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Abstract

A code 𝒞 : {0, 1}𝑘 → {0, 1}𝑛 is a 𝑞-query locally decodable code (𝑞-LDC) if one can recover
any chosen bit 𝑏𝑖 of the message 𝑏 ∈ {0, 1}𝑘 with good confidence by querying a corrupted string
�̃� of the codeword 𝑥 = 𝒞(𝑏) in at most 𝑞 coordinates. For 2 queries, the Hadamard code is a
2-LDC of length 𝑛 = 2𝑘 , and this code is in fact essentially optimal [KW04, GKST06]. For 𝑞 ≥ 3,
there is a large gap in our understanding: the best constructions achieve 𝑛 = exp(𝑘𝑜(1)), while
prior to the recent work of [AGKM23], the best lower bounds were 𝑛 ≥ Ω̃(𝑘

𝑞
𝑞−2 ) for 𝑞 even and

𝑛 ≥ Ω̃(𝑘
𝑞+1
𝑞−1 ) for 𝑞 odd.

The recent work of [AGKM23] used spectral methods to prove a lower bound of 𝑛 ≥ Ω̃(𝑘3)
for 𝑞 = 3, thus achieving the “𝑘

𝑞
𝑞−2 bound” for an odd value of 𝑞. However, their proof does not

extend to any odd 𝑞 ≥ 5. In this paper, we prove a 𝑞-LDC lower bound of 𝑛 ≥ Ω̃(𝑘
𝑞

𝑞−2 ) for any
odd 𝑞. Our key technical idea is the use of an imbalanced bipartite Kikuchi graph, which gives
a simpler method to analyze spectral refutations of odd arity XOR without using the standard
“Cauchy–Schwarz trick” — a trick that typically produces random matrices with correlated
entries and makes the analysis for odd arity XOR significantly more complicated than even arity
XOR.
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1 Introduction

A (binary) locally decodable code (LDC) 𝒞 : {0, 1}𝑘 → {0, 1}𝑛 is an error correcting code that admits
a local decoding algorithm — for any message 𝑏 ∈ {0, 1}𝑘 and any string �̃� ∈ {0, 1}𝑛 obtained by
corrupting the codeword 𝑥 = 𝒞(𝑏) in a small constant fraction of coordinates, the local decoder
is able to recover any bit 𝑏𝑖 of 𝑏 with good confidence while only reading a small number of
coordinates of the corrupted codeword �̃�. More formally, we say that 𝒞 is (𝑞, 𝛿, 𝜀)-locally decodable
if the decoder only reads at most 𝑞 bits of the corrupted string, and for any �̃� with Hamming
distance Δ(𝑥, �̃�) B |{𝑢 ∈ [𝑛] : 𝑥𝑢 ≠ �̃�𝑢}| ≤ 𝛿𝑛 and any input 𝑖 ∈ [𝑘] to the decoder, the decoder
recovers 𝑏𝑖 with probability at least 1

2 + 𝜀. Locally decodable codes were first formally defined in
the work of [KT00], although they were instrumental components in the earlier proof of the PCP
theorem [AS98, ALM+98], and have deep connections to complexity theory (see Section 7 in the
survey of [Yek12]). Example applications include worst-case to average-case reductions [Tre04],
private information retrieval [Yek10], secure multiparty computation [IK04], derandomization
[DS05], matrix rigidity [Dvi10], data structures [Wol09, CGW10], and fault-tolerant computation
[Rom06].

A central question in coding theory is to determine the optimal blocklength 𝑛 of a (𝑞, 𝛿, 𝜀)-LDC
as a function of 𝑘, the length of the message, and 𝑞, the number of queries, in the regime where 𝑞

is constant and 𝛿, 𝜀 are also constant. The work of [KT00] shows that there are no 1-query locally
decodable codes unless 𝑘 is constant, so the first nontrivial setting of 𝑞 is 𝑞 = 2. For 2-query locally
decodable codes, we have an essentially complete understanding: the Hadamard code gives a
2-LDC with 𝑛 = 2𝑘 , and the works of [KW04, GKST06] show a lower bound of 𝑛 ≥ 2Ω(𝑘), which is
therefore tight up to a constant in the exponent.

Unlike the case of 𝑞 = 2, for 𝑞 ≥ 3 there is a large gap between the best-known up-
per and lower bounds on 𝑛. The best-known upper bound, i.e., construction, comes from
matching vector codes [Yek08, Efr09], and achieves, in the case of 𝑞 = 3, a blocklength of
𝑛 = exp(exp(𝑂(

√
log 𝑘 log log 𝑘))). This is 2𝑘𝑜(1) , i.e., subexponential in 𝑘, which is substantially

smaller than the Hadamard code, the code of optimal length for 𝑞 = 2. More generally, for any
constant 𝑞 = 2𝑟 , the works of [Yek08, Efr09] construct 𝑞-query locally decodable codes of length
𝑛 = exp(exp(𝑂((log 𝑘)1/𝑟(log log 𝑘)1−1/𝑟))), which has a similar qualitative subexponential behavior.

On the other hand, the known lower bounds for 𝑞 ≥ 3 are substantially weaker. The original
work of [KT00] proves that a 𝑞-LDC has blocklength 𝑛 ≥ Ω(𝑘

𝑞

𝑞−1 ). This was later improved by the
work of [KW04], which showed that for even 𝑞, a 𝑞-LDC has blocklength 𝑛 ≥ Ω̃(𝑘

𝑞
𝑞−2 ). For odd 𝑞,

they observe that a 𝑞-LDC is also a (𝑞 + 1)-LDC where 𝑞 + 1 is now even, and so their lower bound
for even 𝑞 trivially yields a bound of 𝑛 ≥ Ω̃(𝑘

𝑞+1
𝑞−1 ) for odd 𝑞.

The lower bounds of [KW04] remained, up to polylog(𝑘) factors, the best lower bounds known
until the recent work of [AGKM23], which used spectral methods developed in the work of [GKM22]
for refuting constraint satisfaction problems to prove a lower bound of 𝑛 ≥ Ω̃(𝑘3) for 3-LDCs.
This lower bound of [AGKM23] was the first improvement in any LDC lower bound by a poly(𝑘)
factor since the work of [KW04], and achieves the “𝑘

𝑞
𝑞−2 bound” established for even 𝑞 for the odd

value of 𝑞 = 3. However, the proof of [AGKM23] does not extend to any odd 𝑞 ≥ 5, and while
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the spectral method approach of [AGKM23] was used in recent work of [KM24a] (and follow-ups
[Yan24, AG24, KM24b]) to prove an exponential lower bound for 3-query locally correctable codes
(LCCs) — a stronger variant of an LDC where the decoder must additionally be able to correct any
bit 𝑥𝑢 of the uncorrupted codeword — there have been no improvements in 𝑞-LDC lower bounds
since [AGKM23]. In particular, because the proof of [AGKM23] does not extend to all odd 𝑞 ≥ 5, the
best known lower bounds for 𝑞-LDCs are: (1) 𝑛 ≥ Ω̃(𝑘

𝑞
𝑞−2 ), if 𝑞 is even or 𝑞 = 3, and (2) 𝑛 ≥ Ω̃(𝑘

𝑞+1
𝑞−1 )

if 𝑞 ≥ 5 is odd. Thus, a natural question to ask is: can we prove a 𝑛 ≥ Ω̃(𝑘
𝑞

𝑞−2 ) lower bound for 𝑞-LDCs
for all constant 𝑞?

As the main result of this paper, we prove the following theorem, which establishes this lower
bound.

Theorem 1. Let 𝒞 : {0, 1}𝑘 → {0, 1}𝑛 be a (𝑞, 𝛿, 𝜀)-locally decodable code with 𝑞 ≥ 3 and 𝑞 odd. Then,
𝑘 ≤ 𝑂𝑞(𝑛1− 2

𝑞 𝜀−6− 2
𝑞 𝛿−2− 2

𝑞 log 𝑛). In particular, if 𝑞, 𝛿, 𝜀 are constants, then 𝑛 ≥ Ω

( (
𝑘/log 𝑘

) 𝑞
𝑞−2

)
.

The main contribution of Theorem 1 is that it improves the 𝑞-LDC lower bound for 𝑞 ≥ 5 from
𝑛 ≥ Ω̃(𝑘

𝑞+1
𝑞−1 ) to 𝑛 ≥ Ω̃(𝑘

𝑞
𝑞−2 ), which is a poly(𝑘) factor improvement. However, we additionally

note that for 𝑞 = 3, Theorem 1 has a better dependence on the lower order terms of log 𝑘, 𝛿, 𝜀

hidden in the Ω̃(·) as compared to the result of [AGKM23], which showed the weaker bound of
𝑛 ≥ Ω

(
𝜀32𝛿16𝑘3

log6 𝑘

)
.

As stated in [AGKM23], the proof techniques of [AGKM23] extend to any 𝑞 ≥ 5 under the
additional assumption that the code 𝒞 satisfies some extra nice regularity properties.1 This condition arises
for 𝑞 odd but not 𝑞 even for the following reason: in the proof, one defines a matrix where we would
like to “evenly split” a degree-𝑞 monomial 𝑥𝑣1 . . . 𝑥𝑣𝑞 across the rows and columns of the matrix.
When 𝑞 even this is possible, as we can divide the monomial into two “halves”. This property allows
us to define a matrix with independent bits of randomness and obtain a somewhat simple proof.
However, for 𝑞 odd, the best possible split is of course ( 𝑞−1

2 ,
𝑞+1

2 ), which is slightly imbalanced. To
handle this issue of imbalance, [AGKM23] uses the standard “Cauchy–Schwarz trick” developed in
the context of spectral refutation algorithms for constraint satisfaction problems precisely to tackle
this issue of imbalance. The “Cauchy–Schwarz trick” produces degree 2(𝑞 − 1)monomials, which
are even, but at the cost of making the randomness dependent. This dependence in the randomness
makes the analysis for odd 𝑞 considerably more technical than the more straightforward analysis
for even 𝑞, and is where the aforementioned additional assumption on the code is needed. The
fact that even 𝑞 is substantially more easier to handle from a technical perspective compared to
odd 𝑞 is a reoccurring theme in the CSP refutation literature that has appeared in many prior
works [CGL07, AOW15, BM16, RRS17, AGK21, GKM22, KM24a].

Our main technical contribution is the introduction of an imbalanced matrix, or equivalently a
bipartite graph for odd arity instances, that allows us to refute certain odd arity instances without using
the Cauchy–Schwarz trick. By using an imbalanced matrix and bypassing the Cauchy–Schwarz trick,

1In fact, as we mention in Section 2.2, it turns out that the proof strategy of [AGKM23] extends easily to the case of
𝑞 = 5 without the need for any additional assumption, contrary to what is claimed in [AGKM23]. The fact that this was
missed by [AGKM23] appears to be an oversight on their part. Nonetheless, their approach does break down for 𝑞 ≥ 7.
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we maintain independence in the randomness in our matrix (as opposed to introducing correlations),
which makes the proof considerably simpler. The simpler proof has the additional advantage that,
as mentioned earlier, in the case of 𝑞 = 3 we can improve on the lower bound of [AGKM23] by a
log 𝑘 · poly(1/𝜀, 1/𝛿) factor. Our use of a bipartite graph in the proof is perhaps surprising, as it is
contrary to the conventional wisdom that symmetric matrices (i.e., normal, non-bipartite graphs)
ought to produce the best spectral certificates. Indeed, the purpose of “Cauchy–Schwarz trick” is to
turn an odd arity instance into an even arity instance so that we can represent it with a balanced
matrix, with the expectation (that is true in many cases) that the balanced matrix will produce a
better spectral certificate.

The bipartite graph that we produce is a Kikuchi graph, i.e., a carefully chosen induced subgraph
of a Cayley graph on the hypercube. As we note in Remark 2.5, bipartite Kikuchi graphs have
appeared in prior works, namely [Yan24, KM24b]. However, the graphs in those works can
be converted to non-bipartite graphs via a straightforward application of the Cauchy–Schwarz
inequality, and so they are not “inherently bipartite”. To our knowledge, our work is the first work
to use such a graph that is inherently bipartite, meaning that no easy conversion to a non-bipartite
graph via the Cauchy–Schwarz inequality appears to exist.

Concurrent work. In concurrent work, [BHKL24] also proves a 𝑛 ≥ Ω̃(𝑘
𝑞

𝑞−2 ) lower bound for 𝑞-query
locally decodable codes for odd 𝑞. Their bound is slightly weaker compared to Theorem 1, as it has
a worse log 𝑛 dependence. Namely, for constant 𝜀, 𝛿, [BHKL24] proves that 𝑘 ≤ 𝑂(𝑛1−2/𝑞(log 𝑛)4)
for nonlinear codes and 𝑘 ≤ 𝑂(𝑛1−2/𝑞(log 𝑛)2) for linear codes, whereas Theorem 1 proves that
𝑘 ≤ 𝑂(𝑛1−2/𝑞 log 𝑛) for both nonlinear and linear codes, which is a stronger bound in both cases.

2 Proof Overview

In this section, we give an overview of our proof and the techniques that we use. We will start with
a thorough summary of the approach of [AGKM23], first for the (easier) case of even 𝑞, and then for
the more involved case of 𝑞 = 3. Then, we will explain our approach using bipartite Kikuchi graphs.

For the purpose of this overview, we will assume for simplicity that the code 𝒞 is linear, although
we note that the proof for nonlinear codes does not change in any meaningful way.

2.1 The approach of [AGKM23] for even 𝑞

By standard reductions (Fact 3.5), for any linear 𝑞-LDC 𝒞 : {0, 1}𝑘 → {0, 1}𝑛 , there exist 𝑞-uniform
hypergraph matchings (Definition 3.1) 𝐻1 , . . . , 𝐻𝑘 on the vertex set [𝑛], each with |𝐻𝑖 | = 𝛿𝑛

hyperedges, such that for each 𝑖 ∈ [𝑘] and each hyperedge 𝐶 ∈ 𝐻𝑖 , it holds that
∑

𝑣∈𝐶 𝑥𝑣 = 𝑏𝑖 when
𝑥 = 𝒞(𝑏). One should think of the hyperedges 𝐻𝑖 as the set of query sets that the decoder may query
on input 𝑖. That is, the decoder, when given input 𝑖 ∈ [𝑘], simply chooses a random 𝐶 ← 𝐻𝑖 , reads
𝑥 |𝐶 , and then outputs

∑
𝑣∈𝐶 𝑥𝑣 . The linear constraints

∑
𝑣∈𝐶 𝑥𝑣 = 𝑏𝑖 that are satisfied by 𝑥 = 𝒞(𝑏) for

all 𝑏 ∈ {−1, 1}𝑘 imply that the decoder succeeds in correctly recovering 𝑏𝑖 with probability 1 on an
uncorrupted codeword.
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Switching from {0, 1}-notation to {−1, 1}-notation via the map 0 ↦→ 1 and 1 ↦→ −1, the above
implies that for any 𝑏 ∈ {−1, 1}𝑘 , the system of constraints given by

∏
𝑣∈𝐶 𝑥𝑣 = 𝑏𝑖 for each 𝑖 ∈ [𝑘] and

𝐶 ∈ 𝐻𝑖 is satisfiable, with 𝑥 = 𝒞(𝑏) being a satisfying assignment. This implies that the degree-𝑞
polynomial Φ𝑏(𝑥) B

∑𝑘
𝑖=1 𝑏𝑖

∑
𝐶∈𝐻𝑖

∏
𝑣∈𝐶 𝑥𝑣 has value val(Φ𝑏) B max𝑥∈{−1,1}𝑛 Φ𝑏(𝑥) =

∑𝑘
𝑖=1 |𝐻𝑖 | =

𝛿𝑛𝑘 for all 𝑏 ∈ {−1, 1}𝑘 . Indeed, by setting 𝑥 = 𝒞(𝑏), we have that
∏

𝑣∈𝐶 𝑥𝑣 = 𝑏𝑖 for each 𝑖 ∈ [𝑘]
and 𝐶 ∈ 𝐻𝑖 , and so Φ𝑏(𝒞(𝑏)) =

∑𝑘
𝑖=1 |𝐻𝑖 | = 𝛿𝑛𝑘. Thus, to prove a lower bound on 𝑛, it suffices to

show that for any 𝐻1 , . . . , 𝐻𝑘 of size 𝛿𝑛, if 𝑛 is too small, then there exists 𝑏 ∈ {−1, 1}𝑘 such that
val(Φ𝑏) < 𝛿𝑛𝑘.

We do this by bounding 𝔼𝑏←{−1,1}𝑘 [val(Φ𝑏)] using a spectral certificate. The certificate is as follows.
First, we define the Kikuchi matrix/graph 𝐴𝐶 , as follows.

Definition 2.1 (Basic Kikuchi matrix/graph for 𝑞 even). Let ℓ ≥ 𝑞 be a positive integer (which
we will set to 𝑛1−2/𝑞 eventually), and let 𝐶 ∈

([𝑛]
𝑞

)
. Let 𝐴𝐶 be the matrix with rows and columns

indexed by sets 𝑆 ∈
([𝑛]
ℓ

)
where 𝐴𝐶(𝑆, 𝑇) = 1 if 𝑆 ⊕ 𝑇 = 𝐶 and 𝐴𝐶(𝑆, 𝑇) = 0 otherwise. Here, 𝑆 ⊕ 𝑇

denotes the symmetric difference of 𝑆 and 𝑇, which is {𝑢 : (𝑢 ∈ 𝑆 ∧ 𝑢 ∉ 𝑇) ∨ (𝑢 ∉ 𝑆 ∧ 𝑢 ∈ 𝑇)}. We
will at times refer to the matrix 𝐴𝐶 as a graph (where we identify 𝐴𝐶 with the graph with adjacency
matrix 𝐴𝐶), and then we will refer to the nonzero entries (𝑆, 𝑇) as edges.

Notice that the condition that 𝑆 ⊕ 𝑇 = 𝐶 is equivalent to the existence of a partition 𝐶 = 𝐶1 ∪ 𝐶2
into two sets of size 𝑞

2 such that 𝑆 ∩ 𝐶 = 𝐶1, 𝑇 ∩ 𝐶 = 𝐶2, and 𝑆 \ 𝐶1 = 𝑇 \ 𝐶2. Namely, 𝑆 ⊕ 𝑇 = 𝐶

if and only if we can split the hyperedge 𝐶 evenly across 𝑆 and 𝑇 — notice that here we crucially
require that 𝑞 is even for the matrix 𝐴𝐶 to have a single nonzero entry!

The matrix 𝐴𝐶 is a Kikuchi matrix, first introduced in the work of [WAM19] for the problem of
tensor PCA, and has the following nice properties: (1) the matrix 𝐴𝐶 has exactly 𝐷 =

( 𝑞

𝑞/2
) ( 𝑛−𝑞

ℓ−𝑞/2
)

nonzero entries, and (2) for each 𝑥 ∈ {−1, 1}𝑛 , letting 𝑧 ∈ {−1, 1}(𝑛ℓ ) denote the vector where
𝑧𝑆 B

∏
𝑣∈𝑆 𝑥𝑣 , we have 𝑧⊤𝐴𝐶𝑧 = 𝐷

∏
𝑣∈𝐶 𝑥𝑣 . These two properties allow us to use the 𝐴𝐶 ’s as a

“basis” to express any homogeneous degree-𝑞 polynomial in variables 𝑥 ∈ {−1, 1}𝑛 as a quadratic
form on a linear combination of 𝐴𝐶 ’s. Namely, if we let 𝐴𝑖 B

∑
𝐶∈𝐻𝑖

𝐴𝐶 and 𝐴 = 𝐴𝑏 B
∑𝑘

𝑖=1 𝑏𝑖𝐴𝑖

(mimicking the definition of Φ𝑏), then we have 𝑧⊤𝐴𝑧 = 𝐷Φ𝑏(𝑥) for every 𝑥 ∈ {−1, 1}𝑛 , where 𝑧 is
defined as before. We can thus express Φ𝑏(𝑥) as a quadratic form on the matrix 𝐴, and so we have
shown that 𝛿𝑛𝑘 ≤ val(Φ𝑏) ≤ ∥𝐴∥2 ·

(𝑛
ℓ

)
. So, to finish the proof, it remains to bound 𝔼𝑏[∥𝐴∥2].

As each 𝑏𝑖 is chosen independently from {−1, 1}, the matrix𝐴 =
∑𝑘

𝑖=1 𝑏𝑖𝐴𝑖 is a Matrix Rademacher
series, and so we can bound its spectral norm using the Matrix Khintchine inequality (Fact 3.6).
This implies that 𝔼𝑏[∥𝐴∥2] ≤ 𝑂(Δ

√
𝑘ℓ log 𝑛), where Δ is the maximum number of 1’s in a row any

of the 𝐴𝑖 ’s. As the 𝐴𝑖 ’s are symmetric matrices with entries in {0, 1}, we can view them as adjacency
matrices of graphs. With this perspective, Δ is simply the maximum degree of a vertex 𝑆 in any of
the 𝐴𝑖’s.

The maximum degree Δ can never be smaller than the average degree in an 𝐴𝑖 , which is 𝛿𝑛𝐷/
(𝑛
ℓ

)
.

Thus, if each 𝐴𝑖 is approximately regular, so that the maximum degree is on the same order of
magnitude as the average degree, then we would be able to conclude that

𝛿𝑛𝑘𝐷 ≤
(
𝑛

ℓ

)
𝔼𝑏[∥𝐴∥2] ≤

(
𝑛

ℓ

)
· 𝛿𝑛𝐷(𝑛

ℓ

) · 𝑂(√𝑘ℓ log 𝑛)
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=⇒ 𝑘 ≤ 𝑂(ℓ log 𝑛) .

Ideally, we would like to take ℓ to be as small as possible to now get the best possible bound on
𝑘. However, the maximum degree Δ is always at least 1, and so for Δ to be on the same order of
magnitude as the average degree, we must have average degree ≥ Ω(1). The average degree is
𝛿𝑛𝐷/

(𝑛
ℓ

)
, which a simple calculation shows is roughly 𝛿𝑛

(
ℓ
𝑛

) 𝑞/2, and so we need to take ℓ ≥ 𝑛1−2/𝑞 .
This means that our potential bound is 𝑘 ≤ 𝑂(𝑛1−2/𝑞 log 𝑛), i.e., 𝑛 ≥ Ω̃(𝑘

𝑞
𝑞−2 ), as desired.

Finding an approximately regular subgraph: row pruning. We have shown that if each graph 𝐴𝑖

is approximately regular, meaning that its maximum degree is on the same order of magnitude as
its average degree, then we can prove 𝑛 ≥ Ω̃(𝑘

𝑞
𝑞−2 ). Unfortunately, the graph 𝐴𝑖 is not approximately

regular, even though the underlying hypergraph 𝐻𝑖 is a matching, i.e., 𝐻𝑖 is as “regular” as possible. A
naive way to try to enforce this “approximately regular” property is to simply remove all vertices
𝑆 with large degree in 𝐴𝑖 (along with their adjacent edges), producing a new graph 𝐵𝑖 with max
degree bounded by 𝑂(1) times the average degree of 𝐴𝑖 . However, for a general graph, this deletion
process may delete most (or all!) of the edges, resulting in a considerable drop in the average degree.
So, the resulting graph 𝐵𝑖 need not be approximately regular. Crucially, because 𝐻𝑖 is a matching,
we can show that this process in fact only deletes a 𝑜(1)-fraction of the edges, and so the average
degree is essentially unchanged. This means that the graph 𝐵𝑖 is indeed approximately regular, and
so we can use the 𝐵𝑖’s in place of the 𝐴𝑖’s to finish the proof.

The above vertex/edge deletion step is typically called the “row pruning” step, so-named
because it prunes rows (and columns) of the matrix 𝐴𝑖 , and has appeared in many prior works that
analyze spectral norms of Kikuchi matrices. While at first glance this step may appear to be a mere
technical annoyance, it is in fact the most critical part of the entire proof. In this case of the above
proof, we note that this is the only step that uses that the 𝐻𝑖’s are matchings, and if the 𝐻𝑖’s are
not matchings then the lower bound is clearly false. In fact, in the entire proof above, one should
view all the steps up until the row pruning step as generic and dictated by the polynomial Φ𝑏 whose
value we wish to bound, and the row pruning step is the key part of the proof that determines if the
approach succeeds in obtaining a strong enough bound on 𝔼𝑏[val(Φ𝑏)].

As observed in [AGKM23], one can also view the above proof as giving a reduction from a
𝑞-LDC to a 2-LDC for even 𝑞. In this viewpoint, the row pruning step is the crucial part of the proof
that shows that the object produced by the reduction is in fact a 2-LDC.

2.2 The approach of [AGKM23] for 𝑞 = 3 and why it fails for odd 𝑞 ≥ 7

We now recall the approach of [AGKM23] for 𝑞 = 3 and explain why its natural generalization to
odd 𝑞 ≥ 7 fails. As briefly mentioned earlier, the reason the previous proof does not succeed for
odd 𝑞 is because the matrix 𝐴𝐶 has no nonzero entries when |𝐶 | is odd. This is because the row
sets 𝑆 and the column sets 𝑇 have exactly the same size ℓ ; the Kikuchi graph would have nonzero
entries if we, e.g., simply allowed |𝑇 | = ℓ + 1. Namely, we can make the following definition.

Definition 2.2 (Naive imbalanced Kikuchi matrix for odd 𝑞). Let 𝑞 be odd and let 𝐶 ∈
([𝑛]
𝑞

)
. Let

ℓ ≥ 𝑞 be a positive integer. Let 𝐴′
𝐶

be the matrix with rows indexed by sets 𝑆 ∈
([𝑛]
ℓ

)
and columns
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indexed by sets 𝑇 ∈
( [𝑛]
ℓ+1

)
, where 𝐴′

𝐶
(𝑆, 𝑇) = 1 if 𝑆 ⊕ 𝑇 = 𝐶 and otherwise 𝐴′

𝐶
(𝑆, 𝑇) = 0.

Analogously to Definition 2.1, if the (𝑆, 𝑇)-th entry of 𝐴′
𝐶

is nonzero, then |𝑆 ∩ 𝐶 | = 𝑞−1
2 and

|𝑇 ∩ 𝐶 | = 𝑞+1
2 . This imbalance causes the average left degree of 𝐴′

𝑖
B

∑
𝐶∈𝐻𝑖

𝐴′
𝐶

to be roughly
𝛿𝑛

(
ℓ
𝑛

) (𝑞−1)/2, while the average right degree is 𝛿𝑛
(
ℓ
𝑛

) (𝑞+1)/2. In order for the row pruning step to
have any hope for success, we need both of these quantities to be at least 1, which requires taking
ℓ ≥ 𝑛

1− 2
𝑞+1 . In fact, using this asymmetric matrix precisely reproduces the 𝑛 ≥ Ω̃(𝑘

𝑞+1
𝑞−1 ) bound.

The first key step in the proof of [AGKM23] for 𝑞 = 3 is to use the “Cauchy–Schwarz trick”
from the CSP refutation literature: we construct a new system of constraints by first taking two
constraints 𝑥𝑢𝑥𝑣1𝑥𝑣2 = 𝑏𝑖 and 𝑥𝑢𝑥𝑤1𝑥𝑤2 = 𝑏 𝑗 that both contain the same variable 𝑥𝑢 and then we multiply
them together to derive a new constraint 𝑥𝑣1𝑥𝑣2𝑥𝑤1𝑥𝑤2 = 𝑏𝑖𝑏 𝑗 , using that 𝑥2

𝑢 = 1 since 𝑥𝑢 ∈ {−1, 1}.
Crucially, the arity of the derived monomial is 4 (or more generally 2(𝑞 − 1)),2 which is now even.
We thus define a new polynomial Ψ𝑏 of even degree for the derived instance:

Ψ𝑏(𝑥) B
∑
𝑖≠𝑗

𝑏𝑖𝑏 𝑗

∑
𝑢∈[𝑛]

∑
(𝑢,𝑣1 ,𝑣2)∈𝐻𝑖

(𝑢,𝑤1 ,𝑤2)∈𝐻𝑗

𝑏𝑖𝑏 𝑗𝑥𝑣1𝑥𝑣2𝑥𝑤1𝑥𝑤2 .

A simple application of the Cauchy–Schwarz inequality relates val(Φ𝑏) and val(Ψ𝑏), and hence this
derivation process is typically called the “Cauchy–Schwarz trick”. The main drawback is that in the
derived constraints, the “right-hand sides” are products 𝑏𝑖𝑏 𝑗 , and we have introduced correlations
in the right-hand sides.

We can now use the Kikuchi graphs 𝐴𝐶 (Definition 2.1) for each derived constraint 𝐶, as the
derived constraints have even arity. However, we will make one small, but crucial change. For a
derived constraint 𝑥𝑣1𝑥𝑣2𝑥𝑤1𝑥𝑤2 , where 𝑣1 , 𝑣2 “come from” one hyperedge (𝑢, 𝑣1 , 𝑣2) and 𝑤1 , 𝑤2
“come from” the other hyperedge (𝑢, 𝑤1 , 𝑤2), we view this constraint as two pairs ({𝑣1 , 𝑣2}, {𝑤1 , 𝑤2}),
and for an edge (𝑆, 𝑇) in the graph 𝐴({𝑣1 ,𝑣2},{𝑤1 ,𝑤2}), we require that 𝑆 contains one element from
each of {𝑣1 , 𝑣2} and {𝑤1 , 𝑤2}, and that 𝑇 contains the other element from each. That is to say, we
evenly split the variables from the underlying (original) hyperedges across the row set 𝑆 and column
set 𝑇. The fact that we split elements evenly is crucial for the row pruning step that we will discuss
shortly.

With the above definition of the matrix 𝐴({𝑣1 ,𝑣2},{𝑤1 ,𝑤2}), we can then make the following
definitions. First, we partition [𝑘] randomly into two sets 𝐿∪𝑅, with |𝐿| ≥ 𝑘

2 without loss of generality.
Then, we let 𝐴𝑖 , 𝑗 B

∑
𝑢∈[𝑛]

∑
(𝑢,𝑣1 ,𝑣2)∈𝐻𝑖

(𝑢,𝑤1 ,𝑤2)∈𝐻𝑗

𝐴({𝑣1 ,𝑣2},{𝑤1 ,𝑤2}), 𝐴𝑖 B
∑

𝑗∈𝑅 𝑏 𝑗𝐴𝑖 , 𝑗 and 𝐴 =
∑

𝑖∈𝐿 𝑏𝑖𝐴𝑖 . The

random partition of [𝑘] into 𝐿 ∪ 𝑅 is a nice trick used in [AGKM23] that makes the matrix 𝐴 be the
sum of mean 0 independent random matrices. At this point, we can now take ℓ = 𝑛1−2/𝑞 = 𝑛1/3 and
apply similar steps as done in the case of 𝑞 even to finish the proof, provided that the “approximately
regular” condition can be made to hold for each graph 𝐴𝑖 , i.e., the row pruning step succeeds.

2The degree may be smaller if the constraints share at least 2 variables, but this would reduce the degree further and
so it is only “better” for us. There are several simple ways to handle this issue, but we will ignore this technicality for the
purpose of simplifying this proof overview.
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Finding an approximately regular subgraph: row pruning. Let us now discuss the row pruning
step for the matrices 𝐴𝑖 . Unlike in the even case, the constraint hypergraph that defines the matrix 𝐴𝑖

is no longer a matching. Instead, the edges in the graph 𝐴𝑖 “come from” tuples (𝑢, {𝑣1 , 𝑣2}, {𝑤1 , 𝑤2})
where (𝑢, 𝑣1 , 𝑣2) ∈ 𝐻𝑖 and (𝑢, 𝑤1 , 𝑤2) ∈ ∪𝑗∈𝑅𝐻𝑗 — here, 𝑢 is the shared variable that is “canceled”
by multiplying the two constraints together. To find an approximately regular subgraph of 𝐴𝑖 ,
intuitively we need to show that a typical vertex has degree roughly equal to the average degree.
We can try to understand how concentrated the degrees are in 𝐴𝑖 by computing the variance of
deg𝑖(𝑆), the degree of 𝑆 in 𝐴𝑖 , when 𝑆 is chosen uniformly at random (see Lemma 5.6 for a formal
calculation that is closely related). Here, it is crucial that we have split the uncanceled variables
{𝑣1 , 𝑣2} of the hyperedge (𝑢, 𝑣1 , 𝑣2) evenly across 𝑆 and 𝑇 because if we had not, then any set 𝑆
that contains both {𝑣1 , 𝑣2} should3 have degree Ω(𝑘). This is much larger than the average degree,
which one can show is 𝑛−1/3𝑘, and happens with probability 𝑛−1/3: high enough to dominate the
variance.

In fact, even when we use the even split, Var(deg𝑖(𝑆)) may still be too large. However, from
the calculation of Var(deg𝑖(𝑆)), we can extract the following natural combinatorial condition that,
if satisfied, will make the variance small enough to finish the proof: we require that each pair of
variables {𝑢, 𝑤} appears in at most 𝑑2 B (ℓ/𝑛)

1
2 𝑘 = 𝑛−1/3𝑘 hyperedges in ∪𝑗∈𝑅𝐻𝑗 . However, the

hypergraph ∪𝑗∈𝑅𝐻𝑗 is a union of matchings — it is not a matching itself — and so it is quite possible
that there are pairs of variables {𝑢, 𝑤} that appear in, say, Ω(𝑘) hyperedges in ∪𝑗∈𝑅𝐻𝑗 .4 In fact,
if many such “heavy pairs” {𝑢, 𝑤} exist, then we are unable to show that the graph 𝐴𝑖 has an
approximately regular subgraph, and the above proof fails!

Nonetheless, the above proof still accomplishes something nontrivial. For 𝑞 = 3, we obtain a
proof that 𝑘 ≤ �̃�(𝑛1/3) under the additional assumption that each pair {𝑢, 𝑤} of variables appears
in at most 𝑛−1/3𝑘 hyperedges in ∪𝑗∈[𝑘]𝐻𝑗 .5 More generally, for larger odd 𝑞, we can show that
𝑘 ≤ �̃�(𝑛1−2/𝑞) under the additional assumption that for any set 𝑄 of size |𝑄 | = 𝑠 where 2 ≤ 𝑠 ≤ 𝑞+1

2 ,
the set 𝑄 appears in at most 𝑑𝑠 B (ℓ/𝑛)𝑠−

3
2 𝑘 = 𝑛

− 2𝑠
𝑞 + 3

𝑞 𝑘 hyperedges in ∪𝑗∈[𝑘]𝐻𝑗 .
Removing the heavy pairs assumption. The final step in the proof of [AGKM23] is to remove
this assumption by using the hypergraph decomposition method of [GKM22]. For each heavy pair
{𝑢, 𝑤}, we create a new “big variable” 𝑝 and replace all hyperedges (𝑢, 𝑤, 𝑣)with a new hyperedge
(𝑝, 𝑣). Then, we create a new set of derived constraints by canceling the heavy pair variables 𝑝,
resulting in a new degree-2 polynomial whose value we can then bound.6 So, if there are many
heavy pairs, then we can produce a degree-2 polynomial, and otherwise we already win via the
degree-4 polynomial.
The hypergraph decomposition strategy fails for 𝒒 ≥ 7. The above approach to handling heavy

3Formally, it has degree at least the number of hyperedges (𝑢, 𝑤1 , 𝑤2) ∈ ∪𝑗∈𝑅𝐻𝑗 that contain the variable 𝑢, and this
is typically Ω(𝑘). For example, it is Ω(𝑘) for every 𝑢 if the 𝐻𝑖 ’s are random hypergraph matchings.

4Because the 𝐻𝑗 ’s are matchings and |𝑅 | ≤ 𝑘, even a single variable 𝑢 cannot appear in more than 𝑘 hyperedges. This
is why we do not encounter a “heavy singleton” condition.

5As we do not know 𝑅 in advance, we must impose a global condition on ∪𝑗∈[𝑘]𝐻𝑗 instead of ∪𝑗∈𝑅𝐻𝑗 . However, as we
expect |𝑅 | to be about 𝑘/2, this is also only off by a constant factor.

6Formally, the proof of [AGKM23] proceeds slightly differently and uses a bipartite graph, although it is equivalent to
this.
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pairs suggests a natural strategy to handle larger heavy sets. Namely, let 𝑑𝑠 B 𝑛
− 2𝑠

𝑞 + 3
𝑞 𝑘 be the

“threshold for heavy sets𝑄 of size 𝑠” that we found via the variance calculation. For each 2 ≤ 𝑠 ≤ 𝑞+1
2 ,

we let 𝑃𝑠 denote the set of heavy 𝑄’s of size 𝑠. Then, for each heavy set 𝑄, we can introduce a
new variable 𝑝 and replace all hyperedges 𝐶 ∈ ∪𝑗∈[𝑘]𝐻𝑗 containing 𝑄 where 𝑄 is the largest heavy
set (ties broken arbitrarily) with the hyperedge (𝑝, 𝐶 \ 𝑄). This will produce, for each 𝑖 ∈ [𝑘], a
hypergraph 𝐻

(𝑠)
𝑖

where each hyperedge in 𝐻
(𝑠)
𝑖

has the form (𝑝, 𝐶′)where |𝐶′ | = 𝑞 − 𝑠 and 𝑝 ∈ 𝑃𝑠 is
a new variable.

The derivation strategy of the “Cauchy–Schwarz trick” now suggests that we should, for each 𝑠,
group the hypergraphs 𝐻(𝑠)1 , . . . , 𝐻

(𝑠)
𝑘

together and derive constraints by canceling the new variables
𝑝. Namely, we take two hyperedges (𝑝, 𝐶) and (𝑝, 𝐶′) that use the same 𝑝 and combine them
to produce the derived constraint (𝐶, 𝐶′) that has arity 2(𝑞 − 𝑠). Once again, we can define an
analogous Kikuchi matrix and attempt to complete the proof, and the success of this strategy is
determined by whether or not the row pruning step goes through.

It turns out that, for 𝑞 = 5, this simple generalization does indeed succeed. We suspect that
this was perhaps missed by [AGKM23] because the thresholds 𝑑𝑠 are rather delicate, and the proof
breaks if we set, e.g., 𝑑2 = 𝑛−1/5 · 𝑛1− 2

5 log 𝑛 as opposed to 𝑛−1/5𝑘 (recall that we expect 𝑘 to be about
𝑛1− 2

5 log 𝑛 as this is the lower bound that we are shooting for).
However, for 𝑞 ≥ 7, this proof strategy fails. The first case that breaks is for 𝑞 = 7 and 𝑠 = 4, i.e.,

we have produced derived constraints (𝐶, 𝐶′) of arity 6 by canceling a heavy 4-tuple. The issue is
that the hypergraphs 𝐻

(4)
1 , . . . , 𝐻

(4)
𝑘

, which have hyperedges containing 𝑞 − 𝑠 = 7 − 4 = 3 original
variables from [𝑛], may still contain heavy pairs or triples. It turns out that, for any odd 𝑞, the cases
of 𝑠 = 2 and 𝑠 = 3 are always fine, so this problem does not arise for 𝑞 = 5 (recall that 2 ≤ 𝑠 ≤ 𝑞+1

2 ,
which is 3 when 𝑞 = 5).

2.3 Recursive hypergraph decomposition and Kikuchi graphs for partite XOR

While the strategy described above fails for 𝑞 ≥ 7, there is again a natural next step to try. The
problem with, e.g., the case of 𝑞 = 7 and 𝑠 = 4, is that the hypergraphs 𝐻

(4)
1 , . . . , 𝐻

(4)
𝑘

may still
contain heavy pairs or triples. So, we can simply recurse and decompose these hypergraphs again
to produce hypergraphs 𝐻(4,3)1 , . . . , 𝐻

(4,3)
𝑘

and 𝐻
(4,2)
1 , . . . , 𝐻

(4,2)
𝑘

. Here, hyperedges in 𝐻
(4,3)
𝑖

have the
form (𝑝(4) , 𝑝(3)) where 𝑝(4) ∈ 𝑃4 is a heavy 4-tuple and 𝑝(3) ∈ 𝑃3 is a heavy triple, and hyperedges in
𝐻
(4,2)
1 , . . . , 𝐻

(4,2)
𝑘

have the form (𝑝(4) , 𝑝(2) , 𝑣), where 𝑝(4) ∈ 𝑃4, 𝑝(2) ∈ 𝑃2, and 𝑣 ∈ [𝑛]. (Because ∪𝑘
𝑖=1𝐻𝑖

is the union of matchings, each variable 𝑣 appears in at most 𝑘 hyperedges, so it is not possible to
have a heavy singleton.)

For this overview, let us consider the case of 𝐻(4,2)1 , . . . , 𝐻
(4,2)
𝑘

. We need to bound the value of
Φ
(4,2)
𝑏
(𝑥, 𝑦), defined as

Φ
(4,2)
𝑏
(𝑥, 𝑦) B

𝑘∑
𝑖=1

𝑏𝑖

∑
(𝑝(4) ,𝑝(2) ,𝑣)∈𝐻(4,2)

𝑖

𝑦𝑝(4)𝑦𝑝(2)𝑥𝑣 .

As before, we can now derive constraints using the Cauchy–Schwarz trick. Namely, we can take
two hyperedges (𝑝(4) , 𝑝(2)1 , 𝑣1) ∈ 𝐻(4,2)𝑖

and (𝑝(4) , 𝑝(2)2 , 𝑣2) ∈ 𝐻(4,2)𝑗
that share the same heavy 4-tuple
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𝑝(4), and then form the derived hyperedge ((𝑝(2)1 , 𝑣1), (𝑝(2)2 , 𝑣2)).
Now, the approach of [AGKM23] breaks down. To use their Kikuchi graph, we need to be able to

derive constraints that only use the original variables [𝑛]. But, the above derived constraints still use
“heavy pair” variables. One could try to, e.g., combine the derived constraint ((𝑝(2)1 , 𝑣1), (𝑝(2)2 , 𝑣2))
with some constraint in 𝐻

(4,2)
𝑗′ that also contains the heavy pair 𝑝(2)1 , but such a constraint will be

of the form (𝑝(4)2 , 𝑝
(2)
2 , 𝑣3), i.e., it will have a new heavy 4-tuple. So, the new derived constraint

will be ((𝑝(2)1 , 𝑣1), 𝑣2 , (𝑝(4)2 , 𝑣3)), and we have the same problem again. Furthermore, we cannot try
to combine different “types” of hypergraphs, e.g., combine constraints in 𝐻

(2)
𝑗

for some 𝑗 with

constraints in 𝐻
(4,2)
𝑖

for some 𝑖, as it could be the case that after the hypergraph decomposition
step, most (or all) of the original 𝛿𝑛𝑘 hyperedges are placed in, e.g., 𝐻(4,2)

𝑖
for some 𝑖, and so all

hypergraphs of a different “type” are empty.
Let us now explain our approach to handle this problem. We need to design a Kikuchi matrix for

hyperedges that are partite: each hyperedge in ∪𝑘
𝑖=1𝐻

(4,2)
𝑖

has two vertices from the vertex set 𝑃2 and
2 vertices from the vertex set [𝑛]. We introduce the following Kikuchi graph in this work for partite
hypergraphs, which is defined as follows. For a derived constraint ((𝑝(2)1 , 𝑣1), (𝑝(2)2 , 𝑣2)), we let the
matrix 𝐴((𝑝(2)1 ,𝑣1),(𝑝(2)2 ,𝑣2))

be the matrix indexed by pairs of sets 𝑆1 and 𝑆2, where 𝑆1 ⊆ [𝑛] has size ℓ and
𝑆2 ⊆ 𝑃2 also has size ℓ . That is, each row has a set for each distinct set of variables, which are [𝑛] and
𝑃2. By analogy to the earlier definition of 𝐴𝐶 , we should set 𝐴((𝑝(2)1 ,𝑣1),(𝑝(2)2 ,𝑣2))

((𝑆1 , 𝑆2), (𝑇1 , 𝑇2)) = 1 if

𝑆1 ⊕ 𝑇1 = {𝑣, 𝑣′} and 𝑆2 ⊕ 𝑇2 = {𝑝(2)1 , 𝑝
(2)
2 }, and furthermore we require that the variables “coming

from” the underlying original hyperedges in 𝐻(4,2) are split as evenly as possible across the rows and
columns. Namely, we require that either 𝑣1 ∈ 𝑆1 , 𝑝

(2)
2 ∈ 𝑆2 and 𝑣2 ∈ 𝑇1 , 𝑝

(2)
1 ∈ 𝑇2, or vice versa, so

that the variables (𝑣1 , 𝑝
(2)
1 ) “coming from” the first underlying hyperedge are split across the row

and column, and likewise for the second underlying hyperedge.
Analogously to the definitions in Section 2.2, we can randomly partition [𝑘] into 𝐿 ∪ 𝑅

and let 𝐴𝑖 , 𝑗 B
∑

𝑝(4)∈𝑃4

∑
(𝑝(4) ,𝑝(2)1 ,𝑣1)∈𝐻(4,2)𝑖

(𝑝(4) ,𝑝(2)2 ,𝑣2)∈𝐻(4,2)𝑗

𝐴((𝑝(2)1 ,𝑣1),(𝑝(2)2 ,𝑣2))
, 𝐴𝑖 B

∑
𝑗∈𝑅 𝑏 𝑗𝐴𝑖 , 𝑗 and 𝐴 =

∑
𝑖∈𝐿 𝑏𝑖𝐴𝑖 . A

straightforward calculation shows that 𝔼𝑏[∥𝐴∥2] provides an upper bound on val(Φ(4,2)
𝑏
). Thus, to

determine whether or not this matrix 𝐴 is good enough to prove the desired 𝑛 ≥ Ω̃(𝑘
𝑞

𝑞−2 ) bound,
we need to argue that the row pruning step holds, i.e., each 𝐴𝑖 can be made approximately regular.

It turns out that, while the calculations are substantially more complicated that those appearing
in [AGKM23], this approach does in fact work, provided that we adjust the thresholds 𝑑𝑠 slightly.
We need to set 𝑑𝑠 = 𝑛

− 2𝑠
𝑞 + 2

𝑞 𝑘 (instead of 𝑛−
2𝑠
𝑞 + 3

𝑞 𝑘) for 2 ≤ 𝑠 ≤ 𝑞−1
2 , while keeping 𝑑 𝑞+1

2
= 𝑛

2
𝑞−1

𝑘 the

same. This allows us to prove the 𝑛 ≥ Ω̃(𝑘
𝑞

𝑞−2 ) bound for 𝑞 = 7.
Generalizing our 𝒒 = 7 approach to all odd 𝒒. We can now generalize our above approach to all
odd 𝑞 as follows. The output of the recursive hypergraph decomposition step yields hypergraphs
𝐻
(𝑠,𝑡1 ,...,𝑡𝑟 )
1 , . . . , 𝐻

(𝑠,𝑡1 ,...,𝑡𝑟 )
𝑘

, where 2 ≤ 𝑠 ≤ 𝑞+1
2 is an integer, 𝑠 ≥ 𝑡1 ≥ · · · ≥ 𝑡𝑟 ≥ 2 are all positive

integers, and 𝑡1 + 𝑡2 + · · · + 𝑡𝑟 + 𝑠 ≤ 𝑞. This notation means that each hypergraph 𝐻
(𝑠,𝑡1 ,...,𝑡𝑟 )
𝑖

contains
hyperedges of the form (𝑝(𝑠) , 𝑝(𝑡1) , . . . , 𝑝(𝑡𝑟 ) , 𝐶), where each 𝑝(𝑡𝑧) ∈ 𝑃𝑡𝑧 , i.e., it is a heavy 𝑡𝑧-tuple,
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𝑝(𝑠) ∈ 𝑃𝑠 is a heavy 𝑠-tuple, and 𝐶 ⊆ [𝑛] has size 𝑞 − 𝑠 − 𝑡1 − · · · − 𝑡𝑟 and is the set of remaining
“original variables” from [𝑛]. We then apply the Cauchy–Schwarz trick to form derived constraints,
which now take the form ((𝑝(𝑡1)1 , . . . , 𝑝

(𝑡𝑟 )
1 , 𝐶1), (𝑝(𝑡1)2 , . . . , 𝑝

(𝑡𝑟 )
2 , 𝐶2)). We define the Kikuchi matrix

𝐴((𝑝(𝑡1)1 ,...,𝑝
(𝑡𝑟 )
1 ,𝐶1),(𝑝

(𝑡1)
2 ,...,𝑝

(𝑡𝑟 )
2 ,𝐶2))

analogously to the case of 𝐻(4,2) shown above for 𝑞 = 7. Namely, we
make the following definition.

Definition 2.3 (Kikuchi matrices for partite hypergraphs). Let ((𝑝(𝑡1)1 , . . . , 𝑝
(𝑡𝑟 )
1 , 𝐶1), (𝑝(𝑡1)2 , . . . , 𝑝

(𝑡𝑟 )
2 , 𝐶2))

be a derived constraint where 𝑝
(𝑡𝑧)
1 , 𝑝

(𝑡𝑧)
2 ∈ 𝑃𝑡𝑧 for each 𝑧 ∈ [𝑟] and 𝐶1 , 𝐶2 ⊆ [𝑛] have size

𝑞− 𝑠−∑𝑟
𝑧=1 𝑡𝑧 . Let 𝐴((𝑝(𝑡1)1 ,...,𝑝

(𝑡𝑟 )
1 ,𝐶1),(𝑝

(𝑡1)
2 ,...,𝑝

(𝑡𝑟 )
2 ,𝐶2))

be the matrix indexed by tuples of sets (𝑆1 , . . . , 𝑆𝑟 , 𝑆)
where for 𝑧 ∈ [𝑟], 𝑆𝑧 ⊆ 𝑃𝑧 has size ℓ and 𝑆 ⊆ [𝑛] has size ℓ . The matrix has a 1 in the
((𝑆1 , . . . , 𝑆𝑟 , 𝑆), (𝑇1 , . . . , 𝑇𝑟 , 𝑇))-th entry if for each, 𝑆𝑧 ⊕ 𝑇𝑧 = {𝑝(𝑡𝑧)1 , 𝑝

(𝑡𝑧)
2 }, and 𝑆 ⊕ 𝑇 = 𝐶1 ⊕ 𝐶2.

Otherwise, the entry is 0.

In order for the row pruning step to go through, we need to be a bit more careful in our definition
of the matrix 𝐴((𝑝(𝑡1)1 ,...,𝑝

(𝑡𝑟 )
1 ,𝐶1),(𝑝

(𝑡1)
2 ,...,𝑝

(𝑡𝑟 )
2 ,𝐶2))

. Namely, as done in Sections 2.2 and 2.3, we want to split

the variables (𝑝(𝑡1)1 , . . . , 𝑝
(𝑡𝑟 )
1 , 𝐶1) and (𝑝(𝑡1)2 , . . . , 𝑝

(𝑡𝑟 )
2 , 𝐶2) of the underlying hyperedges evenly across

the row and column sets (𝑆1 , . . . , 𝑆𝑟 , 𝑆) and (𝑇1 , . . . , 𝑇𝑟 , 𝑇). However, each element 𝑝(𝑡𝑧) comes with
a “weight” of 𝑡𝑧 because 𝑝(𝑡𝑧) corresponds to a set of 𝑡𝑧 original variables [𝑛]. Because we “canceled
out” a variable in 𝑃𝑠 , the total weight of the remaining elements in each hyperedge is 𝑞 − 𝑠. Ideally,
we would like to achieve an even split of ( 𝑞−𝑠2 ,

𝑞−𝑠
2 ), but this is not always possible.

Fortunately, for the row pruning step to go through, we do not require an exactly even split: we
just need that each side of the split has total weight at most 𝑞

2 . A simple greedy algorithm shows
that this is in fact always possible, and so we can make the row pruning step go through. This
allows us to prove a lower bound of 𝑛 ≥ Ω̃(𝑘

𝑞
𝑞−2 ) bound for all odd 𝑞, finishing the proof.

2.4 A simpler proof with bipartite Kikuchi graphs

The above proof for odd 𝑞 is substantially more complicated compared to the fairly simple proof for
even 𝑞 sketched in Section 2.1. Recall that this is the case because the proof in Section 2.2 uses the
“Cauchy–Schwarz trick” to derive new constraints of arity 2(𝑞 − 1) that have correlated randomness.
When we group the derived constraints so that they have independent randomness, i.e., we write
𝐴 =

∑
𝑖∈𝐿 𝑏𝑖𝐴𝑖 , where each 𝑏𝑖 is an independent bit, the success of the row pruning step is dictated

by the structure of the derived constraints that contribute to the matrix 𝐴𝑖 . However, the derived
constraints look like (𝐶, 𝐶′)where there exists 𝑢 ∈ [𝑛] such that (𝑢, 𝐶) ∈ 𝐻𝑖 and (𝑢, 𝐶′) ∈ ∪𝑗∈𝑅𝐻𝑗 ,
and so not only are they no longer matchings, they can have highly irregular structure. Because
of this, we then decompose the original hypergraph matchings 𝐻1 , . . . , 𝐻𝑘 into new hypergraphs
where the union, over 𝑖 ∈ [𝑘] of the new hypergraphs in each “piece” of the decomposition is
regular. In the case of 𝑞 = 3, 5, this can be handled with a simple decomposition step as done (or
could have been done for 𝑞 = 5) in [AGKM23], and for 𝑞 ≥ 7 a more involved recursive hypergraph
decomposition step along with a partite Kikuchi matrix, as sketched in Section 2.3 and Definition 2.3,
is needed.
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The key point here is that original hypergraphs 𝐻1 , . . . , 𝐻𝑘 are matchings, i.e., they are already
“regular”, and so the additional complexity in the proof for odd 𝑞 comes from the use of the
Cauchy–Schwarz trick, which is the step that derives new constraints that are no longer “regular”.
If we could somehow avoid using the Cauchy–Schwarz trick entirely, we would never lose the
“regularity property”, and so we could potentially obtain a substantially simpler and more direct
proof that avoids any hypergraph decomposition steps.

Unfortunately, we are not quite able to achieve this goal — in the “top level” case, i.e., when the
hypergraph matchings 𝐻1 , . . . , 𝐻𝑘 already satisfy the global property that ∪𝑖∈[𝑘]𝐻𝑖 has no heavy
sets of size 𝑠 for 2 ≤ 𝑠 ≤ 𝑞+1

2 , we still do the Cauchy–Schwarz trick to construct the Kikuchi matrix
as sketched in Section 2.2. This means that we will do one step of hypergraph decomposition to
produce, for each 2 ≤ 𝑠 ≤ 𝑞+1

2 a decomposed instance with hypergraph matchings 𝐻(𝑠)1 , . . . , 𝐻
(𝑠)
𝑘

.
Now, recall that the reason we required the more complicated recursive hypergraph decompo-

sition step in Section 2.3 is because, if we were to apply the Cauchy–Schwarz trick again to each
decomposed instance 𝐻

(𝑠)
1 , . . . , 𝐻

(𝑠)
𝑘

, the resulting derived constraints may again not be regular.
However, the hypergraphs 𝐻(𝑠)1 , . . . , 𝐻

(𝑠)
𝑘

are themselves still matchings, i.e., they are regular, as this
property is inherited from the original hypergraphs 𝐻1 , . . . , 𝐻𝑘 . Our key technical contribution,
as we now explain, is the introduction of a bipartite Kikuchi graph that allows us to refute each
decomposed instance 𝐻

(𝑠)
1 , . . . , 𝐻

(𝑠)
𝑘

without using the Cauchy–Schwarz trick at all. Because we do
not apply the Cauchy–Schwarz trick, our hypergraphs remain matchings, and so we do not need to
do a recursive hypergraph decomposition as done in our other proof (Section 2.3). The thresholds
that we use in the decomposition step are the original thresholds 𝑑𝑠 = 𝑛

− 2𝑠
𝑞 + 3

𝑞 𝑘, which we note are a
factor of 𝑛1/𝑞 larger than the thresholds that are needed for our other proof in Section 2.3.
Refuting the decomposed instances with bipartite Kikuchi graphs. Instead of doing the
Cauchy–Schwarz trick, we introduce a bipartite Kikuchi graph that is imbalanced. This is perhaps
a counterintuitive approach to try, as typically imbalanced matrices do not give good spectral
refutations. For example, as explained at the beginning of Section 2.2, one can define an imbalanced
matrix (Definition 2.2) that cleanly handles the case of odd 𝑞 with no hypergraph decomposition
steps at all, but the imbalance of the matrix produces the weaker bound of 𝑛 ≥ Ω̃(𝑘

𝑞+1
𝑞−1 ).

Recall that for each 𝑖 ∈ [𝑘], a hyperedge in 𝐻
(𝑠)
𝑖

has the form (𝐶, 𝑝)where 𝑝 ∈ 𝑃𝑠 and |𝐶 | = 𝑞 − 𝑠.
We now define our bipartite Kikuchi graph 𝐴𝐶,𝑝 .

Definition 2.4 (Our imbalanced bipartite Kikuchi graph). For a set 𝐶 ∈
( [𝑛]
𝑞−𝑠

)
and 𝑝 ∈ 𝑃𝑠 , let 𝐴𝐶,𝑝

be the adjacency matrix of the following graph. The left vertices are pairs of sets (𝑆1 , 𝑆2) where
𝑆1 ⊆ [𝑛] has size ℓ and 𝑆2 ⊆ 𝑃𝑠 has size ℓ as well. The right vertices are pairs of sets 𝑇1 ⊆ [𝑛] and
𝑇2 ⊆ 𝑃𝑠 , where |𝑇1 | = ℓ + 1 − 𝑠 and |𝑇2 | = ℓ + 1. We put an edge ((𝑆1 , 𝑆2), (𝑇1 , 𝑇2)) if 𝑆1 ⊕ 𝑇1 = 𝐶,
which implies that |𝑆1 ∩ 𝐶 | = 𝑞−1

2 and |𝑇1 ∩ 𝐶 | = 𝑞+1
2 − 𝑠, and also 𝑆2 ⊕ 𝑇2 = {𝑝}, which implies that

𝑝 ∉ 𝑆2 and 𝑝 ∈ 𝑇2.

Definition 2.4 is inspired by our partite matrix (Definition 2.3), as for each row/column, we
have a subset for each “variable set”, i.e., [𝑛] and 𝑃𝑠 . However, unlike Definition 2.3, we now have
|𝑆1 | ≠ |𝑇1 | and |𝑆2 | ≠ |𝑇2 |, and this makes the graph 𝐴𝐶,𝑝 quite imbalanced. The size of the left
vertex set is 𝑁𝐿 =

(𝑛
ℓ

) ( |𝑃𝑠 |
ℓ

)
, where |𝑃𝑠 | ≈ 𝑛𝑘/𝑑𝑠 . This bound on |𝑃𝑠 | follows because ∪𝑖∈[𝑘]𝐻𝑖 has at
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most 𝑛𝑘 hyperedges in total and each 𝑝 ∈ 𝑃𝑠 is contained in at least 𝑑𝑠 hyperedges. On the other
hand, the size of the right vertex set is 𝑁𝑅 =

( 𝑛
ℓ−1+𝑠

) ( |𝑃𝑠 |
ℓ+1

)
≈ |𝑃𝑠 |

ℓ

(
ℓ
𝑛

) 𝑠−1
𝑁𝐿. Recall that ℓ = 𝑛

1− 2
𝑞 and

𝑑𝑠 = 𝑛
− 2𝑠

𝑞 + 3
𝑞 𝑘, so 𝑁𝑅 ≈ 𝑛1/𝑞𝑁𝐿.

Remark 2.5. We note that 𝐴𝐶,𝑝 is not the first use of an imbalanced bipartite Kikuchi graph, as
imbalanced Kikuchi graphs are used in [Yan24, KM24b]. However, in those works one can easily
produce an equivalent Kikuchi graph (i.e., non-bipartite and balanced) with essentially the same
properties via one application of the Cauchy–Schwarz derivation trick to the underlying hyperedges.
Here, as discussed in detail in Section 2.3, such a strategy fails. We thus view our bipartite Kikuchi
graph 𝐴𝐶,𝑝 as being inherently bipartite, as we are unable to construct an equivalent (balanced)
Kikuchi graph with analogous properties to it by first deriving constraints on the underlying
hypergraph and then forming a balanced Kikuchi graph similar to Definition 2.1 using the derived
constraints.

With the graph 𝐴𝐶,𝑝 defined, we then let 𝐴𝑖 =
∑
(𝐶,𝑝)∈𝐻(𝑠)

𝑖

𝐴𝐶,𝑝 and 𝐴 =
∑𝑘

𝑖=1 𝑏𝑖𝐴𝑖 . Crucially,

because we have not used the Cauchy–Schwarz trick, 𝐴𝑖 depends only on 𝐻
(𝑠)
𝑖

and not on any of
the other hypergraphs. Because 𝐻

(𝑠)
𝑖

is a matching (over the larger vertex set [𝑛] and 𝑃𝑠), the row
pruning calculation is much more straightforward.
Row pruning for the imbalanced bipartite Kikuchi graph. Unlike the case of normal Kikuchi
graphs, we now need to argue concentration of both the left and right vertices. The case of the left
vertices is rather straightforward: because 𝐻

(𝑠)
𝑖

is a matching and for an edge in 𝐴𝐶,𝑝 , the left vertex
contains 𝑞−1

2 elements of 𝐶, which is the subset of “original variables” [𝑛], a similar calculation to
the row pruning argument in Section 2.1 shows concentration of the degrees of the left vertices

provided that the average left degree 𝑑𝐿 is at least Ω(1). The average left degree is 𝑑𝐿 ≈
(
ℓ
𝑛

) 𝑞−1
2 𝑛,

which is roughly 𝑛1/𝑞 ≫ 1 since ℓ = 𝑛1−2/𝑞 .
The calculation for the right vertices is more interesting. We again use that 𝐻(𝑠)

𝑖
is a matching

to argue concentration provided that the average right degree 𝑑𝑅 is at least Ω(1). Now, we have

𝑑𝑅 ≈
(
ℓ
𝑛

) 𝑞+1
2 −𝑠

(
ℓ
|𝑃𝑠 |

)
· 𝑛. As shown earlier, |𝑃𝑠 | ≤ 𝑛𝑘/𝑑𝑠 ≈ 𝑛

1+ 2𝑠
𝑞 − 3

𝑞 , using our threshold for 𝑑𝑠 .
Substituting in ℓ = 𝑛1−2/𝑞 and the above bound on |𝑃𝑠 |, we see that 𝑑𝑅 ≥ Ω(1) holds. Thus, the row
pruning step goes through, and we are able to prove the 𝑛 ≥ Ω̃(𝑘

𝑞
𝑞−2 ) bound with a substantially

simpler proof compared to our proof sketch in Section 2.3.
Our bipartite Kikuchi graph compared to the naive imbalanced matrix. Why does the matrix
𝐴𝐶,𝑝 succeed in yielding a 𝑘

𝑞
𝑞−2 lower bound, whereas the naive ℓ vs. ℓ + 1 matrix (Definition 2.2)

only yields a 𝑘
𝑞+1
𝑞−1 lower bound? Recall that for an edge ((𝑆1 , 𝑆2), (𝑇1 , 𝑇2)) in the matrix 𝐴𝐶,𝑝 , we have

split 𝐶 across 𝑆1 and 𝑇1 as |𝑆1 ∩ 𝐶 | = 𝑞−1
2 and |𝑇1 ∩ 𝐶 | = 𝑞+1

2 − 𝑠. Because 𝑝 ∉ 𝑆2 and 𝑝 ∈ 𝑇2, this
means that the row set contains 𝑞−1

2 variables from (𝐶, 𝑝), and the column set “effectively” contains
𝑞+1

2 variables from (𝐶, 𝑝): it has 𝑞+1
2 − 𝑠 variables contained in 𝑇1 and then an extra 𝑠 from 𝑇2 because

𝑝𝑠 as a variable “represents” a set of size 𝑠. Notice that the 𝑞−1
2 vs. 𝑞+1

2 split is precisely the split
used by the ℓ vs. ℓ + 1 matrix. So, it is reasonable to ask: why is the matrix 𝐴𝐶,𝑝 performing better?

The reason lies in the fact that the chosen threshold is 𝑑𝑠 =
(
ℓ
𝑛

) 𝑠− 1
2 𝑘 = 𝑛

− 2𝑠
𝑞 + 3

𝑞 𝑘 has an “extra
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factor” of 𝑛1/𝑞 when viewed from the following perspective. Recall that the thresholds 𝑑𝑠 are used
only for 2 ≤ 𝑠 ≤ 𝑞+1

2 . But, if we substitute in 𝑠 = 1, we get 𝑑1 = 𝑛1/𝑞𝑘, which we can view as
giving us a bound on the maximum degree of a singleton 𝑣 that we are able to tolerate. However,
in the hypergraph 𝐻 B ∪𝑘

𝑖=1𝐻𝑖 , each singleton 𝑣 has deg𝐻(𝑣) ≤ 𝑘, as 𝐻 is a union of matchings.
So, 𝑑𝑠 is a 𝑛1/𝑞 factor “larger” than we might expect. In fact, following intuition from [GKM22],
we would like deg(𝑄) to “drop” by a factor of ℓ/𝑛 per additional vertex included into the set 𝑄,
i.e., we intuitively set 𝑑′1 = 𝑘 and then take 𝑑′

𝑠+1 = (ℓ/𝑛)𝑑′𝑠 for larger 𝑠. This yields the threshold
𝑑′𝑠 =

(
ℓ
𝑛

) 𝑠−1
𝑘 = 𝑛

− 2𝑠
𝑞 + 2

𝑞 𝑘, which is the threshold we used in Section 2.3. However, the threshold 𝑑′𝑠
is not the threshold that arises out of the approach of [AGKM23] (Section 2.2); we can tolerate an
extra factor of 𝑛1/𝑞 .

Let us now explain why this 𝑛1/𝑞 factor is critical. We expect the left/right degrees to be about(
ℓ
𝑛

)# variables in split · 𝑛, i.e.,
(
ℓ
𝑛

) 𝑞−1
2 · 𝑛 for the left degree and

(
ℓ
𝑛

) 𝑞+1
2 · 𝑛 for the right degree. If this

happens, then we must take ℓ = 𝑛1−2/(𝑞+1) rather than 𝑛1−2/𝑞 . This results in the weaker 𝑘
𝑞+1
𝑞−1 bound,

and is precisely what happens with the naive matrix from Definition 2.2. However, for the matrix
𝐴𝐶,𝑝 , the fact that 𝑑𝑠 has an extra factor of 𝑛1/𝑞 boosts the average right degree by a factor of

𝑛1/𝑞 . This means that our right degree is roughly
(
ℓ
𝑛

) 𝑞+1
2 · 𝑛1+1/𝑞 , and this allows us to still take

ℓ = 𝑛1−2/𝑞 . Notice that when we computed the sizes of the left and right vertex sets for 𝐴𝐶,𝑝 , we
had 𝑁𝑅 ≈ 𝑛1/𝑞𝑁𝐿, whereas in the naive imbalanced matrix of Definition 2.2 one has 𝑁𝑅 ≈ 𝑛2/𝑞𝑁𝐿.
Postmortem: the power of the bipartite Kikuchi matrix. The proof of the 𝑛 ≥ Ω̃(𝑘

𝑞
𝑞−2 ) lower bound

using the bipartite Kikuchi matrices sketched above is substantially simpler than our other proof
(sketched in Section 2.3) that follows the more well-trodden path of “hypergraph decomposition +
Cauchy–Schwarz” used in prior works ([GKM22, HKM23, AGKM23, KM24a, Yan24, KM24b]). The
success of the bipartite matrix in this setting comes as quite a surprise to us, as it is contrary to
the conventional wisdom that imbalanced matrices yield poorer spectral certificates compared to
balanced matrices. Moreover, the simplicity of the analysis is not just nice for aesthetic reasons:
Theorem 1 obtains a better dependence on log 𝑘, 𝛿, and 𝜀 in the case of 𝑞 = 3 as compared to the
lower bound of [AGKM23]. In fact, the log 𝑘 dependence in Theorem 1 is exactly the same as the
dependence obtained for even 𝑞, and the loss in the 𝛿 and 𝜀 factors comes from the “top level”
instance where we still use the Cauchy–Schwarz trick.
Roadmap. The full proof of Theorem 1 is presented in Sections 4 to 6; we give preliminaries and
notation in Section 3. In Section 4, we handle the setup and the hypergraph decomposition step
(Section 4.1). In Section 5, we refute the “top level” instance using the Cauchy–Schwarz trick, and
in Section 6 we use our new bipartite Kikuchi matrices to refute the subinstances 𝐻(𝑠)1 , . . . , 𝐻

(𝑠)
𝑘

for
all 2 ≤ 𝑠 ≤ 𝑞+1

2 .
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3 Preliminaries

3.1 Basic notation and hypergraphs

We let [𝑛] denote the set {1, . . . , 𝑛}. For two subsets 𝑆, 𝑇 ⊆ [𝑛], we let 𝑆 ⊕ 𝑇 denote the symmetric
difference of 𝑆 and 𝑇, i.e., 𝑆 ⊕ 𝑇 B {𝑖 : (𝑖 ∈ 𝑆 ∧ 𝑖 ∉ 𝑇) ∨ (𝑖 ∉ 𝑆 ∧ 𝑖 ∈ 𝑇)}. For a natural number 𝑡 ∈ ℕ,
we let

([𝑛]
𝑡

)
be the collection of subsets of [𝑛] of size exactly 𝑡.

For a rectangular matrix 𝐴 ∈ ℝ𝑚×𝑛 , we let ∥𝐴∥2 B max𝑥∈ℝ𝑚 ,𝑦∈ℝ𝑛 :∥𝑥∥2=∥𝑦∥2=1 𝑥
⊤𝐴𝑦 denote the

spectral norm of 𝐴.

Definition 3.1 (Hypergraphs and hypergraph matchings). A hypergraph 𝐻 with vertices [𝑛] is a
collection of subsets 𝐶 ⊆ [𝑛] called hyperedges. We say that a hypergraph 𝐻 is 𝑞-uniform if |𝐶 | = 𝑞

for all 𝐶 ∈ 𝐻, and we say that 𝐻 is a matching if all the hyperedges in 𝐻 are disjoint. For a subset
𝑄 ⊆ [𝑛], we define the degree of 𝑄 in 𝐻, denoted deg𝐻(𝑄), to be |{𝐶 ∈ 𝐻 : 𝑄 ⊆ 𝐶}|.

Definition 3.2 (Bipartite hypergraphs). A bipartite hypergraph 𝐻 has two vertex sets [𝑛] and 𝑃

and is a collection of pairs (𝐶, 𝑝) with 𝐶 ⊆ [𝑛] and 𝑝 ∈ 𝑃 called hyperedges. We say that a bipartite
hypergraph 𝐻 is 𝑞-uniform if |𝐶 | = 𝑞 − 1 for all (𝐶, 𝑝) ∈ 𝐻, and we say that 𝐻 is a matching if all the
hyperedges in 𝐻 are disjoint. That is, for (𝐶, 𝑝) and (𝐶′, 𝑝′) in 𝐻, it holds that 𝐶 ∩ 𝐶′ = ∅ and 𝑝 ≠ 𝑝′.

3.2 Locally decodable codes

We refer the reader to the survey [Yek12] for background.
A code is typically defined as a map 𝒞 : {0, 1}𝑘 → {0, 1}𝑛 . However, for our proofs it will be

more convenient to view a code as taking values in {−1, 1} rather than {0, 1}; we switch between
the two notations via the map 0 ↦→ 1 and 1 ↦→ −1. For a code 𝒞 : {−1, 1}𝑘 → {−1, 1}𝑛 , we will write
𝑥 ∈ 𝒞 to denote an 𝑥 = 𝒞(𝑏) for some 𝑏 ∈ {0, 1}𝑘 .

A locally decodable code is a code where one can recover any bit 𝑏𝑖 of the original message 𝑏

with good confidence while only reading a few bits of the encoded string in the presence of errors.

Definition 3.3 (Locally Decodable Code). A code 𝒞 : {−1, 1}𝑘 → {−1, 1}𝑛 is (𝑞, 𝛿, 𝜀)-locally de-
codable if there exists a randomized decoding algorithm Dec(·) with the following properties.
The algorithm Dec(·) is given oracle access to some 𝑦 ∈ {−1, 1}𝑛 , takes an 𝑖 ∈ [𝑘] as input, and
satisfies the following: (1) the algorithm Dec makes at most 𝑞 queries to the string 𝑦, and (2) for all
𝑏 ∈ {−1, 1}𝑘 , 𝑖 ∈ [𝑘], and all 𝑦 ∈ {−1, 1}𝑛 such that Δ(𝑦, 𝒞(𝑏)) ≤ 𝛿𝑛, Pr[Dec𝑦(𝑖) = 𝑏𝑖] ≥ 1

2 + 𝜀. Here,
Δ(𝑥, 𝑦) denotes the Hamming distance between 𝑥 and 𝑦, i.e., the number of indices 𝑣 ∈ [𝑛]where
𝑥𝑣 ≠ 𝑦𝑣 .

Following known reductions [Yek12], locally decodable codes can be reduced to the following
normal form, which is more convenient to work with.

Definition 3.4 (Normal LDC). A code 𝒞 : {−1, 1}𝑘 → {−1, 1}𝑛 is (𝑞, 𝛿, 𝜀)-normally decodable if for
each 𝑖 ∈ [𝑘], there is a 𝑞-uniform hypergraph matching 𝐻𝑖 with at least 𝛿𝑛 hyperedges such that for
every 𝐶 ∈ 𝐻𝑖 , it holds that Pr𝑏←{−1,1}𝑘 [𝑏𝑖 =

∏
𝑣∈𝐶 𝒞(𝑏)𝑣] ≥ 1

2 + 𝜀.

14



Fact 3.5 (Reduction to LDC Normal Form, Lemma 6.2 in [Yek12]). Let 𝒞 : {−1, 1}𝑘 → {−1, 1}𝑛 be a
code that is (𝑞, 𝛿, 𝜀)-locally decodable. Then, there is a code 𝒞′ : {−1, 1}𝑘 → {−1, 1}𝑂(𝑛) that is (𝑞, 𝛿′, 𝜀′)
normally decodable, with 𝛿′ ≥ 𝜀𝛿/3𝑞22𝑞−1 and 𝜀′ ≥ 𝜀/22𝑞 .

3.3 Matrix concentration inequalities

We will make use of the following non-commutative Khintchine inequality [LP91].

Fact 3.6 (Rectangular Matrix Khintchine Inequality, Theorem 4.1.1 of [Tro15]). Let 𝑋1 , . . . , 𝑋𝑘 be fixed
𝑑1 × 𝑑2 matrices and 𝑏1 , . . . , 𝑏𝑘 be i.i.d. from {−1, 1}. Let 𝜎2 ≥ max(∥∑𝑘

𝑖=1 𝑋𝑖𝑋
⊤
𝑖
]∥2 , ∥

∑𝑘
𝑖=1 𝑋

⊤
𝑖
𝑋𝑖]∥2).

Then

𝔼

[
∥

𝑘∑
𝑖=1

𝑏𝑖𝑋𝑖 ∥2
]
≤
√

2𝜎2 log(𝑑1 + 𝑑2) .

3.4 Binomial coefficient inequalities

In this section, we state and prove the following fact about binomial coefficients that we will use.

Fact 3.7. Let 𝑛, ℓ , 𝑞 be positive integers with ℓ ≤ 𝑛. Let 𝑞 be constant and ℓ , 𝑛 be asymptotically large with
ℓ = 𝑜(𝑛). Then, ( 𝑛

ℓ−𝑞
)(𝑛

ℓ

) = Θ

((
ℓ

𝑛

) 𝑞)
,(𝑛−𝑞

ℓ

)(𝑛
ℓ

) = Θ(1) .

Proof. We have that ( 𝑛
ℓ−𝑞

)(𝑛
ℓ

) =

(ℓ
𝑞

)(𝑛−ℓ+𝑞
𝑞

) .
Using that

(
𝑎
𝑏

)𝑏 ≤ (𝑎
𝑏

)
≤

(
𝑒𝑎
𝑏

)𝑏 finishes the proof of the first equation.
We also have that(𝑛−𝑞

ℓ

)(𝑛
ℓ

) =
(𝑛 − 𝑞)!(𝑛 − ℓ )!
𝑛!(𝑛 − ℓ − 𝑞)! =

𝑞−1∏
𝑖=0

𝑛 − ℓ − 𝑖

𝑛 − 𝑖
=

𝑞−1∏
𝑖=0

(
1 − ℓ

𝑛 − 𝑖

)
,

and this is Θ(1) since ℓ = 𝑜(𝑛) and 𝑞 is constant. □

4 Proof of Theorem 1

In this section, we begin the proof of Theorem 1. By Fact 3.5, we may assume that we start with a code
𝒞 in normal form. Namely, 𝒞 is map 𝒞 : {−1, 1}𝑘 → {−1, 1}𝑛 , and there exist 𝑞-uniform hypergraphs

15



𝐻1 , . . . , 𝐻𝑘 of size exactly 𝛿𝑛 such that for every 𝐶 ∈ 𝐻𝑖 , it holds that 𝔼𝑏←{−1,1}𝑘 [𝑏𝑖
∏

𝑣∈𝐶 𝒞(𝑏)𝑣] ≥ 𝜀.
We will show that 𝑘 ≤ 𝑂(𝑛1− 2

𝑞 𝛿−2− 2
𝑞 𝜀−4), which implies Theorem 1.

To begin, we let Φ𝑏(𝑥) denote the following polynomial:

Φ𝑏(𝑥) B
𝑘∑

𝑖=1

∑
𝐶∈𝐻𝑖

𝑏𝑖

∏
𝑣∈𝐶

𝑥𝑣 .

Because 𝔼𝑏←{−1,1}𝑘 [𝑏𝑖
∏

𝑣∈𝐶 𝒞(𝑏)𝑣] ≥ 𝜀, it follows that 𝔼𝑏[Φ𝑏(𝒞𝑏(𝑥))] ≥ 𝜀
∑𝑘

𝑖=1 |𝐻𝑖 | ≥ 𝜀𝛿𝑛𝑘. Hence,
we have that 𝔼𝑏[val(Φ𝑏)] ≥ 𝜀𝛿𝑛𝑘, where val(Φ𝑏) B max𝑥∈{−1,1}𝑛 Φ𝑏(𝑥).
Overview: refuting the 𝒒-XOR instance 𝚽𝒃. It thus remains to bound 𝔼𝑏[val(Φ𝑏)]. We will
do this by building on the spectral methods of [GKM22, AGKM23]. As discussed in Sections 2.3
and 2.4, the argument proceeds in two steps.

(1) Hypergraph decomposition: First, we decompose the hypergraphs 𝐻1 , . . . , 𝐻𝑘 informally as
follows. For 2 ≤ 𝑡 ≤ 𝑞+1

2 , we define “degree thresholds” 𝑑𝑡 where 𝑑𝑡 B
(
ℓ
𝑛

) 𝑡− 3
2 𝑘. Then, for

every 𝑄 ⊆ [𝑛] of size 𝑠 with 2 ≤ 𝑠 ≤ 𝑞+1
2 , we call 𝑄 “heavy” if 𝑄 is contained in more than 𝑑𝑠

hyperedges in the multiset ∪𝑘
𝑖=1𝐻𝑖 . For each heavy 𝑄, we introduce a new variable 𝑦𝑝𝑄 and let

𝑃𝑠 be the set of the labels 𝑝𝑄 corresponding to |𝑄 | = 𝑠. Then, for each hyperedge 𝐶, if 𝑄 ⊆ 𝐶

is the largest heavy 𝑄 contained in 𝐶, we replace the hyperedge 𝐶 with (𝐶 \ 𝑄, 𝑝𝑄), where
𝑝𝑄 ∈ 𝑃𝑠 . We thus produce, for each 𝑖 ∈ [𝑘], hypergraphs 𝐻

(𝑠)
𝑖

for each 2 ≤ 𝑠 ≤ 𝑞+1
2 where a

hyperedge in 𝐻
(𝑠)
𝑖

has the form (𝐶′, 𝑝) for some 𝑝 ∈ 𝑃𝑠 and 𝐶′ ⊆ [𝑛] with |𝐶′ | = 𝑞 − 𝑠, along
with the hypergraph 𝐻′

𝑖
of “leftover edges”.

(2) Refutation: With the decomposition in hand, we then produce polynomials Ψ
(𝑠)
𝑏

for each

2 ≤ 𝑠 ≤ 𝑞+1
2 , along with a polynomial Ψ𝑏 , such that Ψ𝑏 +

∑ 𝑞+1
2

𝑠=2 Ψ
(𝑠)
𝑏

= Φ𝑏 . We then produce
upper bound 𝔼𝑏[val(Ψ𝑏)] as well as 𝔼𝑏[val(Ψ(𝑠)

𝑏
)] for each polynomial Ψ(𝑠)

𝑏
in the decomposition.

Combining these bounds allows us to upper bound 𝔼𝑏[val(Φ𝑏)] and finishes the proof. As
discussed in Section 2.4, our key technical contribution is designing the matrix whose spectral
norm upper bounds 𝔼𝑏[val(Ψ(𝑠)

𝑏
)] for each of the “decomposed” instances Ψ(𝑠) for 2 ≤ 𝑠 ≤ 𝑞+1

2 .

We now formally describe the decomposition process.

Lemma 4.1 (Hypergraph Decomposition). Let 𝐻1 , . . . , 𝐻𝑘 be 𝑞-uniform hypergraphs on 𝑛 vertices, and
let 𝐻 be the multiset 𝐻 B ∪𝑘

𝑖=1𝐻𝑖 .
For each 2 ≤ 𝑠 ≤ 𝑞+1

2 , let 𝑑𝑠 be a positive integer such that 𝑑2 ≥ 𝑑𝑠 ≥ · · · ≥ 𝑑 𝑞+1
2
≥ 1, and let

𝑃𝑠 B {𝑄 ∈
([𝑛]
𝑠

)
: deg𝐻(𝑄) > 𝑑𝑠}. Then, there are 𝑞-uniform hypergraphs 𝐻′1 , . . . , 𝐻

′
𝑘

and, for each
2 ≤ 𝑠 ≤ 𝑞+1

2 , bipartite hypergraphs 𝐻(𝑠)1 , . . . , 𝐻
(𝑠)
𝑘

, with the following properties.

(1) Each 𝐻
(𝑠)
𝑖

is a bipartite hypergraph where each hyperedge contains 𝑞 − 𝑠 left vertices in [𝑛] and one right
vertex 𝑝 ∈ 𝑃𝑠 . Furthermore, |𝑃𝑠 | ≤ 𝑂(|𝐻 |/𝑑𝑠).

(2) Each 𝐻′
𝑖

is a subset of 𝐻𝑖 .
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(3) For each 𝑖 ∈ [𝑘], there is a one-to-one correspondence between hyperedges 𝐶 ∈ 𝐻𝑖 and the hyperedges in

𝐻′
𝑖
, 𝐻
(2)
𝑖
, . . . , 𝐻

( 𝑞+1
2 )

𝑖
given by (𝐶, 𝑝) ∈ 𝐻(𝑠)

𝑖
↦→ 𝐶 ∪ 𝑝 ∈ 𝐻𝑖 and 𝐶 ∈ 𝐻′

𝑖
↦→ 𝐶 ∈ 𝐻𝑖 .

(4) Let 𝐻′ B ∪𝑘
𝑖=1𝐻

′
𝑖
. Then, for any 𝑄 ∈

([𝑛]
𝑠

)
with 2 ≤ 𝑠 ≤ 𝑞+1

2 , it holds that deg𝐻′(𝑄) ≤ 𝑑𝑠 .

(5) If 𝐻𝑖 is a matching, then 𝐻′
𝑖

and 𝐻
(𝑠)
𝑖

for 2 ≤ 𝑠 ≤ 𝑞+1
2 are also matchings.

The proof of Lemma 4.1 follows by using a simple greedy algorithm, and is given in Section 4.1.
Given the decomposition, the two main technical parts of the proof are given by the following

two theorems. In the first theorem, we refute the 𝑞-XOR instance resulting from the hypergraph 𝐻′,
and in the second theorem we refute the bipartite (𝑞 − 𝑠 + 1)-XOR instances from the hypergraphs
𝐻(𝑠) for each 2 ≤ 𝑠 ≤ 𝑞+1

2 .

Theorem 4.2 (Refuting the regular 𝑞-XOR instance). Let 𝑞 ≥ 3 be an odd integer. Let 𝑘, 𝑛 be positive
integers and 𝛿 ∈ (0, 1). Let ℓ = ⌊𝑛1−2/𝑞 · 𝛿−2/𝑞⌋, and suppose that 𝑘 ≥ 4ℓ . For 2 ≤ 𝑡 ≤ 𝑞+1

2 , let

𝑑𝑡 B
(
ℓ
𝑛

) 𝑡− 3
2 𝑘.

Let 𝐻1 , . . . , 𝐻𝑘 be 𝑞-uniform hypergraph matchings on [𝑛] of size ≤ 𝛿𝑛, and suppose that for every
𝑄 ⊆ [𝑛] with 2 ≤ |𝑄 | ≤ 𝑞+1

2 , it holds that deg𝐻(𝑄) ≤ 𝑑|𝑄 |, where 𝐻 B ∪𝑘
𝑖=1𝐻𝑖 . Let Ψ𝑏(𝑥) be the

polynomial in the variable 𝑥1 , . . . , 𝑥𝑛 defined as

Ψ𝑏(𝑥) =
𝑘∑

𝑖=1

∑
𝐶∈𝐻𝑖

𝑏𝑖

∏
𝑣∈𝐶

𝑥𝑣 .

Then, 𝔼𝑏←{−1,1}𝑘 [val(Ψ𝑏)] ≤ 𝑂(𝑛
√
𝛿𝑘) · (𝑘ℓ log 𝑛)1/4.

Theorem 4.3 (Refuting the bipartite instances). Let 𝑞 ≥ 3 be an odd integer, and let 2 ≤ 𝑠 ≤ 𝑞+1
2 . Let

𝑘, 𝑛 be positive integers and 𝛿 ∈ (0, 1). Let ℓ = ⌊𝑛1−2/𝑞 · 𝛿−2/𝑞⌋, and suppose that 𝑘 ≥ 4ℓ . For 2 ≤ 𝑡 ≤ 𝑞+1
2 ,

let 𝑑𝑡 B
(
ℓ
𝑛

) 𝑡− 3
2 𝑘. Let 𝑃𝑠 ⊆

([𝑛]
𝑠

)
be a set with 4ℓ ≤ |𝑃𝑠 | ≤ 𝑂

(
𝑛𝑘
𝑑𝑠

)
.

Let 𝐻(𝑠)1 , . . . , 𝐻
(𝑠)
𝑘

be bipartite (𝑞 − 𝑠 + 1)-uniform hypergraph matchings on
( [𝑛]
𝑞−𝑠

)
× 𝑃𝑠 of size at most

𝛿𝑛. Let Ψ(𝑠)
𝑏
(𝑥, 𝑦) be the polynomial in the variable 𝑥1 , . . . , 𝑥𝑛 and {𝑦𝑝}𝑝∈𝑃𝑠 defined as

Ψ
(𝑠)
𝑏
(𝑥, 𝑦) =

𝑘∑
𝑖=1

∑
(𝐶,𝑝)∈𝐻𝑖

𝑏𝑖𝑦𝑝

∏
𝑣∈𝐶

𝑥𝑣 .

Then, 𝔼𝑏←{−1,1}𝑘 [val(Ψ(𝑠)
𝑏
)] ≤ 𝛿𝑛𝑂(

√
𝑘ℓ log 𝑛).

We prove Theorem 4.2 in Section 5, and we prove Theorem 4.3 in Section 6.
With the above ingredients, we can now finish the proof of Theorem 1.

Proof of Theorem 1. By Fact 3.5, we may assume that our code 𝒞 is in LDC normal form, and our goal
is to show that 𝑘 ≤ 𝑂(𝜀−4𝛿−2ℓ log 𝑛) holds, where ℓ = ⌊𝑛1−2/𝑞 · 𝛿−2/𝑞⌋, which implies Theorem 1. We
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will assume that 𝛿 satisfies 𝛿 ≥ 𝑛
− 2

𝑞+2 , as otherwise 𝛿−2ℓ ≥ 𝑛 holds, and so 𝑘 ≤ 𝑛 ≤ 𝑂(𝜀−4𝛿−2ℓ log 𝑛)
trivially holds.

For each 2 ≤ 𝑠 ≤ 𝑞+1
2 , define 𝑑𝑠 B

(
ℓ
𝑛

) 𝑠− 3
2 𝑘. We will assume that 𝑘 ≥ 4ℓ , as otherwise we are

already done. Because of this assumption, we have
(
ℓ
𝑛

) 𝑞
2−1

𝑘 ≥ 1, which implies that 𝑑𝑠 ≥ 1 for all
2 ≤ 𝑠 ≤ 𝑞+1

2 . We can thus apply Lemma 4.1 with these thresholds, which decomposes each 𝐻𝑖 into
𝐻′

𝑖
and 𝐻

(𝑠)
𝑖

for 2 ≤ 𝑠 ≤ 𝑞+1
2 . Note that |𝑃𝑠 | ≤ 𝑂(𝛿𝑛𝑘/𝑑𝑠) = 𝑂(1) ·

(
𝑛
ℓ

) 𝑠− 3
2 · 𝛿𝑛.

The one-to-one correspondence property in Lemma 4.1 implies that for each 𝑏 ∈ {−1, 1}𝑘 and
every 𝑥 ∈ {−1, 1}𝑛 , if we set 𝑦𝑝 =

∏
𝑣∈𝑝 𝑥𝑣 for each 𝑝 ∈ 𝑃𝑠 and 2 ≤ 𝑠 ≤ 𝑞+1

2 , then it holds that

Φ𝑏(𝑥) = Ψ𝑏(𝑥) +
∑ 𝑞+1

2
𝑠=2 Ψ

(𝑠)
𝑏
(𝑥, 𝑦).

We can now apply Theorems 4.2 and 4.3 to bound 𝔼[val(Ψ𝑏)] and 𝔼[val(Ψ(𝑠)
𝑏
)]. However, it is

possible that the condition that |𝑃𝑠 | ≥ 4ℓ does not hold. But, if |𝑃𝑠 | ≤ 4ℓ , then the conclusion of
Theorem 4.3 still holds. This is because for any 𝑏, val(Ψ(𝑠)

𝑏
) ≤ ∑𝑘

𝑖=1 |𝐻
(𝑠)
𝑖
| trivially holds, and we

also have
∑𝑘

𝑖=1 |𝐻
(𝑠)
𝑖
| ≤ |𝑃𝑠 |𝑑𝑠 , as each 𝑝 ∈ 𝑃𝑠 contributes at most 𝑑𝑠 hyperedges to ∪𝑘

𝑖=1𝐻
(𝑠)
𝑖

. Hence,
val(Ψ(𝑠)

𝑏
) ≤ ℓ 𝑑𝑠 in this case, which is at most 𝛿𝑛𝑂(

√
𝑘ℓ log 𝑛)when 𝛿 = Ω(𝑛−

2
𝑞+2 ).

We thus have that

𝜀𝛿𝑛𝑘 ≤ 𝔼[val(Φ𝑏)] ≤ 𝔼[val(Ψ𝑏)] +
𝑞+1

2∑
𝑠=2

𝔼[val(Ψ(𝑠)
𝑏
)] ≤ 𝑂(𝑛

√
𝛿𝑘) · (𝑘ℓ log 𝑛)1/4 + 𝛿𝑛𝑂(

√
𝑘ℓ log 𝑛) .

We have two cases. If 𝑂(𝑛
√
𝛿𝑘) · (𝑘ℓ log 𝑛)1/4 is larger than 𝛿𝑛𝑂(

√
𝑘ℓ log 𝑛), then we conclude that

𝜀𝛿𝑛𝑘 ≤ 𝑂(𝑛
√
𝛿𝑘) · (𝑘ℓ log 𝑛)1/4 =⇒ 𝑘 ≤ 𝑂(𝜀−4𝛿−2ℓ log 𝑛) ,

and if 𝑂(𝑛
√
𝛿𝑘) · (𝑘ℓ log 𝑛)1/4 is smaller than 𝛿𝑛𝑂(

√
𝑘ℓ log 𝑛), we conclude that

𝜀𝛿𝑛𝑘 ≤ 𝛿𝑛𝑂(
√
𝑘ℓ log 𝑛) =⇒ 𝑘 ≤ 𝑂(𝜀−1ℓ log 𝑛) .

Thus, we have 𝑘 ≤ 𝑂(𝜀−4𝛿−2ℓ log 𝑛) = 𝑂(𝑛1− 2
𝑞 𝛿−2− 2

𝑞 𝜀−4 log 𝑛), which finishes the proof. □

4.1 Hypergraph decomposition: proof of Lemma 4.1

We prove Lemma 4.1 by analyzing the following greedy algorithm.

Algorithm 4.4.

Given: 𝑞-uniform hypergraphs 𝐻1 , . . . , 𝐻𝑘 and parameters 𝑑2 ≥ 𝑑3 ≥ · · · ≥ 𝑑 𝑞+1
2
≥ 1.

Output: 𝑞-uniform hypergraphs 𝐻′1 , . . . , 𝐻
′
𝑘

and for 2 ≤ 𝑠 ≤ 𝑞+1
2 , bipartite (𝑞 − 𝑠 + 1)-uniform

hypergraphs 𝐻(𝑠)1 , . . . , 𝐻
(𝑠)
𝑘

over the left vertex set [𝑛] and right vertex set 𝑃𝑠 ⊆
([𝑛]
𝑠

)
.

Operation:
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1. Initialize: 𝐻′
𝑖
= 𝐻𝑖 for all 𝑖 ∈ [𝑘], 𝑃𝑠 = ∅, and 𝑃′𝑠 = {𝑄 ∈

([𝑛]
𝑠

)
: deg𝐻′(𝑄) > 𝑑𝑠},

where 𝐻′ = ∪𝑖∈[𝑘]𝐻′𝑖 .

2. For 𝑡 = 𝑞+1
2 , . . . , 1:

(1) While 𝑃′𝑡 is nonempty:
(a) Choose 𝑝 ∈ 𝑃′𝑡 arbitrarily.
(b) Choose an arbitrary set of 𝑑𝑡+1 hyperedges in𝐻′ containing the set 𝑝. Namely,

let 𝐶𝑖1 , . . . , 𝐶𝑖𝑑𝑡+1 be hyperedges in 𝐻′ where 𝐶𝑖1 ∈ 𝐻′𝑖1 , . . . , 𝐶𝑖𝑑𝑡+1 ∈ 𝐻′𝑖𝑑𝑡+1
.

(c) Add 𝑝 to 𝑃𝑡 and for each 𝑟 ∈ [𝑑𝑡 + 1], remove 𝐶𝑖𝑟 from 𝐻′
𝑖𝑟

and add the
hyperedge (𝐶𝑖𝑟 \ 𝑝, 𝑝) to 𝐻

(𝑡)
𝑖𝑟

.

(d) Recompute 𝑃′𝑡 = {𝑄 ∈
([𝑛]
𝑡

)
: deg𝐻′(𝑄) > 𝑑𝑡}.

3. Output 𝐻′1 , . . . , 𝐻
′
𝑘

and 𝐻
(𝑠)
1 , . . . , 𝐻

(𝑠)
𝑘

for all 2 ≤ 𝑠 ≤ 𝑞+1
2 .

We now need to show that the output of Algorithm 4.4 has the desired properties.
Item (1) holds by construction, as each 𝑝 ∈ 𝑃𝑠 has size 𝑠 so when the hyperedge 𝐶 is split into

(𝐶 \ 𝑝, 𝑝), |𝐶 \ 𝑝 | = 𝑞 − 𝑠. We have that |𝑃𝑠 | ≤ 𝑂(|𝐻 |/𝑑𝑠), as each hyperedge 𝐶 ∈ 𝐻 has (crudely) at
most 2𝑞 = 𝑂(1) subsets of size exactly 𝑠, and each 𝑝 ∈ 𝑃𝑠 must appear at least 𝑑𝑠 + 1 times across
hyperedges in 𝐻.

Item (2) holds by construction, as we start with 𝐻′
𝑖
= 𝐻𝑖 and only remove edges from 𝐻′

𝑖
.

Item (3) holds because each hyperedge 𝐶 ∈ 𝐻𝑖 is either never removed (in which case it appears
in 𝐻′

𝑖
), or it is removed exactly once. If it is removed by choosing some 𝑝 ∈ 𝑃𝑠 , then it appears in

𝐻
(𝑠)
𝑖

as the hyperedge (𝐶 \ 𝑝, 𝑝).
Item (4) holds because otherwise the algorithm would not have terminated.
Item (5) holds because the operations done by Algorithm 4.4 do not affect the matching property.

This finishes the proof.

5 Refuting the Regular 𝑞-XOR Instance

In this section, we prove Theorem 4.2, which we recall below.

Theorem 4.2 (Refuting the regular 𝑞-XOR instance). Let 𝑞 ≥ 3 be an odd integer. Let 𝑘, 𝑛 be positive
integers and 𝛿 ∈ (0, 1). Let ℓ = ⌊𝑛1−2/𝑞 · 𝛿−2/𝑞⌋, and suppose that 𝑘 ≥ 4ℓ . For 2 ≤ 𝑡 ≤ 𝑞+1

2 , let

𝑑𝑡 B
(
ℓ
𝑛

) 𝑡− 3
2 𝑘.

Let 𝐻1 , . . . , 𝐻𝑘 be 𝑞-uniform hypergraph matchings on [𝑛] of size ≤ 𝛿𝑛, and suppose that for every
𝑄 ⊆ [𝑛] with 2 ≤ |𝑄 | ≤ 𝑞+1

2 , it holds that deg𝐻(𝑄) ≤ 𝑑|𝑄 |, where 𝐻 B ∪𝑘
𝑖=1𝐻𝑖 . Let Ψ𝑏(𝑥) be the

polynomial in the variable 𝑥1 , . . . , 𝑥𝑛 defined as

Ψ𝑏(𝑥) =
𝑘∑

𝑖=1

∑
𝐶∈𝐻𝑖

𝑏𝑖

∏
𝑣∈𝐶

𝑥𝑣 .

Then, 𝔼𝑏←{−1,1}𝑘 [val(Ψ𝑏)] ≤ 𝑂(𝑛
√
𝛿𝑘) · (𝑘ℓ log 𝑛)1/4.
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The proof of Theorem 4.2 follows the overall blueprint outlined in the work of [AGKM23], as
explained in Section 2.2.
Step 1: the Cauchy-Schwarz trick. First, we show that we can relate Ψ(𝑥) to a certain “Cauchy-
Schwarzed” polynomial 𝑓𝐿,𝑅(𝑥).

Lemma 5.1 (Cauchy-Schwarz Trick). Let Ψ be as in Theorem 4.2 and let 𝐿, 𝑅 ⊆ [𝑘] be a random partition
of [𝑘], i.e., each 𝑖 ∈ [𝑘] appears in 𝐿 with probability 1/2, independently, and 𝑅 = [𝑘] \ 𝐿. Let 𝑓𝐿,𝑅(𝑥) be the
polynomial defined as

𝑓𝐿,𝑅(𝑥) B
∑

𝑖∈𝐿,𝑗∈𝑅

∑
𝑢∈[𝑛]

∑
(𝑢,𝐶1)∈𝐻𝑖 ,(𝑢,𝐶2)∈𝐻𝑗

𝑏𝑖𝑏 𝑗

∏
𝑣∈𝐶1

𝑥𝑣

∏
𝑣∈𝐶2

𝑥𝑣 .

Then, it holds that (𝑞 val(Ψ))2 ≤ 𝑞𝛿𝑛2 + 4𝑛𝔼(𝐿,𝑅) val( 𝑓𝐿,𝑅). In particular, 𝔼𝑏∈{−1,1}𝑘 [𝑞2 · val(Ψ)2] ≤
𝑞𝛿𝑛2 + 4𝑛𝔼(𝐿,𝑅)𝔼𝑏∈{−1,1}𝑘 [val( 𝑓𝐿,𝑅)].

Proof. Fix any assignment to 𝑥 ∈ {−1, 1}𝑛 . We have that

(𝑞Ψ(𝑥))2 =
©«
∑
𝑢∈[𝑛]

𝑥𝑢

∑
𝑖∈[𝑘]

∑
(𝑢,𝐶)∈𝐻𝑖

𝑏𝑖𝑥𝐶
ª®¬

2

≤ ©«
∑
𝑢∈[𝑛]

𝑥2
𝑢
ª®¬
©«
∑
𝑢∈[𝑛]

©«
∑
𝑖∈[𝑘]

∑
(𝑢,𝐶)∈𝐻𝑖

𝑏𝑖𝑥𝐶
ª®¬

2ª®®¬
= 𝑛

∑
𝑢∈[𝑛]

∑
𝑖 , 𝑗∈[𝑘]

∑
(𝑢,𝐶1)∈𝐻𝑖

(𝑢,𝐶2)∈𝐻𝑗

𝑏𝑖𝑏 𝑗𝑥𝐶1𝑥𝐶2 = 𝑛

©«
𝑞
∑
𝑖∈[𝑘]
|𝐻𝑖 | +

∑
𝑢∈[𝑛]

∑
𝑖 , 𝑗∈[𝑘],𝑖≠𝑗

∑
(𝑢,𝐶1)∈𝐻𝑖

(𝑢,𝐶2)∈𝐻𝑗

𝑏𝑖𝑏 𝑗𝑥𝐶1𝑥𝐶2

ª®®®®¬
= 𝑞𝑛 · 𝛿𝑛 + 4𝑛 · 𝔼(𝐿,𝑅) 𝑓𝐿,𝑅(𝑥) ,

where the first equality is because there are 𝑞 ways to decompose a set 𝐶𝑖 ∈ 𝐻𝑖 with |𝐶𝑖 | = 𝑞 into
a pair (𝑢, 𝐶) with |𝐶 | = 𝑞 − 1, the inequality follows by the Cauchy-Schwarz inequality, and the
last equality follows because for a pair of hypergraphs 𝐻𝑖 and 𝐻𝑗 , we have 𝑖 ∈ 𝐿 and 𝑗 ∈ 𝑅 with
probability 1/4. Finally, max𝑥∈{−1,1}𝑛 𝔼(𝐿,𝑅) 𝑓𝐿,𝑅(𝑥) ≤ 𝔼(𝐿,𝑅)[max𝑥∈{−1,1}𝑛 𝑓𝐿,𝑅(𝑥)] = 𝔼(𝐿,𝑅) val( 𝑓𝐿,𝑅).
Thus, we have that 𝑞2 · val(Ψ)2 ≤ 𝑞𝛿𝑛2 + 4𝑛 · 𝔼(𝐿,𝑅) val( 𝑓𝐿,𝑅). □

Step 2: defining the Kikuchi matrices. Next, we define the Kikuchi matrices that we will use and
relate them to the polynomial 𝑓𝐿,𝑅.

Definition 5.2. Let 𝑞 ≥ 3 be an odd integer and let ℓ = ⌊𝑛1−2/𝑞 · 𝛿−2/𝑞⌋. Let (𝑢, 𝐶1) be a hyperedge
with |𝐶1 | = 𝑞 − 1 and let (𝑢, 𝐶2) be a hyperedge with |𝐶2 | = 𝑞 − 1. We define the matrix 𝐴𝑢,𝐶1 ,𝐶2

to be the matrix indexed by pairs of sets (𝑆1 , 𝑆2) where 𝑆1 , 𝑆2 ⊆ [𝑛] and |𝑆1 | = |𝑆2 | = ℓ , where
𝐴𝑢,𝐶1 ,𝐶2((𝑆1 , 𝑆2), (𝑇1 , 𝑇2)) = 1 if 𝑆1 ⊕ 𝑇1 = 𝐶1 and 𝑆2 ⊕ 𝑇2 = 𝐶2, and 0 otherwise. We note that this is
equivalent to |𝑆1 ∩ 𝐶1 | = |𝑇1 ∩ 𝐶1 | = 𝑞−1

2 and |𝑆2 ∩ 𝐶2 | = |𝑇2 ∩ 𝐶2 | = 𝑞−1
2 .

We will also view the matrix 𝐴𝑢,𝐶1 ,𝐶2 as the adjacency matrix of a graph 𝐺𝑢,𝐶1 ,𝐶2 .
For 𝑖 ≠ 𝑗 ∈ [𝑘], we define 𝐴𝑖 , 𝑗 B

∑
𝑢∈[𝑛]

∑
(𝑢,𝐶1)∈𝐻𝑖 ,(𝑢,𝐶2)∈𝐻𝑗

𝐴𝑢,𝐶1 ,𝐶2 . We also define 𝐴𝑖 B∑
𝑗∈𝑅 𝑏 𝑗𝐴𝑖 , 𝑗 and 𝐴 B

∑
𝑖∈𝐿 𝑏𝑖𝐴𝑖 .

20



Claim 5.3. For each (𝑢, 𝐶1 , 𝐶2), the matrix 𝐴𝑢,𝐶1 ,𝐶2 defined in Definition 5.2 satisfies the following
properties.

(1) The matrix 𝐴𝑢,𝐶1 ,𝐶2 has exactly 𝐷 =
(𝑞−1
𝑞−1

2

)2 (𝑛−(𝑞−1)
ℓ− 𝑞−1

2

)2
nonzero entries.

(2) For each 𝑥 ∈ {−1, 1}𝑛 , let 𝑧 ∈ {−1, 1}(𝑛ℓ ) be defined as: 𝑧𝑆1 ,𝑆2 :=
∏

𝑣∈𝑆1 𝑥𝑣
∏

𝑣∈𝑆2 𝑥𝑣 . Then,
𝑧⊤𝐴𝑢,𝐶1 ,𝐶2𝑧 = 𝐷

∏
𝑣∈𝐶1 𝑥𝑣

∏
𝑣∈𝐶2 𝑥𝑣 .

In particular, 𝑧⊤𝐴𝑧 = 𝐷 𝑓𝐿,𝑅(𝑥).
As additional notation, we let 𝑁 B

(𝑛
ℓ

)
and 𝑑 = 𝛿𝑛𝑘𝐷

𝑁 .

Proof. To prove Item (1), we will count the number of edges. By definition, we have an edge
((𝑆1 , 𝑆2), (𝑇1 , 𝑇2)) in the graph with adjacency matrix 𝐴𝑢,𝐶1 ,𝐶2 iff |𝑆1 ∩ 𝐶1 | = 𝑞−1

2 and |𝑆2 ∩ 𝐶′2 | =
𝑞−1

2 .
The number of such 𝑆1 is

(𝑞−1
𝑞−1

2

) (𝑛−(𝑞−1)
ℓ− 𝑞−1

2

)
, and the number of such 𝑆2 is the same. Hence, Item (1)

holds.
To prove Item (2), we observe that

𝑧⊤𝐴𝑢,𝐶1 ,𝐶2𝑧 =
∑

((𝑆1 ,𝑆2),(𝑇1 ,𝑇2))∈𝐸(𝐺𝑢,𝐶1 ,𝐶2 )
𝑧𝑆1 ,𝑆2𝑤𝑇1 ,𝑇2 =

∑
((𝑆1 ,𝑆2),(𝑇1 ,𝑇2))∈𝐸(𝐺𝑢,𝐶1 ,𝐶2 )

∏
𝑣∈𝑆1

𝑥𝑣

∏
𝑣∈𝑆2

𝑥𝑣

∏
𝑣∈𝑇1

𝑥𝑣

∏
𝑣∈𝑇2

𝑥𝑣

=
∑

((𝑆1 ,𝑆2),(𝑇1 ,𝑇2))∈𝐸(𝐺𝑢,𝐶1 ,𝐶2 )

∏
𝑣∈𝑆1⊕𝑇1

𝑥𝑣

∏
𝑣∈𝑆2⊕𝑇2

𝑥𝑣 =
∑

((𝑆1 ,𝑆2),(𝑇1 ,𝑇2))∈𝐸(𝐺𝑢,𝐶1 ,𝐶2 )

∏
𝑣∈𝐶1

𝑥𝑣

∏
𝑣∈𝐶2

𝑥𝑣 = 𝐷
∏
𝑣∈𝐶1

𝑥𝑣

∏
𝑣∈𝐶2

𝑥𝑣 .

The “in particular” follows immediately from Item (2) and the definition of 𝐴. □

Step 3: finding an approximately regular submatrix. The key technical lemma, which we shall
prove in Section 5.1, shows that we can find an approximately biregular subgraph of 𝐴𝑖 for each
𝑖 ∈ 𝐿.

Lemma 5.4 (Approximately regular submatrix). For 𝑖 ∈ 𝐿, let 𝐴𝑖 be defined as in Definition 5.2. There
exists a positive integer 𝐷′ with 𝐷 ≥ 𝐷′ ≥ 𝐷

2 such that the following holds. For each 𝑖 ∈ 𝐿, (𝑢, 𝐶1) ∈ 𝐻𝑖 ,
𝑗 ∈ 𝑅, and (𝑢, 𝐶2) ∈ 𝐻𝑗 , there exists a matrix 𝐵𝑖 ,𝑢,𝐶1 ,𝐶2 ∈ {0, 1}(

𝑛
ℓ ) with the following properties:

(1) 𝐵𝑖 ,𝑢,𝐶1 ,𝐶2 is a “subgraph” of𝐴𝑢,𝐶1 ,𝐶2 . Namely, 𝐵𝑖 ,𝑢,𝐶1 ,𝐶2 = 𝐵⊤
𝑖 ,𝑢,𝐶1 ,𝐶2

and if𝐵𝑖 ,𝑢,𝐶1 ,𝐶2((𝑆1 , 𝑆2), (𝑇1 , 𝑇2)) =
1, then we also have 𝐴𝑢,𝐶1 ,𝐶2((𝑆1 , 𝑆2), (𝑇1 , 𝑇2)) = 1.

(2) 𝐵𝑖 ,𝑢,𝐶1 ,𝐶2 has exactly 𝐷′ nonzero entries.

(3) The matrix 𝐵𝑖 B
∑

𝑗∈𝑅
∑

𝑢∈[𝑛]
∑
(𝑢,𝐶1)∈𝐻𝑖 ,(𝑢,𝐶2)∈𝐻𝑗

𝐵𝑖 ,𝑢,𝐶1 ,𝐶2 has at most 𝑂(𝑑) nonzero entries per row
or column, where 𝑑 = 𝛿𝑛𝑘𝐷

𝑁 .

Step 4: finishing the proof. With Lemma 5.4 in hand, we can now finish the proof. Let 𝐵𝑖

be the matrix defined in Lemma 5.4. We observe that Items (1), (2), and (3) in Lemma 5.4,
along with Claim 5.3, imply that for each 𝑥 ∈ {−1, 1}𝑛 , there exists 𝑧 ∈ {−1, 1}𝑁 such that
𝑧⊤𝐵𝑧 = 𝐷′ 𝑓𝐿,𝑅(𝑥). Hence, for any 𝑥 ∈ {−1, 1}𝑛 , it holds that val( 𝑓𝐿,𝑅) ≤ ∥𝐵∥2 · 𝑁 . We thus have that
𝔼𝑏[val( 𝑓𝐿,𝑅)] ≤ 𝑁

𝐷′𝔼𝑏[∥𝐵∥2].
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It remains to bound 𝔼𝑏[∥𝐵∥2], which we do using Matrix Khintchine (Fact 3.6) in the following
claim.

Claim 5.5. Let 𝐵 be the matrix defined in Lemma 5.4. Then, 𝔼𝑏[∥𝐵∥2] ≤ 𝑂(𝑑
√
𝑘ℓ log 𝑛).

We postpone the proof of Claim 5.5 to the end of this section, and finish the proof of Theorem 4.2.
We have that

𝔼𝑏[val( 𝑓𝐿,𝑅)] ≤
𝑁

𝐷′
𝔼𝑏[∥𝐵∥2] ≤

2𝑁
𝐷

𝑂(𝑑
√
𝑘ℓ log 𝑛)

= 𝑂(1) · 𝑁𝑑

𝐷

√
𝑘ℓ log 𝑛 = 𝛿𝑛𝑘 · 𝑂(

√
𝑘ℓ log 𝑛) ,

where we recall that 𝑑 = 𝛿𝑛𝑘𝐷/𝑁 . We note that the above holds for any choice of the partition
𝐿 ∪ 𝑅 = [𝑘]. Finally, we recall that by Lemma 5.1, we have that

(𝔼𝑏[𝑞 val(Ψ)])2 ≤ 𝔼𝑏∈{−1,1}𝑘 [𝑞2 · val(Ψ)2] ≤ 𝑞𝛿𝑛2 + 4𝑛𝔼(𝐿,𝑅)𝔼𝑏∈{−1,1}𝑘 [val( 𝑓𝐿,𝑅)] ≤ 𝑞𝛿𝑛2 + 𝛿𝑛2𝑘 · 𝑂(
√
𝑘ℓ log 𝑛)

=⇒ 𝔼𝑏[val(Ψ)] ≤ 𝑂(𝑛
√
𝛿𝑘) · (𝑘ℓ log 𝑛)1/4 .

We now finish the proof of Claim 5.5.

Proof of Claim 5.5. By Matrix Khintchine (Fact 3.6), we have 𝔼𝑏[∥𝐵∥2] ≤ 𝑂(
√
𝜎2 log 𝑁), where

𝜎2 = ∥∑𝑘
𝑖=1 𝐵

2
𝑖
∥, as 𝐵𝑖 is symmetric. Since 𝐵𝑖 is symmetric, ∥𝐵𝑖 ∥2 is bounded by the maximum

ℓ1-norm of a row in this matrix. By construction of 𝐵𝑖 , this is 𝑂(𝑑). Hence, 𝜎2 ≤ 𝑘 · 𝑂(𝑑)2 = 𝑂(𝑘𝑑2).
We can thus set 𝜎2 = 𝑂(𝑘𝑑2) and apply Fact 3.6 to conclude that 𝔼𝑏[∥𝐵∥2] ≤ 𝑂(𝑑

√
𝑘 log 𝑁).

Recall that we have 𝑁 =
(𝑛
ℓ

)
≤ 𝑛ℓ (𝑛𝑘)ℓ ≤ 𝑛𝑂(ℓ ). Hence, log 𝑁 = 𝑂(ℓ log 𝑛), which finishes the

proof. □

5.1 Finding an approximately regular subgraph: proof of Lemma 5.4

In this section, we prove Lemma 5.4. We will prove Lemma 5.4 by using the strategy, due to
[Yan24], of bounding “conditional first moments”. These moment bounds form the main technical
component of the argument.

Lemma 5.6 (Conditional first moment bounds). Fix 𝑖 ∈ 𝐿. For a vertex (𝑆1 , 𝑆2), let deg𝑖(𝑆1 , 𝑆2) denote
the degree of (𝑆1 , 𝑆2) in 𝐴𝑖 .

Let (𝑢, 𝐶1) ∈ 𝐻𝑖 and (𝑢, 𝐶2) ∈ ∪𝑗∈𝑅𝐻𝑗 . Let 𝜇𝑢,𝐶1 ,𝐶2 denote the distribution over vertices that first
chooses a uniformly random edge in 𝐴𝑢,𝐶1 ,𝐶2 and then outputs a random endpoint. Then, it holds that

𝔼(𝑆1 ,𝑆2)∼𝜇𝑢,𝐶1 ,𝐶2
[deg𝑖(𝑆1 , 𝑆2)] ≤ 1 + 𝑂(1)

(
ℓ

𝑛

) 𝑞−1
𝛿𝑛𝑘 .

Claim 5.7 (Degree bound). Let 𝑑 = 𝛿𝑛𝑘𝐷
𝑁 . Then, we have that 𝑑 ≥ Ω(1) ·

(
ℓ
𝑛

) 𝑞−1
𝛿𝑛𝑘 and that(

ℓ
𝑛

) 𝑞−1
𝛿𝑛𝑘 ≥ Ω(1).
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Proof of Claim 5.7. Applying Fact 3.7, we have that

𝛿𝑛𝐷
𝑁

= 𝛿𝑛 ·
©«
(𝑞−1
𝑞−1

2

) (𝑛−(𝑞−1)
ℓ− 𝑞−1

2

)(𝑛
ℓ

) ª®®¬
2

≥ Ω(1) · 𝛿𝑛 ·
(
ℓ

𝑛

) 𝑞−1
.

Because ℓ = ⌊𝑛1−2/𝑞𝛿−2/𝑞⌋ and 𝑘 ≥ ℓ , we have
(
ℓ
𝑛

) 𝑞−1
𝛿𝑛𝑘 ≥ 1, which finishes the proof. □

We postpone the proof of Lemma 5.6 to the end of this subsection, and now use it to finish the
proof of Lemma 5.4.

Proof of Lemma 5.4 from Lemma 5.6. Fix 𝑖 ∈ [𝑘]. Let Γ be a constant (to be chosen later), and let
𝑉′
𝑖
= {(𝑆1 , 𝑆2) : deg𝑖(𝑆1 , 𝑆2) ≤ Γ𝑑}.
Let (𝑢, 𝐶1) ∈ 𝐻𝑖 and (𝑢, 𝐶2) ∈ ∪𝑗∈𝑅𝐻𝑗 . We let𝐴′

𝑖 ,𝑢,𝐶1 ,𝐶2
be the matrix where𝐴′

𝑖 ,𝑢,𝐶1 ,𝐶2
((𝑆1 , 𝑆2), (𝑇1 , 𝑇2)) =

𝐴𝑢,𝐶1 ,𝐶2((𝑆1 , 𝑆2), (𝑇1 , 𝑇2)) if (𝑆1 , 𝑆2) ∈ 𝑉′ and (𝑇1 , 𝑇2) ∈ 𝑉′, and otherwise 𝐴′
𝑖 ,𝑢,𝐶1 ,𝐶2

((𝑆1 , 𝑆2), (𝑇1 , 𝑇2)) =
0. Namely, we have “zeroed out” all rows and columns of 𝐴𝑢,𝐶1 ,𝐶2 that are not in 𝑉′. Notice that
𝐴′

𝑖 ,𝑢,𝐶1 ,𝐶2
depends on 𝑖 ∈ 𝐿 because 𝑉′ does.

The conditional moment bound from Lemma 5.6, combined with the lower bound on 𝑑 from
Claim 5.7 implies that 𝔼(𝑆1 ,𝑆2)∼𝜇𝑢,𝐶1 ,𝐶2

[deg𝑖(𝑆1 , 𝑆2)] ≤ 𝑂(𝑑). Hence, applying Markov’s inequality,
the number of vertices (𝑆1 , 𝑆2) that are adjacent to an edge labeled by (𝑢, 𝐶1 , 𝐶2) and have
deg𝑖(𝑆1 , 𝑆2) > Γ𝑑 is at most 𝑂(𝐷/Γ). Hence, there must be at least 𝐷(1−𝑂(1/Γ)) edges, i.e., nonzero
entries, in 𝐴′

𝑖 ,𝑢,𝐶,𝐶′.
Now, we let 𝐵𝑖 ,𝑢,𝐶,𝐶′ be any subgraph of 𝐴′

𝑖 ,𝑢,𝐶,𝐶′ where 𝐵𝑖 ,𝑢,𝐶,𝐶′ has exactly 𝐷′ = ⌊𝐷(1−𝑂(1/Γ))⌋
edges. This can be achieved by simply removing edges if there are too many. By choosing Γ to be a
sufficiently large constant, we ensure that 𝐷′ ≥ 𝐷/2. Note that because 𝐵𝑖 ,𝑢,𝐶,𝐶′ is the adjacency
matrix of a graph, it is a symmetric matrix.

To prove the third property, we observe that for any vertex (𝑆1 , 𝑆2), the matrix

𝐵𝑖 =
∑
𝑢∈[𝑛]

∑
(𝑢,𝐶1)∈𝐻𝑖 ,(𝑢,𝐶2)∈∪𝑗∈𝑅𝐻𝑗

𝐵𝑖 ,𝑢,𝐶1 ,𝐶2

has at most Γ𝑑 = 𝑂(𝑑) nonzero entries in the (𝑆1 , 𝑆2)-th row or column. Indeed, this follows because
it is a subgraph of the original graph 𝐴𝑖 , and if (𝑆1 , 𝑆2) had degree > Γ𝑑𝐿 in 𝐴𝑖 then it has degree 0
in 𝐵𝑖 . This finishes the proof. □

It remains to prove Lemma 5.6, which we do now.

Proof of Lemma 5.6. Let (𝑢, 𝐶1) ∈ 𝐻𝑖 and (𝑢, 𝐶2) ∈ 𝐻𝑗 for some 𝑗 ∈ 𝑅. We observe that for any
(𝑆1 , 𝑆2) ∈

([𝑛]
ℓ

)
×
([𝑛]
ℓ

)
, the vertex (𝑆1 , 𝑆2) is adjacent to at most one edge labeled by (𝑢, 𝐶1 , 𝐶2).

Hence, it follows that 𝜇𝑢,𝐶1 ,𝐶2 is uniform over pairs of sets (𝑆1 , 𝑆2) such that |𝑆1 ∩ 𝐶1 | = 𝑞−1
2 and

|𝑆2 ∩ 𝐶2 | = 𝑞−1
2 . Thus,

𝔼(𝑆1 ,𝑆2)∼𝜇𝑢,𝐶1 ,𝐶2
[deg𝑖(𝑆1 , 𝑆2)] ≤ 1 + 1

𝐷

∑
(𝑢′,𝐶′1 ,𝐶

′
2)
|{(𝑆1 , 𝑆2) : |𝑆1 ∩ 𝐶1 | = |𝑆1 ∩ 𝐶′1 | = |𝑆2 ∩ 𝐶2 | = |𝑆2 ∩ 𝐶′2 | =

𝑞 − 1
2 }|
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≤ 1 + 1
𝐷

∑
𝑍1⊆𝐶1
𝑍2⊆𝐶2

|𝑍1 |=|𝑍2 |= 𝑞−1
2

∑
(𝑢′,𝐶′1 ,𝐶

′
2)
|{(𝑆1 , 𝑆2) : 𝑍1⊆𝑆1

𝑍2⊆𝑆2
,
|𝑆1∩𝐶′1 |=

𝑞−1
2

|𝑆2∩𝐶′2 |=
𝑞−1

2
}| (because 𝑍1 ⊆ 𝑆1 implies |𝑆1 ∩ 𝐶1 | ≥

𝑞 − 1
2 )

≤ 1 + 1
𝐷

∑
𝑍1⊆𝐶1
𝑍2⊆𝐶2

|𝑍1 |=|𝑍2 |= 𝑞−1
2

∑
𝑄1⊆𝑍1
𝑄2⊆𝑍2

∑
(𝑢′,𝐶′1 ,𝐶

′
2)

𝑄1=𝐶
′
1∩𝑍1

𝑄2=𝐶
′
2∩𝑍2

|{(𝑅1 , 𝑅2) : |𝑅1 |=ℓ−|𝑍1 |
|𝑅2 |=ℓ−|𝑍2 |,

|𝑅1∩𝐶′1 |=
𝑞−1

2 −|𝑄1 |
|𝑅2∩𝐶′2 |=

𝑞−1
2 −|𝑄2 |

}| (by taking 𝑅1 = 𝑆1 \ 𝑍1)

≤ 1 + 1
𝐷

∑
𝑍1⊆𝐶1
𝑍2⊆𝐶2

|𝑍1 |=|𝑍2 |= 𝑞−1
2

∑
𝑄1⊆𝑍1
𝑄2⊆𝑍2

∑
(𝑢′,𝐶′1 ,𝐶

′
2)

𝑄1=𝐶
′
1∩𝑍1

𝑄2=𝐶
′
2∩𝑍2

(
𝑞 − 1 − |𝑄1 |
𝑞−1

2 − |𝑄1 |

) (
𝑛

ℓ − |𝑍1 | − ( 𝑞−1
2 − |𝑄1 |)

) (
𝑞 − 1 − |𝑄2 |
𝑞−1

2 − |𝑄2 |

) (
𝑛

ℓ − |𝑍2 | − ( 𝑞−1
2 − |𝑄2 |)

)

≤ 1 + 𝑂(1)
𝐷

∑
𝑍1⊆𝐶1
𝑍2⊆𝐶2

|𝑍1 |=|𝑍2 |= 𝑞−1
2

∑
𝑄1⊆𝑍1
𝑄2⊆𝑍2

∑
(𝑢′,𝐶′1 ,𝐶

′
2)

𝑄1=𝐶
′
1∩𝑍1

𝑄2=𝐶
′
2∩𝑍2

(
𝑛

ℓ − |𝑍1 | − ( 𝑞−1
2 − |𝑄1 |)

) (
𝑛

ℓ − |𝑍2 | − ( 𝑞−1
2 − |𝑄2 |)

)

Recall that 𝐷 B
(𝑞−1
𝑞−1

2

)2 (𝑛−(𝑞−1)
ℓ− 𝑞−1

2

)2
. By Fact 3.7, we have

1
𝐷

(
𝑛

ℓ − |𝑍1 | − ( 𝑞−1
2 − |𝑄1 |)

) (
𝑛

ℓ − |𝑍2 | − ( 𝑞−1
2 − |𝑄2 |)

)
≤ 𝑂(1) ·

(
ℓ

𝑛

) |𝑍1 |−|𝑄1 |+|𝑍2 |−|𝑄2 |
= 𝑂(1) ·

(
ℓ

𝑛

) (𝑞−1)−|𝑄1 |−|𝑄2 |
,

as |𝑍1 | = |𝑍2 | = 𝑞−1
2 .

For sets 𝑄1 , 𝑄2, we let 𝜇(𝑄1 , 𝑄2) be the number of (𝑢′, 𝐶′1 , 𝐶
′
2) such that 𝑄1 ⊆ 𝐶′1 and 𝑄2 ⊆ 𝐶′2.

We then have that

𝔼(𝑆1 ,𝑆2)∼𝜇𝑢,𝐶1 ,𝐶2
[deg𝑖(𝑆1 , 𝑆2)] ≤ 1 + 𝑂(1)

∑
𝑍1⊆𝐶1
𝑍2⊆𝐶2

|𝑍1 |=|𝑍2 |= 𝑞−1
2

∑
𝑄1⊆𝑍1
𝑄2⊆𝑍2

𝜇(𝑄1 , 𝑄2)
(
ℓ

𝑛

) (𝑞−1)−|𝑄1 |−|𝑄2 |
.

We now show that 𝜇(𝑄1 , 𝑄2) ≤ 𝑂(1)
(
ℓ
𝑛

) |𝑄1 |+|𝑄2 | 𝛿𝑛𝑘 where 0 ≤ |𝑄1 |, |𝑄2 | ≤ 𝑞−1
2 . We have

several cases.

(1) |𝑄1 | = 0. In this case, we know that (𝑢′, 𝐶′2) is in 𝐻𝑗 for some 𝑗 ∈ 𝑅 with 𝑄2 ⊆ 𝐶′2. We have three
subcases.

(a) |𝑄2 | = 0. Then, there are at most 𝑞𝛿𝑛 choices for (𝑢′, 𝐶′1) ∈ 𝐻𝑖 , as |𝐻𝑖 | = 𝛿𝑛 and we
have 𝑞 choices for the special element 𝑢. Furthermore, given 𝑢, there are at most 𝑘

choices for (𝑢′, 𝐶′2) with (𝑢′, 𝐶′2) ∈ ∪𝑗∈𝑅𝐻𝑗 , as each 𝐻𝑗 is a matching and |𝑅 | ≤ 𝑘. Thus,
𝜇(𝑄1 , 𝑄2) ≤ 𝑂(𝛿𝑛𝑘) in this case, which satisfies the desired bound as |𝑄1 | + |𝑄2 | = 0.

(b) |𝑄2 | = 1. Then, there are at most 𝑞𝑘 choices for (𝑢′, 𝐶′2) ∈ ∪𝑗∈𝑅𝐻𝑗 with 𝑄2 ⊆ 𝐶′2. Indeed,
this is because each 𝐻𝑗 is matching, and |𝑅 | ≤ 𝑘. As 𝐻𝑖 is a matching, there is at most one
choice for (𝑢′, 𝐶′1) ∈ 𝐻𝑖 . Hence, 𝜇(𝑄1 , 𝑄2) ≤ 𝑂(𝑘) in this case, which is ≤ 𝑂(1)

(
ℓ
𝑛

)
𝛿𝑛𝑘.
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(c) |𝑄2 | ≥ 2. Then, there are at most 𝑞𝑑|𝑄2 | choices for (𝑢′, 𝐶′2) ∈ ∪𝑗∈𝑅𝐻𝑗 , by regularity. As
before, given (𝑢, 𝐶2), there is at most one choice for 𝐶′1 ∈ 𝐻𝑖 . Hence, 𝜇(𝑄1 , 𝑄2) ≤ 𝑂(𝑑|𝑄2 |) in
this case. Since 2 ≤ |𝑄2 | ≤ 𝑞−1

2 , we have that 𝑑|𝑄2 | =
(
ℓ
𝑛

) |𝑄2 |− 3
2 𝑘, which is at most

(
ℓ
𝑛

) |𝑄2 | 𝛿𝑛𝑘

since
(
ℓ
𝑛

) 3
2 𝛿𝑛 ≥ 1.

(2) |𝑄1 | ≥ 1. Then, there are at most 𝑞 choices for (𝑢′, 𝐶′1) ∈ 𝐻𝑖 . It then follows that we have
determined |𝑄2 | + 1 elements of (𝑢′, 𝐶′2) ∈ ∪𝑗∈𝑅𝐻𝑗 , namely 𝑢′ along with 𝑄2. We have two
subcases.

(a) |𝑄2 | = 0. Then, we have determined one element of (𝑢′, 𝐶′2), and so we have at most
𝑘 choices. Thus, 𝜇(𝑄1 , 𝑄2) ≤ 𝑂(𝑘) in this case, which is at most 𝑂(1)

(
ℓ
𝑛

) |𝑄1 | 𝛿𝑛𝑘, since
|𝑄1 | ≤ 𝑞−1

2 .

(b) |𝑄2 | ≥ 1. Then, we have determined at least two elements of (𝑢′, 𝐶′2). As |𝑄2 | ≤ 𝑞−1
2 ,

we have that |𝑄2 | + 1 ≤ 𝑞+1
2 , and so we have at most 𝑑|𝑄2 |+1 choices in this case. Thus,

𝜇(𝑄1 , 𝑄2) ≤ 𝑂(𝑑|𝑄2 |+1). As 𝑑|𝑄2 |+1 =
(
ℓ
𝑛

) |𝑄2 |− 1
2 𝑘 ≤

(
ℓ
𝑛

) 𝑞−1
2 +|𝑄2 | 𝛿𝑛𝑘 ≤

(
ℓ
𝑛

) |𝑄1 |+|𝑄2 | 𝛿𝑛𝑘, where
we use that |𝑄1 | ≤ 𝑞−1

2 , we again have the desired bound on 𝜇(𝑄1 , 𝑄2).

We have thus shown that 𝜇(𝑄1 , 𝑄2) ≤ 𝑂(1)
(
ℓ
𝑛

) |𝑄1 |+|𝑄2 | 𝛿𝑛𝑘. Hence,

𝔼(𝑆1 ,𝑆2)∼𝜇𝑢,𝐶1 ,𝐶2
[deg𝑖(𝑆1 , 𝑆2)] ≤ 1 + 𝑂(1)

∑
𝑍1⊆𝐶1
𝑍2⊆𝐶2

|𝑍1 |=|𝑍2 |= 𝑞−1
2

∑
𝑄1⊆𝑍1
𝑄2⊆𝑍2

(
ℓ

𝑛

) |𝑄1 |+|𝑄2 |
𝛿𝑛𝑘 ·

(
ℓ

𝑛

) (𝑞−1)−|𝑄1 |−|𝑄2 |

≤ 1 + 𝑂(1)
(
ℓ

𝑛

) 𝑞−1
𝛿𝑛𝑘 ,

which finishes the proof. □

6 Refuting the Bipartite Instances

In this section, we prove Theorem 4.3, which we recall below.

Theorem 4.3 (Refuting the bipartite instances). Let 𝑞 ≥ 3 be an odd integer, and let 2 ≤ 𝑠 ≤ 𝑞+1
2 . Let

𝑘, 𝑛 be positive integers and 𝛿 ∈ (0, 1). Let ℓ = ⌊𝑛1−2/𝑞 · 𝛿−2/𝑞⌋, and suppose that 𝑘 ≥ 4ℓ . For 2 ≤ 𝑡 ≤ 𝑞+1
2 ,

let 𝑑𝑡 B
(
ℓ
𝑛

) 𝑡− 3
2 𝑘. Let 𝑃𝑠 ⊆

([𝑛]
𝑠

)
be a set with 4ℓ ≤ |𝑃𝑠 | ≤ 𝑂

(
𝑛𝑘
𝑑𝑠

)
.

Let 𝐻(𝑠)1 , . . . , 𝐻
(𝑠)
𝑘

be bipartite (𝑞 − 𝑠 + 1)-uniform hypergraph matchings on
( [𝑛]
𝑞−𝑠

)
× 𝑃𝑠 of size at most

𝛿𝑛. Let Ψ(𝑠)
𝑏
(𝑥, 𝑦) be the polynomial in the variable 𝑥1 , . . . , 𝑥𝑛 and {𝑦𝑝}𝑝∈𝑃𝑠 defined as

Ψ
(𝑠)
𝑏
(𝑥, 𝑦) =

𝑘∑
𝑖=1

∑
(𝐶,𝑝)∈𝐻𝑖

𝑏𝑖𝑦𝑝

∏
𝑣∈𝐶

𝑥𝑣 .

Then, 𝔼𝑏←{−1,1}𝑘 [val(Ψ(𝑠)
𝑏
)] ≤ 𝛿𝑛𝑂(

√
𝑘ℓ log 𝑛).
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For notational simplicity, we will assume that 𝑛1−2/𝑞 · 𝛿−2/𝑞 is an integer, so that ℓ = 𝑛1−2/𝑞 · 𝛿−2/𝑞 .
We note that if 𝑛1−2/𝑞 · 𝛿−2/𝑞 is not an integer, then we can set ℓ = ⌊𝑛1−2/𝑞 · 𝛿−2/𝑞⌋, and this only
changes the bounds of the following proof by an 𝑂(1)-factor. We will also write 𝐻𝑖 instead of 𝐻(𝑠)

𝑖

to simplify notation.
We begin by defining the following Kikuchi matrix.

Definition 6.1 (Kikuchi matrix for bipartite hypergraphs). For each 𝐶 ∈
( [𝑛]
𝑞−𝑠

)
and 𝑝 ∈ 𝑃𝑠 , we define

the bipartite graph 𝐺𝐶,𝑝 , parametrized by ℓ , as follows. The left vertex set 𝑉𝐿 is the set of pairs of
sets (𝑆1 , 𝑆2)where 𝑆1 ∈

([𝑛]
ℓ

)
and 𝑆2 ∈

(𝑃𝑠

ℓ

)
. The right vertex set 𝑉𝑅 is the set of pairs of sets (𝑇1 , 𝑇2)

where 𝑇1 ∈
( [𝑛]
ℓ+1−𝑠

)
and 𝑇2 ∈

( 𝑃𝑠

ℓ+1
)
. We add an edge ((𝑆1 , 𝑆2), (𝑇1 , 𝑇2)), which we view as “labeled” by

𝐶, if the following conditions hold:

(1) 𝑆1 ⊕ 𝑇1 = 𝐶 and 𝑆2 ⊕ 𝑇2 = {𝑝};

(2) |𝑆1 ∩ 𝐶 | = 𝑞−1
2 (and so |𝑇1 ∩ 𝐶 | = 𝑞+1

2 − 𝑠).

We can naturally view the graph 𝐺𝐶,𝑝 as corresponding to its bipartite adjacency matrix 𝐴𝐶,𝑝 ∈
{0, 1}𝑉𝐿×𝑉𝑅 . For each 𝑖 ∈ [𝑘], we define the matrix 𝐴𝑖 =

∑
(𝐶,𝑝)∈𝐻𝑖

𝐴𝐶,𝑝 . We let 𝐴 =
∑𝑘

𝑖=1 𝑏𝑖𝐴𝑖 .

Claim 6.2. For each 𝐶 ∈
( [𝑛]
𝑞−𝑠

)
and 𝑝 ∈ 𝑃𝑠 , the matrix 𝐴𝐶,𝑝 defined in Definition 6.1 satisfies the

following properties.

(1) The matrix 𝐴𝐶,𝑝 has exactly 𝐷 =
(𝑞−𝑠
𝑞−1

2

) (𝑛−(𝑞−𝑠)
ℓ− 𝑞−1

2

) ( |𝑃𝑠 |−1
ℓ

)
nonzero entries.

(2) For each 𝑥 ∈ {−1, 1}𝑛 and 𝑦 ∈ {−1, 1}𝑃𝑠 , let 𝑧 ∈ {−1, 1}𝑉𝐿 and 𝑤 ∈ {−1, 1}𝑉𝑅 be defined as:
𝑧𝑆1 ,𝑆2 :=

∏
𝑣∈𝑆1 𝑥𝑣

∏
𝑝∈𝑆2 𝑦𝑝 and 𝑤𝑇1 ,𝑇2 :=

∏
𝑣∈𝑇1 𝑥𝑣

∏
𝑝∈𝑇2 𝑦𝑝 . Then, 𝑧⊤𝐴𝐶,𝑝𝑤 = 𝐷𝑦𝑝

∏
𝑣∈𝐶 𝑥𝑣 .

In particular, 𝑧⊤𝐴𝑤 = 𝐷Ψ(𝑥, 𝑦).
As additional notation, we let 𝑁𝐿 B |𝑉𝐿 |, 𝑁𝑅 B |𝑉𝑅 |. Finally, we let 𝑑𝐿 and 𝑑𝑅 denote (upper

bounds on) the average left and right degrees of each 𝐴𝑖 , i.e., 𝑑𝐿 = 𝛿𝑛𝐷
𝑁𝐿

and 𝑑𝑅 = 𝛿𝑛𝐷
𝑁𝑅

.

Proof. To prove Item (1), we will count the number of edges. Let 𝐶 ∈
( [𝑛]
𝑞−𝑠

)
, 𝑝 ∈ 𝑃𝑠 . By definition,

we have an edge ((𝑆1 , 𝑆2), (𝑇1 , 𝑇2)) in 𝐺𝐶,𝑝 iff |𝑆1 ∩ 𝐶 | = 𝑞−1
2 and 𝑝 ∉ 𝑆2. The number of such 𝑆1 is(𝑞−𝑠

𝑞−1
2

) (𝑛−(𝑞−𝑠)
ℓ− 𝑞−1

2

)
, and the number of such 𝑆2 is

( |𝑃𝑠 |−1
ℓ

)
. Hence, Item (1) holds.

To prove Item (2), we observe that

𝑧⊤𝐴𝐶,𝑝𝑤 =
∑

((𝑆1 ,𝑆2),(𝑇1 ,𝑇2))∈𝐸(𝐺𝐶,𝑝)
𝑧𝑆1 ,𝑆2𝑤𝑇1 ,𝑇2 =

∑
((𝑆1 ,𝑆2),(𝑇1 ,𝑇2))∈𝐸(𝐺𝐶,𝑝)

∏
𝑣∈𝑆1

𝑥𝑣

∏
𝑝′∈𝑆2

𝑦𝑝′
∏
𝑣∈𝑇1

𝑥𝑣

∏
𝑝′∈𝑇2

𝑦𝑝′

=
∑

((𝑆1 ,𝑆2),(𝑇1 ,𝑇2))∈𝐸(𝐺𝐶,𝑝)

∏
𝑣∈𝑆1⊕𝑇1

𝑥𝑣

∏
𝑝′∈𝑆2⊕𝑇2

𝑦𝑝′ =
∑

((𝑆1 ,𝑆2),(𝑇1 ,𝑇2))∈𝐸(𝐺𝐶,𝑝)
𝑦𝑝 ·

∏
𝑣∈𝐶

𝑥𝑣 = 𝐷𝑦𝑝 ·
∏
𝑣∈𝐶

𝑥𝑣 .

The “in particular” follows immediately from Item (2) and the definition of 𝐴 and the 𝐴𝑖’s. □

The key technical lemma, which we shall prove in Section 6.1, shows that we can find an
approximately biregular subgraph of 𝐴𝑖 for each 𝑖 ∈ [𝑘].
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Lemma 6.3 (Approximately regular submatrix). Let 𝐴1 , . . . , 𝐴𝑘 be defined as in Definition 6.1. There
exists a positive integer 𝐷′ with 𝐷 ≥ 𝐷′ ≥ 𝐷

2 such that the following holds. For each 𝑖 ∈ [𝑘] and (𝐶, 𝑝) ∈ 𝐻𝑖 ,
there exists a matrix 𝐵𝑖 ,𝐶,𝑝 ∈ {0, 1}𝑉𝐿×𝑉𝑅 with the following properties:

(1) 𝐵𝑖 ,𝐶,𝑝 is a “subgraph” of 𝐴𝐶,𝑝 . Namely, if 𝐵𝑖 ,𝐶,𝑝((𝑆1 , 𝑆2), (𝑇1 , 𝑇2)) = 1, then 𝐴𝐶,𝑝((𝑆1 , 𝑆2), (𝑇1 , 𝑇2)) = 1.

(2) 𝐵𝑖 ,𝐶,𝑝 has exactly 𝐷′ nonzero entries.

(3) The matrix 𝐵𝑖 B
∑
(𝐶,𝑝)∈𝐻𝑖

𝐵𝑖 ,𝐶,𝑝 has at most 𝑂(𝑑𝐿) nonzero entries per row and 𝑂(𝑑𝑅) nonzero entries
per column.

With Lemma 6.3 in hand, we can now finish the proof. Let 𝐵𝑖 be the matrix defined in Lemma 6.3.
We observe that Items (1), (2), and (3) in Lemma 6.3, along with Claim 6.2, imply that for each 𝑥 ∈
{−1, 1}𝑛 and 𝑦 ∈ {−1, 1}𝑃𝑠 , there exist 𝑧 ∈ {−1, 1}𝑉𝐿 and 𝑤 ∈ {−1, 1}𝑉𝑅 such that 𝑧⊤𝐵𝑤 = 𝐷′Ψ(𝑥, 𝑦).
Hence, for any 𝑥 ∈ {−1, 1}𝑛 and 𝑦 ∈ {−1, 1}𝑃𝑠 , it holds that 𝐷′Ψ(𝑥, 𝑦) ≤ ∥𝐵∥2 ·

√
𝑁𝐿𝑁𝑅. We thus

have that 𝔼𝑏[val(Ψ)] ≤
√
𝑁𝐿𝑁𝑅

𝐷′ 𝔼𝑏[∥𝐵∥2].
It remains to bound 𝔼𝑏[∥𝐵∥2], which we do using Matrix Khintchine (Fact 3.6) in the following

claim.

Claim 6.4. Let 𝐵 be the matrix defined in Lemma 6.3. Then, 𝔼𝑏[∥𝐵∥2] ≤ 𝑂(
√
𝑑𝐿𝑑𝑅𝑘ℓ log 𝑛).

We postpone the proof of Claim 6.4 to the end of this section, and finish the proof of Theorem 4.3.
We have that

𝔼𝑏[val(Ψ)] ≤
√
𝑁𝐿𝑁𝑅

𝐷′
𝔼𝑏[∥𝐵∥2] ≤

2
√
𝑁𝐿𝑁𝑅

𝐷
𝑂(

√
𝑑𝐿𝑑𝑅𝑘ℓ log 𝑛)

= 𝑂(1) ·
√

𝑁𝐿𝑑𝐿𝑁𝑅𝑑𝑅𝑘ℓ log 𝑛

𝐷2 = 𝛿𝑛𝑂(
√
𝑘ℓ log 𝑛) ,

as required, where we recall that 𝑑𝐿 = 𝛿𝑛𝐷/𝑁𝐿 and 𝑑𝑅 = 𝛿𝑛𝐷/𝑁𝑅.
We now finish the proof of Claim 6.4.

Proof of Claim 6.4. By Matrix Khintchine (Fact 3.6), we have 𝔼𝑏[∥𝐵∥2] ≤ 𝑂(
√
𝜎2 log(𝑁𝐿 + 𝑁𝑅)),

where 𝜎2 = max(∥∑𝑘
𝑖=1 𝐵𝑖𝐵

⊤
𝑖
∥2 , ∥

∑𝑘
𝑖=1 𝐵

⊤
𝑖
𝐵𝑖 ∥2). Since 𝐵𝑖𝐵

⊤
𝑖

is symmetric, ∥𝐵𝑖𝐵
⊤
𝑖
∥2 is bounded by the

maximum ℓ1-norm of a row in this matrix. We observe that the ℓ1-norm of the (𝑆1 , 𝑆2)-th row in
𝐵𝑖𝐵

⊤
𝑖

is simply the number of length 2 walks starting from the left vertex (𝑆1 , 𝑆2) in the bipartite
graph with adjacency matrix 𝐵𝑖 . As this graph has maximum left degree 𝑂(𝑑𝐿) and maximum right
degree 𝑂(𝑑𝑅), it follows that this is at most 𝑂(𝑑𝐿𝑑𝑅). Similarly, the maximum ℓ1-norm of a row in
𝐵⊤
𝑖
𝐵𝑖 is the number of length 2 walks starting from the right vertex (𝑇1 , 𝑇2) in the bipartite graph

𝐵𝑖 , and this is at most 𝑂(𝑑𝑅𝑑𝐿). Hence, ∥∑𝑘
𝑖=1 𝐵𝑖𝐵

⊤
𝑖
∥2 ≤

∑𝑘
𝑖=1 𝑂(𝑑𝐿𝑑𝑅) = 𝑂(𝑘𝑑𝐿𝑑𝑅), and similarly

∥∑𝑘
𝑖=1 𝐵

⊤
𝑖
𝐵𝑖 ∥2 ≤ 𝑂(𝑘𝑑𝐿𝑑𝑅) as well.

We can thus set 𝜎2 = 𝑂(𝑘𝑑𝐿𝑑𝑅) and apply Fact 3.6 to conclude that𝔼𝑏[∥𝐵∥2] ≤ 𝑂(
√
𝑘𝑑𝐿𝑑𝑅 log(𝑁𝐿 + 𝑁𝑅)).

Recall that we have 𝑁𝐿 =
(𝑛
ℓ

) ( |𝑃𝑠 |
ℓ

)
≤ 𝑛ℓ (𝑛𝑘)ℓ ≤ 𝑛𝑂(ℓ ) and 𝑁𝑅 =

( 𝑛
ℓ+1−𝑠

) ( |𝑃𝑠 |
ℓ+1

)
≤ 𝑛ℓ (𝑛𝑘)ℓ+1 ≤ 𝑛𝑂(ℓ ).

Hence, log(𝑁𝐿 + 𝑁𝑅) = 𝑂(ℓ log 𝑛), which finishes the proof. □
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6.1 Finding an approximately regular subgraph: proof of Lemma 6.3

In this section, we prove Lemma 6.3. Similar to Lemma 5.4, we will prove Lemma 6.3 by using the
strategy, due to [Yan24], of bounding “conditional first moments”.

Lemma 6.5 (Conditional first moment bounds). Fix 𝑖 ∈ [𝑘]. For a left vertex (𝑆1 , 𝑆2), let deg𝑖 ,𝐿(𝑆1 , 𝑆2)
denote the degree of (𝑆1 , 𝑆2) in 𝐴𝑖 , and for a right vertex (𝑇1 , 𝑇2), let deg𝑖 ,𝑅(𝑇1 , 𝑇2) denote the right degree in
𝐴𝑖 .

Let (𝐶, 𝑝) ∈ 𝐻𝑖 , and let 𝜇𝐿,𝐶,𝑝 denote the distribution over left vertices that first chooses a uniformly
random edge in 𝐴𝐶,𝑝 and outputs its left endpoint. Similarly, let 𝜇𝑅,𝐶,𝑝 denote the distribution that outputs
the right endpoint. Then, it holds that

𝔼(𝑆1 ,𝑆2)∼𝜇𝐿,𝐶,𝑝
[deg𝑖 ,𝐿(𝑆1 , 𝑆2)] ≤ 1 + 𝑂(1)

(
ℓ

𝑛

) 𝑞−1
2

𝛿𝑛

𝔼(𝑇1 ,𝑇2)∼𝜇𝑅,𝐶,𝑝
[deg𝑖 ,𝑅(𝑇1 , 𝑇2)] ≤ 1 + 𝑂(1)

(
ℓ

𝑛

) 𝑞+1
2 −𝑠 ℓ

|𝑃𝑠 |
𝛿𝑛 .

Claim 6.6 (Degree bound). Let 𝑑𝐿 and 𝑑𝑅 be the quantities defined in Definition 6.1. Then, for the
choice of parameters given in Theorem 4.3, it holds that

𝑑𝐿 ≥ Ω
©«
(
ℓ

𝑛

) 𝑞−1
2

𝛿𝑛
ª®¬ and

(
ℓ

𝑛

) 𝑞−1
2

𝛿𝑛 ≥ 1

𝑑𝑅 ≥ Ω
©«
(
ℓ

𝑛

) 𝑞+1
2 −𝑠 ℓ

|𝑃𝑠 |
𝛿𝑛

ª®¬ and
(
ℓ

𝑛

) 𝑞+1
2 −𝑠 ℓ

|𝑃𝑠 |
𝛿𝑛 ≥ 1 .

We postpone the proofs of Lemma 6.5 and Claim 6.6 to the end of this subsection, and now use
them to finish the proof of Lemma 6.3.

Proof of Lemma 6.3 from Lemma 6.5 and Claim 6.6. Fix 𝑖 ∈ [𝑘]. Let Γ be a constant (to be chosen later),
and let 𝑉′

𝐿
= {(𝑆1 , 𝑆2) : deg𝑖 ,𝐿(𝑆1 , 𝑆2) ≤ Γ𝑑𝐿}, and let 𝑉′

𝑅
= {(𝑇1 , 𝑇2) : deg𝑖 ,𝑅(𝑇1 , 𝑇2) ≤ Γ𝑑𝑅}.

Let (𝐶, 𝑝) ∈ 𝐻𝑖 . We let 𝐴′
𝑖 ,𝐶,𝑝

be the matrix where 𝐴′
𝑖 ,𝐶,𝑝
((𝑆1 , 𝑆2), (𝑇1 , 𝑇2)) = 𝐴𝐶,𝑝((𝑆1 , 𝑆2), (𝑇1 , 𝑇2))

if (𝑆1 , 𝑆2) ∈ 𝑉′
𝐿

and (𝑇1 , 𝑇2) ∈ 𝑉′
𝑅
, and otherwise 𝐴′

𝑖 ,𝐶,𝑝
((𝑆1 , 𝑆2), (𝑇1 , 𝑇2)) = 0. Namely, we have

“zeroed out” all rows of 𝐴𝐶,𝑝 that are not in 𝑉′
𝐿

and all columns that are not in 𝑉′
𝑅
.

The left degree conditional moment bound from Lemma 6.5, combined with the lower bound
on 𝑑𝐿 from Claim 6.6 implies that 𝔼(𝑆1 ,𝑆2)∼𝜇𝐿,𝐶,𝑝

[deg𝑖 ,𝐿(𝑆1 , 𝑆2)] ≤ 𝑂(𝑑𝐿). Similarly, we have
𝔼(𝑇1 ,𝑇2)∼𝜇𝑅,𝐶,𝑝

[deg𝑖 ,𝑅(𝑇1 , 𝑇2)] ≤ 𝑂(𝑑𝑅). Hence, applying Markov’s inequality, the number of left
vertices (𝑆1 , 𝑆2) that are adjacent to an edge labeled by (𝐶, 𝑝) and have deg𝑖 ,𝐿(𝑆1 , 𝑆2) > Γ𝑑𝐿 is at
most 𝑂(𝐷/Γ). Similarly, the number of right vertices (𝑇1 , 𝑇2) that are adjacent to an edge labeled by
(𝐶, 𝑝) and have deg𝑖 ,𝑅(𝑇1 , 𝑇2) > Γ𝑑𝑅 is at most 𝑂(𝐷/Γ). Hence, there must be at least 𝐷(1 −𝑂(1/Γ))
edges, i.e., nonzero entries, in 𝐴′

𝑖 ,𝐶,𝑝
.

Now, we let 𝐵𝑖 ,𝐶,𝑝 be any subgraph of 𝐴′
𝑖 ,𝐶,𝑝

where 𝐵𝑖 ,𝐶,𝑝 has exactly 𝐷′ = ⌊𝐷(1 − 𝑂(1/Γ))⌋
edges. This can be achieved by simply removing edges if there are too many. By choosing Γ to be a
sufficiently large constant, we ensure that 𝐷′ ≥ 𝐷/2.
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To prove the third property, we observe that for any left vertex (𝑆1 , 𝑆2), the matrix 𝐵𝑖 =∑
(𝐶,𝑝)∈𝐻𝑖

𝐵𝑖 ,𝐶,𝑝 has at most Γ𝑑𝐿 = 𝑂(𝑑𝐿) nonzero entries in the (𝑆1 , 𝑆2)-th row. Indeed, this follows
because it is a subgraph of the original graph 𝐴𝑖 , and if (𝑆1 , 𝑆2) had degree > Γ𝑑𝐿 in 𝐴𝑖 then it has
degree 0 in 𝐵𝑖 . Similarly, any right vertex (𝑇1 , 𝑇2) has degree at most 𝑂(𝑑𝑅) in the matrix 𝐵𝑖 . This
finishes the proof. □

It remains to prove Lemma 6.5 and Claim 6.6, which we do now.

Proof of Lemma 6.5. Let (𝐶, 𝑝) ∈ 𝐻𝑖 be an edge. We will first compute the left degree and then the
right degree. We observe that for any (𝑆1 , 𝑆2) ∈ 𝑉𝐿, the vertex (𝑆1 , 𝑆2) is adjacent to at most one
edge labeled by (𝐶, 𝑝). Hence, it follows that 𝜇𝐿,𝐶,𝑝 is uniform over pairs of sets (𝑆1 , 𝑆2) such that
|𝑆1 ∩ 𝐶 | = 𝑞−1

2 and 𝑝 ∉ 𝑆2. We have

𝔼(𝑆1 ,𝑆2)∼𝜇𝐿,𝐶,𝑝
[deg𝑖 ,𝐿(𝑆1 , 𝑆2)] = 1 + 1

𝐷

∑
(𝐶′,𝑝′)∈𝐻𝑖\{(𝐶,𝑝)}

|{(𝑆1 , 𝑆2) : |𝑆1 ∩ 𝐶 | = |𝑆1 ∩ 𝐶′ | =
𝑞 − 1

2 and 𝑝, 𝑝′ ∉ 𝑆2}|

≤ 1 + 𝛿𝑛 − 1
𝐷

(
𝑞 − 𝑠
𝑞−1

2

)2 (
𝑛 − 2(𝑞 − 𝑠)
ℓ − (𝑞 − 1)

) (
|𝑃𝑠 | − 2

ℓ

)
,

where we use that |𝐻𝑖 | ≤ 𝛿𝑛.
Applying Fact 3.7 and using that |𝑃𝑠 | ≥ 4ℓ , we have

1
𝐷

(
𝑞 − 𝑠
𝑞−1

2

)2 (
𝑛 − 2(𝑞 − 𝑠)
ℓ − (𝑞 − 1)

) (
|𝑃𝑠 | − 2

ℓ

)
=

1(𝑞−𝑠
𝑞−1

2

) (𝑛−(𝑞−𝑠)
ℓ− 𝑞−1

2

) ( |𝑃𝑠 |−1
ℓ

) (𝑞 − 𝑠
𝑞−1

2

)2 (
𝑛 − 2(𝑞 − 𝑠)
ℓ − (𝑞 − 1)

) (
|𝑃𝑠 | − 2

ℓ

)
=

≤ 𝑂(1)
(
ℓ

𝑛

) 𝑞−1
2 1( |𝑃𝑠 |−1

ℓ

) (|𝑃𝑠 | − 2
ℓ

)
≤ 𝑂(1)

(
ℓ

𝑛

) 𝑞−1
2

.

Hence, 𝔼(𝑆1 ,𝑆2)∼𝜇𝐿,𝐶,𝑝
[deg𝑖 ,𝐿(𝑆1 , 𝑆2)] ≤ 1 + 𝑂(1)

(
ℓ
𝑛

) 𝑞−1
2 𝛿𝑛.

We now compute 𝔼(𝑇1 ,𝑇2)∼𝜇𝑅,𝐶,𝑝
[deg𝑖 ,𝑅(𝑇1 , 𝑇2)]. As before, for any (𝑇1 , 𝑇2) ∈ 𝑉𝑅, the vertex (𝑇1 , 𝑇2)

is adjacent to at most one edge labeled by (𝐶, 𝑝). So, it follows that 𝜇𝑅,𝐶,𝑝 is uniform over pairs of
sets (𝑇1 , 𝑇2) such that |𝑇1 ∩ 𝐶 | = 𝑞+1

2 − 𝑠 and 𝑝 ∈ 𝑇2. We have

𝔼(𝑇1 ,𝑇2)∼𝜇𝑅,𝐶,𝑝
[deg𝑖 ,𝑅(𝑇1 , 𝑇2)] = 1 + 1

𝐷

∑
(𝐶′,𝑝′)∈𝐻𝑖\{(𝐶,𝑝)}

|{(𝑇1 , 𝑇2) : |𝑇1 ∩ 𝐶 | = |𝑇1 ∩ 𝐶′ | = 𝑞 + 1
2 − 𝑠 and 𝑝, 𝑝′ ∈ 𝑇2}|

≤ 1 + 𝛿𝑛 − 1
𝐷

(
𝑞 − 𝑠
𝑞+1

2 − 𝑠

)2 (
𝑛 − 2(𝑞 − 𝑠)

(ℓ + 1 − 𝑠) − (𝑞 + 1) + 2𝑠

) (
|𝑃𝑠 | − 2
ℓ − 1

)
We have

1
𝐷

(
𝑞 − 𝑠
𝑞+1

2 − 𝑠

)2 (
𝑛 − 2(𝑞 − 𝑠)

(ℓ + 1 − 𝑠) − (𝑞 + 1) + 2𝑠

) (
|𝑃𝑠 | − 2
ℓ − 1

)
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=
1(𝑞−𝑠

𝑞−1
2

) (𝑛−(𝑞−𝑠)
ℓ− 𝑞−1

2

) ( |𝑃𝑠 |−1
ℓ

) ( 𝑞 − 𝑠
𝑞+1

2 − 𝑠

)2 (
𝑛 − 2(𝑞 − 𝑠)

(ℓ + 1 − 𝑠) − (𝑞 + 1) + 2𝑠

) (
|𝑃𝑠 | − 2
ℓ − 1

)
=

1(𝑛−(𝑞−𝑠)
ℓ− 𝑞−1

2

) ( |𝑃𝑠 |−1
ℓ

) ( 𝑞 − 𝑠
𝑞+1

2 − 𝑠

) (
𝑛 − 2(𝑞 − 𝑠)
ℓ − 𝑞 + 𝑠

) (
|𝑃𝑠 | − 2
ℓ − 1

)

≤ 𝑂(1)
(
ℓ

𝑛

) 𝑞+1
2 −𝑠 ℓ

|𝑃𝑠 |
,

where the last inequality is by Fact 3.7 and uses that |𝑃𝑠 | ≥ 4ℓ . Hence, 𝔼(𝑇1 ,𝑇2)∼𝜇𝑅,𝐶,𝑝
[deg𝑖 ,𝑅(𝑇1 , 𝑇2)] ≤

1 + 𝑂(1)
(
ℓ
𝑛

) 𝑞+1
2 −𝑠 ℓ

|𝑃𝑠 | 𝛿𝑛. □

Proof of Claim 6.6. We observe that by Fact 3.7 and that |𝑃𝑠 | ≥ 4ℓ ,

𝛿𝑛𝐷
𝑁𝐿

= 𝛿𝑛 ·

(𝑞−𝑠
𝑞−1

2

) (𝑛−(𝑞−𝑠)
ℓ− 𝑞−1

2

) ( |𝑃𝑠 |−1
ℓ

)(𝑛
ℓ

) ( |𝑃𝑠 |
ℓ

) ≥ 𝛿𝑛 ·Ω(1)
(
ℓ

𝑛

) 𝑞−1
2

.

Because ℓ = 𝑛1−2/𝑞𝛿−2/𝑞 , we have
(
ℓ
𝑛

) 𝑞−1
2 𝛿𝑛 ≥ 1, which finishes the case for the left degree.

We also have that

𝛿𝑛𝐷
𝑁𝑅

= 𝛿𝑛 ·

(𝑞−𝑠
𝑞−1

2

) (𝑛−(𝑞−𝑠)
ℓ− 𝑞−1

2

) ( |𝑃𝑠 |−1
ℓ

)( 𝑛
ℓ+1−𝑠

) ( |𝑃𝑠 |
ℓ+1

) ≥ 𝛿𝑛 ·Ω(1)
(
ℓ

𝑛

) 𝑞+1
2 −𝑠 ℓ

|𝑃𝑠 |
.

Now, because |𝑃𝑠 | ≤ 𝑛𝑘/𝑑𝑠 where 𝑑𝑠 =
(
ℓ
𝑛

) 𝑠− 3
2 𝑘 and ℓ = 𝑛1−2/𝑞𝛿−2/𝑞 , it follows that 𝛿𝑛

(
ℓ
𝑛

) 𝑞+1
2 −𝑠 ℓ

|𝑃𝑠 | ≥

𝛿𝑛
(
ℓ
𝑛

) 𝑞+1
2 −𝑠 ℓ

𝑛

(
ℓ
𝑛

) 𝑠− 3
2 = 𝛿𝑛

(
ℓ
𝑛

) 𝑞
2 ≥ 1. This finishes the case for the right degree. □
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