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Abstract
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1 Introduction

The density Hales-Jewett theorem, proven by Furstenberg and Katznelson [FK89,FK91], asserts that
for every positive integer k and δ > 0, that for su�ciently large n, a subset S ⊆ {0, 1, . . . , k − 1}n
of size at least δkn (density at least δ) must contain a combinatorial line of length k. Here, we say
that points x(1), . . . , x(k) ∈ S form a combinatorial line of length k if not all x(j) are equal, and for

each i = 1, 2, . . . , n, either x
(1)
i = · · · = x

(k)
i or (x

(1)
i , . . . , x

(k)
i ) = (0, 1, . . . , k − 1). Henceforth, we

refer to this as the DHJ[k] problem, and let [k] := {0, 1, . . . , k − 1}. This is the density version of
the Hales-Jewett theorem [HJ63], which asserts for any positive integers k and r, for all su�ciently
large n it holds that an r-coloring of [k]n contains a monochromatic combinatorial line. While the
original proof of Furstenberg and Katznelson of the DHJ[k] theorem was based on ergodic theory
and thus gave ine�ective bounds on n in terms of k and δ, the Polymath project [Pol12] provided
an elementary proof that gave e�ective bounds. For k = 3, which is the focus of this paper, [Pol12]
proved that a subset S ⊆ [3]n with density δ contains a combinatorial line as long as n ⩾ T (O(δ−2)),
where T (m) = 2T (m−1) and T (0) = 1, i.e., a tower of height O(δ−2). Put another way, a subset
S ⊆ [3]n of density at least Ω((log∗ n)−1/2) contains a combiantorial line of length 3.

The main result of this paper is an improvement of this bound to a tower of �nite height.

Theorem 1. There are constants c, C > 0 such that for all positive integers n and subsets |A| ⊆ [3]n

with 3−n|A| ⩾ C(log log log log n)−c, there are x, y, z ∈ A, not all equal, forming a combinatorial

line. In other words, for all i = 1, . . . , n, either xi = yi = zi or (xi, yi, zi) = (0, 1, 2).

1.1 Connections to Other Problems

The density Hales-Jewett problem has several connections to problems in extremal and additive
combinatorics. The van der Waerden [VdW27] theorem says that for any positive integer k, a �nite
coloring of the positive integers contains a monochromatic arithmetic progression of length k (a
k-AP). Szemerédi's theorem [Sze75] is the density analogue of van der Waerden's theorem, and says
that for su�ciently large n in terms of δ and k, that any density δ subset of {1, . . . , n} contains a
k-AP. In fact, Szemerédi's theorem follows from the DHJ[k] theorem in the following way. Encode
a point x ∈ [k]n as Π(x) :=

∑n
i=1 xik

i. Now note that a combinatorial line corresponds exactly to
a k-AP. Another related problem is the corners problem, which asks to �nd in a dense subset of
[n]× [n], three points that form an axis-aligned isosceles triangle: (x, y), (x+ d, y), (x, y+ d). This
was solved by Ajtai and Szemerédi [AS74]. This can also be deduced from the DHJ[k] theorem.
Even more generally, the multi-dimensional Szemerédi theorem states that one can �nd even more
complicated such patterns in dense subsets of [n]d. This was also initially proven by Furstenberg
and Katznelson [FK78] by ergodic methods, but now a combinatorial proof is known via reduction
to the DHJ[k] theorem. The fact that so many problems can be reduced to DHJ[k] may partly
explain the di�culty in obtaining improved bounds for it.

While Szemerédi's original proof did not achieve great quantitative bounds, recent works have
introduced several new tools broadly based on Fourier analysis that have greatly improved our
understanding of Szemerédi's theorem, while providing signi�cantly improved quantitative bounds.
In [Gow98, Gow01], Gowers introduced higher-order Fourier analysis and the Gowers Uk-norms,
which have played a crucial role in establishing analytic proofs and improved bounds for special
cases of the multidimensional Szemerédi theorem and polynomial Szemerédi theorem [Shk05,Shk06,
GTZ11,GTZ12,GT12,GT17,Pel18,Pel19,Pel20,HLY21,PP22,Pel24,LSS23,Len24,LSS24a,LSS24b],
as well as several applications to number theory and beyond [Gre05b,GT08,GT10].

In terms of lower bounds, the best known lower bound for the DHJ[k] problem is density
Ω(exp(−(log n)1/⌈log2 k⌉)) [Pol09], using ideas from Behrend's lower bound construction for 3-AP
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free sets [Beh46]. For the k = 3 case of Szemerédi's theorem, in a remarkable recent result, Kelley
and Meka [KM23] achieved an upper bound that nearly matches Behrend's lower bound. The bound
has been further re�ned by Bloom and Sisask [BS23].

1.2 Connections to the Study of CSPs

Motivated by applications to understanding the approximability of satis�able constraint satisfaction
problems (CSPs), Bhangale, Khot, and Minzer [BKM22, BKM23b, BKM23c, BKM24a, BKM24b,
BKM23a], studied the following very general problem. Consider �nite alphabets Σ1, . . . ,Σk and a
distribution µ supported on a subset of Σ1 × · · · × Σk. If 1-bounded functions fi : Σ

n
i → C (so,

|fi(x)| ⩽ 1 for all x ∈ Σn
i ) for i = 1, . . . , k satisfy∣∣∣∣∣ E

(x1,...,xk)∼µ⊗n
[f1(x1) . . . fk(xk)]

∣∣∣∣∣ ⩾ ε, (1)

then what structure can we deduce about the functions fi? This arose in the study of CSPs because
a CSP is formally just a subset of Σ1 × · · · × Σk, which may correspond to the support of the
distribution µ being considered.

This generality also captures several problems in additive combinatorics. To see the connection
with DHJ[k], one can consider the setting where Σ1 = · · · = Σk = [k] and µ is supported on
(x, . . . , x) for x ∈ [k] and (0, 1, . . . , k − 1), and fi are indicators of a set S ⊆ [k]n. Then (1) exactly
measures the density of combinatorial lines with respect to the measure µ. Similarly, many other
problems in additive combinatorics can be captured in the same way.

In [BKM24a], the following structural result is proved. Let k = 3 and µ be pairwise-connected
(the projection of the support of µ to any two coordinates forms a connected graph, see De�ni-
tion 1.1), and µ has no Abelian embeddings into Z. In this case, there is a �nite group H with
size depending only on µ, such that for each i = 1, 2, 3, fi correlates to some Fourier character over
H times a low-degree function. Equivalently, after randomly setting some coordinates of fi (see
De�nition 1.2), fi correlates to a Fourier character over H on the remaining coordinates. This was
used to give reasonable bounds for restricted 3-APs over Fn

p , whose common di�erence lies in the
set {0, 1, 2}n always.

In the companion paper [BKLM24a], we extend the result of [BKM24a] by removing the as-
sumption that µ has no Abelian embeddings into Z, and prove that each function fi, after random
restriction, correlates to a product function (see Theorem 2) as long as µ is pairwise-connected.
Similarly, this can be applied to give reasonable bounds for restricted 3-APs over Fn

p , but now with
common di�erence lying in the set {0, 1}n. These results do not immediately imply any bounds for
the DHJ[3] problem, because the distribution µ supported on (0, 0, 0), (1, 1, 1), (2, 2, 2), (0, 1, 2) is
not pairwise-connected.

To prove Theorem 1, we take inspiration from the Shkredov's approach to the corners problem
[Shk06], as well as the combinatorial proof of the DHJ[k] theorem [Pol12]. As we discuss later,
interpreting the corners problem (say over Fn

2×Fn
2 ) in the context of (1) also produces a distribution

µ which is not pairwise-connected. However, Shkredov proves strong bounds for the corners problem
by a density increment strategy. Additionally, the Polymath paper [Pol12] gives analogies for several
ingredients in the corners proof in the context of DHJ[3] (though their argument is based on the
corners proof of Ajtai and Szemerédi and not of Shkredov). At a high level, we manage to combine
the new structural results for pairwise-connected correlations from the companion papers of the
authors [BKLM24a,BKLM24b] (see Theorems 2 and 3) with Shkredov's corners proof and [Pol12]
to give reasonable bounds for the DHJ[3] problem.
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DHJ[k] for k ⩾ 4: it is conceivable that an approach in the spirit of the current paper could be
used to establish reasonable bounds for DHJ[k] for general k. Such approach would require, at
the very least, analogs of the results in [BKLM24a,BKLM24b] for pairwise-connected k-ary CSPs,
which we plan to study in future works.

1.3 Preliminaries

General notation. Let [n] = {1, . . . , n}. For a subset I ⊆ [n] we write I = [n] \ I. We let C
denote complex numbers. We let supp(µ) denote the support of a distribution µ. For a �nite set Σ
we write x ∼ Σn to denote sampling x uniformly randomly from Σn.

Connectivity. We de�ne what it means for a distribution to be pairwise-connected. Let µij be
the restriction of the distribution µ to the (i, j) coordinates.

De�nition 1.1 (Pairwise-connected). We say that a distribution µ on Σ1 × · · · × Σk is pairwise-
connected if for all 1 ⩽ i < j ⩽ k the support of µij forms a connected graph over vertex set
Σi ∪ Σj .

Random restriction. All our methods and results heavily rely on random restrictions. A random
restriction takes a subset of the coordinates, and randomly �xes their values. Below, I ∼1−α [n]
means that I is a random subset of [n], such that each i ∈ [n] is included in I with probability
1− α, and z ∼ νI means that z ∈ ΣI is such that each zi is i.i.d. and distributed according to ν.

De�nition 1.2 (Random restriction). Let µ be a distribution over Σn and let µ = (1− α)ν + αµ′

for distributions ν, µ′. Then for a function f : Σn → C, I ∼1−α [n], and z ∼ νI , we de�ne the
random restriction fI→z : Σ

[n]\I → C as fI→z(x) := f(x, z).

2 Proof Outline

2.1 Shkredov's Corners Proof

We start by recalling the key ideas behind Shkredov's bound on sets that do not contain a corner
[Shk05, Shk06]. For simplicity we consider the �nite �eld version of the problem, where we have
a set S ⊆ Fn

2 × Fn
2 . A corner consists of three points (x, y), (x + d, y), (x, y + d) ∈ S such that

d ̸= 0. The standard approach to such problems is the density increment method pioneered by
Roth [Rot53] to solve the k = 3 case of Szemerédi's theorem. At a high level, this method tries
to prove that either the set S has about the expected number of corners, or the set S has larger
density on some structured subset (for example, a subspace). Then one can pass to this structured
object and repeat the argument.

One type of structure that arises in the corners problem is that of combinatorial rectangles: this
was observed by Ajtai and Szemerédi [AS74]. Let µ(S) be the density of S. Then the number of
corners in S is given by Prx,y,d∈Fn

2
[(x, y), (x, y + d), (x+ d, y) ∈ S]. When can this value deviate

far from µ(S)3, which is what it would be if the events (x, y) ∈ S, (x, y + d) ∈ S, (x + d, y) ∈ S
were truly independent? A natural example is when S ⊆ E1 × E2 for some E1 ⊆ Fn

2 , E2 ⊆ Fn
2 .

Let µ′ := µ(S)/µ(E1 × E2) be the relative density of S within E1 × E2. Then heuristically, the
probability that (x, y), (x, y+ d), (x+ d, y) ∈ S is approximately µ(E1)

2µ(E2)
2(µ′)3, which is much

larger than µ(S)3 = µ(E1)
3µ(E2)

3(µ′)3. This heuristic holds as long as:

1. The probability that x, x+ d ∈ E1 and y, y + d ∈ E2 is approximately µ(E1)
2µ(E2)

2.
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2. The probability that (x, y), (x, y + d), (x+ d, y) ∈ S conditioned on item 1 is about (µ′)3.

To complete the argument, one must understand the precise conditions under which these items
hold. It is not too di�cult to argue that item 1 holds as long as E1 and E2 are U2-pseudorandom.
In other words, all their nontrivial Fourier coe�cients are small. Also, a (nontrivial) sequence of
Cauchy-Schwarz manipulations proves that item 2 holds if S does not admit a density increment
onto a combinatorial subrectangle E′

1 × E′
2 ⊆ E1 × E2 of nonnegligible size.

From here, Shkredov's proof proceeds via a �double descent� kind of argument. The goal is to
maintain S ⊆ E1 ×E2 such that the relative density of S within E1 ×E2 increases whenever there
are no corners. Given such S ⊆ E1 ×E2, one �rst tries to �nd a sub-instance where E1 and E2 are
U2-pseudorandom. This is referred to as the �uniformizing� step. At a high level, this is done by
partitioning E1 and E2 among subspaces (into smaller combinatorial rectangles) on which they have
large Fourier coe�cients, until most pieces in the partition are U2-pseudorandom. By an averaging
argument, there exists a piece on which S still has large relative density.

Now, Shkredov argues that either the number of corners is approximately equal to what the
heuristic above says, or S admits a relative density increment onto a combinatorial subrectangle
E′

1 × E′
2. This is proven by several applications of the Cauchy-Schwarz inequality. Of course, now

E′
1, E

′
2 are not necessarily U2-pseudorandom anymore, so one has to uniformize again, and repeat

the argument.

2.2 Dictionary between Corners and DHJ[3]

The work [Pol12] gives a combinatorial proof of the density Hales-Jewett theorem by drawing
analogies from the corners proof of Ajtai and Szemerédi [AS74]. Here we describe how each aspect
of the corners proof described in Section 2.1 can be adapted to the DHJ[3] setting.

One immediate di�erence in the DHJ[3] setting is that it is not clear under what measure we
should be counting triples (x, y, z) ∈ S that form a combinatorial line. [Pol12] introduces the equal

slices measure under which the counts of combinatorial lines is sensibly de�ned. In this work, we
take a slightly di�erent approach that is similar in spirit. Regardless, precisely de�ning the equal
slices measure or our variant is not important for this outline � it is only important that there is
some sensible way to count combinatorial lines.

Let S ⊆ [3]n be the set on which we wish to �nd combinatorial lines. [Pol12] proves that if the
count of combinatorial lines is far o� from what is expected, then S has increased relative density
on the intersection of a 02-insensitive and 01-insensitive set (see also a simpler proof from [DKT14]
that avoids the equal slice measure and works with the uniform distribution throughout). Here, a
02-insensitive set is a subset E1 ⊆ [3]n satisfying that if x, y ∈ [3]n agree on all i ∈ [n] where xi = 1
or yi = 1, then x ∈ E1 if and only if y ∈ E1. In other words, only the locations of the 1's in x
determines whether x ∈ E1. A 01-insensitive set (which we call E2) is de�ned similarly. We refer to
the intersection of E1 and E2 as their disjoint product (see De�nition 4.1) and denote it as E1⊠E2.
This is the �rst entry of the dictionary: E1 ⊠E2 corresponds to the combinatorial rectangles of the
corners proof.

From here, [Pol12] argues that E1 ⊠ E2 can be split into combinatorial subspaces (i.e., sets
isomorphic to [3]n

′
for n′ ⩽ n), and thus one obtains a density increment of S onto a combinatorial

subspace, and the argument can be repeated. In [Pol12], n′ ⩽ log n due to an application of the
multidimensional Szemerédi theorem (for 2 points), and thus the �nal density bound achieved on S
is (log∗ n)−c. Similarly, our proof will also use combinatorial subspaces, but for larger n′ ⩾ nc.
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2.3 Pseudorandomness Notion

The main missing ingredient from fully translating Shkredov's proof to the DHJ[3] setting is the
correct notion of pseudorandomness. It turns out that the correct notion is what we call product-
pseudorandomness (see De�nition 3.1). While U2 pseudorandomness of a function f says that
|⟨f,

∏n
i=1 χi⟩| is small for any Fourier characters χ1, . . . , χn, product function pseudorandomness

is a stronger notion which says that |⟨f,
∏n

i=1 Pi⟩| is small for any choice of 1-bounded functions
P1, . . . , Pn : [3] → C, where 1-bounded means that |Pi(x)| ⩽ 1 for all x ∈ [3]. In fact, in our
de�nition we also require that random restrictions of f down to even n1/4 coordinates correlate
to product functions

∏n
i=1 Pi with only negligible probability. This notion of pseudorandomness

is motivated by the inverse theorems in [BKLM24a,BKLM24b] (see Theorems 2 and 3) which say
that if functions f, g, h have large 3-wise correlation over µ⊗n for a pairwise-connected distribution
µ, then each of f , g, h is not product-pseudorandom.

It remains to discuss how to put all these pieces together. Similarly to the corners proof,
our goal is to increment the relative density of S within E1 ⊠ E2 while there is no combinatorial
line. We design a uniformization algorithm for our notion of product function pseudorandomness �
this essentially amounts to understanding how to density increment on sets that correlate to some
product function. This is done in Section 7, and is based on the density increment for restricted
3-progressions in [BKM23a,BKLM24a]. Finally we argue that if the number of combinatorial lines
(under the proper measure) deviates from what is expected, then S has a relative density increment
onto a �subrectangle� E′

1 ⊠ E′
2 ⊆ E1 ⊠ E2. This is done in Sections 5 and 6.

It is worth discussing where product pseudorandomness enters the picture, more precisely. For
example, we wish to argue that E1⊠E2 behaves like a combinatorial rectangle. One way to formalize
this is that we want to have µ(E1 ⊠ E2) ≈ µ(E1)µ(E2), i.e., that the events x ∈ E1 and x ∈ E2

for x ∈ [3]n behave independently. In Lemma 4.3 we argue that product pseudorandomness of E1

and E2 su�ces for this. In addition, throughout the proof we require more complex correlations of
a similar type (e.g., Lemmas 5.8 and 6.1 to 6.3) which all leverage product pseudorandomness. We
believe that any form of Fourier pseudorandomness would not su�ce to prove these statements.

2.4 Choosing Parameters

Throughout the paper we will use the following parameters and relationships between them.
The parameter α will be the relative density of the set S within the disjoint product E1 ⊠ E2.

The density of E1 and E2 within [3]n will be δ1 and δ2 respectively. These will decrease during
density increments, but will always stay above exp(−α−C) (say, for C = 20).

The parameter γ will be a pseudorandomness parameter. We require that log(1/γ)−1 < (αδ1δ2)
C

for a large constant C. Thus, γ ⩽ exp(− exp(α−C)).

During a uniformization step, n will drop to about nexp(−γ−C) for a constant C (see Theorem 6).
This informs our choice of α ultimately, because we need

exp(−γ−C) ⩽ (log n)c, so α ⩾ Ω((log log log log n)−c),

by our choice of γ.
Finally, we will set the parameter η = exp(−

√
log n), where n is the original dimension.

Throughout the whole procedure, η will be much smaller than any of α, δ1, δ2, and γ. The parameter
η arises sometimes when we are dealing with distributions ν on [3] satisfying |ν(x)− 1/3| ⩽ η/

√
n.

In other words, dTV(µ
⊗n, ν⊗n) ⩽ O(η), where µ is the uniform distribution on [3].
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3 Correlations to Product Functions

3.1 Product Pseudorandomness

We start by formally introducing the main pseudorandomness notion considered in this paper.

De�nition 3.1 ((n′, γ)-product pseudorandomness). Let Σ be a �nite set, µ be a distribution on
Σ, and n a positive integer. For n′ ⩽ n and γ > 0 we say that a 1-bounded function f : Σn → C is
(n′, γ)-product pseudorandom if for any δ ∈ [n′/n, 1], the probability that a random restriction of
f down to I ∼δ [n] γ-correlates to a product function is less than γ. Precisely,

Pr
I∼1−δ[n],z∼µ⊗I

∃{Pi : Σ → C, ∥Pi∥∞ ⩽ 1}i∈I with
∣∣∣ E
x∼µ⊗I

[
fI→z(x)

∏
i∈I

Pi(xi)
]∣∣∣ ⩾ γ

 < γ.

Informally, another interpretation of product pseudorandomness is that f does not correlate to
a function of the form LP where L has degree at most Õ(n/n′), and P is a product function. This
can potentially be formalized by proving a restriction inverse theorem akin to [BKM23c,BKM24a],
but it is more convenient to just work with De�nition 3.1 in the present work.

It is worth remarking that one can change the measure that a function f is product pseudo-
random with respect to by applying random restrictions. Informally, if f is product pseudorandom
with respect to µ and µ = βν + (1 − β)ν ′, then applying a random restriction I ∼1−β [n] and
z ∼ (ν ′)⊗I , the function fI→z will be product pseudorandom against ν. A more formal and general
statement appears in Lemma 5.5.

3.2 Inverse Theorems for CSPs

In this section we discuss a signi�cant generalization of the U2 Gowers-norm inverse theorem that
we require for our proof. The following theorem was proven in [BKLM24a, Theorems 1, 2].

Theorem 2. Let µ be a pairwise-connected distribution over Σ × Γ × Φ for �nite sets Σ,Γ,Φ on

which the probability of each atom is at least α. If 1-bounded functions f : Σn → C, g : Γn → C,
h : Φn → C satisfy that ∣∣∣∣∣ E

(x,y,z)∼µ⊗n
[f(x)g(y)h(z)]

∣∣∣∣∣ ⩾ ε,

then there is a constant γ := γ(α, ε) > 0 and distribution ν such that µ = (1− γ)ν + γU , where U
is uniform over Σ, such that:

Pr
I∼1−γ [n],z∼νI

∃{Pi : Σ → C, ∥Pi∥∞ ⩽ 1}i∈I with
∣∣∣ E
x∼ΣI

[
fI→z(x)

∏
i∈I

Pi(xi)
]∣∣∣ ⩾ γ

 ⩾ γ.

Quantitatively, γ(ε) ⩾ exp(−ε−Oα(1)).

Put another way, the functions f , g, h are not product pseudorandom. To see the connection
to the U2 inverse theorem, one can consider when Σ = Γ = Φ = H for some Abelian group H and
µ is uniform over (x, x+ d, x+ 2d) for x, d ∈ H.

In this present work, we require an inverse theorem for certain 4-ary distributions. This is done
by reducing to the 3-ary inverse theorem in Theorem 2. The analogy is that the U2 Gowers norm
is over 4-ary distributions (x, x+ a, x+ b, x+ a+ b), but its inverse structure behaves the same as
for 3-APs. To formally state this theorem, we need to de�ne what it means for a distribution to be
connected.
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De�nition 3.2. A subset S ⊆ Σ1×· · ·×Σk is said to be connected if for every a = (a1, a2, . . . , ak) ∈
S and b = (b1, b2, . . . , bk) ∈ S, there exists a sequence (a, c(1), . . . , c(t), b) for some t ⩾ 1 such that
c(i) ∈ S for all i and every consecutive pair of tuples in the sequence di�ers in at most one coordinate.
A distribution µ on Σ1 × · · · × Σk is said to be connected if the support of µ is connected.

The following theorem is from [BKLM24b, Lemma 1.5].

Theorem 3. Let µ be a distribution over Σ1 ×Σ2 ×Σ3 ×Σ4 such that the probability of each atom

is at least α and the distribution µ123 is connected. There is a constant γ := γ(α, ε) > 0 such that

if 1-bounded functions fi : Σ
n
i → C for i = 1, 2, 3, 4 satisfy∣∣∣∣∣ E

(x1,x2,x3,x4)∼µ⊗n
[f1(x1)f2(x2)f3(x3)f4(x4)]

∣∣∣∣∣ ⩾ ε,

then a random restriction of f1 correlates to a product function, i.e.,

Pr
I∼1−γ [n],z∼µI

1

∃{Pi : Σ1 → C, ∥Pi∥∞ ⩽ 1}i∈I with
∣∣∣ E
x∼µI

1

[
(f1)I→z(x)

∏
i∈I

Pi(xi)
]∣∣∣ ⩾ γ

 ⩾ γ.

Quantitatively, γ ⩾ exp(−ε−Oα(1)).

4 Inductive Structure

Let µ be a measure on [3]n. Let π1 : {0, 1, 2}n → {0, 1}n be de�ned as π1(x)i = 1 if and only if
xi = 1. Similarly, π2 : {0, 1, 2}n → {0, 2}n is de�ned as π2(x)i = 2 if and only if xi = 2.

The measure of E1 is denoted as

µ(E1) := µ({x ∈ [3]n : π1(x) ∈ E1}).

µ(E2) is de�ned similarly. By abuse of notation, we let µ denote the distribution on {0, 1}n (re-
spectively {0, 2}n) distributed as π1(x) (resp. π2(x)) for x distributed according to µ in [3]n.

We now de�ne the disjoint product of subsets E1 ⊆ {0, 1}n and E2 ⊆ {0, 2}n which serves as
our analogy to combinatorial rectangles.

De�nition 4.1 (Disjoint product). Let E1 ⊆ {0, 1}n and E2 ⊆ {0, 2}n. The disjoint product
E1 ⊠ E2 ⊆ {0, 1, 2}n is de�ned as:

E1 ⊠ E2 := {x ∈ [3]n : π1(x) ∈ E1 and π2(x) ∈ E2}.

Our density increment proceeds by maintaining a subset S ⊆ E1 ⊠ E2 whose relative density
increases over steps of the density increment.

De�nition 4.2 (Structure). We de�ne Structα to consist of triples (S,E1, E2) satisfying E1 ⊆
{0, 1}n, E2 ⊆ {0, 2}n with S ⊆ E1 ⊠ E2 and for µ uniform over [3]n:

1. µ(S) ⩾ α · µ(E1 ⊠ E2).

2. Let δ1 = µ(E1) and δ2 = µ(E2). The functions 1E1 −δ1 : {0, 1}n → R and 1E2 −δ2 : {0, 2}n →
R are (n′, γ)-product pseudorandom for n′ = n1/4 and γ := γ(α, δ1, δ2) chosen later.
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At this point it is worth noting that the pseudorandomness condition implies that µ(E1⊠E2) ≈
µ(E1)µ(E2). In fact, this holds as long as the measures of E1 and E2 do not change signi�cantly
under random restriction � this was previously observed by Austin [Aus11, Lemma 6.1] in a di�erent
language.

Lemma 4.3. Let µ be a distribution on [3] with mass Ω(1) on each atom. If E1, E2 are (n0.99, γ)
product pseudorandom with respect to µ then

|µ(E1 ⊠ E2)− µ(E1)µ(E2)| ⩽ 2γ1/2.

Proof. Let E1 := 1E1 − µ(E1) and E2 := 1E2 − µ(E2). Then

µ(E1 ⊠ E2) = E
x∼µ⊗n

[1E1(x)1E2(x)] = µ(E1)µ(E2) + E
x∼µ⊗n

[
E1(x)E2(x)

]
= µ(E1)µ(E2) + E

x∼µ⊗n

[
E1(π1(x))E2(π2(x))

]
.

Assume for contradiction that |Ex∼µ⊗n

[
E1(x)E2(x)

]
| > 2

√
γ. Then by Cauchy-Schwarz:

4γ ⩽ E
π2(x)

∣∣∣∣∣ E
x:π2(x)

E1(π1(x))

∣∣∣∣∣
2

= E
π2(x)

E
x,x′:π2(x)

E1(π1(x))E1(π1(x
′)),

where the notation means that we �rst sample π2(x) for x ∼ µ⊗n, and then sample x, x′ conditioned
on π2(x). Because µ has full support on [3], one can check that (π1(x), π1(x

′)) has full support on
(0, 0), (0, 1), (1, 0), (1, 1). Let ν be the distribution on (π1(x), π1(x

′)) and let ν = βU + (1 − β)ν ′

where U is uniform over {0, 1} × {0, 1}, and β = Ω(1). Then we conclude that

4γ ⩽ E
I∼1−β [n]

E
(z,z′)∼(ν′)⊗I

E
(x,x′)∼U⊗I

[
(E1)I→z(x)(E1)I→z′(x

′)
]

= E
I∼1−β [n]

E
(z,z′)∼(ν′)⊗I

(
E

x∼U⊗I

[
(E1)I→z(x)

])(
E

x∼U⊗I

[
(E1)I→z′(x)

])
⩽ E

I∼1−β [n]
E

(z,z′)∼(ν′)⊗I

∣∣∣∣ E
x∼U⊗I

[
(E1)I→z(x)

]∣∣∣∣ .
By an averaging argument and the fact that βn ⩾ n0.99, this contradicts that E1 is (n

0.99, γ) product
pseudorandom.

5 Moving between Measures

In this section we prove that if S contains no combinatorial lines, then some particular 3-wise
correlation over a product distribution whose atoms are at least Ω(1) in each coordinate is large.
Showing this involves picking a suitable measure under which to count combinatorial lines.

5.1 Lower Bounding the Expected Count

Let ν be a measure on [3]n × [3]n × [3]n, such that for all i ∈ [n], νi is supported on triples
(0, 0, 0), (1, 1, 1), (2, 2, 2), (0, 1, 2). Let S ⊆ E1⊠E2 ⊆ [3]n with relative density α in E1⊠E2, E1 has
density δ1, and E2 has density δ2 (here, we are being a bit informal in that we are not specifying
the density we are using here, but it may not be uniform). The following discussion holds for any
ν, but we will pick convenient ones to work with soon.
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We can count the density of combinatorial lines contained in S with respect to ν. This is:

E
(x,y,z)∼ν

[1S(x)1S(y)1S(z)] = E
(x,y,z)∼ν

[(1S(x)− α1E1⊠E2(x))1S(y)1S(z)]

+ α E
(x,y,z)∼ν

[1E1⊠E2(x)1S(y)1S(z)].

On the right hand side of the equation, the �rst term is the �error� term, and the second is the
�main term�. Studying the main term, one can note that 1E1⊠E2(x)1S(y)1S(z) = 1S(y)1S(z) in fact,
because π2(y) = π2(x) and π1(z) = π1(x) for all (x, y, z) ∈ supp(ν). Thus, the main term can we
written more succinctly as: αE(x,y,z)∼ν [1S(y)1S(z)]. We would like to pick a measure ν on which
we can lower bound this quantity. This is essentially asking for a measure ν on which the counting
version of DHJ[2] holds. A key observation made in [Pol12, Theorem 3.1] is that this holds when ν
is the equal-slices measure. We take a somewhat di�erent approach here which is similar in spirit,
but allows us to work only with product distributions throughout the arguments.

Let η be su�ciently small (depending on α, δ1, δ2), and let K ∈ Z⩾1, η
′ ∈ R>0 satisfy Kη′ ⩽

η/100. De�ne the following distribution over sequences in ([3]n)K+1.

De�nition 5.1. De�ne the distribution D over (y(0), . . . , y(K)) ∈ ([3]n)K+1 as follows. y(0) is drawn
uniformly in [3]n. For i = 0, . . . ,K − 1, de�ne for t ∈ [n] independently:

y
(i+1)
t :=


y
(i)
t , if y

(i)
t ∈ {0, 2},

1 w.p. 1− η′√
n
, if y

(i)
t = 1,

2 w.p. η′√
n
, if y

(i)
t = 1.

In other words, to get y(i+1) from y(i), for each index t ∈ [n] where y
(i)
t = 1, we change it to a

2 with probability η′/
√
n. We now record an observation about what the distribution of y(i) and

joint distribution (y(i), y(j)) look like.

Observation 1. For all i = 0, . . . ,K, y(i) is distributed as (ν(i))⊗n for a distribution ν(i) on [3]
satisfying that ν(i)(0) = 1/3 and |ν(i)(x) − 1/3| ⩽ η/

√
n for x ∈ {1, 2}. For all pairs 0 ⩽ i <

j ⩽ K, (y(i), y(j)) is distributed as (ξ(ij))⊗n for some distribution ξ(ij) ∈ [3] × [3] supported on
(0, 0), (1, 1), (2, 2), and (1, 2) satisfying that:

1. ξ(ij)((0, 0)) = 1/3 and |ξ(ij)((x, x))− 1/3| ⩽ η/
√
n for x ∈ {1, 2}.

2. ξ(ij)((1, 2)) ⩾ η′

10
√
n
.

The �rst item is actually redundant with the claim about the distribution of y(i), but we list it for
completeness. Finally, we argue that there is some pair (i, j) under which E(y,z)∼(ξ(ij))⊗n)[1S(y)1S(z)]
can be lower bounded.

Lemma 5.2. Let µ be uniform on [3]n. For every subset S ⊆ [3]n, there is 0 ⩽ i < j ⩽ K such that

E
(y,z)∼(ξ(ij))⊗n

[
1S(y)1S(z)

]
⩾ µ(S)2 − 6η − µ(S)

K
.

Proof. Note that

∑
i ̸=j

1S(y
(i))1S(y

(j)) =

(
K∑
i=0

1S(y
(i))

)2

−
K∑
i=0

1S(y
(i)).
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Also, because dTV(ν(i), µ) ⩽ 2η by Observation 1 for all i = 0, . . . ,K we know that

(K + 1)(µ(S) + 2η) ⩾ E
(y(0),...,y(K))∼D

[
K∑
i=0

1S(y
(i))

]
⩾ (K + 1)(µ(S)− 2η).

Thus by Cauchy-Schwarz∑
i ̸=j

E
(y(0),...,y(K))∼D

[
1S(y

(i))1S(y
(j))
]
⩾ (K + 1)2(µ(S)− 2η)2 − (K + 1)(µ(S) + 2η).

By averaging, there is a pair (i, j) such that

E
(y(0),...,y(K))∼D

[
1S(y

(i))1S(y
(j))
]
⩾

(K + 1)2(µ(S)− 2η)2 − (K + 1)(µ(S) + 2η)

(K + 1)K

⩾ (µ(S)− 2η)2 − µ(S) + 2η

K
⩾ µ(S)2 − 6η − µ(S)

K
.

This is exactly the desired conclusion, given the de�nition of ξ(ij) in Observation 1.

Let ξ(ij)
′
be the unique distribution supported on (0, 0, 0), (1, 1, 1), (2, 2, 2), (0, 1, 2) such that

(ξ(ij)
′
)yz = ξ(ij). We will use ξ(ij)

′
to argue that if a set S ⊆ E1 ⊠ E2 has no combinatorial lines,

then some speci�c 3-wise correlation is large.

Lemma 5.3. Let S ⊆ E1 ⊠ E2 be such that µ(E1 ⊠ E2) = δ, µ(S) ⩾ αδ, and S contains no

combinatorial line. For K ⩾ 100µ(S)−1 and η ⩽ µ(S)2/100 there is some 0 ⩽ i < j ⩽ K such that∣∣∣∣∣ E
(x,y,z)∼(ξ(ij)

′
)⊗n

[
(1S − α1E1⊠E2)(x)1S(y)1S(z)

]∣∣∣∣∣ ⩾ α3δ2/2.

Proof. By Lemma 5.2 there are 0 ⩽ i < j ⩽ K such that

E
(y,z)∼(ξ(ij))⊗n

[
1S(y)1S(z)

]
⩾ µ(S)2 − 6η − µ(S)

K
⩾

3

4
µ(S)2 ⩾

3

4
α2δ2.

If S has no combinatorial line, then

exp(−Ω(η′
√
n)) ⩾ E

(x,y,z)∼(ξ(ij)
′
)⊗n

[
1S(x)1S(y)1S(z)

]
= E

(x,y,z)∼(ξ(ij)
′
)⊗n

[
(1S − α1E1⊠E2)(x)1S(y)1S(z)

]
+ α E

(x,y,z)∼(ξ(ij)
′
)⊗n

[
1E1⊠E2(x)1S(y)1S(z)

]
⩾ E

(x,y,z)∼(ξ(ij)
′
)⊗n

[
(1S − α1E1⊠E2)(x)1S(y)1S(z)

]
+

3

4
α3δ2.

The �rst inequality followed because ξ(ij)
′
((0, 1, 2)) ⩾ η′

10
√
n
by Item 2 of Observation 1.
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5.2 Harsh Random Restrictions

Our goal will now be to take a random restriction down to a distribution supported on (0, 0, 0),
(1, 1, 1), (2, 2, 2), (0, 1, 2) whose mass on all atoms is Ω(1). Towards this, we �rst prove that
taking such random restrictions preserves product pseudorandomness. In fact, if the restriction is
su�ciently harsh, the function becomes product pseudorandom against any �xed distribution with
Ω(1) mass on each with high probability.

First, we record the simple observation that if f is 1-bounded and correlates to a 1-bounded
product function P , then f correlates with a 1-bounded product function with noticeable probability
under random restriction.

Lemma 5.4. Let f : Σn → C be a 1-bounded function, and P is a 1-bounded product function. Let

µ = βµ′ + (1− β)ν be such that
∣∣∣Ex∼µ⊗n [f(x)P (x)]

∣∣∣ ⩾ ε. Then

Pr
I∼1−β [n],z∼ν⊗I

[∣∣∣ E
x∼(µ′)⊗I

[fI→z(x)PI→z(x)]
∣∣∣ ⩾ ε/2

]
⩾ ε/2.

Proof. Follows by a simple averaging argument, as f, P are 1-bounded.

Lemma 5.5. Let Σ be a �nite set and let f : Σn → C be a 1-bounded function which is (n1/4, γ)
product pseudorandom against a distribution µ with µ(x) ⩾ α for all x ∈ Σ. Let η ⩾ 0 and ν be

a distribution on Σ with |ν(x) − µ(x)| ⩽ η/
√
n for all x ∈ Σ. Then for every distribution µ′ on

Σ with mass at least β ⩾ n−1/20 on every atom and n−11/20 ⩽ δ ⩽ η/
√
n, the following holds for

γ′ = 2(γ + 3η/α)1/3:

Pr
I∼1−δ[n],z∼ν⊗I

[
fI→z is (n1/3, γ′) product pseudorandom against µ′

]
⩾ 1− γ′.

Proof. Throughout this proof, all inner products are with respect to distributions µ⊗n′
for some n′.

For clarity, we denote this by ⟨f, g⟩µ := Ex∼µ⊗n′ [f(x)g(x)].

Let n′ = n− |I|, and note that n′ ⩾ n2/5 with high probability. If fI→z is not (n
1/3, γ′) product

pseudorandom with respect to µ′, then for δ′ = n1/3/n′, with probability at least γ′ over I ′ ∼1−δ′

([n] \ I) and z′ ∼ (µ′)⊗I′ , there is a 1-bounded product function P with |⟨f(I,I′)→(z,z′), P ⟩µ′ | ⩾ γ′.
We may write µ′ = βµ + (1 − β)ξ where ξ is some distribution. If |⟨f(I,I′)→(z,z′), P ⟩µ′ | ⩾ γ′ holds,

then by Lemma 5.4, over I ′′ ∼1−β ([n] \ (I ∪ I ′)) and z′′ ∼ ξ⊗I′′ the probability that

|⟨f(I,I′,I′′)→(z,z′,z′′), PI′′→z′′⟩µ| ⩾ γ′/2

is at least γ′/2. Putting this together gives that

Pr
I′,I′′,z′,z′′

[
|⟨f(I,I′,I′′)→(z,z′,z′′), P ⟩µ| ⩾ γ′/2 for 1-bounded P

]
⩾ (γ′)2/2.

If the conclusion of the theorem is false, then

Pr
I∼1−δ[n],z∼ν⊗I

I′∼1−δ′ ([n]\I),z′∼(µ′)⊗I′

I′′∼1−β([n]\(I∪I′)),z′′∼ξ⊗I′′

[
|⟨f(I,I′,I′′)→(z,z′,z′′), P ⟩µ| ⩾ γ′/2 for 1-bounded P

]
⩾ (γ′)3/2 ⩾ 4(γ+3η/α).

Consider the joint restriction (I, I ′, I ′′) → (z, z′, z′′). This is equivalent to taking a restriction fJ→u

for J ∼1−δ′′ [n], u ∼ (µ′′)⊗J for δ′′ = δβδ′ ⩾ n−3/4. Also |µ′′(x) − µ(x)| ⩽ η/
√
n + δ ⩽ 2η/

√
n for
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all x ∈ Σ. This implies that dTV(µ
⊗n, (µ′′)⊗n) ⩽ 10η/α because µ(x) ⩾ α for all x ∈ Σ. Applying

this to the previous displayed equation gives

Pr
J∼1−δβδ′ [n],u∼µ⊗J

[
|⟨fJ→u, P ⟩µ| ⩾ γ′/2 for 1-bounded P

]
⩾ 4(γ + 3η/α)− 10η/α ⩾ γ,

which contradicts that f is (n1/4, γ) product pseudorandom.

In the following arguments in this section and the next, we will heavily leverage product pseudo-
randomness with respect to several di�erent distributions on [3]. To formally set this up, we de�ne
the following large class of distributions.

De�nition 5.6. Let Q be the set of all distributions ν on a �nite alphabet Σ such that ν(x) is a
positive rational number with denominator at most 21000 for all x ∈ Σ.

The idea is that by a union bound, Lemma 5.5 implies that harsh random restrictions of E1, E2

will be product pseudorandomn against all ν ∈ Q with probability at least 1−O(γ′).
Finally we random restrict the conclusion of Lemma 5.3 to obtain a 3-wise correlation against

a distribution whose mass on all atoms is Ω(1). Let ξ := ξ(ij)
′
be as guaranteed in Lemma 5.3.

Lemma 5.7. Let µ be the uniform distribution on [3], and let ν on [3]3 be the distribution with

mass 1/6 on (0, 0, 0) and (0, 1, 2), and mass 1/3 on (1, 1, 1) and (2, 2, 2). Let S,E1, E2 satisfying

that µ(E1) = δ1, µ(E2) = δ2, and µ(S) ⩾ αµ(E1 ⊠ E2). Assume that 1E1 − δ1 and 1E2 − δ2 are

(n1/4, γ) product pseudorandom, and let τ̃ > 0. If S has no combinatorial line, at least one of the

following holds. There is some S′ ⊆ E′
1 ⊠ E′

2 ⊆ [3]n
′
satisfying either

(Case 1):

1. n′ ⩾ n2/5, µ(S′) ⩾ (α+ α3τ̃ /1000)µ(E′
1 ⊠ E′

2), and µ(E′
1 ⊠ E′

2) ⩾ δ1δ2/2,

2. If S′ has a combinatorial line, then S does too,

or (Case 2):

1. n′ ⩾ n2/5, µ(S′) ⩾ (α− τ̃)µ(E′
1 ⊠ E′

2), and µ(E′
1 ⊠ E′

2) ⩾ δ1δ2/2,

2. 1E′
1
−δ1 and 1E′

2
−δ2 are (n1/3, γ′) product pseudorandom for γ′ = 2(γ+1000η)1/3 with respect

to all distributions µ′ ∈ Q supported on {0, 1} or {0, 2},

3. E(x,y,z)∼ν⊗n′

[
(1S′ − α1E′

1⊠E′
2
)(x)1S′(y)1S′(z)

]
⩾ α3δ21δ

2
2/4.

4. If S′ has a combinatorial line, then S does too.

Proof. Let β = 6ξ((0, 1, 2)) ⩽ 20η/
√
n, and let ξ = βν+(1−β)ν ′ where ν ′ is supported on (0, 0, 0),

(1, 1, 1), (2, 2, 2). Note that |ν ′(x)− 1/3| ⩽ 100η/
√
n for all x ∈ [3]. Let I ∼1−β [n], z ∼ (ν ′)⊗I , and

let S′ = SI→z, E
′
1 = (E1)I→z, and E′

2 = (E2)I→z. Note that n − |I| ⩾ n2/5 with high probability.
We �rst handle the case when µ(S′) drops signi�cantly under random restriction with nonnegligible
probability.

Note that with probability at least 1 − O(γ′) it holds that 1E′
1
− δ1 and 1E′

2
− δ2 are (n1/3, γ′)

product pseudorandom, by Lemma 5.5. In one case,

Pr
[
µ(S′) ⩽ (α− τ̃ /2)δ1δ2

]
⩾ α3/100. (2)
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We combine this with (using Lemma 4.3)

E[µ(S′)] = ξ1(S) ⩾ µ(S)− dTV(µ
⊗n, ξ⊗n

1 )

⩾ αµ(E1 ⊠ E2)− 200η ⩾ αδ1δ2 −O((γ′)c)− 200η,

to get that there is some S′ with

µ(S′) ⩾ (α+ α3τ̃ /500)δ1δ2 −O((γ′)c)− 200η ⩾ (α+ α3τ̃ /1000)µ(E′
1 ⊠ E′

2),

as desired, where we have applied Lemma 4.3 again.
We now consider the other case (when (2) does not hold). In this case let E be the event

that 1E′
1
− δ1 and 1E′

2
− δ2 are (n1/3, γ′) product pseudorandom against all distributions in Q. By

Lemma 5.5, Pr[E ] ⩾ 1−O(γ′). When E holds, Lemma 5.8 proven below gives∣∣∣∣∣ E
(x,y,z)∼ν⊗I

[
(1S′ − α1E′

1⊠E′
2
)(x)1S′(y)1S′(z)

]∣∣∣∣∣ ⩽ E
(x,y,z)∼ν⊗I

[
1E′

1⊠E′
2
(y)1E′

1⊠E′
2
(z)
]
⩽ 2δ21δ

2
2 . (3)

Because Pr[E ] ⩾ 1−O(γ′), applying Lemmas 4.3 and 5.3 gives

E
S′,E′

1,E
′
2

E holds

E
(x,y,z)∼ν⊗n′

[
(1S′ − α1E′

1⊠E′
2
)(x)1S′(y)1S′(z)

]
⩾ α3δ21δ

2
2/2−O(γ′).

Combining the previous equation with (3) and an averaging argument (over E) gives

Pr
S′,E′

1,E
′
2

[
E

(x,y,z)∼ν⊗n′

[
(1S′ − α1E′

1⊠E′
2
)(x)1S′(y)1S′(z)

]
⩾ α3δ21δ

2
2/4

]
⩾ α3/20. (4)

We turn to verifying the conditions of the lemma. By a union bound, µ(S′) ⩾ (α − τ̃ /2)δ1δ2, (4),
and E all hold for some S′, E′

1, E
′
2. When this holds, µ(S′) ⩾ (α − τ̃ /2)δ1δ2 ⩾ (α − τ̃)µ(E′

1 ⊠ E′
2)

and µ(E′
1 ⊠ E′

2) ⩾ δ1δ2/2, verifying condition 1. Condition 2 holds because E′
1 and E′

2 are chosen
so that E holds. Condition 3 holds because (4) holds. Condition 4 holds because S′ = SI→z.

We now prove Lemma 5.8.

Lemma 5.8. If E1 ⊆ {0, 1}n and E2 ⊆ {0, 2}n satisfy that 1E1 − δ1 and 1E2 − δ2 are (n0.99, γ′)
product pseudorandom with respect to ν, then

E
(x,y,z)∼ν⊗n

[1E1⊠E2(y)1E1⊠E2(z)] ⩽ δ21δ
2
2 +O(log(1/γ′)−c).

Proof. We can rewrite

E
(x,y,z)∼ν⊗n

[1E1⊠E2(y)1E1⊠E2(z)] = E
(x,y,z)∼ν⊗n

[1E1(y)1E2(y)1E1(z)1E2(z)] .

The support of the distribution (π1(y), π2(y), π1(z), π2(z)) is

{(0, 0, 0, 0), (1, 0, 1, 0), (0, 2, 0, 2), (1, 0, 0, 2)}.

It can be checked that the projections to the coordinates 234 and 123 are connected. Thus, the
result follows expanding 1E1 = δ1 + (1E1 − δ1), 1E2 = δ2 + (1E2 − δ2), and applying Theorem 3.
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6 Density Increment

6.1 Obtaining a Large �Box Norm�

In Lemma 5.7 we proved that if S has no combinatorial lines, then after random restriction, the
function 1S − α1E1⊠E2 has a nontrivial 3-wise correlation over the DHJ[3] distribution. In this
section, we will use this to obtain a density increment. To start we apply a sequence of Cauchy-
Schwarz manipulations to prove the following.

Theorem 4. Let µ be a distribution supported on (0, 0, 0), (1, 1, 1), (2, 2, 2), (0, 1, 2) whose mass on

each atom is a rational number with denominator at most 1000, so that µx ∈ Q. Let f, g, h : [3]n → R
be 1-bounded functions supported on E1⊠E2, and δ1, δ2 > 0 such that 1E1 −δ1, 1E2 −δ2 are (γ′n, γ′)
product pseudorandom with respect to every measure ν ∈ Q. Also,∣∣∣∣∣ E

(x,y,z)∼µ⊗n

[
f(x)g(y)h(z)

]∣∣∣∣∣ ⩾ α3δ21δ
2
2/4.

Then there is a distribution µ2 supported on [3]4 (see Table 2) such that the marginal of µ2 onto

any variable is µx and

E
(x,x′,x′′,x′′′)∼µ⊗n

2

[
f(x)f(x′)f(x′′)f(x′′′)

]
⩾ α12δ21δ

2
2/2

10. (5)

Tables 1 to 3 contain distributions that we encounter in the proof.

x y x′ y′ z

0 0 0 0 0

1 1 1 1 1

2 2 2 2 2

0 1 0 1 2

2 2 0 1 2

0 1 2 2 2

Table 1: The support of the distribution µ1

x x′ x′′ x′′′ y y′ z z′

0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

0 0 0 0 1 1 2 2

0 2 0 2 1 2 2 2

2 0 2 0 2 1 2 2

1 1 0 0 1 1 1 2

0 0 1 1 1 1 2 1

Table 2: The support of the distribution µ2
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π1(y) π1(y
′) π1(y

′′) π1(y
′′′) π2(z) π2(z

′) π2(z
′′) π2(z

′′′)

0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0

0 0 0 0 2 2 2 2

1 1 1 1 2 2 2 2

1 0 1 0 2 2 2 2

0 1 0 1 2 2 2 2

1 1 1 1 0 2 0 2

1 1 1 1 2 0 2 0

0 0 1 1 0 0 2 2

1 1 0 0 2 2 0 0

Table 3: The support of the distribution µ3

Proof. Throughout this proof we write E1(x) and E2(x) in place of 1E1(x) and 1E2(x). Applying
the Cauchy-Schwarz inequality gives

α6δ41δ
4
2/16 ⩽

(
E

z∼µ⊗n
z

h(z)E1(z)E2(z) E
x,y|z

f(x)g(y)E1(z)E2(z)
)2

⩽
(

E
z∼µ⊗n

z

E1(z)E2(z)
)(

E
(z,x,y,x′,y′)∼µ⊗n

1

f(x)f(x′)g(y)g(y′)E1(z)E2(z)
)

⩽ 1.1δ1δ2

(
E

(z,x,y,x′,y′)∼µ⊗n
1

f(x)f(x′)g(y)g(y′)E1(z)E2(z)
)
,

by Lemma 4.3. Square again and apply Cauchy-Schwarz to get

α12δ81δ
8
2/256 ⩽ 1.3δ21δ

2
2

(
E

y,y′∼(µ1)
⊗n
yy′

g(y)g(y′)E1(y)E2(y)E1(y
′)E2(y

′) E
x,x′,z|y,y′

f(x)f(x′)
∏

u∈{y,y′,z}

E1(u)E2(u)
)2

⩽ 1.3δ21δ
2
2

(
E

y,y′∼(µ1)
⊗n
yy′

E1(y)E2(y)E1(y
′)E2(y

′)
)

 E
(x,x′,x′′,x′′′,y,y′,z,z′)∼µ⊗n

2

f(x)f(x′)f(x′′)f(x′′′)
∏

u∈{x,x′,x′′,x′′′,y,y′,z,z′}

E1(u)E2(u)

 .

By Lemma 6.1 below (whose proof uses product pseudorandomness of E1 and E2), the �rst term is
bounded by 1.1δ21δ

2
2 . Also, by examining Table 2 we can check that∏

u∈{x,x′,x′′,x′′′,y,y′,z,z′}

E1(u)E2(u) = E1(x)E2(x)E2(x
′)E1(x

′′)E1(y)E1(y
′)E2(z)E2(z

′).

Now de�ne
ω(x, x′, x′′, x′′′) := E

y,y′,z,z′|x,x′,x′′,x′′′
E1(y)E1(y

′)E2(z)E2(z
′),

where the expectation is over (y, y′, z, z′) from µ2 conditioned on x, x′, x′′, x′′′. By Lemma 6.2 below,
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we can write:

α12δ41δ
4
2/2

9 ⩽ E
(x,x′,x′′,x′′′)∼µ⊗n

2

f(x)f(x′)f(x′′)f(x′′′)ω(x, x′, x′′, x′′′)

⩽ δ21δ
2
2 E
(x,x′,x′′,x′′′)∼µ⊗n

2

[
f(x)f(x′)f(x′′)f(x′′′)

]
+ E

(x,x′,x′′,x′′′)∼µ⊗n
2

[
|ω(x, x′, x′′, x′′′)− δ21δ

2
2 |
]

⩽ δ21δ
2
2 E
(x,x′,x′′,x′′′)∼µ⊗n

2

[
f(x)f(x′)f(x′′)f(x′′′)

]
+O((log(1/γ′))−c).

Rearranging this implies the claim in the lemma.

Now we establish the two lemmas that were required for Theorem 4.

Lemma 6.1. It holds that

E
y,y′∼(µ1)

⊗n
yy′

E1(y)E2(y)E1(y
′)E2(y

′) ⩽ δ21δ
2
2 +O((log(1/γ′))−c).

Proof. Write

E
y,y′∼(µ1)

⊗n
yy′

E1(y)E2(y)E1(y
′)E2(y

′) = E
y,y′∼(µ1)

⊗n
yy′

δ1E2(y)E1(y
′)E2(y

′)

+ E
y,y′∼(µ1)

⊗n
yy′

(E1 − δ1)(y)E2(y)E1(y
′)E2(y

′).

We claim that the term on the second line is bounded by O((log(1/γ′))−c). This follows from
Theorem 3 once we verify that the corresponding 4-ary distribution

(π1(y), π2(y), π1(y
′), π2(y

′)) ∈ {0, 1} × {0, 2} × {0, 1} × {0, 2}

for (y, y′) ∼ (µ1)yy′ is pairwise-connected and has connected marginals onto any 3 of the coordinates,
because E1 − δ1 is product pseudorandom. By examining Table 1, (π1(y), π2(y), π1(y

′), π2(y
′)) ∈

{0, 1} × {0, 2} × {0, 1} × {0, 2} has Ω(1) mass on each of

{(0, 0, 0, 0), (1, 0, 1, 0), (0, 2, 0, 2), (0, 2, 1, 0), (1, 0, 0, 2))}.

It can be checked that the projection of the distribution to any 3 coordinates is connected. Now
the lemma follows from repeating the decomposition three more times.

The following lemma proves that ω(x, x′, x′′, x′′′) concentrates around δ21δ
2
2 .

Lemma 6.2. It holds that

E
(x,x′,x′′,x′′′)∼µ⊗n

2

[
|ω(x, x′, x′′, x′′′)− δ21δ

2
2 |
]
⩽ O((log(1/γ′))−c).
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Proof. By Cauchy-Schwarz, it su�ces to bound

E
(x,x′,x′′,x′′′)∼µ⊗n

2

[
|ω(x, x′, x′′, x′′′)− δ21δ

2
2 |2
]

= E
(x,x′,x′′,x′′′)∼µ⊗n

2

[∣∣∣ E
y,y′,z,z′|x,x′,x′′,x′′′

E1(y)E1(y
′)E2(z)E2(z

′)− δ21δ
2
2

∣∣∣2]

= E
(x,x′,x′′,x′′′)∼µ⊗n

2


∣∣∣∣∣ ∑

E1,E
′
1∈{δ1,E1−δ1}

E2,E
′
2∈{δ2,E2−δ2}

(E1,E
′
1,E2,E

′
2 )̸=(δ1,δ1,δ2,δ2)

E
y,y′,z,z′|x,x′,x′′,x′′′

E1(y)E
′
1(y

′)E2(z)E
′
2(z

′)

∣∣∣∣∣
2


⩽ 15max E

x,x′,x′′,x′′′
E

y,y′,y′′,y′′′

z,z′,z′′,z′′′
|x,x′,x′′,x′′′

E1(y)E1(y
′′)E

′
1(y

′)E
′
1(y

′′′)E2(z)E2(z
′′)E

′
2(z

′)E
′
2(z

′′′)

= 15max E
y,y′,y′′,y′′′

z,z′,z′′,z′′′
∼µ⊗n

3

E1(y)E1(y
′′)E

′
1(y

′)E
′
1(y

′′′)E2(z)E2(z
′′)E

′
2(z

′)E
′
2(z

′′′),

where µ3 is the distribution in Table 3. In the previous expression we mean that y, y′, y′′, y′′′ ∈ {0, 1}
and z, z′, z′′, z′′′ ∈ {0, 2} because the y's and z's are in E1 and E2 terms respectively. Also, the max

is over all E1, E
′
1 ∈ {δ1, E1 − δ1} and E2, E

′
2 ∈ {δ2, E2 − δ2}, except for E1 = E

′
1 = δ1 and E2 =

E
′
2 = δ2. Thus, the �rst inequality in the above display follows by expanding E1 = δ1 + (E1 − δ1)

and E2 = δ2 + (E2 − δ2) and applying Cauchy-Schwarz. We consider the case where E1 = E1 − δ1
� the remaining cases are similar.

E
y,y′,y′′,y′′′

z,z′,z′′,z′′′
∼µ⊗n

3

E1(y)E1(y
′′)E

′
1(y

′)E
′
1(y

′′′)E2(z)E2(z
′′)E

′
2(z

′)E
′
2(z

′′′)

⩽ E
y′,y′′′

z,z′,z′′,z′′′
∼µ⊗n

3

∣∣∣∣∣ E
y,y′′|y′,y′′′,z,z′,z′′,z′′′

E1(y)E1(y
′′)

∣∣∣∣∣
⩽

 E
y′,y′′′

z,z′,z′′,z′′′
∼µ⊗n

3

∣∣∣∣∣ E
y,y′′|y′,y′′′,z,z′,z′′,z′′′

E1(y)E1(y
′′)

∣∣∣∣∣
2


1/2

=

 E
y′,y′′′

z,z′,z′′,z′′′
∼µ⊗n

3

E
y,y′′

ỹ,ỹ′′
|y′,y′′′,z,z′,z′′,z′′′

E1(y)E1(y
′′)E1(ỹ)E1(ỹ

′′)


1/2

=

(
E

(y,y′′,ỹ,ỹ′′)∼µ⊗n
4

E1(y)E1(y
′′)E1(ỹ)E1(ỹ

′′)

)1/2

, (6)

for a distribution µ4 over 4-tuples (y, y′′, ỹ, ỹ′′) that has mass Ω(1) on:

{(0, 0, 0, 0), (1, 1, 1, 1), (0, 1, 0, 1), (1, 0, 1, 0), (0, 0, 1, 1), (1, 1, 0, 0)},

which can be seen by inspecting Table 3. Speci�cally, (0, 0, 0, 0), (1, 1, 1, 1), (0, 1, 0, 1), and (1, 0, 1, 0)
come from using rows 1, 2, 9, 10 of Table 3 respectively, and (0, 0, 1, 1), (1, 1, 0, 0) come from com-
bining rows 4 and 6. It can be checked that the projection of the distribution to any 3 coordinates is
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connected and hence satis�es the hypotheses of Theorem 3, and thus the quantity in (6) is bounded
by O((log(1/γ′))−c) because E1 is product pseudorandom. One can check that the marginals of µ2

are all µx due to how the sequence of Cauchy-Schwarz manipulations were applied. This completes
the proof.

6.2 Random Restrictions for a Density Increment

In this subsection we will take random restrictions of (5) to obtain a density increment, for f :=
S′ − αE′

1 ⊠ E′
2. Note that f is nonzero on only about a µ(E′

1 ⊠ E′
2) ≈ δ1δ2 fraction of x. Below

we argue that when we restrict to these x that the measures of S′(x′′′) and E′
1 ⊠ E′

2(x
′′′) are not

a�ected much.

Lemma 6.3. Let µ be the marginal of µ2 onto any of x, x′, x′′, x′′′. Consider S ⊆ E1 ⊠ E2 ⊆ [3]n

such that µ(E1) = δ1, µ(E2) = δ2, such that E1−δ1 and E2−δ2 are (γ′n, γ′) product pseudorandom.

Then ∣∣∣∣∣ E
(x,x′′′)∼µ⊗n

2

[
E1(x)E2(x)S(x

′′′)
]
− δ1δ2µ(S)

∣∣∣∣∣ ⩽ O(log(1/γ′)−c),

and ∣∣∣∣∣ E
(x,x′′′)∼µ⊗n

2

[
E1(x)E2(x)E1(x

′′′)E2(x
′′′)
]
− δ21δ

2
2

∣∣∣∣∣ ⩽ O(log(1/γ′)−c).

Proof. By inspecting µ2, the corresponding distribution (π1(x), π2(x), x
′′′) is supported on

{(0, 0, 0), (1, 0, 1), (0, 2, 2), (0, 0, 2), (0, 2, 0), (1, 0, 0), (0, 0, 1)},

which can easily be seen to be pairwise-connected. Thus the �rst result follows from Theorem 2,
after expanding E1 = δ1 + (E1 − δ1) and E2 = δ2 + (E2 − δ2).

For the second result, the corresponding distribution (π1(x), π2(x), π1(x
′′′), π2(x

′′′)) has support

{(0, 0, 0, 0), (1, 0, 1, 0), (0, 2, 0, 2), (0, 0, 0, 2), (0, 2, 0, 0), (1, 0, 0, 0), (0, 0, 1, 0)},

which is again easily seen to be connected when restricted to any 3 coordinates. Thus the result
follows from Theorem 3 after expanding E1 = δ1 + (E1 − δ1) and E2 = δ2 + (E2 − δ2).

Finally we show how to obtain a density increment if S has no combinatorial lines.

Theorem 5. Let µ denote the uniform distribution on [3]. Let S ⊆ E1 ⊠ E2 ⊆ [3]n such that

µ(E1) = δ1, µ(E2) = δ2, and µ(S) = αµ(E1 ⊠E2). Assume that 1E1 − δ1 and 1E2 − δ2 are (n1/4, γ)
product pseudorandom, and that S has no combinatorial lines. Then there is some S′ ⊆ E′

1 ⊠E′
2 ⊆

[3]n
′
satisfying:

1. n′ ⩾ n1/3,

2. µ(S′) ⩾ (α+Ω(α15))µ(E′
1 ⊠ E′

2) and µ(E′
1 ⊠ E′

2) ⩾ Ω(α12δ1δ2),

3. If S′ has a combinatorial line, then S does too.

Proof. Set τ̃ = cα12 for su�ciently small constant c. Now we apply Lemma 5.7. If Case 1 of
Lemma 5.7 holds, then we are done by the choice of τ̃ . Otherwise, Case 2 holds. In this case we
may apply Theorem 4 to get

E
(x,x′,x′′,x′′′)∼(µ2)⊗n′

[
f(x)f(x′)f(x′′)f(x′′′)

]
⩾ α12δ21δ

2
2/2

10,

18



for f = 1S′ − α1E′
1⊠E′

2
for some µ(S′) ⩾ (α − τ̃)µ(E′

1 ⊠ E′
2). Let ν be uniform over (0, 0, 0, 0),

(0, 2, 0, 2), (0, 0, 1, 1) and write µ2 = βν + (1− β)ν ′ for some β = Ω(1) and a distribution ν ′. Note
that ν is equivalent to (0, π2(y), π1(y), y) for y ∼ [3].

Taking this random restriction gives

E
I∼1−β [n

′]

(z,z′,z′′,z′′′)∼(ν′)⊗I

E
y∼[3]([n

′]\I)

[
fI→z(0)fI→z′(π2(y))fI→z′′(π1(y))fI→z′′′(y)

]
⩾ α12δ21δ

2
2/2

10.

Let E be the event that fI→z(0) ̸= 0, i.e., that π1(z, 0) ∈ E′
1 and π2(z, 0) ∈ E′

2, where by (z, 0) ∈ [3]n
′

we mean that z is assigned to the coordinates in I, and 0 is assigned to the coordinates in I.
Recall that Lemma 4.3 gives us |µ(E′

1 ⊠ E′
2)− δ1δ2| ⩽ O((γ′)c). Thus, conditioning on E and

using |fI→z(0)| ⩽ 1 gives

E
I∼1−β [n

′]

(z,z′,z′′,z′′′)∼(ν′)⊗I

E holds

∣∣∣∣∣ E
y∼[3]([n

′]\I)

[
fI→z′(π2(y))fI→z′′(π1(y))fI→z′′′(y)

]∣∣∣∣∣ ⩾ α12δ1δ2/2
11. (7)

For the following sequence of equations, the �rst equality is by the de�nition of conditioned on
E , the second equality is because µ is the uniform measure, the third equality is by properties of
random restriction, and the �nal inequalities apply Lemma 6.3 and |Pr[E ]− δ1δ2| ⩽ O(γc):

E
I∼1−β [n

′]

(z,z′,z′′,z′′′)∼(ν′)⊗I

E holds

[
µ(S′

I→z′′′)− (α− τ̃ + α12/214)µ((E′
1)I→z′′′ ⊠ (E′

2)I→z′′′)
]

=
1

Pr[E ] E
I∼1−β [n

′]

(z,z′,z′′,z′′′)∼(ν′)⊗I

[
(E′

1)I→z(0)(E
′
2)I→z(0)

(
µ(S′

I→z′′′)− (α− τ̃ + α12/214)µ((E′
1)I→z′′′ ⊠ (E′

2)I→z′′′)
)]

=
1

Pr[E ] E
I∼1−β [n

′]

(z,z′,z′′,z′′′)∼(ν′)⊗I

E
(y,y′,y′′,y′′′)∼ν⊗I

[
(E′

1)I→z(0)(E
′
2)I→z(0)S

′
I→z′′′(y

′′′)

− (α− τ̃ + α12/214)(E′
1)I→z(0)(E

′
2)I→z(0)(E

′
1)I→z′′′(y

′′′)(E′
2)I→z′′′(y

′′′)
)]

=
1

Pr[E ] E
(x,x′′′)∼µ⊗n

2

[
E′

1(x)E
′
2(x)S

′(x′′′)− (α− τ̃ + α12/214)E′
1(x)E

′
2(x)E

′
1(x

′′′)E′
2(x

′′′)
]

⩾ − α12δ1δ2/2
14 −O((log(1/γ′)−c)) ⩾ −α12δ1δ2/2

13.

Looking at the expectation on the left hand side of (7), we observe that the �rst two terms are
analogous to new disjoint products that may be correlated with a restriction of f . Indeed, we note
that as f receives two values in E′

1 ⊠ E′
2, the �rst two terms form a partition of E′

1 ⊠ E′
2 into four

disjoint products, and (7) asserts that f is correlated with this partition.
We now formalize this idea. Note that f(x) ∈ {−α, 0, 1 − α}, with f(x) ̸= 0 if and only if

x ∈ E′
1 ⊠ E′

2. For �xed (z′, z′′) de�ne

F+
1 := {y ∈ {0, 1}[n]\I : fI→z′′(y) = 1− α} and F−

1 := {y ∈ {0, 1}[n]\I : fI→z′′(y) = −α}.

De�ne

F+
2 := {y ∈ {0, 2}[n]\I : fI→z′(y) = 1− α} and F−

2 := {y ∈ {0, 2}[n]\I : fI→z′(y) = −α}.
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By examining µ2 one can check that F+
1 ∪ F−

1 = (E′
1)I→z′′′ an F+

2 ∪ F−
2 = (E′

2)I→z′′′ .
Now the above equation gives us:

E
I∼1−β [n

′]

(z,z′,z′′,z′′′)∼(ν′)⊗I

E holds

E
F1∈{F+

1 ,F−
1 }

F2∈{F+
2 ,F−

2 }

[
µ(S′

I→z′′′ ∩ (F1 ⊠ F2))− (α− τ̃ + α12/214)µ(F1 ⊠ F2)
]

=
1

4
E

I∼1−β [n
′]

(z,z′,z′′,z′′′)∼(ν′)⊗I

E holds

[
µ(S′

I→z′′′)− (α− τ̃ + α12/214)µ((E′
1)I→z′′′ ⊠ (E′

2)I→z′′′)
]

⩾ − α12δ1δ2/2
15. (8)

fI→z′′ is constant on any F1 ∈ {F+
1 , F−

1 }, and we denote its value by fI→z′′(F1). We similarly de�ne
fI→z′(F2). Applying the triangle inequality, and then (7) and Lemma 6.3 gives

E
I∼1−β [n

′]

(z,z′,z′′,z′′′)∼(ν′)⊗I

E holds

E
F1∈{F+

1 ,F−
1 }

F2∈{F+
2 ,F−

2 }

∣∣µ(S′
I→z′′′ ∩ (F1 ⊠ F2))− (α− τ̃ + α12/214)µ(F1 ⊠ F2)

∣∣

⩾ E
I∼1−β [n

′]

(z,z′,z′′,z′′′)∼(ν′)⊗I

E holds

∣∣∣∣∣∣∣∣ E
F1∈{F+

1 ,F−
1 }

F2∈{F+
2 ,F−

2 }

fI→z′(F2)fI→z′′(F1)
(
µ(S′

I→z′′′ ∩ (F1 ⊠ F2))− α · µ(F1 ⊠ F2)
)∣∣∣∣∣∣∣∣

− α12

214
E

I∼1−β [n
′]

(z,z′,z′′,z′′′)∼(ν′)⊗I

E holds

E
F1∈{F+

1 ,F−
1 }

F2∈{F+
2 ,F−

2 }

µ(F1 ⊠ F2)

=
1

4
E

I∼1−β [n
′]

(z,z′,z′′,z′′′)∼(ν′)⊗I

E holds

∣∣∣∣∣ E
y∼[3]([n

′]\I)

[
fI→z′(π2(y))fI→z′′(π1(y))fI→z′′′(y)

]∣∣∣∣∣
− 1

Pr[E ]
· α12/216 · E

(x,x′′′)∼µ⊗n
2

[
E1(x)E2(x)E1(x

′′′)E2(x
′′′)
]

⩾ α12δ1δ2/2
13 − α12δ1δ2/2

15 ⩾ α12δ1δ2/2
14. (9)

Consider the random variable, de�ned on I ∼1−β [n′], (z, z′, z′′, z′′′) ∼ (ν ′)⊗I , and F1 ∈ {F+
1 , F−

1 },
F2 ∈ {F+

2 , F−
2 },

X = µ(S′
I→z′′′ ∩ (F1 ⊠ F2))− (α− τ̃ + α12/214)µ(F1 ⊠ F2).

(8) and (9) together imply that

E[X + |X|] ⩾ −α12δ1δ2/2
15 + α12δ1δ2/2

14 = α12δ1δ2/2
15.

Hence there is a realization of X ⩾ 0 with X = 1
2(X + |X|) ⩾ α12δ1δ2/2

16. By the de�nition of X,
there is some choice of (z, z′, z′′, z′′′) and F1, F2 such that

µ(S′
I→z′′′ ∩ (F1 ⊠ F2)) ⩾ (α− τ̃ + α12/214)µ(F1 ⊠ F2) + Ω(α12δ1δ2).

This implies the conditions because βn′ ≫ n1/3, τ̃ = cα12 for small constant c, and

µ(F1 ⊠ F2) ⩾ µ(S′
I→z′′′ ∩ (F1 ⊠ F2)) ⩾ Ω(α12δ1δ2).
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7 Uniformization

In this section we explain how to start with a subset S ⊆ E1 ⊠ E2 of density α, where E1, E2 are
not necessarily product pseudorandom in the sense of De�nition 3.1, and to reach a situation where
E1, E2 are, without decreasing the measure of S or n by too much. The proof will use two types of
random restrictions: the standard one introduced in De�nition 1.2 as well as one which �xes many
coordinates to take the same value (see De�nition 7.2). Note that applying such restrictions cannot
create new combinatorial lines.

Theorem 6. Let S ⊆ E1⊠E2 ⊆ [3]n with µ(E1⊠E2) = δ and µ(S) ⩾ (α+τ)δ, and 0 < γ < (δτ)10.
There is some n′ ⩾ nexp(−O(δ−1τ−1γ−4)) and S′ ⊆ E′

1 ⊠ E′
2 ⊆ [3]n

′
such that:

1. µ(E′
1 ⊠ E′

2) ⩾ δτ/3.

2. (S′, E′
1, E

′
2) ∈ Structα+τ/2.

3. If S′ contains a combinatorial line, then S does too.

We mimic the proof of the uniformization step in Shkredov's bound for the corners problem
[Shk05,Shk06] (also see [Gre04,Gre05a] for notes from which we borrowed notation). The high level
idea is that if E1 (or E2) is not product function pseudorandom, then we can �partition� [3]n into
smaller sets of the form E′

1⊠E′
2 so that the measures of these E′

1 have higher variance than before.
This process eventually terminates, and we �nd a partition piece under which S still has large enough
density. One step of this process amounts to being able to density increment sets that correlate to
product functions (after random restriction), which was exactly done in [BKLM24a, Section 8].

Now we move towards formally proving Theorem 6. Let ξ be some distribution over triples
(S′, E′

1, E
′
2) with S′ ⊆ E′

1 ⊠ E′
2 ⊆ [3]n

′
for some n′. De�ne the index of ξ to be:

I(ξ) := E
(S′,E′

1,E
′
2)∼ξ

[µ(E′
1)

2 + µ(E′
2)

2].

Note that I(ξ) ⩽ 2 always. The following lemma shows how to perform one round of partitioning.

Lemma 7.1. Let S ⊆ E1 ⊠ E2 ⊆ [3]n where 1E1 − µ(E1) or 1E2 − µ(E2) is not (n1/4, γ) product-

pseudorandom. Then there is a distribution ξ over triples (S′, E′
1, E

′
2) satisfying, for c = 1/1000:

1. S′ ⊆ E′
1 ⊠ E′

2 ⊆ [3]n
′
for n′ ⩾ nc.

2.
∣∣∣E(S′,E′

1,E
′
2)∼ξ[µ(S

′)]− µ(S)
∣∣∣ ⩽ n−c.

3.
∣∣∣E(S′,E′

1,E
′
2)∼ξ[µ(E

′
i)]− µ(Ei)

∣∣∣ ⩽ n−c for i = 1, 2.

4.
∣∣∣E(S′,E′

1,E
′
2)∼ξ[µ(E

′
1 ⊠ E′

2)]− µ(E1 ⊠ E2)
∣∣∣ ⩽ n−c.

5. For all (S′, E′
1, E

′
2) ∈ supp(ξ), if S′ has a combinatorial line, then S does too.

6. (Increment) I(ξ) ⩾ (µ(E1)
2 + µ(E2)

2) + γ4/2.

Condition 1 simply says that the new instances we produce are in a polynomially large num-
ber of dimensions. Conditions 2-4 say that the densities of the objects we care about, namely
S,E1, E2, E1 ⊠E2, only change by a negligible amount. Condition 5 says that if the new instances
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have combinatorial lines, then the original instance did too. Finally, Condition 6 says that the index
of the set has increased.

Beyond standard random restrictions, the proof of Lemma 7.1 also requires another operation
to generate the triples (S′, E′

1, E
′
2) that we increment onto. This operation takes a subset T ⊆ [n]

and forces that xt = xt′ for all t, t
′ ∈ T .

De�nition 7.2. For a function g : [3]n → C and T ⊆ [n], de�ne g=T : [3]n−|T |+1 → C as follows. For
x ∈ [3] and y ∈ [3][n]\T let v ∈ [3]n be the vector where vi = yi for i ∈ [n] \ T and vi = x otherwise.
Then g=T (x, y) := g(v). For disjoint sets T1, . . . , TN we also write g=T1,...,TN

= (. . . (g=T1) . . . )=TN
.

Our next lemma argues that if T is a random subset of S ⊆ [n] of size much smaller than√
|S|, then performing the operation described in De�nition 7.2 does not signi�cantly a�ect the TV

distance on the uniform distribution. This is more or less a special case of [Pol12, Lemma 6.3], but
we provide a proof sketch for this easier case for completeness.

Lemma 7.3. Let ν be the distribution on [3]n over the v vector (as de�ned in De�nition 7.2)

obtained by sampling T ⊆ S, |T | = k and x ∈ [3]n−k+1 uniformly. Then dTV(ν, µ) ⩽ 10k√
|S|

, where µ

is the uniform distribution on [3]n.

Proof. Further let ν ′ to be the distribution where we sample T ⊆ S and set xt = a for all t ∈ T ,
where a is some �xed element of [3]. We will prove that dTV(ν

′, [3]n) ⩽ 10k√
|S|
. When k = 1 the claim

follows by a direct calculation. For k > 1 note that sampling T ⊆ S can be achieved by sampling
T ′ ⊆ S with |T | = k − 1 and then sampling t ∈ S \ T ′ and setting T = T ′ ∪ {t}. Thus the result
follows by induction.

We are now in a position to prove Lemma 7.1.

Proof of Lemma 7.1. We consider the case where 1E1 − µ(E1) is not product pseudorandom � the
case of E2 is similar. Throughout this proof we will use E1(x) in place of 1E1(x) (and similar for
E2, S). De�ne the sets (E1)I→z ⊆ {0, 1}[n]\I and (E1)=T ⊆ {0, 1}n−|T |+1 in the expected way.

Let f := E1 − µ(E1). The �rst step is to take some I ⊆ [n] with |I| ⩽ n− n1/4/2 such that

Pr
z∼µ⊗I

∃{Pi : [3] → C, ∥Pi∥∞ ⩽ 1}i∈I with
∣∣∣ E
x∼µ⊗I

[
fI→z(x)

∏
i∈I

Pi(xi)
]∣∣∣ ⩾ γ

 ⩾ γ,

which is guaranteed to exist because f is not (n1/4, γ) product pseudorandom.
For z ∈ [3]I de�ne S′ = SI→z, E

′
1 = (E1)I→z, E

′
2 = (E2)I→z, and m = n−|I| ⩾ n1/4/2. Relabel

I as [m]. For γ fraction of such z, there are functions P1, . . . , Pm such that:∣∣∣ E
x∼µ⊗m

[
fI→z(x)

m∏
i=1

Pi(xi)
]∣∣∣ ⩾ γ. (10)

We focus on such a z and perform further operations to (S′, E′
1, E

′
2). Let v1, . . . , vm : [3] → R/Z be

such that Pj(x) = e2πivj(x) for all j ∈ [m], x ∈ [3]. Let ζ = 1
72 , and let N = mζ . For x ∈ (R/Z)n let

∥x∥∞ := maxi∈[n] |xi|R/Z. By the Pigeonhole principle, we can �nd disjoint sets S1, . . . , SN of size

|Si| =
√
m/2 such that for every i ∈ [N ] and j, j′ ∈ Si, it holds that ∥vj − vj′∥∞ ⩽ m− 1

6 . Let v be

an arbitrary vector in Si, and let 1 ⩽ ki ⩽ m
1
12 be such that ∥kiv∥∞ ⩽ m− 1

36 � such a ki exists by
Dirichlet approximation.
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Now let Ti be a uniformly random subset of Si of size ki for all i ∈ [N ] and perform the
following sequence of restrictions. For all i ∈ [N ] force that xj = xj′ for all j, j

′ ∈ Ti, and then
uniformly random restrict all coordinates in J := [m] \ (T1 ∪ · · · ∪ TN ). Let P = P1 . . . Pm and
Q = (P=T1,...,TN

)J→u. We will argue that Q is nearly constant. For x, y ∈ [3]N ,

Q(x)−Q(y) = exp
(
2πi

N∑
j=1

∑
t∈Tj

vt(y)
)exp

(
2πi

N∑
j=1

∑
t∈Tj

(vt(x)− vt(y))
)
− 1

 ∏
i∈([m]\∪iTi)

Pi(ui).

For j ∈ [N ] and let v ∈ Tj be such that ∥kjv∥∞ ⩽ m− 1
36 . Then∥∥∥∑

t∈Tj

vt

∥∥∥
∞

⩽ ∥kjv∥∞ +
∑
t∈Tj

∥vt − v∥∞ ⩽ m− 1
36 + kjm

− 1
6 ⩽ 2m− 1

36 .

Combining this with the above yields that |Q(x)−Q(y)| ⩽ 100Nm− 1
36 = 100m− 1

72 .
By Lemma 7.3 we know that

E
T1,...,TN

u∼[3]J

∣∣∣∣∣ E
x∼[3]N

[(fI→z,J→u)=T1,...,TN
(x)Q(x)]

∣∣∣∣∣
⩾

∣∣∣∣∣ E
x∼[3]m

fI→z(x)P (x)

∣∣∣∣∣− 10
∑N

i=1 ki

(
√
m/2)1/2

⩾

∣∣∣∣∣ E
x∼[3]m

fI→z(x)P (x)

∣∣∣∣∣− 10Nm1/12

m1/4/2

⩾ γ −m−1/8.

By using that Q is nearly constant above, the previous inequality becomes:

E
T1,...,TN

u∼[3]J

|µ(((E1)I→z,J→u)=T1,...,TN
)− µ(E1)| ⩾ γ −m−1/8 − 100m−1/72 ⩾ γ − 101m−1/72. (11)

By Lemma 7.3 again we also know that:∣∣∣∣∣∣∣ E
T1,...,TN

u∼[3]J

[µ(((E1)I→z,J→u)=T1,...,TN
)]− µ((E1)I→z)

∣∣∣∣∣∣∣ ⩽ m−1/8. (12)

Finally, de�ne distribution ξ over triples (S′′, E′′
1 , E

′′
2 ) as follows. Let z ∼ [3]I . If z did not satisfy

(10) for any product function P = P1 . . . Pm then set (S′′, E′′
1 , E

′′
2 ) = (S′, E′

1, E
′
2), where recall that

S′ = SI→z, E
′
1 = (E1)I→z, and E′

2 = (E2)I→z. If z satis�es (10) then set S
′′ = (SI→z,J→u)=T1,...,=TN

,
E′′

1 = ((E1)I→z,J→u)=T1,...,=TN
, and E′′

2 = ((E2)I→z,J→u)=T1,...,=TN
for T1, . . . , TN and u sampled as

described above. We verify the conditions 1-6 of the lemma.
Condition 1 follows by construction, as N := m1/72 ⩾ (n1/4/2)1/72 ⩾ n1/300. Conditions 2-4

follow by applications of Lemma 7.3 in the same way as (12). Condition 5 follows by constrction:
restrictions and = T operations can only reduce the number of combinatorial lines.

To see Condition 6, we write

E[µ(E′′
1 )

2] = E
[∣∣∣µ(E′′

1 )− E[µ(E′′
1 )]
∣∣∣2]+ E[µ(E′′

1 )]
2

⩾
(
γ(γ − 101m−1/72)

)2
+ (µ(E1)−m−1/8)2 ⩾ µ(E1)

2 + 0.6γ4,
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where the �rst inequality uses (11) and the fact that a γ fraction of z's satisfy (10), and (11). Also
by Jensen, E[µ(E′′

2 )
2] ⩾ E[µ(E′′

2 )]
2 ⩾ µ(E2)

2 −m−1/8, where we have used Condition 3. Condition
6 follows by combining these.

To prove Theorem 6 we repeatedly apply Lemma 7.1 until the mass of the triples (S′, E′
1, E

′
2)

that are not product pseudorandom is small.

Proof of Theorem 6. Call a triple (S′, E′
1, E

′
2) with S′ ⊆ E′

1 ⊠ E′
2 ⊆ [3]n

′
good if both 1E′

1
− µ(E′

1)

and 1E′
2
− µ(E′

2) are ((n′)1/4, γ) product pseudorandom.

Let ξ(0) have mass 1 on (S,E1, E2). Do the following algorithm: for t ⩾ 0 terminate if

Pr
(S′,E′

1,E
′
2)∼ξ(t)

[(S′, E′
1, E

′
2) is not good] ⩽ δτ/100.

Otherwise, de�ne ξ(t+1) as follows. Sample (S′, E′
1, E

′
2) ∼ ξ(t). If (S′, E′

1, E
′
2) is good, then keep

that mass in ξ(t+1). Otherwise, sample (S′′, E′′
1 , E

′′
2 ) from the distribution guaranteed by Lemma 7.1

and put that mass in ξ(t+1). By Lemma 7.1 we know that I(ξ(t+1)) ⩾ I(ξ(t))+δτγ4/200, and hence
the algorithm terminates within T := O(δ−1τ−1γ−4) steps.

Let n′ = n1000−T
. By applying Lemma 7.1 inductively we know that∣∣∣ E

(S′,E′
1,E

′
2)∼ξ(T )

[µ(S′)]− µ(S)
∣∣∣ ⩽ T/n′ and

∣∣∣ E
(S′,E′

1,E
′
2)∼ξ(T )

[µ(E′
1 ⊠ E′

2)]− µ(E1 ⊠ E2)
∣∣∣ ⩽ T/n′.

Thus we get that for c′ = 1000−T ,

E
(S′,E′

1,E
′
2)∼ξ(T )

[
1(S′,E′

1,E
′
2) good

(
µ(S′)− (α+ τ/2)µ(E′

1 ⊠ E′
2)
)]

⩾ µ(S)− (α+ τ/2)µ(E1 ⊠ E2)− 2Tn−c′ − δτ/100 ⩾ δτ/3,

for our choice of parameters. Thus there is (S′, E′
1, E

′
2) ∈ supp(ξ(T )) that is good, µ(S′) ⩾ (α +

τ/2)µ(E′
1 ⊠ E′

2). For such choice, µ(E′
1 ⊠ E′

2) ⩾ µ(S′) ⩾ δτ/3 as S′ ⊆ E′
1 ⊠ E′

2. Also, S′ ⊆ [3]n
′
,

which concludes the proof.

Proof of Theorem 1. Assume for contradiction that S has no combinatorial line. Initially, for E1 =
{0, 1}n and E2 = {0, 2}n and |S| = α0 · 3n, it holds that (S,E1, E2) ∈ Structα0 . If (S,E1, E2) ∈
Structα for S ⊆ [3]n and δ := µ(E1⊠E2), then applying Theorems 5 and 6 gives a new (S′, E′

1, E
′
2) ∈

Structα+Ω(α15) where S′ ⊆ [3]n
′
, and n′ ⩾ n1000−O(γ−4δ−1α−O(1))

. Also if S′ has a combinatorial line,

then S does too and µ(E′
1 ⊠ E′

2) ⩾ Ω(αO(1))δ.

Thus the process terminates in O(α−15
0 ) steps, and δ = µ(E1 ⊠ E2) ⩾ exp(−α

−O(1)
0 ) through-

out the process. Throughout, we have required that log(1/γ)−c < δO(1), which holds for γ =

exp(− exp(α
−O(1)
0 )). For α0 = (log log log log n)−c for su�ciently small c, the dimension during the

iterative process is always at least

n1000−O(γ−4δ−1α
−O(1)
0 )

⩾ exp((log n)0.999).

This completes the proof.
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