk/(k + c)).

Now Theorem 1.1 follows from Theorem 2.12, and Theorem 1.2 from Theorem 2.13, by setting:
(1) k to be a sufficiently large constant, c := ⌊0.41k⌋, w := k + c, δ := 1

200 , and m := n500; and (2)
k := ⌊ n

4 logn⌋, c := ⌊
√
k⌋, w := k + c, δ := 1

4
√
k
, and m := ⌊n3/δ⌋ = ⌊n12

√
k⌋.

3 Compressed Cop-Robber Game and the Formula

In this section, we define the compressed Cop-Robber game introduced by [GLNS23]. In Section 3.1,
we define graph compression and the resulting compressed Tseitin formula in general terms, and then
construct a concrete instance generalizing the one in [GLNS23]. In Section 3.2, we define the compressed
game. In Section 3.3, we show some basic facts about resolution and the compressed game.

3.1 Graph Compression and Compressed Tseitin Formula

In the next definition, we assume that the graph G is given together with its adjacency list. That is, for
each vertex there is an ordered list of its neighbors.

Definition 3.1 (Graph compression). We call an equivalence relation ≡V on V (G) compatible if u≡V v
implies that u, v are non-adjacent and have the same degree. A compatible ≡V induces an equivalence
relation≡E on E(G) as follows. First, we let two edges e1 and e2 be equivalent if there are v1, v2 ∈ V (G)
such that e1 = {v1, w1}, e2 = {v2, w2}, v1≡V v2, and the position of w1 in the neighbor list of v1 equals
the position of w2 in that of v2. Then we take the transitive closure of this relation on E(G) to be ≡E . We
call the triple (G,≡V ,≡E) a graph compression.

12

3 Compressed Cop-Robber Game and the Formula

Given a graph compression (G,≡V ,≡E), let /≡V be the map from the vertices to their equivalence
classes, and forW ⊆ V (G), letW/≡V denote the image ofW andW≡V

:= {v | v≡V w for some w ∈W}.
Similarly, let /≡E be the map from the edges to their equivalence classes, and for F ⊆ E(G), let F/≡E

denote the image of F and F≡E
:= {e | e≡Ef for some f ∈ F}. We write {e}≡E as e≡E and {v}≡V

as v≡V .

Definition 3.2 (Compressed Tseitin). Given a Tseitin formula onG and a graph compression (G,≡V ,≡E),
the edge equivalence ≡E induces a variable substitution xe 7→ xe/≡E

as follows: for each equivalence
class, introduce a single, new variable xe/≡E

and replace the variable of every edge in this equivalence
class by xe/≡E

. We call the resulting CNF formula the compressed Tseitin formula.

Remark 3.3. Observe that the compressed Tseitin formula has width at most deg(G), the maximal vertex
degree, and |E(G)/ ≡E |-many variables. Also, the parity constraints at equivalent vertices become the
same after the substitution, and so the compressed formula has at most 2deg(G)−1|V (G)/ ≡V |-many
clauses.

The formula remains unsatisfiable since it is obtained from an unsatisfiable formula via a variable
substitution. Moreover, since this substitution is a projection (i.e., each xe is substituted with one variable),
any resolution refutation of the original formula gives rise to one of the compressed formula with no
greater proof width, depth, or size.

We will focus on an explicit graph and graph compression. For a fixed k ≥ 2, we define Gcyl to
be the cylinder graph with k rows and L+ 2r columns, each column being a cycle, where L and r are
parameters to be set later in Definition 3.9. When k = 2, it is a grid which we still denote by Gcyl. Every
vertex of Gcyl has degree 4 except those on the first and last columns, which have degree 3. Denote the
rows by 1, . . . , k and the columns by 1, . . . , L + 2r. We call vertices on columns [1, r], [r + 1, r + L],
[r + L+ 1, L+ 2r] the left, middle, right part of the graph, respectively. We will specify parameters L
and r in terms of k later.

Definition 3.4 (Concrete graph compression). We let (Gcyl,≡V ,≡E) be a graph compression on the
cylinder Gcyl defined as follows.

1. Compatible vertex equivalence ≡V . We pick factors m1, . . . ,mk of L which are all greater than 2,
called the moduli of rows. We define a vertex equivalence relation where, on each row i, (i, a)≡V (i, b)
if both vertices fall in the middle part (i.e., a, b ∈ [r + 1, r + L]) and a− b = 0 mod mi.

2. Edge equivalence ≡E . The above ≡V induces an edge equivalence relation on E(Gcyl) as in
Definition 3.1: we order the edges incident to a vertex by the canonical choice (left, right, up, down),
adjusted to a subset of size 3 for vertices on boundary columns.

Definition 3.5 (Concrete compressed Tseitin). We use Ts(Gcyl) to denote the Tseitin formula where the
only odd charge is at vertex (1, 1). Then the edge equivalence ≡E induces a variable identification on
Ts(Gcyl) and hence a new CNF formula, which we denote by τ(Gcyl).

We make the following three observations about the compression.

Observation 3.6. In the edge equivalence ≡E on E(Gcyl), a horizontal edge can be equivalent only to
horizontal edges in the same row, and a vertical edge only to vertical edges between the same two adjacent
rows.

Observation 3.7. We can visualize the compression as follows. Fixing a row i, we use a to represent
vertex (i, a). Then each vertex on the left and right parts of Gcyl is a singleton vertex class, and there are
mi vertex classes in the middle part. In other words, the set of vertices in row i is partitioned into 2r+mi

many subsets according to ≡V : the singletons {1}, . . . , {r}, {L+ r + 1}, . . . , {L+ 2r}, and (r + 1)≡V ,
. . . , (r +mi)≡V , where x≡V = {y ∈ [r + 1, r + L] | y = x mod mi}. The horizontal edge classes are
partitioned into 2(r − 1) +mi subsets: a singleton for each edge within the left or within the right part,

13

TRULY SUPERCRITICAL TRADE-OFFS

1 5 10 15 20 25 30

(a) Before compression.

1 2 3 4 5 6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(b) After compression.

Figure 3: The compression of two rows in the middle part is depicted. The parameters are chosen as L =
P1 · P2 · P3 = 2 · 3 · 5, c = 1, m1 = P1 · P2 = 6, and m2 = P2 · P3 = 15. Equivalent vertical edges are drawn in
the same color.

and Hi(1), . . . ,Hi(mi), where Hi(a) = {{x, x+ 1} | x ∈ [r, r + L], x = a mod mi}. Note that the
two edges {r, r + 1} and {r + L, r + L + 1} that “cross parts” are equivalent and fall in Hi(r) since
mi|L. As for the vertical edges, they are all between adjacent rows. Between rows i and i+ 1 (counted
mod k), the vertical edges within the left or the right part give 2r singleton edge classes. In the middle
part, using the Chinese remainder theorem, it is not hard to see that there are gi := gcd(mi,mi+1)-many
vertical edge classes Ti(1), . . . , Ti(gi), where

Ti(a) =
{
{(i, x), (i+ 1, x)}

∣∣ x ∈ [r + 1, r + L] and x− a = 0 mod gi
}
. (3.1)

See Figure 3 for an illustration.

Observation 3.8. The number of vertex class is |V (Gcyl)/ ≡V | = 2kr +
∑k

i=1mi, and the number of
edge class is |E(Gcyl)/ ≡E | = (8r − 2)k +

∑k
i=1(mi + gcd(mi,mi+1)).

In this and the next sections, given n, k, and c, we set the parameters mi, L, and r in Gcyl as follows.

Definition 3.9 (Parameters in construction). For fixed k ≥ 2 and c ∈ [1, k − 1], let n > 4k + 2 be an
integer such that there are k pairwise coprime numbers P1, . . . , Pk in [n, 2n]. (The prime number theorem
implies that having n > 2k ln k + Cabs suffices, where Cabs is an absolute constant.) For i ∈ [k], we
choose the parameters in Definition 3.4 as follows.

mi := 2(k + c) · Pi · · ·Pi+c , (3.2)
L := 2(k + c) · P1 · · ·Pk , (3.3)
r := k + c+ 1 . (3.4)

The condition P1, . . . , Pk ∈ [n, 2n] in Definition 3.9 is only for the estimates mi ≤ k2(2n)c+1 and
L ≥ k2nk to hold. The more structural properties we need of the parameters are summarized as follows.

14

3 Compressed Cop-Robber Game and the Formula

Property 3.10 (Properties of parameters). For any subset I ⊆ [k] of rows, denote gI := gcd(mi | i ∈ I).
Then the following holds for the parameters in Definition 3.9.

(P1) g[k] ≥ 2(k + c);
(P2) For all i ∈ [k] and all a, b ≥ 1 such that a+ b ≤ c+ 1, mi | lcm

(
g[i−a,i], g[i,i+b]

)
. Here, [i− a, i]

and [i, i+ b] are cyclic intervals modulo k;
(P3) For all I ⊆ [k] with |I| ≥ k − c, it holds that lcm(mi | i ∈ I) = L;
(P4) r > k + c.

Let us see that the parameters indeed satisfy the above. It is clear for (P1) and (P4). For (P2), by
(3.2) we have that A := g[i−a,i]/(2(k+ c)) is divisible by Pi, . . . , Pi−a+c and B := g[i,i+b]/(2(k+ c)) is
divisible by Pi+b, . . . , Pi+c. Since i+b ≤ i−a+c+1, we get that lcm (A,B) is divisible by Pi, . . . , Pi+c.
For (P3), note that every Pi appears (as a factor) in c+ 1 rows by (3.2), so if |I| ≥ k − c, then Pi is in mj

for some j ∈ I and hence lcm(mi | i ∈ I) = P1 · · ·Pk = L.

Finally, by Remark 3.3 and Observation 3.8, the compressed Tseitin formula τ(Gcyl) has width 4, and
N variables and Θ(N) clauses, for 2k2nc+1 ≤ N ≤ 40k2(2n)c+1.

3.2 The Compressed Game

We are ready to define the compressed vertex Cop-Robber game.

Definition 3.11 (Compressed Cop-Robber game). Given a graph compression (G,≡V ,≡E), the com-
pressed (vertex) k-Cop-Robber game proceeds on G, where the Cops and the Robber stay on vertices and
are always visible to each other. Initially, the Robber is at a vertex, and all k Cops are lifted from the graph.
In a round, the following happens in turn:

(G1) If there is no lifted Cop, choose and lift one. Then, a lifted cop signals a vertex v to the Robber;
(G2) The Robber does a compressible move from his current vertex w1 to some w2, which means he

provides an edge set M ⊆ E such that

(a) (M is closed under ≡E .) Whenever e≡Ee
′, e ∈M ⇔ e′ ∈M ;

(b) (No vertex class is occupied.) If we denote the set of vertices occupied by Cops (the Cop
position) after (G1) by C ⊆ V , then C ∩ V (M) = ∅;

(c) (Parity flip.) For all u ∈ V (M), degM (u) is odd if and only if u≡V w1 or u≡V w2. (Note
that this implies w1 ̸= w2.)

(G3) A lifted Cop lands at the signaled vertex v.

The game ends when a Cop is at a vertex in the Robber’s vertex class.

Remark 3.12. By definition of a compressible move M , if M ⊆ E is closed under ≡E , then so is V (M)
under≡V , so condition (G2)b is the same as requiring that C≡V ∩V (M)≡V = ∅. In the trivial case where
all vertices form singleton equivalence classes, and hence so do all edges, a compressible move from w1

to w2 is a path connecting w1 and w2 plus some edge disjoint cycles that can be removed.

3.3 From Narrow Proofs to Cop Strategies

Before diving into the compressed game, let us show two facts about the refutation width of Tseitin
formulas and about simulating refutations by a Cop strategy. The arguments are somewhat straightforward.

Lemma 3.13 (Small-width refutation). The formula τ(Gcyl) has a resolution refutation with width k+3
and size O((L+ r)2kk).

15

TRULY SUPERCRITICAL TRADE-OFFS

Proof. We view a clause as its minimum falsifying assignment and construct a proof as a top-down DAG,
where we query the value of a variable at each node until arriving at an axiom. We first query the values
of all right-going edges of column 1. Denote this edge set by E1. Since E1 separates the graph (i.e., its
removal disconnects the graph into two components), at each of the 2k branches, the restricted formula
contains a subset of clauses that form a Tseitin contradiction on either the induced subgraph on column 1
or the sub-cylinder after column 1. At any of the 2k−1 nodes where the contradiction is on the 1st column,
we continue to query the up, down edges of vertex (1, 1), to arrive at either an axiom at this vertex (clause
width 3) or a node in the DAG where we forget the right edge of (1, 1) (clause width k + 1). Then we
continue to do so for vertices (1, 2), (1, 3), . . . until we cyclically get back from row k to row 1, where we
end up at an axiom at vertex (1, 1). Note this part of the proof has width k + 1 and size O(2kk).

At any of the other 2k−1 nodes, the Tseitin instance is on the induced subgraph from the second
to the last column. We query the up, down, right edges of (2, 1) to arrive at either an axiom about
this vertex (clause width 4), or, by forgetting its left edge, a node where the assignment has domain
E1,1 := E1 \ {left edge of (2, 1)} ∪ {up, right, down edges of (1, 2)} (clause width k + 2). Then we
query the right edge of (2, 2) to arrive at another node (clause width k + 3), and then query the down
edge of (2, 2) to arrive at either an axiom about vertex (2, 2) or, by forgetting the left and up edges, a node
where the assignment is on H1,1 \ {up, left edges of (2, 2)} ∪ {right, down edges of (2, 2)} (clause width
k + 2). We continue in this fashion for vertices (2, 3), (2, 4), . . . while staying in width k + 3. At last, we
forget 3 edges (up, left, down) of vertex (2, k) to arrive at a node whose assignment is on E2, the set of
all right edges from column 2. In this process, we maintained that the edges mentioned by a non-axiom
clause separate the graph, so at any node whose assignment is on E2, the restricted formula is a Tseitin
contradiction on the sub-cylinder after column 2. This part of proof has width k + 3 and size O(2kk).

The rest of the proof is clear: we repeat the above paragraph to E3, E4, . . . , EL+2r until the last
column, and on the last column the query processwhere the proof is symmetric to the case one we did on
the first column 1.

We will only consider Tseitin formulas that are nice with respect to a graph compression (G,≡V ,≡E),
which means that the parities at v, v′ are the same if v≡V v

′, and that there is a total assignment αTs :
E(G)/≡E → F2 that satisfies all axioms except for at one vertex class. Note that the instance τ(Gcyl) is
nice with respect to (Gcyl,≡V ,≡E) (Definition 3.4 and Definition 3.5), with the total assignment being
all-zero and the unique vertex class with odd charge being (1, 1), which is a singleton class.

Lemma 3.14 (Cops simulate refutation). The following holds for any graph compression (G,≡V ,≡E)
and nice Ts(G) with associated assignment αTs. If there is a width-w and depth-d resolution refutation
of the compressed Ts(G), then for the compressed (w + 1)-Cop-Robber game where the Robber starts at
a vertex in the unique falsified class of αTs, the Cops can win in d+ 1 rounds.

Proof. For ease of notation, in this proof, we write [e] for the ≡E-class of e ∈ E(G), and [v] for the
≡V -class of v ∈ V (G). Given a refutation π of the compressed Ts(G), the Cops travel down the proof
DAG π from the empty clause ⊥. At each clause D, a new game round begins. Assume that the Robber is
at vD and that the Cop position is CD ⊆ V (G). The Cops keep the following invariants.

1. |CD| ≤ w;
2. Each variable x[e] in D is associated to a vertex v ∈ CD that is incident to some edge in class [e];
3. They have a total assignment αD on {x[e] | e ∈ E(G)} that falsifies only the parity at vD, and

moreover, αD(D) = 0.

Initially, all Cops are lifted and α⊥ = αTs, so the invariants hold. Assume that the process arrives at
clause D keeping the invariants and the two precedent clauses are D1 and D2, and denote the resolved
variable at D by x[eD]. Since |CD| ≤ w and there are w + 1 Cops in total, there is at least one lifted
Cop. A lifted Cop then signals a vertex v that is adjacent to some edge in class [eD]. The Robber does a
compressible move M from vD to some v′D, and a lifted Cop lands at v. We choose the total assignment
α′ to be one such that, for every edge e, it flips the value αD([e]) if and only if e ∈M . This is well-defined

16

4 Lower Bound Proof for the Cop-Robber Game

since M is a compressible move and by (G2)a. The simulation now proceeds to the precedent clause
where α′ falsifies the literal over x[eD], say clause D1.

Let αD1
:= α′, and let us see that invariant (3) holds. First, α′ falsifies only the parity constraint at

[v′D] where v′D is the Robber’s current vertex. This is because αD only falsifies the parity at [vD] and M
flips only the parities at [vD] and [v′D] by (G2)c. Second, α′(D1) = 0. This is because α′ falsifies the
literal over x[eD] in D1, and α = α′ on the rest of the literals in D1 since their underlying variables all
have some associated vertex in CD by the inductive hypothesis on (2), so no edge in these classes can be
used in the compressible move by (G2)b.

Now we associate the variable x[eD] to the newly landed Cop, and lift a Cop that is not associated to
any variable in Vars(D1), if there is one. Then there must be least one Cop in the helicopter since at
most |D1| ≤ w many Cops are associated to some variable in Vars(D1). So, if we let CD1 denote the
remaining Cops’ positions, then |CD1 | ≤ w, and thus the invariants (1) and (2) hold. This completes the
induction, where a resolution step gives a game round.

Finally, when we reach an axiom clause, the clause is by definition expanded from the parity constraint
at a vertex class. By (3) the total assignment we keep falsifies this axiom and thus the parity at this vertex
class, so by the same invariant, the Robber’s position u is in this class. The variables mentioned in this
axiom are precisely the edge classes of all incident edges to u, so by (2), either a Cop is occupying some
u′≡V u and they win, or every neighbor of the Robber has a Cop in its class, in which case a lifted Cop
can be sent to u in the next round while the Robber has no compressible move, and the Cops win.

4 Lower Bound Proof for the Cop-Robber Game

In this section, we prove the lower bound for the compressed game (Theorem 2.1), stated formally below. We
use the construction (Gcyl,≡V ,≡E) from the previous section, including the definition of the parameters
L and r from Definition 3.9.

Theorem 4.1 (Cop-Robber, formal). For any k ≥ 2 and c ≤ k− 1, we have that k+1 Cops can win the
compressed game on (Gcyl,≡V ,≡E), but as long as there are at most k+ c Cops, the Robber can survive
(L− 2r)/(8(k + c)) rounds.

From this theorem, together with the relation between the Cops-Robber game and resolution width
and depth (Lemma 3.14) and the upper bound for resolution (Lemma 3.13), we immediately get the
supercritical width-depth trade-off stated in Theorem 2.3.

In Section 4.1, we prepare the concepts to be used in the proof. In Section 4.2, we describe the idea of
the Robber’s strategy and prove a key lemma. We provide the Robber’s strategy to survive many rounds
against k + c Cops in Section 4.3, proving Theorem 4.1. Henceforth, we fix k ≥ 2 and c ∈ [1, k − 1],
and consider the graph compression (Gcyl,≡V ,≡E) with parameters as in Definition 3.9. We write
V := V (Gcyl), and E := E(Gcyl).

4.1 Preparations

We begin with the following special kind of compressible moves of the Robber.

Definition 4.2 (I-periodic path). Given a nonempty row set I ⊆ [k] and columns a and b in [1, 2r + L]
where a < b, let gI := gcd(mi | i ∈ I). An I-periodic path between a and b is a path in the induced
subgraph Gcyl|I×[a,b] that can be obtained as follows. Take a simple path in Gcyl|I×[a,a+gI] from column
a to column a + gI such that the path starts and ends in the same row, and its restrictions to column a
and to column a+ gI , when viewed as subsets of the cycle on [k], share no edges. Then extend this path
periodically on Gcyl|I×[a+gI ,a+2gI] until hitting column b for the first time.

Using I-periodic paths, we obtain the following Robber moves, generalizing those in [GLNS23] which
correspond to the case where |I| = 2.

17

TRULY SUPERCRITICAL TRADE-OFFS

a a+ gI

gI = gcd(mi : i ∈ I)

I

Figure 4: A special move P starting in column a is shown as the segmented path, where I is the underlying row
set.

Remark 4.3 (Periodic paths give special compressible moves). Suppose W is the set of vertices occupied
by Cops in the compressed game (Definition 3.11). If P is an I-periodic path (I ̸= ∅) from vertex v1 on
column 1 to vertex v2 on column 2r + L respectively and it avoids W , then P is a compressible move.
We will call such path a special move of the Robber (cf. Figure 4), if he is at v1.

To see why it is a compressible move, note that P is a complete gI -periodic (horizontally) repetition of
some edges in I × [1, 1 + gI]. Using the fact that gI divides every row modulus in I , by Observation 3.7
we have that the edges in P are closed under ≡E , thus Condition (G2)a holds. Condition (G2)b holds by
assumption. Condition (G2)c holds since P is a path connecting v1 and v2 which are singleton classes
in ≡V .

In fact, more is true for the above special move P . For any two columns a and b in the left and right
part of Gcyl, respectively, if va is the first intersection of P with column a and vb is the last intersection
of P with column b, then the subpath of P from va to vb is also a compressible move, which we call the
(a, b)-truncation of P . To see why, note that Condition (G2)b is satisfied since we took a subset of P . The
parts of P before va and after vb consist of singleton-class edges, so after removing them, the subpath (as
an edge set) is still closed under ≡E , thus Condition (G2)a is satisfied. Finally, the subpath connects va
and vb which are singleton-classes in ≡V , so the parity Condition (G2)c is satisfied.

Next, we set up some notation for vertex sets and vertex separators. For W ⊆ V and a row set
I ⊆ [k], we let WI := W ∩ (I × [1, 2r + L]), which is the restriction of W on I . We let W≡I

:=
{v ∈ V | (∃v′ ∈ WI) s.t. v, v′ are on the same row and their distance is 0 mod gI}, which is the vertex
set gI -periodically generated by WI . We call a column W -free if it contains no vertex in W . We call a
vertex set I × [b, b+ gI] ⊆ I × [1, 2r + L] a good period of W≡I if the column b is W≡I -free.

Definition 4.4 (Vertex separators). We say a vertex set W ⊆ V is a vertex separator for I × [a, b] if in
the induced graph Gcyl|I×[a,b] there is no path from column a to column b avoiding W ∩ (I × [a, b]).

We say a vertex set W is I-separating if in the induced graph Gcyl|I×[1,2r+L] there is no I-periodic
path from column 1 to column 2r + L that avoids W≡I . We say W is a-separating, where 1 ≤ a ≤ k, if
it is I-separating for all I such that 1 ≤ |I| ≤ a.

We now record a simple fact that we will use later on, and then give some basic properties of separating
sets (Proposition 4.6) and vertex separators (Proposition 4.7).

Fact 4.5. For any vertex set R ⊆ I × [a, b], where a ≤ b, it holds that R separates columns a and b in the
graph Gcyl|I×[a,b] if and only if R separates columns 1 and 2r + L in Gcyl|I×[1,2r+L]. In particular, R is
a vertex separator for I × [a, b] if and only if R is a vertex separator for I × [1, 2r + L].

Proposition 4.6. For any W ⊆ V and ∅ ≠ I ⊆ [k], if |WI | < gI , then the following three statements
hold.

1. There is at least one W≡I -free column, and W≡I -free columns appear gI -periodically.
2. W is I-separating if and only if W≡I is a vertex separator for each good period of W≡I .

18

4 Lower Bound Proof for the Cop-Robber Game

3. W is I-separating if and only if W≡I is a vertex separator for I × [1, 2r + L].

Proof. To see Item 1, note that since
∣∣W≡I ∩ (columns [1, gI])

∣∣ = |WI | < gI , there is a column in [1, gI]
that is W≡I -free. The gI -periodicity of W≡I -free columns is immediate.

To prove Item 2, assume that W is not I-separating. Then any I-periodic path from column 1 to
column 2r + L avoiding W≡I certainly implies that W≡I is not a vertex separator for any Gcyl|I×[b,b+gI],
as witnessed by a subpath between columns [b, b+ gI]. (Since any edge connects vertices in the same or
adjacent columns, we can take e.g. the subpath from the last time of visiting column b to the next first time
of visiting column b+ gI .)

For the other direction, suppose W≡I is not a vertex separator on a good period of W≡I . By the gI -
periodicity of W≡I , this is the case for every good period of W≡I . By Item 1 a good period exists, say it is
I× [b, b+gI], then W≡I is not a vertex separator for I× [b, b+gI], so there is a path P = (P (1), . . . , P (t))
in Gcyl|I×[b,b+gI] from column b to b+ gI avoiding W≡I . By truncating P if necessary, we can assume
that P (1) is the last vertex of P on column b and P (t) is the first vertex of P on column b+ gI . Then we
extend P on column b+ gI to the same row as P (1), which is possible since I is a segment in the row set
and column b+ gI is W≡I -free. Finally, this extended path can be further extended periodically in both
directions to columns 1 and 2r + L, guaranteeing that it remains a simple path. The final path witnesses
that W is not I-separating.

We proceed to Item 3. If W≡I is a vertex separator for I × [1, 2r + L], then there is no path from
column 1 to column 2r + L, so in particular there is no such path that is I-periodic and in the induced
subgraph, so W is I-separating. For the other direction, assume W is I-separating. By Item 2, W≡I is
a vertex separator for every good period of itself. In particular, for any good period I × [b, b + gI] of
W≡I (which exists by Item 1), since W≡I ∩ I × [b, b + gI] ⊆ I × [b, b + gI] is a vertex separator for
I × [b, b+ gI], we get by Fact 4.5 that W≡I ∩ I × [b, b+ gI] is a vertex separator for I × [1, 2r + L], and
hence so is W≡I .

In the following, we use diam(W) for the difference of the maximum and minimum indices of columns
on which W is nonempty. The term minimal will always be used with respect to the set-inclusion relation.

Proposition 4.7. If a set S is a minimal vertex separator for Gcyl, then diam(S) ≤ |S| − 1.

Proof. Suppose not, then there are columns a < b on which S is nonempty and b − a ≥ |S|. Thus
there is a column c ∈ (a, b) that is S-free. The set S must be a vertex separator for either Gcyl|[k]×[1,c] or
Gcyl|[k]×[c,2r+L], say the former. But then S[k]×[1,c] is also a vertex separator for Gcyl, contradicting the
minimality of S.

Finally, we define the concept of virtual cordons, which is key to our improved analysis over [GLNS23].
To simplify the notation, given a vertex set W ⊆ V and row i ∈ [k], we use the abbreviation Wi for
W{i} = W ∩

(
{i} × [1, 2r + L]

)
. We use rowunique(W) ⊆ [k] to denote the set of rows where W has at

most one vertex, and call them the unique rows of W .

Definition 4.8 (Virtual cordons2). Given a vertex set W , a vertex separator S for Gcyl is called a virtual
cordon of W if |Si| ≤ |Wi| on every row i ∈ [k], and Sj ⊆ (Wj)≡V for every j ∈ rowunique(W).

Definition 4.9 (Critical set). We say a vertex set W is critical (to the Robber) if

1. W is (c+ 1)-separating, and
2. there exists a virtual cordon of W .

Intuitively, the set of virtual cordons of W can be viewed as a kind of ‘closure’ of the set of vertex
separators in W≡ (see Figure 5). In particular, if W is the Cop position, then a virtual cordon is a vertex
separator which the Cops can potentially occupy while maintaining their positions on the unique rows. We

2We used the term semi-separators for this definition in an earlier manuscript, which was subsequently adopted in the follow-up
work [BLVS24]. We think virtual cordons is more descriptive.

19

TRULY SUPERCRITICAL TRADE-OFFS

Figure 5: The green circles are vertices in W≡ (i.e., they are in the equivalent classes of the Cops). The red and
blue curves illustrate two minimal vertex separators contained in W≡. The yellow region represents all virtual
cordons associated with W .

will later design a Robber strategy against this closure, where critical Cop positions play an important role
in the analysis (see Section 4.2).

Regarding the definition of critical sets, we note that both conditions in are monotone: if W ⊆W ′ and
W is critical, then so is W ′. We also remark that the c+1 in this definition can be replaced with any larger
number while the proofs in later sections can be adapted accordingly. We pick c+ 1 for concreteness.

We end this subsection with the following property of virtual cordons.

Proposition 4.10. Let W ⊆ V . Suppose that |W | ≤ k + c and that W is 1-separating. Then any two
minimal virtual cordons of W , should they exist, coincide on rowunique(W).

Proof. Let S1 and S2 be two minimal virtual cordons of W . Since W is 1-separating, on each row it
contains at least one vertex, meaning that

|non-unique rows of W | ≤ (k + c)− k = c . (4.1)

We list rowunique(W) as i1, . . . , it, increasing in [k]. It holds t ≥ k − c. For j = 1, .., t, let (ij , aj) ∈ S1,
and (ij , bj) ∈ S2 denote the unique vertices on row j in S1 and S2, respectively.

If c = k − 1, then m1 = . . . = mk = L, meaning there is no compression at all. In this case, the
proposition trivially holds.

So we can assume that c ≤ k − 2, and hence t ≥ 2. Since minimal virtual cordons of W are
minimal vertex separators for Gcyl as well, by their size condition and Proposition 4.7, we have that
|a2−a1|, |b2−b1| ≤ |W |−1 < k+c. So, denoting by ∆1 := (a2−a1)−(b2−b1), then |∆1| < 2(k+c).
Now, since i1 and i2 are unique rows, a1−b1 and a2−b2 are multiples ofmi1 andmi2 , respectively, and thus
their difference ∆1 is a multiple of gcd(mi1 ,mi2). Property (P1) implies that gcd(mi1 ,mi2) ≥ 2(k + c).
Since |∆1| < 2(k + c) and ∆1 is a multiple of a number greater than 2(k + c), it must be that ∆1 = 0.

The same argument shows that ∆j := (aj+1 − aj)− (bj+1 − bj) is zero for j = 1, . . . , t (where t+ 1
is taken as 1). So a1 − b1 = . . . = at − bt are all equal to some number ∆ which is in turn a multiple of
each mij for j ∈ [t], and hence of M = lcm(mi1 , . . . ,mit). Now t ≥ k − c so by Property (P3), M = L
and so L | ∆. Since ∆ = a1 − b1 < 2L, it can only be 0 or L. If ∆ = L then one of a1, b1, say a1,
is a singleton class, a singleton class, implying that a1 ̸≡V b1, which contradicts the condition on virtual
cordons on unique rows. So ∆ = 0 and thus aj = bj for all j = 1, . . . , t, proving the proposition. So
∆ = 0 and thus aj = bj for all j = 1, . . . , t, proving the proposition.

4.2 The Key Lemma

In the Robber strategy, we will always let the Robber stay on either the left or the right part of the graph.
If the Cop position W is not critical, the Robber can either use special moves to switch sides (if W is

20

4 Lower Bound Proof for the Cop-Robber Game

not (c+ 1)-separating), or move within the same part to avoid the Cops (if W has no virtual cordons and
hence no vertex separators). In either case, the Cops cannot catch him. The worrying case is when W is
about to become critical in a round and the Robber cannot switch sides.

Lemma 4.11 below says that this worry is unnecessary. Namely, in a round when the Cops go from
having no virtual cordon to having one, the Robber has special moves to both sides of the graph.

Lemma 4.11. Suppose W ⊆ V is critical and |W | ≤ k + c. If a subset W− ⊆W has size |W | − 1 and
is (c+ 1)-separating, then W− must be critical as well.

Proof. Note the assumption implies that W is 1-separating, so as in (4.1) we have

|non-unique rows of W | ≤ c . (4.2)

Since W = W− ∪ {v}, for some vertex v, we consider two cases:

(A) v is on a unique row i of W−; or
(B) v is on a non-unique row i of W−.

In both cases, our goal is to construct a virtual cordon of W−.

Case (A). We may assume i is not a unique row of W , since otherwise W≡V = W−
≡V

and the conclusion
follows. Suppose v = (i, x) is the unique element of W− on row i.

Take a minimal virtual cordon S of W . Let i1 and i2 be the two nearest unique rows of W , above and
below i cyclically, which exist by (4.2) and since c ≤ k−1. Note they are also the two nearest unique rows
of W− above and below i by the case assumption, and these two rows can coincide in the case c = k − 1.
Define two cyclically down-going intervals I1 := [i1, i] and I2 := [i, i2]. Then by (4.2) again we have
(i− i1) + (i2 − i) ≤ c+ 1 (hinting that we will eventually apply Property (P2)). The idea is to construct
a virtual cordon S′ of W− starting from S, which we will achieve by maintaining S on rows outside of
I1 ∪ I2, changing S on I1 ∪ I2, and then “gluing” them together.

We first define some notation. Let (i1, a) and (i2, b) be the two unique vertices ofS in the corresponding
rows. Since S is also a minimal separator for Gcyl, by Proposition 4.7,

|a− b| < k + c . (4.3)

Consider the graph restricted on I1. Since |I1| ≤ c+1 we have, by the (c+1)-separating assumption, that
W− is I1-separating. By Items 1 and 2 in Proposition 4.6, there is a good period of W− on I1 containing
(i1, a), in which (W−)≡I1

is a vertex separator, and similarly for I2. We fix such good periods on I1 and
I2 below.

Pick an S1 that is a minimal subset of (W−)≡I1
such that S1 is a vertex separator in the good period.

Note that S1 ∩ (row i) ̸= ∅, and since there is a unique element of (W−)≡I1
on row i in that good period,

say (i, y), this element must be the only element of S1 on i. Similarly, pick a minimal subset S2 of
(W−)≡I2

so that S2 is a vertex separator within the good period there, and let (i, z) be the unique element
of S2 on row i.

Claim 4.12. It holds that y = z and, moreover, that (i, y) ∈ (W−)≡V .

Proof. By Proposition 4.7 applied to S1 and the induced subgraph on I1 × (good period), we have that

|a− y| < |S1| ≤ |WI1 | , (4.4)

where the last inequality holds because W≡I1
within a good period has size |WI1 |. Similarly, for I2, we

have that
|b− z| < |S2| ≤ |WI2 | . (4.5)

Now we pick any p such that (i, p) ∈ (W−)≡V . The rest of the proof of the claim is similar to that of
Proposition 4.10. First we show y = z. On the one hand, by definition of ≡I1 , p− y is a multiple of gI1 .

21

TRULY SUPERCRITICAL TRADE-OFFS

Similarly, p− z is a multiple of gI2 . So y − z is a multiple of gcd(gI1 , gI2) = gI , where I := I1 ∪ I2. By
Property (P1) of the parameters, we have gI ≥ 2(k + c). On the other hand, by (4.3), (4.4), (4.5) we have

|y−z| ≤ |y−a|+|a−b|+|b−z| ≤ (|WI1 |−1)+(k+c−1)+(|WI2 |−1) < k+c+|W | < 2(k+c) . (4.6)

Together this means y − z = 0, so y = z. Next, note that y − x = z − x is a multiple of gI1 and gI2 and
thus of g := lcm(gI1 , gI2), so by Property (P2) g is a multiple of mi. Therefore, mi|y − x, meaning that
(i, y) ∈ (W−)≡V . The claim is proved.

Let us now also consider S3 which is S restricted to the rows I3 := [i2, i1] (a cyclic interval mod k).
By Fact 4.5, S1, S2 and S3 are vertex separators for Gcyl|I1 , Gcyl|I2 and Gcyl|I3 , respectively. Note that
S1, S2 and S3 pairwise intersect at a single vertex. Our goal is to show that their union S′ is a vertex
separator for Gcyl.

Claim 4.13 (Gluing vertex separators). Let J1 = [j1, j2] and J2 = [j2, j3] be cyclical intervals (mod-
ulo k) of rows, where j1 and j3 could be the same. If T1 is a vertex separator for Gcyl|J1 and T2 is a vertex
separator for Gcyl|J2 such that j1, j2 and j3 are among the unique rows of both T1 and T2, and T1 and T2

share their unique vertex on row j for all j ∈ J1 ∩ J2, then T1 ∪ T2 is a vertex separator for Gcyl|J1∪J2 .

Once the claim is proved, we can use it to glue S1 and S2 and then to glue S1 ∪ S2 and S3 to obtain a
virtual cordon of W−, which will complete the proof for Case (A).

Proof of Claim 4.13. We prove it for the case j1 = j3; the case j1 ̸= j3 is similar (and simpler). Pick any
path P = (P (1), P (2), . . . , P (m)) that starts from the first column in Gcyl|J1∪J2 and avoids T1 ∪ T2. We
show that P cannot reach the last column. Suppose (j1, x1) and (j2, x2) are the unique vertices in both T1

and T2 on the corresponding rows. Let t1, . . . , tK ∈ [m] be the times, in increasing order, where P hits
rows j1 or j2. There is at least one such ti since if P never hits j1 nor j2 then it stays in either Gcyl|J1 , or
Gcyl|J2 , depending of the starting row, and cannot reach the last column since either T1 or T2 is a vertex
separator there. We prove by induction on ℓ that if P (tℓ) is on row j1 then it is to the left of (j1, x1), and
similarly if it is on row j2 it is to the left of (j2, x2).

Base case (j = 1): From P (1) to P (t1) the path stays within Gcyl|J1 or Gcyl|J2 , without loss of
generality we assume the former and P (t1) is on row j1. If P (t1) is to the right of x1, then we can extend
it on row j1 straight to the last column. This extended path is in Gcyl|J1 , avoids T1 (since T1 on row j1 is
the singleton {(j1, x2)}), and reaches from left to right, contradicting the assumption that T1 is a vertex
separator for Gcyl|J1 .

From tℓ to tℓ+1: the inductive hypothesis is that P (tℓ) is to the left of (j1, x1) or (j2, x2) depending
on the row it is in. Assume without loss of generality it is j1. Then again the path from P (tℓ) to P (tℓ+1)
falls within one of Gcyl|J1 and Gcyl|J2 . If P (tℓ+1) is to the right of the unique vertex on the same row,
then consider a new path from (j1, t) straight right to Ptℓ then following P to P (tℓ+1) and then straight
right to column 2r + L. This path falls in one of Gcyl|J1 and Gcyl|J2 (since P from P (tℓ) to P (tℓ+1)
does) and it avoids T1 and T2, a contradiction. This completes the induction step.

Finally, for P (tK) to P (m) the argument is symmetric to that for P (1) to P (t1). This shows that
P (m) cannot be in the last column and the claim follows.

Case (B). This case is similar, and in fact simpler. Recall that in this case, there is a non-unique row i of
W− on which the vertex v ∈W\W− lies. The only reason that the virtual cordon S of W is not one of
W− is that |Si| > |(W−)i|, and we change S as follows.

As in the previous case, the two nearest unique rows i1 and i2 of W− above and below i (cyclically)
exist. We denote [i1, i2] by I . From the case assumption, W contains at least 3 vertices in row i, so the
number of non-unique rows in W is at most c − 1. Thus, I contains at most c + 1 rows. Then since
W− is I-separating, we know there is a minimal vertex separator S1 for Gcyl|I such that on each row
j ∈ I , |(S1)j | ≤ |W−

j |, and that S1 has the same vertex as S on row i1. By the minimality of S (as a
vertex separator for Gcyl) and S1 (as a vertex separator for Gcyl|I) and Proposition 4.7, both diam(S) an

22

4 Lower Bound Proof for the Cop-Robber Game

diam(S1) are at most k + c, so the vertex of S1 on row i2 and that of S have horizontal distance at most
2(k + c), which is smaller than gI by (P1). But they both belong to (Wi2)≡I where

∣∣Wi2

∣∣ = 1, so they
coincide. Now we can apply Claim 4.13 to glue together S1 and S(I)c to form a virtual cordon of W−.

In both cases, we have constructed a virtual cordon of W−, so Lemma 4.11 is proved.

4.3 Proof of Cop-Robber Lower Bound

We now prove Theorem 4.1, that is, we give a Robber strategy to survive at least L/4(c+ k) rounds in the
compressed game defined with respect to (Gcyl,≡V ,≡E), where we choose the moduli and parameters in
the construction according to Definition 3.9. Since Gcyl is connected, it does not matter where the Robber
initially is; we assume without loss of generality that he starts at vertex (1, 1), a singleton class.

At a high level, the idea is for the Robber to monitor all virtual cordons corresponding to the Cop
position and consistently avoid them. To show this is possible, we will use Lemma 4.11 and the properties
of separators shown in Section 4.1.

For the sake of clarity, let us denote the evolution of the Cop position over rounds by

(∅ = C−
1 → C+

1)→ . . .→ (C−
t → C+

t)→ (C−
t+1 → C+

t+1)→ · · · (4.7)

That is, C−
t is the Cop position in round t after Step (G1), and C+

t after Step (G3). Note that C−
t ,C

−
t+1 ⊆

C+
t , |C+

t \ C
−
t | = 1, and when the Robber moves, he knows both C−

t and C+
t .

Invariants of the Robber strategy. In each game round, we will keep the following invariants.

(I1) The Robber is on a Cop-free column on either the left or the right part of Gcyl;
(I2) If C−

t is critical, then any minimal virtual cordon S of C−
t has horizontal distance at least L/2−

4(k + c) · t to the part (left or right) of the graph where the Robber is in.

Here, the horizontal distance between A,B ⊆ V , denoted by dh(A,B), is the minimum distance between
columns on which A is non-empty and columns on which B is non-empty.

Proof of Theorem 4.1. To see that k + 1 Cops can win the game, the Cops just play as if the game is
uncompressed: they first occupy the middle column of Gcyl, then keep moving towards the next full
column in the Robber’s direction. It is easy to check that k + 1 Cops can do this in k rounds while always
maintaining that their positions form a vertex separator for [k]× [1, 2r + L].

We are left to prove the round lower bounds against k + c Cops. It suffices to show that the Robber
can maintain Invariants (I1) and (I2) in the first (L− 2r)/(8(k + c)) many rounds (since (I1) implies that
the Robber is not caught), and we prove this by induction on t < (L − 2r)/(8(k + c)). The base case
t = 1 is trivial since C−

1 = ∅, and so (I2) vacuously holds, and the Robber is at (1, 1) so (I1) holds. For
the inductive step, suppose the invariants hold for C−

t . At the beginning of round t, assume without loss
of generality the Robber is at vertex vt in column at on the left part of the graph. Since both the left and
right parts of the graph have r > k + c ≥ |C+

t | columns by (P4), each part contains a C+
t -free column,

say column al on the left and ar on the right.

Case (1). C+
t is not critical. Since C−

t+1 ⊆ C+
t and the property of being critical is monotone, (I2) holds

vacuously for C−
t+1, so we only need to maintain (I1).

The Robber will move to column al during Step (G2) of round t. Note that if al = at, then the Robber
just moves up one row (mod k). So we consider the case where al ̸= at. First assume that C+

t violates
Condition 1 of critical sets. Then we have an I-periodic path for some row set I , say going from left to
right, from column 1 to column L + 2r. If at < al, then we can truncate this path to be between the
first time of meeting column at and the first time of meeting column al; the case for at > al is similar.
Otherwise, C+

t must violate Condition 2 of critical sets. In particular, (C+
t)≡V (whose restriction to the

left part is the same as that of C+
t) is not a vertex separator for Gcyl|[k]×[at,al]. Hence, there is a path

between the two columns avoiding (C+
t)≡V .

23

TRULY SUPERCRITICAL TRADE-OFFS

Since both at and al are C−
t -free columns, the Robber can move vertically to the appropriate row and

take the path to column al, which is a compressible move and (I1) holds for C−
t+1.

Case (2). C+
t is critical but C−

t is not. By Lemma 4.11, C−
t is not (c + 1)-separating. So there is

a compressible move (actually a path) P ′′ from vt to a vertex in column ar, for example by using an
(at, ar)-truncation of some I-periodic path as in Remark 4.3, plus a suitable modification on the starting
vertical subpath within column at. There is another compressible move P ′, again a path, from vt to al
by truncating the same I-periodic path as in Case (1). To decide which of the two moves to use, we first
estimate the horizontal span of all minimal virtual cordons of C+

t . For any two minimal virtual cordons S
and S′, since

∣∣rowunique(C+
t)
∣∣ > 0, we have for all v ∈ S and v′ ∈ S′ that

dh(v, v
′)

Prop. 4.10
≤ diam(S) + diam(S′)

Prop. 4.7
< 2(k + c)− 1 . (4.8)

In particular, the column indices of the vertices over all minimal virtual cordons of C+
t can be contained in

an intervalH = [h1, h2] of length 2(k+c)−1, so
∣∣h1−al∣∣ or

∣∣h2−ar∣∣ is at leastL/2−(k+c). The Robber
then takes compressible moveP ′ orP ′′ so that he stays horizontally at leastL/2−(k+c) > L/2−4(k+c)·t
far away from any minimal virtual cordon of C+

t . Both invariants hold for C−
t+1 since C−

t+1 ⊆ C+
t .

Case (3). C−
t is critical. In this case, C+

t is also critical, and we assume at ≤ al (the case for at > al
is similar). Note that C+

t cannot be a vertex separator for [k] × [at, al], since otherwise the horizontal
distance between the Robber and a minimal virtual cordon will be smaller than r, contradicting the
inductive hypothesis on (I2) as t < (L− 2r)/(8(k + c)). So the Robber can move from vt to column al
via a path within the left part and avoiding C−

t , which is a compressible move against (C−
t)≡V , and

Invariant (I1) will hold for C−
t+1.

As for (I2), note that rowunique(C−
t) ∩ rowunique(C+

t) = rowunique(C+
t) and that this set must be

nonempty. Denote the set of minimal virtual cordons of C−
t by α−, and that of C+

t by α+. Fix any
S ∈ α−. We have that S has only one vertex, which we denote by wi, on each row i ∈ rowunique(C+

t) by
the definition of virtual cordons. By monotonicity, S is also a virtual cordon of C+

t , so there is a minimal
S1 ∈ α+ contained in S and, moreover, such that (i, wi) ∈ S1. Now for any two vertices w and w′ in some
members of α− and α+, respectively, similar to (4.8) we have that both dh(w,wi) and dh(w

′, wi) are
smaller than 2(k + c)− 1. Therefore, since the Robber stays on the same part of the graph, the horizontal
distance between this part and anything in α+ decreases by at most maxw,w′{|dh(w,w′)|} < 4(k + c)
compared to α−, so Invariant (I2) holds.

This completes the proof of Theorem 4.1.

5 Lifting Theorem for Treelike Resolution

The aim of this section is to prove the lifting theorem for treelike resolution, restated below for convenience.

Theorem 2.4 (Restated) (Lifting for treelike resolution). Let F be a CNF formula and let m ≥ 2.
If there is a width-w, size-s treelike resolution refutation for XORm(F), then there is a width-

(
w

m−1

)
,

depth-log s resolution refutation of F .

We reformulate this lifting theorem for the equivalent model of decision trees, in which the proof
becomes more intuitive. Let us start by introducing some notation. Let S ⊆ {0, 1}n ×O be a total search
problem. A partial assignment to the input variables of S is a function ρ : [n]→ {0, 1, ⋆}n mapping the
variables to 0, 1 or leaving them unassigned, which corresponds to mapping them to ⋆. We define the
fixed indices of ρ to be fix(ρ) = {i ∈ [n] : ρ(i) ̸= ⋆} and the width of ρ to be |fix(ρ)|. Given two partial
assignment ρ, ρ′ : [n]→ {0, 1, ⋆}n, we say ρ′ extends ρ if ρ(i) ∈ {ρ′(i), ⋆} for all i ∈ [n]. Similarly, we
say x ∈ {0, 1}n extends ρ : [n]→ {0, 1, ⋆}n, if ρ(i) ∈ {xi, ⋆} for all i ∈ [n] .

We use the following definition of decision tree.

24

5 Lifting Theorem for Treelike Resolution

Definition 5.1 (Decision DAG and decision tree). A decision DAG solving S ⊆ {0, 1}n ×O is a rooted
DAG where each node v is labelled with a partial assignment ρv such that the following hold:

1. Root. The root r is labelled with the constant-⋆ function, that is, ρr(i) = ⋆ for all i ∈ [n].
2. Non-leaf. If v is a non-leaf node then it has two children, the 0-child and the 1-child, and it is

labelled with some index ı̂ such that ρv (̂ı) = ⋆ and, for b ∈ {0, 1}, the partial assignment of its
b-child v′ satisfies ρv′ (̂ı) ∈ {b, ⋆} and ρv′(i) ∈ {ρv(i), ⋆} for i ̸= ı̂.

3. Leaf. If v is a leaf then it is labelled with an o ∈ O such that (x, o) ∈ S for every x ∈ {0, 1}n that
extends ρv.

The size of a decision DAG is the number of nodes it has, the depth is the length of the longest root-to-leaf
path in the DAG, and the width is the maximum over v of the width of any ρv.

A decision tree is a decision DAG where the underlying DAG is a tree.

Recall that Search(F) ⊆ {0, 1}n × [m] is the search problem defined as (x, i) ∈ Search(F) ⇐⇒
Ci(x) = 0. The following folklore lemma relates resolution refutations of F to decision DAGs solving
Search(F).

Lemma 5.2 (Folklore). Let F be an unsatisfiable CNF formula. There is a width-w resolution refutation π
of F with underlying DAG Gπ if and only if there is a width-w decision DAG solving Search(F) with the
same underlying DAG Gπ.

We can now state our lifting theorem for decision trees, from which Theorem 2.4 follows easily.

Theorem 5.3. Let S ⊆ {0, 1}n × O be a search problem and let m ≥ 2. If there is a width-w, size-s
decision tree for S ◦XORn

m, then there is a width-
(

w
m−1

)
, depth-log s decision tree for S.

Proof. Given a treelike resolution refutation for XORm(F), we get by Lemma 5.2 a decision tree solving
Search(XORm(F)), which we can turn into one solving Search(F) ◦XORn

m by changing the labels on
leaves. Namely, if a leaf is labelled a clause in the CNF expansion of XORm(C ′) for some clause C ′ ∈ F ,
we change the label to C ′. Then we apply Theorem 5.3 to this decision tree and use Lemma 5.2.

Before diving into the proof of Theorem 5.3, we make a simple observation.

Claim 5.4. Fix o ∈ O and let ρ be a partial assignment to {0, 1}nm such that for every y ∈ {0, 1}nm
which extend ρ, (y, o) ∈ S ◦XORn

m. Then for any x ∈ {0, 1}n such that xi = ρ(i, 1)⊕ . . .⊕ ρ(i,m) for
all i ∈ fix(ρ), it holds that (x, o) ∈ S.

Proof. Let x ∈ {0, 1}n be such that xi = ρ(i, 1)⊕ . . .⊕ ρ(i,m) for all i ∈ fix(ρ). Let y be the extension
of ρ defined as follows: for each j ∈ [n] \ fix(ρ) set yj,1, . . . , yj,m so that yj,1 ⊕ . . .⊕ yj,m = xj . Then
XORn

m(y) = x. As (y, o) ∈ S ◦XORn
m, it follows by definition that (x, o) = (XORn

m(y), o) ∈ S.

We are now ready to prove Theorem 5.3. The intuition is that we solve S by simulating a decision
tree T for S ◦XORn

m top-down. At a node v of T that queries yi,j , we move directly to the child with a
smaller subtree size, unless the number of y-variables over xi assigned by ρv reaches the threshold m− 1;
in that case, we query xi.

Proof of Theorem 5.3. Given a width-w, size-s decision tree T for S ◦XORn
m, we construct a decision

tree T̃ for S of width at most w
m−1 and depth at most log s. Recall that for every node v of T we have a

partial assignment ρv : [n]× [m]→ {0, 1, ⋆}nm, where for simplicity we view the partial assignments
to the input variables of S ◦XORn

m as maps from the domain [n]× [m] instead of [nm]. We also view
the query labels in T as pairs (̂ı, ȷ̂) ∈ [n]× [m]. We define T̃ by describing, for any sequence of query
answers, a root-to-leaf path in T̃ with the labels for each node in the path.

To define this root-to-leaf path, we start at the root of T and walk down to a leaf following some rules
we describe below and occasionally querying input variables of S and creating new nodes in T̃ . At every

25

TRULY SUPERCRITICAL TRADE-OFFS

step, we are at some node v in T with a corresponding partial assignment ρv, and at some node ṽ in T̃
without any labels yet. In the beginning we are at the root of both T and T̃ . For each v in T that we
traverse, we inductively define a partial assignment σv : [n]→ {0, 1, ⋆}n that will guide us in choosing
the path in T to follow and in defining the path in T̃ . For the root r of T , we let σr be the constant-⋆
function. Suppose we are at some non-leaf node v in T with query label (̂ı, ȷ̂), and at some node ṽ in T̃ .
We distinguish three cases.

1. (Halving case) If |{j | ρv (̂ı, j) = ⋆}| ≥ 2: In T , we move to the child of v that is the root of the
smallest subtree, breaking ties arbitrarily. We do nothing in T̃ .

2. (Forced case) If |{j | ρv (̂ı, j) = ⋆}| ≤ 1 and σv (̂ı) ̸= ⋆: In T , we move to the b-child of v, where
b ∈ {0, 1} is such that b⊕

⊕
j ̸=ȷ̂ ρv (̂ı, j) = σv (̂ı). We do nothing in T̃ .

3. (Query case) Otherwise, |{j | ρv (̂ı, j) = ⋆}| ≤ 1 and σv (̂ı) = ⋆: In T̃ , we label ṽ with the partial
assignment ρṽ = σv and with the query label ı̂. We then query the ı̂th variable. Let b̃ be the result
of this query. We create and move to the b̃-child of ṽ. In T , we move to the b-child of v, where
b ∈ {0, 1} is such that b⊕

⊕
j ̸=ȷ̂ ρv (̂ı, j) = b̃.

Let v′ be the child of v we chose to move to. If v′ is chosen in case 1 or 2, then

σv′(i) =

{
σv(i), if |{j | ρv′ (̂ı, j) = ⋆}| ≤ 1;

⋆, otherwise.
(5.1)

and if v′ is chosen in case 3, then

σv′(i) =

b̃, if i = ı̂ and |{j | ρv′ (̂ı, j) = ⋆}| ≤ 1;

σv(i), if i ̸= ı̂ and |{j | ρv′ (̂ı, j) = ⋆}| ≤ 1;

⋆, otherwise.
(5.2)

When we reach a leaf v of T labelled with o ∈ O, we label the node ṽ we are at in T̃ with the answer o
and with the partial assignment ρṽ = σv, and the path ends (i.e., ṽ is a leaf). Note that this process defines
a root-to-leaf path in T̃ , with labels on all nodes in the path, and thus completes the description of T̃ . We
now need to argue that T̃ solves S, has width at most w

m−1 and depth at most log s.
To see why T̃ is a decision tree solving S , we need to show it satisfies items 1-3 in Definition 5.1. For

the first two items we use the following observation.

Claim 5.5. If at any given point we are at a node v in T and at a node ṽ in T̃ , then σv extends ρṽ.

Proof. Let u be the last node in T such that we are at u in T and at ṽ in T̃ at the same time. By definition
of ρṽ we have that ρṽ = σu. This claim follows since all nodes between v and u are chosen in case 1 or 2,
which implies σv extends σu.

Let r be the root of T and r̃ be the root of T̃ . Item 1 is satisfied since, by Claim 5.5, σr extends ρr̃,
and σr is the constant-⋆. Now, let v′ be the child of v and ṽ′ be the b̃-child of ṽ chosen in case 3 after
querying the ı̂th variable. First note that ρṽ (̂ı) = σv (̂ı) = ⋆ by definition of ρṽ and since we are in case 3.
Observe, moreover, that σv′ (̂ı) ∈ {b̃, ⋆} and, for i ̸= ı̂, that σv′(i) ∈ {σv(i), ⋆} = {ρṽ(i), ⋆}. These two
observations, together with the fact that, by Claim 5.5, ρṽ′(i) ∈ {σv′(i), ⋆} for all i ∈ [n], implies T̃
satisfies item 2.

To see that T̃ satisfies item 3 in Definition 5.1, we need the following claim.

Claim 5.6. For all nodes v we traverse in T , it holds that:

σv(i) = ρv(i, 1)⊕ . . .⊕ ρv(i,m) ∀i ∈ fix(ρv) . (5.3)

26

6 Lifting Theorem for Resolution

Proof. We prove by induction on the distance from the root that the claim holds. It is not hard to see that
the claim holds for the root r of T , since ρr is the constant-⋆ function. Now, suppose we are at node v
in T where (5.3) holds, and let v′ be the child of v we choose to move to. Let i ∈ fix(ρv′) (if there is no
such i then the claim holds trivially), which implies that |{j | ρv′(i, j) = ⋆}| = 0. Let (̂ı, ȷ̂) be the query
label of v.

If i ̸= ı̂, by definition of a decision tree we have that |{j | ρv′(i, j) = ⋆}| ≥ |{j | ρv(i, j) = ⋆}|,
which implies that |{j | ρv(i, j) = ⋆}| = 0 and thus i ∈ fix(ρv). We can therefore conclude that

σv′(i) = σv(i) by definition of σv′ since i ∈ fix(ρv′) (5.4)
= ρv(i, 1)⊕ . . .⊕ ρv(i,m) by the induction hypothesis (5.5)
= ρv′(i, 1)⊕ . . .⊕ ρv′(i,m) since i ∈ fix(ρv′) and ρv′(i, j) ∈ {ρv(i, j), ⋆}. (5.6)

Similarly, if i = ı̂, by definition of a decision tree we have that |{j | ρv′(i, j) = ⋆}| ≥ |{j | ρv(i, j) =
⋆}| − 1, which implies that |{j | ρv(i, j) = ⋆}| ≤ 1. This means we are either in case 2 or 3. Let b be
such that v′ is the b-child of v. If we are in case 2, let b̃ = σv(i). We can conclude that

σv′(i) = b̃ by definition of σv′ since i ∈ fix(ρv′) (5.7)

= b⊕
⊕
j ̸=ȷ̂

ρv(i, j) by choice of v′ (5.8)

= ρv′(i, 1)⊕ . . .⊕ ρv′(i,m) , (5.9)

where for the last equality we use that since ρv′(i, j) ̸= ⋆ for all j ∈ [m], it must be the case that
ρv′(i, ȷ̂) = b and for all j ̸= ȷ̂ that ρv′(i, j) = ρv(i, j).

We now argue T̃ satisfies item 3 of Definition 5.1. Let ṽ be a leaf of T̃ labelled o ∈ O, and let v be the
leaf in T that we reach when we are still at ṽ. By Claim 5.6, we have that σv(i) = ρv(i, 1)⊕ . . .⊕ρv(i,m)
for all i ∈ fix(ρv). Therefore, since ρṽ(i) = σv(i), Claim 5.4 implies that every x ∈ {0, 1}n that extends
ρṽ is such that (x, o) ∈ S, and thus item 3 is satisfied.

To see that T̃ has width at most w
m−1 , note that for all nodes v we traverse in T , and for all i ∈ [n] it

holds that if σv(i) ̸= ⋆, then |{j | ρv(i, j) = ⋆}| ≤ 1. Indeed, for the root r of T this holds since σr is the
constant-⋆ function and for all other nodes v′ it holds by the definition of σv′ . This implies that for all
nodes v we traverse in T the partial assignment σv has width at most w

m−1 . The bound on the width of T̃
follows since for all nodes ṽ we traverse in T̃ , ρṽ = σv for some v we traverse in T .

It remains to argue that T̃ has depth at most log s. To this end, first note that before a variable is queried
in T̃ for the first time, there are m−1 nodes v in T that fall into case 1. Moreover, if ı̂ is queried in T̃ when
we are at a node v and also at a subsequent node u in T , then there must be at least one node w between v, u
such that w falls into case 1. Indeed, first note that there must be some w′ in between v and u (including
possibly v), such that |{j | ρw′ (̂ı, j) = ⋆}| ≥ 2, otherwise σu(̂ı) ̸= ⋆ or |{j | ρu(̂ı, j) = ⋆}| ≥ 2, which
contradicts the fact that u falls into case 3. This implies that there must be a w in between w′ and u
(including possibly w′), that falls into 1 so that |{j | ρu(̂ı, j) = ⋆}| ≤ 1. This implies that for every
query—i.e., every time the depth of T̃ increases by 1—the size of the subtree of T rooted at the current
node v has decreased by at least 1/2 and thus the depth of T̃ is at most log s.

We conclude this section by noting that, if we increase the threshold |{j | ρv′ (̂ı, j) = ⋆}| ≤ 1 to
|{j : ρv′ (̂ı, j) = ⋆}| ≤ c for some c < m, a similar proof gives us the following statement.

Theorem 5.7. Let S ⊆ {0, 1}n × O be a search problem and let m > c ≥ 1 and d ≥ 1. If there is a
width-w, size-2cd decision tree for S ◦XORn

m, then there is a width-
(

w
m−c

)
, depth-d decision tree for S .

6 Lifting Theorem for Resolution

In this section, we prove a lifting theorem from resolution width to resolution size:

27

TRULY SUPERCRITICAL TRADE-OFFS

Theorem 2.6 (Restated) (Lifting for resolution). For any m,n ≥ 1 and n-variate CNF formula F , if
INDm(F) has a resolution refutation of size S and depth d, then F has a resolution refutation of width
⌊log(m+1)/2 S⌋ and depth d.

Let F be a CNF formula over variables z1, . . . , zm. Recall that we define INDm(Fn) to be the CNF
formula obtained by substituting in F every occurrence of zi by

(xi,1 → yi,1) ∧ . . . ∧ (xi,m → yi,m) , (6.1)

expanding out to CNF, and including a 3-CNF formula encoding xi,1 ∨ . . . ∨ xi,m for every i ∈ [n]. We
will call the set of variables {yi,1, . . . , yi,m} the y-block over zi, the ith y-block, or simply a y-block. We
say that clause C mentions a y-block if a literal over a variable in that y-block appears in C.

To prove Theorem 2.6, we define a random restriction ρ of the lifted formula (Definition 6.1). We will
ensure that a refutation π of the lifted formula becomes a refutation of the original formula π↾ρ, and that
the latter is as narrow as claimed in the theorem. Note that restriction certainly does not increase the depth
of the refutation.

Definition 6.1 (Random restriction ρ on variables in IND(F)). For every i ∈ [n], pick a uniform
random ji ∈ [m]. Then set xi,ji = 1 and set xi,j′ = 0 for all j′ ̸= ji. Moreover, set the extension variables
encoding the clause xi,1 ∨ . . . ∨ xi,m as a 3-CNF in the way that all clauses in this 3-CNF are satisfied.
Finally, set yi,j to {0, 1} uniformly at random for each j ̸= ji, leaving yi,ji unassigned.

Note that ρ always fixes all x-variables and extension variables to {0, 1}, and the restricted formula
INDm(F)↾ρ is exactly F after variable renaming zi ← yi,ji for all i. So after applying ρ, a refutation π of
IND(F) becomes a refutation of F . It remains to prove that for some ρ in Definition 6.1, π↾ρ is of width
at most ⌊log(m+1)/2 S⌋. We start with a claim bounding the probability that a clauses has width exactly t
after restriction.

Claim 6.2. If a clause C over Vars(IND(F)) mentions r many y-blocks, then for any t ≤ r,

Pr
ρ
[w(C↾ρ) = t] ≤

(
r

t

)(
1

m

)t
(
1− 1

m

2

)r−t

. (6.2)

Proof. Without loss of generality, assume there are n many z-variables and the y-blocks mentioned in C
are over z1, . . . , zr. The event w(C↾ρ) = t implies that there is an I ⊆ [r], |I| = t, such that:

− For every y-block in I , the y-variable unassigned by ρ appears in C, and all other y-literals in C in
that block are set to 0. We call such a y-block contributing;

− For every y-block in [r]\I , all literals in C over y-variables in that block are set to 0. We call such a
y-block non-contributing.

For each fixed I ⊆ [r] of size t, we show:

Pr
ρ

[
all y-blocks in I are contributing, and

all y-blocks in [r]\I are non-contributing

]
≤
(

1

m

)t
(
1− 1

m

2

)r−t

. (6.3)

Then (6.2) follows by a union bound over I .
Recall that ρ consists of independent components ρ1, . . . , ρn where ρi is the part of ρ on variables

over zi. We can write C = C1 ∨ . . . ∨ Cr ∨ C ′ where Ci = Ci,x ∨ Ci,y contains the literals in C over
variables over zi. By independence of the ρi’s, (6.3) would follow if we show that ∀i ∈ [r],

Pr
ρi
[y-block i is contributing] ≤ 1

m
, (6.4)

Pr
ρi
[y-block i is non-contributing] ≤

1− 1
m

2
. (6.5)

Assume Ci,y mentions a many y-variables, then a ≥ 1. To see (6.4), the probability that one of these
y-variables is left intact by ρi while others are all set to 0 is a · 1m ·(

1
2)

a−1 ≤ 1
m . To see (6.5), the probability

that all of them are set to 0 is m−a
m · (12)

a ≤ 1−1/m
2 . The claim follows as described.

28

7 Lifting Theorem for Cutting Planes and Circuits via Triangle DAGs

Next, we bound the probability that a clause has width at least w after restriction.

Lemma 6.3. For any clause C over Vars(IND(F)),

Pr
ρ
[w(C↾ρ) ≥ w] ≤

(
2

m+ 1

)w

. (6.6)

Proof. Suppose C mentions r many y-blocks (r ≥ w). By Claim 6.2,

Pr
ρ
[w(C↾ρ) ≥ w] ≤

r∑
i=w

(
r

i

)(
1

m

)i(1− 1/m

2

)r−i

(6.7)

=

(
2

m+ 1

)w r∑
i=w

(
r

i

)(
m+ 1

m

)i(
1− 1

m

)r−i(1

m+ 1

)i−w (1

2

)r−i+w

(6.8)

≤
(

2

m+ 1

)w (1

2

)r r∑
i=w

(
r

i

)(
1 +

1

m

)i(
1− 1

m

)r−i

(6.9)

≤
(

2

m+ 1

)w

, (6.10)

where we use 1
m+1 ≤

1
2 for the second to last inequality, and the Binomial theorem for the last one.

With Lemma 6.3 at hand, we can finish the proof of Theorem 2.6.

Proof of Theorem 2.6. Applying a union bound over all clauses in the refutation π of IND(F) yields

Pr[w(π↾ρ) > ⌊log(m+1)/2 S⌋] ≤
∑
C∈π

Pr[w(C↾ρ) ≥ ⌊log(m+1)/2 S⌋+ 1] (6.11)

≤ S

(
2

m+ 1

)⌊log(m+1)/2 S⌋+1

< 1 (6.12)

where we used Lemma 6.3 in the second step.

7 Lifting Theorem for Cutting Planes and Circuits via Triangle DAGs

In this section, we prove our triangle-DAG lifting theorem, restated below, by which we obtain our results
for cutting planes and monotone circuits as described in Section 2.

Theorem 2.11 (Restated) (Lifting for triangle-DAGs). Let F be an n-variate unsatisfiable CNF formula,
and let m,w ∈ N, δ > 0 be arbitrary parameters satisfying w ≤ n, 0 < δ < 1− 1

logm and m ≥ (50nδ)2/δ.
If there is a triangle-DAG of size 1

2m
(1−δ)w and depth d solving Search(F)◦INDn

m, thenF has a resolution
refutation of width w and depth dw.

Note that, for large enough m, this lifting theorem is nearly tight. Indeed, if w is the smallest width of
any resolution proof of F then there always exists a rectangle-DAG solving Search(F) ◦ INDn

m of size at
most 2(mn)w, which is at most m1.01w if m ≥ n300. On the other hand, by setting δ = 1

120 , the lifting
theorem implies that there is no triangle-DAG (and hence no rectangle-DAG) of size m0.99w.

Our proof of Theorem 2.11 will follow the high-level strategy of [GGKS20], which consists of two
steps:

1. For each node in the triangle-DAG, construct a set of clauses of width at most w. The clauses at the
root include ⊥, and the clauses at leaves are weakenings of the initial clauses of F .

2. Argue that the clauses that were constructed for each non-leaf node in the DAG can be derived from
the clauses of its children in low width and depth.

29

TRULY SUPERCRITICAL TRADE-OFFS

The novel aspect of our proof lies in the first step. In previous DAG-like lifting theorems [GGKS20,
LMM+22], each triangle is partitioned into a set of structured rectangles (from which a low-width clause
can be extracted) and an error set. We forgo this approach in favor of covering the triangle by a set of
strips—a large set of rows of the triangle which can be broken up into pre-structured rectangles (from
which we can also extract low-width clauses). This allows us to more aggressively identify structured
rectangles, decreasing the size of the set of errors. With this improvement, we can complete the proof
using two further elements that are largely established in the literature: a Full Image Lemma similar to
that in [LMM+22] (with a simpler and self-contained proof), and a careful width analysis in the second
step. In addition, our approach naturally gives a unified proof of both the rectangle- and triangle-DAG
lifting theorems.

7.1 Set Up: Full Image Lemma and Triangle Lemma

The proof of Theorem 2.11 relies on two technical lemmas: the Full Image Lemma and the Triangle
Lemma. Before stating them, we introduce some notation. For sets A ⊆ B ̸= ∅, the density of A in B is
|A|/|B|. For a random variable xxx over a finite set C, its min-entropy is

H∞(xxx) := log
1

maxc∈C Pr [xxx = c]
. (7.1)

For a set C, denote byCCC a random variable distributed uniformly over C, and note that H∞(CCC) = log |C|.
For x ∈ [m]n, y ∈ {0, 1}mn = ({0, 1}m)n and I ⊆ [n], we write xI ∈ [m]|I| to denote the projection
of x, and yI ∈ {0, 1}m|I| to denote the projection of y, to the coordinates I . Similarly, for A ⊆ [m]n or
A ⊆ {0, 1}mn, we denote by AI the projection of A to I , and AAAI denotes the marginal distribution of AAA
on the coordinates I .

For most of this section the structures of [m]n and {0, 1}mn are immaterial and we can simply view
[m]n × {0, 1}mn as a product of two sets. Under this perspective, we refer to an x ∈ [m]n as a row and a
y ∈ {0, 1}mn as a column. For any set S ⊆ [m]n×{0, 1}mn we will denote by SX and SY the projection
of S to the rows and columns, respectively, that is, SX := {x ∈ [m]n | ({x} × {0, 1}mn) ∩ S ̸= ∅}, and
SY := {y ∈ {0, 1}mn | ([m]n × {y}) ∩ S ̸= ∅}. In particular, for any rectangle R ⊆ [m]n × {0, 1}mn,
we have that R = RX ×RY . Given a row x ∈ [m]n, we denote the set of columns in S along the row x by

S[x] := {y ∈ {0, 1}mn | {x} × {y} ∈ S} (7.2)

and note that {x} × S[x] = ({x} × {0, 1}mn) ∩ S.
For each triangle T ⊆ [m]n × {0, 1}mn we fix some arbitrary choice of aT and bT for which T =

{(x, y) ∈ [m]n × {0, 1}mn | aT (x) < bT (y)}. For convenience, we arrange all rows in ascending order
of aT from top to bottom and all columns in descending order of bT from left to right. We call this the
ordering for the triangle T .

Throughout the proof we consider block-wise partial assignments α : [n]→ [m]∪{∗}, which we refer
to as pointers. Let fix(α) := {i ∈ [n] | α−1(i) ̸= ∗}. We say x ∈ [n]m is consistent with α if xi = α(i)
for all i ∈ fix(α). For X ⊆ [n]m, we define

Xα := {x ∈ X | x is consistent with α}. (7.3)

The proof of the lifting theorem relies on sets that have high min-entropy when restricted to any subset of
its coordinates. In the following definition, δ > 0 is a parameter to be specified later.

Definition 7.1. Say that a set X ⊆ [m]n is α-dense if X ̸= ∅ and for every nonempty I ⊆ [n] \ fix(α),
H∞((Xα)I) ≥ δ|I| logm. We say X ⊆ [m]n is α-predense if X contains an α-dense subset.

Observe that being α-dense for a fixed α is generally not a monotone property. For instance, the set
[mδ]n is α-dense, where α is the constant-⋆ function, while its union with {1} × [m]n−1 is not, provided
that 1/ logm < δ < 1− 1/n. By contrast, being predense is by definition a monotone property.

The basic objects in our analysis are rectangles of the following type.

30

7 Lifting Theorem for Cutting Planes and Circuits via Triangle DAGs

Definition 7.2. A rectangle R := X × Y is α-pre-structured if

i) X is α-predense; and
ii) Y satisfies H∞(Y) ≥ mn−mδ/(16n).

We say that R is α-structured if condition i) is replaced with R being α-dense.

Note that condition ii) is equivalent to saying that the density of Y in {0, 1}mn is at least 2−mδ/(16n) .
Similar to previous DAG lifting theorems [GLM+16, GGKS20, LMM+22], ours relies on the following

key lemma which states that the image of a structured rectangle is the full Boolean cube. Here, and
throughout this section, we omit the subscript m in INDm, and for X ⊆ [m]n and Y ⊆ {0, 1}mn, we
denote by IND(X,Y) ⊆ {0, 1}n the image of X × Y under the map IND.

A self-contained proof of the lemma below is given in Appendix B.

Full Image Lemma. For any positive integers m and n, any rectangle X × Y ⊆ [m]n × {0, 1}mn, and
any parameter δ ∈ (0, 1) such that mδ ≥ (2 ln 2)n, it holds that if

(1) H∞(XI) ≥ δ|I| logm− 1 for any nonempty I ⊆ [n], and
(2) H∞(Y) ≥ mn−mδ/(8n),

then there exists x∗ ∈ X such that IND({x∗}, Y) = {0, 1}n.

For a partial assignment ρ ∈ {0, 1, ⋆}n, where I = fix(ρ), define the width-|I| clause Cρ :=∨
i∈I z

1−ρ(i)
i where z1 := z and z0 := z. In other words, the falsifying assignments of Cρ in {0, 1}n,

denoted by C−1
ρ (0), comprise precisely the sub-cube specified by ρ. We can interpret the Full Image

Lemma as saying that IND({x∗} × Y) = C−1
ρ (0), for ρ being the constant-⋆ assignment. The following

corollary is a simple application of the lemma to (almost) pre-structured rectangles.

Corollary 7.3. Let m ≥ (16n)1/δ, let α be a pointer and let R = RX ×RY be a rectangle that satisfies
the following two properties (which are a slightly weaker version of Definition 7.2):

1. (RX)α contains a subset D where H∞(DDDI) ≥ δ|I| logm−1 for all nonempty I ⊆ [n]\fix(α); and
2. H∞(RY) ≥ mn−mδ/(16n)− 1.

If for some ρ ∈ {0, 1}fix(α) it holds that IND(xfix(α), yfix(α)) = ρ for all (x, y) ∈ R, then there exists an
x∗ ∈ RX such that IND({x∗}, Y) = C−1

ρ (0).

Proof. If fix(α) = [n], the conclusion follows from the fact that R ̸= ∅ and for any (x, y) ∈ R,
IND(x, y) = C−1

ρ (0), which is a singleton set. Hence, we assume |fix(α)| < n.
Let D ⊆ (RX)α be a subset witnessing property 1. Let J := [n] \ fix(α). We consider the rectangle

R′ := DJ × RY
J ⊆ [m]|J | × {0, 1}m|J |, where DJ and RY

J are the projections of D and of RY to the
coordinates J . We want to show that the Full Image Lemma is applicable to rectangle R′. For this purpose,
observe that for any I ⊆ J , it follows from the assumption on D that DJ satisfies condition (1) of the
lemma. Secondly, note that

|RY
J |

2m|J | ≥
|RY |
2mn

≥ 2−mδ/(16n)−1 ≥ 2−mδ/(8|J |), (7.4)

where the first inequality follows from the definition of projection (i.e., projection does not decrease
density), the second inequality follows from item 2, and for the third inequality we use that mδ ≥ 16n.
Together, this verifies the conditions in the Full Image Lemma, whose application to R′ gives us an element
x∗∗ ∈ DJ such that IND({x∗∗} ×RY

J) = {0, 1}|J |. The concatenation of α and x∗∗ provides the desired
element x∗ ∈ D ⊆ RX .

31

TRULY SUPERCRITICAL TRADE-OFFS

In order to extract a resolution proof from a triangle-DAG, we cover a triangle by a set of pre-structured
rectangles (from which Corollary 7.3 allows us to extract low-width clauses), along with a small number of
“error” rows and columns. Unlike previous approaches which partition the triangle into rectangles, we will
cover the triangle with (potentially overlapping) strips—sets of pre-structured rectangles which all share
the same rows, along with a set of “secured” rows on which can apply Corollary 7.3. This overlapping
covering, as opposed to partitioning, allows us to reduce the number of rows and columns which are not
within any pre-structured rectangle and hence reduce the error sets.

We now formally define this notion of a strip. For this, let w ≤ n be a parameter which corresponds
to the width of the resolution proof to be extracted. For a triangle T , recall that TX ⊆ [m]n and
T Y ⊆ {0, 1}mn are the row and column projections of T .

Definition 7.4 (Strips). For a triangle T ⊆ TX × T Y a strip S of T is a subset of rows S ⊆ TX that is
α-predense for some pointer α ∈ ([m] ∪ {⋆})n with |fix(α)| ≤ w. Associated with S are the following:

i) A collection of α-pre-structured rectanglesRS = {Rβ}β indexed by a set of β ∈ {0, 1, ⋆}n with
fix(β) = fix(α), where each Rβ = S×Yβ is such that IND(αfix(α), yfix(α)) = βfix(α) for all y ∈ Yβ .
Furthermore, within each Rβ there is an “inner” sub-rectangle Rin

β ⊆ Rβ ∩ T which is α-structured
and fully contained within T .

ii) A subset of rows Ŝ ⊆ S which we call the rows secured by S.

A depiction of a strip is given in Figure 7. The purpose of the secured rows is described by the
following lemma, which states that for any triangle T , we can construct a set of strips such that the
associated pre-structured rectangles cover all of T except a small set of error rows—rows that are not
secured by any strip constructed—and error columns. We note that the definition of strips depends on
parameters n,m,w and, due to the definition of α-pre-structured and α-structured, also on δ.

Triangle Lemma. For any positive integers m,n and w ≤ n, and parameter δ ∈ (0, 1) and any
triangle T ⊆ TX × T Y ⊆ [m]n × {0, 1}mn there is a set of strips Strips(T) of T and “error” sets
XT

err ⊆ [m]n, Y T
err ⊆ {0, 1}mn such that for any x ∈ TX one of the following cases holds:

− Security. If x is secured by a strip S ∈ Strips(T), then {x} × T [x] is covered by the rectangles
inRS together with the error columns, that is,

{x} × T [x] ⊆
⋃

R∈RS

R ∪
(
{x} × Y T

err
)
. (7.5)

− Error. If x is not secured by any strip in Strips(T), then x ∈ XT
err.

− Maximality. If there exists a rectangle R ⊆ TX × (T Y \ Y T
err) that is α-pre-structured for some

pointer α with |fix(α)| ≤ w and IND(R) ⊆ C−1
β (0) for some β ∈ {0, 1, ⋆}n with fix(β) = fix(α),

then there exists a strip S ∈ Strips(T) with associated pointer α such thatRScontains a rectangle
indexed by β.

Furthermore, |XT
err| ≤ mn−(1−δ)w and |Y T

err| ≤ 2mn−mδ/(16n)+(w+1) log(2mn).

We defer the proof of the lemma together with the construction of strips to Section 7.3 in favor of first
completing the proof of the lifting theorem.

7.2 Proof of Lifting Theorem

Now we prove Theorem 2.11 using the Triangle Lemma and Corollary 7.3.

Proof of Theorem 2.11. Let Π be any triangle DAG of size m(1−δ)w/2 solving S ◦ INDn
m. We can assume

w ≤ n, otherwise the theorem trivially holds. We first remove the error rows and columns from Π as
follows.

32

7 Lifting Theorem for Cutting Planes and Circuits via Triangle DAGs

Error Removal. Sort the triangles of Π in any topological order T1, . . . , Ts from the leaves to the root.
That is, if T is a child of T ′ then T comes before T ′ in the order. We process Π by the following procedure.

Initialize X0
err = Y 0

err := ∅. For i = 1, . . . , s do the following in order:

1. Remove from Ti the error rows and columns accumulated at i− 1, that is,

Ti ← Ti \
(
(Xi−1

err × {0, 1}mn) ∪ ([m]n × Y i−1
err)

)
. (7.6)

2. Let XTi
err and Y Ti

err be the X- and Y -error sets, respectively, obtained by applying the Triangle Lemma
to Ti.

3. Define Xi
err := Xi−1

err ∪XTi
err and Y i

err := Y i−1
err ∪ Y Ti

err .

Note that in this procedure, the children nodes will each contribute some error rows/columns to the
parents, and every node remains a triangle, as we have only removed whole rows/whole columns from it.
Henceforth, Π will refer to the resulting triangle-DAG after this procedure.

We extract from Π a resolution refutation of F by showing that the following two items hold.

− Clauses. We can associate with every triangle T in Π a set C(T) of clauses—each of width at
most w—such if T is a leaf of Π then C(T) is a weakening of an initial clause of F , and if T is the
root then the empty clause ⊥ is contained in C(T).

− Inferences. If triangle T has children T1 and T2 in Π then each clause in C(T) has a width-w and
depth-w derivation from the clauses C(T1) ∪ C(T2).

We now prove these items.

Clauses. For each triangle T in Π, apply the Triangle Lemma to obtain a set of strips Strips(T) of T .
We define C(T) as follows: for each strip S ∈ Strips(T) and each pre-structured rectangle Rβ ∈ RS , we
include the clause Cβ; that is,

C(T) :=
⋃

S∈Strips(T)

{
Cβ | Rβ ∈ RS

}
. (7.7)

To see that Cβ is a clause of width at most w, let α with |fix(α)| ≤ w be the pointer associated with the strip
S. Then Corollary 7.3 guarantees that IND(Rβ) = C−1

β (0) where the width of Cβ is |β−1(0)∪β−1(1)| =
|fix(α)| ≤ w.

We now verify that these sets of clauses satisfy the desired root and leaf properties.

− Root. Let R = RX ×RY be the triangle at the root of Π (which is a rectangle, though we won’t
need this). By the Triangle Lemma and a union bound over the triangles in Π, the density X-error
accumulated at the root is at most

m−(1−δ)w · |Π′| ≤ m−(1−δ)w ·m(1−δ)w/2 = 1/2. (7.8)

Hence RX has density at least 1/2. This implies that for any ∅ ≠ I ⊆ [n],

H∞
(
RX

I

)
≥ |I| logm− 1 ≥ δ|I| logm, (7.9)

and so we have that RX is ⋆n-predense.
Similarly, the density of the Y -errors accumulated at the root is at most

2−mδ/(16n)+(w+1) log(2mn) · |Π| < 2−mδ/(8n) < 1/2, (7.10)

where in the final inequality we use that m ≥ (50n/δ)
2
δ . Therefore, H∞(RY \ Y R

err) ≥ mn− 1 ≥
mn−mδ/(16n). We therefore conclude that RX × (RY \ Y R

err) is a ⋆n-(pre-)structured rectangle.
By the maximality condition of Triangle Lemma applied to RX× (RY \Y R

err), we have that there
exists a strip S ∈ Strips(R) with associated pointer ⋆n and such that the collectionRS is non-empty.
By the item i) of Definition 7.4RS = {Rβ}β has to be a singleton set since only the empty string
can be a subscript β. Let Rβ be the unique rectangle in RS . Since Rβ is ⋆n-pre-structured, by
Corollary 7.3, it holds that IND(Rβ) = {0, 1}n = ⊥−1(0). Therefore ⊥ ∈ C(R).

33

TRULY SUPERCRITICAL TRADE-OFFS

− Leaves. Consider any leaf triangle T of Π. By definition, there is an axiom clause Ci ∈ F such
that IND(T) ⊆ C−1

i (0). Therefore, for any clause Cβ ∈ C(T), we have C−1
β (0) = IND(Rβ) =

IND(Rin
β) ⊆ IND(T) ⊆ C−1

i (0), meaning Cβ is a weakening of Ci.

Inferences. Let T be any non-leaf triangle in Π with children T1 and T2. Consider any clause C ∈ C(T)
generated by some pre-structured rectangle Rβ = S × Y T

β in a strip S defined from some pointer α. We
will show that C has a resolution derivation of width w and depth w from either C(T1) or C(T2).

Consider the “inner” structured sub-rectangle Rin
β ⊆ Rβ ∩ T . Since T is covered by its children T1

and T2,
Rin

β ⊆ T ⊆ T1 ∪ T2. (7.11)

We claim that at least one of T1 or T2 contains a sub-rectangle Q = QX × QY ⊆ Rin
β with X- and

Y -density at least half that of Rin
β . To see this, order the rows/columns according to the ordering of T1,

then the center p of Rin
β divides Rin

β into four quadrants. If p ∈ T1 then, as T1 is a triangle, the top-left
quadrant Q of Rin

β is contained entirely within T1; see Figure 6. Otherwise, if p /∈ T1, then as T1 is a
triangle, the bottom-right quadrant Q is disjoint from T1 and so it must be contained within T2. In either
case, H∞(QY) ≥ H∞(Y T

β)− 1 and H∞(QX
J) ≥ H∞(SJ)− 1 for any ∅ ≠ J ⊆ [n] \ I . In particular, Q

satisfies the premises of Corollary 7.3. Suppose without loss of generality that Q ⊆ T1.

Q Rin
β

T1

Figure 6: The structured rectangle Rin
β for triangle T , whose quadrant Q is contained entirely within child T1.

Applying Corollary 7.3 to Q, we get a row x∗ ∈ QX ⊆ TX
1 such that IND({x∗} ×QY) = C−1

β (0).
As we have removed XT1

err and Y T1
err from T in the Error Removal step, x∗ /∈ XT1

err and QY ⊆ T Y is disjoint
from Y T1

err . Thus, x∗ is secured by a strip S′ of T1 defined by some pointer α′. By the Triangle Lemma,

{x∗} ×QY ⊆ {x∗} × (T1[x
∗] \ Y T1

err) ⊆
⋃

Rξ∈RS′

Rξ, (7.12)

where RS′ is the set of pre-structured rectangles in strip S′. By Corollary 7.3, each α′-pre-structured
rectangle Rξ ∈ RS′ satisfies IND(Rξ) = C−1

ξ (0), and so

C−1(0) = IND(Rβ) = IND({x∗} ×QY) ⊆
⋃

Rξ∈RS′

IND(Rξ) =
⋃

Rξ∈RS′

C−1
ξ (0). (7.13)

In particular, this means that C is logically implied by the clauses {Cξ}, which depend only on variables
in fix(α′) ⊆ [n]. Letting C ′ be the clause obtained from C by discarding the literals over fix(α) \ fix(α′),
then C ′ is also logically implied by the clauses {Cξ}. Hence we can derive C in resolution by first deriving
C ′ and then weakening it to C. As the variables of C ′ ∪ {Cξ} are in fix(α′) which has size ≤ w, and the
width of C is at most w, this derivation takes width and depth at most w. Here we have used the fact that
any derivation over k variables takes width and depth at most k.

34

7 Lifting Theorem for Cutting Planes and Circuits via Triangle DAGs

7.3 Proof of Triangle Lemma

The rest of this section is dedicated to the proof of the Triangle Lemma. That is, our goal is to describe,
for any given parameter w, how to associate with any triangle T ⊆ TX × T Y a set of strips Strips(T) and
error sets which satisfy the security, error and maximality properties of the lemma.

Let parameters w and δ be given. For every pointer α with |fix(α)| ≤ w such that the rows in TX that
are consistent with α form an α-predense set, i.e., (TX)α is α-predense, we construct a strip S := (TX)α,
to be included in Strips(T), by associating S with the following structures.

− Secured Rows. Let xS ∈ S be the highest row (according to the ordering of T) such that the
elements in S above or equal to xS form an α-predense set. Let the secured rows Ŝ ⊆ S be those
below or equal to xS .

− Pre-Structured Rectangles. Generate the set of pre-structured rectanglesRS as follows: for every
β ∈ {0, 1, ⋆}n with fix(β) = fix(α) consider the set of columns

Yβ := {y ∈ {0, 1}mn | IND
(
αfix(α), yfix(α)

)
= βfix(α)} . (7.14)

If H∞(Yβ) ≥ mn−mδ/(16n) then we include the rectangle Rβ := S × Yβ inRS . Otherwise, we
include the columns Yβ in a set Y S

err.
− Inner Rectangle. It remains to show that we can find some sub-rectangle Rin

β ⊆ Rβ ∩ T which is
α-structured and contained entirely within T . Since S is α-predense there is some α-dense subset
of rows S′ ⊆ S. Note that by definition S′ is only above (and including) xS , and so the rectangle
Rin

β := S′ × Yβ is only above (and including) {xS} × Yβ ⊆ T . Hence, as T is a triangle, Rin
β ⊆ T .

Finally, note that as Rβ was not categorized as “error”, Rin
β is α-structured.

Observe that with this construction each strip in Strips(T) is uniquely determined by a pointer α. Finally,
define the associated error sets XT

err ⊆ [m]n and Y T
err ⊆ {0, 1}mn as follows:

− X-Error. Let XT
err be the set of rows in TX which are not secured by any strip in Strips(T).

− Y -Error. Let Y T
err be collected over all strips S ∈ Strips(T), that is, Y T

err :=
⋃

S∈Strips(T) Y
S

err .

A depiction of a strip is in Figure 7.

S
xS

RβRξ

Y S
err ⊆ Y T

err

secured

Figure 7: A strip S of a triangle, including two pre-structured rectangles Rξ, Rβ , a set of error columns Y S
err, and

an example of a secured row.

We first argue that the error, security and maximality properties of the Triangle Lemma hold. The
error property holds by construction. To see why the security property holds, note that given a strip
S ∈ Strips(T), the row xS in T is covered by the α-pre-structured rectangles and the error columns in S.
That is,

{xS} × T [xS] ⊆
⋃

R∈RS

R ∪
(
{xS} × Y T

err
)
. (7.15)

35

TRULY SUPERCRITICAL TRADE-OFFS

Fix any secured row x ∈ Ŝ ⊆ S. Then x is below or equal to xS and, therefore, since T is a triangle,
T [x] ⊆ T [xS]. Hence,

{xS} × T [x] ⊆
⋃

R∈RS

R ∪
(
{xS} × Y T

err
)
. (7.16)

Now, for the maximality property, assume there is a rectangle R ⊆ TX × (T Y \ Y T
err) that is α-pre-

structured for some pointer α with |fix(α)| ≤ w and IND(R) ⊆ C−1
β (0) for some β ∈ {0, 1, ⋆}n

with fix(β) = fix(α). Note that (RX)α is α-predense and hence so is its superset (TX)α, thus by our
construction there is a strip S ∈ Strips(T) associated with α. Since IND(R) ⊆ C−1

β (0) it follows that RY

is a subset of Yβ = {y ∈ {0, 1}mn | IND(αfix(α), yfix(α)) = βfix(α)} defined in (7.14). As RY ∩ Y T
err = ∅

and RY ⊆ Yβ (and RY ̸= ∅ since R is α-pre-structured), it must be the case that Yβ ̸⊆ Y T
err and thus,

by the construction of Pre-Structured Rectangles, it must be the case that H∞(Yβ) ≥ mn −mδ/(16n).
Therefore, the rectangle Rβ := (TX)α × Yβ is α-pre-structured and thus, by our construction, is inRS .

Finally, we bound the size of the error sets, using the following two claims.

Claim 7.5. For any triangle T , the density of XT
err in [m]n is less than m−(1−δ)w.

Proof. Suppose for contradiction that XT
err has density at least m−(1−δ)w. For simplicity, we denote

X̂ := XT
err. Let I ⊆ [n] be a maximal set of blocks where X̂ is not dense—meaning that H∞(X̂I) <

δ|I| logm—and fix any pointer α with fix(α) = I that witnesses Pr[X̂I = αI] ≥ m−δ|I|. If no such I
exists, we let I := ∅ and α = ⋆n. We record the following two basic properties:

(1) |I| ≤ w,
(2) X̂α := {x ∈ XT

err | xI = αI} is α-dense.

To see item (1), observe that by the definition of α,

|X̂| ≤ |X̂α|
m−δ|I| ≤

|{x ∈ [m]n | xI = αI}|
m−δ|I| = mn−(1−δ)|I| . (7.17)

From this and our assumption that |X̂| has density at least m−(1−δ)w, it follows that |I| ≤ w. To prove
item (2), we show that if X̂α is not α-dense then this contradicts the maximality of I . Indeed, if X̂α

is not α-dense then there exists a nonempty subset J ⊆ [n] \ I and a witness α′ ∈ ([m] ∪ {⋆})n with
fix(α′) = J such that Pr

x∼X̂α
[xJ = α′

J] ≥ m−δ|J |. Let α ◦ α′ be the pointer with fix(α ◦ α′) = I ∪ J
such that (α ◦ α′)I = αI and (α ◦ α′)J = αJ . Then

Pr
x∼X̂

[xI∪J = (α ◦ α′)I∪J] = Pr
x∼X̂

[xI = αI] · Pr
x∼X̂

[xJ = α′
J | xI = αI] (7.18)

= Pr
x∼X̂

[xI = αI] · Pr
x∼X̂α

[xJ = α′
J] (7.19)

≥ m−δ(|I|+|J |), (7.20)

meaning that X̂ is also not dense on I ∪ J , which contradicts the maximality of I .
By item (1) and item (2) there is a strip S ∈ Strips(T) with associated pointer α, consisting of the

rows x ∈ TX for which xI = αI . Note that X̂α ⊆ S, and since X̂α is α-predense, the distinguished row
xS of strip S cannot be strictly below all rows in X̂α. However, this implies that some row x ∈ X̂α is
secured by S. This is a contradiction, as x ∈ X̂α ⊆ XT

err where XT
err contains only rows of T that are not

secured by any strip in Strips(T).

Claim 7.6. For any triangle T , the density of Y T
err in {0, 1}mn is at most 2−mδ/(16n)+(w+1) log(2mn).

Proof. Each strip S for T is determined by a pointer α with |fix(α)| ≤ w, of which there are at most∑w
i=0

(
n
i

)
mi ≤ (mn)w+1 many choices. Moreover, for a fixed α, there are at most 2|fix(α)| ≤ 2w many

β ∈ {0, 1, ⋆}n with fix(β) = fix(α), and hence at most this many Yβ which are not large, i.e., each
contributing at most 2mn−mδ/(16n) many columns. Hence, |Y T

err |< (2mn)w+12mn−mδ/(16n), and so the
density of Y T

err can be upper bounded by 2−mδ/(16n)+(w+1) log(2mn).

This completes the proof of the Triangle Lemma.

36

References

8 Concluding Remarks

This work opens up many exciting avenues for future research; we end by discussing the ones that we find
most intriguing.

Supercritical Trade-offs for Non-monotone Circuits. We show that supercritical trade-offs exist for
monotone circuits. What about for non-monotone circuits? Given that unconditional lower bounds for
general circuits are beyond the reach of current techniques, it is interesting to prove the existence of such
trade-offs under standard cryptographic assumptions, such as the existence of one-way functions.

Supercritical Trade-offs for Perfect Matching and Tseitin. Having established truly supercritical
trade-offs for monotone circuits and cutting planes, we find it natural to ask for more examples of this
phenomenon. As mentioned in the introduction, it is possible that the perfect matching problem exhibits
such a trade-off for monotone circuits, and for cutting planes the Tseitin formulas are a candidate. The
latter would also resolve the following question.

Separating Stabbing and Cutting Planes. The quasi-polynomial size cutting planes proof of the Tseitin
formulas was obtained by showing that a known upper bound on the Tseitin formulas in a proof system
known as stabbing planes [BFI+18] could be efficiently translated into cutting planes. In fact, as was
shown in [FGI+21], any stabbing planes proof with sufficiently small coefficients can be translated into
cutting planes. However, this transformation causes a blow-up in depth that is proportional to the size
of the original proof. For example, the depth O(log2 n) stabbing planes proofs of the Tseitin formulas
become quasi-polynomial-depth cutting planes proofs. Can one show that this blow-up is inevitable by
giving a formula which has small stabbing planes proofs with low depth, however exhibits a supercritical
size-depth trade-off for cutting planes?

Further Applications of Variable Compression. We give an application of variable compression in
proof complexity. Is it possible to apply this technique to other problems? For example, can Pebbling
formulas and their associated graphs be compressed? New compressions for the Cop-Robber game would
also be of interest.

Acknowledgements

The authors are grateful for helpful discussions with Christoph Berkholz, Jonas Conneryd, Daniel Neuen,
and Alexander Razborov. We would also like to thank the participants of the Oberwolfach workshop Proof
Complexity and Beyond in March 2024 and of the Dagstuhl workshop 24421 SAT and Interactions for
their feedback.

Susanna F. de Rezende received funding from the Knut and Alice Wallenberg grant KAW 2021.0307,
ELLIIT, and the Swedish Research Council grant 2021-05104. Noah Fleming was funded by NSERC.
Duri Andrea Janett and Jakob Nordström received funding from the Independent Research Fund Denmark
grant 9040-00389B, and Jakob Nordström was also supported by the Swedish Research Council grant
2016-00782. Shuo Pang was funded by the European Union MSCA Postdoctoral Fellowships 2023 project
101146273 NoShortProof. Views expressed are the authors’ and do not reflect the European Union or the
Research Executive Agency.

References

[AB87] Noga Alon and Ravi B. Boppana. The monotone circuit complexity of Boolean functions.
Combinatorica, 7(1):1–22, March 1987.

[And85] Alexander E. Andreev. On a method for obtaining lower bounds for the complexity of
individual monotone functions. Soviet Mathematics Doklady, 31(3):530–534, 1985. English
translation of a paper in Doklady Akademii Nauk SSSR.

37

TRULY SUPERCRITICAL TRADE-OFFS

[Bab16] László Babai. Graph isomorphism in quasipolynomial time [extended abstract]. In Pro-
ceedings of the 48th Annual ACM Symposium on Theory of Computing (STOC ’16), pages
684–697, June 2016.

[BBI16] Paul Beame, Chris Beck, and Russell Impagliazzo. Time-space tradeoffs in resolution:
Superpolynomial lower bounds for superlinear space. SIAM Journal on Computing,
45(4):1612–1645, August 2016. Preliminary version in STOC ’12.

[Ber12] Christoph Berkholz. On the complexity of finding narrow proofs. In Proceedings of the 53rd
Annual IEEE Symposium on Foundations of Computer Science (FOCS ’12), pages 351–360,
October 2012.

[BFI+18] Paul Beame, Noah Fleming, Russell Impagliazzo, Antonina Kolokolova, Denis Pankratov,
Toniann Pitassi, and Robert Robere. Stabbing planes. In Proceedings of the 9th Innovations
in Theoretical Computer Science Conference (ITCS ’18), volume 94 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 10:1–10:20, January 2018.

[BGH+06] Joshua Buresh-Oppenheim, Nicola Galesi, Shlomo Hoory, Avner Magen, and Toniann Pitassi.
Rank bounds and integrality gaps for cutting planes procedures. Theory of Computing,
2(4):65–90, 2006. Preliminary version in FOCS ’03.

[BLVS24] Christoph Berkholz, Moritz Lichter, and Harry Vinall-Smeeth. Supercritical size-width
tree-like resolution trade-offs for graph isomorphism. arXiv preprint arXiv 2407.17947, July
2024.

[BN20] Christoph Berkholz and Jakob Nordström. Supercritical space-width trade-offs for resolu-
tion. SIAM Journal on Computing, 49(1):98–118, February 2020. Preliminary version in
ICALP ’16.

[BN21] Samuel R. Buss and Jakob Nordström. Proof complexity and SAT solving. In Armin Biere,
Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfiability,
volume 336 of Frontiers in Artificial Intelligence and Applications, chapter 7, pages 233–350.
IOS Press, 2nd edition, February 2021.

[BN23] Christoph Berkholz and Jakob Nordström. Near-optimal lower bounds on quantifier depth
and Weisfeiler-Leman refinement steps. Journal of the ACM, 70(5):32:1–32:32, October
2023. Preliminary version in LICS ’16.

[BNT13] Chris Beck, Jakob Nordström, and Bangsheng Tang. Some trade-off results for polynomial
calculus. In Proceedings of the 45th Annual ACM Symposium on Theory of Computing
(STOC ’13), pages 813–822, May 2013.

[BP98] Paul Beame and Toniann Pitassi. Propositional proof complexity: Past, present, and future.
Bulletin of the European Association for Theoretical Computer Science, 65:66–89, June
1998.

[BPR95] Marı́a Bonet, Toniann Pitassi, and Ran Raz. Lower bounds for cutting planes proofs with small
coefficients. In Proceedings of the 27th Annual ACM Symposium on Theory of Computing
(STOC ’95), pages 575–584, May 1995.

[BT24] Sam Buss and Neil Thapen. A simple supercritical tradeoff between size and height in
resolution. Technical Report TR24-001, Electronic Colloquium on Computational Complexity
(ECCC), January 2024.

[CD24] Arkadev Chattopadhyay and Pavel Dvořák. Super-critical trade-offs in resolution over parities
via lifting. Technical Report TR24-132, Electronic Colloquium on Computational Complexity
(ECCC), September 2024.

38

References

[CFI92] Jin-yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of
variables for graph identifications. Combinatorica, 12(4):389–410, 1992. Preliminary version
in FOCS ’89.

[Chv73] Vašek Chvátal. Edmonds polytopes and a hierarchy of combinatorial problems. Discrete
Mathematics, 4(1):305–337, 1973.

[DT20] Daniel Dadush and Samarth Tiwari. On the complexity of branching proofs. In Proceedings
of the 35th Annual Computational Complexity Conference (CCC ’20), volume 169 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 34:1–34:35, July 2020.

[Edm65] Jack Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17:449–467,
1965.

[FGI+21] Noah Fleming, Mika Göös, Russell Impagliazzo, Toniann Pitassi, Robert Robere, Li-Yang
Tan, and Avi Wigderson. On the power and limitations of branch and cut. In Proceedings of
the 36th Annual Computational Complexity Conference (CCC ’21), volume 200 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 6:1–6:30, July 2021.

[FKNP21] Keith Frankston, Jeff Kahn, Bhargav Narayanan, and Jinyoung Park. Thresholds versus
fractional expectation-thresholds. Annals of Mathematics, 194(2):475–495, September 2021.

[FP22] Noah Fleming and Toniann Pitassi. Reflections on proof complexity and counting principles.
In Ivo Dünsch and Edwin Mares, editors, Alasdair Urquhart on Nonclassical and Algebraic
Logic and Complexity of Proofs, volume 22 of Outstanding Contributions to Logic, chapter 18,
pages 497–520. Springer, 2022.

[FPPR22] Noah Fleming, Denis Pankratov, Toniann Pitassi, and Robert Robere. Random θ(log n)-CNFs
are hard for cutting planes. Journal of the ACM, 69(3):19:1–19:32, June 2022. Preliminary
version in FOCS ’17.

[FPR22] Noah Fleming, Toniann Pitassi, and Robert Robere. Extremely deep proofs. In Proceedings
of the 13th Innovations in Theoretical Computer Science Conference (ITCS ’22), pages
70:1–70:23. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, January 2022.

[Für01] Martin Fürer. Weisfeiler-Lehman refinement requires at least a linear number of iterations. In
Proceedings of the 28th International Colloquium on Automata, Languages and Programming
(ICALP ’01), volume 2076 of Lecture Notes in Computer Science, pages 322–333. Springer,
July 2001.

[Gál01] Anna Gál. A characterization of span program size and improved lower bounds for monotone
span programs. Computational Complexity, 10(4):277–296, December 2001. Preliminary
version in STOC ’98.

[GGKS20] Ankit Garg, Mika Göös, Pritish Kamath, and Dmitry Sokolov. Monotone circuit lower bounds
from resolution. Theory of Computing, 16(13):1–30, 2020. Preliminary version in STOC ’18.

[GLM+16] Mika Göös, Shachar Lovett, Raghu Meka, Thomas Watson, and David Zuckerman. Rectangles
are nonnegative juntas. SIAM Journal on Computing, 45(5):1835–1869, October 2016.
Preliminary version in STOC ’15.

[GLN23] Martin Grohe, Moritz Lichter, and Daniel Neuen. The iteration number of the Weisfeiler-
Leman algorithm. In Proceedings of the 38th Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS ’23), pages 1–13, June 2023.

39

TRULY SUPERCRITICAL TRADE-OFFS

[GLNS23] Martin Grohe, Moritz Lichter, Daniel Neuen, and Pascal Schweitzer. Compressing CFI
graphs and lower bounds for the Weisfeiler-Leman refinements. In Proceedings of the 64th
Annual IEEE Symposium on Foundations of Computer Science (FOCS ’23), pages 798–809,
November 2023.

[GMRS24] Mika Göös, Gilbert Maystre, Kilian Risse, and Dmitry Sokolov. Supercritical tradeoffs for
monotone circuits. Technical report, November 2024.

[GP19] Erich Grädel and Wied Pakusa. Rank logic is dead, long live rank logic! The Journal of
Symbolic Logic, 84(1):54–87, March 2019. Preliminary version in CSL ’15.

[Gro21] Martin Grohe. The logic of graph neural networks. In Proceedings of the 36th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS ’21), pages 1–17, June 2021.

[GTT20] Nicola Galesi, Navid Talebanfard, and Jacobo Torán. Cops-robber games and the resolution
of Tseitin formulas. ACM Transactions on Computation Theory (TOCT), 12(2):1–22, May
2020. Preliminary version in SAT ’18.

[HP17] Pavel Hrubeš and Pavel Pudlák. Random formulas, monotone circuits, and interpolation.
In Proceedings of the 58th Annual IEEE Symposium on Foundations of Computer Science
(FOCS ’17), pages 121–131, October 2017.

[IL90] Neil Immerman and Eric Lander. Describing graphs: A first-order approach to graph
canonization. In Alan L. Selman, editor, Complexity Theory Retrospective: In Honor of Juris
Hartmanis on the Occasion of His Sixtieth Birthday, July 5, 1988, pages 59–81. Springer,
June 1990.

[Juk12] Stasys Jukna. Boolean Function Complexity - Advances and Frontiers, volume 27 of Algo-
rithms and combinatorics. Springer, 2012.

[Kie20] Sandra Kiefer. The Weisfeiler-Leman algorithm: an exploration of its power. ACM SIGLOG
News, 7(3):5–27, July 2020.

[Kra19] Jan Krajı́ček. Proof Complexity, volume 170 of Encyclopedia of Mathematics and Its
Applications. Cambridge University Press, March 2019.

[KS19] Sandra Kiefer and Pascal Schweitzer. Upper bounds on the quantifier depth for graph
differentiation in first order logic. Logical Methods in Computer Science, 15(2):19:1–19:19,
May 2019. Preliminary version in LICS ’16.

[KW90] Mauricio Karchmer and Avi Wigderson. Monotone circuits for connectivity require super-
logarithmic depth. SIAM Journal on Discrete Mathematics, 3(2):255–265, 1990. Preliminary
version in STOC ’88.

[LMM+22] Shachar Lovett, Raghu Meka, Ian Mertz, Toniann Pitassi, and Jiapeng Zhang. Lifting
with Sunflowers. In Proceedings of the 13th Innovations in Theoretical Computer Science
Conference (ITCS ’22), volume 215 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 104:1–104:24, January 2022.

[LPS19] Moritz Lichter, Ilia Ponomarenko, and Pascal Schweitzer. Walk refinement, walk logic, and
the iteration number of the Weisfeiler-Leman algorithm. In Proceedings of the 34th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS ’19), pages 1–13, June 2019.

[MLM+23] Christopher Morris, Yaron Lipman, Haggai Maron, Bastian Rieck, Nils M. Kriege, Martin
Grohe, Matthias Fey, and Karsten Borgwardt. Weisfeiler and leman go machine learning:
The story so far. Journal of Machine Learning Research, 24(333):1–59, 2023.

40

References

[MRF+19] Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen,
Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural
networks. In Proceedings of the 23rd AAAI Conference on Artificial Intelligence (AAAI ’19),
pages 4602–4609. AAAI Press, January 2019.

[Pud97] Pavel Pudlák. Lower bounds for resolution and cutting plane proofs and monotone computa-
tions. Journal of Symbolic Logic, 62(3):981–998, September 1997.

[Pud10] Pavel Pudlák. On extracting computations from propositional proofs (a survey). In Pro-
ceedings of the 30th IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS ’10), volume 8 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 30–41, December 2010.

[Rao20] Anup Rao. Coding for sunflowers. Discrete Analysis, February 2020.

[Raz85] Alexander A. Razborov. Lower bounds for the monotone complexity of some Boolean
functions. Soviet Mathematics Doklady, 31(2):354–357, 1985. English translation of a paper
in Doklady Akademii Nauk SSSR.

[Raz90] Alexander A. Razborov. Applications of matrix methods to the theory of lower bounds in
computational complexity. Combinatorica, 10(1):81–93, March 1990.

[Raz95] Alexander A. Razborov. Unprovability of lower bounds on circuit size in certain fragments
of bounded arithmetic. Izvestiya: Mathematics, 59:205–227, February 1995.

[Raz16] Alexander A. Razborov. A new kind of tradeoffs in propositional proof complexity. Journal
of the ACM, 63(2):16:1–16:14, April 2016.

[Raz17] Alexander A. Razborov. On the width of semialgebraic proofs and algorithms. Mathematics
of Operations Research, 42(4):1106–1134, May 2017.

[Raz18] Alexander A. Razborov. On space and depth in resolution. Computational Complexity,
27(3):511–559, September 2018.

[RW92] Ran Raz and Avi Wigderson. Monotone circuits for matching require linear depth. Journal
of the ACM, 39(3):736–744, July 1992.

[Sok17] Dmitry Sokolov. Dag-like communication and its applications. In Proceedings of the 12th
International Computer Science Symposium in Russia (CSR ’17), volume 10304 of Lecture
Notes in Computer Science, pages 294–307. Springer, June 2017.

[Sok24] Dmitry Sokolov. Random (log n)-CNF are hard for cutting planes (again). In Proceedings of
the 56th Annual ACM Symposium on Theory of Computing (STOC ’24), pages 2008––2015,
June 2024.

[ST93] Paul D Seymour and Robin Thomas. Graph searching and a min-max theorem for tree-width.
Journal of Combinatorial Theory, Series B, 58(1):22–33, May 1993.

[Tse68] Grigori Tseitin. On the complexity of derivation in propositional calculus. In A. O. Silenko,
editor, Structures in Constructive Mathematics and Mathematical Logic, Part II, pages
115–125. Consultants Bureau, New York-London, 1968.

[WL68] Boris Weisfeiler and Andrei Leman. A reduction of a graph to a canonical form and an
algebra arising during this reduction. Nauchno-Technicheskaya Informatsiya, Ser. 2, 9:12–16,
1968. English translation by Grigory Ryabov available at https://www.iti.zcu.cz/
wl2018/pdf/wl_paper_translation.pdf.

41

https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf
https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf

TRULY SUPERCRITICAL TRADE-OFFS

A Proof of the Weisfeiler-Leman Result from the Cop-Robber Game

The goal of this appendix is to outline a proof of the trade-off for Weisfeiler-Leman (Theorem 2.2) from our
lower bound for the compressed Cop-Robber game (Theorem 4.1). The proof consists of two translations:
first from Theorem 4.1 to a round lower bound on a variant of the Cop-Robber game defined below, and
then from there to WL-algorithms via the CFI construction [CFI92]. Both steps are standard if there is no
compression. With compression, some details should be clarified. We start by recalling some definitions.

A.1 Preliminaries on the Cai–Fürer–Immerman Construction

We recall the CFI-construction [CFI92, Für01]. A graph G = (V,E) is given with the vertices ordered,
together with a function f : E → F2. We define a colored graph CFI(G, f) as follows. For each
v ∈ V , assume its degree is d, there is a group of 2d−1 vertices in CFI(G, f) identified by (v, a⃗) for each
a⃗ = (a1, . . . , ad) ∈ F2 such that a1 + · · ·+ ad = 0 in F2, and these 2d−1 vertices are all colored v. The
vertex order induces an adjacency list form of G. For any edge e = {u, v} in G, assuming that u is the ith
neighbor of v and v is the jth neighbor of u, we add an edge between (u, a⃗) and (v, b⃗) if ai + bj = f(e).
Finally, the color of vertex (v, a⃗) is v.

The color-preserving automorphisms of CFI(G, f) are characterized by twistings [CFI92, GP19].
For a set of edges F we denote by F⃗ the set of directed edges {(u, v), (v, u) | {u, v} ∈ F}. We call
T ⊆ E⃗(G) a G-twisting (or twisting in short) if |T ∩ ({v} × V)| is even for every v ∈ V (G). An edge
{u, v} ∈ E(G) is twisted by T , if (u, v) ∈ T and (v, u) /∈ T , or vice-versa. A vertex v ∈ V (G) is fixed
by T if T ∩ ({v} × V) = ∅.

Next, we construct the compressed CFI graphs [GLNS23]. Assume G is a vertex ordered graph and
≡V is a compatible vertex equivalence relation on V (G) (recall this means v≡V v

′ implies that v, v′ are
non-adjacent and have the same degree). Assume in addition that ≡V satisfies the following condition: if
u≡V u

′ and v≡V v
′, and v is the ith neighbor of u, then v′ is the i the neighbor of u′.3 We call a function

f : E(G) → F2 compressible if for all u≡V u
′ and v≡V v

′ where both {u, v} and {u′, v′} are edges,
f({u, v}) = f({u′, v′}). Given such a G, such a vertex equivalence ≡V , and a compressible f , the
compressed CFI graph CFI(G, f)/≡V is the quotient graph of CFI(G, f) by the vertex equivalence
relation under which (u, a⃗) is equivalent to (v, b⃗) if and only if u≡V v and a⃗ = b⃗. We denote this vertex
equivalence on CFI(G, f) still by ≡V . The color of vertices in CFI(G, f)/≡V can be defined in various
canonical ways, e.g., coloring (u, a⃗)/≡V by the minimum v ∈ V (G) in class u/≡V .

The color-preserving automorphisms of CFI(G, f)/≡V are characterized by compressed twistings,
which are G-twistings T where, for any (u1, v1) and (u2, v2) such that u1≡V u2 and v1 has the same order
in the neighbor-list of u1 as v2 does in that of u2, it holds that (u, v) ∈ T ⇔ (u′, v′) ∈ T .

For the cylinder graph Gcyl, we use the lexicographical vertex order on [k]× [2r+L]. The associated
adjacency-list form of Gcyl induces an edge equivalence from ≡V in Definition 3.1, which is the same as
≡E in Definition 3.4.

Finally, the argument uses a game variant where the Robber is on the edges. Given a graph compression
(G,≡V ,≡E) as in Definition 3.1, the compressed k-Cop-edge-Robber game proceeds as in Definition 3.11,
except that the Robber now stays on an edge, and the rule (G2) becomes that the Robber should provide
a compressible twisting T which twists only the edge he currently occupies and the edge he moves to,
and T fixes every vertex that is ≡V -equivalent to a Cop position. The game ends if both endpoints of the
Robber’s edge are ≡V -equivalent to some Cop positions.

A.2 Proof of Translation from the Cop-Robber Game to the Weisfeiler–Leman Algorithm

We restrict our attention to the compression (Gcyl,≡V ,≡E) in Theorem 4.1. For ease of notation, we will
call the game in Definition 3.11 the compressed k-VR (indicating vertex Robber), and the above game
variant the compressed k-ER (indicating edge Robber). We say a vertex v ∈ V (G) is singleton-class if

3For Gcyl with the lexicographical vertex order on [k]× [2r + L] and the vertex equivalence relation ≡V in Definition 3.4,
this condition is satisfied.

42

A Proof of the Weisfeiler-Leman Result from the Cop-Robber Game

it forms a singleton ≡V -class, i.e., |v≡V | = 1. Similarly, we say an edge e ∈ E(G) is singleton-class if
|e≡E | = 1.

Lemma A.1 says that our Robber strategy in Section 4.3 can be carried over to the compressed game
with edge Robber.

Lemma A.1. Assume that the Robber has a winning strategy in the R-round k-VR on (Gcyl,≡V ,≡E),
where the Robber always occupies a vertex v ∈ V that is singleton-class and such that there are two edges
e, e′ ∈ E incident to v that are singleton-class. Then there is a winning strategy for the Robber in the
R-round k-ER on G and ≡V , where the Robber always occupies as singleton-class edge incident to a
singleton-class vertex.

Proof. We fix a strategy S for Robber that wins the R-round k-VR, and by simulating it, we will construct
a winning strategy for the Robber in the R-round k-ER. During the simulation, we maintain the invariant
that the Cops occupy the same vertices in both graphs, that the Robber in k-VR is on a singleton-class
vertex w1 with two incident singleton-class edges e1, e′1, and that the Robber in k-ER is on either e1 or e′1.
In the initial round of the game the invariants hold by assumption, where we can assume without loss of
generality that the Robber is placed on such an edge in the beginning.

Assume that the invariants hold, that the game has lasted for R′ < R rounds, and that the Cops are
playing step 1 (one Cops is picked up, and a destination x ∈ V (G) selected). In the k-VR, the same Cops
is lifted up, and x is signaled to the Robber. As R′ < R, the Robber in the k-VR has a compressible move
M ⊆ E(G) according to the strategy S from w1 to w2, where w2 is singleton-class and has two incident
singleton-class edges e2, e′2. Without loss of generality, we may assume that the Robber is on e1 in the
k-ER. We want to provide a ≡V -compressible G-twisting T that only twists edges e1 and e2 (or possibly
e′2 instead of e2), and fixes every vertex in a ≡V -class occupied by a Cops.

First, we assume that w1 and w2 are not adjacent. For all v ∈ V (M) \ {w1, w2}, we include in T
all edges in M incident to v in the outgoing direction from v, i.e., for any edge {v, v′} ∈M , we include
(v, v′) in T . For w1 and w2, we do the same, except for the edges e1 and e2. If e1 (or e2) is in M , we
do not include it in T in the outgoing direction from w1 or w2, respectively. Otherwise (that is, e1 /∈M
or e2 /∈ M), we include e1 or e2 in the outgoing direction from w1 or w2 in T , respectively. T is a
twisting, as all v ∈ V satisfy that Tv = T ∩ ({v} × V) is of even size. (For v /∈ V (M), Tv = ∅, for
v ∈ V (M) \ {w1, w2}, |Tv| = degM (v), which is even by (G2)(c), and for w1, w2, |Tv| = degM (v)± 1,
which is even by (G2)(c).) T is ≡V -compressible, as M is closed under ≡E by (G2)(a), and the directed
edges in exactly one of T and M⃗ are singleton-class. Now T twists exactly e1 and e2 by construction, and
all the vertices in a ≡V -class occupied by a Cops are fixed due to (G2)(b).

Let us now turn to the case where w1 and w2 are adjacent. Recall that the Robber is on e1. If
e1 ̸= {w1, w2}, let e′ ∈ {e2, e′2} be such that e′ ̸= {w1, w2}, then we can use the same twisting T as
above, twisting only e1 and e′. So assume that e1 = {w1, w2}. Without loss of generality, we assume that
e2 ̸= e1 (otherwise switch the roles of e2 and e′2). To construct T , we treat v ∈ V (M) \ {w2} as above,
and immediately get that Tv is of even size for v ̸= w2. For w2, we include in T all incident edges in M
except e1 and e2, in the outgoing direction from w2. If e1 ∈M , we include it in T in the outgoing direction
from w2. If e2 /∈M , we include it in T in the outgoing direction from w2. To see that |Tw2 | is even, note
that if e2 ∈M , |Tw2 | = degM (w2)− 1, and otherwise |Tw2 | = degM (w2) + 1. T is ≡V -compressible,
twists only e1 and e2, and fixes the vertices in the ≡V -class of the Cops for the same reasons as above.

In the k-ER, the Robber moves according to the twisting T constructed above. Finally, a Cops is placed
on x in step 3 of the k-ER. The same happens in the k-VR. As the Robber is not caught in the k-VR, the
Robber is also not caught in the k-ER, Since the invariants are maintained throughout the simulation, this
concludes the proof of this lemma.

Proof of Theorem 2.2. For clarity, we will use N for the number of vertices in each graph in the pair,
leaving n as the parameter in the graph compression in Definition 3.9. We follow the standard chain of
reasoning as in [GLNS23], pointing out necessary changes. Given k, c as in the theorem statement, we take
n to be large enough such that the conditions of Definition 3.9 are satisfied. We apply the CFI construction
with f, g : E(Gcyl)→ F2, where f is the all-zero function and g is 1 only on one edge adjacent to vertex

43

TRULY SUPERCRITICAL TRADE-OFFS

(1, 1). This gives us graphs GN := CFI(Gcyl, f)/≡V and HN := CFI(Gcyl, g)/≡V , where N denotes
the vertex set size of both. We observe that N ≤ 24−1

(
2r + k2(2n)c+1

)
< 2c+5k2nc+1.

Using Lemma A.1 and Theorem 4.1, we get their Lemma 29 and consequently Theorem 30 with k+ 1
replaced by k + c, which says that (k + c − 1)-WL requires at least (L − 2r)/(8(k + c)) ≥ nk/(32k)

rounds to distinguish GN and HN . This is at least
(
2−(c+10)k−3N

)k/(c+1).

B Proof of Full Image Lemma

In this appendix, we give a self-contained proof of the Full Image Lemma, restated below.

Full Image Lemma. For any positive integers m,n, rectangle X×Y ⊆ {m}n×{0, 1}mn, and parameter
δ ∈ (0, 1), assume mδ ≥ 4

ln 2n,

(1) H∞(XI) ≥ δ|I| logm− 1 for any nonempty I ⊆ [n],
(2) H∞(Y) ≥ mn−mδ/(8n).

There exists x∗ ∈ X such that IND({x∗}, Y) = {0, 1}n.

We claim no originality here, as the argument is the same as in [LMM+22]. Except that we substitute
their use of strong sunflower lemmas with a simpler result from [FKNP21] proved by Janson’s inequality.

Given a set U , a set sequence (S1, . . . , Sl) is κ-spread over U if each Si is a subset of U and for any
W ⊆ U , the number of elements in the sequence that contains W is at most lκ−|W |.

Proposition B.1 (Lemma 3.2 of [FKNP21]). Suppose (S1, . . . , Sl) is a sequence of size-r sets that is
κ-spread over U . For any p ∈ (0, 1), if W is a random subset of U where each element is included
independently with probability p, then

Pr
W

[(∀i ∈ [l]) Si ̸⊆W] ≤ exp

(
−pκ

r
exp(−r − 1

pκ
)

)
. (B.1)

In particular, if pκ ≥ (r − 1)/ ln 2, then the bound in (B.1) can be replaced by exp(−pκ/(2r)).

Proof of Proposition B.1. Denote by ξi the indicator variable of the event Si ⊆W . Let

µ :=
l∑

i=1

E[ξi] (B.2)

Λ :=
∑

(i,j): Si∩Sj ̸=∅

E[ξi · ξj] =
∑
i∈[l]

∑
j: Sj∩Si ̸=∅

E[ξi · ξj] (B.3)

Then µ = l · pr, and we can upper bound Λ as follows. For each inner sum in (B.3), we group the terms
according to a := |Sj ∩ Si|, where in each group there are

(
r
a

)
many choices of Sj ∩ Si, and for each

choice there are at most lκ−a many possible j due to spreadness. So

Λ ≤ l ·
r∑

a=1

(
r

a

)
(lκ−a)p2r−a = µ2

(
(1 +

1

pκ
)r − 1

)
≤ µ2 · r

pκ
exp(

r − 1

pκ
) (B.4)

where the last step uses (1 + x)r − 1 ≤ x · re(r−1)x. By Janson’s inequality applied to (ξ1, . . . , ξl),

Pr
W

[(∀i ∈ [l]) ξi = 0] ≤ exp(−µ2

Λ
) ≤ exp

(
−pκ

r
exp(−r − 1

pκ
)

)
.

Remark B.2. The probability bound in (B.1) was improved by [Rao20, Lemma 4] to r · exp(−pκ/Cabs)
if p < 1

2 , where Cabs is an absolute constant. (There, a slightly different notion of r-spreadness and
distribution of W is used, but the argument is adaptable.) We use (B.1) for simplicity, which is sufficient
for our purpose (we don’t intend to optimize gadget size).

44

B Proof of Full Image Lemma

Proof of Full Image Lemma. Given X ⊆ [m]n as in the lemma, we consider the maximum possible size
of Y ′⊆{0, 1}mn subject to the following condition:

(∀x ∈ X) (∃zx ∈ {0, 1}n) zx /∈ IND({x} × Y ′). (B.5)

As the first step, we show that for the purpose of maximizing |Y ′|, we can assume zx = 1⃗ for all x ∈ X in
(B.5). Then, as the second step, we use Proposition B.1 to show |Y ′| < 2mn2−mδ/(8n) in that case. Given
our assumption (2) on |Y |, this means (B.5) cannot hold for Y ′ ← Y , so the lemma follows.

For the first step, take mn boolean variables pi,j (i ∈ [n], j ∈ [m]). For each x ∈ [m]n, we take a

clause Cx :=
n∨

i=1
p
1−zx(i)
i,x(i) , where p1 := p and p0 := p. Then condition (B.5) equivalently says that each

element in Y is a satisfying assignment of the CNF C :=
∧

x∈X
Cx. We have the following:

Fact B.3 ([LMM+22], Claim 8). For any CNF F , let Fmon be its monotonization by negating each
positive literal. Then |sat(F)| ≤ |sat(Fmon)|, where sat(·) means the set of satisfying assignments.

To see this, note that Fmon can be obtained from a sequence F0 := F, F1, . . . , FN = Fmon where Fi

monotonize Fi−1 at the ith variable, and we only need to show that |sat(Fi−1)| ≤ |sat(Fi)|. For this aim,
we fix an i ∈ [n] and view {0, 1}n as a collection of pairs Py = {(y, 0), (y, 1)} over y ∈ {0, 1}[n]\{i}.
For each y, if Py ⊆ sat(Fi−1) then the partial assignment y already satisfies each clause in Fi−1, so
Py ⊆ sat(Fi); if exactly one of (y, 0) and (y, 1) satisfies Fi−1, then (y, 0) satisfies Fi. Thus for each y,
|sat(Fi−1) ∩ Py| ≤ |sat(Fi) ∩ Py|. Consequently, |sat(Fi−1)| ≤ |sat(Fi)|, and Fact B.3 follows.

Fact B.3 says that for the purpose of maximizing |Y |, we can take zx = 1⃗ for all x in condition (B.5).
So below we fix zx = 1⃗ and upper bound |Y |. The argument uses a translation of language as follows.
Take a ground set U := [mn], understood as the union of n disjoint sets each having size m; we call these
m sets m ‘groups’ for clarity. We will consider set systems over U . Each x ∈ [m]n corresponds to a subset
x ⊆ U which contains one element per group. Each y ∈ Y , when read as a function from U to {0, 1},
corresponds to the subset y := y−1(1) ⊆ U . Then, assuming zx = 1⃗ for all x, condition (B.5) becomes

(∀y ∈ Y)(∀x ∈ X) x ̸⊆ y. (B.6)

The following fact provides the last bit of the translation, proved by a direct inspection of definitions.

Fact B.4. For any A ⊆ [m]n and κ ≥ 1, A = {a | a ∈ A} is κ-spread if and only if H∞(AI) ≥ |I| log κ
for all nonempty I ⊆ [n].

By Fact B.4 and the assumption (1) on X , the set family X is 1
2m

δ-spread. So we can apply Proposi-
tion B.1 with parameters r := n, κ := 1

2m
δ, p := 1

2 , where it holds that pκ = mδ/4 ≥ r/ ln 2, so the “in
particular” part of the proposition applies. As the result, (B.6) implies that |Y | < 2mn2−mδ/(8n). Then
by our first step, (B.5) also implies |Y | < 2mn2−mδ/(8n). But |Y | ≥ 2mn2−mδ/(8n) by the assumption
(2), so (B.5) cannot hold, i.e., ∃x∗ ∈ X such that IND({x∗} × Y) = {0, 1}n. The Full Image Lemma
follows.

45
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

