
Catalytic Communication

Edward Pyne1, Nathan S. Sheffield1, and William Wang1

epyne@mit.edu, shefna@mit.edu, wmwang@mit.edu
1Massachusetts Institute of Technology

Abstract

The study of space-bounded computation has drawn extensively from ideas and results in the field of
communication complexity. Catalytic Computation (Buhrman, Cleve, Koucký, Loff and Speelman, STOC
2013) studies the power of bounded space augmented with a pre-filled hard drive that can be used non-
destructively during the computation. Presently, many structural questions in this model remain open.
Towards a better understanding of catalytic space, we define a model of catalytic communication com-
plexity and prove new upper and lower bounds.

In our model, Alice and Bob share a blackboard with a tiny number of free bits, and a larger
section with an arbitrary initial configuration. They must jointly compute a function of their inputs,
communicating only via the blackboard, and must always reset the blackboard to its initial configuration.
We prove several upper and lower bounds:

i) We characterize the simplest nontrivial model, that of one bit of free space and three rounds, in
terms of F2 rank. In particular, we give natural problems that are solvable with a minimal-sized
blackboard that require near-maximal (randomized) communication complexity, and vice versa.

ii) We show that allowing constantly many free bits, as opposed to one, allows an exponential im-
provement on the size of the blackboard for natural problems. To do so, we connect the problem
to existence questions in extremal graph theory.

iii) We give tight connections between our model and standard notions of non-uniform catalytic com-
putation. Using this connection, we show that with an arbitrary constant number of rounds and
bits of free space, one can compute all functions in TC0.

We view this model as a step toward understanding the value of filled space in computation.

1 Introduction

Communication complexity has proven an essential tool in analyzing the power of space in computation. For
the well-studied problem of derandomizing space-bounded computation, i.e. proving BPL = L, the frontier
pseudorandom generators of [Nis92; INW94] are analyzed by considering the space-bounded algorithm as a
communication protocol. There has been extensive work analyzing restricted classes of space-bounded algo-
rithms, again relying on this connection [Bra+14; PV21; Coh+21]. Other works have tightly characterized
the space required to solve fundamental problems such as estimating the bias of a coin [BV10; BGW20;
BGZ21], using sophisticated measures of information complexity.

Concurrently, a new model of bounded-space computation known as catalytic computation was introduced
by Buhrman, Cleve, Koucký, Loff and Speelman [Buh+14], and used to solve fundamental computational
problems more efficiently. In the Catalytic Logspace (CL) model, an algorithm receives an n-bit input,
O(log n) bits of standard working space, and an auxiliary poly(n) bit catalytic tape τ . This tape has an ar-
bitrary initial configuration, and must be reset to that starting configuration at the end of the computation.
Despite a possible intuition that such a tape would not be useful, they showed that CL is likely to be strictly
stronger than L — in particular, it contains logspace-uniform TC1, and thus nondeterministic logspace (NL).
Recently, Cook and Mertz used catalytic algorithms to show that the tree-evaluation problem, a candidate
problem for separating L and P, can in fact be solved by an algorithm running in space O(log n log log n),

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 188 (2024)

contradicting long-standing prior beliefs [CM20; CM21; CM23]. Due to the striking power of this model,
there have been many followup papers studying its structure [Dul15; Buh+18; Gup+19; Pyn24]. In the other
direction, [Coo+24] used tools from the space-bounded literature (in particular, communication bottlenecks)
to unconditionally derandomize CL. However, many basic questions remain open — it is consistent with
current knowledge that P ⊆ CL, or that CL ⊆ NC2, and there is no conditional evidence in either direction.

We aim to understand the power of access to a full memory by developing and studying the phenomenon
in the setting of communication complexity — to what extent can such un-erasable extra memory be useful
in exchanging information between two (computationally unbounded) parties?

1.1 Our Contribution: Catalytic Communication Complexity

We develop a natural model of catalytic communication complexity and prove several results, including max-
imal separations from the standard model of (randomized) communication complexity, a characterization
of efficient protocols for the equality function in terms of extremal graph theory, and a strong equivalence
between certain settings of the model and (nonuniform) catalytic computation itself.

Our model is defined as follows. There are two parties, Alice and Bob (perhaps graduate students coming
to work on alternating days), sharing a single blackboard. Each party is computationally unbounded, but
has no persistent memory between days, except what is written on the blackboard. Unfortunately, all but a
tiny corner of the blackboard is currently full of someone else’s important research, with instructions not to
erase. Are Alice and Bob limited to sharing information through the tiny blank space, or can they do better
by temporarily modifying the “Do Not Erase” section in such a way that still allows them to restore it when
they’re done? If they want to compute some function together, how big does the blackboard need to be,
and how many days will they need? Such a model naturally captures the flow of information in a catalytic
algorithm. The formal definition is as follows:

Definition 1 (Catalytic Communication Protocol). Fix a function f : {0, 1}na × {0, 1}nb → {0, 1}.1 A
catalytic protocol computing f with r rounds, s bits of clean space, and c bits of catalytic
space consists of r many transition functions and one output function,

A1 : {0, 1}na × {0, 1}c × {0, 1}s → {0, 1}c × {0, 1}s

B2 : {0, 1}nb × {0, 1}c × {0, 1}s → {0, 1}c × {0, 1}s

. . .

Ar : {0, 1}na × {0, 1}c × {0, 1}s → {0, 1}c × {0, 1}s

Bout : {0, 1}nb × {0, 1}c × {0, 1}s → {0, 1}.

(If r is even, we will instead have Br : {0, 1}nb × {0, 1}c × {0, 1}s → {0, 1}c × {0, 1}s and Aout : {0, 1}na ×
{0, 1}c × {0, 1}s → {0, 1}.) For the protocol to be valid, for any τ ∈ {0, 1}c, x ∈ {0, 1}na , y ∈ {0, 1}nb ,

letting A
(x)
i = Ai(x, ·) and B

(y)
i = Bi(y, ·), these functions must satisfy

A(x)
r ◦ · · · ◦B(y)

2 ◦A(x)
1 (τ, 0s) = (τ, w)

for some w with
B

(y)
out(τ, w) = f(x, y).

In words, Alice and Bob’s blackboard consists of c bits of arbitrarily-initialized catalytic space and s
bits of initially-empty clean space. In a given round, the active party modifies the blackboard according
to some arbitrary function of its current contents, the input visible to the active party, and the current
timestep, then passes the blackboard to the other party. At the end of the protocol, the catalytic part of the
blackboard must have been reset to its starting configuration, and the party with the blackboard must be

1We will typically be concerned with the case na = nb = n, but will also consider functions with asymmetric input lengths

2

able to announce the answer. Readers familiar with catalytic computing may observe that such a protocol
could be described as an amortized bipartite branching program ; this interpretation is the motivation
for the particulars of our definition, and will be discussed in more detail in Section 6.

This model induces a corresponding measure of communication complexity:

Definition 2 (Catalytic Communication Complexity). The r-round s-clean catalytic communication
complexity of a function f : {0, 1}na ×{0, 1}nb → {0, 1}, denoted CCr,s(f), is the minimum value of c such
that f has an r-round catalytic protocol with s bits of clean space and c bits of catalytic space.

The following three propositions represent simple observations about catalytic communication, demon-
strating that this complexity measure is both well-defined and interesting. We give only the statements here;
the associated proofs can be found in Appendix A. First note that with fewer than 3 rounds, the catalytic
space is provably useless — in particular, this means that CC1,s(f) and CC2,s(f) are not well-defined for
every f , since there may be no amount of catalytic space that suffices:

Proposition 1. Any function computable by a catalytic protocol with 1 or 2 rounds is computable by such
a protocol with no catalytic space (i.e. there exists a memoryless protocol with the same amount of clean
space, so without loss of generality only the clean space is used).

For r ≥ 3, s ≥ 1, however, with enough catalytic space it is possible to compute any function, so CCr,s(f)
is always well-defined:

Proposition 2. Every function f : {0, 1}na × {0, 1}nb → {0, 1} has a 3-round catalytic protocol with 1 bit
of clean space and 2min(na,nb) bits of catalytic space.

Proposition 2 represents an upper bound on catalytic communication complexity in general, but it is far
from tight for some functions. Recall the inner product function (over F2) IPn : {0, 1}n × {0, 1}n → {0, 1},
defined as IPn(x, y) = ⟨x, y⟩. We show that IP can be computed with one bit of clean space and n bits of
catalytic space:

Proposition 3. We have CC3,1(IPn) ≤ n, i.e. the inner product function has a 3-round catalytic protocol
with 1 bit of clean space and n bits of catalytic space.

Note that this protocol is roughly as efficient as a catalytic protocol can possibly be: as long as f is
left-injective (i.e. no two values of x result in the same function f(x, ·)), it is clear for information theoretic
reasons that the catalytic space cannot be made much less than n bits, and certainly the clean space required
for any non-constant f must be at least 1 bit — so inner product is essentially the easiest possible function
for this model. This is in contrast to standard notions of communication complexity: inner product has,
up to constant factors, maximal deterministic and randomized communication complexity [RY20]. Such a
separation even for a single bit of clean space indicates that the “picture” of catalytic communication can
diverge widely from that of standard models.

Furthermore, unlike deterministic and randomized communication complexity, there does not appear to
be a direct counting argument showing that a random function requires any amount of catalytic space larger
than the trivial bound of n. Despite this barrier, we give a tight characterization of protocols with one bit of
clean space and three rounds. As our first main result, we show that CC3,1 is characterized up to a constant
factor by F2 rank:

Theorem 1. For any f : {0, 1}na × {0, 1}nb → {0, 1},

rk(f)

6
− o(1) ≤ CC3,1(f) ≤ rk(f),

where rk(f) denotes the rank of the communication matrix over F2.

The proof of the upper bound of Theorem 1 is an explicit protocol, while the lower bound involves an
application of Harper’s vertex-isoperimetric theorem on an appropriate subspace of the Boolean hypercube.

3

We remark that several standard communication complexity measures are suspected to be closely controlled
by appropriate notions of the rank of the communication matrix, but this case is unusual in that it is the
rank over F2, as opposed to R, that is relevant.

This establishes catalytic communication complexity as a very different measure from standard ones.
In particular, if one compares catalytic communication complexity against standard randomized communi-
cation complexity2, there are maximal separations for natural functions in both directions. Inner product
has a maximally efficient 3-round 1-clean catalytic communication protocol but no standard randomized
communication protocol with communication less than the trivial Ω(n). On the other hand, the equality
function EQn has CC3,1(EQn) = Ω(2n) but randomized communication complexity O(1) [RY20].

The lower bound approach we use for CC3,1 does not extend to CC3,2, i.e. protocols with a single extra
bit of clean space. This is not simply a consequence of technical limitations — we show that for equality,
allowing a single additional bit of clean space enables an exponentially more efficient protocol:

Theorem 2. We have that CC3,2(EQn) ≤ O(n log n).

Our protocol for equality follows from a connection to a new variant we propose of the well-known Ruzsa–
Szemerédi problem in extremal graph theory. We demonstrate that efficient 3-round catalytic protocols for
equality can be obtained generically from constructions of “full Ruzsa–Szemerédi graphs”, a special case of
Ruzsa–Szemerédi graphs. We show that the current frontier Ruzsa–Szemerédi construction can be modified
to satisfy our stronger condition, and hence obtain an efficient protocol. We also show a reverse implication
— that is, that efficient protocols imply dense Ruzsa–Szemerédi constructions — enabling us to obtain
nontrivial lower bounds for the complexity of equality:

Theorem 3. For any constant s, we have CC3,s(EQn) ≥ n+Ω(log∗(n)).

In addition to this unconditional lower bound, the connection to Ruzsa–Szemerédi graphs also gives a
barrier result: improving our upper bound to CC3,O(1)(EQn) = O(n) would yield (among other things) a
polynomial query lower bound for testing monotonicity of Boolean functions over general posets.

Towards obtaining lower bounds stronger than n + Ω(log∗ n), we propose considering protocols for the
indexing problem INDn :

(
[2n] × {0, 1}2n

)
→ {0, 1}, INDn(x, y) = y[x]. Here, Alice’s input is a length-n

bitstring representing an index, and Bob’s input is a length-2n bitstring, with the output of the function
being the bit of Bob’s input corresponding to Alice’s index. Another description of this problem is that
Alice is given some n-bit input, and Bob is given the truth table of some arbitrary boolean function on
n-bit inputs, and they must compute the evaluation of Bob’s function on Alice’s input. It is clear from
this phrasing that proving a complexity lower bound on any function in terms of Alice’s input length would
require proving at least as strong a lower bound on INDn, as any other function is a special case. We find
a graph theoretic characterization of protocols for this problem, which allows us to show a non-trivial lower
bound via the Kővári-Sós-Turán theorem.

Theorem 4. We have CC3,s(INDn) ≥ (1 + ε)n, for some constant ε depending on s.

While we suspect Theorem 4 is far from tight, it remains open to show super-linear lower bounds even
for 2 clean bits.

Finally, we study protocols with more rounds. We note that our measure of catalytic communication
complexity corresponds directly to the minimum amount of amortization required in an amortized bipartite
branching program of bounded length. Since an ordinary branching program is in particular a bipartite
branching program, this immediately lets us translate known results from nonuniform catalytic computing
to show statements such as CCpoly(n),O(1)(f) ≤ O(n) for all f . By a more specialized analysis of Buhrman,

Cleve, Koucký, Loff and Speelman’s algebraic proof of TC1 ⊆ CL, we are also able to show the following:

2Comparing against deterministic standard communication complexity, we would instead find that catalytic communication
is strictly stronger, in the sense that log(CC3,1(f)) is always at most the deterministic communication complexity of f .

4

Theorem 5. Let f : {0, 1}na × {0, 1}nb → {0, 1} be any function computable by a size S, depth d majority
circuit with arbitrary input preprocessing — that is, there exists a depth-d circuit C composed of S many ma-
jority gates, and arbitrary functions g, h, such that f(x, y) = C(g(x), h(y)). Then, CC4d,1(f) ≤ poly(S, 2d).

This implies in particular that any TC0 function family has constant-round, 1-clean catalytic protocols
with poly(n) catalytic space.

We view these results as indicating that catalytic communication complexity is both an interesting model
in its own right, and one that can shed light on reusing space more generally. We remark that our model
addresses a question raised in prior work on variants of communication complexity, which we now discuss.

1.2 Related Work

Identifying an interesting communication analogue of catalytic computing was posed as an open problem
by Arunachalam and Podder in a paper on space-bounded communication [AP21]. Space-bounded commu-
nication complexity was first studied by Brody, Chen, Papakonstantinou, Song and Sun, who proposed a
model in which the two parties in a standard communication protocol are in addition required to compress
each of their states into a small number of bits after each message is sent [Bro+13]. Subsequent work by
Papakonstantinou, Scheder, and Song considered a one-way model, in which Alice (a party with unbounded
memory) sends messages of length s to Bob (a party with zero, or only constant, memory) — they showed
that when Bob is memoryless, this model can be characterized in terms of a combinatorial notion of rectangle
overlays, and when Bob has only 5 available memory states and s = polylog(n) this model computes exactly
PSPACEcc [PSS14]. Arunachalam and Podder suggested instead letting both Alice and Bob be memoryless,
and measuring complexity in terms of the size of a block of memory they pass back and forth [AP21]. They
noted that this model aligns closely with bipartite branching program complexity, and that variants could
capture the aforementioned models of Brody, Chen, Papakonstantinou, Song and Sun [Bro+13] and Pa-
pakonstantinou, Scheder and Song[PSS14], as well as the “garden hose” model of Buhrman, Fehr, Schaffner
and Speelman [Buh+13]. Our model can be thought of as a version of Arunachalam and Podder’s mem-
oryless framework where the size of the block of memory passed back and forth is amortized, in a sense
analogous to the way workspace usage is amortized across inputs in a catalytic algorithm.

2 Preliminaries

We will by convention denote a setting of the catalytic portion of the blackboard by τ (for “transparent
registers”), a setting of the initially-clean portion by ω (for “work registers”), and a setting of the entire
blackboard by γ (for no particular reason). We will let x ∈ {0, 1}na be the input given to Alice, and
y ∈ {0, 1}nb be the input given to Bob. We now define a few terms and notations which appear in the
statements and proofs.

Definition 3. For any n, we denote by IPn the inner product function over Fn
2 . That is,

IPn : {0, 1}n × {0, 1}n → {0, 1},

IP(x, y) =
∑
i∈[n]

xiyi mod 2.

Definition 4. For any n, we denote by EQn the equality function on n-bit inputs. That is,

EQn : {0, 1}n × {0, 1}n → {0, 1},

EQ(x, y) =

{
1 if x = y

0 if x ̸= y
.

5

Definition 5. For any n, we denote by INDn the function taking an n-bit index and a 2n-bit bitstring to
the value of that bitstring at that index. That is,

INDn : [2n]× {0, 1}2
n

→ {0, 1},

INDn(x, y) = y[x].

Definition 6. For a function f : {0, 1}na → {0, 1}nb → {0, 1}, let the communication matrix of f be
the 2n × 2n matrix M where Mx,y = f(x, y), and let rk(f) be the rank of M over F2.

For a function on two inputs f : X,Y → Z, we will use f(x, ·) to denote the application f(x, ·) : Y → Z.
We say a function f : X,Y → Z is left-injective if there do not exist x ̸= x′ ∈ X such that f(x, ·) and
f(x′, ·) are identical functions. For integers n, we will write [n] to denote {1, . . . , n}. To denote to a multiset
with elements a1, . . . , an, we will use the “bag” notation *a1, . . . , an+.

3 Characterizing 3-Round 1-Clean Complexity

In this section, we prove Theorem 1.

Theorem 1. For any f : {0, 1}na × {0, 1}nb → {0, 1},

rk(f)

6
− o(1) ≤ CC3,1(f) ≤ rk(f),

where rk(f) denotes the rank of the communication matrix over F2.

We first give the upper bound, showing that any function with small rank has an efficient catalytic
protocol.

Lemma 1. For any f : {0, 1}na × {0, 1}nb → {0, 1}, we have CC3,1(f) ≤ rk(f).

Proof. By definition of rank, the rows of f ’s communication matrix span a rk(f)-dimensional subspace of
Fn
2 . Both parties fix ahead of time a basis v1, . . . vrk f for this subspace, and define a protocol as follows:

i) On the first round, Alice finds T ⊆ [rk f] such that
⊕

i∈T vi is the xth row of the communication
matrix (i.e., is equal to the truth table of the function y 7→ f(x, y)), and sets the catalytic portion of
the blackboard to τ ⊕ 1i∈T .

ii) Bob computes
⊕

i∈[rk f] τivi, and writes the yth entry of the result to the clean portion.

iii) Alice XORs out the same string she XORed in, resetting the catalytic portion.

iv) Bob finds the new yth entry of
⊕

i∈[rk f] τivi, and outputs its XOR with the clean bit.

The correctness of this protocol is straightforward. After the second round of the protocol, Bob sets the
clean bit to

b1 =

 ⊕
i∈[rk f]

(τi ⊕ 1i∈T)vi

y

,

and so his final output will be

b1 ⊕

 ⊕
i∈[rk f]

τivi

y

=

(⊕
i∈T

vi

)
y

= f(x, y),

as desired. The resource consumption is immediate from the protocol definition. ■

6

We would like to show that it is impossible to do substantially better than the above protocol. Note
that the protocol described in Lemma 1 follows a simple pattern: Alice modifies only the catalytic portion
of the blackboard, performing some bijective map on all possible settings, Bob uses only the clean portion
of the blackboard to “remember” one bit about the result, and then Alice undoes her bijection and Bob
makes his output decision based on his remembered bit in addition to that initial catalytic configuration.
For the purposes of showing lower bounds, it would be helpful first to claim that without loss of generality
all 3-round protocol must be of that form. However, this is not quite true. For one, Alice could use the
clean portion of the blackboard to send Bob an additional bit of information about her input on the first
round, which is provably helpful sometimes. Another rather more substantial concern is that there’s room
for “amortization” in the amount of information that Bob remembers: it could, for instance, be possible
that, on some particular settings of Alice’s input x and the initial catalytic setting C, Alice can on her
first round encode all of the catalytic information in a small prefix of the tape — in such cases, Bob could
use the rest to send Alice a large amount of information about his input, which would then inform her in
choosing a single bit send him back in the clean space of the final setting. However, we expect that this
latter sort of behaviour should only happen rarely, since most initial catalytic settings can’t be compressed.
In Appendix B, we address these concerns formally, guaranteeing that any 3-round 1-clean catalytic protocol
can be converted into a protocol that almost follows the simple pattern we noted. Specifically, we show the
following:

Lemma 2. Every left-injective function f : {0, 1}na ×{0, 1}nb → {0, 1} with CC3,1(f) = c has a protocol of
the following form, which we’ll call a mostly-one-way-catalytic protocol :

i) For every x ∈ {0, 1}na , Alice has an injective function α(x) : {0, 1}c → {0, 1}c × {0, 1}3.
ii) For every y ∈ {0, 1}nb , Bob has two functions, β

(y)
rem : {0, 1}c × {0, 1}3 → {0, 1} and β

(y)
out : {0, 1}c ×

{0, 1} → {0, 1}.
iii) Call a pair (x, τ) ∈ {0, 1}na × {0, 1}c bad if, for some y ∈ {0, 1}nb , we have β

(y)
out(τ, β

(y)
rem(α(x)(τ))) ̸=

f(x, y). Then, at most 2c+1 many pairs are bad.

Additionally, we may assume that, for every τ, y, we have β
(y)
out(τ, 0) ̸= β

(y)
out(τ, 1).

This observation will allow us to associate a communication protocol with a structured collection of
vectors in F2nb

2 , whose size we can bound using standard combinatorial facts.

Proof of Theorem 1. The upper bound was shown in Lemma 1; it remains to show the lower bound. Note
that removing duplicate rows from the communication matrix of a function can change neither its rank, nor
the catalytic communication complexity (since a protocol for the function on the larger domain could simply
treat several of its inputs identically). So, it suffices to show the claim for left-injective functions. Also, note
that, given the o(1) term in the statement, it suffices to only consider the case where rk(f) ≥ 1000. We
fix an arbitrary left-injective f : {0, 1}na × {0, 1}nb with rk(f) ≥ 1000, and assume for contradiction that
CC3,1(f) < rk(f)/6.

By Lemma 2, we have a mostly-one-way-catalytic protocol for f with c < rk(f)/6. We will use this
protocol to define three multi-subsets U, V,W ⊆ {0, 1}nb . For every γ ∈ {0, 1}c+3, let uγ ∈ {0, 1}nb be the

truth table of y 7→ β
(y)
rem(γ), and let U = *uγ : γ ∈ {0, 1}c+3+. For every τ ∈ {0, 1}c, let vτ ∈ {0, 1}nb be the

truth table of y 7→ β
(y)
out(τ, 0), and let V = *vτ : τ ∈ {0, 1}c+. Finally, for every bad (x, τ) ∈ {0, 1}na ×{0, 1}c,

let w(x,τ) be the truth table of y 7→ f(x, y)⊕ β
(y)
out(τ, 0), and let W = *w(x,τ) : (x, τ) is bad+.

Note that |U | = 2c+3, |V | = 2c, and |W | ≤ 2c+1. The idea of the proof will be to show that U ∪W
contains the neighbours in an appropriate Boolean hypercube of every element of V (with appropriate mul-
tiplicity) — since small subsets of the hypercube have large vertex boundary compared to their volume, but
we know that |U |+ |W | is only a constant factor larger than |V |, this will allow us to give a lower bound on
c. This approach is formalized as follows.

Imagine placing red and blue pebbles on Fnb
2 , such that each element of Fnb

2 gets a number of red pebbles
equal to the number of times it appears in U ∪W , and a number of blue pebbles equal to the number of
times it appears in V . We claim that the following must hold:

7

Claim 1. For any such pebbling constructed from a valid protocol, for any k ∈ N, if v ∈ Fnb
2 has at least k

blue pebbles and r ∈ Fnb
2 is a row of f ’s communication matrix (i.e. r is the truth table of y 7→ f(x, y) for

some x), then v ⊕ r has at least k red pebbles.

Proof of Claim 1. Because v has at least k blue pebbles, there are at least k distinct initial catalytic configu-
rations τ1, . . . , τk ∈ {0, 1}c such that vτi = v. Let x be the input such that r is the truth table of y 7→ f(x, y).
For every bad τi, we have w(x,τi) = r ⊕ vτi = v ⊕ r, so each of these will contribute a red pebble to v ⊕ r.

Then, since α(x) is injective, each of α(x)(τ1), . . . , α
(x)(τk) must be distinct. So, to obtain the remainder of

the red pebbles, we’ll show that whenever (x, τi) is not bad, uα(x)(τi) = v ⊕ r.

Note that r is the truth table of y 7→ f(x, y) ⊕ v, that v = vτi is the truth table of y 7→ β
(y)
out(τi, 0), and

that uα(x)(τi) is the truth table of y 7→ β
(y)
rem(α(x)(τi)). So, to conclude that r = v⊕uα(x)(τi), we need to show

that, for all y, we have f(x, y) = β
(y)
out(τi, 0)⊕ β

(y)
rem(α(x)(τi)).

Since (x, τi) is not bad, we have f(x, y) = β
(y)
out(τ, β

(y)
rem(α(x)(τ))). If β

(y)
rem(α(x)(τ)) = 0, this gives f(x, y) =

β
(y)
out(τ, 0) = β

(y)
out(τ, 0) ⊕ 0, so the claim holds. If, on the other hand, β

(y)
rem(α(x)(τ)) = 1, we have f(x, y) =

β
(y)
out(τ, 1). But then, since we always have β

(y)
out(τ, 0) ̸= β

(y)
out(τ, 1), we know that β

(y)
out(τ, 1) = β

(y)
out(τ, 0)⊕1. ■

This will be sufficient to prove that there must be many blue pebbles, contradicting the assumption that
c is small. Consider the graph on Fnb

2 where an edge (u, v) exists whenever u ⊕ v is a row of f ’s commu-
nication matrix. This graph consists of 2nb/2rk(f) many identical connected components. If we fix some
subset X ⊆ {0, 1}na such that the corresponding rows of the communication matrix form a basis for the
row-space, and consider only the edges generated by those rows, each of these connected components will be
isomorphic to the rk(f)-dimensional hypercube. At least one of these connected components must contain
a blue pebble; we will restrict our attention to one such connected component.

Claim 1 ensures that each vertex of this hypercube has at least as many red pebbles as the maximum
number of blue pebbles among its neighbours. Consider the set S of vertices with at least one blue pebble.
All vertices adjacent to a vertex of S must have at least one red pebble; we claim that there are many such
vertices.

Claim 2. For any subset S ⊆ Frk(f)
2 with |S| ≤ 2rk(f)/6, we have |N(S)| > 10 · |S|, where N(S) denotes the

set of all Hamming neighbours of elements of S.

Proof of Claim 2. Take S to be a set of the smallest possible size such that |N(S)| ≤ 10 · |S|. Harper’s
theorem states that, among all subsets of the Boolean hypercube of a given size, the vertex boundary is
minimized by a Hamming ball. That is, for any ℓ, if |S| =

∑ℓ
i=0

(
rk(f)

i

)
, then |N(S) \ S| ≥

(
rk(f)
ℓ+1

)
[Har66;

Bol86]. Let ℓ be the radius of the smallest Hamming sphere larger than our fixed set S; i.e., the smallest

integer such that |S| ≤
∑ℓ

i=0

(
rk(f)

i

)
. Since minS : |S|=s

(
|N(S)|
|S|

)
is monotonically nonincreasing in s for small

s3, the surface-area-to-volume ratio of this Hamming sphere lower bounds that of S:

|N(S)|
|S|

≥
(
rk(f)
ℓ+1

)∑ℓ
i=0

(
rk(f)

i

) .
By minimality of S, we know that

∑ℓ′

i=0

(
rk(f)

i

)
≤
(
rk(f)
ℓ′+1

)
for all ℓ′ < ℓ, since otherwise the Hamming ball

of radius ℓ′ would be a smaller example. So,
∑ℓ

i=0

(
rk(f)

i

)
≤
(
rk(f)

ℓ

)
+
∑ℓ−1

i=0

(
rk(f)

i

)
≤ 2
(
rk(f)

ℓ

)
. Thus,

|N(S)|
|S|

≥
(
rk(f)
ℓ+1

)
2
(
rk(f)

ℓ

) =

rk(f)!
(ℓ+1)!(rk(f)−ℓ−1)!

2 rk(f)!
ℓ!(rk(f)−ℓ)!

=
(rk(f)− ℓ)

2(ℓ+ 1)
.

3As long as s is small enough that a Hamming ball of that size can’t have vertex boundary less than twice the volume (which,
as we show, is true here), one can observe that adding a new point at the boundary will always increase the surface-area-to-
volume ratio.

8

Since we assumed that |N(S)|
|S| ≤ 10, this gives ℓ ≥ rk(f)−19

20 . Now, we have

|S| ≥
ℓ−1∑
0

(
rk(f)

i

)
≥
(
rk(f)

ℓ− 1

)
≥ 2rk(f)·H

(
ℓ/ rk(f)

)
−log

(
rk(f)

)
≥ 2rk(f)·H

(
1/20−1/ rk(f)

)
−log

(
rk(f)

)
,

where H : p 7→ −p log(p)− (1−p) log(1−p) is the binary entropy function. For all values of rk(f) ≥ 1000,

we have rk(f)H
(
1/20− 1/ rk(f)

)
− log

(
rk(f)

)
> rk(f)

6 , so this implies that |S| > 2

(
rk(f)/6

)
. ■

We can’t immediately a derive contradiction from Claim 1 and Claim 2, because V is a multiset (i.e.
some vertices may have more than one red pebble). However, this is not a serious obstacle.

Claim 3. Suppose a pebbling satisfies the conditions of Claim 1 —i.e., that v ⊕ r always has at least as
many blue pebbles as v has red pebbles for any row r of the communication matrix. Then, if we remove one
blue pebble from every vertex with at least one blue pebble, and one red pebble from any vertex with at
least one red pebble, that condition still holds.

Proof. Consider any v and any r. Before removal, v ⊕ r had at least as many blue pebbles as v had red
pebbles. If v had 0 blue pebbles, then after removal this will remain the case, so v ⊕ r will still be at least
as pebbled. Otherwise, we will remove the same number of blue pebbles from v as we remove red pebbles
from v ⊕ r. ■

If we remove a single blue pebble from every vertex with at least one blue pebble, and a single red pebble
from every vertex with at least one red pebble, Claim 2 ensures that we will remove strictly more than ten
times as many red pebbles as blue pebbles. After removing those pebbles, there are still at most 2c vertices
with blue pebbles, and we’ve just shown that Claim 1 still holds — so, we can repeatedly perform such
removals until all pebbles are gone, always removing strictly more than ten times as many red pebbles as
blue pebbles. This means that the graph overall has strictly more than ten times as many red pebbles as
blue pebbles, contradicting the fact that |U |+ |W | = 2c+3 + 2c+1 = 10 · 2c = 10 · |V |. ■

One interesting consequence of Theorem 1 is that the equality function, which has constant randomized
communication complexity, requires the maximal Ω(2n) blackboard size in this catalytic model. On the other
hand, as noted, the inner product function can be communicated with only n bits of catalytic space, de-
spite requiring (up to constant factors) maximal standard communication complexity even with randomness
[RY20]. Catalytic communication complexity seems to be quantifying a very different notion from standard
communication complexity measures.

A natural question at this stage is whether our choice to restrict to only a single bit of clean space
was roughly without loss of generality, or whether protocols with more clean space can look substantially
different. Having more free space is definitely at least moderately helpful: for instance, equality can be
computed with 2 bits of free space and 2 · 2n/2 bits of catalytic space, by simply running two copies of
the 1-bit protocol on the two halves of the inputs simultaneously, and having Bob output the AND of the
answers. But one might suspect that, with only a little more clean space, there is not too much more that
can be done — perhaps for any constant s it’s possible to show that CC3,s(EQn) ≥ 2Ω(n). As we will show
in the next section, this intuition turns out to be false — even with two just bits of clean space, it’s possible
to communicate equality very efficiently.

4 The 3-Round Complexity of Equality

In this section, we prove the following upper bound on 3-round 2-clean catalytic complexity of equality.

Theorem 2. We have that CC3,2(EQn) ≤ O(n log n).

9

The key to the proof of Theorem 2 comes from a long line of research on graphs representable as the
union of many large induced matchings, known as Ruzsa–Szemerédi graphs. We will provide background
on the Ruzsa–Szemerédi problem in Section 4.1, where we will also introduce a variant important for our
application. In Section 4.2, we will show that a known construction can be modified to satisfy the require-
ments of that variant definition. Then, in Section 4.3, we will demonstrate how any such construction can
be generically converted into a catalytic protocol for equality, which will in particular prove Theorem 2.

In Section 4.4 we will demonstrate a reverse implication — that is, that efficient 3-round equality protocols
give dense Ruzsa–Szemerédi protocols — which will allow us to state catalytic communication complexity
lower bounds. We will show unconditionally that there exists no 3-round O(1)-clean protocol for equality
using n+O(1) bits of catalytic space, and show that finding any stronger upper bound than O(n log n) would
require improved graph theoretic constructions that would in turn prove new lower bounds in areas such as
property testing and streaming algorithms.

4.1 Background on the Ruzsa–Szemerédi Problem

We give the following definition:

Definition 7. A graph G is an (r, t)-Ruzsa–Szemerédi graph if there exists a partition of its edges into
t sets of size r, such that each set constitutes an induced matching in G.

In 1976, motivated by a problem of Brown, Erdős and Sós on 3-uniform hypergraphs containing no 6 ver-
tices sharing 3 edges [BET73], Ruzsa and Szemerédi proposed studying such graphs, with the goal of finding
examples where both r and t are large compared to number of vertices of G. They showed that Behrend’s

construction of sets without 3-term arithmetic progression [Beh46] gives
(

n

2O(
√

log(n))
, n
3

)
-Ruzsa–Szemerédi

graphs, and used regularity methods to show that r and t cannot both be made Ω(n) [RS76]. The best
known upper bounds still go through graph regularity: Fox’s improved bounds for triangle removal imply
that if r = Θ(n), then t ≤ n

2Ω(log∗(n)) [Fox11].

Ruzsa–Szemerédi graphs have since seen several applications in computational and communication com-
plexity [HW03; BLM06; LPS19]. In particular, constructions where r = Θ(n) and t is large have been used
to obtain a number of lower bounds in streaming algorithms and property testing [Fis+02; GKK; KN21;
Kap21; AS23]. The best known lower bound on t when r = Θ(n) is due to Fischer, Lehman, Newman,

Raskhodnikova, Rubinfeld and Samorodnitsky, giving a construction where r = n/3 and t ≥ nΩ(1
log log(n))

— eliminating the gap between this bound and the t ≤ n
2Ω(log∗(n)) upper bound is a major open problem in

combinatorics [Fis+02].

For our application, we also give the following more restrictive definition:

Definition 8. A graph G is a (k, t)-full Ruzsa–Szemerédi graph if there exists a partition of its edges
into t perfect matchings, and a partition of each of those matchings into k partial matchings, such that each
partial matching is induced in G.

Note that a (k, t)-full Ruzsa–Szemerédi graph is in particular a (n/2k, kt)-Ruzsa–Szemerédi graph, but
that here we are imposing an additional constraint by requiring that the induced matchings can be grouped
together to form perfect matchings inG. The construction presented by Fischer, Lehman, Newman, Raskhod-
nikova, Rubinfeld and Samorodnitsky is not a full Ruzsa–Szemerédi graph, but we will show in the next
section that it can easily be made so.

4.2 Dense Construction of a Full Ruzsa–Szemerédi Graph

In this section, we give a construction of a full Ruzsa–Szemerédi graph with a large number of edges, following
the same framework as Fischer, Lehman, Newman, Raskhodnikova, Rubinfeld and Samorodnitsky [Fis+02].

Lemma 3. As long as n = 2ℓℓ for some integer ℓ, there exists a
(
3, nΩ(1

log log n)
)
-full Ruzsa–Szemerédi graph.

10

Proof. By the Gilbert-Varshamov bound in coding theory for constant-weight codes [Lev71], for any ℓ there
exists a family S ⊆ P([ℓ]) such that |S| ≥ 2Ω(ℓ), |S| = ℓ/3 for all S ∈ S, and |S ∩T | ≤ ℓ/6 for all S ̸= T ∈ S.
We will use S to determine the edge set of a bipartite graph on 2ℓℓ vertices, where the vertices are identified
with two copies of {0, . . . , ℓ− 1}ℓ. For each S ∈ S, let MS be the perfect matching obtained by connecting
each left vertex x with the right vertex (x + 1S mod ℓ), where use the identification of the vertices with
vectors in {0, . . . , ℓ− 1}ℓ and add coordinatewise. We let the edge set of the graph be the union of all these
perfect matchings.

In order to demonstrate that this is a full Ruzsa–Szemerédi graph, we must partition each MS into three
partial matchings, such that each is an induced matching in the graph. To do so, we define for each S a
vertex 3-colouring πS , where

πS(x) =

⌊
6
∑

i∈S xi

ℓ

⌋
mod 3 if x belongs to the left part

⌊
6
∑

i∈S xi

ℓ

⌋
+ 1 mod 3 if x belongs to the right part

.

The 3 partial matchings of MS will be the subgraphs induced by the vertices of each of the 3 colours.
We need to show that these 3 partial matchings contain between them all the edges of MS , and that none
of the three vertex sets contain an edge from MT for any T ̸= S. To show the first of these properties, we
note that, for any x,⌊

6
∑

i∈S(x+ 1S)i

ℓ

⌋
+ 1 =

⌊
6
(
|S|+

∑
i∈S xi

)
ℓ

⌋
+ 1 =

⌊
6
∑

i∈S xi

ℓ

⌋
+ 3.

Also, since adding a multiple of ℓ to a coordinate of x changes 6
∑

i∈S xi by a multiple of 6ℓ, modular overflow
of individual coordinates doesn’t change this value mod 3. So, the endpoints of each edge of MS have equal
colours under πS , meaning that the partial matchings contain all edges. To show that each of these partial
matchings is induced, we need to show that, for any T ̸= S, the endpoints of any edge of MT are assigned
non-equal colours under πS . This follows because, for any x,⌊

6
∑

i∈S xi

ℓ

⌋
+ 1 ≤

⌊
6
∑

i∈S(x+ 1T)i

ℓ

⌋
+ 1 =

⌊
6
(
|S ∩ T |+

∑
i∈S xi

)
ℓ

⌋
+ 1 ≤

⌊
6
∑

i∈S xi

ℓ

⌋
+ 2. ■

4.3 Equality Protocols from Full Ruzsa–Szemerédi Graphs

We now show that full Ruzsa–Szemerédi graphs can be generically converted to catalytic protocols.

Lemma 4. If there exists a (k, t)-full Ruzsa–Szemerédi graph on 2c vertices, then there exists a 3-round,
⌈log(k)⌉-clean catalytic protocol for equality on ⌊log(t)⌋-bit inputs with c bits of catalytic space4.

We first note that this will immediately give us our desired upper bounds on CC3,2(EQn).

Proof of Theorem 2 given Lemma 4. For some constant 0 < δ < 1, by Lemma 3, there exists a (3, N
δ

log log N)-
full Ruzsa–Szemerédi graph on N vertices. Plugging this in to Lemma 4, we obtain a ⌈log(3)⌉ = 2-clean
catalytic protocol for equality on ⌊log(t)⌋ = ⌊δ log(N)/ log log(N)⌋ bit inputs, requiring log(N) bits of
catalytic space. Defining n = ⌊log(t)⌋, this is a 3-round 2-clean protocol with O(n log n) bits of catalytic
space5. ■

4Observe though, if one cares about such things, that unless that Ruzsa–Szemerédi graph can be constructed explicitly,
the resulting protocol may not be computationally efficient. In order to get a computationally effective protocol from our
construction, one would have to plug in an explicit code as opposed to just citing Gilbert-Varshanov.

5Note that this construction is only defined when both N is a power of two, and N = 2 · ℓℓ for some integer ℓ. However, if
we let ℓ be the smallest power of two such that 2 · ℓℓ ≥ N , and let N ′ = 2 · ℓℓ, then note that log(N ′) ≤ 4 · log(N). So, for other
values of n, Alice and Bob can simply pad their inputs with zeroes and run the equality protocol for a value of n where this is
defined, losing only a constant factor in the amount of catalytic space required.

11

Proof of Lemma 4. Let G be such a graph, with vertices V (G) = v1, . . . , v2c , composed of perfect matchings
M1 ⊔ · · · ⊔ Mt = E(G). The full-Ruzsa–Szemerédi property gives, for each i ∈ [t], a vertex partition

M
(1)
i ⊔ · · · ⊔M (k)

i = V (G) such that the edges of Mi are the union over j of the edges induced by M
(j)
i . Fix

an arbitrary bijection π : {0, 1}c → {v1, . . . , vN}, and arbitrary injections σ : {0, 1}⌊log(t)⌋ → {M1, . . . ,Mt},
µ : [k]→ {0, 1}⌈log k⌉. The protocol is as follows.

i) A1(x, τ, ω) = (π−1(v), ω), where v is the neighbour of π(τ) in the matching σ(x).

ii) B2(y, τ, ω) = (τ, µ(w)), where w is the unique value such that π(τ) ∈ σ(y)(w).

iii) A3(x, τ, ω) = (π−1(v), ω), where v is the neighbour of π(τ) in the matching σ(x).

iv) Bout(y, τ, ω) accepts if and only if ω = µ(w), where w is the unique value such that π(τ) ∈ σ(y)(w).

Correctness of this protocol follows from the definition of a full Ruzsa–Szemerédi graph. If x = y, then
the matchings σ(x) and σ(y) are the same. Since every edge of σ(x) is induced by some part of the partition
σ(x)(1), . . . , σ(x)(k), this means that both endpoints of that edge belong to the same σ(y)(w), and so Bob
will accept. If, on the other hand, x ̸= y, then the two endpoints of an edge in σ(x) cannot belong to the
same σ(y)(k), because σ(y)(k) induces only the edges belonging to σ(y). ■

4.4 Lower Bounds on Equality Protocols

In this section, we will show that, as long as we are content with a not-necessarily-full Ruzsa–Szemerédi graph,
the conversion in Lemma 4 can be done in reverse. That is, the existence of dense Ruzsa–Szemerédi graphs
is necessary for efficient equality protocols. This will allow us to deduce both conditional and unconditional
communication lower bounds.

Lemma 5. For any s, if there exists a 3-round, s-clean catalytic protocol for equality on n-bit inputs with
c bits of catalytic space, there exists an (Ω(2c−s),Ω(2n−s))-Ruzsa–Szemerédi graph on O(2c+4s) vertices.

For the purposes of proving this lemma, it would simplify matters to know that Alice only ever modifies
the catalytic portion of the blackboard, and Bob only ever modifies the clean portion6. As in Section 3,
although we cannot claim such behaviour without loss of generality, we can at least claim that, a substantial
fraction of the time, Bob only remembers s bits.

Lemma 6. For any s > 0, any function f : {0, 1}na × {0, 1}nb → {0, 1} with CC3,s(f) = c has a protocol of
the following form, which we’ll call a sometimes-one-way-catalytic protocol :

i) For every x ∈ {0, 1}na , Alice has an injective function α(x) : {0, 1}c → {0, 1}c × {0, 1}s·(2s+1).

ii) For every y ∈ {0, 1}nb , Bob has two functions, β
(y)
rem : {0, 1}c × {0, 1}s·(2s+1) → {0, 1}s and β

(y)
out :

{0, 1}c × {0, 1}s → {0, 1}.
iii) Call a pair (x, τ) ∈ {0, 1}na × {0, 1}c bad if, for some y ∈ {0, 1}nb , we have β

(y)
out(τ, β

(y)
rem(α(x)(τ))) ̸=

f(x, y). Then, at most a 2s/(2s + 1) fraction of all pairs are bad.

Proof of Lemma 5. By Lemma 6, we have a sometimes-one-way catalytic protocol for f with c bits of cat-
alytic space. From this protocol, we will construct a bipartite graph G whose 2c many left vertices are
identified with {0, 1}c, and whose 2c+s·(2s+1) many right vertices are identifed with {0, 1}c × {0, 1}s·(2s+1).
The edge set will consist of, for every non-bad (x, τ) ∈ {0, 1}n×{0, 1}c, an edge from τ on the left to α(x)(τ)
on the right.

Now, for every z ∈ {0, 1}n, ω ∈ {0, 1}s, we’ll define a vertex subset M
(ω)
z ⊆ V (G). A left vertex

τ ∈ {0, 1}c will be included in M
(ω)
z if and only if both (z, τ) is non-bad, and β

(z)
rem(α(z)(τ)) = ω. A right

vertex γ ∈ {0, 1}c × {0, 1}s·(2s+1) will be included in M
(ω)
z if and only if β

(z)
rem(γ) = ω.

6In fact, in this case we note that an analysis similar to the one we present here would give a full-Ruzsa–Szemerédi graph,
as opposed to just a Ruzsa–Szemerédi graph, demonstrating (up to some quantitative loss) an equivalence between full Ruzsa–
Szemerédi graphs and this kind of “well-behaved” 3-round catalytic protocol for equality. We suspect that such an equivalence
should also exist without the well-behavedness condition — perhaps even that full Ruzsa–Szemerédi graphs can be generically
constructed from Ruzsa–Szemerédi graphs — however we do not know a proof.

12

We claim that every edge of G is induced by one of these subsets, and that each subset induces a
matching. The first part of this is immediate: both endpoints of the edge generated by a pair (x, τ)

must belong to M
(β(x)

rem(α(x)(τ)))
x . To see the second part, consider some edge (τ, γ) ∈ E(G), generated

by a non-bad (x, τ), and suppose it belongs to some Mω
z with z ̸= x. (Note that, by definition of

M
(ω)
x , this edge it cannot belong to M

(ω)
x for any ω ̸= β

(x)
rem(α(x)(τ)).) But now, suppose the protocol

is run with Alice given input x, Bob given input z, and the catalytic tape initialized to τ . The out-

put of the protocol will be β
(z)
out(τ, β

(z)
rem(α(x)(τ))) = β

(z)
out(τ, β

(z)
rem(γ)) = β

(z)
out(τ, ω) = β

(z)
out(τ, β

(z)
rem(α(z)(τ))).

However, since both (x, τ) and (z, τ) are non-bad, we know β
(z)
out(τ, β

(z)
rem(α(x)(τ))) = EQn(x, z) = 0 and

β
(z)
out(τ, β

(z)
rem(α(z)(τ))) = EQn(z, z) = 1, so this is contradiction.

Now, oberve that since there are at least (2c · 2n)/(2s + 1) many non-bad pairs, G has at least this
many edges. Since we’ve partitioned these edges into 2n · 2s many induced matchings, each of which has
at most 2c many edges, we must have at least 2n/2s+1 many induced matchings each with at least 2c/2s+1

many edges. Letting G′ ⊆ G be the graph on only those edges, this is a 2c + 2c+s·(2s+1) = O(2c)-vertex
(Ω(2c),Ω(2n))-Ruzsa–Szemerédi graph. ■

This characterization immediately allows us to show that no 3-round Θ(1)-clean catalytic protocol for
equality can use only n + O(1) bits of catalytic space — although we have found a surprisingly efficient
protocol, equality is at least somewhat more difficult for this model than, for instance, inner product.

Corollary 1. For any constant s, we have CC3,s(EQn) ≥ n+Ω(log∗(n)).

Proof. It is known by the triangle removal lemma that for any constant k, a (N/k, t)-Ruzsa–Szemerédi graph
on N vertices must satisfy t ≤ N

2Ω(log∗(N)) [Fox11]. Since, by Lemma 5, a 3-round s-clean protocol on n-bit
inputs with c bits of catalytic space gives a (Ω(2c),Ω(2n))-Ruzsa–Szemerédi graph on O(2c) vertices, this
means that 2n ≤ O

(
2c

2Ω(log∗(2c))

)
. Rearranging gives c ≥ n+Ω(log∗ n). ■

Of course, this doesn’t rule out a protocol with linear catalytic space — and in fact, the second author
believes that such a protocol likely exists. However, it does provide evidence that constructing such a protocol
may be difficult: doing so would improve known Ruzsa–Szemerédi constructions, yielding improvements to
state-of-the-art bounds in property testing, streaming algorithms, and information theory. We mention a
few such implications; the reader is referred to the cited works for definitions of terms.

Corollary 2. If, for some constant s, CC3,s(EQn) ≤ O(n), then

i) Any non-adaptive tester for monotonicity over general N -element posets requires query complexity
Ω(N c) for some c > 0.

ii) Any randomized semi-streaming algorithm for (1 − ε)-approximate maximum bipartite matching re-
quires Ω(log(1/ε)) passes over the stream.

iii) There exist constant-rate centralized coding caching schemes, in which each file is divided into a number
of pieces polynomial in the number of participants.

Proof. By Lemma 5, if CC3,s(EQn) ≤ O(n), then for some c > 0 there exist (Θ(N), N c)-Ruzsa–Szemerédi
graphs on N vertices. The property testing lower bounds of Fischer, Lehman, Newman, Raskhodnikova, Ru-
binfeld and Samorodnitsky [Fis+02], the streaming lower bounds of Assadi and Sundaresan [AS23], and the
centralized coding caching scheme construction of Shangguan, Zhang and Ge [SZG18] all rely on construc-
tions of Ruzsa–Szemerédi graphs where the partial matchings are of linear size. Plugging in a construction
with t = N c to those arguments would immediately yield the strengthened bounds in the statement of the
corollary. ■

A more optimistic interpretation of Corollary 2 is that designing catalytic protocols for equality could
provide an approach towards improved Ruzsa-Semerédi constructions. There is some evidence that the
language of communication complexity can be useful in this area: Linial, Pitassi, and Shraibman have shown
a close relationship between Ruzsa–Szemerédi graphs and protocols for high-dimensional permutations in the
Number On the Forehead model, which Alon and Shraibman used to give simple communication theoretic
descriptions of a couple of known Ruzsa–Szemerédi constructions [LPS19; AS20]. 3-round catalytic protocols

13

for equality offer another distinct communication-theoretic interpretation of the problem that may prove
useful.

5 The 3-Round Complexity of Indexing

The fact that CC3,2(EQn) is exponentially smaller than CC3,1 raises the question of whether perhaps every
function has an efficient 3-round s-clean protocol for some constant s. One might suspect that most functions
should require exponential complexity, but there is no clear counting argument to this effect. In fact, even
for functions of unbalanced input lengths — i.e. when nb ≫ na — there’s no obvious way to rule out a
protocol with catalytic space close to na

7. We propose considering the following function:

Definition 5. For any n, we denote by INDn the function taking an n-bit index and a 2n-bit bitstring to
the value of that bitstring at that index. That is,

INDn : [2n]× {0, 1}2
n

→ {0, 1},

INDn(x, y) = y[x].

This indexing function is often considered in one-way communication complexity contexts, where the
party holding the index cannot send messages, so all information must be sent by the party with the longer
input. Note that in our case, however, we consider the reverse: we’re giving Alice the index, and by Lemma 6
our protocol can be largely thought of as one-way from Alice to Bob. The reason we’re particularly interested
in this setting is that a protocol for INDn can be thought of as a protocol for all functions simultaneously:
Bob has to be able to determine any Boolean function on Alice’s input. So, for fixed value of Alice’s input
length na = n, INDn is the hardest possible function, in the sense that a protocol for INDn gives a protocol
with the same parameters for every other function with the same na.

By Proposition 2, we know CC3,s(INDn) ≤ 2n. We suspect that this is close to the correct answer for
any constant s, but the results we’ve shown thus far haven’t ruled out the possibility that CC3,2(INDn) =
n + O(log∗(n)). In this section, we will prove a somewhat stronger lower bound — still far away from
the upper bound, but enough to suggest for instance that it’s unlikely that some sort of Ruzsa–Szemerédi
construction as in Section 4 will work directly. We show the following:

Theorem 4. We have CC3,s(INDn) ≥ (1 + ε)n, for some constant ε depending on s.

As in our lower bounds for equality, our proof comes from a graph theoretic interpretation. We will
show that a protocol for INDn corresponds to a graph composed of a union of matchings, with the property
that any subset of the matchings are separable from the rest of the graph. We will then show that such a
graph cannot have too high density, bounding the efficiency of the catalytic protocol. We make the following
definitions:

Definition 9. Let E1 and E2 be disjoint edge sets on a common set of vertices, and let k ∈ N. We say E1

and E2 are k-separable if there exists a k-edge colouring of E1 ∪ E2 such that

• each colour appears in only one of E1 or E2, and

• for every 3-edge path, if the first and last edges share the same colour, so does the middle edge.

Definition 10. We call an n-vertex graph k-divisive if its edges can be partitioned into matchings
M1, . . . ,Mm such that for all S ⊆ [m], the edge sets

⋃
i∈S Mi and

⋃
j ̸∈S Mj are k-separable.

Lemma 7. For any constant s, there is a family {Gn}n∈N, with |V (Gn)| ≤ O(2c) and |E(Gn)| ≥ Ω(2c+n)
for c = CC3,s(INDn), and where each Gn is 22

s+s-divisive.

7The other direction of asymmetry — that is, when na ≫ nb — is less interesting for 3-round protocols, since Bob can
without loss of generality communicate very little information to Alice, and so there are easily functions requiring at least na

bits of catalytic space for information theoretic reasons.

14

Proof. As in Section 4.4, we begin by invoking Lemma 6 to obtain a sometimes-one-way-catalytic protocol.
In fact, we’ll define the same graph: let G consist of 2c many left vertices identified with {0, 1}c, 2c+s·(2s+1)

many right vertices identified with {0, 1}c×{0, 1}s·(2s+1), and an edge (τ, α(x)(τ)) for each x whenever (x, τ)
is non-bad. This graph has 2c+2c+s·(2s+1) ≤ O(2c) many vertices, and 2n+c/(2s+1) ≥ Ω(2c+n) many edges.

For any x ∈ [2n], let Mx ⊆ E(Gn), Mx = {(τ, α(x)(τ)) : (x, τ) is not bad}. Note that each Mx is
a matching, since α(x) is injective. We claim that, for any S ⊆ [2n], the edge sets

⋃
i∈S and

⋃
i̸∈S Mi

are
(
22

s+s
)
-separable. Fix any S ⊆ [2n], and let 1S ∈ {0, 1}2

n

denote the indicator vector of S. Now,

to separate
⋃

i∈S and
⋃

i ̸∈S Mi, we will “colour” each edge (τ, γ) with the pair
(
β
(1S)
out (τ, ·), β(1S)

rem (γ)
)
∈

({0, 1}s → {0, 1})×{0, 1}s. If (τ, γ) and (τ ′, γ′) have the same colour, it means that β
(1S)
out (τ, ·) and β

(1S)
out (τ ′, ·)

are the same function, and β
(1S)
rem (γ) and β

(1S)
rem (γ′) are the same bitstring — so, (τ, γ′) and (τ ′, γ) will also

share this colour.

We now just need to show that no edge (τ, γ) ∈
⋃

i∈S Mi can share a colour with an edge (τ ′, γ′) ∈⋃
i ̸∈S Mi. Fix any x, x′ ∈ [2n], and any edges (τ, γ) ∈Mx and (τ ′, γ′) ∈Mx′ with the same colour. In order

for these edges to be present, both (x, τ) and (x′, τ ′) must be good. So,

f(x, 1S) = β
(1S)
out (τ, β(1S)

rem (α(x)(τ)))

= β
(1S)
out (τ, β(1S)

rem (γ))

= β
(1S)
out (τ ′, β(1S)

rem (γ′))

= β
(1S)
out (τ ′, β(1S)

rem (α(x′)(τ ′)))

= f(x′, 1S),

meaning that either both x and x′ belong to S, or neither do.
■

We now demonstrate that any such graph cannot contain a large complete bipartite subgraph, which will
allow us to bound its density by the KST theorem.

Lemma 8. For any k ∈ N, if a graph G is k-divisive, then G does not contain the complete bipartite graph
K3k2,3k2 as a subgraph.

Proof. We proceed by contradiction: suppose we’ve found a copy H of K3k2,3k2 in G. Let M1 ⊔ · · · ⊔Mm =
E(G) be the partition into matchings guaranteed by the divisiveness condition. We claim that we can find
some set of Mi and some smaller complete bipartite subgraph of H whose intersection with the union of
those Mi is a perfect matching.

Claim 4. There exists a set S ⊆ [m], and a subgraph H ′ ⊆ H ⊆ G, such that H ′ is isomorphic to Kk+1,k+1,
and

⋃
i∈S(H ∩Mi) is a matching with k + 1 edges.

Proof of Claim 4. First, suppose some single Mi contains at least k+1 edges of H. Then, the claim follows
immediately by taking S = {i}, and letting H ′ be the subgraph induced by the edges of H ∩Mi. So, we will
assume each Mi contains at most k edges of H.

We construct S greedily, starting with S = ∅ and adding indices one-at-a-time. Suppose
⋃

i∈S(H ∩Mi)
currently consists of a matching with ℓ < k + 1 many edges. The number of edges of H that contain any
endpoint of an edge in

⋃
i∈S(H∩Mi) is therefore no more than 2 ·ℓ ·(3k2). Since no Mi contains more than k

edges of H, and H has (3k2)2 edges, there must be at least (3k2)2

k = 9k3 > 2 ·ℓ ·(3k2) distinct Mi with at least
one edge in H. Thus, we can find some i∗ such that Mi∗ ∩H contains at least one edge, but contains no edge
sharing an endpoint with an edge of

⋃
i∈S(H ∩Mi) — this implies that

⋃
i∈(S∪{i∗})(H ∩Mi) is a matching

with at least ℓ+1 many edges. The claim follows by repeating this procedure until |
⋃

i∈S(H ∩Mi)| ≥ k+1,
and then taking H ′ to be the subgraph induced by those edges. ■

15

Now, we use H ′ and S to contradict the k-separability assumption. By assumption on G, the edge sets⋃
i∈S Mi and

⋃
i ̸∈S Mi are k-separable — fix an edge colouring that k-separates them. Since

⋃
i∈S(H ∩Mi)

contains k + 1 edges, by pigeonhole principle it must contain two edges (u1, u2) and (v1, v2) that are given
the same colour. Since H ′ is a complete bipartite graph, the edge (u1, v2) must also be present, and since⋃

i∈S(H ∩Mi) is a matching it cannot belong to any Mi, i ∈ S. Since (u1, u2) and (v1, v2) have the same
colour, the definition of a k-separation requires (u1, v2) to share that colour — but (u1, v2) does not belong
to
⋃

i∈S Mi, so that colour cannot be used on (u1, v2). This is contradiction. ■

Theorem 4 now follows directly from Lemma 7 and Lemma 8.

Proof of Theorem 4. Lemma 7 gives a family {Gn}n∈N of 22
s+s-divisive graphs, where each Gn has N =

O(2CC3,s(INDn)) many vertices and Ω(2CC3,s(INDn)+n) = Ω(N1+n/CC3,s(INDn)) many edges. Then, Lemma 8

ensures that no Gn in this family can contain a copy of Kt,t, for t = 3
(
22

s+s
)2
. The Kővári–Sós–Turán

theorem guarantees that an N -vertex graph without Kt,t as a subgraph must have at most O(N2−1/t) many
edges [KST54; Zha23], so we must have n/CC3,s(INDn) ≤ 1− 1/t for sufficiently large n. Rearranging, this

gives that CC3,s(INDn) ≥ n+
(

1
t−1

)
n for all sufficiently large n. ■

This is not an especially strong lower bound — it seems plausible that CC3,s(INDn) is exponential in n
for any constant s, but do not even know that CC3,s(INDn) ≥ 2n. However, the proof does at least give some
evidence that the sort of direct application of Ruzsa–Szemerédi constructions we saw in Section 4 is unlikely
to work here — Ruzsa–Szemerédi graphs can contain complete bipartite graphs of any constant size, and we
expect that bounds of the form t ≤ n1−Ω(1) for r = Θ(n) on (r, t)-Ruzsa–Szemerédi graphs, if true, will be
difficult to prove [FHS17]. We note also that the graph theoretic property of k-divisiveness, in which any
subset of matchings must be k-separable from the rest of the graph, is a strictly stronger property than that
of being a Ruzsa–Szemerédi graph, and may be interesting to study in its own right.

6 More Rounds and Connections to Catalytic Computing

We’ve restricted attention thus far to protocols of only 3 rounds, as the design and analysis of such protocols
has proven to already be quite theoretically rich. In this section, we consider what can be said for protocols
with more rounds. We observe a close relationship between standard models of nonuniform catalytic compu-
tation and our model of catalytic communication, and show that by a communication analogue of Buhrman,
Cleve, Koucký, Loff and Speelman’s results on CL [Buh+14], there exist constant-round constant-clean
protocols with polynomial catalytic space for all of TC0.

6.1 Amortized Bipartite Branching Programs

The notion of catalytic space introduced by Buhrman, Cleve, Koucký, Loff and Speelman is a uniform model
of computation: it consists of a space-bounded algorithm, with an additional resource of catalytic space that
must be reset at the end of computation [Buh+14]. One can also define a natural nonuniform catalytic
model:

Definition 11. An amortized branching program8 of amortized width w and length ℓ computing m
copies of a function f is a directed acyclic multigraph consisting of ℓ layers, where

• The first layer has m vertices, the last layer has 2 vertices, and all other layers have mw vertices.

• Each layer except the last is labeled with an index i ∈ [n].

• Each vertex except in the last layer has exactly two outgoing edges, labeled 0 and 1 respectively.

• The two vertices in the last layer are labeled “accept” and “reject”, and the vertices in the second-to-
last layer are labeled with the names of vertices in the first layer, such that each name appears exactly
w times.

8We remark that our definition is slightly nonstandard, as the last layer is usually defined to have width 2m with labels
(v, b), where v ∈ [m] and b ∈ {0, 1}. However, the definitions are easily seen to be equivalent (up to a unit change in length).

16

To compute the function on an input x, the program starts at an arbitrary vertex in the first layer, and
then for each layer reads the associated index of x and follows the edge labeled with the resulting value.
Correctness of the program entails that, for every input and every starting vertex, the program ends in the
vertex with the correct acceptance behaviour, and the second-to-last vertex visited has the same label as the
starting vertex.

Amortized branching programs were introduced by Girard, Koucký and McKenzie, who showed exam-
ples where direct sum theorems succeeded and failed for the model [GKM15]. Since then, there has been
interest in determining the minimum amount of amortization needed to compute a function with small
amortized width and length. Potechin showed that every function has an amortized branching program of
length O(n) and amortized width O(1) computing 22

n

copies [Pot17]. Robere and Zuiddam showed that this
amount of amortization could be reduced for bounded-degree functions over F2 [RZ22]. Cook and Mertz
showed a trade-off in both of these results between length and amortization, allowing them to show in the
former case that any function has an amortized branching program of length O(n) and amortized width
O(1) computing 22

εn

copies, where the constant in the program length depends on ε [CM22]. In a recent
breakthrough work on the tree evaluation problem, Cook and Mertz showed that the ideas of this tradeoff
could be strengthened to give length poly(n), amortized width O(1) branching programs computing 2O(n)

copies of any function [CM23].

In their work on memoryless communication complexity, Arunachalam and Podder observed that the
model was closely related to a notion of bipartite branching programs [AP21]. We define a similar notion
in the amortized sense, which we note exactly describes our model of catalytic communication, and can be
seen as an alternate definition.

Definition 12. A bipartite amortized branching program of amortized width w and length ℓ computing
m copies of a function f is a directed acyclic multigraph consisting of ℓ layers, where

• The first layer has m vertices, the last layer has 2 vertices, and all other layers have mw vertices.

• Each layer except the last is labeled either x or y.

• Each vertex except in the last layer has exactly 2n outgoing edges, labeled with the values of {0, 1}n.
• The two vertices in the last layer are labeled “accept” and “reject”, and the vertices in the second-to-
last layer are labeled with the names of vertices in the first layer, such that each name appears exactly
w times.

To compute the function on an input (x, y), the program starts at an arbitrary vertex in the first layer,
and then for each layer follows the edge labeled with the value of the associated input. Correctness of the
program entails that, for every input and every starting vertex, the program ends in the vertex with the
correct acceptance behaviour, and the second-to-last vertex visited has the same label as the starting vertex.

The equivalence between such programs and catalytic communication protocols is immediate.

Proposition 4. CCr,s(f) ≤ c if and only if there exists a bipartite amortized branching program of amortized
width 2s and length r + 2 computing 2c copies of f .

Proof. Given such a branching program, we define a catalytic protocol by thinking of the initial catalytic
setting as giving the index of a starting vertex of the program, and then on subsequent steps having the
blackboard store the index of the current node within its layer. The fact that vertices in the second-to-last
layer are labeled by vertices in the first layer means that, with an appropriate ordering of the indexing, the
condition of second-to-last vertex having the same label as the starting vertex corresponds exactly to the cat-
alytic portion of the blackboard being reset after r rounds. The final layer corresponds to the output function.

Given a r-round s-clean catalytic protocol with catalytic space c, we can perform the reverse transforma-
tion. Each layer except the first and last contains one vertex for each blackboard state, and the transition
functions between pairs of layers are determined by how the active player would update the blackboard (with
the transition function to the last layer determined by the output function). ■

17

Note that any amortized branching program is also a bipartite amortized branching program, so a con-
sequence of this equivalence is that any result known for amortized branching programs trivially extends to
catalytic communication. For instance, the results of [CM22] and [CM23] give the following, respectively:

Corollary 3. CCO(n),O(1)(f) ≤ 2εn for all f : {0, 1}n × {0, 1}n → {0, 1}, ε > 0.

Corollary 4. CCpoly(n),O(1)(f) ≤ O(n) for all f : {0, 1}n × {0, 1}n → {0, 1}.

However, there are cases where bipartite amortized branching programs can be much more efficient
than amortized branching programs. Note that an amortized branching program of length less than n is
uninteresting (it is effectively solving a problem on a smaller input length), whereas we’ve seen that bipartite
amortized branching programs of length 5 can be quite powerful. In the next section, we give a result
making use of this power: Buhrman, Cleve, Koucký, Loff and Speelman’s CL algorithm for threshold circuit
evaluation gives an amortized branching program of length poly(n) even when the circuit has constant depth,
but we note that it can be converted to a bipartite amortized branching program of only constant length.

6.2 Constant-Round Protocols for TC0

We recall an outline of Buhrman, Cleve, Koucký, Loff and Speelman’s results on transparent programs for
TC1.

Definition 13. A transparent program of length ℓ, with registers r1, . . . , rm over a ring R, on input
x1, . . . , xn ∈ R, is a sequence of instructions of the form ri ← ri + (m1 ×m2 × · · · ×mk), where the mi are
all either input variables, registers other than ri, or constants (i.e. elements of R). We say a transparent
program transparently computes a function f(x1, . . . , xn) into a register ri if, no matter the initial settings
τ1, . . . , τm of the registers, the setting of register ri at the end of the program holds value τi + f(x1, . . . , xn).

Note that a transparent program is inherently reversible: by performing the sequence of instructions in
reverse, with (m1×m2× · · · ×mk) replaced by (−1×m1×m2× · · · ×mk) in every instruction, all registers
are returned to their initial states. Buhrman, Cleve, Koucký, Loff and Speelman’s proof of TC1 ⊆ CL
proceeded by an explicit transparent program for computing the majority of several transparently computed
values; we present here the transparent subroutines used in that procedure. For explanation of correctness of
these algorithms, the reader is referred to [Buh+14]; we present them for the purpose of making structural
observations. In each algorithm, r∗ is the output register, and all other named registers are unique to the
program (i.e. new registers not used in any subroutines).

Algorithm 1 Sum(r∗, P1, . . . , Pk)

1: for i = 1, . . . , k do
2: r∗ ← r∗ − ri
3: for i = 1, . . . , k do
4: Pi(ri) ▷ Transparently computes fi(x) into the ith register.

5: for i = 1, . . . , k do
6: r∗ ← r∗ + ri ▷ The program ends with

∑
i fi(x) computed into r∗.

If the programs P1, . . . , Pk transparently compute some functions f1(x), . . . , fk(x) respectively, this new
program transparently computes the function

∑
i fi(x), giving us a way to compose transparent operations.

The following shows how to compose a transparent program with exponentiation.

18

Algorithm 2 Power(r∗, P, k)

1: for i = 1, . . . , k do
2: r∗ ← r∗ − (−1)i

(
k
i

)
× ri × rk−i

k+1

3: P (rk+1) ▷ Transparently computes f(x) into rk+1.
4: for i = 1, . . . , k do
5: ri ← ri + rik+1

6: r∗ ← r∗ + rkk+1

7: P−1(rk+1) ▷ Uncomputes f(x) from rk+1, resetting it.
8: for i = 1, . . . , k do
9: r∗ ← r∗ + (−1)i

(
k
i

)
× ri × rk−i

k+1 ▷ The program ends with f(x)k computed into r∗.

The next algorithm requires the ring R to be the finite field Fp for some prime p > s.

Algorithm 3 Exact-Value(r∗, P1, . . . , Pk, s)

1: Power(r∗, r 7→ [Sum(r, P1, . . . , Pk); r ← r − s], p− 1) ▷ The program ends with (
∑k

i=1 fi(x)− s)p−1

computed into r∗; by Fermat’s little theorem, this is the indicator of
∑k

i=1 fi(x) ̸= s

Buhrman, Cleve, Koucký, Loff and Speelman observe that any size-S, depth-d circuit of majority gates
has an equivalent size-2dS2, depth 2d layered circuit of exact value gates, letting them use this Exact-Value
procedure to evaluate majority circuits. The number of instructions required is exponential in the depth
of the circuit, and polynomial in the size, allowing them to give polynomial-length programs for evaluating
any TC1 circuit. This gives polynomial-length amortized branching programs with amortized width 2 com-
puting 2poly(n) many copies of any TC1 function family; Buhrman, Cleve, Koucký, Loff and Speelman show
additionally that for uniform TC1 families, the catalytic computation can be done uniformly.

We now show that by an appropriate arrangement of this transparent program, we can get bipartite
amortized branching programs whose length depends only on the circuit depth, and not on the circuit size.
This will imply in particular that any TC0 function family fn has a constant-length amortized branching
program of width 2 computing 2poly(n) many copies, meaning that for some constant r, CCr,1(fn) ≤ poly(n).

Theorem 5. Let f : {0, 1}na × {0, 1}nb → {0, 1} be any function computable by a size S, depth d majority
circuit with arbitrary input preprocessing — that is, there exists a depth-d circuit C composed of S many ma-
jority gates, and arbitrary functions g, h, such that f(x, y) = C(g(x), h(y)). Then, CC4d,1(f) ≤ poly(S, 2d).

Proof. As shown in [Buh+14], any size-S, depth-d majority circuit has an equivalent size-poly(S, d), depth-2d
exact value circuit. So, it suffices to give a 2d-round, 1-clean catalytic protocol with poly(S, 2d) catalytic
space to compute the output of a size-S, depth-d exact value circuit C each of whose inputs depend on only
one of x and y. We fix a prime S < p < 2S, and make the following claim:

Definition 14. Say that an index i belongs to x (resp y.) if the largest index j ≤ i depending on either
x or y depends on x (resp. y). We define the number of alternations of a transparent program to be the
number of indices i such that i and i+ 1 belong to different inputs.

Claim 5. For any gate at height h in C, there exists a transparent program over Fp computing the output
of that gate, such that the first instruction of the program belongs to x, and the program makes at most 2h

many alternations.

Proof of Claim 5. We proceed inductively. Everything at the bottom layer of the circuit depends on only
one of x or y, so can be transparently computed with a single alternation by simply adding the appropriate
function of x or y. Now, suppose every gate at height h− 1 can be computed using only 2h−1 alternations.
Observe that, crucially, the Exact-Value algorithm presented never simultaneously requires some input
registers to transparently store values while others are in their original state. That is, when the subroutine
calls are unfolded, the Exact-Value algorithm follows the following sequence of steps:

19

i) Perform computation independent of x and y.

ii) Transparently compute all of the inputs of the algorithm.

iii) Perform computation independent of x and y.

iv) Transparently uncompute all of the inputs of the algorithm.

v) Perform computation independent of x and y.

So, we can use 2h−1 alternations to simultaneously compute all input gates, perform computation that
doesn’t require alternations, and then perform 2h−1 alternations to simultaneously uncompute all of them,
giving 2h many alternations in total. ■

Thus, the overall output of the circuit is computable by a transparent program with at most 2d many
alternations. Note that, as observed by Buhrman, Cleve, Koucký, Loff and Speelman, this program also only
requires poly(S, 2d) many instructions, and hence at most that many registers. So, the state of all registers
used in the program can be maintained with poly(S, 2d) many bits.

This transparent program directly gives a catalytic communication protocol (which we can in turn think
of as a bipartite amortized branching program). Alice and Bob treat the catalytic portion of the blackboard
as a description of the state of all the registers used in this transparent program. At the start of the protocol,
Alice records in the clean space the parity of the output register (i.e. the parity of its unique representative
in {0, . . . , p− 1}, since registers store elements of Fp, which we can think of as modular equivalence classes).
Then, they execute the transparent program one instruction at a time, passing the blackboard at each
alternation to ensure that the participant with the blackboard always has access to the appropriate input.
Since the program has at most 2d many alternations, this communication protocol has at most 2d many
rounds. To compute the output, Alice determines the new parity of the output register (where this now
means parity of the representative in {1, . . . , p}, to prevent issues with modular overflow), and accepts if and
only if it differs from the clean bit. Correctness of this protocol follows from correctness of the transparent
program. ■

7 Conclusion and Open Directions

This work naturally suggests a number of open directions; we mention a few here explicitly as a conclusion.

i) It seems particularly of interest to improve the bounds on protocols for INDn. There is a line of work in
the catalytic literature aiming to understand how much amortization is needed to allow an amortized
catalytic branching to compute every function with linear amortized size. There, it is known that 22

εn

amortization suffices for every ε, but we have no nontrivial lower bounds [Pot17; CM20; RZ22; CM22;
CM23]. One can view bounding CCr,s(INDn) for constant r as a simplified analogue of this problem:
we’re still asking to be able to compute any function (now even with the second input arbitrarily large),
but instead of considering linear-length amortized branching programs, we’re allowing the branching
programs to be bipartite but only of constant length. It seems that length-5 bipartite amortized
branching programs already capture much of the information-theoretical behaviour of linear-length
amortized bipartite branching programs (our Proposition 2 is a direct analogue of Potechin’s branching
program [Pot17]), but in this setting we actually were able to obtain a non-trivial lower bound. It
would be interesting to either improve that (rather weak) lower bound, or to find a better upper bound
for constant-length bipartite amortized branching programs.

ii) Relatedly, the graph-theoretic notion of k-divisiveness introduced in Section 5 seems potentially in-
teresting in its own right, as a strictly stronger condition than being a Ruzsa–Szemerédi graph9. We
upper bounded the density of an k-divisive graph by noting that such graphs forbid large complete

9A Ruzsa–Szemerédi graph can be decomposed into matchings such that each is induced — or in other words, each matching
is 2-separable from the union of all the other matchings. If we knew that our graph was k-divisive, we could divide each
constitutent matching into k submatchings, corresponding to the colours in the k-separation of that matching from the rest of
the graph. The result would be a Ruzsa–Szemerédi partion with only k times as many constituent matchings. The k-divisiveness
condition is much stronger since it requires not just separability of a matching from the rest of the edges, but separability of
every set of matchings from every other.

20

bipartite subgraphs, but it’s possible that there exist much stronger ways to exploit the structure of
such a graph (and hence obtain stronger lower bounds on CC3,s(INDn)). A particularly clean special
case to study would be to require each Mi in the matching partition of G to be an individual edge —
that is, to require that every subset of G’s edges be k-separable from the rest of G’s edges. It seems
plausible that one could get very strong control over what such graphs can look like.

iii) Obtaining lower bounds on protocols of more than three rounds seems difficult — we’ve shown that
constant-round protocols with poly(n) catalytic space can compute all of TC0, so to have any hope of
showing superpolynomial lower bounds on constant-round catalytic protocols without a breakthrough
in circuit complexity one would have to consider a non-explicit function. An intermediate object to
consider would be a one-way catalytic protocol , where we mandate that Bob is not allowed to
modify the initially-catalytic portion of the blackboard. Recall that our analysis of 3-round protocols
involved proving that without loss of generality a 3-round protocol can be made almost one-way; this
was crucial for the analysis, but seems unlikely to be true for protocols with more rounds (in particular,
the protocol in Theorem 5 that allows computing TC0 does not have this property). One-way catalytic
protocols, even of more than 3 rounds, may be tractable to analyze combinatorially — for instance, we
suspect that our results on equality protocols in terms of Ruzsa–Szemerédi graphs could be extended
to give characterizations of one-way equality protocols with more rounds in terms of larger Steiner
systems.

iv) Given the connection between 3-round equality protocols and Ruzsa–Szemerédi graphs outlined in
Section 4, one might wonder whether thinking in terms of catalytic communication is useful approach
for trying to improve state-of-the-art Ruzsa–Szemerédi constructions. We note that this is perhaps not
an implausible idea: there are known constructions of Ruzsa–Szemerédi graphs for certain parameter
regimes with natural constructions described by (a different form of) communication protocol [AS20].
Another graph-theoretic question to consider would be whether our notion of “full Ruzsa–Szemerédi
graphs” are a stonger condition than standard Ruzsa–Szemerédi graphs, or if perhaps there’s a generic
conversion.

v) A structural question about this model that remains open is the power of randomness. It has been
recently shown that catalytic logspace can be derandomized via compression arguments — one might
wonder whether one can use similar approaches to determine how much smaller randomized catalytic
communication complexity can be than deterministic catalytic communication complexity.

8 Acknowledgements

We thank Ryan Williams for guidance and suggesting the question of catalytic communication complexity,
and Carl Schildkraut for helpful discussion about Ruzsa-Szemerédi graphs.

References

[AP21] Srinivasan Arunachalam and Supartha Podder. “Communication Memento: Memoryless Commu-
nication Complexity”. In: 12th Innovations in Theoretical Computer Science Conference (ITCS
2021). Ed. by James R. Lee. Vol. 185. Leibniz International Proceedings in Informatics (LIPIcs).
Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021, 61:1–61:20. isbn:
978-3-95977-177-1. doi: 10.4230/LIPIcs.ITCS.2021.61. url: https://drops.dagstuhl.de/
entities/document/10.4230/LIPIcs.ITCS.2021.61.

[AS20] Noga Alon and Adi Shraibman. “Number on the forehead protocols yielding dense ruzsa–
szemerédi graphs and hypergraphs”. In: Acta Mathematica Hungarica 161.2 (2020), pp. 488–
506.

[AS23] Sepehr Assadi and Janani Sundaresan. “Hidden Permutations to the Rescue: Multi-Pass Stream-
ing Lower Bounds for Approximate Matchings”. In: 2023 IEEE 64th Annual Symposium on Foun-
dations of Computer Science (FOCS). 2023, pp. 909–932. doi: 10.1109/FOCS57990.2023.00058.

[Beh46] Felix A Behrend. “On sets of integers which contain no three terms in arithmetical progression”.
In: Proceedings of the National Academy of Sciences 32.12 (1946), pp. 331–332.

21

https://doi.org/10.4230/LIPIcs.ITCS.2021.61
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2021.61
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2021.61
https://doi.org/10.1109/FOCS57990.2023.00058

[BET73] William G Brown, Pál Erdős, and Vera T Sós. “On the existence of triangulated spheres in
3-graphs and related problems”. In: Periodica Mathematica Hungarica 3 (1973), pp. 221–229.

[BGW20] Mark Braverman, Sumegha Garg, and David P. Woodruff. “The Coin Problem with Applications
to Data Streams”. In: 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS
2020, Durham, NC, USA, November 16-19, 2020. Ed. by Sandy Irani. IEEE, 2020, pp. 318–329.

[BGZ21] Mark Braverman, Sumegha Garg, and Or Zamir. “Tight Space Complexity of the Coin Problem”.
In: 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver,
CO, USA, February 7-10, 2022. IEEE, 2021, pp. 1068–1079.

[BLM06] Y. Birk, N. Linial, and R. Meshulam. “On the uniform-traffic capacity of single-hop intercon-
nections employing shared directional multichannels”. In: IEEE Trans. Inf. Theor. 39.1 (2006),
pp. 186–191. issn: 0018-9448. doi: 10.1109/18.179355. url: https://doi.org/10.1109/18.
179355.

[Bol86] Béla Bollobás. Combinatorics: set systems, hypergraphs, families of vectors, and combinatorial
probability. Cambridge University Press, 1986.

[Bra+14] Mark Braverman, Anup Rao, Ran Raz, and Amir Yehudayoff. “Pseudorandom Generators for
Regular Branching Programs”. In: SIAM J. Comput. 43.3 (2014), pp. 973–986.

[Bro+13] Joshua E. Brody, Shiteng Chen, Periklis A. Papakonstantinou, Hao Song, and Xiaoming Sun.
“Space-Bounded Communication Complexity”. In: Proceedings of the 4th Conference on In-
novations in Theoretical Computer Science. ITCS ’13. Berkeley, California, USA: Association
for Computing Machinery, 2013, pp. 159–172. isbn: 9781450318594. doi: 10.1145/2422436.
2422456. url: https://doi.org/10.1145/2422436.2422456.

[Buh+13] Harry Buhrman, Serge Fehr, Christian Schaffner, and Florian Speelman. “The garden-hose
model”. In: Proceedings of the 4th Conference on Innovations in Theoretical Computer Science.
ITCS ’13. Berkeley, California, USA: Association for Computing Machinery, 2013, pp. 145–158.
isbn: 9781450318594. doi: 10.1145/2422436.2422455. url: https://doi.org/10.1145/
2422436.2422455.

[Buh+14] Harry Buhrman, Richard Cleve, Michal Koucký, Bruno Loff, and Florian Speelman. “Computing
with a Full Memory: Catalytic Space”. In: STOC ’14 (2014), pp. 857–866. doi: 10 . 1145 /
2591796.2591874. url: https://doi.org/10.1145/2591796.2591874.

[Buh+18] Harry Buhrman, Michal Koucký, Bruno Loff, and Florian Speelman. “Catalytic Space: Non-
determinism and Hierarchy”. In: Theory Comput. Syst. (2018).

[BV10] Joshua Brody and Elad Verbin. “The Coin Problem and Pseudorandomness for Branching Pro-
grams”. In: 51th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2010,
October 23-26, 2010, Las Vegas, Nevada, USA. IEEE Computer Society, 2010, pp. 30–39.

[CM20] James Cook and Ian Mertz. “Catalytic approaches to the tree evaluation problem”. In: Pro-
ceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing. STOC 2020.
Chicago, IL, USA: Association for Computing Machinery, 2020, pp. 752–760. isbn: 9781450369794.
doi: 10.1145/3357713.3384316. url: https://doi.org/10.1145/3357713.3384316.

[CM21] James Cook and Ian Mertz. “Encodings and the tree evaluation problem”. In: Electron. Collo-
quium Comput. Complex. 2021, p. 54.

[CM22] James Cook and Ian Mertz. “Trading time and space in catalytic branching programs”. In:
Proceedings of the 37th Computational Complexity Conference. CCC ’22. Philadelphia, Penn-
sylvania: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2022. isbn: 9783959772419. doi:
10.4230/LIPIcs.CCC.2022.8. url: https://doi.org/10.4230/LIPIcs.CCC.2022.8.

[CM23] James Cook and Ian Mertz. “Tree Evaluation is in Space O(log n · log log n).” In: Electronic
Coloquium Comput. Complex. TR23 (2023). url: https://eccc.weizmann.ac.il/report/
2023/174/.

22

https://doi.org/10.1109/18.179355
https://doi.org/10.1109/18.179355
https://doi.org/10.1109/18.179355
https://doi.org/10.1145/2422436.2422456
https://doi.org/10.1145/2422436.2422456
https://doi.org/10.1145/2422436.2422456
https://doi.org/10.1145/2422436.2422455
https://doi.org/10.1145/2422436.2422455
https://doi.org/10.1145/2422436.2422455
https://doi.org/10.1145/2591796.2591874
https://doi.org/10.1145/2591796.2591874
https://doi.org/10.1145/2591796.2591874
https://doi.org/10.1145/3357713.3384316
https://doi.org/10.1145/3357713.3384316
https://doi.org/10.4230/LIPIcs.CCC.2022.8
https://doi.org/10.4230/LIPIcs.CCC.2022.8
https://eccc.weizmann.ac.il/report/2023/174/
https://eccc.weizmann.ac.il/report/2023/174/

[Coh+21] Gil Cohen, Dean Doron, Oren Renard, Ori Sberlo, and Amnon Ta-Shma. “Error Reduction for
Weighted PRGs Against Read Once Branching Programs”. In: 36th Computational Complexity
Conference, CCC 2021, July 20-23, 2021, Toronto, Ontario, Canada (Virtual Conference). Ed.
by Valentine Kabanets. Vol. 200. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2021, 22:1–22:17.

[Coo+24] James Cook, Jiatu Li, Ian Mertz, and Edward Pyne. “The Structure of Catalytic Space: Cap-
turing Randomness and Time via Compression”. In: Electron. Colloquium Comput. Complex.
TR24-106 (2024). ECCC: TR24-106. url: https://eccc.weizmann.ac.il/report/2024/106.

[Dul15] Yfke Dulek. Catalytic space: on reversibility and multiple-access randomness. 2015.

[FHS17] Jacob Fox, Hao Huang, and Benny Sudakov. “On graphs decomposable into induced matchings
of linear sizes”. In: Bulletin of the London Mathematical Society 49.1 (2017), pp. 45–57.

[Fis+02] Eldar Fischer, Eric Lehman, Ilan Newman, Sofya Raskhodnikova, Ronitt Rubinfeld, and Alex
Samorodnitsky. “Monotonicity testing over general poset domains”. In: Proceedings of the Thiry-
Fourth Annual ACM Symposium on Theory of Computing. STOC ’02. Montreal, Quebec, Canada:
Association for Computing Machinery, 2002, pp. 474–483. isbn: 1581134959. doi: 10.1145/
509907.509977. url: https://doi.org/10.1145/509907.509977.

[Fox11] Jacob Fox. “A new proof of the graph removal lemma”. In: Annals of Mathematics (2011),
pp. 561–579.

[GKK] Ashish Goel, Michael Kapralov, and Sanjeev Khanna. “On the communication and streaming
complexity of maximum bipartite matching”. In: Proceedings of the 2012 Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 468–485. doi: 10.1137/1.9781611973099.41.
eprint: https://epubs.siam.org/doi/pdf/10.1137/1.9781611973099.41. url: https:
//epubs.siam.org/doi/abs/10.1137/1.9781611973099.41.

[GKM15] Vincent Girard, Michal Kouckỳ, and Pierre McKenzie. “Nonuniform catalytic space and the
direct sum for space”. In: Electronic Colloquium on Computational Complexity (ECCC). Vol. 138.
2015.

[Gup+19] Chetan Gupta, Rahul Jain, Vimal Raj Sharma, and Raghunath Tewari. “Unambiguous Catalytic
Computation”. In: 39th IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science, FSTTCS 2019. Vol. 150. LIPIcs. 2019, 16:1–16:13.

[Har66] L.H. Harper. “Optimal numberings and isoperimetric problems on graphs”. In: Journal of Com-
binatorial Theory 1.3 (1966), pp. 385–393. issn: 0021-9800. doi: https://doi.org/10.1016/
S0021-9800(66)80059-5. url: https://www.sciencedirect.com/science/article/pii/
S0021980066800595.

[HW03] Johan H̊astad and Avi Wigderson. “Simple analysis of graph tests for linearity and PCP”. In:
Random Structures & Algorithms 22.2 (2003), pp. 139–160.

[INW94] Russell Impagliazzo, Noam Nisan, and Avi Wigderson. “Pseudorandomness for network algo-
rithms”. In: Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Computing,
23-25 May 1994, Montréal, Québec, Canada. Ed. by Frank Thomson Leighton and Michael T.
Goodrich. ACM, 1994, pp. 356–364.

[Kap21] Michael Kapralov. “Space lower bounds for approximating maximummatching in the edge arrival
model”. In: Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA).
SIAM. 2021, pp. 1874–1893.

[KN21] Christian Konrad and Kheeran K Naidu. “On two-pass streaming algorithms for maximum
bipartite matching”. In: arXiv preprint arXiv:2107.07841 (2021).

[KST54] P Kővári, Vera Sós, and Pál Turán. “On a problem of Zarankiewicz”. In: Colloquium Mathe-
maticum. Vol. 3. Polska Akademia Nauk. 1954, pp. 50–57.

[Lev71] VI Levenšteın. “Upper bounds for codes with a fixed weight of vectors”. In: Problemy Peredaci
Informacii 7 (1971), pp. 3–12.

23

TR24-106
https://eccc.weizmann.ac.il/report/2024/106
https://doi.org/10.1145/509907.509977
https://doi.org/10.1145/509907.509977
https://doi.org/10.1145/509907.509977
https://doi.org/10.1137/1.9781611973099.41
https://epubs.siam.org/doi/pdf/10.1137/1.9781611973099.41
https://epubs.siam.org/doi/abs/10.1137/1.9781611973099.41
https://epubs.siam.org/doi/abs/10.1137/1.9781611973099.41
https://doi.org/https://doi.org/10.1016/S0021-9800(66)80059-5
https://doi.org/https://doi.org/10.1016/S0021-9800(66)80059-5
https://www.sciencedirect.com/science/article/pii/S0021980066800595
https://www.sciencedirect.com/science/article/pii/S0021980066800595

[LPS19] Nati Linial, Toniann Pitassi, and Adi Shraibman. “On the Communication Complexity of High-
Dimensional Permutations”. In: 10th Innovations in Theoretical Computer Science Conference
(ITCS 2019). Ed. by Avrim Blum. Vol. 124. Leibniz International Proceedings in Informatics
(LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019, 54:1–
54:20. isbn: 978-3-95977-095-8. doi: 10.4230/LIPIcs.ITCS.2019.54. url: https://drops.
dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2019.54.

[Nis92] Noam Nisan. “Pseudorandom generators for space-bounded computation”. In: Comb. 12.4 (1992),
pp. 449–461.

[Pot17] Aaron Potechin. “A note on amortized branching program complexity”. In: Proceedings of the
32nd Computational Complexity Conference. 2017, pp. 1–12.

[PSS14] Periklis Papakonstantinou, Dominik Scheder, and Hao Song. “Overlays and Limited Memory
Communication”. In: 2014 IEEE 29th Conference on Computational Complexity (CCC). 2014,
pp. 298–308. doi: 10.1109/CCC.2014.37.

[PV21] Edward Pyne and Salil P. Vadhan. “Pseudodistributions That Beat All Pseudorandom Genera-
tors (Extended Abstract)”. In: 36th Computational Complexity Conference, CCC 2021, July 20-
23, 2021, Toronto, Ontario, Canada (Virtual Conference). Ed. by Valentine Kabanets. Vol. 200.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021, 33:1–33:15.

[Pyn24] Edward Pyne. “Derandomizing Logspace with a Small Shared Hard Drive”. In: LIPIcs 300 (2024).
Ed. by Rahul Santhanam, 4:1–4:20.

[RS76] I. Ruzsa and E. Szemer’edi. “Triple systems with no six points carrying three triangles”. In:
Combinatorica 18 (Jan. 1976).

[RY20] Anup Rao and Amir Yehudayoff. Communication Complexity: and Applications. Cambridge Uni-
versity Press, 2020.

[RZ22] Robert Robere and Jeroen Zuiddam. “Amortized circuit complexity, formal complexity measures,
and catalytic algorithms”. In: 2021 IEEE 62nd Annual Symposium on Foundations of Computer
Science (FOCS). IEEE. 2022, pp. 759–769.

[SZG18] Chong Shangguan, Yiwei Zhang, and Gennian Ge. “Centralized Coded Caching Schemes: A
Hypergraph Theoretical Approach”. In: IEEE Transactions on Information Theory 64.8 (2018),
pp. 5755–5766. doi: 10.1109/TIT.2018.2847679.

[Zha23] Yufei Zhao. Graph Theory and Additive Combinatorics: Exploring Structure and Randomness.
Cambridge University Press, 2023.

A Proof of Results In Introduction

First, catalytic protocols with two or fewer rounds cannot meaningfully make use of the catalytic space.

Proof of Proposition 1. In a one-round protocol, the blackboard is only modified once, so if the catalytic
portion is ever changed it will end up in a different state from how it started. Since the catalytic state is an
arbitrary string that can’t be changed, Alice and Bob could just as well do without it.

In a two-round protocol, Alice and Bob each only get to modify the blackboard once. So, Bob must
have a function (independent of x) that lets him recover the original state of the catalytic portion for every
message Alice can send. There are 2s+c many possible messages for Alice to send, each of which Bob returns
to a single fixed catalytic state – so, by pigeonhole principle, the protocol has some catalytic state that’s
associated with at most 2s many Alice messages. This gives a new protocol with no catalytic space: the
two parties pretend the catalytic portion started in that state, Alice gives Bob the index of which of the 2s

associated messages she would have wanted to send in the original protocol, and Bob determines what bits
he would have sent back in the clean space. ■

Next, we show that every function has a three-round protocol:

24

https://doi.org/10.4230/LIPIcs.ITCS.2019.54
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2019.54
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2019.54
https://doi.org/10.1109/CCC.2014.37
https://doi.org/10.1109/TIT.2018.2847679

Proof of Proposition 2. First, suppose na ≤ nb. In this case, the protocol is as follows:

i) Alice flips the xth bit of the catalytic portion.

ii) Based on his own input, Bob computes the truth table of x 7→ f(x, y), which he thinks of as a 2na -entry
bitvector. He takes the inner product of this truth table and the current catalytic space, and writes
the result to the clean space.

iii) Alice flips the xth bit of the catalytic portion again, resetting it.

iv) Bob once again takes the inner product of his truth table and the catalytic space, and outputs the
XOR of the result and the clean bit.

If, on the other hand, na > nb, the roles are reversed: Alice XORs in the truth table of y 7→ f(x, y), and
Bob reads off the yth bit. In either case, this can be seen as an application of the inner product protocol of
Proposition 3 to compute the inner product of a truth table and the indicator vector of the index on which
it’s being evaluated. ■

Finally, we present our protocol for inner product.

Proof of Proposition 3. We will describe a protocol. Let x be Alice’s input, y be Bob’s input, and τ be the
initial state of the catalytic space.

i) For the first round of the protocol, Alice replaces the catalytic portion of the blackboard with τ ⊕ x,
where ⊕ denotes bitwise XOR.

ii) For the second round, Bob computes the inner product of the catalytic portion and his input, writing
the resulting bit ⟨τ ⊕ x, y⟩ to the clean space.

iii) For the third round, Alice once again bitwise XORs her input into the catalytic portion, resetting it
to (τ ⊕ x)⊕ x = τ .

iv) To output the answer, Bob computes the inner product of the new catalytic portion and his input, and
adds this to the bit stored in the clean space, resulting in ⟨τ, y⟩ ⊕ ⟨τ ⊕ x, y⟩ = ⟨x, y⟩.

■

B Controlling Information Flow in 3-Round Protocols

In this appendix, we will prove two lemmas demonstrating that any 3-round protocol can be converted into
a new form of protocol in which, for a large fraction of inputs and catalytic settings, information flows only
one-way from Alice to Bob. We first show that any constant-clean protocol can be turned into a protocol
which is one-way at least a constant fraction of the time:

Lemma 6. For any s > 0, any function f : {0, 1}na × {0, 1}nb → {0, 1} with CC3,s(f) = c has a protocol of
the following form, which we’ll call a sometimes-one-way-catalytic protocol :

i) For every x ∈ {0, 1}na , Alice has an injective function α(x) : {0, 1}c → {0, 1}c × {0, 1}s·(2s+1).

ii) For every y ∈ {0, 1}nb , Bob has two functions, β
(y)
rem : {0, 1}c × {0, 1}s·(2s+1) → {0, 1}s and β

(y)
out :

{0, 1}c × {0, 1}s → {0, 1}.
iii) Call a pair (x, τ) ∈ {0, 1}na × {0, 1}c bad if, for some y ∈ {0, 1}nb , we have β

(y)
out(τ, β

(y)
rem(α(x)(τ))) ̸=

f(x, y). Then, at most a 2s/(2s + 1) fraction of all pairs are bad.

Proof. Fix a catalytic protocol (A1, B2, A3, Bout) using s bits of clean space and c bits of catalytic space.
For tape settings γ, γ′ ∈ {0, 1}c+s, we say γ′ is Bob-reachable from γ if Bob maps γ to γ′ on some input
— that is, there exists some y ∈ {0, 1}nb such that B2(y, γ) = γ′. Define the talkativity of γ, denoted T (γ),
to be the number of γ′ that are Bob-reachable from γ.

Now, consider a modified version of the model where, instead of Bob modifying the tape, he’s simply
allowed to respond to Alice’s message of γ with any number between 1 and T (γ). They can still simulate
the same protocol, since the set of Bob-reachable states from γ doesn’t depend on x or y, and so Bob can

25

just send Alice the index of B2(y, γ) in that set.

Alice must always reset the catalytic portion of the blackboard, so this message from Bob can only affect
what she writes to the clean portion. For every value of Bob’s message, she will write s bits to the clean
portion — this behaviour is describable by s · T (γ) many bits. If she sent that information to Bob along
with the output of A1, then Bob could compute himself what value would end up written to the clean space.

Whenever T (A1(x, τ, 0
s)) ≤ 2s, we’ll let α(x)(τ) be A1(x, τ, 0

s) concatenated those with s·T (γ) many bits,
and we will expect (x, τ) to be good. If the talkativity is larger, we’ll just choose an arbitrary (maintaining

injectivity) value for α(x)(τ), accepting that (τ, x) may be bad. Bob can compute β
(y)
rem(γ, g) by determining,

as described above, the s clean bits that Alice would end up writing to the clean space if they ran the original
protocol. (Note that he will only necessarily correctly determine this if Alice was able to send her entire

s · T (γ)-bit function; i.e., if T (γ) ≤ 2s.) Finally, β
(y)
out(γ) will simply be Bout(y, γ).

Injectivity of α(x) follows from correctness of the catalytic protocol: if α(x) maps two distinct τ to the
same output, the original protocol must reset both to the same final blackboard state. Since whenever
T (A1(x, τ, 0

s)) ≤ 2s, this new protocol agrees with the old, no such (x, τ) are bad. So it now suffices to show
that at least a 1/(s+ 1) fraction of all (x, τ) pairs have T (A1(x, τ, 0

s)) ≤ 2s.

Suppose that, for some x, we have
∑

τ∈{0,1}c T (A1(x, τ, 0
s)) > 2c+s. Then, by pigeonhole principle,

there must be two distinct catalytic tape settings, τ ̸= τ ′, such that the sets of states Bob-reachable from
A1(x, τ, 0

s) and A1(x, τ
′, 0s) have non-empty intersection. That is, there exist y, y′ ∈ {0, 1}nb such that

B2(y,A1(x, τ, 0
s)) = B2(y

′, A1(x, τ
′, 0s)). But this contradicts correctness of the catalytic protocol, be-

cause this ensures that inputs of (x, y, τ) and (x, y′, τ ′) to the protocol will both result in the same final
blackboard state, and hence at least one will fail to have catalytic portion reset correctly. Hence, for
all x,

∑
τ∈{0,1}c T (A1(x, τ, 0

s)) ≤ 2c+s. So,
∑

x,τ∈{0,1}na×{0,1}c T (A1(x, τ, 0
s)) ≤ 2c+s+na . Since we al-

ways have T (A1(x, τ, 0
s)) ≥ 0, the number of (x, τ) such that T (A1(x, τ, 0

s)) ≥ 2s + 1 can be at most
2c+s+na/(2s + 1). ■

We now give a strengthening of Lemma 6 in the case s = 1, showing that 1-clean protocols can be
converted into protocols that are one-way almost all of the time:

Lemma 2. Every left-injective function f : {0, 1}na ×{0, 1}nb → {0, 1} with CC3,1(f) = c has a protocol of
the following form, which we’ll call a mostly-one-way-catalytic protocol :

i) For every x ∈ {0, 1}na , Alice has an injective function α(x) : {0, 1}c → {0, 1}c × {0, 1}3.
ii) For every y ∈ {0, 1}nb , Bob has two functions, β

(y)
rem : {0, 1}c × {0, 1}3 → {0, 1} and β

(y)
out : {0, 1}c ×

{0, 1} → {0, 1}.
iii) Call a pair (x, τ) ∈ {0, 1}na × {0, 1}c bad if, for some y ∈ {0, 1}nb , we have β

(y)
out(τ, β

(y)
rem(α(x)(τ))) ̸=

f(x, y). Then, at most 2c+1 many pairs are bad.

Additionally, we may assume that, for every τ, y, we have β
(y)
out(τ, 0) ̸= β

(y)
out(τ, 1).

Proof. The proof begins identically to that of Lemma 6, noting that 1 · (21 + 1) = 3. For the main claim, it
now suffices to show that, when s = 1, we can have T (A1(x, τ, 0)) > 2 for at most 2c+1 many pairs (x, τ).

As before, we have have
∑

x,τ∈{0,1}na×{0,1}c T (A1(x, τ, 0
s)) ≤ 2c+na+s = 2c+na+1. Call a pair (x, τ)

choiceless if T (A1(x, τ, 0)) = 1. Since we always have T (A1(x, τ, 0)) ≥ 1, this implies that the num-
ber of choiceless (x, τ) is at least as large as the number of (x, τ) with T (A1(x, τ, 0)) > 2. So, it suffices
to show that there are at most 2c+1 many choiceless pairs. If there were more than 2c+1 many choice-
less pairs, then by pigeonhole principle there would have to be at least three choiceless pairs using the
same value of τ . Again, by pigeonhole principle, two of these three pairs must end the protocol with the
same bit in the clean space — that is, A3(x,B2(y,A1(x, τ))) = A3(x

′, B2(y,A1(x
′, τ))) for some x ̸= x′

and (noting that T (A1(x, τ)) = 1 means that B2(·, A1(x, τ)) is constant) for all y. But then, this means

26

f(x, y) = Bout(y,A3(x,B2(y,A1(x, τ)))) = Bout(y,A3(x
′, B2(y,A1(x

′, τ)))) = f(x′, y) for all y, contradicting
the assumption that f is left-injective.

We now show that this protocol can be modified to ensure that β
(y)
out(τ, 0) ̸= β

(y)
out(τ, 1) for all τ, y. Fix

some y, and first suppose that f(·, y) is constant. In this case, we can modify the protocol to let β
(y)
rem output

that same constant for every τ , and let β
(y)
out simply output the remembered bit, and our protocol will remain

correct for that y and every x. Now, on the other hand, suppose that f(·, y) is not constant — in this case,

we claim that the protocol must already have β
(y)
out(τ, 0) ̸= β

(y)
out(τ, 1) for all τ . If there were some τ such

that β
(y)
out(τ, 0) = β

(y)
out(τ, 1), by definition we would have Bout(y, τ, 0) = Bout(y, τ, 1). But then, the original

catalytic protocol, when the catalytic tape is initialized to τ and Bob is given input y, must always output
the same value — contradicting the assumption that f(·, y) is non-constant. ■

27
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

