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Abstract

This paper studies the refuter problems, a family of decision-tree TFNP problems capturing the
metamathematical difficulty of proving proof complexity lower bounds. Suppose φ is a hard tautology
that does not admit any length-s proof in some proof system P . In the corresponding refuter problem,
we are given (query access to) a purported length-s proof π in P that claims to have proved φ, and our
goal is to find an invalid derivation inside π. As suggested by witnessing theorems in bounded arith-
metic, the computational complexity of these refuter problems is closely tied to the metamathematics
of the underlying proof complexity lower bounds.

We focus on refuter problems corresponding to lower bounds for resolution, which is arguably the
single most studied system in proof complexity. We introduce a new class rwPHP(PLS) in decision-tree
TFNP, which can be seen as a randomized version of PLS, and argue that this class effectively captures
the metamathematics of proving resolution lower bounds:

• We show that the refuter problems for many resolution size lower bounds fall within rwPHP(PLS),
including the classic lower bound by Haken [TCS, 1985] for the pigeonhole principle. In fact, we
identify a common technique for proving resolution lower bounds that we call “random restriction
+ width lower bound”, and present strong evidence that resolution lower bounds proved by this
technique typically have refuter problems in rwPHP(PLS).

• We then show that the refuter problem for any resolution size lower bound is rwPHP(PLS)-hard,
thereby demonstrating that the rwPHP(PLS) upper bound mentioned above is tight. It turns
out that “rwPHP(PLS)-reasoning” is necessary for proving any resolution lower bound at all !

We view these results as a contribution to the bounded reverse mathematics of complexity lower
bounds: when interpreted in relativized bounded arithmetic, our results show that the theory T1

2(α)+
dwPHP(PV(α)) characterizes the “reasoning power” required to prove (the “easiest”) resolution lower
bounds. An intriguing corollary of our results is that the combinatorial principle, “the pigeonhole prin-
ciple requires exponential-size resolution proofs”, captures the class of TFNP problems whose totality
is provable in T1

2 + dwPHP(PV).
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1 Introduction

One of the earliest lower bounds in proof complexity was Haken’s landmark result [Hak85] that the
pigeonhole principle requires exponential-size proofs in the resolution proof system. Since then, proof
complexity has become a vibrant research area with substantial progress in establishing lower bounds for
various proof systems, as well as the development of a wide range of lower bound techniques. However, de-
spite decades of efforts, proving nontrivial lower bounds for stronger systems, such as Frege and Extended
Frege, remains elusive. It is widely believed that proving lower bounds for Extended Frege is “beyond
our current techniques”1, but what does this even mean? How much, and in which directions, must our
techniques expand, to enable us to prove lower bounds for stronger proof systems? These questions call
for a study of the metamathematical difficulty of proving lower bounds in proof complexity (see, e.g.,
[PS19,ST21]).

In this paper, we study the metamathematics of resolution lower bounds through the lens of the
following type of computational problems. Suppose that we are given a resolution proof Π that claims to
have proved the pigeonhole principle, but the length of Π is smaller than the lower bound established in
[Hak85]. By Haken’s lower bound, Π cannot be a valid resolution proof, implying that it must contain an
invalid derivation. What is the computational complexity of finding such an invalid derivation? We call
the following total search problem the “refuter problem”2 corresponding to Haken’s lower bound:

Problem 1.1 (Informal). Given (query access to) a subexponential-size resolution proof Π that claims to be
a proof of the pigeonhole principle, find an invalid derivation in Π.

For any proof complexity lower bound stated as “the tautology ϕ requires proof length greater than s in
the proof system P ”, we can define an associated search problem: Given a purported P -proof Π of length
at most s that claims to prove ϕ, find an invalid derivation in Π. With appropriate formalization (see
Section 1.1), these refuter problems are NP search problems and are total if and only if their underlying
lower bounds are true. Therefore, their computational complexity can be studied through the classical
theory of TFNP [MP91].

The starting point of this paper is the following principle: the metamathematics of proof complexity
lower bounds can, and should, be understood through the computational complexity of the refuter prob-
lems. In subsequent discussions, we justify this principle and provide metamathematical motivations for
studying the complexity of refuter problems, such as Problem 1.1.

Bounded reverse mathematics. The definition of Problem 1.1 has its roots in bounded reverse math-
ematics [Coo07,Ngu08]. Reverse mathematics explores, for each mathematical theorem of interest, the
minimal theory required to prove it. In bounded reverse mathematics, the theories considered come from
bounded arithmetic, which (roughly speaking) are logical theories formalizing the idea of “reasoning within
a complexity class C”. The link between these logical theories and complexity classes makes bounded arith-
metic, and hence bounded reverse mathematics, an effective framework for studying the metamathematics
of complexity theory.

Indeed, there has been a long history of studying the (un)provability of lower bounds in the context of
bounded arithmetic: In 1989, Krajíček and Pudlák investigated the unprovability of proof lower bounds
[KP89], while Razborov studied the unprovability of circuit lower bounds in 1995 [Raz95a,Raz95b]. No-
tably, many lower bounds for weak circuit classes and proof systems can be formalized in weak theories
[Raz95a,CP90,MP20], while some strong lower bounds are unprovable within them [KP89,Raz95b,Kra97,
Kra11b,Pic15,PS21,LO23,CLO24b].

1This belief is partly supported by the intuition that proving strong circuit lower bounds (e.g., NP ̸⊆ P/poly) seems to
be a prerequisite for proving strong proof complexity lower bounds (e.g., for Extended Frege) [Raz15]. However, formalizing
such connections has proven challenging [PS23,AKPS24].

2This term is adopted from [CTW23], as will be discussed later.
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We take a different perspective from the aforementioned line of work: rather than asking whether lower
bounds are provable in certain theories, our goal is to characterize the exact reasoning power required to
prove these lower bounds. That is, we seek to identify the minimal theory T that can prove the given
lower bound and to establish the minimality of T by showing that the axioms used in the proof are indeed
necessary. The necessity of axioms, i.e., deriving the axiom back from the theorem, is called a reversal in
reverse mathematics.

Example 1.2. Recently, Chen, Li, and Oliveira [CLO24a] presented several notable reversals related to com-
plexity lower bounds. In their work, they establish that variants of weak pigeonhole principles are necessary
and sufficient for proving various classical lower bounds. For instance, the fact that one-tape Turing machines
require Ω(n2) time to recognize palindromes [Maa84] can be proved using the weak pigeonhole principle; More-
over, [CLO24a, Theorem 4.9] demonstrates a reversal, proving that this lower bound is, in fact, equivalent to
the weak pigeonhole principle. The work in [CLO24a] serves as one of the main inspirations of this paper.

Refuter problems. To investigate the metamathematics of a lower bound statement, we first write
down the statement in forall-exists form:

• Circuit lower bounds: Let L be a hard language and s be a size lower bound for L. The lower bound
statement expresses that for every circuit C of size s, there exists an input x such that L(x) ̸= C(x).

• Proof lower bounds: Let ϕ be a tautology that is hard for some proof system P , and s be a size
lower bound for ϕ. The lower bound statement expresses that for every purported P -proof Π of size
s, there exists an invalid derivation step in Π.

Now it becomes evident that Problem 1.1 is exactly the TFNP problem that “corresponds” to Haken’s
lower bound [Hak85]. In general, a statement

∀x ∃y V (x, y) (1)

would “correspond” to the search problem of finding a valid y given x such that V (x, y) holds; note that
the statement is true if and only if the search problem is total.

This correspondence can be formally justified by the witnessing theorems in bounded arithmetic. A
witnessing theorem for a theory T links it to a syntactic subclass CT of TFNP, and the theorem states
that if (1) is provable in T , then the corresponding (total) search problem lies in the class CT .3 For
instance, Buss’s witnessing theorem [Bus85] states that if (1) is provable in S12, then the corresponding
total search problem can be solved in polynomial time. Moreover, Buss and Krajíček [BK94] showed that
if (1) is provable in T1

2, then the corresponding total search problem is solvable in PLS (polynomial local
search).

Search problems related to circuit lower bounds have already been studied in the literature [GST07,
Pic15,CJSW24,Kor22,CTW23,CLO24a] and are termed “refuter problems” in [CTW23]. We adopt this
terminology and refer to the search problems associated with proof lower bounds as “refuter problems” as
well.4

Total search problems in NP. The above discussion suggests that the metamathematics of lower
bounds can be understood through the computational complexity of their refuter problems. Since these
problems are total search problems in NP (as long as the lower bounds are true), it is natural to adopt
the methodology of TFNP while studying their complexity.

3This requires (1) to be a “∀Σb
1-sentence”, meaning that |x| and |y| are polynomially related and V (x, y) is a deterministic

polynomial-time relation.
4In fact, [CTW23] called these problems “refutation problems”. We choose to use “refuter problems” to avoid confusion

with the term “refutation” in proof complexity, which usually refers to a proof showing that a formula is unsatisfiable.
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What is the “methodology of TFNP”? Since the seminal work of Megiddo and Papadimitriou [MP91],
problems in TFNP have been categorized based on their proof of totality. For instance, the class PLS cap-
tures NP search problems whose totality is provable from the principle “every DAG has a sink” [JPY88],
while the class PPAD captures problems whose totality is provable from “every DAG with an unbalanced
node has another one” [Pap94]. Moreover, completeness results play the same role as reversals in bounded
reverse mathematics. For example, a pivotal result in this direction is the PPAD-completeness of finding
a Nash equilibrium in two-player games [CDT09, DGP09]. This result carries an intriguing metamath-
ematical interpretation: Topological arguments (specifically, Brouwer’s fixed point theorem [Bro11]) or
methods akin to it are unavoidable for proving the existence of Nash equilibrium [Nas51], which stands
in stark contrast to the linear programming duality methods used for zero-sum games [VS23].

The attentive reader may have already noticed that the above methodology shares a close resemblance
to (bounded) reverse mathematics. This similarity can indeed be formally justified by the witnessing
theorems mentioned earlier. (Another formal justification is that provability in (universal variants of)
bounded arithmetic is equivalent to reducibility in TFNP; see, e.g., [Mül21, Proposition 3.4].) While
reading this paper, it is useful to remember that all TFNP results established here can be translated into
results in bounded arithmetic and vice versa, conveying the same underlying conceptual message.

This paper. Strongly inspired by the recent work on refuter problems related to circuit lower bounds
[CJSW24,Kor22,CTW23,CLO24a], we propose investigating refuter problems associated with proof lower
bounds and studying their complexity in TFNP. As an initial step of this research program, we conduct
a case study on the classical resolution proof system [Bla37,Rob65].

Remark 1 (Why resolution?). In our view, there are at least two reasons why resolution serves as a suitable
“first step” for studying the metamathematics of proof lower bounds:

(i) First, resolution is a well-studied proof system, largely due to its fundamental connections to SAT-solving
and automated theorem provers [DP60,DLL62]. Krajíček even estimates that “there are perhaps more
papers published about proof complexity of resolution than about all remaining proof complexity topics
combined” [Kra19, Chapter 13].

(ii) Second, significant progress has already been made in proving lower bounds against resolution [Hak85,
Urq87,CS88,BP96,BW01], suggesting that investigating the metamathematics of resolution lower bounds
is a feasible endeavor.

Our results confirm the intuition stated in Item (ii). We introduce a new syntactic subclass of TFNP,
denoted as rwPHP(PLS), and show that:

Theorem 1.3 (Main Result; Informal). Problem 1.1 is rwPHP(PLS)-complete.

Theorem 1.3 can also be interpreted as conservativeness results showing that a certain fragment of
bounded arithmetic “captures” the complexity of proving Haken’s lower bounds; see Corollary 4.7 for
details.

In fact, our results are more comprehensive than stated in Theorem 1.3 and, in our view, strongly
support the claim that rwPHP(PLS) captures the metamathematics of proving resolution lower bounds:

• First, we investigate several resolution lower bounds proven in the literature, including those against
the pigeonhole principle [Hak85, BP96], Tseitin tautologies [Urq87, Sch97], random CNF formulas
[CS88], and XOR-lifted formulas [DR03]. We demonstrate that the refuter problems corresponding
to all these lower bounds lie within rwPHP(PLS).5

Notably, all the aforementioned lower bound proofs follow a common proof strategy, which we call
“random restrictions + width lower bounds”. If a resolution lower bound proof follows this strat-

5An interesting exception is the general size-width tradeoff by Ben-Sasson and Wigderson [BW01]; see Section 5.5 for
further discussions.
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egy, then the corresponding refuter problem is in rwPHP(PLS). This implies that “rwPHP(PLS)-
reasoning” is sufficient for implementing one of the most commonly employed strategies for proving
resolution lower bounds.

• Complementing the above findings, we prove that for any family of hard tautologies for resolution,
the corresponding refuter problem is rwPHP(PLS)-hard. Thus, the rwPHP(PLS) upper bound in
the previous bullet is indeed tight. Notably, the rwPHP(PLS)-hardness proof in Theorem 1.3 does
not rely on the hard tautology being the pigeonhole principle.

This result carries an intriguing metamathematical implication: “rwPHP(PLS)-reasoning” is neces-
sary for proving any resolution lower bound whatsoever.

We hope that our results serve as a promising initial step in the bounded reverse mathematics of lower
bounds in proof complexity. It is equally intriguing to study (and potentially characterize) the refuter
problems for other proof systems such as AC0-Frege [Ajt94,BIK+92], Cutting Planes [CCT87,Pud97], or
Polynomial Calculus [CEI96,Raz98, IPS99], which we leave for future work. An essential goal of this line
of research is to understand the complexity of refuter problems for strong proof systems for which we do
not know how to prove lower bounds6: for which syntactic subclass P ⊆ TFNP is “P-reasoning” necessary
for proving any lower bound for, for example, the AC0[2]-Frege system?

1.1 Our Settings

Before explaining our results, we first discuss the setting of (decision tree) TFNP and (relativized)
bounded arithmetic in which our results take place. In fact, this paper is written with primarily lower
bound provers and the TFNP community as target audiences in mind, but the theorems, proofs, and
perspectives draw heavy inspiration from bounded arithmetic. Hence, we will mostly state our results
and present our proofs in the terminology of TFNP; sometimes after describing a result in TFNP, we
will also describe its bounded arithmetic analog. The TFNP parts should be self-contained and require
little background from bounded arithmetic. However, we stress that TFNP is just a different language for
describing bounded reverse mathematics (over ∀Σb

1-sentences).
We consider TFNP problems in the decision tree model (TFNPdt); this model is sometimes called

“type-2 TFNP problems” [BCE+98] when the decision trees are uniform. In this model, we are given
an input x of length N and we think of decision trees of polylog(N) depth as “efficient”. Each possible
solution o can be represented by polylog(N) bits, and there is an efficient procedure ϕ(x, o) that verifies
whether o is a valid solution for x. (That is, given the purported solution o, ϕ(x, o) makes only polylog(N)
queries to x.) The goal is, of course, to find a solution o such that ϕ(x, o) holds.

TFNPdt corresponds to relativized bounded arithmetic where a new predicate α is added into the
language. The predicate α is intuitively treated as an oracle (or an exponentially-long input). For
example, PV(α) captures reasoning using Pα-concepts, i.e., uniform and efficient decision trees over α.

Remark 2 (Type-1 vs. Type-2 TFNP Problems). In the literature, it is common to define a type-1 TFNP
problem in terms of succinct encodings of exponentially large objects. For example, a possible definition of a
PLS-complete problem is as follows: Given a “neighborhood” circuit C : {0, 1}n → {0, 1}poly(n) and a “potential
function” circuit V : {0, 1}n → {0, 1}poly(n) that together encode a DAG on 2n nodes, and also an active node
(i.e., a node with non-zero out-degree), find a sink of this graph (i.e., a node with non-zero in-degree and
zero out-degree). In contrast, the TFNPdt / type-2 TFNP problems that we consider simply treat C and V as
oracles.

6Note that to characterize the refuter problems for a proof system P, it is necessary to have proven some lower bounds
for P; thus, we can only speculate on the complexity of refuter problems for strong proof systems P. Nevertheless, our
methodologies might potentially shed light on the metamathematical challenges of proving lower bounds, by providing
hardness results for such refuter problems.
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Any separation of type-2 TFNP problems implies a separation of type-1 TFNP problems in a relativized
world [BCE+98]. For example, PLSdt ̸⊆ PPAdt implies an oracle O under which PLSO ̸⊆ PPAO.

1.1.1 Refuter Problems for Resolution Lower Bounds

This subsection formalizes the refuter problem for resolution lower bounds as a TFNPdt problem.
We assume familiarity with the resolution proof system. In resolution, every line is a clause (i.e., the
disjunction of literals) and the only inference rule is the resolution rule:

C ∨ ℓ D ∨ ℓ
C ∨D

,

where C,D are clauses and ℓ is a literal. Sometimes, we will also allow the weakening rule that replaces
a clause with a consequence of it:

C

C ∨D
.

The size of a resolution proof is the number of lines (i.e., clauses) in it. The width of a resolution proof is
the maximum width of any clause in it, where the width of a clause is the number of literals in the clause.
Basics about resolution can be found in any textbook on proof complexity, e.g., [Kra19, Section 5].

Size lower bounds for resolution. Let F be a tautology7 that is exponentially-hard for resolution.
For example, take F to be the pigeonhole principle which does not have cn-size resolution proofs for some
absolute constant c > 1 [Hak85]. The refuter problem, which we denote as

Refuter(s(F ⊢Res ⊥) ≤ cn),

is defined as follows. The input Π is a purported length-cn resolution proof of F represented as a list of cn

nodes, where each node consists of a clause in the resolution proof and the predecessors of this clause. (For
example, if the clause in node i is resolved from the clauses in node j and node k, then the predecessor
information would contain two integers (j, k).) A valid solution would be the index of any node i ∈ [cn]
whose derivation is illegal: denoting Ci the clause in node i, then there do not exist clauses C,D and a
literal ℓ such that

Ci = C ∨D,Cj = C ∨ ℓ, Ck = D ∨ ℓ.

A more formal definition can be found in Section 2.4.
By Haken’s lower bound mentioned above [Hak85], every purported resolution proof of length cn must

contain an illegal derivation, thus the above problem is total. Let N := cnpoly(n) denote the bit-length
of the input resolution proof, then each node can be described in poly(n) ≤ polylog(N) bits, hence there
is an efficient decision tree that verifies whether a node i is illegal and the above refuter problem is indeed
in TFNPdt.

We can also formalize resolution lower bounds in relativized bounded arithmetic as follows. We add
a new symbol α into our language that encodes a length-cn resolution proof, i.e., for each i ∈ [cn], α(i, ·)
provides information regarding the i-th node of the proof. Let pfF (n, α) denote the Πb

1(α)-statement
expressing that “α encodes a length-cn resolution proof for F ,” where F is a hard tautology without such
resolution proofs.8 Note that pfF (n, α) is indeed Πb

1(α) since it expresses that for every i ∈ [cn], the i-th
7A DNF D is a tautology if and only if the corresponding CNF ¬D is a contradiction. A proof of D being a tautology

is a refutation of ¬D being a contradiction. For convenience, we will use the terms “tautology/proof” and “contradic-
tion/refutation” interchangeably.

8As a technical detail, we can also allow α to take parameters z⃗ that can be thought of as non-uniformity. That is,
for each i ∈ [cn], α(z⃗, i, ·) provides information regarding the i-th node of the proof. We consider the sentence pfF (n, z⃗, α)
which expresses that the proof encoded by α(z⃗, ·, ·) is a valid length-cn resolution proof for F . To see how the power of,
e.g., the dual weak pigeonhole principle with and without parameters can differ, the reader is referred to discussions in
[ILW23, Section 4.3].
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step of α is correct. The sentence9

∀n ∈ Log ¬pfF (n, α)

expresses the totality of the refuter problem as defined above; the provability of this sentence in relativized
bounded arithmetic corresponds to the complexity of the refuter problem in TFNPdt.

Width lower bounds for resolution. In this paper, we also study the refuter problems corresponding
to width lower bounds for resolution. Let F be a tautology without width-wF resolution proofs, the refuter
problem for this width lower bound would be denoted as

Refuter(w(F ⊢Res ⊥) ≤ wF ).

The formalization of width lower bounds is essentially the same as that of size lower bounds, with the
only difference that we now impose that every clause in the input resolution proof contains at most wF

literals. This can be done syntactically by only allocating wF literals to each node.

Remark 3 (Further motivations for refutation of width lower bounds). Besides being interesting on their own,
the complexity of refuting width lower bounds also serves as a stepping stone for understanding the complexity
of refuting size lower bounds.

Although we have a fairly good understanding of resolution nowadays, size lower bounds for resolution have
been an important open problem in history — in fact, they are milestone achievements in proof complexity.
Haken’s lower bound [Hak85] for the pigeonhole principle was a breakthrough at its time. But what is the
underlying principle for this breakthrough lower bound? Does it correspond to any classical TFNP class such
as PPP, PLS, PPAD, PPA, or CLS? Towards its answer, it would be beneficial to dig into the proofs of the
resolution size lower bounds for PHP.

Haken’s original paper [Hak85] employed a “bottleneck counting” argument and the proof was quite in-
volved. Beame and Pitassi [BP96] later introduced a new, simpler proof that elegantly reduced the size lower
bound to a width lower bound for (a monotone version of) resolution (see Section 3.1 for more details). This
size-width connection is not unique for PHP. The groundbreaking paper by Ben-Sasson and Wigderson [BW01]
established a generic size-width trade-off for resolution, which had a significant impact on the proof complexity
community. Today, studying size-width trade-offs for various proof systems has become standard practice (see
e.g. [CEI96,PS12,AH19,Sok20]).

Returning to PHP in the context of resolution, we know that reasoning about size lower bounds can, in
some sense, be reduced to reasoning about width lower bounds (we will formalize this very soon!). Thus,
understanding the refuter problem for width lower bounds seems like a prerequisite to understanding that for
size lower bounds.

1.1.2 Retraction Weak Pigeonhole Principles

This paper demonstrates that the complexity of refuter problems corresponding to resolution size lower
bounds is tightly linked to the new complexity class rwPHP(PLS). Therefore, we need to introduce this
class before describing our results.

Here, “rwPHP” stands for the retraction weak pigeonhole principle:

For any two functions f : [N ] → [2N ] and g : [2N ] → [N ], the function f ◦ g : [2N ] → [2N ]
cannot be the identity function.

The term “retraction”, borrowed from category theory [Jeř07b], means that the principle concerns a pair
of functions f, g where g is a “retraction”; the term “weak” indicates that the domain of g ([2N ]) is
much larger than its range ([N ]). This principle, along with other variants of weak pigeonhole principles,
is widely studied in the context of bounded arithmetic [PWW88, Kra01, MPW02, Tha02, Ats03, Kra04,
Jeř04, Jeř07b, CLO24a] and total search problems [KKMP21, Kor21, Kor22]; it is sometimes also called

9Roughly speaking, the notation n ∈ Log means that n is the length of some number, thus allowing one to reason about
integers of magnitude 2poly(n). In our particular case, it allows the length of the purported proof to be exponential in n.
This is a standard notation in bounded arithmetic.
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the “witnessing weak pigeonhole principle (WPHPWIT)” [Jeř07a, CLO24a] and “Lossy-Code” [Kor22].
Clearly, rwPHP corresponds to a TFNPdt problem: given (query access to) two functions f : [N ]→ [2N ]
and g : [2N ]→ [N ], find an input y ∈ [2N ] such that f(g(y)) ̸= y.

Let P be a problem in TFNPdt, then one can define a class rwPHP(P) capturing the retraction weak
pigeonhole principle where, informally speaking, the retraction function g can be computed in P. In the
decision tree model, the inputs of rwPHP(P) consist of:

1. (the evaluation table of) a function f : [N ]→ [2N ], and

2. 2N instances of P, denoted as {Iy}y∈[2N ], where each valid solution ans of each Iy is marked with
an integer gy,ans ∈ [N ].

The goal is to find an integer y ∈ [2N ] along with a solution ans of Iy such that f(gy,ans) ̸= y. It is not
hard to see that if P ∈ TFNPdt then rwPHP(P) ∈ TFNPdt (Fact 2.8). Furthermore, rwPHP(P) can be
solved by a simple randomized algorithm given oracle access to any solver of P.

The class rwPHP(PLS) is defined as the problems reducible to rwPHP(P) for a PLS-complete problem
P. It can be shown that rwPHP(PLS) does not depend on the exact choice of the PLS-complete problem
P (Fact 2.10).

Witnessing for T1
2 + dwPHP(PV). Although rwPHP(PLS) seems to be new to the TFNP community,

it already appeared implicitly in the literature of bounded arithmetic. This class captures the TFNP
problems whose totality is provable in T1

2 + dwPHP(PV). In other words, rwPHP(PLS) corresponds to
the witnessing theorem for T1

2 + dwPHP(PV) (just like how PLS corresponds to a witnessing theorem for
T1
2 [BK94]). This was noticed in [BKT14] where they showed every ∀Σb

1-consequence of T1
2+dwPHP(PV)

randomly reduces to PLS; in fact, the same argument implies a deterministic reduction to rwPHP(PLS).

Remark 4 (How Strong is rwPHP(PLS)?).
Since rwPHP(PLS) can be seen as a randomized version of PLS (where the guarantee that “most randomness

are good” is provided by the dual weak pigeonhole principle), its position in the TFNPdt hierarchy is roughly
the same as, but slightly higher than PLS. In particular, in the decision tree setting, it follows from the previous
separations (PLS ̸⊆ PPP [GHJ+22] and PLS ̸⊆ PPA [BM04]) that rwPHP(PLS) is contained in neither PPP nor
PPA. Note that there is already a decision tree separation between PLS and the TFNPdt problem corresponding
to rwPHP (which follows from a resolution width lower bound for rwPHP [PT19, Proposition 3.4]), hence in
the decision tree setting, rwPHP(PLS) strictly contains PLS.

We also note that T1
2(α) + dwPHP(PV(α)) is a relatively weak theory in the realm of relativized bounded

arithmetic.a This theory is a subtheory of both T2
2(α) and Jeřábek’s (stronger) fragment for approximate

counting APC2(α) [Jeř09]. It is also “weak” in the sense that unconditional unprovability results are known:
it cannot prove the ordering principle [AT14] and the pigeonhole principle [PT19].

aThe reader might have encountered claims in the literature that even weaker theories such as S1
2 or APC1 are “strong”,

so it might be confusing for a reader unfamiliar with bounded arithmetic that we are claiming T1
2(α)+dwPHP(PV(α))

as a “weak” theory. The reason is relativization: In our formalization, the purported resolution proof α has exponential
size, and we are only allowed to reason about objects in PH (think of AC0 circuits over α). This is much weaker than
the setting where the proof α has polynomial size and we are allowed to reason about polynomial-time concepts. This
is roughly analogous to classifying the circuit class AC0 (i.e., relativized PH) as “weak” and P/poly as “strong”.

1.2 Our Results

Our main results can be categorized into three parts: (1) bounded reverse mathematics (TFNP char-
acterizations) for (several) resolution width lower bounds; (2) bounded reverse mathematics (TFNP char-
acterizations) for (several) resolution size lower bounds; and (3) further applications in TFNP and proof
complexity. We will describe the results related to width lower bounds first in Section 1.2.1, not only be-
cause they serve as prerequisites for the results regarding size lower bounds (discussed in Section 1.2.2), but
also because the techniques therein find additional applications in TFNP and proof complexity (detailed
in Section 1.2.3).
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Readers interested specifically in the refuter problems corresponding to the pigeonhole principle (i.e.,
Problem 1.1) will find this paper organized to their advantage. The main body of the paper is structured so
that the initial sections primarily focus on presenting the complexities of refuter problems of PHP(n+1)→n.
Specifically, Section 2 contains the minimal preliminaries and definitions, and Section 3 and Section 4
present the proof of Theorem 1.3. It is worth noting, however, that our results extend to many other
formulas (XOR-lifted formulas, Tseitin formulas, and random k-CNFs), as shown in Section 5.

1.2.1 Bounded Reverse Mathematics for Resolution Width Lower Bounds

The main message in this subsection is that the refuter problems corresponding to resolution width
lower bounds are complete for the well-studied class PLS, the first syntactic subclass of TFNP introduced
in the literature [JPY88].

We begin with the results related to the pigeonhole principle. The attentive reader may notice a
subtle issue when formulating the refuter problem of width lower bound: PHP(n+1)→n already contains
an axiom with width n, and the width lower bound for proving it is n as well. Thus, the corresponding
width refuter problem becomes trivial. To address this, we instead consider the width refuter problem for
a constant-width analog of PHP(n+1)→n, called EPHP(n+1)→n, which has constant-width axioms and an
n/3 width lower bound as shown in [BW01]. We characterize the complexity of its corresponding refuter
problem:

Theorem 4.2. Refuter(w(EPHP ⊢Res ⊥) < n/3) is PLS-complete.

A similar PLS-completeness result also holds for Tseitin formulas (on expander graphs), where e(G)
below is the expansion parameter of the graph G (Definition 5.6).

Theorem 5.9. Refuter(w(Tseitin ⊢Res ⊥) < e(G)) is PLS-complete.

The techniques used in these results will be further extended to the refuter problems corresponding
to black-box TFNP separations, specifically PLS ̸⊆ PPP and PLS ̸⊆ PPA, as described in Theorem 6.11
below.

To tackle Problem 1.1 though, we have to delve into the proofs of the exponential (size) lower bound.
A monotonized version of the width lower bound plays a crucial role in the simplified proof by Beame and
Pitassi [BP96]. In particular, they show that any resolution refutation of PHP(n+1)→n contains a clause
C with “monotone width” of at least 2n2/9 (see Section 3.1). We similarly characterize the complexity of
its corresponding refuter problem (where the subscript mono denotes the monotone analog of the width
refuter problem; the formal definition is provided in Section 3.1):

Theorem 4.3. Refuter(wmono(PHP(n+1)→n ⊢Res ⊥) < 2n2/9) is PLS-complete.

Unsurprisingly, this result serves as a key step toward addressing the size refuter problem for the
pigeonhole principle, which will be discussed in the next subsection.

The PLS-hardness parts of all three results above stem from a unified and simple proof, detailed
in Theorem 4.1. Conversely, the PLS-membership of these refuter problems is established by carefully
analyzing the proofs in [BP96, BW01] and demonstrating that “PLS-reasoning” suffices to prove these
lower bounds. (In fact, these proofs can be formalized in the theory T1

2(α), and the PLS-membership
follows directly from the witnessing theorem in [BK94].)

A non-uniform universal PLS-membership. Finally, we establish a universal PLS-membership result
with respect to non-uniform decision tree reductions: for any resolution width lower bound against every
unsatisfiable CNF, as long as the lower bound is correct, the corresponding refuter problem can be reduced
to PLS under non-uniform decision tree reductions.
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Theorem 5.1. Let F be any (possibly non-uniform) family of unsatisfiable CNFs with polynomially many
clauses, and let w0 be any valid resolution width lower bound for F . Then there exists a (non-uniform)
decision-tree reduction from Refuter(w(F ⊢Res ⊥) < w0) to PLS.

Both the formulation and proof of this result inherently require non-uniformity for at least two reasons:
(1) it is computationally hard to check whether an arbitrarily given CNF is unsatisfiable, and (2) even
assuming that the given CNF is unsatisfiable, it is hard to calculate the resolution width lower bound.
See Section 5.1 for further discussion.

Remark 5 (Uniform vs. non-uniform reductions). Note that if one only cares about non-uniform reductions,
then (the PLS-membership parts of) Theorem 4.2 and Theorem 5.9 are merely special cases of Theorem 5.1.
Nevertheless, we believe that the uniform PLS-membership results in Theorem 4.2 and Theorem 5.9 are infor-
mative, as they actually show that the corresponding lower bounds can be formalized in T1

2(α); in fact, the code
of the Turing machine that implementing the uniform reduction to PLS effectively acts as a proof of the width
lower bound using a local search argument. They are also crucial for the uniform rwPHP(PLS)-memberships
for the size refuter problems. However, the decision tree reduction in Theorem 5.1 seems to require exp(n)
bits of non-uniformity, making it highly non-uniform.

On the other hand, the non-uniform reduction in Theorem 5.1 implies an intriguing proof complexity upper
bound: Small-width resolution can prove width lower bounds for resolution itself ! (See Section 1.2.3 for more
details.) Uniformity is not required for this application, allowing us to derive more proof complexity upper
bounds using Theorem 5.1: every resolution width lower bound that is correct can be proved in low-width
resolution. (The size lower bound analog of Theorem 5.1 remains unknown, hence we can only show proof
complexity upper bounds for tautologies encoding specific resolution size lower bounds.)

1.2.2 Bounded Reverse Mathematics for Resolution Size Lower Bounds

Our main message in this subsection is that the refuter problems corresponding to many resolution
size lower bounds are complete for rwPHP(PLS), the TFNP subclass introduced in Section 1.1.2. Indeed,
the theorems presented in this subsection suggest that rwPHP(PLS) captures the complexity of proving
the easiest-to-prove size lower bounds for resolution. Our workflow is the same as before:

• First, we show that for many notable resolution size lower bounds proven in the literature, the
corresponding refuter problems reduce to rwPHP(PLS). Specifically, we identify a common technique
for proving resolution size lower bounds, which we call “random restriction + width lower bounds”,
and demonstrate that if a resolution size lower bound can be proven using it, then the corresponding
refuter problem generally falls within rwPHP(PLS).

• Next, we present a unified rwPHP(PLS)-hardness result: the refuter problems for resolution size
lower bounds are rwPHP(PLS)-hard, and the hardness proof does not depend on the hard tautol-
ogy considered. Thus, we conclude the rwPHP(PLS)-completeness of many refuter problems for
resolution size lower bounds.

The rwPHP(PLS)-hardness of size lower bound refuters turns out to be more challenging than the PLS-
hardness of width lower bound refuters, as discussed in Section 1.4.2.

We begin by showing that Problem 1.1 reduces to rwPHP(PLS):

Theorem 1.4 (Informal version of Theorem 3.16). There exists an absolute constant c > 1 and an efficient
decision-tree reduction from the problem Refuter(s(PHP(n+1)→n ⊢Res ⊥) ≤ cn) to rwPHP(PLS).

In fact, we show that T1
2(α) + dwPHP(PV(α)) proves the sentence

∀n ∈ Log ¬pfPHP(n, α),

i.e., α is not a length-cn resolution proof for PHP, by formalizing the classical proofs in [Hak85, CP90,
BP96]; Theorem 3.16 then follows from the witnessing theorem for T1

2(α) + dwPHP(PV(α)). In the
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technical overview (Section 1.4.1) and the main proof (Section 3.2), we present the reduction from the
refuter problem Refuter(s(PHP ⊢Res ⊥) ≤ cn) to rwPHP(PLS) directly, without relying on witnessing
theorems.

It turns out that a large variety of resolution size lower bounds can be proven using the paradigm of
“random restriction + width lower bounds,” including those for XOR-lifted formulas [DR03], Tseitin for-
mulas [Urq87,Sch97], and random CNFs [CS88]. We show that all these lower bounds have corresponding
refuter problems in rwPHP(PLS) (see Theorem 5.4, Theorem 5.12, and Theorem 5.13, respectively). These
results provide strong evidence that rwPHP(PLS) (or T1

2(α)+dwPHP(PV(α))) captures the “complexity”
of this popular proof technique for resolution lower bounds.

We complement the above results by showing that for every unsatisfiable family of CNFs {Fn} that
requires resolution size greater than sF (n), the corresponding refuter problem Refuter(s(Fn ⊢Res ⊥) ≤
sF (n)) is hard for rwPHP(PLS).

Theorem 1.5 (Informal version of Theorem 4.4). For every unsatisfiable family of CNF formulas {Fn}
and parameter sF (n) such that every resolution refutation of Fn requires more than sF (n) clauses, there
exists a decision tree reduction of depth poly(n) from rwPHP(PLS) to Refuter(s(Fn ⊢Res ⊥) ≤ sF (n)).10

Note that Theorem 1.5 holds for every hard tautology, whereas the rwPHP(PLS) upper bounds such
as Theorem 1.4 are only known to hold for some natural families of hard tautologies. For these natural
tautologies, we establish a reversal in the bounded reverse mathematics of proof complexity lower bounds:
The power of “rwPHP(PLS)-reasoning” is sufficient for implementing a popular proof strategy that can
prove all these resolution lower bounds and, at the same time, is necessary for proving any resolution
lower bound whatsoever !

Remark 6. We also note that Theorem 1.5 requires decision tree depth poly(n) regardless of sF , and is thus
only considered “efficient” when sF = 2n

Ω(1)

. However, this is merely an artifact of our definition of “efficiency”
in the decision tree setting, i.e., if the input length is N , then depth-polylog(N) decision trees are considered
“efficient”. In fact, even if sF = 2n

o(1)

, each node in the purported length-sF resolution proof still requires
poly(n) bits to represent, so it takes poly(n) query complexity to verify a solution of the refuter problem.
Therefore, it still makes sense in the particular setting of refuter problems to consider a decision tree reduction
efficient if its query complexity is at most poly(n). We interpret Theorem 1.5 to mean that “rwPHP(PLS)-
reasoning” is necessary for proving not only subexponential but any moderately large size lower bound for
resolution.

The proof of Theorem 1.5 is heavily inspired by the NP-hardness of automating resolution [AM20] and
the exposition of this result in [dRGN+21]. In these proofs, it was crucial to show that resolution cannot
prove lower bounds against itself; in particular, [dRGN+21, Section 5] showed that resolution requires a
large (block-)width to prove resolution lower bounds. Notably, the proof in [dRGN+21] is by a reduction
from rwPHP, i.e., resolution cannot prove lower bounds against itself because resolution cannot prove
rwPHP. We strengthen these results by reducing a stronger problem —rwPHP(PLS) instead of rwPHP
— to the refuter problems, thereby obtaining a tight characterization of these refuter problems.

Finally, our results provide an intriguing characterization of the provably total NP search problems in
T1
2 + dwPHP(PV) (see Corollary 4.7). That is:

Just as “every DAG has a sink” characterizes the ∀Σb
1-consequences of T1

2 [BK94], “resolution
requires 2Ω(n) size to prove PHP” characterizes the ∀Σb

1-consequences of T1
2 + dwPHP(PV).

1.2.3 Applications

Besides being interesting in itself, our study of refuter problems also reveals several new insights into
these well-studied proof complexity lower bounds and TFNP separations. More specifically, we translate

10This theorem requires a mild technical condition that sF (n) should be moderately larger than the size of the rwPHP(PLS)
instance; see the formal statement in Theorem 4.4 for details.
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our results into different languages using the generic connection between TFNPdt and proof complexity
via the false clause search problem (see, e.g., [dRGR22]): For an unsatisfiable CNF F = C1 ∧ · · · ∧ CM ,
the false clause search problem Search(F ) is a TFNPdt problem where, given oracle access to an input
x ∈ {0, 1}N , the goal is to find a clause Ci such that Ci(x) = false. Any TFNPdt problem can be written
as a false clause search problem for a family of low-width CNFs, and vice versa. In particular, a family
of unsatisfiable CNFs has low-width resolution refutations if and only if the corresponding false clause
search problem reduces to PLS [Raz95b] (see also [Kam19, Section 8.2.2] for an exposition). See Figure 1
for a diagram that summarizes the translations of our main results in different languages.

Theorem 6.1, 6.3: Proof complexity of the proof lower bounds .

Theorem 5.1, 5.9, 5.13: Computational complexity of the refuters for proof lower bounds .

Theorem 6.11: Computational complexity of the refuters for TFNPdt separations .

PLS = Res (Theorem 2.4) via false clause search

via Lemma 6.10 PLS = Res (Theorem 2.4)

Figure 1: Translations of the main results in different languages. A one-way arrow represents an implica-
tion, and a two-way arrow indicates an equivalence.

Proof complexity of proof lower bounds. We first use our results to provide surprisingly efficient
proofs for proof complexity lower bounds. Note that a proof complexity lower bound can be expressed by
a family of CNFs FLB by formulating the corresponding refuter problem as a false clause search problem
Search(FLB) (see, e.g., Section 6.1).

In particular, there exists a family of Õ(w)-width CNFs that encodes a width-w resolution lower bound.
Then, since PLS and low-width resolution are equivalent, Corollary 5.2 implies the following upper bound
on the resolution width required to prove resolution lower bounds.

Theorem 1.6 (Informal version of Theorem 6.1). Any width-w resolution lower bound can be proved in
resolution width Õ(w).

We also use our rwPHP(PLS) upper bounds to show that poly(n)-width random resolution [BKT14,
PT19] can prove exponential-size resolution lower bounds (encoded as poly(n)-width CNFs). In fact,
using our results on random k-CNFs (Theorem 5.13), we can show that most resolution size lower bounds
are provable in low-width random resolution:

Theorem 1.7 (Informal version of Theorem 6.3). With high probability over a random k-CNF F , the
resolution size lower bound s(F ⊢Res ⊥) > 2Ω(n) can be proved in random resolution width of poly(n).

These results stand in stark contrast with Garlík’s result [Gar19] that tautologies encoding any res-
olution size lower bounds are hard for resolution: We show that either switching to width lower bounds
(Theorem 1.6) or considering random resolution (Theorem 1.7) makes these lower bound tautologies easy
to prove!11

11In our Section 6.1, the lower bound tautologies use binary encoding, where (e.g.) the predecessors of every node are
encoded by O(logN) bits. In contrast, Garlík [Gar19] uses unary encoding where for every pair of nodes (i, j) (a minor
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Complexity of refuting black-box TFNP separations. We also consider the refuter problem for
black-box TFNP separations. Let A,B be two TFNPdt classes such that A ⊈ B. Informally, Ref(A ⊆ B)
is the class of problems reducible to the following kind of “refuter” problems: The input is a purported
decision tree reduction from A to B, and the solution is a short witness showing that the reduction is
wrong. The refuter problems for TFNPdt separations also lie in TFNPdt, as their totality follows from the
correctness of the black-box separation A ⊈ B.

The complexity of such refuter problems measures the strength of the arguments used for black-box
separation results. For example, the following corollary conveys a simple but often overlooked fact: when
separating a syntactic TFNPdt subclass A from B, it is necessary to incur the totality principle of B.

Corollary 6.9. For any two TFNPdt classes A,B such that A ⊈ B, B ⊆ Ref(A ⊆ B).

Due to the connection between TFNPdt and proof complexity, the refuter problem for each black-
box TFNP separation naturally aligns with a corresponding refuter problem for a proof complexity lower
bound. In particular, we build a uniform reduction from the refuter problems for separations from PLS
to the refuter problems for resolution width lower bounds (Lemma 6.10), because showing a TFNPdt

subclass A is not in PLS is essentially showing a resolution width lower bound for the formula expressing
the totality of A.

Note that the false clause search problem for EPHP and Tseitin are in PPP and PPA respectively.
Therefore, using our characterization of the resolution width refuter for EPHP (Theorem 3.3) and Tseitin
(Theorem 5.9), we conclude that it is necessary and sufficient to use local search principle to separate PPP
and PPA from PLS in the black-box setting.

Theorem 1.8 (Informal version of Theorem 6.11). Ref(PPP ⊆ PLS) = Ref(PPA ⊆ PLS) = PLS.

1.3 Discussions, Speculations, and Future Directions

This paper initiates a research program that attempts to understand, for every proof system P of
interest, the metamathematics of proving lower bounds against P through the lens of refuter problems.12

Our results on resolution suggest that this is a promising direction. There are a plethora of future research
directions, both regarding “weak” systems (where we already know strong lower bounds against P-proofs)
and “strong” ones (where we are still struggling to prove non-trivial lower bounds against P).

Weak proof systems. It might be feasible to characterize the complexity of refuter problems for weak
proof systems. How does the complexity of refuting lower bounds for P compare with P itself (or, more
precisely, the TFNPdt subclass corresponding to P [BFI23])? In the case that P is resolution, our work
shows that the complexity of refuting width lower bounds for P is exactly P itself (i.e., PLS), and the
complexity of refuting size lower bounds is a randomized version of P (i.e., rwPHP(PLS)). Thus, it seems
reasonable to conjecture that for “weak” proof systems, the complexity of proving lower bounds against
them is not much higher than themselves.

Moreover, the proof complexity of proof complexity lower bounds is intimately connected to the (non-
)automatability of proof systems, see e.g., [AM20, GKMP20, Bel20, dRGN+21, IR22, Gar24, Pap24]. We
expect that a thorough understanding of the former would help make progress on the latter as well.

detail is that [Gar19] requires i to be “one level above” j), there is a Boolean variable xi,j indicating whether i is a predecessor
of j. As [Gar19] pointed out, a resolution lower bound for the unary-encoded refutation statements implies a similar lower
bound for the binary-encoded refutation statements. On the other hand, since we are proving width upper bounds and the
unary encoding already results in large-width CNFs, we can only afford to use binary encoding (see Remark 8).

12We believe the similar research program for circuit lower bounds would also be fruitful, which has already started since
[CJSW24,Kor22,CLO24a] if not earlier. We limit our discussions to proof lower bounds here.
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Strong proof systems. The situation for strong proof systems seems much more mysterious. For strong
proof systems P (think of P being Frege or Extended Frege), it is even unclear whether there should be
an “easiest-to-prove” lower bound for P (which would correspond to a syntactic subclass C(P) ⊆ TFNPdt

that characterizes the complexity of proving lower bounds for P). Even if such a C(P) exists, it is unclear
if it is captured within our current landscape of TFNPdt.13

This suggests the following possibility: The reason that we have not been able to prove lower bounds
for P is that C(P) is a very complicated class, far beyond our current understanding of TFNPdt and
bounded arithmetic. An even more speculative hypothesis would be that the proof systems P for which
we are able to prove lower bounds are exactly those where C(P) is not “much” higher than P themselves.
We hope that future work will determine to what extent these hypotheses are correct.

The case of AC0[p]-Frege (where p is a prime) is of particular interest. Although strong lower bounds
for AC0[p] circuits have been known for decades [Raz87, Smo87], we have not yet succeeded in turning
these circuit lower bounds into proof complexity lower bounds against AC0[p]-Frege (see, e.g., [MP96,
BKZ15]). The paper [BIK+97] laid out a research program towards AC0[p]-Frege lower bounds by studying
weaker algebraic proof systems such as the Nullstellensatz [BIK+94] and Polynomial Calculus [CEI96,
Raz98]. After a few decades, we have become proficient at proving lower bounds against such algebraic
proof systems, but lower bounds against AC0[p]-Frege remain elusive. Is it because the refuter problems
corresponding to AC0[p]-Frege lower bounds are fundamentally different from those for the weaker algebraic
proof systems? Does our metamathematical TFNPdt perspective bring new insights to this long-standing
open question?

1.4 Technical Overview

1.4.1 Refuter Problems in rwPHP(PLS)

In this subsection, we explain how the lower bound proof in [CP90,BP96] yields a reduction from the
problem Refuter(s(PHP(n+1)→n ⊢Res ⊥) ≤ cn) to rwPHP(PLS). As mentioned before, this is essentially
a formalization of the lower bound proof in T1

2(α) + dwPHP(PV(α)), and the reduction follows from the
witnessing theorem for this theory. However, this subsection will describe the reduction without invoking
the witnessing theorem (nor does the formal proof in Section 3.2 use the witnessing theorem). We hope
that by opening up the witnessing theorem as a black box, it would become clearer how each component
in the proof corresponds to a component in the reduction to rwPHP(PLS).

The proof of [CP90,BP96] consists of two components:

• (Random restrictions) First, we carefully design a distribution of random restrictions R under which
the following holds. (1) With high probability over ρ ← R, any fixed size-cn resolution proof will
simplify to a resolution proof of width14 at most w under ρ (for some parameter w); (2) the pigeonhole
principle PHP(n+1)→n remains to be the pigeonhole principle (of a slightly smaller size PHP(n′+1)→n′)
under any restriction ρ ∈ R. Moreover, R is the uniform distribution over some set of restrictions;
we abuse notation and use R to also denote this set.

• (Width lower bound) Then, we invoke the width lower bound for the pigeonhole principle and show
that resolution cannot prove PHP(n′+1)→n′ in width w.

Given a resolution proof Π of size cn, the fact that most restrictions simplify Π into a small-width proof
can be shown by a compression argument : given a clause Ci ∈ Π and a restriction ρ ∈ R that does not
shrink Ci into a clause of width ≤ w, one can describe ρ in ℓcomp bits for some small ℓcomp. In what follows,

13Note that the question of where C(P) sits in the TFNPdt hierarchy is merely a restatement of the open problem of
determining the proof complexity of proof complexity lower bounds for P. For example, C(P) is a subclass of PTFNP
[GP18a] if and only if q-eff (the proof system underlying the definition of PTFNP) can prove lower bounds for P.

14In fact, in the case of PHP, we obtain a resolution proof of small monotone width. We omit the distinction between
width and monotone width in the overview and refer the reader to Section 3 for details.
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Random Restrictions:

Random Restrictions:

Compressed Random Restrictions:

Find a fat clause or a wrong 
derivation in Π𝜌𝜌

Use 𝑔𝑔 to compress

Use 𝑓𝑓 to decompress

Figure 2: The rwPHP(PLS) instance constructed from Refuter(s(PHP(n+1)→n ⊢Res ⊥) ≤ cn).

it suffices if ℓcomp ≤ log |R| − log(cn)− 1, which is indeed the case under a suitable choice of parameters.
Note that for comparison, if such a clause Ci were not known, it would require, information-theoretically,
at least log |R| bits to encode any restriction ρ ∈ R. This compression argument implies that a random
ρ← R shrinks a fixed clause w.p. ≥ 1− 1

2cn , thus the existence of a good ρ shrinking the whole proof Π
follows from a union bound over the cn clauses in Π.

For every restriction ρ, one can compute a proof Π|ρ with each clause C ∈ Π replaced by C|ρ, the
restriction of C under ρ; if width(C|ρ) > w, we truncate C|ρ to force its width to be at most w. Since Π|ρ
is a width-w resolution proof, it follows from the width lower bound that it does not prove PHP(n′+1)→n′ .

Our reduction from Refuter(s(PHP(n+1)→n ⊢Res ⊥) ≤ cn) to rwPHP(PLS) works as follows.

• Let N := |R|/2. The function f : [N ]→ [2N ] takes as inputs (i, s) where i ∈ [cn] denotes a node in
Π and s is the compressed description of a random restriction ρ that fails to simplify Ci to width
w (note that this takes log(cn) + ℓcomp ≤ logN bits), and outputs the standard encoding of ρ (in
log |R| = log(2N) bits). It is easy to see that every restriction ρ outside the range of f would be a
good restriction (that successfully shrinks every clause in Π into width w).

• For each ρ ∈ R ∼= [2N ], Π|ρ is a width-w resolution proof. By Theorem 3.8, we can reduce the
problem of finding an illegal derivation in Π|ρ to PLS. Call this instance Iρ.

• Finally, let i ∈ [cn] be an illegal derivation in Π|ρ (that can be found in PLS). There are two reasons
that the i-th step is illegal in Π|ρ: first, it might already be an invalid derivation in Π; second, the
width of Ci|ρ might be greater than w, thus the error happens when we truncate Ci|ρ to width w.
In the second case, let s be the ℓcomp-bit description of ρ given that it does not simplify Ci to width
≤ w, and gρ,i := (i, s), then f(gρ,i) = ρ.

It follows that once we found any ρ and i such that i is an answer for Iρ and f(gρ,i) ̸= ρ, then the i-th
step is illegal for the first reason stated above, i.e., the i-th step in Π is also invalid. See Figure 2 for a
high-level overview of this construction.

Random restrictions + width lower bounds. It turns out that the above proof template that
combines random restrictions and width lower bounds is very popular in proving resolution lower bounds.
Given a hard tautology F , we design a family of restrictions R such that (1) Any fixed short resolution
proof will simplify to a narrow resolution proof under R, and (2) even after a random restriction in R, F
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remains hard for narrow resolution proofs. Note that the family R is usually carefully chosen according to
the hard tautology F ; e.g., R corresponds to partial matchings when F = PHP [BP96] and corresponds
to random edge sets when F = Tseitin [Sch97].

As mentioned before, this proof strategy is capable of proving resolution size lower bounds for various
hard tautologies, and we can use a similar argument as the above to show that the refuter problems
corresponding to these resolution size lower bounds are in rwPHP(PLS). This includes XOR-lifted formulas
(Section 5.2), Tseitin tautologies (Section 5.3), and random k-CNFs (Section 5.4).

In fact, it is quite intuitive to formalize “random restrictions + width lower bounds” in T1
2(α) +

dwPHP(PV(α)). Roughly speaking, we first use dwPHP(PV(α)) to formalize the compression argument
and show that most random restrictions will shrink the resolution proof (represented by α) into a narrow
one; then we use Σb

1(α)-MIN (which is available in T1
2(α)) to prove a resolution width lower bound.

1.4.2 Refuter Problems are rwPHP(PLS)-Hard

In this subsection, we explain the ideas behind the reduction from rwPHP(PLS) to the refuter problems
for resolution size lower bounds. In fact, a reduction from rwPHP to the refuter problems is already
implicit in the celebrated result on the NP-hardness of automating resolution [AM20] and was made
explicit in [dRGN+21]. It turns out that with minor modifications, the same proof can be adapted to
reduce not only rwPHP but also rwPHP(PLS) to the refuter problems, thereby proving Theorem 4.4.
Hence, the remainder of this subsection will focus on the rwPHP-hardness result from [dRGN+21]; the
complete rwPHP(PLS)-hardness result can be found in Section 4.2.

There is a clear intuition behind the reduction: suppose rwPHP were false, i.e., there are functions
f : [N ] → [2N ] and g : [2N ] → [N ] such that f ◦ g : [2N ] → [2N ] is the identity function, then every
unsatisfiable CNF F would have a resolution refutation of size poly(N,n). Of course, the ground truth is
that such functions f and g should not exist, but a weak proof system (such as resolution itself) might not
be aware of this. Suppose the weak system “thinks” that such a pair of functions (f, g) might exist, and
it can construct a short resolution refutation of F from (f, g), then the weak system should also “think”
that F might have a short resolution refutation. In summary, if it is hard to refute the existence of (f, g)
(which means proving rwPHP), then it is also hard to prove that F does not have a short resolution
refutation.

Now, our task becomes the following. We live in a strange world where there is a surjection from
[N ] to [2N ]; given an arbitrary unsatisfiable CNF F , we want to construct a poly(N,n)-size resolution
refutation of F . Consider the size-2O(n) brute-force resolution refutation for every unsatisfiable CNF,
which is represented by the following proof tree.

• The root (level 0) of the tree contains the empty clause ⊥.

• For each level 1 ≤ i ≤ n, each clause C at level i − 1 is resolved from the two clauses C ∨ xi and
C ∨ xi, both of which sits in level i. The clauses C ∨ xi and C ∨ xi are the two children of C. Note
that each clause at level i has a width of exactly i.

• Finally, every clause C at level n corresponds to an assignment xC ∈ {0, 1}n which is the only
assignment falsifying C. Since F is unsatisfiable, there is an axiom of F that xC falsifies. Clearly,
C is a weakening of this axiom.

We now construct a shorter resolution refutation using the surjection from [N ] to [2N ]. We guarantee
that in our short refutation, each level never contains more than N clauses; this implies that our resolution
refutation is of size O(N · n). Consider level i where 1 ≤ i ≤ n. If level i− 1 contains at most N clauses,
then level i contains at most 2N clauses: for each clause Cj in level i−1, there are two clauses C ′

2j := C∨xi
and C ′

2j+1 := C ∨ xi in level i. However, since there is a surjection from [N ] to [2N ], it is possible to pick
N clauses among these 2N ones such that each of the 2N clauses appears in these N ones! (The j-th
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𝐶1 𝐶2 𝐶3 𝐶4

Figure 3: The brute-force resolution proof for a CNF F = C1 ∧ C2 ∧ C3 ∧ C4 when n = 3.

picked clause (j ∈ [N ]) is C ′
f(j); the clause C ′

j (j ∈ [2N ]) appears as the g(j)-th picked clause.) Now that
level i also contains at most N clauses, we can proceed to the next level and so on.

We stress again that the ground truth is, of course, that there do not exist functions f : [N ] → [2N ]
and g : [2N ] → [N ] such that f ◦ g : [2N ] → [2N ] is the identity function. However, the point is that
given any step in the above resolution refutation that is an invalid derivation, we can pinpoint a “witness”
number x ∈ [2N ] such that f(g(x)) ̸= x.

The above describes the intuition behind the decision tree reduction from rwPHP to the refuter
problems of resolution size lower bounds presented in [dRGN+21]. Our reduction from rwPHP(PLS) to
the refutation problems proceeds in the same way, except that now g is only a function computable in
PLS. Compared with [AM20, dRGN+21], our proof only has one more component: showing that these
PLS instances can also be embedded into the above resolution refutation. We refer the reader to the
formal proof in Section 4.2 for details.

1.5 Further Related Works

Refuter problems for circuit lower bounds. Our study of the refuter problems for proof lower
bounds is strongly influenced by the line of work on refuter problems for circuit lower bounds. Chen, Jin,
Santhanam, and Williams [CJSW24] call a lower bound constructive if the corresponding refuter problem
can be solved in deterministic polynomial time, and they argued that constructivity is a desirable aspect of
lower bounds. Chen, Tell, and Williams [CTW23] showed that for many lower bounds against randomized
computational models, their refuter problems characterize derandomizing pr-BPP. The main result of
Korten [Kor22] can also be seen as the WPHPWIT-hardness of refuter problems for one-tape Turing
machine lower bounds. Pich and Santhanam [PS23] showed how to turn proof complexity lower bounds
into circuit lower bounds, assuming the refuter problem for the (conjectured) lower bound SAT ̸∈ P/poly
is “provably easy” in a certain sense. Finally, the results of Chen, Li, and Oliveira [CLO24a] can be
interpreted as the PWPP- and WPHPWIT-completeness of various refuter problems.

It is also worth mentioning that Ebtehaj [Ebt23] studied the refuter problems for A ̸⊆ BPP for each
(type-1) subclass A ⊆ TFNP that is indeed hard. However, [Ebt23] did not obtain any completeness
results for such refuter problems.

Unprovability of complexity upper bounds. In parallel to the investigation of unprovability of
complexity lower bounds, there is another line of work showing the unprovability of complexity upper
bounds in fragments of bounded arithmetic [CK07,KO17,BKO20,BM20,CKKO21,ABM23]. For example,
Krajíček and Oliveira [KO17] proved that Cook’s theory PV cannot prove P ⊆ SIZE[nk], and Atserias,
Buss, and Müller [ABM23] proved that the theory V0

2 cannot prove NEXP ⊆ P/poly. These results are
equivalent to the consistency of lower bounds with fragments of bounded arithmetic, thus in some sense
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representing progress towards proving circuit lower bounds.15 Indeed, [CKKO21] presented a general
framework for showing such consistency results by proving lower bounds against circuits with a certain
uniformity condition called “LEARN-uniformity”, and the techniques employed in many of these papers
are inspired by uniform circuit lower bounds such as [SW14].

Witnessing theorems. TFNP and bounded arithmetic are connected through witnessing theorems:
each theory is associated with the class of TFNP problems whose totality is provable in this theory.
Perhaps the best-known witnessing theorem is Buss’s one [Bus85]: every NP search problem provably
total in S12 can be solved in deterministic polynomial time. The class PLS and its generalizations such
as CPLS capture the NP search problems provably total in higher levels of bounded arithmetic hierarchy
[BK94, KST07, ST11, PT12]; in this sense, witnessing theorems also provide a systematic method for
defining new syntactic subclasses of TFNP. Other witnessing theorems considered in the literature include
[KNT11,BB17, KT22]. Our paper contributes to this line of research by characterizing the class of NP
search problems provably total in T1

2 + dwPHP(PV) by the refuter problems corresponding to many
resolution lower bounds, in particular the problem Refuter(s(PHP(n+1)→n ⊢Res ⊥) < cn).

Comparison with the consistency search problem. We note that the refuter problem looks superfi-
cially similar to WrongProof, the consistency search problem for proof systems [BB17,GP18a,Pud20].
Let P be a proof system, WrongProof(P) is the TFNPdt problem that given as input a purported
P-proof Π of an incorrect statement, asks for the location of an invalid derivation in Π.

Although both WrongProof and our refuter problems take a purported proof as input and ask for
an invalid derivation in the proof, we think that these two problems are fundamentally different, because
they have different reasons of totality. Roughly speaking, the totality of WrongProof is proved by the
soundness of P, and the totality of Refuter is guaranteed by lower bound proofs. We elaborate on this
in Appendix B.

Another (superficial) similarity between these two problems is that both problems are used to charac-
terize the provably total NP problems in bounded arithmetic. The consistency search problems for Frege
and Extended Frege characterize the ∀Σb

1-consequences of U1
2 and V1

2 respectively [BB17], while in this
paper we show that the refuter problem for resolution (with a suitable hard tautology) characterizes the
∀Σb

1-consequences of T1
2 + dwPHP(PV).

2 Preliminaries

The first three subsections present standard preliminaries and can be skipped if the reader is familiar.
However, the last two subsections introduce new concepts and it is highly recommended to read through
(i.e., not skip) them. In particular, Section 2.4 introduces the refuter problems for resolution lower bounds
as TFNPdt problems, and Section 2.5 defines and discusses the subclass rwPHP(PLS).

We use 0-indexing: [n] = {0, 1, . . . , n− 1}. For functions f : A → B and g : B → C, their composition
g ◦ f is defined as

∀x ∈ A, (g ◦ f)(x) = g(f(x)).

15The “conventional wisdom” seems to believe that the complexity lower bounds are true (for discussions, see https:
//rjlipton.com/conventional-wisdom-and-pnp/, accessed Nov 4, 2024). Hence, unprovability of complexity lower bounds
can be seen as the difficulty for proving this “conventional wisdom”, while unprovability of complexity upper bounds represents
progress towards proving it. One should keep in mind that the opposite opinion makes equal sense: for a believer of
complexity upper bounds, the unprovability of these upper bounds indicates the difficulty of confirming their belief, while
the unprovability of lower bounds implies progress towards it!
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2.1 Pigeonhole Principle

Let m > n, the pigeonhole principle (PHP) states that there is no way to send m pigeons into n holes
such that different pigeons are sent to different holes. This is expressed as the following unsatisfiable CNF
PHPm→n. (In the definition below, think of xij = 1 if pigeon i goes to hole j.)

Definition 2.1 (PHPm→n). PHPm→n is the conjunction of the following set of clauses:

•
∨

j∈[n] xij for every pigeon i ∈ [m];

• xij ∨ xi′j for every two different pigeons 1 ≤ i < i′ ≤ m and every hole j ∈ [n].

The seminal work of Haken [Hak85] proved that any resolution proof of PHP(n+1)→n requires 2Ω(n) size.
The proof of this classical theorem has been simplified by several follow-up works [CP90,BP96,BW01].

2.2 Decision Tree TFNP

Let O = {ON}N be a family of solution spaces. A search problem P is a family of sets {PN}N∈N,
where each PN is a subset of {0, 1}N × ON . Let x ∈ {0, 1}N be an input to P, we say that o ∈ ON is a
solution of x if (x, o) ∈ PN . We say P is total if every x ∈ {0, 1}∗ has at least one solution. We sometimes
abuse the notation by calling an individual relation PN a search problem, and implicitly assume that there
is a sequence {PN}N .

We study total search problems in the decision tree model. In this model, we think of the input
x ∈ {0, 1}N as very long and can only be accessed by querying individual bits. An algorithm (i.e.,
decision tree) is efficient if it only makes polylog(N) many queries. We will typically consider search
problems where |ON | ≤ 2polylog(N), so efficient algorithms will be able to handle solutions o ∈ ON in their
entirety. A search problem P is in FNPdt if given (oracle access to) an input x ∈ {0, 1}N and a solution
o ∈ ON , there is an efficient decision tree To for deciding whether (x, o) ∈ PN . The class TFNPdt consists
of all total search problems in FNPdt.

For example, an important TFNPdt problem in this paper is the problem Iter, defined as follows.

Problem Iter
Input: A function S : [N ]→ [N ].
Output: A number x ∈ [N ] is a valid solution if one of the following holds:

• x = 0 and S(0) = 0;

• S(x) < x; or

• S(x) > x and S(S(x)) = S(x).

It is easy to check that Iter is in FNPdt: Given an output x and oracle access to the function
S : [N ] → [N ], one can verify whether x is a valid solution by querying at most 2 entries of S; namely
S(x) and S(S(x)). Since each entry can be represented by at most logN bits, the query complexity
of verifying solutions for Iter is polylog(N). On the other hand, the totality of Iter expresses the
following fact: every DAG has a sink. It turns out that we will also frequently use a reversed version of
Iter for simplicity, whose equivalence to Iter is easy to see: Given a function S : [N ] → [N ] such that
S(N − 1) < N − 1, find some x ∈ [N ] such that 1) either S(x) > x or 2) S(x) < x and S(S(x)) = S(x).

Definition 2.2 (Decision tree reductions). Let P,Q be two TFNPdt problems, and d(N) be a parameter
(typically polylog(N)). A depth-d decision tree reduction from P to Q consists of two functions (f, g),
where each output bit of f, g can be computed from the input x by a depth-d decision tree:

• f : {0, 1}N → {0, 1}M(N) maps an input x of P to an input f(x) of Q.
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• g maps any valid solution of f(x) (as an instance of Q) into a valid solution of x (as an instance of
P).

We say the reduction is uniform if both f and g can be computed by uniform Turing machines with query
access to x. We allow M(N) to be super-polynomial in N , but we require M(N) ≤ exp(d(N)).

Usually, for two TFNPdt problems P,Q we say P can be (many-one) reduced to Q if there is a
polylog(N)-depth decision tree reduction from P to Q.

The class PLS16 is the class of problems in TFNPdt that has a depth-polylog(N) reduction to Iter.
(Note that PLS was originally defined differently [JPY88]; the PLS-completeness of Iter was shown in
[Mor01].)

The inputs of most TFNPdt problems introduced in this paper will be partitioned into blocks; for
example, the input of Iter consists of N blocks where each block consists of logN bits describing an
integer in [N ]. It will be more convenient to work with the block-depth of decision trees, which is the
number of different blocks that a decision tree queries. For example, solutions of Iter can be verified in
block-depth 2. The problems in this paper will have block size polylog(N), hence polylog(N) block-depth
is equivalent to polylog(N) (bit-)depth. However, we will upper bound the complexity of our decision
trees by block-depth for convenience. Although the distinction of depth and block-depth does not make
an essential difference in this paper, many interesting lifting theorems and non-automatability results are
recently proved using the notion of block-depth (or block-width) [AM20,GKMP20,dRGN+21]. It might
be beneficial to have bounds on block-depth, which is usually sharper as the decision trees we construct
tend to query many bits in the same block.

We assume all the TFNPdt problems discussed in this paper are paddable, i.e., for any N < M , solving
an instance of size N could always be efficiently reduced to solving an instance of size M of the same
problem. Most of the common TFNPdt problems can be easily formulated in a paddable way.17

2.2.1 Connection to Proof Complexity

There is a generic connection between TFNPdt and propositional proof complexity via the false clause
search problem (see, e.g. [dRGR22,BFI23]).

Definition 2.3. For an unsatisfiable CNF F := C1 ∧ · · · ∧Cm, Search(F ) is the search problem in which
an assignment x to F is given via query access, and a solution is a clause Ci of F falsified by x.

Define Search(F) for a family of formula F = {Fn}n∈N as {Search(Fn)}n∈N accordingly.

When the width of F is polylog(n), where n is the number of variables in F , Search(F ) is a TFNPdt

problem. In the other direction, for any TFNPdt problem Rn ∈ {0, 1}n×On, it can be equivalently written
as Search(Fn) for some CNF Fn of polylog(n) width. More specifically, let {To}o∈On be the set of efficient
decision trees for verifying solutions, ¬To(x) can be written as a low-width CNF stating that any accepting
path in To is falsified by x. We then take

Fn =
∧

o∈On

¬To(x), (2)

and it is easy to see the equivalence between Search(Fn) and Rn by definition.
Informally, we say a proof system P is characterized by a syntactical TFNPdt subclass C if for any

family of formula F = {Fn}, P has a small proof of F if and only if Search(F) ∈ C. Buss, Fleming,
16In this paper, most of the times when we mention a syntactic subclass of TFNP (such as PLS) we mean the decision tree

version of it (i.e., PLSdt), and it should be easy to figure out whether we mean the decision tree version or the Turing machine
version of this subclass from the context. Therefore, for convenience, we drop the superscript dt when we express syntactic
subclasses of TFNPdt. We still preserve the superscript dt in “TFNPdt” when we want to emphasize that the underlying
model is decision tree TFNP.

17There is a similar notion called instance extension, which is defined in [BM04].
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and Impagliazzo [BFI23] showed that any well-behaved18 proof system P is characterized by a TFNPdt

subclass C, and vice versa. In particular, resolution is characterized by PLS.

Theorem 2.4 (Folklore). Let F = {Fn} be a family of unsatisfiable formula, Search(F) ∈ PLS if and
only if F have a polylog(n)-width resolution refutation.

2.3 Bounded Arithmetic

We introduce the theories T1
2, T1

2+dwPHP(PV), as well as their relativized versions. A more compre-
hensive introduction of bounded arithmetic (including the theories Si2 and Ti

2) can be found in [Kra95].
The language of bounded arithmetic consists of the following symbols

LBA := {0, 1,+, ·, <,=, ⌊·/2⌋, | · |,#}.

Here, the intended meaning of |a| is the bit-length of the binary number a, i.e.,

|a| :=

{
⌈log2(a+ 1)⌉ if a > 0;

0 if a = 0.

The intended meaning of # (“smash”) is
x#y := 2|x|·|y|;

roughly speaking, this symbol is used to create objects whose size is polynomial, instead of only linear, in
the length of its inputs. These symbols are governed by a list of 32 axioms called BASIC, each of which
asserts some basic fact about the intended meanings of these symbols. For instance:

a ≤ b→ a ≤ b+ 1. (axiom 1 in BASIC)

The complete list of BASIC axioms can be found in [Kra95, Definition 5.2.1].
A bounded quantifier is a quantifier of the form

∀y < t(x⃗) or ∃y < t(x⃗)

for some term t. Formally, they are defined as abbreviations:

∀y < t(x⃗) φ(x⃗, y) :=∀y (y < t(x⃗)→ φ(x⃗, y));

∃y < t(x⃗) φ(x⃗, y) :=∃y (y < t(x⃗) ∧ φ(x⃗, y)).

A sharply bounded quantifier is a quantifier of the form

∀y < |t(x⃗)| or ∃y < |t(x⃗)|.

That is, the domain of possible values of y is bounded by the length of a term. Intuitively, sharply bounded
quantifiers are “feasible” because, thinking of t(x⃗) as the description of a polynomial-size object, there are
only polynomially many possibilities of y and they can be enumerated in polynomial time.

A formula is sharply bounded if all quantifiers in it are sharply bounded quantifiers. A Σb
1-formula

is a formula constructed from sharply bounded formulas using ∧, ∨, sharply bounded quantifiers, and
existential bounded quantifiers (“∃y < t(x⃗)”). It can be shown that the languages defined by Σb

1-formulas
are exactly those computed in NP.

The power of theories in bounded arithmetic comes from their induction axioms. Let Φ be a class of
formulas, then Φ-IND is the following axiom schema

(ϕ(0) ∧ ∀x (ϕ(x)→ ϕ(x+ 1)))→ ∀x ϕ(x)
18Here, a proof system is well-behaved if it is closed under decision tree reduction, and it can prove its own soundness.
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for every ϕ ∈ Φ. The definition of T1
2 is:

T1
2 := BASIC + Σb

1-IND.

That is, when reasoning in T1
2, it is allowed to use induction axioms over Σb

1 formulas (i.e., NP languages).
It is equivalent, and sometimes more convenient to replace Σb

1-IND with Σb
1-MIN, the minimization

principle over Σb
1 formulas. For a set of formulas Φ, the axiom schema Φ-MIN consists of

ϕ(a)→ ∃x ≤ a∀y < x (ϕ(x) ∧ ¬ϕ(y))

for every ϕ ∈ Φ. Equivalently, when reasoning in T1
2, it is allowed to use the fact that there exists a

smallest x such that C(x) = 1, whenever C is a polynomial-size nondeterministic circuit and we know
some y such that C(y) = 1.

The theory PV is an equational theory defined by Cook [Coo75] to capture polynomial-time reasoning.
It contains a function symbol for every polynomial-time algorithm, introduced inductively using Cobham’s
recursion-theoretic characterization of polynomial time [Cob64]. More detailed treatments about PV can
be found in [Kra95,CN10,CLO24a]. In the literature, it is common to also use PV to denote the set of
function symbols in PV (which corresponds to functions computable in polynomial time).

The dual weak pigeonhole principle over PV functions, denoted as dwPHP(PV), is the following axiom
schema

∀a > 1∃v < a2∀u < a f(u) ̸= v

for every PV-function f with parameters19. Roughly speaking, this means that if we have a polynomial-
size circuit f : {0, 1}n → {0, 1}2n (think of a = 2n above), then there exists some v ∈ {0, 1}2n that is
not in the range of C. We note that the choice of a2 above is somewhat arbitrary, as dwPHP(PV) with
various parameters are equivalent over S12 ⊆ T1

2 [PWW88,Jeř04].
To summarize, when reasoning in the theory T1

2 + dwPHP(PV), one is allowed to use the following
two axiom schemas:

(Σb
1-MIN) For a polynomial-size nondeterministic circuit C and some y such that C(y) = 1, there exists

a smallest x such that C(x) = 1.

(dwPHP(PV)) For a polynomial-size circuit C : {0, 1}n → {0, 1}2n, there exists a string y ∈ {0, 1}2n that
is not in the range of C.

Finally, the relativized theories T1
2(α) and T1

2(α) + dwPHP(PV(α)) are simply their unrelativized
counterparts with a new unary relation symbol α added into the language LBA. (One can think of α
as an oracle that encodes an exponentially-long input; for example, α(i) might encode the i-th bit of an
exponentially-long resolution proof according to some canonical encoding.) The class of Σb

1(α) formulas
and axioms Σb

1(α)-MIN and dwPHP(PV(α)) are relativized in a straightforward way. There are no other
axioms involving α except for the induction axioms and dual weak pigeonhole principles. To summarize:

• When reasoning in T1
2(α), it is allowed to use Σb

1(α)-MIN, i.e., for any polynomial-size nondeter-
ministic oracle circuit Cα and input y such that Cα(y) = 1, there exists a smallest input x such
that Cα(x) = 1.

• When reasoning in T1
2(α) + dwPHP(PV(α)), it is additionally allowed to use the fact that for any

polynomial-size oracle circuit Cα : {0, 1}n → {0, 1}2n, there exists some y ∈ {0, 1}2n that is not in
the range of Cα.

19This is the standard terminology in bounded arithmetic that means f might depend on some other parameter not shown
above. The parameter can be thought of as non-uniformity; cf. Footnote 8.
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2.4 Refuter Problems for Resolution Lower Bounds

We provide formal definitions of the refuter problems in the decision tree model. We begin by defining
resolution refutations; the definition is adapted from [dRGN+21, Section 3.1].

Definition 2.5. Let F be an unsatisfiable CNF with n variables and m clauses; the clauses in F will
be called axioms and will be denoted as C−m, . . . , C−1 for convenience. A resolution refutation of F is a
sequence of nodes C0, C1, . . . , CL−1, where each node Ci contains the following information.

• A set of literals among {x1, x2, . . . , xn, x1, x2, . . . , xn}. Abusing notation, we also denote the clause
consisting of the disjunction of these literals by Ci.

• A tag which is one of the following: “resolution” or “weakening”.

• Two integers −m ≤ j, k < i and a variable a ∈ {1, 2, . . . , n} if the tag is “resolution”. This means
that Ci is obtained from the clauses Cj and Ck by resolving the variable xa.

• One integer −m ≤ j < i if the tag is “weakening”. This means that Ci is a weakening of Cj .

The resolution refutation is valid if the following is true for every 1 ≤ i ≤ L:

• If Ci is marked “resolution”, then there are clauses D and E such that Cj = xa ∨D, Ck = xa ∨ E,
and Ci = D ∨ E.

• If Ci is marked “weakening”, then there is a clause D such that Ci = Cj ∨D.

• Finally, CL−1 = ⊥ (i.e., contains no literals).

The length or size of the refutation is L, and the width of the refutation is the maximum integer w
such that every clause Ci (−m ≤ i < L) in the refutation contains at most w literals.

Resolution is complete and sound : a CNF F has a resolution refutation (of whatever length) if and
only if it is unsatisfiable.

Each node in the resolution refutation would be a block ; therefore, when we say a decision tree over
a resolution refutation has block-depth d, we mean that it only queries (potentially all information in) d
nodes of the refutation.

Next, we define the refuter problems.

Definition 2.6. Let F = {Fn}n∈N be a family of unsatisfiable CNFs where every Fn requires resolution
of width greater than wn and size greater than sn.

• An input to the problem Refuter(w(Fn ⊢Res ⊥) ≤ wn) is a purported resolution refutation of Fn

with width at most wn. (It is easy to syntactically guarantee that the width of the input refutation
is at most wn by allocating only wn literals for each node.)

• An input to the problem Refuter(s(Fn ⊢Res ⊥) ≤ sn) is a purported resolution refutation of F
with at most sn clauses.

The outputs of these problems consist of only one index i, which means the node Ci does not satisfy
the validity conditions defined in Definition 2.5. We will call such nodes invalid derivations or illegal
derivations.

Note that each node can be described in poly(w, log n, logL) bits where w is the width of the resolution
refutation. Hence, in the typical parameter regime, we will consider resolution refutations whose length is
exponential in its width (L = 2w

Ω(1)), so that the access to each block is “efficient”, i.e., only needs to query
polylogarithmic many bits. In particular, the typical parameter regime for size lower bounds is exponential
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(L = 2n
Ω(1)); polynomial width lower bound (w = nΩ(1)) is considered in Section 3 and Section 5, while

polylogarithmic width lower bound is considered in Section 6.2. We also assume L = 2n
O(1) , so that the

proof is not extremely redundant.
Since there is a decision tree of block-depth at most 3 verifying whether a given node in the resolution

refutation is an invalid derivation, the refuter problems defined above are in FNPdt. Moreover, if the
resolution lower bounds (w0 or s0) are indeed true, then the refuter problems defined above are total.
Hence, Refuter(·) is a natural family of problems in TFNPdt.

2.5 P-Retraction Weak Pigeonhole Principle

Recall that rwPHP, the retraction weak pigeonhole principle, is the following principle:

Fact 2.7. Let g : [2M ]→ [M ] and f : [M ]→ [2M ] be two functions. Then there must exist some y ∈ [2M ]
such that f(g(y)) ̸= y.

Roughly speaking, for any TFNP class P, rwPHP(P) is the retraction weak pigeonhole principle where
the retraction (g : [2M ]→ [M ]) is a (multi-valued) function computable in P. For example:

Problem rwPHP(PLS)
Input: Let M ≤ N/2. The input consists of the following functions:

• f : [M ]→ [N ] is a purported “surjection”;

• for each y ∈ [N ], Iy := (L, Sy) is an instance of Iter, where Sy : [L]→ [L]; and

• gy : [L]→ [M ] maps solutions of Iy to integers in [M ].

Output: A number y ∈ [N ] and ans ∈ [L] such that ans is a solution of the Iter instance gy and
f(gy(ans)) ̸= y.

In general, for a TFNPdt problem P, we define rwPHP(P) by replacing each Iy in the above definition
with an instance of P.

Fact 2.8. rwPHP(P) ∈ TFNPdt.

Proof. To verify a solution (y, ans), check that ans is a valid solution for Iy and that f(gy(ans)) ̸= y.
The totality (i.e., existence of solutions) can be argued as follows. For each y ∈ [N ], let ans(y)

be a solution (say the lexicographically first one) of Iy; since P is a total problem, ans(y) exists. Let
g′(y) := gy(ans(y)). By the retraction weak pigeonhole principle, there exists some y ∈ [N ] such that
f(g′(y)) ̸= y. It follows that (y, ans(y)) is a valid solution for rwPHP(P).

Fact 2.9. There is a depth-1 decision tree reduction from P to rwPHP(P) and a depth-1 decision tree
reduction from rwPHP to rwPHP(P).

Proof. To reduce P to rwPHP(P): let I be a P instance. Define f(x) = 1 as a trivial function; for each
y ∈ [N ], define the instance Iy := I; for every possible answer ans of Iy, let gy(ans) = 1. Clearly, for any
answer (y, ans) of the rwPHP(P) instance, ans itself would be a valid answer of the P instance I.

To reduce rwPHP to rwPHP(P): let f : [M ] → [N ] and g : [N ] → [M ] be an rwPHP instance. Fix
any (say trivial) P instance I. For each y ∈ [N ], define the instance Iy := I; for every possible answer
ans of Iy, let gy(ans) = g(y). For any answer (y, ans) of the rwPHP(P) instance, since f(gy(ans)) ̸= y,
it follows that f(g(y)) ̸= y, and hence y is a valid answer of the rwPHP instance (f, g).

Classical techniques (such as Prover-Delayer games) show that the totality of rwPHP requires reso-
lution width Ω(M) to prove (see also [PT19, dRGN+21]), which means that any decision tree of depth
o(M) cannot reduce rwPHP to PLS. It follows from Fact 2.9 that there is a black-box separation between
rwPHP(PLS) and PLS itself.
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Fact 2.10. Let P and Q be TFNPdt problems. If there is a depth-d decision tree reduction from P to Q,
then there is a depth-d decision tree reduction from rwPHP(P) to rwPHP(Q).

Proof. Let f : [M ] → [N ], {Iy}y∈[N ], and {gy}y∈[N ] be an instance of rwPHP(P). Define an instance
(f ′, {I ′y}, {g′y}) of rwPHP(Q) as follows. The function f ′ := f stays the same; each I ′y is obtained by
running the reduction from P to Q on Iy; for each possible answer ans′ of each I ′y, we run the reduction
to obtain an answer ans of Iy, and return g′y(ans′) := gy(ans).

Finally, let (y′, ans′) be a valid answer of the instance (f ′, {I ′y}, {g′y}). Let y := y′ and run the
reduction to obtain an answer ans of Iy from the answer ans′ of I ′y, then (y, ans) is a valid answer of
(f, {Iy}, {gy}).

It follows from Fact 2.10 that, for example, the class rwPHP(PLS) can be defined from any complete
problem for PLS.

Amplification for rwPHP. In this paper, when we talk about rwPHP, we always think about a pur-
ported “surjection” f : [M ]→ [N ] where M = 2N . This is without loss of generality since the complexity
of rwPHP does not depend significantly on the relationship between M and N (unless they are too close
to each other). This is also true for rwPHP(P) provided that P is closed under Turing reductions. We
note that many interesting subclasses of TFNP (such as PLS, PPA, PPAD, and PPADS) are indeed closed
under Turing reductions [BJ12, Section 6], with the notable exception of PPP in the black-box model
[FGPR24].

Theorem 2.11 (Informal). Suppose P is closed under Turing reductions. Let rPHPM→N (P) denote the
problem rwPHP(P) where the given “purported surjection” is from [M ] to [N ].20 Then there is an efficient
decision tree reduction from rPHPM→(M+M/polylog(M))(P) to rPHPM→M100(P).

We remark that amplification of weak pigeonhole principles is a well-known fact in bounded arithmetic
[PWW88,Tha02,Kra04,Jeř04,Jeř07b,CLO24a] and total search problems [Kor21,Kor22]. Since the proof
follows from standard arguments in the literature, we postpone it to Appendix A.

2.5.1 Witnessing for T1
2 + dwPHP(PV)

As mentioned in the introduction, rwPHP(PLS) is exactly the class of TFNP problems whose totality
can be proved in (the universal variant of) T1

2 + dwPHP(PV). This is an easy corollary of [BK94] and
[AT14, Lemma 1] as we explain below.

Suppose that ϕ(x) := ∃y < tϕ(x) ψ(x, y) is a Σb
1(α)-sentence and

T1
2(α) + dwPHP(PV(α)) ⊢ ∀x ϕ(x).

It is shown in [AT14, Lemma 1] that there is a term t = t(x) and a function symbol f ∈ PV(α) such that

T1
2(α) ⊢ ∀x (t > 2 ∧ ∀v < t2∃u < t (fx(u) = v ∨ ϕ(x))). (3)

(In fact, this follows from standard manipulations underlying Wilkie’s witnessing theorem for S12 +
dwPHP(PV); see e.g., [Jeř04, Proposition 14].)

To parse Equation 3, note that fx : [t] → [t2] defines a “stretching” function and hence cannot be
surjective. The non-existence of u such that fx(u) = v exactly means that v is not in the range of fx;
hence given Equation 3, ∀x ϕ(x) follows from the dual weak pigeonhole principle.

The following problem is in PLS by the witnessing theorem for T1
2 [BK94]. On input (x, v), find

either some u < t(x) such that fx(u) = v or some y < tϕ(x) such that ψ(x, y) holds (we call such y a
20The notation rPHPM→N means “retraction pigeonhole principle from M pigeons to N holes”. As “weak” conventionally

refers to the case where M = 2N , the retraction pigeonhole principle with M and N specified are called rPHPM→N instead
of rwPHPM→N .
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“certificate” for x). Now it is at least easy to see that there is a randomized reduction from the TFNP
problem corresponding to ϕ(x) to PLS: Let v ← [t2] be random (which is a non-output of fx w.h.p.), then
the above PLS procedure finds some y that is a certificate for x.

Working slightly harder, we can see that the above is actually a reduction to rwPHP(PLS):

• The “purported surjection” is the function fx : [t]→ [t2].

• For each v ∈ [t2], there is a PLS instance Iv which captures the problem of given (x, v) outputting
either u ∈ f−1

x (v) or a certificate y for x.

Hence, given any v ∈ [t2] and solution ans of Iv such that ans does not contain the information of u ∈ [t]
such that f(u) = v, it must be the case that ans leads to a certificate for x. It follows that the TFNP
search problem corresponding to ϕ reduces to rwPHP(PLS).

On the other hand, it is easy to see that T1
2+dwPHP(PV) proves the totality of rwPHP(PLS) and the

proof relativizes. Let (f, {Iy}, {gy}) be an instance of rwPHP(PLS). By dwPHP(f), there exists y ∈ [N ]
that is not in the range of f . Since T1

2 proves the totality of PLS, it also proves the existence of a solution
ans for Iy. Note that since y is not in the range of f , we have in particular that f(gy(ans)) ̸= y. Hence,
(y, ans) is a valid solution for this rwPHP(PLS) instance.

3 Refuters for the Pigeonhole Principle

In this section, we study the refuter problems where the family of hard tautologies is the Pigeonhole
principle PHP(n+1)→n. Our main results are the PLS-memberships of width refuter problems for (variants
of) PHP(n+1)→n and the rwPHP(PLS)-memberships of the size refuter problems for PHP(n+1)→n. Looking
ahead, in Section 4, we will establish universal PLS-hardness for width refuters and rwPHP(PLS)-hardness
for size refuters, thereby characterizing their complexities in TFNPdt.

3.1 Refuters for Narrow Resolution Proofs

Historically, proving size lower bounds for resolution has been challenging and considered milestones
in proof complexity. The honor of the first super-polynomial size lower bounds belongs to the Pi-
geonhole Principle (PHP(n+1)→n). However, in terms of width lower bound, PHP is not satisfactory:
width(PHP(n+1)→n ⊢Res ⊥) = n, but there is already an axiom in PHP that has width n. Therefore,
studying the complexity of finding a wide clause is uninteresting, as one of the widest clauses appears
directly in the axiom and can be easily located. In what follows, we consider the width refuter prob-
lem of a constant-width analog of PHP(n+1)→n, namely, the nondeterministic extension EPHP(n+1)→n,
defined below. However, we will come back to PHP(n+1)→n shortly after EPHP(n+1)→n and examine the
refuter problem for the so-called “monotone width” of PHP(n+1)→n. The monotone width lower bound
for PHP(n+1)→n will also serve as a key component in the study of size refuters for PHP(n+1)→n.

Definition 3.1 (EPHP(n+1)→n). EPHP(n+1)→n is the same as PHP(n+1)→n except that we replace every
clause

∨
j∈[n] xij by a 3-CNF nondeterministic extension; that is, by the following n+ 2 clauses:

yi,0, (yi,0 ∨ xi,1 ∨ yi,1), (yi,1 ∨ xi,2 ∨ yi,2), · · · , (yi,n−1 ∨ xi,n ∨ yi,n), yi,n,

where yi,0, · · · , yi,n are newly introduced variables.

Width lower bounds for EPHP(n+1)→n were proved by Ben-Sasson and Wigderson [BW01].

Theorem 3.2 ([BW01, Theorem 4.9]). Any resolution refutation of EPHP(n+1)→n contains a clause C
with w(C) ≥ n/3.

Theorem 3.3. Refuter(w(EPHP ⊢Res ⊥) < n/3) is in PLS. In particular, there is a uniform decision
tree reduction of block-depth 3 from the refuter problem to Iter.
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Proof. We will reduce it to an instance of reversed Iter. This reduction is an analog of a constructive
version of width lower bound proofs by Beame and Pitassi [BP96], which we will use again later in the
proof of Theorem 3.8. We call (xi,j) original variables and (yi,j) extension variables.

We consider a set of functions over all the variables, including n+ 1 pigeon functions {EPi} where

EPi := yi,0 ∧ (yi,0 ∨ xi,1 ∨ yi,1) ∧ (yi,1 ∨ xi,2 ∨ yi,2) ∧ · · · ∧ (yi,n−1 ∨ xi,n ∨ yi,n) ∧ yi,n, (4)

and n2(n + 1)/2 hole functions
{
Hj

(i,i′)

}
, where Hj

(i,i′) = xi,j ∨ xi′,j . It is easy to see that the semantic
meaning of yi,j is whether “the index of the hole that pigeon i goes into belongs to {1, . . . , j}” or not.

We say an assignment α over all variables (including the extension variables) is ℓ-critical if EPℓ(α) = 0
but all other functions are 1 under this assignment, namely EPi(α) = 1 for all i ̸= ℓ and Hj

(i,i′)(α) = 1 for
all j ∈ [n], i, i′ ∈ [n+1]. If we ignore the extension variables, α is essentially a complete matching between
pigeons and holes, except pigeon i is not going anywhere. Given the definition of ℓ-critical assignments,
we define a complexity measure for a clause C, denoted by cri(C):

cri(C) := |{ℓ : ∃ℓ-critical assignment α such that C(α) = 0}|.

Note that cri has four important properties:

(I) cri(⊥) = n+ 1;

(II) cri(EPi) = 1 for all i and cri(Hj
i,i′) = 0 for all j, i, i′;

(III) cri is subadditive with respect to resolution derivation, namely, if C is resolved from A and B, then
cri(C) ≤ cri(A) + cri(B);

(IV) if C is obtained from a weakening of A, then cri(C) ≤ cri(A).

We first show that cri(·) can be computed in polynomial time. Then we show that any clause Ci such
that n/3 ≤ cri(Ci) ≤ 2n/3 will give us a solution. The PLS-membership follows from that the standard
1/3-2/3 trick can be implemented via a reduction to reversed Iter.

Lemma 3.4. For any clause C, cri(C) can be computed in poly(n) time.

Proof. Fix any clause C. We will enumerate ℓ and check the existence of ℓ-critical assignments. The only
part that we need to be careful is how we deal with the extension variables.

Imagine that we maintain a complete bipartite graph with n + 1 nodes on the left and n nodes on
the right. We will iteratively delete some edges from this graph based on the requirement of ℓ-critical
assignments. We will show that the existence of ℓ-critical assignment can be reduced to the existence of
a perfect matching of the final graph.

For an ℓ-critical assignment, EPℓ needs to be 0, and all other functions need to be 1, so we have that
xℓ,j needs to be 0 for all j (which means pigeon ℓ cannot go into any hole). Note that if pigeon ℓ were
matched with some hole, some other pigeons would have no place. So we delete edges between (ℓ, j) for
all j.

For some α being an ℓ-critical assignment, we have C(α) = 0. This means all literals that appeared
in C are fixed to be 0 in the search of α. If C contains a literal xℓ,j for some j, then we directly conclude
that ℓ-critical assignment does not exist (due to the argument above).

Now assume that C does not contain any literal xℓ,j . For every literal xi,j in C, in order to falsify C,
xi,j is going to be 0, so we delete the edge (i, j). For every literal xi,j in C, xi,j is going to be 1, meaning
that pigeon i is going to be matched with hole j, so we delete the edge (i, j′) for every j′ ̸= j and (i′, j)
for every i′ ̸= i.

For every literal yi,j in C, yi,j is going to be 0, so we delete edges (i, j′) for all j′ ≤ j. For every literal
yi,j in C, yi,j is going to be 1, so we delete edges (i, j′) for all j′ > j.

We can conclude that there is an ℓ-critical assignment if and only if the remaining bipartite graph has
a perfect matching between pigeons [n+ 1] \ {ℓ} and holes [n]. ⋄
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Reduction to Iter: The reversed Iter instance is defined by the following function S : [L]→ [L]. For
every i ∈ [L]:

• If cri(Ci) <
2n
3 , then S(i) = i.

• Otherwise, if Ci is a weakening from Cj , then let S(i) = j.

• Finally, if Ci is resolved from Cj and Ck: If cri(Cj) ≥ cri(Ck), then S(i) = j; otherwise S(i) = k.

It is easy to see that this reduction can be implemented in block-depth 3: for example, if Ci is resolved
from Cj and Ck, then one only needs to read the i-th, j-th, and k-th node in the resolution refutation.

Note that when we find any solution i of this reversed Iter instance, it satisfies S(i) < i and S(S(i)) =
S(i). This means cri(Ci) ≥ 2n/3 but cri(CS(i)) < 2n/3. Thus we have cri(CS(i)) ∈ [n/3, 2n/3].

Now it remains for us to show that any C such that n/3 ≤ cri(C) ≤ 2n/3 has width at least n/3. For
the sake of contraction, assume that width(C) < n/3. This implies that for at most n/3 pigeon i, C has
some variable related to i, namely, some xi,j or yi,j . Since cri(C) ≥ n/3, we know that there exists ℓ such
that there is an ℓ-critical assignment α for C but C has no variables of the form xℓ,j or yℓ,j .

On the other hand, since width(C) < n/3 and cri(C) ≤ 2n/3, we know that there is another index ℓ′

such that ℓ′ is not critical to C and C has no variables of the form xℓ′,j or yℓ′,j . Let k be the hole that
is matched with ℓ′ in α. Consider the following assignment α′: we start from α′ := α, flip xℓ,k from 0 to
1, and flip xℓ′,k from 1 to 0. We further flip all yℓ,j and yℓ′,j correspondingly. We have that EPℓ(α

′) = 1
and EPℓ′(α

′) = 0. Since C doesn’t contain any variables related to pigeons ℓ and ℓ′, C(α′) is still 0. This
constructs a witness that ℓ′ is critical to C, a contradiction. This finishes the proof.

It is easy to see that the above reduction is actually a formalization of the width lower bound in
T1
2(α). Let n ∈ Log, M : [2O(n)]×N→ {0, 1}poly(n) be a PV(α) function symbol that encodes a purported

resolution proof of width less than n/3, where the second input is a parameter; that is, M(i, z) provides
a description of the i-th node in the resolution proof. Let pfwEPHP(n,M, z) denote the Πb

1(α) sentence
stating that M(·, z) encodes a valid resolution proof for EPHP(n+1)→n (the superscript “w” stands for
“width”). Then we have:

Theorem 3.5. For any PV(α) function symbol M , it holds that

T1
2(α) ⊢ ∀n ∈ Log ∀z ¬pfwEPHP(n,M, z).

Proof Sketch. Reason in T1
2(α). Assuming pfwEPHP(n,M, z) holds, we will derive a contradiction. A minor

technical issue is that we need a PV-definition of the function cri such that the properties (I)-(IV) are
true, and that any clause C with n/3 ≤ cri(C) ≤ 2n/3 has width at least n/3. This follows from the
formalization of bipartite matching algorithms in PV [LC11].21

Let C1, C2, . . . , CL denote the purported resolution refutation encoded by M(·, z). Using Σb
1(α)-MIN

(which is available in T1
2(α)), there is a smallest integer i such that cri(Ci) ≥ n/3. By (II), Ci cannot be

an axiom of EPHP(n+1)→n. By (IV), Ci cannot be a weakening of any clause Cj (j < i), as this would
contradict the minimality of i. Hence Ci is resolved from Cj and Ck for some j, k < i. By (III), cri(Ci) ≤
cri(Cj) + cri(Ck) ≤ 2n/3. Hence the width of Ci is at least n/3, contradicting pfwEPHP(n,M, z).

Monotonized resolution and its width refuter. The first exponential size lower bound for resolution
was proven by Haken [Hak85] for the pigeonhole principle PHP. Haken used the so-called “bottleneck
counting” argument and the proof was quite involved. A much simpler proof was found by Beame and
Pitassi [BP96], where one of the crucial ingredients is the following lemma.

21This annoying detail would disappear if we consider the universal variant ∀T1
2(α) since these properties are indeed true

universal sentences in the standard PV model N and thus are included in the axioms of ∀T1
2(α). As pointed out in [Mül21],

it is the provability in universal variants of relativized bounded arithmetic that captures reducibility among type-2 TFNP
problems.
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Lemma 3.6 ([BP96]). Any resolution refutation of PHP(n+1)→n contains a clause C with w(mono(C)) ≥
2n2/9.

Here, for a clause C, mono(C) is the “monotonized” version of C, which is obtained from C by
replacing every negated variable xij with the set of variables xij′ for all j′ ̸= j.22 Given Lemma 3.6, we
could define another variant of the width refuter problem that concerns the original PHP tautologies with
no extension variables: we wish to find a clause C such that mono(C) has a large width, in particular,
w(mono(C)) ≥ 2n2/9. The problem is denoted as Refuter(wmono(PHP ⊢Res ⊥) < 2n2/9) and is defined
as follows.

Definition 3.7 (Refuter(wmono(PHP ⊢Res ⊥))). Consider the tautology PHP(n+1)→n and let w :=
2n2/9. The input instance Π is a purported resolution proof for PHP(n+1)→n that consists of clauses
C−k, . . . , C−1, C0, . . . , CL−1, where the first k := n+1+n2(n−1)/2 clauses are axioms from PHP(n+1)→n

and the last clause CL = ⊥.
A solution of the given instance is one of the following:

• an index i ∈ [L] such that mono(Ci) has at least w literals;23 or

• an index i such that Ci is an invalid derivation.

The width refuter problem of monotonized resolution proof may not seem natural in the first place.
However, converting resolution proof into monotonized resolution proof is an elegant ingredient in the size
lower bounds of PHP in the proof of Beame and Pitassi [BP96]. Ultimately, our main motivation is for
the size refuter of PHP, and the PLS-membership of Refuter(wmono(PHP ⊢Res ⊥) < 2n2/9) is a key
step of showing the rwPHP(PLS)-membership of the size refuter (Refuter(s(PHP ⊢Res ⊥) < 1.01n)).
Indeed, the rwPHP(PLS)-membership in Section 3.2 uses the following theorem as a black box:

Theorem 3.8. Refuter(wmono(PHP(n+1)→n ⊢Res ⊥) < 2n2/9) is in PLS. In particular, there is a
uniform decision tree reduction of block-width 3 from this refuter problem to Iter.

The proof is in fact simpler than that of Theorem 3.3, and is a proper constructive translation of the
proof by Beame and Pitassi [BP96].

Proof of Theorem 3.8. We call an assignment α to be ℓ-critical if α is a perfect matching between pigeons
and holes, except pigeon ℓ is not going anywhere. Formally, for every i ̸= ℓ we have xi1 ∨ · · · ∨ xin, and
for every i, i′, j we have xij ∨ xi′j under α.

Given the definition of ℓ-critical assignments, we define cri(mono(C)) as follows:

cri(mono(C)) := |{ℓ : ∃ℓ-critical assignment α that falsifies mono(C)}|.

Again, cri has the following four important properties:

• cri(⊥) = n+ 1;

• cri(mono(C)) ≤ 1 for all axioms C of PHP(n+1)→n;

• cri is subadditive with respect to resolution derivation, namely, if C is derived from A and B, then
cri(mono(C)) ≤ cri(mono(A)) + cri(mono(B)).

22The notion of mono(C) is tailored to the hard tautology PHP(n+1)→n. The proof of [BP96] only considers assignments
x ∈ {0, 1}(n+1)n that defines a bijective mapping from n of the pigeons to all n holes; it is easy to see that every clause C is
equivalent to mono(C) w.r.t. such “critical” assignments x.

23Here, unlike the formalization of width lower bounds in Definition 2.6, it is unclear how to syntactically enforce that
the monotonized version of every clause has width < w. Therefore we include the clauses with large monotone width as
solutions.
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• If C is obtained from a weakening of A, then cri(mono(C)) ≤ cri(mono(A)).

This time, since we are only concerned with the monotonized version of a clause C and there are no
extension variables, it is easier to show that cri(mono(C)) can be computed in polynomial time.

Claim 3.9. For any clause C, cri(mono(C)) can be computed in polynomial time.

Proof. Fix a pigeon ℓ and we want to check if there is an ℓ-critical assignment for C. We maintain a
complete bipartite graph and delete all edges between (ℓ, j) for all hole j. If a variable xij appears in
C, we delete the edge (i, j). Then ℓ-critical assignment exists if and only if there is a perfect matching
between pigeons [n+ 1] \ {ℓ} and holes [n]. ⋄

Claim 3.10. For any clause C, the width of mono(C) is at least cri(mono(C)) · (n− cri(mono(C))).

Proof. Let D := mono(C). Let CriP(D) be the critical pigeons to D, i.e., the set of pigeons ℓ ∈ [n+1] such
that there exists an ℓ-critical assignment falsifying D. Then cri(mono(C)) = |CriP(D)|. Let u1 ∈ CriP(D)
and u2 ̸∈ CriP(D). Since u1 ∈ CriP(D), there is a u1-critical assignment α that falsifies D. Suppose that
u2 is mapped to the hole v2 in the assignment α. Let β denote the assignment obtained from α by mapping
u1 into v2 and not mapping u2 anywhere. Then β is a u2-critical assignment. Since u2 ̸∈ CriP(D),
β satisfies D. However, there is only one variable that appears positively in β but negatively in α:
namely, xu1,v2 . Since D is monotone, the literal xu1,v2 appears in D. Repeating this argument for every
u1 ∈ CriP(D) and u2 ̸∈ CriP(D), we can see that the width of D is at least cri(D) · (n− cri(D)). ⋄

Given the lemma above, it remains for us to show that finding a clause C such that cri(mono(C)) ∈
[n/3, 2n/3] belongs in PLS. This can be implemented by the standard 1/3-2/3 trick in a potential function
way, which is exactly the same as the argument used in the proof of Theorem 3.3.

3.2 Refuters for Short Resolution Proofs

In this subsection, we investigate Problem 1.1, i.e., the refuter for the following classic resolution size
lower bound:

Theorem 3.11 ([Hak85]). Any resolution refutation of PHP(n+1)→n requires at least 2Ω(n) clauses.

We show that this refuter problem is in rwPHP(PLS). As mentioned in Section 1.2.2, this is done by
carefully following the proofs of Theorem 3.11. We follow the simplified proof by Beame and Pitassi [BP96],
which consists of two steps: a (monotone) width lower bound and a random restriction argument. As
the required width lower bound was already studied in Theorem 3.8, we focus on the random restriction
argument here.

Let X := [n + 1] denote the set of pigeons and Y := [n] denote the set of holes. Recall that the
monotone version of a clause C, denoted as mono(C), is obtained from C by replacing every negated
variable xij with the set of variables xij′ for all j′ ̸= j.

Definition 3.12. Let t < n be a parameter, π : X → Y be a size-t matching, i.e., a partial injective
function with |Domain(π)| = t. This matching induces a restriction that sets:

• the variable xu,π(u) to be 1, for every u ∈ Domain(π);

• the variable xu,v to be 0, for every u ∈ Domain(π) and v ∈ Y \ {π(u)}; and

• the variable xu′,π(u) to be 0, for every u ∈ Domain(π) and u′ ∈ X \ {u}.
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Suppose that C0, C1, . . . , CL−1 is a resolution refutation of PHP(n+1)→n. For each clause Ci, let
π(Ci) denote the sub-clause of Ci under the above restriction. That is, if π sets some variable in Ci

to 1 then π(Ci) = 1; otherwise π(Ci) is obtained from Ci by removing every variable set to 0 by π.
Note that the above restriction transforms the unsatisfiable CNF PHP(n+1)→n into the unsatisfiable CNF
PHP(n−t+1)→(n−t). Then, π(C0), π(C1), . . . , π(CL−1) is a resolution refutation for PHP(n−t+1)→(n−t). Now
we claim that the width of the resolution refutation becomes small after being restricted by a random
matching π.

Claim 3.13. If a size-t matching π is chosen uniformly at random over all possible size-t matchings,
then with probability at least 1/2, it holds that for every clause i ∈ [L], w(mono(π(Ci))) < W , where
W := (n+ 1)2(1− (1/2L)1/t).

Proof. Fix i ∈ [L], we show that the probability over π that w(mono(π(Ci))) > W is at most 1/(2L). The
claim then follows from a union bound.

Choose the matching π round by round. There are t rounds, where in each round, we choose an
unmatched u ∈ X and an unmatched v ∈ Y uniformly at random and match them. If, for the current
partial matching π, we have w(mono(π(Ci))) ≥ W , then the probability that xu,v ∈ mono(π(Ci)) is at
least W/(n + 1)2. If this is the case, then mono(π(Ci)) will become 1 (the always-true clause) after we
set π(u) ← v, thus it gets “killed.” It follows that the probability that Ci never gets killed is at most
(1−W/(n+ 1)2)t ≤ 1/(2L).

Combining Lemma 3.6 and Claim 3.13, we obtain the following size lower bound:

Theorem 3.14. Any resolution refutation of PHP(n+1)→n requires more than L := 1.01n clauses.

Proof. Let t := n/10, then W = (n+ 1)2(1− (1/2L)1/t) ≤ 2
9(n− t)

2. If there is a resolution refutation of
PHP(n+1)→n of size at most L, then by Claim 3.13, there is a resolution refutation of PHP(n−t+1)→(n−t)

of monotone width at most 2
9(n− t)

2. This contradicts Lemma 3.6.

To derive an upper bound for the complexity of refuter that corresponds to Theorem 3.14, we need
a constructive version of Claim 3.13. We start by setting up an encoding for the partial matchings and
random restrictions that will make it easier to describe our reductions.

A size-t matching can be described by an edge-sequence (u0, v0), (u1, v1), . . . , (ut−1, vt−1), where for
each j ∈ [t], uj ∈ [n− j + 1] and vj ∈ [n− j]. The first edge in this matching connects the u0-th node in
X and the v0-th node in Y (the first node is the 0-th), the second edge connects the u1-th unused node
in X (i.e., u1-th node in X \ {u1}) and the v1-th unused node in Y , and so on.24 The space of all possible
edge-sequences is denoted by

SEQ := ([n+ 1]× [n])× ([n]× [n− 1])× · · · × ([n− t+ 2]× [n− t+ 1]).

On the other hand, fix a clause Ci such that w(mono(Ci)) ≥ W . Say an edge-sequence s is bad for
Ci if w(mono(s(Ci))) ≥W , where πs(Ci) is the restriction of Ci under the matching corresponding to πs.
As we argued in Claim 3.13, the number of bad edge-sequences for each Ci is small; we set up another
encoding to justify this fact. Any bad edge-sequence can be encoded as a sequence (e0, e1, . . . , et−1),25

where for each j ∈ [t], ej ∈ [(n− j + 1)(n− j)−W ]. The first edge (u0, v0) in this matching is the e0-th
edge, in the lexicographical order, that is not a literal in mono(Ci); the second edge (u1, v1) is the e1-th
edge that still can be chosen (we cannot choose any edge touching either u0 or v0) and is not a literal in
the current mono(πs(Ci)); and so on. If s is bad, then w(mono(πs(Ci))) never goes below W , therefore at

24Note that the edges are ordered, hence each matching corresponds to t! different edge-sequences. In what follows, we
will talk about edge-sequences instead of matchings.

25To avoid confusion, we use “edge-sequence” to denote elements in SEQ and “sequence” to denote elements in BAD.
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the j-th stage, there are at most (n− j + 1)(n− j)−W possible edges to choose. Hence, the space of all
possible sequences encoding bad edge-sequences is:

BAD = [(n+ 1)n−W ]× [n(n− 1)−W ]× · · · × [(n− t+ 2)(n− t+ 1)−W ].

The following calculation corresponds to a union bound over all Ci that the number of bad edge-
sequences is small:

|BAD| · L
|SEQ|

=L ·
t−1∏
j=0

(n+ 1− j)(n− j)−W
(n+ 1− j)(n− j)

≤L · (1−W/(n+ 1)2)t

≤ 1/2. (5)

Fix a clause Ci. For every sequence b ∈ BAD, let seq(Ci, b) ∈ SEQ denote the bad edge-sequence
for Ci corresponding to b; if seq(Ci, b) does not exist26, then we denote seq(Ci, b) = ⊥. Conversely, any
s ∈ SEQ is either bad for Ci or not; if s is bad for Ci, then denote b := bad(Ci, s) as the sequence b ∈ BAD
corresponding to s; otherwise we say bad(Ci, s) := ⊥. We need the fact that:

Fact 3.15. Let s ∈ SEQ be bad for the clause Ci, then seq(Ci, bad(Ci, s)) = s.

Now we are ready to establish the rwPHP(PLS) upper bound for the refuter of Theorem 3.14.

Theorem 3.16. There is a uniform decision tree reduction of block-depth 3 from Refuter(Res(PHP) >
1.01n) to rwPHP(PLS).

That is, there is a uniform decision tree reduction of block-depth 3 such that the following holds:

• given a resolution refutation Π = (C0, C1, . . . , CL−1) for PHP(n+1)→n, where L ≤ 1.01n, the reduc-
tion computes an instance (f, {Iy}, {gy}) of rwPHP(PLS);

• given any valid answer for (f, {Iy}, {gy}), one can compute an invalid derivation Ci ∈ Π in poly(n)
time.

Proof. Let M := |BAD| · L and N := |SEQ|, then from Equation 5, we have M ≤ N/2. We will
identify numbers in [M ] with pairs (i, b) where i ∈ [L] and b ∈ BAD, and identify numbers in [N ] with
edge-sequences in SEQ. The instance (f, {Iy}, {gy}) is defined as follows:

(f) For every x ∈ [M ], we interpret x as a pair (i, b) where i ∈ [L] and b ∈ BAD. If seq(Ci, b) ̸= ⊥, then
we let f(x) := seq(Ci, b); otherwise let f(x) := 0 (the choice 0 is arbitrary).

(Iy) Fix y ∈ [N ] = SEQ. The edge-sequence y defines a size-t partial matching πy, which induces a
resolution refutation Π|y = (πy(C0), πy(C1), . . . , πy(CL−1)) of PHP(n−t+1)→(n−t). We treat Π|y as a
purported resolution refutation with monotone width < W ; by Theorem 3.8, the problem of finding
an invalid derivation in Π|y reduces to Iter via a decision tree of block-width 3. Let Iy be the Iter
instance obtained by this reduction.

(gy) Fix y ∈ [N ] = SEQ and an answer ans of the Iter instance Iy. Given ans, we can compute a
clause that is either invalid or too fat; we then compute gy(ans) from this clause.

More precisely, we can compute an integer i ∈ [L] such that either width(mono(πy(Ci))) ≥ W ,
or πy(Ci) corresponds to an invalid derivation in Π|y. In the second case, Ci is also an invalid
derivation in Π, thus we can set gy(ans) to be an arbitrary value (say 0). In the first case, we can
set gy(ans) := (i, bad(Ci, y)).

26This may happen when, for example, w(mono(Ci)) is much larger than W and b0 > (n+ 1)n− w(mono(Ci)).
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The block-depth of the decision trees computing f , {Iy}, and {gy} are 1, 3, and 2 respectively. Clearly,
the decision trees are uniform.

Finally, let (y, ans) be a valid solution for the rwPHP(PLS) instance (f, {Iy}, {gy}) (i.e., f(gy(ans)) ̸=
y). The edge-sequence y ∈ SEQ corresponds to a size-t partial matching πy and from ans we can read
off a clause i ∈ [L] such that either (1) width(mono(πy(Ci))) ≥ W or (2) πy(Ci) is an invalid derivation
in Π|y. If (1) holds, then

f(gy(ans)) = f(i, bad(Ci, y)) = seq(Ci, bad(Ci, y)) = y

by Fact 3.15. This contradicts (y, ans) being a valid solution for rwPHP(PLS). It follows that (2) happens
and we have found an invalid derivation (namely Ci) in Π.

As mentioned in Section 1.2.2, the above arguments are essentially a formalization of Haken’s lower
bounds in the theory T1

2(α) + dwPHP(PV(α)); the decision tree reduction in Theorem 3.16 follows from
the witnessing theorem for T1

2(α) + dwPHP(PV(α)) (see Section 2.5.1). In what follows, we make this
formalization explicit:

Theorem 3.17. Let n ∈ Log, M : [1.01n]× N→ {0, 1}poly(n) be a PV(α) function symbol that encodes a
purported resolution proof, where the second input is a parameter. Let pfPHP(n,M, z) denote the Πb

1(α)
sentence stating that M(·, z) encodes a valid length-1.01n resolution proof for PHP(n+1)→n. Then

T1
2(α) + dwPHP(PV(α)) ⊢ ∀n ∈ Log ∀z ¬pfPHP(n,M, z).

Proof Sketch. Reason in T1
2(α)+dwPHP(PV(α)); assuming pfPHP(n,M, z) holds, we will derive a contra-

diction. We still use Ci to denote the i-th clause of the resolution proof, noticing that given i and z, Ci can
be computed by a PV(α) function (that depends on M). We also use our previous notation such as BAD
and SEQ, and previous parameters t := n/10, L := 1.01n, and W := (n+1)2(1− (1/2L)1/t) ≤ 2

9(n− t)
2.

First, we use dwPHP(PV(α)) to select a good random restriction under which each Ci becomes a
small-width clause. This random restriction will be encoded as an edge-sequence s ∈ SEQ. Consider the
function

badz(i, b) := bad(Ci, b),

where b ∈ BAD is any sequence encoding a bad edge-sequence. Clearly, badz is a function symbol in PV(α)
(which depends on M and has parameter z). By dwPHP(PV(α)), there is an edge-sequence s ∈ SEQ
such that for every i ∈ [L] and b ∈ BAD, badz(i, b) ̸= s.

Next, we apply s to each clause Ci; denote πs(Ci) the restriction of Ci under the matching correspond-
ing to s. By our choice of s, for every i ∈ [L], we have w(mono(πs(Ci))) < W ≤ 2

9(n− t)
2. By Claim 3.10,

we have cri(mono(πs(Ci))) >
2(n−t)

3 or cri(mono(πs(Ci))) <
n−t
3 for every i ∈ [L].

Then we invoke Lemma 3.6 to show that the sequence πs(C0), πs(C1), . . . , πs(CL−1) is not a valid
resolution proof for PHP(n−t+1)→(n−t). Note that this is the step where we use the power of T1

2(α). Since
cri(mono(πs(CL−1))) = cri(⊥) = n + 1, by Σb

1(α)-MIN (which is available in T1
2(α)), there is a smallest

integer i ≤ L− 1 such that cri(mono(πs(Ci))) >
2(n−t)

3 .

• If πs(Ci) is an axiom, then cri(mono(πs(Ci))) ≤ 1, which is a contradiction.

• If πs(Ci) is a weakening of πs(Cj) where j < i, then cri(mono(πs(Cj))) ≤ cri(mono(πs(Ci))), con-
tradicting the minimality of i.

• If πs(Ci) is a resolution of πs(Cj) and πs(Ck) where j, k < i, then

cri(mono(πs(Ci))) ≤ cri(mono(πs(Cj))) + cri(mono(πs(Ck))).

However, this means either cri(mono(πs(Cj))) or cri(mono(πs(Ck))) is at least n−t
3 , a contradiction.

Now, since πs(C0), πs(C1), . . . , πs(CL−1) is not a valid resolution proof for PHP(n−t+1)→(n−t), we have
that C0, C1, . . . , CL−1 is not a valid resolution proof of PHP(n+1)→n either. This finishes the proof.
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4 Hardness of Refuting Resolution Proofs

In this section, we provide two hardness results for refuter problems: namely, the PLS-hardness for
resolution width refuters (Theorem 4.1) and the rwPHP(PLS)-hardness for resolution size refuters (Theo-
rem 4.4). Notably, our hardness results hold for any family of hard tautologies as long as the lower bounds
are true. This means that “PLS-reasoning” is necessary for proving any non-trivial resolution width lower
bounds and “rwPHP(PLS)-reasoning” is necessary for proving any non-trivial resolution size lower bounds.
Of course, this also implies that PLS and rwPHP(PLS) are the best possible upper bounds for the refuter
problems for any non-trivial unsatisfiable family of CNFs (as what we obtained for PHP(n+1)→n and more
upper bounds in Section 5).

4.1 Hardness of Refuting Narrow Resolution Proofs

We show that the refuter problems for any true resolution width lower bounds are PLS-hard. In fact,
this holds even for unsatisfiable CNF families that only contain a single CNF of constant size:

Theorem 4.1. Let F be any unsatisfiable CNF with a non-trivial resolution width lower bound, i.e.,
w(F ⊢Res ⊥) > width(F ). Let F := {F} and w0 := width(F ). Then there is a (uniform) decision-tree
reduction of block-depth 2 from Iter to Refuter(w(F ⊢Res ⊥) ≤ w0).

Proof. We show a straightforward reduction from the reversed Iter to the width refuter.
Note that F is a fixed CNF so it can be seen as constant size. Hence we can check in constant time

that F is unsatisfiable and width(F ⊢Res ⊥) > width(F ).
Let S : [L]→ [L] such that S(L) < L be any instance of reversed Iter. We will construct a purported

resolution refutation Π for F such that any invalid derivation in Π corresponds to an answer for S. Let
k be the number of axioms in F . The resolution refutation Π consists of nodes C−k, . . . , C−1, C0, . . . , CL,
where C−k, . . . , C−1 are the axioms of F .

For every i such that S(i) = i, we let Ci = C−k and define Ci to be a weakening from C−k. This is a
valid derivation (and Ci will not be used anymore). The clauses written in all other nodes in C1, . . . , CL

will be ⊥. The weakening rules applied among these nodes will encode the successor pointer S:

• For every solution i of the reversed Iter instance (i.e., i such that either S(i) > i or (S(i) < i and
S(S(i)) = S(i))), the weakening rule applied for Ci will be invalid. More specifically, let Ci be a
weakening from C−k, then Ci becomes a solution of the Refuter(w(F ⊢Res ⊥) ≤ w0) instance.

• For every i such that S(i) < i and S(S(i)) < S(i), we let Ci be a weakening from CS(i). Since both
Ci and CS(i) are ⊥, this is a valid derivation.

This finishes the construction, and the correctness follows from the following two facts immediately:
(1) there are no nodes whose width is larger than width(F ); (2) a resolution derivation is invalid if and
only if it is a solution of the given reversed Iter instance. The block-depth of our reduction is 2, as we
only need to query S(i) and S(S(i)).

Note that the reduction in Theorem 4.1 also works for a family of CNFs {Fn}n∈N with non-trivial
width lower bound. Therefore, combined with the PLS-membership results in Section 3.1, we obtain:

Theorem 4.2. Refuter(w(EPHP ⊢Res ⊥) < n/3) is PLS-complete.

Note that every clause generated in the reduction in Theorem 4.1 has monotone width O(n). Hence
the same proof also shows the PLS-hardness of monotone width refuters (as in Theorem 3.8):

Theorem 4.3. Refuter(wmono(PHP(n+1)→n ⊢Res ⊥) < 2n2/9) is PLS-complete.
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4.2 Hardness of Refuting Short Resolution Proofs

In this section, we show the rwPHP(PLS)-hardness of refuters for resolution size lower bounds. In
particular, for any family of unsatisfiable CNF formulas {Fn}n∈N that requires resolution size > sF (n), if
sF (n) is not too small, then rwPHP(PLS) reduces to the problem Refuter(s(Fn ⊢Res ⊥) ≤ sF (n)). This
result and our rwPHP(PLS) upper bounds (Theorems 3.16, 5.4, 5.12, and 5.13) complement each other
by showing that rwPHP(PLS) is the tightest complexity class in all these results.

Recall that an rwPHP(PLS) instance consists of
(
f, {Iy}y∈[2M ], {gy}y∈[2M ]

)
, where:

• f : [M ]→ [2M ] is a purported “surjection”;

• for each y ∈ [2M ], Iy := (L, Sy) is an instance of Iter, where Sy : [L]→ [L]; and

• gy : [L]→ [M ] maps solutions of Iy to integers in [M ].

We now state and prove the main theorem of this subsection.

Theorem 4.4. There is a universal constant C ≥ 2 such that the following holds. Let L,M ≥ 1 be the
parameters of rwPHP(PLS) instances and n ≥ 1.

For every unsatisfiable CNF formula F over n variables and parameter sF ≥ C · (nLM + |F |) such
that every resolution refutation of F requires more than sF clauses, there is a decision tree reduction of
block-depth O(n) from a rwPHP(PLS) instance to a Refuter(s(F ⊢Res ⊥) ≤ sF ) instance.

Proof. Let
(
f, {Iy}y∈[2M ], {gy}y∈[2M ]

)
be an instance of rwPHP(PLS) and we will reduce it to an instance

of Refuter(s(F ⊢Res ⊥) ≤ sF ). Our goal is to construct a size-sF resolution refutation Π for F such
that any illegal derivation in Π corresponds to a valid solution to the rwPHP(PLS) instance.

The nodes in Π are partitioned into n + 1 layers, numbered from layer 0 to layer n. Each layer
t ∈ [n+1] has either two rows or one row: When layer t has two rows, we denote the nodes in the first row
by

{
Dt

(y,a)

}
and those in the second row by

{
Et

i

}
; when layer t has only one row, we denote the nodes

by
{
Et

i

}
. (Therefore,

{
Et

i

}
always denote the last row of layer t.) After all these n+ 1 layers of clauses,

we put the axioms of F at the very end. It is easy to translate a resolution refutation in this layout into
one in the format of Definition 2.5 by decision trees of block-depth 1.

The construction. The layer 0 has one node E0
0 := ⊥. For each t from 1, . . . , n:

1. Let Et−1
0 , . . . , Et−1

k−1 be the nodes on the last row of layer t−1; we will always guarantee that k ≤M .

2. Case 1: 2k ≤M . In this case, layer t will only have one row of nodes, defined as follows. For every
node Et−1

i on layer t − 1, we generate 2 nodes Et
2i and Et

2i+1 on layer t, where the clauses written
are Et

2i = Et−1
i ∨ xt and Et

2i+1 = Et−1
i ∨ xt. We define Et−1

i to be resolved from Et
2i and Et

2i+1.

3. Case 2: 2k > M .

(a) First, prepare 2M nodesDt
(0,0), D

t
(1,0), . . . , D

t
(2k−1,0). It would be instructive to think of {Dt

(y,a) :

a ∈ [L]} for each fixed y as a chain and we are now preparing the heads of these 2M chains.
In what follows, we denote Ci = Dt

(i,0) for ease of notation.

For each i ∈ [k], let C2i = Et−1
i ∨ xt, C2i+1 = Et−1

i ∨ xt, and define Et−1
i to be resolved from

C2i and C2i+1. We make sure that there are exactly 2M clauses on the first row by making
several copies of C2k−1: for each i ∈ {2k, . . . , 2M − 1}, let Ci = C2k−1.

(b) Generate M nodes on the second row of layer t: for every i ∈ [M ], let Et
i := Cf(i). (Intuitively,

if f : [M ]→ [2M ] were a surjection, then every node in {Ci}i∈[2M ] would appear in {Et
i}i∈[M ].)
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(a) This is an rwPHP(PLS) instance with M = 4, compressing the top 2M elements to the bottom M elements.
The bottom four points represent the function f : [M ] → [2M ]; i.e., in this example, f(0) = 3, f(1) = 0, f(2) =
4, f(3) = 5. Every column is a PLS instance (every vertex without an outgoing edge has a self-loop). Every sink is a
solution of the corresponding PLS instance, on which we have gy : [L] 7→ [M ]. The number on every sink represents
f(gy(·)), which if different from y, would be a solution of the whole rwPHP(PLS) instance. In this figure, every
solution is marked with a dotted green box.

𝑥1𝑥2𝑥3 𝑥1𝑥2 ҧ𝑥3 𝑥1 ҧ𝑥2𝑥3 𝑥1 ҧ𝑥2 ҧ𝑥3 ҧ𝑥1𝑥2𝑥3 ҧ𝑥1𝑥2 ҧ𝑥3 ҧ𝑥1 ҧ𝑥2𝑥3 ҧ𝑥1 ҧ𝑥2 ҧ𝑥3

Axiom Axiom Axiom 𝑥1 ҧ𝑥2 ҧ𝑥3 ҧ𝑥1𝑥2𝑥3 ҧ𝑥1𝑥2 ҧ𝑥3 ҧ𝑥1 ҧ𝑥2𝑥3 ҧ𝑥1 ҧ𝑥2 ҧ𝑥3

𝑥1𝑥2𝑥3 Axiom Axiom Axiom ҧ𝑥1𝑥2𝑥3 ҧ𝑥1𝑥2 ҧ𝑥3 Axiom ҧ𝑥1 ҧ𝑥2 ҧ𝑥3

𝑥1𝑥2𝑥3 Axiom 𝑥1 ҧ𝑥2𝑥3 𝑥1 ҧ𝑥2 ҧ𝑥3 ҧ𝑥1𝑥2𝑥3 ҧ𝑥1𝑥2 ҧ𝑥3 Axiom ҧ𝑥1 ҧ𝑥2 ҧ𝑥3

𝑥1𝑥2𝑥3 𝑥1𝑥2 ҧ𝑥3 Axiom 𝑥1 ҧ𝑥2 ҧ𝑥3 ҧ𝑥1𝑥2𝑥3 ҧ𝑥1𝑥2 ҧ𝑥3 Axiom Axiom

𝑥1 ҧ𝑥2 ҧ𝑥3 𝑥1𝑥2𝑥3 ҧ𝑥1𝑥2𝑥3 ҧ𝑥1𝑥2 ҧ𝑥3

(b) Part of the constructed resolution derivation Π. Initially, we have 2M = 8 clauses. At the bottom, we have
M = 4 clauses, which exactly correspond to the 3rd, 0th, 4th, and 5th clauses above. For every node a in a PLS
instance, if it is a self-loop, then we let the clause be a weakening from some axiom (and it would never be used
again). If a is a solution of the PLS instance, we let it be the weakening of clause gy(a) at the bottom. Otherwise,
we let it be the weakening of Sy(a). All blue arrows are valid weakenings and all red arrows are invalid weakenings.
The invalid weakenings here will be the (only) solutions to the refuter problem.

Figure 4: The gadget to embed an rwPHP(PLS) instance.

35



⊥

𝑥1

𝑥1𝑥2 𝑥1 ҧ𝑥2 ҧ𝑥1𝑥2 ҧ𝑥1 ҧ𝑥2

ҧ𝑥1

𝑥1𝑥2𝑥3 𝑥1𝑥2 ҧ𝑥3 𝑥1 ҧ𝑥2𝑥3 𝑥1 ҧ𝑥2 ҧ𝑥3 ҧ𝑥1𝑥2𝑥3 ҧ𝑥1𝑥2 ҧ𝑥3 ҧ𝑥1 ҧ𝑥2𝑥3 ҧ𝑥1 ҧ𝑥2 ҧ𝑥3

𝑥1 ҧ𝑥2 ҧ𝑥3 𝑥1𝑥2𝑥3 ҧ𝑥1𝑥2𝑥3 ҧ𝑥1𝑥2 ҧ𝑥3

𝑥1 ҧ𝑥2 ҧ𝑥3𝑥4 𝑥1 ҧ𝑥2 ҧ𝑥3 ҧ𝑥4 𝑥1𝑥2𝑥3𝑥4 𝑥1𝑥2𝑥3 ҧ𝑥4 ҧ𝑥1𝑥2𝑥3𝑥4 ҧ𝑥1𝑥2𝑥3 ҧ𝑥4 ҧ𝑥1𝑥2 ҧ𝑥3𝑥4 ҧ𝑥1𝑥2 ҧ𝑥3 ҧ𝑥4

𝑥1𝑥2𝑥3 ҧ𝑥4 𝑥1 ҧ𝑥2 ҧ𝑥3𝑥4 ҧ𝑥1𝑥2𝑥3𝑥4 ҧ𝑥1𝑥2𝑥3 ҧ𝑥4

𝑥1𝑥2𝑥3 𝑥1 ҧ𝑥3 ҧ𝑥2 ҧ𝑥1𝑥4 𝑥2 ҧ𝑥4Axioms

Figure 5: An illustration of our reduction from rwPHP(PLS) to the size refuter problem. All gray arrows
are valid resolution derivations (and the last layer is weakening from axioms). Every dashed box uses the
gadget to embed an rwPHP(PLS) instance that enforces every layer to have at most 2M clauses. Thus
the only possible invalid derivations are those inside the gadget which, once found, would directly imply a
solution of the original rwPHP(PLS) instance. The overall reduction will produce a purported resolution
refutation of size O(nLM + |F |).

(c) Now, for each y ∈ [2M ], we “link” the node Cy = Dt
(y,0) to their corresponding Et

f−1(y) on the
second row, using the Iter instance Iy. Recall that for each y ∈ [2M ], Iy consists of a function
Sy : [L]→ [L], and solutions of Iy are those a ∈ [L] such that

either Sy(a) < a or (Sy(a) > a and Sy(Sy(a)) = Sy(a)).

As a special case, if a = 0 and Sy(0) = 0, then 0 also counts as a solution.
Every clause on the chain {Dt

(y,a) : a ∈ [L]} will be equal to Cy = Dt
(y,0) except those on a
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“junk” node a such that Sy(a) = a (see Case 2 (c) ii.); these clauses will be weakenings of
each other, and the instance Iy dictates the structure of the weakening relationship. For every
a ∈ [L], the node Dt

(y,a) is defined as follows:

i. If a is a solution of Iy, then gy(a) is a purported pre-image of y. The clause written onDt
(y,a)

is equal to Cy and we define it to be a weakening of Et
gy(a)

. (Note that Et
gy(a)

= Cf(gy(a))

by definition, meaning that if the weakening from Et
gy(a)

to Dt
(y,a) is an illegal derivation,

then f(gy(a)) ̸= y.)
ii. If a is not a solution and Sy(a) = a, then the clause written on Dt

(y,a) is defined to be the
weakening of an arbitrary axiom in F (say the first axiom). The node Dt

(y,a) is considered
a “junk” node and will never be used later.

iii. Otherwise, we have Sy(a) > a. The clause written on Dt
(y,a) is equal to Cy and we define

it to be a weakening of Dt
(y,Sy(a))

.

After constructing all these nodes above, we put the axioms of F at the very end. Each clause En
i

in the last row of layer n will be a weakening of some axiom in F . In particular, note that each En
i

has exactly n literals (this can be easily seen from induction) and therefore is satisfied by exactly one
assignment αi. Recall that F is an unsatisfiable CNF formula, so for each En

i , there exists an axiom A in
F such that αi falsifies A; hence we can define En

i to be a weakening of A.
This finishes the construction.
The above construction gives a resolution refutation Π for F that has size sF := O(nLM + |F |). The

only place in Π where illegal derivations might occur is in Case 2 (c) i. when we define Dt
(y,a) to be a

weakening of Et
gy(a)

. If this is an illegal derivation, then f(gy(a)) ̸= y, which means that we have found
a valid solution for the rwPHP(PLS) instance. Therefore, the above construction is a correct reduction
from rwPHP(PLS) to Refuter(s(F ⊢Res ⊥) > sF ), as long as sF > C · (nLM + |F |) for some large
universal constant C.

Finally, we analyze the query complexity of this reduction. It suffices to show that every node Dt
(y,a)

and Et
i can be computed in block-depth O(n) from the input rwPHP(PLS) instance. Note that to compute

one node, we need to calculate both its origin (i.e., resolved or weakening from which node) and the clause
written on it. We use induction on t to show that every clause in layer t can be computed in block-depth
c · (t+ 1) for some universal constant c. Fix a layer t and we argue as follows.

• (Base case) If layer t contains only one row, then we can read off the clause Et
i from the binary

representation of i; the node Et
i is always resolved from Et+1

2i and Et+1
2i+1 (if layer t+ 1 also contains

only one row) or Ct+1
2i and Ct+1

2i+1 (otherwise).

• (Induction step) If layer t contains two rows, then we argue as follows.

1. For i < 2k, depending on the parity of i, we have that the clause written on Dt
(i,0) is either

Et−1
⌊i/2⌋ ∨ xt or Et−1

⌊i/2⌋ ∨ xt. For i ≥ 2k, the clause written on Dt
(i,0) is always equal to Dt

(2k−1,0).
For every i ∈ [2M ] and a ∈ [L], the clause written on Dt

(i,a) is either equal to the clause written
on Dt

(i,0), or equal to some axiom of F , and this can be decided in block-depth 2 (see Case 2
(c) ii.). Since it takes block-depth ct to compute Et−1

⌊i/2⌋, it takes block-depth ct+2 to compute
the clause written on Dt

(i,a).

2. Every Dt
(y,a) (for y ∈ [2M ] and a ∈ [L]) belongs to one of the following three cases:

– if a is a solution of Iy, then Dt
(y,a) is a weakening of Et

gy(a)
;

– if a ̸= 0 and Sy(a) = a, then Dt
(y,a) is a weakening of some axiom in F and is a “junk”

node;
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– otherwise, Dt
(y,a) is a weakening of Dt

(y,Sy(a))
.

Therefore, we can use O(1) additional block-depth to determine all information regarding
Dt

(y,a).

3. Let i ∈ [M ], then Et
i = Dt

(f(i),0), and Et
i is either resolved from Ct+1

2i and Ct+1
2i+1 (when t < n)

or a weakening of some axiom (when t = n). This can be computed in constant additional
block depth.

It follows that Π can be computed from our input rwPHP(PLS) instance in block-depth O(n).

Corollary 4.5. Refuter(s(PHP(n+1)→n ⊢Res ⊥) ≤ 1.01n) is complete for rwPHP(PLS).

Proof Sketch. By combining Theorem 3.16 and Theorem 4.4. Note that the reductions have poly(n) block-
depth and each block contains poly(n) bits, therefore they are polynomial-time (many-one) reductions.

The above hardness result in TFNP can be interpreted as a reversal result in bounded reverse mathe-
matics as well. To state this reversal result, we define the following two families of ∀Σb

1(α)-sentences. For
PV(α) function symbols F, I,G, let rwPHP(PLS)(F, I,G) denote the natural ∀Σb

1(α)-sentence expressing
the existence of a solution for the rwPHP(PLS)-instance defined by (F, I,G):

• For every auxiliary input z and every t, L, there exists y ∈ [2t] and ans ∈ [L] such that ans is a PLS
solution for the Iter instance Iz,y : [L]→ [L] and that (Gz,y(ans) > t or Fz(Gz,y(ans)) ̸= y).

Similarly, let Haken(α) denote the family of ∀Σb
1(α)-sentences consisting of

∀n ∈ Log ∀z ¬pfPHP(n,M, z)

for every PV(α) function symbol M with parameter z. (Recall that pfPHP(n,M, z) is defined in Theo-
rem 3.17.)

Theorem 4.6. For every PV(α) function symbols F, I,G, PV(α)+Haken(α) proves rwPHP(PLS)(F, I,G).

Proof Sketch. Argue in PV(α). Let Π be the purported resolution proof for PHP as constructed in the
proof of Theorem 4.4 from (F, I,G), then Π can be expressed as a PV(α) function symbol (that depends on
F, I, and G). From Haken(α), we know that there exists an illegal derivation in Π. This illegal derivation
can only occur in Case 2 (c) i., and hence it points to a weakening from some Dt

(y,ans) to some Et
gy(ans)

.
This means the existence of a solution (y, ans) of the rwPHP(PLS)-instance (F, I,G).

We remark that like Theorem 4.4, the proof of the above theorem does not depend on the hard
tautology being PHP.

We finish this section by the following nice-looking characterization of ∀Σb
1-consequences (i.e., provably

total NP search problems) of T1
2 + dwPHP(PV):

Corollary 4.7. 1. Refuter(s(PHP(n+1)→n ⊢Res ⊥) ≤ 1.01n) is complete for the class of NP search
problems provably total in T1

2 + dwPHP(PV).

2. A ∀Σb
1(α)-sentence is provable in the theory T1

2(α) + dwPHP(PV(α)) if and only if it is provable in
the theory PV(α) + Haken(α).
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5 Refuters for Other Formulas

This section presents additional upper bounds for the refuter problems associated with resolution
lower bounds. We start with a universal PLS upper bound for width refuters, showing that any resolution
width lower bound that is true can be refuted in non-uniform PLS. Then, we provide further examples of
resolution lower bounds proven by “random restriction + width lower bounds” and show that the refuter
problems for these lower bounds are in rwPHP(PLS). In particular, we present the following three classic
resolution lower bounds and show that the refuter problems for all of them are in rwPHP(PLS):

(a) size-width tradeoffs from XOR-lifting [DR03,Kra11a] (Section 5.2);

(b) exponential size lower bounds for the Tseitin formulas [Urq87,Sch97] (Section 5.3); and

(c) exponential size lower bounds for random k-CNFs [CS88,BP96] (Section 5.4).

We believe that the case of random k-CNFs is especially compelling: the vast majority of resolution lower
bounds have refuters in rwPHP(PLS)!

5.1 Universal Refuters for Every Narrow Resolution Proof

This subsection shows a very general result: For every (possibly non-uniform) family of unsatisfiable
CNFs F = {Fn} and every sequence of integers {wn}, if for every n ∈ N, wn is indeed a resolution width
lower bound for Fn, then the refuter problem corresponding to this width lower bound is in PLS under
non-uniform decision tree reductions.

We note that such a membership result is inherently non-uniform since it is crucial to consider algo-
rithms with unlimited computational power. For example, in general, it is not obvious how to decide if
wn is a valid resolution width lower bound for Fn (although it is certainly computable with unlimited
computational power). In fact, even checking if Fn is unsatisfiable is itself NP-complete. On the other
hand, even though these two tasks are computationally hard, they only require querying at most poly(n)
bits of the given resolution proof. Thus, we can still consider these refuter problems in TFNPdt and study
its query complexity in the non-uniform setting.

Theorem 5.1. Let F be any (possibly non-uniform) family of unsatisfiable CNFs with polynomially many
clauses. Let w0 = w(F ⊢Res ⊥). Then there exists a (non-uniform) decision-tree reduction of block-depth
2 from Refuter(w(F ⊢Res ⊥) < w0) to Iter.

Proof. Consider any instance of Refuter(w(F ⊢Res ⊥) < w0). Recall from Definition 2.5 that the
instance is a purported resolution refutation Π that consists of clauses C−k, . . . , C−1, C0, . . . , CL−1 where
C−k, . . . , C−1 are the axioms of F and CL−1 = ⊥. Also, recall that we syntactically ensure the width of Π
is < w0 by only allocating w0 − 1 literals for each clause. The key point in the reduction is that, for any
clause Ci that is resolved from Cj1 and Cj2 , if width(F ⊢Res Ci) ≥ w0, then either width(F ⊢Res Cj1) ≥ w0,
or width(F ⊢Res Ci) ≥ w0.

The length of the reduced reversed Iter instance is exactly L. Next, we define the successor pointers:
for every i ∈ [L], let Ci be the i-th clause and Cj1 and Cj2 with j1 < j2 < i be the two clauses from which
Ci is resolved, then

S(i) :=


i if width(F ⊢Res Ci) < w0;

j1 if width(F ⊢Res Cj1) ≥ w0;

j2 otherwise.

Clearly, this is a query-efficient reduction with block-depth 2. It is not time-efficient because it needs
to compute whether width(F ⊢Res C) < w0 for some clauses C.

To show correctness, we consider any possible solution of the constructed reversed Iter. For any i
such that S(i) > i, we have either j1 > i or j2 > i, which means that Ci is an invalid derivation. Now
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consider any i such that S(i) < i and S(S(i)) = S(i). Since S(i) < i, we have that width(F ⊢Res Ci) ≥ w0.
Since S(S(i)) = S(i), we have both width(F ⊢Res Cj1) < w0 and width(F ⊢Res Cj2) < w0. Thus, the
resolution step from Cj1 and Cj2 to Ci must be an invalid derivation. This finishes the proof.

Note that Theorem 4.1 already shows a universal PLS-hardness, which even holds for uniform reduc-
tion. Combining the the PLS-membership (Theorem 5.1) above, we have the following corollary.

Corollary 5.2. Let F be any (possibly non-uniform) family of unsatisfiable CNFs with polynomially
many clauses. Let w0 := w(F ⊢Res ⊥). Then Refuter(w(F ⊢Res ⊥) < w0) is PLS-complete under
(non-uniform) decision tree reductions.

5.2 Refuters for XOR-Lifted Lower Bounds

We show that for a large family of resolution lower bounds proved by lifting theorems, their corre-
sponding refuter problems are in rwPHP(PLS).

Given an unsatisfiable CNF F which is hard for a “weak” proof system, a lifting theorem produces
another unsatisfiable CNF F ′ (typically by composing F with some gadgets) that is hard for a “stronger”
proof system. Lifting is a very influential technique for proving lower bounds in proof complexity, see
e.g. [HN12,GP18b, dRNV16,GGKS20, dRMN+20]. This subsection examines one of the simplest lifting
theorems for proving lower bounds for resolution, which originated from the technique of “relativization”
[DR03,Kra11a] (see also [Kra19, Section 13.2]).

Let F (z1, z2, . . . , zn) be an unsatisfiable CNF. Roughly speaking, the CNF F ◦ XOR is obtained by
replacing each variable zi with xi ⊕ yi, where xi and yi are new variables corresponding to zi. More
formally, the formula F ◦ XOR takes 2n Boolean variables x1, x2, . . . , xn and y1, y2, . . . , yn as inputs.
Denoting zbi = zi if b = 1 and zi if b = 0; each width-d clause

zb1i1 ∨ z
b2
i2
∨ · · · ∨ zbdid

becomes a set of 2d width-2d clauses{(
xr1⊕1
i1
∨ yb1⊕r1

i1

)
∨
(
xr2⊕1
i2
∨ yb2⊕r2

i2

)
∨ · · · ∨

(
xrd⊕1
id

∨ ybd⊕rd
id

)}
r1,r2,...,rd∈{0,1}

.

A classical lifting theorem states that if F requires large resolution width, then F ◦XOR requires large
resolution size. Here, the “weak” proof system is narrow resolution and the “strong” proof system is short
resolution. More formally:

Theorem 5.3. Let F be an unsatisfiable CNF that requires resolution width ≥ w, then F ◦ XOR requires
resolution size ≥ 2w/3.

The classical proof of this theorem goes through a random restriction argument. Let Π be a purported
resolution proof of F ◦ XOR of length L < 2w/3. Consider a random restriction ρ as follows: For each
index i, with probability 1/2, we set ρxi = 0/1 uniformly at random and ρyi = ∗; otherwise, we set
ρyi = 0/1 uniformly at random and ρxi = ∗. By the construction above, Π|ρ is a resolution proof of F
up to substituting some variables by their negations, for any ρ in the support. Moreover, for any clause
C ∈ Π of width at least t, C is killed by a random restriction ρ (i.e., C|ρ ≡ 1) w.p. at least 1− 2−Ω(t). By
a union bound over all L < 2w/3 clauses in Π, it follows that there is a random restriction ρ killing every
clause of width > w in Π. Therefore, Π|ρ is a resolution refutation for F , contradicting the width lower
bound for F .

To obtain a reduction to rwPHP(PLS), it would be helpful to rephrase the above proof as a compression
argument:

Proof of Theorem 5.3. Let R be the space of the random restrictions in the above proof. Each ρ ∈ R can
be described in 2n bits:
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• For each index i, if ρxi = ∗, then we write down 0yi (the first bit being 0 indicates that xi is set to
∗, and the second bit encodes yi); otherwise we write down 1xi.

We call the above encoding the standard encoding of a restriction; this encoding is a bijection between R
and {0, 1}2n, showing that |R| = 4n.

In contrast, if C is a clause of width w and ρ ∈ R is a restriction such that C|ρ ̸= 1, then given C,
such a ρ can be described in (log2 3)w + 2(n − w) < 2n bits. This is because for each literal in C (say
xi, yi, xi, or yi), if this literal is not simplified to 1, then there are only 3 possible choices for (ρxi , ρyi);
for example, if this literal is xi, then (ρxi , ρyi) might be one of (0, ∗), (∗, 0), or (∗, 1), but never (1, ∗). We
call this the short encoding of ρ w.r.t. C; note that this encoding only works when C|ρ ̸= 1.

Now, let Π = (C0, C1, . . . , CL−1) be a resolution refutation of F ◦ XOR with L < 2w/3 clauses. Let
f : [L]× [3w4n−w]→ [4n] be the function that on input (i, ρ′), where i ∈ [L] and ρ′ is the short encoding
of a restriction w.r.t. Ci, outputs the standard encoding of ρ′ in {0, 1}2n. Since

L× 3w4n−w ≤ 2w/3 · 4n(3/4)w < 0.99 · 4n (whenever w ≥ 1),

it follows from the dual weak pigeonhole principle that there exists a ρ ∈ {0, 1}2n outside the range of f .
This restriction ρ simplifies Π into a width-w resolution proof of F .

In conclusion, if there is a resolution refutation of F ◦XOR with < 2w/3 clauses, then by the dual weak
pigeonhole principle, there is a resolution refutation of F with width < w, contradicting the assumed
hardness of F .

Now we are ready to show the following result: for every unsatisfiable CNF of the form F ◦XOR whose
resolution size lower bound can be derived from Theorem 5.3, the refuter problem for this resolution size
lower bound is in rwPHP(P), where P corresponds to the refuter problem for the width lower bound for
F . Since the refuter problem corresponding to every resolution width lower bound admits a non-uniform
reduction to PLS (Corollary 5.2), the refuter problems corresponding to size lower bounds for F ◦ XOR
non-uniformly reduce to rwPHP(PLS) as well. Even if we restrict ourselves to uniform reductions, the
refuter problems for many interesting width lower bounds reduce to PLS (such as Theorem 3.3), thus the
refuter problems for size lower bounds for the corresponding lifted CNFs also reduce to rwPHP(PLS).

Theorem 5.4. Let {Fn} be a family of unsatisfiable CNFs, w(n) be a width lower bound for Fn, and P de-
note the problem Refuter(w(Fn) > w(n)). Then there is a decision tree reduction from Refuter(s(Fn◦
XOR) < 2w(n)/3) to rwPHP(P) with block-depth 1.

Proof. Let Π be the input instance of Refuter(s(Fn ◦XOR) < 2w(n)/3). That is, Π = (C0, C1, . . . , CL−1)
is a purported resolution refutation of Fn ◦XOR with L < 2w(n)/3 clauses, and we want to find an invalid
derivation in Π.

Let f : [0.99N ] → [N ] be the function defined in the proof of Theorem 5.3, where N := 4n. That is,
given a pair (i, ρ′) where i ≤ L and ρ′ is the short encoding of a restriction w.r.t. Ci, f(i, ρ′) is the standard
encoding of this restriction. The range of f consists of (the standard encodings of) all bad restrictions,
i.e., those that do not simplify Π to a width-w resolution refutation.

Given any restriction ρ ∈ {0, 1}2n, let Π|ρ denote the restriction of Π under ρ where we force every
clause to have width at most w; Π|ρ is a purported width-w resolution refutation for Fn. In particular,
for each (ρ, i), the i-th clause of Π|ρ is equal to the restriction of Ci under ρ, truncated at width w. Note
that if Fn indeed requires resolution width > w, then Π|ρ must be an invalid resolution refutation of Fn.
Suppose that the i-th clause in Π|ρ is derived illegally, then it could be for the following two reasons:

• Either the derivation of Ci in Π is already illegal;

• or the width of Ci|ρ is actually > w and the i-th clause in Π|ρ is illegal because it was truncated.
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Let g′ρ,i denote the short encoding of ρ w.r.t. Ci, and define gρ,i := (i, g′ρ,i). In the second case, we have
a clause Ci and a restriction ρ such that Ci|ρ ̸= 1 (in fact, the width of Ci|ρ is large), thus the short
encoding makes sense and, indeed, f(gρ,i) = ρ. In any case, if the short encoding does not make sense
(i.e., Ci|ρ = 1), we can set gρ,i arbitrarily.

Now we have all the ingredients needed in our reduction from the problem of finding an invalid
derivation in Π to rwPHP(P):

1. a purported “surjection” f : [0.99N ]→ [N ];

2. a P instance Π|ρ for every ρ ∈ [N ];

3. for every ρ ∈ [N ] and every solution i of Π|ρ (as a P instance), a number gρ,i pointing to a purported
pre-image in f−1(ρ).

Every entry f(i, ρ′), Π|ρ(i), and gρ,i only depend on Ci and ρ, thus are computable by a decision tree of
block-depth 1.

A solution of the above rwPHP(P) instance consists of a restriction ρ and a solution i of Π|ρ such
that f(gρ,i) ̸= ρ. In this case, the derivation of Ci in Π must be invalid. That is, given a solution of the
rwPHP(P) instance, we can find an invalid derivation of Π by a decision tree of block-depth 1.

5.3 Refuters for Tseitin Formulas

Tseitin formulas. Let G = (V,E) be a undirected connected graph, where each vertex v ∈ V is
associated with a value τ(v) ∈ {0, 1}, and each edge e ∈ E is associated with a Boolean variable xe. The
goal is to assign values to each xe so that for each vertex v ∈ V , the XOR of edge labels incident to v is
equal to τ(v); that is, ⊕

e∼v

xe = τ(v), (6)

where e ∼ v denotes that the edge e is incident to the vertex v.
We say τ is an odd-weighted function if

⊕
v∈V τ(v) = 1. It is not hard to see that the above task is

impossible if and only if τ is odd-weighted ([Urq87, Lemma 4.1]).

Definition 5.5. The Tseitin formula Tseitin(G, τ) [Tse83] consists of Equation 6 for every vertex v.
When G is a d-regular graph (i.e., every vertex v is incident to exactly d edges), we can write Equation 6
as a d-CNF with 2d−1 clauses:∧

y1⊕y2⊕···⊕yd ̸=τ(v)

((xe1 ̸= y1) ∨ (xe2 ̸= y2) ∨ · · · ∨ (xed ̸= yd)), (6’)

where e1, e2, . . . , ed are edges incident to v.

For every odd-weighted function τ , Tseitin(G, τ) is unsatisfiable; when G is an expander graph,
Tseitin(G, τ) becomes hard for resolution.

Definition 5.6. Let G = (V,E) be an undirected graph. For S, T ⊆ V , denote E(S, T ) as the set of
edges in E with one endpoint in S and the other endpoint in T . The expansion of G is defined as:

e(G) := min{|E(S, V \ S)| : S ⊆ V, |V |/3 ≤ |S| ≤ 2|V |/3}.

This gives rise to a family of popular hard tautologies in proof complexity. The first exponential
resolution lower bound for Tseitin formulas was proved by Urquhart [Urq87]; the proof was subsequently
simplified by [Sch97,BW01]. We restate the theorem from [BW01] below.

Theorem 5.7 ([BW01, Theorem 4.4]). For every undirected connected graph G and odd-weighted function
τ : V → {0, 1}, any resolution refutation of Tseitin(G, τ) contains a clause C with w(C) ≥ e(G).

In this paper, we only consider Tseitin formulas on graphs with constant degree d = O(1).
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Width Refuters. Similar to the Pigeonhole Principle, we first study the width refuter for Tseitin
formulas.

Definition 5.8. Let Refuter(w(Tseitin ⊢Res ⊥) < e(G)) denote the following problem. The input
consists of an undirected connected graph G = (V,E) on n vertices with degree d = O(1), an odd-
weighted assignment τ : V → {0, 1}, a parameter e ≤ |E|, and a purported resolution refutation Π of
Tseitin(G, τ) with width less than e. A valid solution is either of the following:

• an index i such that the i-th node in Π is an invalid derivation, or

• a vertex set S ⊆ V such that |V |/3 ≤ |S| ≤ 2|V |/3 and |E(S, V \ S)| < e.

(Note: in this TFNPdt problem, we think of poly(n)-time algorithms as “efficient”, hence an efficient
procedure can read the whole graph G, verify that τ is indeed odd-weighted, or count the number of edges
between S and V \ S. When we calculate block-depth, the inputs (G, τ, e) are treated as a single block.)

Remark 7. This definition is different from most refuter problems considered in this paper, as it is not for a
single family of tautology, and it does not even guarantee that the tautology is hard! Instead, it asks to find
either an invalid derivation in the purported proof or a certificate of the tautology being easy (i.e., a sparse
cut in the graph).

We argue that this is a natural definition. Let pfαTseitin(G, τ, e) denote the Πb
1(α)-sentence “α encodes a

width-e proof of Tseitin(G, τ)” (note that α is treated as an oracle, i.e., a second-order object, while G, τ , and
e are inputs, i.e., first-order objects). That is,

pfαTseitin(G, τ, e) := ∀i Correct
α(G, τ, e, i),

where Correctα(G, τ, e, i) expresses that the i-th step of α, as a width-(e− 1) proof of Tseitin(G, τ), is correct.
Similarly, let Expander(G, e) denote the Πb

1-sentence that e(G) ≥ e. That is,

Expander(G, e) := ∀S ⊆ V (|S| ∈ [(1/3)|V |, (2/3)|V |] =⇒ |E[S, V \ S]| ≥ e).

The proof in [BW01] actually shows that Expander(G, e) =⇒ ¬pfαTseitin(G, τ, e), which after rearranging is
equivalent to:

∃i ¬Correctα(G, τ, e, i) ∨ ∃S (|S| ∈ [(1/3)|V |, (2/3)|V |] ∧ |E[S, V \ S]| < e). (7)

It is easy to see that Definition 5.8 is exactly the TFNPdt problem corresponding to Equation 7.

Theorem 5.9. Refuter(w(Tseitin ⊢Res ⊥) < e(G)) is PLS-complete.

Proof. We will show that there is a (uniform) decision tree reduction of block-width 3 from this problem
to Iter.

Let G = (V,E) be an undirected graph with purported expansion parameter e. Let τ : V →
{0, 1} be an odd-weighted function. Let Π be a purported resolution refutation that consists of clauses
C−k, · · · , C−1, C0, · · · , CL−1. where C−k, · · · , C−1 are axioms of the unsatisfiable CNF associated with G
and τ . Note that we can syntactically require that each Ci has width at most e − 1. Our goal is to find
either an invalid derivation in Π or a witness that the expansion of G is, in fact, less than e. In particular,
the witness is a vertex set S ⊆ V such that |V |/3 ≤ |S| ≤ 2|V |/3 and |E(S, V \ S)| < e.

Similar to before, we first introduce a complexity measure for a clause C. Let v ∈ V be a vertex.
We say an assignment α is v-critical if α only falsifies the constraint associated with v and satisfies all
other constraints of the given unsatisfiable CNF. The complexity measure, denoted by cri(C), is defined
as follows.

cri(C) := |{v ∈ V : ∃v-critical assignment α such that C(α) = 0}|.

Note that cri has four important properties:

• cri(⊥) = n;
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• cri(Ci) = 1 for all −k ≤ i ≤ −1, namely, cri(C) = 1 for all axioms C;

• cri is subadditive with respect to resolution derivation, namely, if C is resolved from A and B, then
cri(C) ≤ cri(A) + cri(B);

• if C is obtained from a weakening of A, then cri(C) ≤ cri(A).

We first show that cri(·) can be computed in polynomial time. Then we show that any clause Ci such
that n/3 ≤ cri(Ci) ≤ 2n/3 will give us a solution. The PLS-membership follows from that the standard
1/3-2/3 trick can be implemented via a reduction to reversed Iter.

Lemma 5.10. For any clause C, cri(C) can be computed in poly(n) time.

Proof. Fix any clause C. We will enumerate v ∈ V and check the existence of v-critical assignments.
Note that the aimed assignment α needs to satisfy that C(α) = 0, so all literals in C are fixed. For

α being a v-critical assignment, the constraint associated with v needs to be falsified. We enumerate an
axiom in the constraint associated with v. Since d is a constant, there are only 2d−1 = O(1) axioms that
we need to enumerate.

Fix such an axiom, and set all literals in this axiom to be 0 as well (if setting them to be 0 is not
consistent with C(α) = 0, then skip this axiom and try the next one). Now we have fixed some variables
and left other variables free. Let ρ ∈ {0, 1, ∗}m be this partial assignment, where m = |E|. Note that
C(ρ) = 0 and the constraint associated with v has also been falsified. So we only need to check if there
is a complement α of ρ such that all other constraints can be satisfied by α. This reduces to checking
whether a system of linear equations over F2 has a solution, which can be done in polynomial time. ⋄

Then we show that finding a clause Ci such that cri(Ci) ∈ [n/3, 2n/3] can be reduced to Iter.
Reduction to Iter: The instance of a reversed Iter is defined by the following function S : [L]→ [L].
For every i ∈ [L]:

• if cri(Ci) <
2n
3 , then S(i) = i;

• otherwise, if Ci is a weakening from Cj , then let S(i) = j;

• Finally, let Ci be resolved from Cj and Ck: If cri(Cj) ≥ cri(Ck), then S(i) = j; otherwise S(i) = k.

It is easy to see that this reduction can be implemented in block-depth 3: for example, if Ci is resolved
from Cj and Ck, then one only needs to read the i-th, j-th, and k-th node in the resolution refutation.

Note that when we find any solution i of this reversed Iter instance, it satisfies S(i) < i and S(S(i)) =
i. This means cri(Ci) ≥ 2n/3 but cri(CS(i)) < 2n/3. Thus we have cri(CS(i)) ∈ [n/3, 2n/3].

Correctness of the Reduction: Fix C such that n/3 ≤ cri(C) ≤ 2n/3. Let

E′ = {(u, v) ∈ E | u ∈ cri(C), v ∈ V \ cri(C)}.

We show that C contains every variable that appears in E′. If not, let e = (u, v) ∈ E′ be a missing
variable and suppose without loss of generality that u ∈ cri(C) and v ̸∈ cri(C). Since u ∈ cri(C), by
definition we know there exists a u-critical assignment αu such that C(αu) = 0. Let α′

u be the same
assignment but flipping x(u,v). Then by definition, we obtain a new assignment α′

u that is v-critical.
However, recall that v ̸∈ cri(C), which leads to a contradiction.

Thus, suppose that C is not obtained by an invalid derivation, then since width(C) < e, we know that
|E′| < e, which means that cri(C) is a witness that the expansion of G is in fact less than e.

This finishes the proof.
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Size Refuter. After the PLS-membership of width refuter, we are ready to study the size refuter.
We consider Tseitin formulas where the underlying graph G = (V,E) is an expander. Recall from

Definition 5.6 that the expansion of G, denoted as e(G), is the minimum number of edges between S and
V \ S over every subset S ⊆ V such that |V |/3 ≤ |S| ≤ 2|V |/3. It is proved in [Sch97,BW01] that for
every constant-degree expander G with e(G) ≥ n and every odd-weighted function τ : V → {0, 1}, the
tautology Tseitin(G, τ) requires size-2Ω(n) resolution proof.

Now, analogous to Definition 5.8, we define the refuter problem for the size lower bounds, where the
graph G is also given as an input, and a certificate for G not being an expander is also a valid output:

Definition 5.11. Let Refuter(s(Tseitin ⊢Res ⊥) < 1.01n/d) denote the following problem. The input
consists of an undirected connected d-regular graph G = (V,E) on n vertices, an odd-weighted assignment
τ : V → {0, 1}, and a purported resolution refutation Π for Tseitin(G, τ) that contains at most 1.01n/d

clauses. A valid solution is either of the following:

• an index i such that the i-th node in Π is an invalid derivation, or

• a vertex set S ⊆ V such that |V |/3 ≤ |S| ≤ 2|V |/3 and |E(S, V \ S)| < n.

Again, when we calculate the block-depth of reductions, we treat (G, τ) as one input block.

Theorem 5.12. Let G = (V,E) be a d-regular undirected connected graph and τ : V → {0, 1} be an
odd-weighted function. Then, if e(G) ≥ n, then Tseitin(G, τ) requires resolution size ≥ 1.01n/d.

Moreover, there is a uniform decision tree reduction from Refuter(s(Tseitin ⊢Res ⊥) < 1.01n/d) to
rwPHP(PLS) with block-depth 3.

Proof. We follow the proof in [Sch97], which (also) uses a random restriction argument and a width lower
bound. Our exposition about the random restrictions will be careful and slow (since this is relevant to
our reduction to rwPHP(PLS)), but we will be sketchy about other parts.

Consider a random restriction as follows. Let t := n/10, pick t edges E′ = {e1, e2, . . . , et} uniformly at
random, and for each edge ei assign a uniformly random bit to xei . For an edge e = (x, y), each time we
assign xe ← 0, we do nothing with the function τ ; each time we assign xe ← 1, we flip both τ(x) and τ(y).
After picking these t edges, we reduced the formula Tseitin(G, τ) to the formula Tseitin(G′, τ ′), where G′

is the graph G with edges in E′ removed, and τ ′ is the assignment on vertices we obtained at the end. It
is easy to see that e(G′) ≥ e(G) − t, hence by Theorem 5.7, any resolution refutation for Tseitin(G′, τ ′)
requires width ≥ e(G)− t.

It would be helpful to rigorously define the space of random restrictions. Fix an ordering ≺ (e.g., the
lexicographic one) over the nd = 2|E| literals. A restriction is described by a sequence (i0, i1, . . . , it−1)
as follows. We first pick the i0-th literal ℓ0 according to ≺ and set ℓ0 := 1. Now we are left with nd− 2
literals (as both ℓ0 and ℓ̄0 are set) and we pick the i1-th literal ℓ1 among them, according to ≺. After
setting ℓ1 := 1, we are left with nd − 4 literals and we pick the i2-th one, and so on. Each sequence
corresponds to a restriction that sets the values of t edges (but note that each restriction corresponds to
t! such sequences). The space of random restrictions is denoted as

R := [nd]× [nd− 2]× [nd− 4]× · · · × [nd− 2t+ 2].

Let w := e(G) − t and fix a clause C of width ≥ w. If we know that a restriction ρ does not kill C,
then there is a more efficient way to describe ρ by a sequence (j0, j1, . . . , jt−1), as follows. We first pick
the j0-th literal ℓ0 among those nd−w ones not in C, according to ≺, and set ℓ0 := 1. After this round,
there are at most nd−w− 1 remaining literals not in C: If ℓ̄0 ∈ C then there are exactly nd−w− 1 such
literals (i.e., excluding ℓ0), otherwise there are nd − w − 2 remaining literals (i.e., excluding ℓ0 and ℓ̄0).
Anyway, we use nd−w− 1 as an upper bound on the number of literals that we can choose after the first
round. In the next round, we choose the j1-th literal ℓ1 not in C according to ≺, set ℓ1 := 1, and now
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there remains at most nd−w − 2 literals. In the next round, we choose the j2-th such literal, and so on.
The space of “bad” restrictions that do not kill C is

BAD := [nd− w]× [nd− w − 1]× · · · × [nd− w − t+ 1].

Given any C and b ∈ BAD, we can compute seq(C, b) ∈ R as the “b-th bad restriction corresponding
to C”.27 Given any clause C of width ≥ w and any restriction ρ ∈ R that does not kill C, we can compute
an encoding bad(C, ρ) ∈ BAD such that seq(C, bad(C, ρ)) = ρ. The following calculation corresponds to
a “union bound” over L := 1.01n/d clauses in the purported resolution proof:

L · |BAD|
|R|

=L ·
∏
i∈[t]

nd− e(G) + t− i
nd− 2i

≤L ·
(
1− e(G)− 3t

nd− 2t

)t

≤ 1.01n/d ·
(
1− 7

10d− 2

)n/10

≤ 1/2.

The lower bound argument proceeds as follows. Let Π = (C0, C1, . . . , CL−1) be a purported size-L
resolution proof for Tseitin(G, τ). By the above union bound, there is a restriction ρ ∈ R that kills every
clause in Π with width ≥ w. This restriction shrinks Π into Π|ρ which is a width-w resolution proof for
Tseitin(G′, τ ′), contradicting the width lower bound. Therefore, every resolution proof for Tseitin(G, τ)
requires more than 1.01n/d many clauses.

Finally, we describe the reduction from Refuter(s(Tseitin ⊢Res ⊥) < 1.01n/d) to rwPHP(PLS):

(f) The function f : [L]× BAD → R is defined as f(i, b) := seq(Ci, b).

(Iρ) For every ρ ∈ SEQ, we obtain a purported width-w resolution proof Π|ρ for Tseitin(G′, τ ′). Every
node in Π|ρ can be computed in block-depth 1 from Π. Using Theorem 5.9, we reduce the problem
of finding an invalid derivation in Πρ to an Iter instance Iρ, where each node in Iρ is computed in
block-depth 3 from Π|ρ.

(g) For every ρ ∈ SEQ and every valid solution o of Iρ, we can compute an index i ∈ [L] from o such
that the i-th step in Π|ρ is an illegal derivation. We let gρ,o := (i,BAD(Ci, ρ)).

Suppose that (ρ, o) is any solution to the rwPHP(PLS) instance defined above. Let i ∈ [L] be computed
from o as above, then we claim that the i-th step of Π must be an illegal derivation. Indeed, since o is a
solution of Iρ, the i-th step of Π|ρ must be illegal. On the other hand, if the i-th step of Π is not illegal,
then Ci|ρ is a clause of width ≥ w, and thus

f(gρ,o) = seq(Ci,BAD(Ci, ρ)) = ρ,

contradicting that (ρ, o) is a valid solution to the reduced rwPHP(PLS) instance.

5.4 Refuters for Random k-CNFs

Finally, we show that resolution lower bounds for random k-CNFs can be refuted in rwPHP(PLS).
More precisely, as in [CS88], we consider the distribution F(k, n,m) over k-CNFs with n variables and m
clauses where each clause is i.i.d. chosen from all

(
n
k

)
2k ordinary clauses of size k over the n variables. (A

clause is ordinary if there is no variable xi such that both xi and x̄i occur in this clause.) Let c ≥ 1, ε > 0

27Note that some b ∈ BAD might not correspond to a valid restriction. We can set seq(C, b) to be an arbitrary value.

46



be constants, and {Fn}n∈N be a family of k-CNFs, where each Fn is a k-CNF over n variables and cn
clauses. In the search problem

Refuter(s(Fn) < (1 + ε)n),

we are given query access to a purported resolution refutation Π for Fn that contains at most (1 + ε)n

clauses, and our goal is to locate an invalid derivation in Π.

Theorem 5.13. For every large enough positive integer k and c ≥ 0.7 · 2k, there is a constant ε > 0 such
that the following holds. Let {Fn}n∈N be a sequence of random k-CNFs where each Fn is independently
chosen according to the distribution F(k, n, cn). With probability 1, there is a non-uniform decision tree
reduction of block-depth 2 from the problem Refuter(s(Fn) < (1 + ε)n) to rwPHP(PLS) that works for
all large enough n.

The unsatisfiability of {Fn}n∈N and the resolution lower bounds for {Fn}n∈N are already shown in the
seminal work of Chvátal and Szemerédi [CS88]. We prove Theorem 5.13 by formalizing their resolution
lower bound proofs as decision tree reductions to rwPHP(PLS).

The reason that our reduction in Theorem 5.13 is non-uniform is very similar to that in Section 5.1.
First, it appears infeasible to decide if (1 + ε)n is indeed a valid resolution size lower bound for the input
formula Fn. Second, the proofs in [CS88] involve some objects that appear to be infeasible to compute
given Fn; however, these objects do not depend on the purported size-(1 + ε)n resolution refutation, thus
can be hardwired in a non-uniform decision tree. It might be possible to obtain a “uniform version”
of Theorem 5.13 like what we did for Tseitin formulas (Definition 5.8, Remark 7, Definition 5.11), by
completely formalizing [CS88] in bounded arithmetic. We choose not to do so because we believe that
a non-uniform upper bound of rwPHP(PLS) already supports our claim that rwPHP(PLS) captures the
complexity of proving most resolution lower bounds; dealing with extra details in [CS88] would only be
distracting.

We assume familiarity with the (quite involved) proof in [CS88]. In particular, we need the following
definitions and theorems:

• Fix a k-CNF F over n variables and cn clauses. Let X = {x1, x2, . . . , xn} denote the set of variables
of F . The “structure” of F can be described by a k-uniform (multi-)hypergraph H over the vertex
set X, where each clause Fi of F corresponds to the hyperedge

Ei := {xj ∈ X : Fi contains xj or x̄j}.

• Let E′ be a subset of hyperedges in H, the boundary of E′ is the set of all vertices that belong to
exactly one hyperedge in E′. We say that H has property P (a) if, for every m ≤ an, every family
of m edges has boundary size at least m/2.

• Let S be a family of subsets of X (note that S might be a multiset). A system of distinct represen-
tatives (SDR) of S is a mapping from each S ∈ S to an element in S such that different subsets in
S are mapped to different elements. Alternatively, consider the bipartite graph (S, X) such that an
edge between S ∈ S and xi ∈ X is drawn if and only if xi ∈ S, then an SDR of S is an S-perfect
matching of this bipartite graph (that is, every vertex in S is matched).

• Let S be a subset of vertices in H of size s := ⌊bn⌋. We say that S is good if there is a subset D of
S with |S \D| ≤ (a/32)|S| such that every family of at most an edges has an SDR that is disjoint
from D. We denote this subset as D(S). We say that H has property Q(a, b) if a random size-s
subset S ⊆ X is good with probability at least 1/2.

• [CS88, Lemma 3] showed that any hypergraph satisfying certain “sparsity” conditions will have
properties P (a) and Q(a, b). As a corollary ([CS88, Lemma 4]), for every large enough integers k
and c ≥ 0.7 · 2k, there are a, b > 0 with b ≤ a/8 such that a random k-uniform hypergraph with
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n vertices and cn hyperedges has properties P (a) and Q(a, b) with probability ≥ 1− n−2 for large
enough n.28

Now we outline the strategy of [CS88]. Let F = Fn be a k-CNF over n variables and cn clauses whose
underlying hypergraph H satisfies P (a) and Q(a, b). We first choose a “special pair” (S, ρ) where S is a
random subset of s := ⌊bn⌋ vertices and ρ ∈ {0, 1}D(S) is a uniformly random restriction on variables in
D(S). Then we use a random restriction argument to reduce the size lower bound to a width lower bound :

Random restriction: Let C be any clause in the purported resolution refutation for F such that the
width of C is at least an/8. With probability 1−2−Ω(n) over the choice of S, we have |Vars(C)∩S| ≥
as/16, where Vars(C) denotes the set of variables contained in C. Since |S\D(S)| ≤ as/32, it follows
that |Vars(C) ∩ D(S)| ≥ as/32, hence the probability over ρ that C is not killed by ρ is at most
2−as/32. A union bound over all C ∈ Π implies that with high probability over (S, ρ), every clause
of width ≥ an/8 in Π is killed by ρ.

Width lower bound: Now we are left with a purported resolution refutation Π|ρ of width less than an/8
for the statement F |ρ. For a clause C ∈ Π, let µ(C) denote the minimum number of clauses from F
that logically implies C under ρ. (That is, for any assignment extending ρ, if all these clauses are
satisfied, then C is also satisfied.) Every subset of ≤ an/2 clauses F ′ ⊆ F can be satisfied by some
assignment on X \D(S) (indeed, we can simply choose an SDR for F ′ that is disjoint from D(S),
and fix this SDR), hence µ(⊥) > an/2. On the other hand, every clause in F has µ value at most
1. Let C ′ ∈ Π|ρ be the first clause in Π|ρ such that µ(C ′) > an/2 (recall that ⊥ is the last clause in
Π|ρ). One can use a classical argument to show that an/2 < µ(C ′) ≤ an, i.e., the smallest subset of
clauses F ′ ⊆ F that logically implies C ′ has size between an/2 and an. Since H satisfies P (a) and
|F ′| ≤ an, the boundary of F ′ contains at least |F ′|/2 ≥ an/4 variables. It can be shown that C ′

contains every variable in the boundary of F ′ but not in S, hence w(C ′) ≥ an/8, a contradiction.

Now we are ready to prove Theorem 5.13.

Proof of Theorem 5.13. Let F = Fn be the random k-CNF and H = Hn be the underlying hypergraph
for F . Let a, b > 0 be constants that arise from [CS88, Lemma 4], we assume that H has properties
P (a) and Q(a, b) (this assumption will be justified at the end of the proof). Our reduction needs the
following non-uniform advice {Si}, {Di}, {Ri,ρ} (of course, they only depend on F and is independent of
the purported resolution refutation):

• A list of subsets S ⊆ X with size s := ⌊bn⌋ that are good. Since H has property Q(a, b), there
are at least Ngood :=

(
n
s

)
/2 such subsets and we only need to encode the first Ngood ones. For each

i ∈ [Ngood], denote the i-th good subset as Si, we also need the subset Di ⊆ Si of size ≥ (1− a/32)s
such that every family of at most an edges has an SDR disjoint from Di.

• For each index i and each restriction ρ ∈ {0, 1}Di , we compute the subformula F |ρ. The above
width lower bound argument (along with properties P (a) and Q(a, b)) implies that F |ρ requires
resolution width > an/8. Invoking Theorem 5.1, we obtain a non-uniform decision tree reduction
from Refuter(w(F |ρ) ≤ an/8) to PLS with block-depth 2, which we denote as Ri,ρ.

Let Π be a purported resolution refutation for F consisting of at most L := (1 + ε)n clauses. Now we
describe our reduction from Refuter(s(Fn) ≤ (1 + ε)n) to rwPHP(PLS):

28If this probability is at least 1−n−2, then we can argue that with probability 1 over an infinite family of random k-CNFs,
our reduction to rwPHP(PLS) is correct on all but finitely many input lengths; see the end of the proof of Theorem 5.13.
Although [CS88] only claimed a probability of 1− o(1), their proof actually shows a probability of 1− n−Ω(k) where the big
Ω hides some absolute constant. This is at least 1−n−2 when k is large enough; we suspect that our results can be extended
to all k ≥ 3 via a more careful argument.
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(f) The function f takes as inputs i ∈ [L], type ∈ {0, 1}, and w ∈ [
(
n
s

)
·2(1−a/32)s ·2−c′n], where c′ > 0 is

a small enough constant depending on a and b. Essentially, it treats (i, type, w) as the compression
of a bad “special pair” (S, ρ) (where S is a good size-s subset and ρ is an assignment over D(S)) and
decompresses it. We start by checking that w(Ci) ≥ an/8; if this is not the case then f outputs ⊥.
Next:

– If type = 0, then this means |Vars(Ci) ∩ S| < as/16. Recall that if |S| = s is chosen uniformly
at random, then the probability that |Vars(Ci) ∩ S| < as/16 ≤ 0.5 · |Ci|s/n should be at
most 2−c′n for some small enough constant c′ > 0. Hence, (S, ρ) can be compressed into
(log

(
n
s

)
− c′n) + |D(S)| bits. We treat w as this compression and recover (S, ρ) from w.

– If type = 1, then |Vars(Ci)∩S| ≥ as/16 but Ci is not killed under ρ. In this case, the values of ρ
over Vars(Ci)∩D(S) can be inferred from Ci. Since |Vars(Ci)∩D(S)| ≥ as/16−as/32 = as/32,
this provides us a way to compress (S, ρ) into log

(
n
s

)
+(|D(S)|−as/32) ≤ log

(
n
s

)
+ |D(S)|−c′n

bits. Again, we treat w as this compression and recover (S, ρ) from w.

Now that we obtained (S, ρ), we can find an index j ∈ [Ngood] such that S = Sj (using non-
uniformity). If such j does not exist, then f outputs ⊥; otherwise f outputs (j, ρ).

Hence we have f : [L] × {0, 1} × [
(
n
s

)
· 2(1−a/32)s · 2−c′n] → [Ngood] × {0, 1}(1−a/32)s. (If f outputs

⊥ then we can assume that it outputs a default value, say (0, 0(1−a/32)s), instead.) Recall that
L = (1 + ε)n and Ngood =

(
n
s

)
/2, which means if ε > 0 is small enough then

2L ·
(
n
s

)
· 2(1−a/32)s · 2−c′n

Ngood · 2(1−a/32)s
≤ 2−Ω(n) ≪ 1, (8)

hence f is indeed shrinking. Given an input (i, type, w), its f value can be computed by a non-
uniform decision tree of block-depth 1.

(Ij,ρ) Given j ∈ [Ngood] and ρ ∈ {0, 1}(1−a/32)s, we compute a PLS instance Ij,ρ as follows. Abusing
notation, we also use ρ to denote the restriction that equals to ρ on Dj and does not restrict any
variable outside Dj . Let Π|ρ denote the restriction of Π over ρ, then each clause of Π|ρ can be
computed in block-depth 1 from Π. Then we apply the reduction Ri,ρ on Π|ρ to obtain the PLS
instance Ij,ρ.

(g) Let j ∈ [Ngood] and ρ ∈ {0, 1}(1−a/32)s. Given a valid solution o of Ij,ρ, we can compute an index
i ∈ [L] from o such that the i-th step in Π|ρ is an illegal derivation. As in the definition of f , we
can (assume w(Ci) ≥ an/8 and) compress (j, ρ) as (i, type, w); then we set g(j,ρ),o = (i, type, w). If
f(i, type, w) ̸= (j, ρ), then it must be the case that the i-th step in Π is already incorrect (instead
of the case that w(Ci) is too large).

The above reduction is correct as long as H has properties P (a) and Q(a, b), and its block-depth is 2.
It remains to show that our reduction is correct with probability 1. In fact, for each N ≥ 1, the

probability that for every n ≥ N , Hn has properties P (a) and Q(a, b) is at least∏
n≥N

(1− n−2) =
N − 1

N
.

It follows that with probability 1 over the family {Fn}n∈N, all but finitely many Hn has properties P (a)
and Q(a, b). In this case, our reduction will be correct on all but finitely many input lengths.
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5.5 Open Problems: What We Failed to Formalize

One interesting problem left open by this work is whether the general size-width trade-offs in [BW01]
can be proved in rwPHP(PLS). Ben-Sasson and Wigderson showed that for any unsatisfiable k-CNF F ,
if F requires resolution width w to refute, then F also requires resolution size 2Ω(w−k)2/n to refute. This
naturally leads to the following conjecture:

Conjecture 5.14 (Informal). Let F be an unsatisfiable k-CNF with resolution width > wF and let
sF := 2Ω(wF−k)2/n. Let P denote the problem Refuter(w(F ⊢Res ⊥) ≤ wF ), then there is an efficient
decision-tree reduction from Refuter(s(F ⊢Res ⊥) ≤ sF ) to rwPHP(P). In particular, in the black-
box setting, there is always an efficient decision tree reduction from Refuter(s(F ⊢Res ⊥) ≤ sF ) to
rwPHP(PLS).

Roughly speaking, one obstacle against proving Conjecture 5.14 is that the averaging argument used
in the proof of [BW01, Theorem 3.5] seems to rely on “APC2-style” [Jeř09] approximate counting: one
needs to estimate the number of “fat” clauses up to an (1 + ε)-multiplicative factor. Therefore, we have
been unable to formalize the proof of [BW01, Theorem 3.5] in T1

2+dwPHP(PV) where only “APC1-style”
[Jeř07a] approximate counting is available.

We also leave open the complexity of proving resolution lower bounds by combining monotone cir-
cuit lower bounds [Raz85,AB87,Hak95] with feasible interpolation [Raz95b,Kra97,Pud97]. To formalize
Razborov’s approximation method [Raz85], it seems that we need to iteratively define exponentially many
set families (one for each node in the resolution proof) and apply the sunflower lemma [ER60,ALWZ21] to
each of them. It is unclear to us how to formalize such arguments in T1

2+dwPHP(PV). (See also [GGKS20]
who used lifting techniques to prove monotone circuit lower bounds and resolution lower bounds.)

We showed in Corollary 5.2 that the refuter problem for every true resolution width lower bound is
PLS-complete under non-uniform reductions. It would be very interesting to see whether the size lower
bound analog holds or not. We propose the following conjecture (which is stronger than the non-uniform
version of Conjecture 5.14):

Conjecture 5.15 (Informal). Let F be an unsatisfiable CNF that requires resolution size ≥ sF to refute.
Then the problem Refuter(s(F ⊢Res ⊥) < sF ) is rwPHP(PLS)-complete under non-uniform decision
tree reductions.

(Note that the average-case version of Conjecture 5.15, where F is a random k-CNF and sF = 2Ω(n),
is already proved in Section 5.3, by formalizing the resolution size lower bounds of [CS88].)

We end this subsection by mentioning a subtle technical issue in our proofs. There are two natural
properties in the completeness of resolution (i.e., resolution can prove every true statement within size
2n): the proof does not require weakening, and it avoids producing duplicate clauses. However, in our
current PLS-hardness of refuting resolution width lower bounds and rwPHP(PLS)-hardness of refuting
resolution size lower bounds, the resolution proofs produced in our reduction rely on both weakening rules
and duplicated clauses. This raises an open question: What is the complexity of the corresponding refuter
problems if the proofs are restricted from using either weakening rules or duplicate clauses?

6 Applications

6.1 Proof Complexity of Proof Complexity Lower Bounds

In this subsection, we translate our TFNP upper bounds for the refuter problems into proof complexity
upper bounds for proof complexity lower bounds, showing that resolution lower bounds can actually be
proved in weak proof systems! In particular, we show that low-width resolution (itself) can prove lower
bounds on resolution width (Theorem 6.1), while low-width random resolution (as defined in [BKT14,
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PT19]) can prove resolution size lower bounds (Theorem 6.3).29 This stands in stark contrast to the
results proven in [AM20,Gar19,dRGN+21] that resolution cannot prove size lower bounds against itself.

Formalization of proof complexity lower bounds as CNFs. Suppose a family of formulas F =
{Fn} does not have a width wF resolution refutation (i.e., w(F ⊢Res ⊥) > wF ). Then we can transform
the refuter problem Refuter(w(F ⊢Res ⊥) ≤ wF ) into a family of unsatisfiable CNFs Fw

wLB using via
false clause search problem (Equation 2). That is, an unsatisfiable CNF Fw

wLB in the family Fw
wLB is defined

as follows:

• The input of Fw
wLB is a purported length-L resolution refutation for Fn represented as a list of nodes

C0, C1, . . . , CL−1 and each node Ci can be encoded in O(wF log n) bits.

• Each potential solution sol of the refuter problem can be verified by a decision tree of block-depth
3, hence they can be turned into a CNF Csol of width O(wF log n). Fw

wLB is simply the conjunction
of these CNFs.

We can similarly transform a resolution size lower bound s(F ⊢Res ⊥) > L into a family of unsatisfiable
CNFs FL

sLB via the refuter problem Refuter(s(F ⊢Res ⊥) ≤ L). The only difference is that each node
consists of an (unbounded-width) clause and thus is encoded in O(n+ logL) bits.

It is easily seen that Fw
wLB are CNFs of width O(wF log n) and FL

sLB are CNFs of width O(n+ logL).
(When L = 2n

Ω(1) , these width parameters are polylog(L) and can be thought of as “efficient”.)

Remark 8 (Comparison with previous formalizations). Similar formalizations of resolution lower bound state-
ments have also appeared in [AM20,Gar19, dRGN+21]. The biggest difference between these formalizations
is that in [dRGN+21], the predecessors of each node are represented in binary and as O(logN) bits; while
in [AM20, Gar19], the predecessors are represented in unary and we have tables L[i, j] and R[i, j] denoting
whether node j is a predecessor of node i. Note that in the unary representation, it requires an axiom of width
L to express that every node u has at least one predecessor L[u] and at least one predecessor R[u]. Thus it is
impossible to prove resolution width lower bounds in resolution width O(w logN)≪ L. Therefore, we choose
to use the binary formalization as in [dRGN+21].

The formalization in [dRGN+21] allows disabled nodes in the resolution proof. Our proof complexity upper
bounds hold regardless of whether such nodes are allowed in the formalization.

Low-width resolution can prove resolution width lower bounds. First, we show that:

Theorem 6.1. For every family of unsatisfiable CNFs F , if w(F ⊢Res ⊥) > wF , then w(Fw
wLB ⊢Res ⊥) ≤

O(wF logN).

Theorem 6.1 follows from the proof of Theorem 5.1 and Theorem 2.4: since the refuter problem
corresponding to resolution width lower bounds can be solved in PLS and the totality of PLS can be
proved in low resolution width, it follows that resolution width lower bounds themselves can be proved
in low resolution width. For the sake of intuition, we also present an equivalent but more direct proof
using Prover-Delayer games [Pud00]. The necessary backgrounds on Prover-Delayer games are presented
in Section C.1.

Proof. It suffices to construct a Prover strategy with memory size O(wF logN) in the Prover-Delayer
game for Fw

wLB. The Prover starts by querying the last node in the purported resolution proof, which
should contain the empty clause ⊥. The Prover maintains the invariant that she is always at some (not
disabled) clause Ci such that w(F ⊢ Ci) > wF , i.e., it requires resolution width > wF to derive Ci from
the axioms. Each time the Prover is at some clause Ci:

29More precisely, we use Theorem 5.1 to show that low-width resolution can prove every resolution width lower bound
that is true, and use Theorem 5.13 to show that low-width random resolution can prove most resolution size lower bounds.
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• Suppose Ci is resolved from the clauses Cj , Ck. Then the Prover queries Cj and Ck; if j ≥ i, k ≥ i,
or the derivation from (Cj , Ck) to Ci is invalid, then she wins the game. Otherwise, since the widths
of Cj and Ck are at most wF (recall that this is guaranteed syntactically by only allocating wF

variables to each clause), one of Cj , Ck must require > wF width to derive. Suppose it is Cj ; that
is, w(F ⊢ Cj) > wF . Then the Prover forgets Ci and Ck and only remembers Cj .

• Suppose Ci is a weakening of a clause Cj . The Prover queries Cj ; if j ≥ i or the weakening from
Cj to Ci is invalid, then she wins the game. Otherwise, it must be the case that w(F ⊢ Cj) > wF .
Then the Prover forgets Ci and only remembers Cj .

Since the index i is always decreasing, the Prover is guaranteed to win the game. The Prover only needs
to memorize O(1) resolution nodes, i.e., O(wF logN) bits.

Low-width random resolution can prove resolution size lower bounds. We first define the
random resolution system (denoted as rRes):

Definition 6.2 ([BKT14,PT19]). An ε-random resolution refutation of an unsatisfiable formula F is a
distribution D supported on pairs (Π, B), such that

1. each B is a CNF formula over the variables of F ,

2. Π is a resolution refutation of F ∧B, and

3. for any assignment x ∈ {0, 1}n, Pr(Π,B)∼D[B(x) = 1] ≥ 1− ε.

The size s(F ⊢rRes ⊥), and width w(F ⊢rRes ⊥) of a random resolution refutation D for F are the maximum
size and width of a proof Π in the support of D, respectively.

We remark that random resolution is not a standard (i.e., Cook–Reckhow) proof system since the
distribution D might potentially require exponentially many bits to describe and it is also unclear how to
verify Item 3 above. (In fact, random resolution cannot be simulated by a Cook–Reckhow proof system
unless P = NP [PT19, Proposition 3.3].) On the other hand, strong lower bounds on both width and size
are known for random resolution [PT19], suggesting that it may be classified as a “weak” proof system.

Theorem 6.3. For every k ≥ 3 and c ≥ 0.7 ·2k, there exists some ε > 0 such that the following holds. Let
F be a random k-CNF formula chosen from the distribution F(k, n, cn), L := (1 + ε)n, and FL

sLB(F ) be
the CNF formula encoding the lower bound that F requires size-L resolution refutation. With probability
tending to 1 (when n→∞) over F , FL

sLB(F ) admits a poly(n)-width γ-random resolution refutation with
γ := 2−Ω(n).

Similarly, Theorem 6.3 is a corollary of Theorem 5.13: if a search problem reduces to rwPHP(PLS),
then it also randomly reduces to PLS, and such a random reduction can be translated into a random
resolution refutation. Nevertheless, for the sake of intuition, we present an (equivalent) proof that directly
constructs the random resolution refutation (Π, B).

Proof Sketch. We assume familiarity with the proofs in Section 5.4. We use the parameters a, b from
[CS88, Lemma 4], and denote s := ⌊bn⌋. We assume that the properties P (a) and Q(a, b) holds for F ; by
[CS88, Lemma 4], this is true with high probability over F ← F(k, n, cn).

Recall that the variables in FL
sLB(F ) encode a length-L resolution refutation C0, . . . , CL−1 of F , where

L := (1 + ε)n. Let S0, S1, . . . , SNgood−1 denote the first Ngood :=
(
n
s

)
/2 good size-s subsets. For each

j ∈ [Ngood], also let Dj denote any subset of Sj of size ≥ (1 − a/32)s such that every family of at most
an edges has an SDR disjoint from Dj . To sample a pair (Π, B):

1. We first pick a random j ∈ [Ngood] and then pick a string ρ ← {0, 1}Dj . We also treat ρ as a
restriction that fixes every variable in Dj and leaves everything else unchanged.
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2. For each i ∈ [L], let Bi be the decision tree verifying that either w(Ci) < an/8 or ρ kills Ci. Note
that Bi only depends on the clause Ci, which can be encoded in poly(n) bits. Let B :=

∧
i∈[L]Bi,

then B is a poly(n)-width CNF.

Moreover, following the same calculation as Equation 8, we can show that for any assignment x to
the variables in FL

sLB(F ) (i.e., x encodes a purported resolution refutation of F ), the probability
over B (i.e., over j and ρ) that B(x) = 1 is at least 1− 2−Ω(n).

3. It remains to argue that there always exists a poly(n)-width resolution refutation Π for FL
sLB(F )∧B.

We can use a similar Prover’s strategy as described in Theorem 6.1. Recall that for any clause C,
µ(C) denotes the minimum number of clauses from F that logically implies C under ρ, and that
µ(⊥) > an/2. The Prover starts from CL−1 = ⊥ and maintains the invariant that she is always at
some clause Ci where µ(Ci) > an/2. In addition, when the Prover is at some clause Ci, she also
ensures that Bi is satisfied. At some stage, she will encounter some Ci that is resolved from Cj , Ck,
such that µ(Ci) > an/2 and µ(Cj), µ(Ck) < an/2. But due to the width lower bound in Section 5.4,
this will imply that either the i-th derivation is invalid, or that Bi is violated.

It is easy to check that this Prover strategy only requires poly(n) memory.

6.2 Complexity of Black-Box TFNP Separations

In this subsection, we introduce a new type of refuter problems — TFNPdt refuter — which corresponds
to the “complexity” of proving black-box TFNPdt separations. We present the definition and several basic
properties of them in Section 6.2.1. In Section 6.2.2, we relate the TFNPdt refuter to the resolution width
refuter (Lemma 6.10). Combining this with our results on resolution width refuter for EPHP and Tseitin,
we characterize the “complexity” of separating PPA and PPP from PLS in the black-box setting by the
class PLS itself.

Notations. For two TFNPdt problems P,Q, we write P ≤m Q if there is a many-one reduction from P
to Q; if the reduction is also uniform, we write P ≤U

m Q.

6.2.1 Black-Box TFNP Refuters and its Properties

We start by providing a formal definition of the TFNPdt refuter problems. Roughly speaking, in the
problem Refuterd,M (P → Q), we are given a shallow decision tree that claims to reduce P to Q, and
our goal is to find a witness that this shallow decision tree is incorrect.

Problem Refuterd,M (P → Q)
Parameters: Two TFNPdt problems P = {PN},Q = {QN} and two functions d := d(N),M :=

M(N) such that there is no depth-d(N) decision tree reduction from PN to QM(N) for any N .
Input: A purported depth-d decision tree reduction (fi, go)i∈M,o∈OQ

from PN = {0, 1}N × OP to
QM = {0, 1}M ×OQ.

Output: A pair (ρ, o∗), where

• ρ ∈ {0, 1, ∗}N is a partial assignment encoded by specifying the locations and the values of all
non-∗ bits;

• o∗ ∈ OQ is a solution of the problem QM .

The pair (ρ, o∗) satisfy that for any input x ∈ {0, 1}N consistent with ρ,

1. (f(x), o∗) ∈ Q and (x, go∗(x)) /∈ P;
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2. only bits specified in ρ are ever queried when calculating go∗(x) and verifying (f(x), o∗) ∈ Q
and (x, go∗(x)) /∈ P.

In this section, we only consider refuting low-depth many-one decision tree reduction. Thus, we always
assume the functions d(N) and logM(N) are poly-logarithmic in N when we write “for any d,M ”. We
also assume M(N) ≥ N , so we will not consider reductions that are too weak. Note that it is necessary
to have o∗ as part of the solution for this problem to be in TFNPdt; otherwise, it might take too many
queries to the input (reduction) to find o∗, which is used to refute the reduction later.

We call a TFNPdt problem R syntactical if all the decision trees (To) for verifying the solution can be
replaced by a single polynomial-time oracle Turing machine.30 Since we mostly care about the black-box
separations between syntactical TFNP subclasses, we assume all the TFNPdt problems in this section are
syntactical.

We now present several basic properties regarding the TFNPdt separation refuter. First, a weaker
reduction, which has a lower depth or smaller instance size, is easier to refute. The proof trivially follows
from the definition (where item 2 needs the problem Q to be paddable).

Lemma 6.4. 1. If d1 ≤ d2, then Refuterd1,M (P → Q) ≤U
m Refuterd2,M (P → Q).

2. If M1 ≤M2, then Refuterd,M1(P → Q) ≤U
m Refuterd,M2(P → Q).

Even in the easiest parameter settings, i.e., d = 0,M(N) = N , the refuter problem Refuter0,N (P →
Q) is least as hard as Q itself, because a valid solution of Q is always required to witness a mistake given
by the input reduction.

Lemma 6.5. Q ≤U
m Refuter0,N (P → Q).

Proof. Let y ∈ {0, 1}N be an instance of problem QN ∈ {0, 1}N × OQ and let oP be an arbitrary fixed
solution of problem PN . We construct a trivial depth-0 reduction (fi, go)i∈N,o∈OQ

, where

fi(x) = yi,∀i ∈ N ; go(x) = oP , ∀o ∈ OQ.

Consider such reduction (fi, go) as an instance of Refuter0,N (P → Q), and let (ρ, o∗) be any solution
of it. By definition, o∗ is a valid solution of instance y. Moreover, our reduction is uniform, though (fi, go)
is not.

Finally, we present two useful lemmas, which state that it is easier to refute a reduction when the
difficulty gap between these two problems becomes larger.

Lemma 6.6. If P ≤U
m S, and d1(N), logM1(N) = polylog(N), then

Refuterd1,M1(S → Q) ≤U
m Refuterd2,M2(P → Q),

for some d2(N), logM2(N) = polylog(N).

Proof. Given a depth-d1 reduction (fi, go)i∈M1,o∈OQ
from SN to QM1 , we compose it with any (uniform)

low-depth reduction (hi, lo)i∈N,o∈OS
from PN ′ to SN . Now we get a depth-d′ reduction (f ′i , g

′
o) from PN ′

to QM1 with
f ′i(x) = fi(h(x)), ∀i ∈ [M1]; g′o(x) = ls(x), s := go(h(x)),∀o ∈ OQ.

Let d2(N ′) := d′,M2(N
′) :=M1, and it is easy to verify that d2(N ′), logM2(N

′) = polylog(N ′).
Consider a pair (ρP , o∗) that refutes (f ′i , g

′
o). Let x be any input of PN ′ that is consistent with ρP and

define y := h(x). We show how to construct a partial assignment ρS consistent with y such that (ρS , o
∗)

refutes (fi, go). We start with setting ρS to all ∗ strings, and then execute the process of
30A syntactical TFNPdt problem is essentially a type-2 TFNP (TFNP2) problem, see [BCE+98].
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S1: calculating go∗(y); S2: verifying (f(y), o∗) ∈ Q; S3: verifying (y, go∗(y)) /∈ S.

During the above process, if yi is queried and yi has not been specified by ρS , we will execute hi(x)
to calculate yi and then store its value in ρS .

For the correctness of our construction, recall that only bits specified in ρP are ever queried when

P1: calculating g′o∗(x); P2: verifying (f ′(x), o∗) ∈ Q; P3: verifying (x, g′o∗(x)) /∈ P.

By our construction, process S1, S2 are sub-procedures of P1, P2, and thus they will only query
locations of x that are already specified in ρP . However, process S3 might query some locations that are
not specified in ρP . In this case, it is safe to return arbitrary values for those queries. This is because the
correctness of reduction (hi, lo) guarantees that there must be (y, go∗(y)) /∈ S.

Finally, note that our whole reduction, including the construction of (f ′i , g
′
o) and the execution of

process S1, S2, S3, can be done in a uniform manner.

With a similar argument, we can also formalize the other direction.

Lemma 6.7. If S ≤U
m Q and let d1(N), logM1(N) = polylog(N), then

Refuterd1,M1(P → S) ≤U
m Refuterd2,M2(P → Q),

for some d2(N), logM2(N) = polylog(N).

We often consider all low-depth reductions between two TFNPdt classes with no valid low-depth re-
ductions possible. So, it is convenient to introduce a new kind of TFNPdt subclasses for this type of
problem.

Definition 6.8. For two TFNPdt classes A,B (A ⊈ B) with P,Q being any complete problems of
A and B respectively, Ref(A ⊆ B) is defined as the class of TFNPdt problems that are reducible to
Refuterd,M (P → Q) for some d(N), logM(N) = polylog(N).

This notation is well-defined because Lemma 6.6 and Lemma 6.7 guarantee that the choice of the
complete problems does not matter. We also have the following corollary of Lemma 6.4 and Lemma 6.5.

Corollary 6.9. For any two TFNPdt classes A,B such that A ⊈ B, B ⊆ Ref(A ⊆ B).

6.2.2 Refuter for Separating from PLS

Now we study the complexity of refuting separations between PLS and other classes in TFNPdt, in
particular the separations

PPAdt ⊈ PLSdt and PPPdt ⊈ PLSdt.

Our main tool is the equivalence between resolution and PLS via the false clause search problem (cf. [dRGR22]):
recall that Search(F) ∈ PLS if and only if F have a polylog(N)-width resolution refutation (Theorem 2.4).

Studying this equivalence from a computational perspective, we related the TFNPdt refuter for PLS
with the resolution width refuter.

Lemma 6.10. For any family of unsatisfiable CNF F that has no polylog(N)-width resolution refutation,

Refuterd,M (Search(F)→ Iter) ≤m Refuter(w(F ⊢Res ⊥) < w0)

for some w0 = polylog(N) that may depend on d,M .
Furthermore, this reduction is uniform when F is a uniform family of unsatisfiable CNFs.
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The proof of Lemma 6.10 follows from the standard procedure that transforms a low-depth decision
tree reduction to PLS (i.e., a PLS formulation) to a low-width resolution proof, using the Prover-Delayer
game [Pud00]. This proof is rather straightforward, but many details have to be taken care of to make
sure that the reduction is uniform. To be self-contained, we formally present the transformation from a
PLS formulation to a resolution proof in Section C.1;31 we then prove Lemma 6.10 in Section C.2.

As an application, we combine Lemma 6.10 with our results on resolution width refuter for EPHP
and Tseitin formulas. Note that Search(EPHP) and Search(Tseitin) are in PPP and PPA respectively.
Therefore, we can reduce the TFNPdt refuter for PPPdt ⊈ PLSdt and PPAdt ⊈ PLSdt to the resolution
width refuters for EPHP and Tseitin respectively.

Theorem 6.11. Let P,Q be any complete problems for PPP and PPA respectively, then for any d,M ,
both Refuterd,M (P → Iter) and Refuterd,M (Q → Iter) are PLS-complete via uniform reductions.

In particular, Ref(PPP ⊆ PLS) = Ref(PPA ⊆ PLS) = PLS.

Equivalently, Theorem 6.11 says that local search arguments are both necessary and sufficient for
separating PPP and PPA from PLS in the black-box setting.

Proof. Note that Lemma 6.5 already gives the PLS-hardness result, we will focus on showing that for any
d,M , Refuterd,M (P → Iter) and Refuterd,M (Q → Iter) are in PLS via uniform reductions.

We start with PPP versus PLS. Note that Search(EPHP) is in PPP, thus, by Lemma 6.6, we have

Refuterd,M (P → Iter) ≤U
m Refuterd′,M ′(Search(EPHP)→ Iter),

where d′, logM ′ are also poly-logarithmic in N . Combining with Lemma 6.10, there is

Refuterd,M (P → Iter) ≤U
m Refuter(w(EPHP ⊢Res ⊥) < w0)

for some w0 = polylog(N) that may depend on d,M .
Recall that Theorem 3.3 shows that Refuter(w(EPHP ⊢Res ⊥) < w0) is in PLS via a uniform

reduction when w0 = n/3. The same reduction to Iter would still work when w0 = polylog(N), and
the only issue is to make sure that the cri(C) function could be calculated “efficiently” in this different
parameter regime. Note that when w0 = poly(n) (and N = 2Ω(n))), a poly(n) time procedure (Lemma 3.4)
would be considered as time efficient; however, when w0 = polylog(n) and N being quasi-polynomial in
n, only a polylog(n) running time is acceptable. Since |C| ≤ w0 = polylog(n), it suffices to prove that
the following claim.

Claim 6.12. cri(C) can be calculated in polylog(n) time when |C| = polylog(n).

Proof. We modify the algorithm described in the proof of Lemma 3.4. First, notice that we do not have
to enumerate all possible ℓ ∈ [n+1], because only polylog(n) pigeons are involved in the clause C, where
we say a pigeon ℓ is involved in C if a literal related to ℓ appears in C. Any pigeons that are not involved
in C would be equivalent, thus, we only need to consider any one of them.

For a fixed ℓ, deciding whether an ℓ-critical assignment exists for C is reduced to the following graph
problem: Given a complete bipartite graph with n pigeons on the left and n holes on the right, polylog(n)
sets of edges are then deleted, determine whether a perfect matching still exists in the end. Each deleted
set can be described by a triple (i, j1, j2), representing the set {(i, j) : j1 ≤ j ≤ j2}.

It is not difficult to design an polylog(n) time algorithm for this problem by exploiting the sparsity:

1. We first ignore all pigeons with full degree n, because they could always be matched in the end.

2. Suppose we have t1 = polylog(n) pigeons left after the first step. We then ignore all pigeons with
the degree at least t+ 1 for the same reason.

31This transformation is a well-known folklore among the Proof Complexity and TFNP community. However, to the best
of the authors’ knowledge, it has not yet been formally written down in any previous literature.
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3. We have t2 = polylog(n) pigeons left now, and there are at most t1 · t2 = polylog(n) edges connected
to those pigeons. So, we can run the standard maximum matching algorithm on the subgraph of
the remaining pigeons. The original graph has a perfect matching if and only if all t2 pigeons could
be matched. ⋄

A similar argument works for PPA. We use the fact that Search(Tseitin(G, τ)) is in PPA when the
graph G has a constant degree. We will fix a family of strongly explicit expander graph G and an odd-
weighted function τ , rather than giving them as input as we did in Section 5.3. For example, we can
take G as a 2D-grid with a boundary being wrapping around, and τ(v) = 1 only if v is some designated
vertex (say (1, 1)). Then, we claim that the cri(C) function (defined differently for the Tseitin formula in
Theorem 5.9) can also be calculated in polylog(n) time when |C| = polylog(n) by exploiting the sparsity
of C. We omit the proof this claim here. Finally, using the same proof of Theorem 5.9, we show that
Refuter(w(Tseitin ⊢Res ⊥) < w0 is in PLS via a uniform reduction when w0 = polylog(N), which
concludes the proof.
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A Amplification for rwPHP(P)
In this section, we prove Theorem 2.11, showing that the relationship between N and M does not

influence the complexity of rwPHP(P) (provided that M and N are not too close to each other), thus our
choice of N = 2M is indeed without loss of generality. This result requires P to be closed under Turing
reductions [BJ12], as defined below:

Definition A.1 (Turing Reductions in TFNPdt). Let P,Q be problems in TFNPdt. We say there is a
time-t (uniform) Turing reduction from Q to P if there is a time-t oracle Turing machine Rx,P that solves
Q in the following manner. Let x ∈ {0, 1}N be the input to Q. Besides work tapes and a query tape
for access to x, R has another query tapes for access to a P oracle. Each query q to P is described as
(1t

′
, L,Mx

q ), where L is the length of the query input, and Mx
q is a time-t′ Turing machine with query

access to x. The input to P is defined as the L-bit string whose i-th bit is Mx
q (i). The answer to this

query would be any valid solution for this L-bit string as an input to P. Finally, for every x ∈ {0, 1}N
and every valid computational history of R (i.e., every query to P is answered correctly), the output of
R should be a valid output of x for Q.

Assumption A.2. P is closed under Turing reductions. More precisely, for some function γ(t) (think
of γ(t) ≤ poly(t)), if a TFNPdt problem Q admits a time-t Turing reduction to P, then Q also admits a
uniform depth-γ(t) decision tree reduction to P.

Recall that rPHP(P)M→N denotes the rwPHP(P) problem where the purported “surjection” is f :
[M ]→ [N ].

Fact A.3. Let M < N1 ≤ N2, then there is a depth-1 decision tree reduction from rPHP(P)M→N2 to
rPHP(P)M→N1 .

Theorem A.4 (Formal version of Theorem 2.11). Let N ≥ 2M and ε > 0 be parameters, and let
d := γ(O(ε−1)) · γ(O(log N

M )). If Assumption A.2 holds for P, then there is a depth-d decision tree
reduction from rPHP(P)M→(1+ε)M to rPHP(P)M→N .

We prove Theorem A.4 in two steps: in Lemma A.5 we reduce rwPHP with stretch (1 + ε) (i.e.,
rPHP(P)M→(1+ε)M ) to rwPHP with stretch 2, and in Lemma A.6 we reduce rwPHP with stretch 2 to
rwPHP with arbitrarily large stretch. Theorem A.4 follows easily from Lemma A.5 and A.6.

Lemma A.5. Let M ≥ 1, ε > 0 be parameters. Suppose that Assumption A.2 holds for P. Then there is
a depth-γ(O(ε−1)) decision tree reduction from rPHP(P)M→⌊(1+ε)M⌋ to rPHP(P)M→2M .

Proof. Without loss of generality, assume that both ε ·M and d := 1/ε are integers. Let (f, {Iy}, {gy}) be
an instance of rPHP(P)M→(1+ε)M and we want to reduce it to an instance (f ′, {I ′y}, {g′y}) of rPHP(P)M→2M .
Recall that:

• f : [M ]→ [(1 + ε)M ] is the purported “surjection”.

• For every y ∈ [(1 + ε)M ], Iy is a P instance where every possible answer ans of Iy is labelled with
an integer gy(ans) ∈ [M ].

• The goal is to find some y ∈ [(1 + ε)M ] and a solution ans of Iy such that f(gy(ans)) ̸= y.

For every k ∈ [d] (recall d = 1/ε), define fk : [M + kεM ] → [M + (k + 1)εM ] as the following
function: on input x ∈ [M + kεM ], if x < M , then fk(x) := f(x); otherwise fk(x) := x + εM . The
function f ′ in our reduction is simply f ′ := fd−1 ◦fd−2 ◦ · · · ◦f0. Intuitively, if (a weak theory thinks that)
f : [M ]→ [(1 + ε)M ] is a surjection, then (it also thinks that) f ′ : [M ]→ [2M ] is a surjection.

Next we define the instances {I ′y} and the functions {g′y}. Roughly speaking, the input instance {Iy}
and {gy} defines a P-computable multi-function (also denoted as) g : [(1 + ε)M ] → [M ], which is a
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purported inverse of f . By padding g, we obtain P-computable multi-functions gk : [M + (k + 1)εM ]→
[M + kεM ] for each k ∈ [d], and each gk is a purported inverse of fk. We compose these multi-functions
gk to obtain a single multi-function g : [2M ] → [M ] that can be computed by a Turing reduction to P.
Details follow.

Consider a Turing machine with oracle access to Iy and P that on input y ∈ [2M ], operates as follows.
Let yd := y. For each k from d− 1 downto 0:

• if yk+1 ≥ (1 + ε)M , then we define yk := yk+1 − εM ;

• otherwise we query P to obtain a valid answer ansk for Iyk+1
and let yk := g(ansk).

Finally, the machine outputs y0 (as a purported preimage of y under f ′).
The computational history of this Turing machine defines a total search problem Lhis as follows. The

input to Lhis consists of (f, {Iy}, {gy}), as well as some y ∈ [2M ]. The output consists of a sequence
(ans0, ans1, . . . , ansd−1). Denote yd = y and

yk =

{
yk+1 − εM if yk+1 ≥ (1 + ε)M,

gyk+1
(ansk) otherwise

for each k ∈ [d]. We accept the output if for every k such that yk+1 < (1 + ε)M , ansk is a valid solution
for Iyk+1

; otherwise we reject the output.
Clearly, the above Turing machine itself is a time-O(d) Turing reduction from Lhis to P. Since P is

closed under Turing reductions, there is also a depth-γ(O(d)) mapping reduction from Lhis to P. That
is, there is a depth-γ(O(d)) decision tree that on input (f, {Iy}, {gy}) as well as y ∈ [2M ], outputs a P
instance (that we call I ′y), and a mapping that given any valid answer ans of I ′y, finds a valid sequence
(ans0, ans1, . . . , ansd−1). We compute each {yk}k∈[d+1] as above and define g′y(ans) := y0.

This finishes the description of our reduction from rPHP(P)M→(1+ε)M to rPHP(P)M→2M ; it is easy
to see that it has depth γ(O(ε−1)). Now, given a valid solution (y′, ans′) for (f ′, {I ′y}, {g′y}), we can
compute a valid solution (y, ans) for (f, {Iy}, {gy}) as follows. First, since ans′ is a valid solution for
I ′y′ , we can unpack ans′ to obtain a sequence (ans0, ans1, . . . , ansd−1). Then we define each {yk}k∈[d+1]

as above (starting with yd = y′). Also, for every k ∈ [d + 1], define f≥k := fd−1 ◦ · · · ◦ fk, then f≥k is
a purported surjection from [M + kεM ] to [2M ]. (As special cases, f≥d : [2M ] → [2M ] is the identity
function and f≥0 = f ′.) Since (y′, ans′) is a valid solution, we know that f ′(g′y′(ans

′)) ̸= y′, which
translates to f≥0(y0) ̸= yd. Since f≥d(yd) = yd, there is some integer k ∈ [d] such that f≥k(yk) ̸= yd but
f≥k+1(yk+1) = yd. We argue that (yk+1, ansk) is a valid solution for (f, {Iy}, {gy}):

• First, it must be the case that yk+1 < (1 + ε)M . If yk+1 ≥ (1 + ε)M , then yk = yk+1 − εM ≥ M
and thus fk(yk) = yk+1. It follows that

yd ̸= f≥k(yk) = f≥k+1(fk(yk)) = f≥k+1(yk+1) = yd, (9)

a contradiction.

• Since (ans0, ans1, . . . , ansd−1) is a valid sequence, ansk is a valid solution for Iyk+1
.

• Finally, if f(g(ansk)) = f(yk) = yk+1, then (9) holds, which is a contradiction. Therefore, it must be
the case that f(gyk+1

(ansk)) ̸= yk+1 and thus (yk+1, ansk) is a valid solution for (f, {Iy}, {gy}).

Lemma A.6. Let N ≥ 2M . Suppose that Assumption A.2 holds for P. There is a depth-γ(O(log N
M ))

decision tree reduction from rPHP(P)M→2M to rPHP(P)M→N .

Proof. The proof is similar to that of Lemma A.5. Without loss of generality, we may assume that
d := log N

M is an integer (i.e., N/M is a power of 2). Let (f, {Iy}, {gy}) be an instance of rPHP(P)M→2M

and we want to reduce it to an instance (f ′, {I ′y}, {g′y}) of rPHP(P)M→N . Recall that:
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• f : [M ]→ [2M ] is the purported “surjection”.

• For every y ∈ [2M ], Iy is a P instance where every possible answer ans of Iy is labelled with an
integer g(ans) ∈ [M ].

• The goal is to find some y ∈ [2M ] and a solution ans of Iy such that f(gy(ans)) ̸= y.

For every integer k ∈ [d], we put 2k copies of the instance (f, {Iy}, {gy}) in parallel and obtain the
instance (fk, {(Ik)y}, {gk,y} of rPHP(P)(2kM)→(2k+1M). More precisely:

(Definition of fk) Let x ∈ [2kM ] be the input, and let x = x0 ·M +x1 where x0 ∈ [2k] and x1 ∈ [M ].
We define fk(x) := x0 · 2M + f(x1).

(Definition of (Ik)y and gk,y) Let y ∈ [2k+1M ] be the input, and let y = y0 · 2M + y1 where y0 ∈ [2k]

and y1 ∈ [2M ]. We define (Ik)y := Iy1 , and for every ans that is a possible solution of (Ik)y = Iy1 ,
define gk,y(ans) := y0 ·M + gy(ans).

The mapping from (f, {Iy}, {gy}) to (fk, {(Ik)y}, {gk,y}) can be computed by a depth-1 decision tree.
Given a valid solution (y, ans) for (fk, {(Ik)y}, {gk,y}), we write y = y0 · 2M + y1 where y0 ∈ [2k] and
y1 ∈ [2M ]. Since ans is a solution of (Ik)y = Iy1 and

y0 · 2M + y1 = y ̸= fk(gk,y(ans)) = y0 · 2M + f(g(ans)) =⇒ f(gy(ans)) ̸= y1,

it follows that (y1, ans) is also a valid solution for (f, {Iy}, {gy}). Therefore, there is a depth-1 decision
tree reduction from rPHP(P)M→2M to rPHP(P)(2kM)→(2k+1M).

Now, we compose the instances (fk, {(Ik)y}, gk,y) for every k ∈ [d] to obtain the instance (f ′, {I ′y}, {g′y}).
In particular, the “surjection” f ′ : [M ]→ [2dM ] is defined as f ′ := fd−1 ◦ fd−2 ◦ · · · ◦ f0.

To define I ′y and g′y, consider the Turing machine with oracle access to P that, on input y ∈ [2dM ],
operates as follows. Let yd := y. For each k from d − 1 to 0, the machine queries P to obtain a valid
answer ansk for (Ik)yk+1

, and then sets yk := gk,yk+1
(ansk). Finally, the machine outputs the number

y0 ∈ [M ].
We define a total search problem Lhis based on the computational history of this machine. The input

of Lhis consists of M,N, (f, {Iy}, {gy}), as well as some y ∈ [2dM ]; note that given these inputs, one
can define the rPHP(P)(2kM)→(2k+1M) instances (fk, {(Ik)y}, {gk,y}) as before. The output consists of a
sequence (ans0, ans1, . . . , ansd−1). Denoting yd = y and yk = gk,yk+1

(ansk) for every k ∈ [d], accept the
output if for every k ∈ [d], ansk is a valid solution for (Ik)yk+1

; otherwise reject the output.
Clearly, the above Turing machine itself is a time-O(d) Turing reduction from Lhis to P. Since P is

closed under Turing reductions, there is also a depth-γ(O(d)) mapping reduction from Lhis to P. Therefore,
there is a depth-γ(O(d)) decision tree that on input (f, {Iy}, {gy}) as well as y ∈ [2dM ], outputs a P
instance (that we call I ′y), and a mapping that given any valid answer ans of I ′y, finds a valid sequence
(ans0, ans1, . . . , ansd−1). We define g′y(ans) := g0,y(ans0).

This finishes the description of our reduction from rPHP(P)M→2M to rPHP(P)M→N ; it is easy to see
that it has depth γ(O(log N

M )). Now, given a valid solution (y′, ans′) for (f ′, {I ′y}, {g′y}), we can compute
a valid solution (y, ans) for (f, {Iy}, {gy}) as follows. First, since ans′ is a valid solution for I ′y′ , we can
unpack ans′ to obtain a sequence ans0, ans1, . . . , ansd−1. Let yd = y′ and yk = gk,yk+1

(ansk) for every
k from d − 1 downto 0, then f ′(y0) ̸= yd. For every k ∈ {0, 1, . . . , d}, let f≥k := fd−1 ◦ fd−2 ◦ · · · ◦ fk;
notice that f≥k is a purported surjection from [2kM ] to [2dM ]. (Note that as special cases, f≥0 = f ′ and
f≥d : [2dM ] → [2dM ] is the identity function.) Since f≥0(y0) ̸= yd but f≥d(yd) = yd, there is an integer
k ∈ [d] such that f≥k(yk) ̸= yd but f≥(k+1)(yk+1) = yd. We claim that (yk+1, ansk) is a valid solution to
the instance (fk, {(Ik)y}, {gk,y}).

• Since (ans0, ans1, . . . , ansd−1) is a valid solution of Lhis on input (f, {Iy}, {gy}, y′), ansk is a valid
solution for (Ik)yk+1

.
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• Suppose fk(gk,yk+1
(ansk)) = yk+1, then f≥k(yk) = f≥(k+1)(fk(gk,yk+1

(ansk))) = f≥(k+1)(yk+1).
However, the RHS is equal to yd while the LHS is not equal to yd. Therefore it must be the case
that fk(gk,yk+1

(ansk)) ̸= yk+1.

It follows that given a valid solution for (f ′, {I ′y}, {g′y}), one can always find some k and a valid solution
for (fk, {(Ik)y}, {gk,y}). That is, there is a depth-γ(O(log N

M )) reduction from solving rPHP(P)M→N to
solving one of {rPHP(P)(2kM)→(2k+1M)}k∈[d]. Composing this with the aforementioned depth-1 reduction
from rPHP(P)M→2M to rPHP(P)(2kM)→(2k+1M) completes our reduction.

B Comparing Refuter with WrongProof(Res)

We discuss the similarities and differences between the refuter problems and the WrongProof prob-
lem. We first recall the formal definition of WrongProof(Res) [BB17,GP18a]:

Problem WrongProof(Res)
Input: A CNF F with n variables and k clauses; a purported resolution refutation Π for F

represented as C−k, . . . , C−1, C0, C1, . . . , CL−1, where C−k, . . . , C−1 are axioms of F , CL−1 = ⊥, and
L = 2n

Ω(1) ; and a purported satisfying assignment α ∈ {0, 1}n.
Output: A number i ∈ [L] such that Ci is obtained by an invalid resolution derivation, or a number

−k ≤ j ≤ −1 such that α does not satisfy Cj .

At first glance, the Refuter problem looks similar to the WrongProof problem. First, both
problems take as input a purported (but not correct) resolution proof. Second, both are looking for an
invalid derivation as a solution. Moreover, when we consider the resolution proof system (and consider
refuting width lower bounds), both WrongProof and Refuter are PLS-complete.

However, we think that they are fundamentally different. One primary difference is the reason of
totality: When introduced to a (non-promise) TFNP problem, the initial inquiry ought to be: why is the
problem total? The totality of WrongProof(Res) follows from the reflection principle for resolution
[Pud20, BFI23], i.e., it is impossible to derive ⊥ from a satisfiable CNF. The same reasoning holds for
every sound proof system, regardless of their power. However, the totality of Refuter is far from trivial:
They rely on non-trivially proven width or size lower bounds.

Furthermore, for comparison with Refuter, we include a proof that WrongProof(Res) is PLS-
complete (this is a folklore result, see e.g., [BFI23]). The proof is seemingly similar to that of Theorem 4.1
and Theorem 5.1, but there are crucial differences. For example, the reduction from WrongProof(Res)
to PLS is uniform, since the totality of WrongProof(Res) relies on simpler reasoning. In contrast, the
uniform PLS-membership of Refuter(w(F ⊢Res ⊥)) crucially relies on nice properties of the family of
CNFs (e.g., EPHP), and it is possible that for some families, the refuter problem cannot be uniformly
reduced to PLS at all. This demonstrates another difference between WrongProof and Refuter.

Lemma B.1. WrongProof(Res) is in PLS.

Proof. Let (C−k, . . . , C−1, C0, . . . , CL−1) be a purported resolution refutation of a CNF F , and α be a
purported satisfying assignment of F . We will reduce this WrongProof(Res) instance to an instance
S : {−k, . . . , L− 1} → {−k, . . . , L− 1} of reversed Iter.

It would be convenient to think of a clause Ci as “active” if Ci(α) = 0. An invalid derivation in
the resolution refutation corresponds to an edge from an active node to an inactive node. For every
i ∈ {−k, . . . , L− 1}, if Ci(α) = 1 (i.e., Ci is inactive), then we define S(i) = i. Otherwise, if i < 0 (i.e., Ci

is an axiom not satisfied by α), then we define S(i) = 0, making i a solution since S(i) > i. Otherwise,
suppose Ci is derived from Cj (i.e., Ci is a weakening of Cj , or Ci is resolved from Cj and some other
Ck), then we define S(i) = j. If i is a solution for the reversed Iter instance S, then either j < i or j is
inactive (which means S(j) = j), and in either case i is a valid solution for WrongProof(Res).
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Remark 9. The proof above is easy, but one can see that the crucial components are 1) the resolution proof
system is sound, and 2) a resolution proof is a “DAG”-like structure. This proof strategy can potentially be
easily extended to other proof systems with similar properties.

Lemma B.2. WrongProof(Res) is PLS-hard.

Proof. We will reduce any reversed Iter instance to an instance of WrongProof(Res). The construction
below is very similar to the proof of Theorem 4.1. In fact, all clauses and derivations in the construction
of the proof of Theorem 4.1 are sound except for the solutions of the given reversed Iter instance.

Let F be any satisfiable CNF with k clauses C−k, . . . , C−1 and α be any satisfying assignment of F .
Without loss of generality assume there are two clauses C−2 and C−1 that we can apply a valid resolution
step and call the resolved clause D. Let S : [L] → [L] be an instance of reversed Iter where S(L) < L.
We construct a purported resolution refutation Π = (C−k, . . . , C−1, C0, . . . , CL−1) as follows:

• For every i such that S(i) = i, we let Ci := D to be resolved from C−2 and C−1.

• For every i that is a solution for S, let Ci := ⊥ be a weakening from an axiom (say C−k). Note that
this weakening step is invalid and Ci becomes a solution for the WrongProof(Res) instance.

• Finally, for every i such that S(i) < i and S(S(i)) < S(i), let Ci := ⊥ be a weakening of CS(i). Note
that CS(i) is also ⊥, hence this is a valid derivation.

It is easy to see that the invalid derivations in Π correspond exactly to the solutions of S.

C Prover-Delayer Games, PLS, and the Proof of Lemma 6.10

In Section C.1, we provide a self-contained description of the transformation from a PLS formula-
tion to a low-width resolution proof using Prover-Delayer game, along with several properties of this
transformation that are useful when proving Lemma 6.10. We then prove Lemma 6.10 in Section C.2.

C.1 From PLS to Resolution using Prover-Delayer Game

Introduced by Pudlák [Pud00], the Prover-Delayer game provides an elegant characterization of res-
olution width. There are two players in the game, the Prover (she) and the Delayer (he). Fixing an
unsatisfiable CNF formula F , and let x = (x1, . . . , xn) be the variables in F . At first, the Prover’s
memory is empty. Then, in each step, she can either

• query the Delayer for the value of a certain variable, and add that value to her memory;

• forget the value of a certain variable stored in her memory; or

• output a clause of F that is falsified by the partial assignment stored in her memory, which means
she wins the game.

We assume the Delayer also has access to Prover’s memory. If the Prover queries a variable that is
currently in its memory, then the Delayer’s answer must be consistent with the memory; otherwise, his
answer could be arbitrary. Note that if the Prover queries a variable, forgets it, and queries it again, the
Delayer is allowed to answer different values to these two queries of the same variable.

Of course, Prover can always win the game by querying all variables without forgetting any of them.
However, for the connection with resolution width, her goal is to win the game with the minimum memory
size, where the memory size is the maximum number of variables she remembered during the whole
execution of the game. The Delayer is adversarial to Prover’s goal, i.e., wants her to spend as much
memory as possible.

The following theorem shows that the minimum resolution width of an unsatisfiable CNF is charac-
terized by the minimum Prover memory in the corresponding Prover-Delayer game.
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Theorem C.1 ([Pud00]). For any unsatisfiable CNF formula F , there exists a width-w resolution refuta-
tion of F if and only if there is a winning strategy for Prover using memory size w in the Prover-Delayer
game for F .

In this section, we prove the “if” direction in the previous lemma and highlight some nice properties
of the obtained low-width resolution proof that will be helpful when proving Lemma 6.10.

Making Prover’s strategy uniform. Note that both Prover’s and Delayer’s strategies could be quite
non-uniform in the Prover-Delayer game model described above. Here, we twist the model a little bit by
allowing the Prover to explicitly store several state registers in its memory, besides a partial assignment of
variables. These internal state registers are also counted in the memory size of her strategy. Later, in the
proof of Lemma 6.10, it is more convenient to describe a uniform Prover’s strategy with state registers.

From PLS to Prover-Delayer game. A PLS formulation of a search problem Search(Fn) is a decision
tree reduction (fi, go)i,o∈M from Search(Fn) to IterM . Let x = (x1, . . . , xn) be the variables in Fn, then
we have S(v) := fv(x), where S is the successor function in the IterM instance reduced from Search(Fn).

Lemma C.2 (Folklore). Given a PLS formulation (f, g)i,o∈M of depth d for Search(Fn), there exists a
Prover’s strategy of memory size O(d+ logM) for Fn.

Proof. We say the Prover queries a decision tree T if she evaluates T (x), and stores the queried variables
in her memory in each step. Now we describe the Prover’s strategy in what follows.

1. The Prover starts from the node 0 of the IterM instance and queries the decision tree f0. If
f0(x) = 0, then 0 is a valid solution for the IterM instance, hence she can query g0(x) to obtain a
falsified clause in Fn. Otherwise, we say that the Prover is currently at node v = f0 and previously
visited node 0.

2. Assume the Prover is at node v ∈ [M ], and the previous node she visited is u. She queries the
decision tree fv and obtains the next node w = fv(x).

3a. If w ≤ v, then she has found a solution of the IterM instance. In particular, if w < v then the
solution is v; if w = v then the solution is u. Note that all the variables queried by fu, fv, gu are still
in her memory. Therefore, the clause F returned by gv(x) (if w < v) or gu(x) (if w = v) must be
falsified by the variables in her memory.

3b. If w > v, then the Prover forgets all the variables that are queried in fu and not queried in fv.
She then updates the current node as w and the previous node as v, and loops back to Step 2.

The Prover’s strategy will always end, since the index of v increases in every step. The Prover needs
to remember at most 3d variables at any time, and O(d + logM) bits to remember the current state to
execute this strategy.

By further examining the proof of Lemma C.2, we obtain several properties that are useful for the
proof of Lemma 6.10 later.

Observation C.3. In Lemma C.2, the Prover’s strategy can be implemented in a uniform manner if the
PLS formulation (f, g) is given via oracle access.

Lemma C.4. In Lemma C.2, there exists an efficient binary encoding of Prover’s memory, such that:

1. The encoding has bit-length poly(d, logM).

2. It is computationally efficient to transform Prover’s memory into an encoding and vice versa.
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3. The encoding of the Prover’s memory is lexicographically increasing as the Prover’s strategy proceeds.

4. We say an encoding is invalid if it is in the wrong format, or Prover’s internal state registers are
inconsistent with the partial assignment of variables w.r.t. (f, g). There is an efficient uniform
algorithm for checking whether an encoding is invalid given oracle access to (f, g).

Proof. The Prover’s internal state registers should store the index of the current node, the previous node,
and its current location in the decision tree it is querying. This part is lexicographically increasing since
we always have w > v in Step 3b. Our encoding consists of these internal state registers followed by the
partial assignment of variables.

It is trivial to construct such an encoding scheme satisfying conditions 1,2,3, and easy to check the
correctness of its format. To check the validity of an encoding, we can query the (at most 3) decision tree
paths corresponding to the Prover’s internal state registers, and check whether they are consistent with
the partial assignment.

From Prover-Delayer games to resolution proofs

Lemma C.5 ([Pud00]). Given a Prover’s strategy of memory cost w for Fn, there exists a width-w
resolution proof refuting Fn.

Proof. Without loss of generality, we assume the Prover will not query a variable that is already in her
memory.

We simulate the Prover’s strategy. Initially, there is no variable stored in her memory, and it corre-
sponds to the empty clause ⊥ at the end of the resolution proof. We then generate the resolution proof
recursively by maintaining the Prover’s memory and the current node of the resolution proof.

In each step, let ρ be the current partial assignment of variables stored in the Prover’s memory. Define
C(ρ) to be the only clause that is falsified by ρ, using only the variables that are set in ρ. For example, if
ρ is {x1 = 1, x2 = 0}, the C(ρ) = ¬x1 ∨ x2. The procedure will guarantee that C(ρ) is the clause of the
current node in the resolution proof.

The Prover has three possible actions given ρ and its internal state register:

FORGET If the Prover decides to forget xi, then we generate a new node C ′ with clause C(ρ−i),
where ρ−i is the partial assignment by forgetting the value of xi from ρ. We mark that the current
node is derived by a weakening step from node C ′. We then update the Prover’s memory and continue
our process at node C ′ recursively.

QUERY If the Prover queries xi, then we generate two new nodes C0, C1 with clauses C(ρ)∨xi and
C(ρ) ∨ ¬xi respectively. We mark that the current node is derived by a resolution step from node
C0 and C1. We first recursively proceed to C0 by updating Prover’s memory with xi = 0, and then
proceed to C1 with xi = 1.

OUTPUT If the Prover outputs a falsified clause D, it must be the case that D is a sub-clause of
C(ρ). If D is equal to C(ρ), then we simply stop; otherwise, we add a new node for the clause D and
add one or more intermediate weakening steps towards the current node.

It is easy to verify that during the process, C(ρ) is always the clause of the current node in the
resolution proof. This process will stop since the Prover will stop, and its correctness is guaranteed by the
Prover’s correctness. Finally, note that the largest clause ever generated in the resolution proof is upper
bounded by the memory size of the Prover.
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C.2 Proof of Lemma 6.10

Lemma 6.10. For any family of unsatisfiable CNF F that has no polylog(N)-width resolution refutation,

Refuterd,M (Search(F)→ Iter) ≤m Refuter(w(F ⊢Res ⊥) < w0)

for some w0 = polylog(N) that may depend on d,M .
Furthermore, this reduction is uniform when F is a uniform family of unsatisfiable CNFs.

Proof. Let F = {Fn}n∈N. Suppose we are given a purported depth-d reduction (f, g) from Search(Fn)
to IterM , i.e., (f, g) is a PLS formulation for Search(Fn). We now use (f, g) to construct a purported
resolution refutation (C0, . . . , CL−1) for Fn with width w0 = poly(d, logM), while satisfying the following
two conditions.

1. Given any index i ∈ [L], the i-th node Ci can be calculated in polylog(n) queries to (f, g) uniformly.

2. If the i-th node is invalid, one can recover a pair (ρ, o∗) that refutes (f, g) uniformly given i.

As a high-level plan, we first apply the procedures described in Lemma C.2 which transforms the PLS
formulation (f, g) to a Prover’s strategy of O(d+ logM) memory for the Prover-Delayer game. We then
use the procedure described in Lemma C.5 to convert such a strategy into a width-O(d+logM) resolution
proof for Fn.

We now specify the details in these two steps to make sure the two conditions are met. The first
condition can be achieved by letting an index i ∈ [L] to be an encoding of the Prover’s memory in a single
step, as described in Lemma C.4.32

By Observation C.3, given any valid index (encoding), one can calculate the next action of the Prover
using O(d) number of queries to (f, g). Then, for all three actions {FORGET,QUERY,OUTPUT},
we can also calculate the indices of the one or two previous nodes in the resolution proof uniformly. For
any invalid index (encoding), we pad a trivially correct resolution node using axioms from the beginning.

To see the second condition above, note that the procedure described in Lemma C.5 generates an
invalid node of the resolution proof only when the Prover is taking an OUTPUT step. That is, when the
Prover outputs a falsified clause D, D might not be a sub-clause of C(ρ), so the weakening steps from D
to C(ρ) will be wrong. This happens because a solution o of the IterM instance is found by the Prover,
but querying go does not lead to a clause D in Fn that is falsified by the current partial assignment ρ in
her memory.

Note that the partial assignment ρ and o∗ used to refute (f, g) can be recovered from the index
(encoding) of the invalid node. We then complement the partial assignment ρ to ρ′ by setting all unassigned
variables that appear in D to satisfy clause D. By definition, the pair (ρ′, o) is a valid solution to refute
the reduction (f, g).

Finally, if F is a uniform family of formulas, then the whole reduction is also uniform.

32Note that the encoding described in Lemma C.4 is lexicographically increasing, but we can easily make it lexicographically
decreasing by flipping all the bits.
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