
On White-Box Learning and Public-Key Encryption

Yanyi Liu∗ Noam Mazor† Rafael Pass‡

November 28, 2024

Abstract

We consider a generalization of the Learning With Error problem, referred to as the white-
box learning problem: You are given the code of a sampler that with high probability produces
samples of the form y, f(y) + ϵ where ϵ is small, and f is computable in polynomial-size, and
the computational task consist of outputting a polynomial-size circuit C that with probability,
say, 1/3 over a new sample y′ according to the same distributions, approximates f(y′) (i.e.,
|C(y′)− f(y′)| is small). This problem can be thought of as a generalizing of the Learning with
Error Problem (LWE) from linear functions f to polynomial-size computable functions.

We demonstrate that worst-case hardness of the white-box learning problem, conditioned
on the instances satisfying a notion of computational shallowness (a concept from the study of
Kolmogorov complexity) not only suffices to get public-key encryption, but is also necessary ;
as such, this yields the first problem whose worst-case hardness characterizes the existence of
public-key encryption. Additionally, our results highlights to what extent LWE “overshoots”
the task of public-key encryption.

We complement these results by noting that worst-case hardness of the same problem, but
restricting the learner to only get black-box access to the sampler, characterizes one-way func-
tions.

∗Cornell Tech. E-mail: yl2866@cornell.edu. Research partly supported by NSF CNS-2149305.
†Tel Aviv University. E-mail: noammaz@gmail.com. Research partly supported by NSF CNS-2149305, AFOSR

Award FA9550-23-1-0312 and AFOSR Award FA9550-23-1-0387 and ISF Award 2338/23.
‡Cornell Tech, Technion and Tel Aviv University. E-mail: rafael@cs.cornell.edu. Supported in part by NSF

Award CNS 2149305, AFOSR Award FA9550-23-1-0387, AFOSR Award FA9550-23-1-0312 and AFOSR Award
FA9550-24-1-0267 and ISF Award 2338/23. Any opinions, findings and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect the views of the United States Government, or
the AFOSR.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 195 (2024)

1 Introduction

Public-Key Encryption (PKE) [DH76; RSA78] is one of the most central cryptographic primitives
enabling secure communication on the Internet: it is the primitive that enables entities that have
not physically met to engage in confidential conversations and collaborations.

In contrast to private-key primitives, such as symmetric-key encryption and digital signatures,
that can be securely build from the minimal primitive of one-way functions (and for which many
candidate problems are known), we only know of a handful of candidate hard problems from
which public-key encryption can be constructed. More specifically, these include (a) number-theory
problems based on either factoring [RSA78; Rab79] or discrete logarithms [DH76; ElG84], (b)
coding-theory based problems [McE78], (c) lattice problems as finding shortest/longest vectors in
lattices [AD97; Reg09; BCNHR22], and (d) noisy linear-algebra based problems [Ale03; ABW10].
Out of these, the number-theory based problems can be efficiently solved by quantum algorithms
[Sho99], and the coding-theory, lattice and noisy linear algebra problems are all very related—in
essence, they can all be viewed as different instances of solving noisy systems of linear equations
(on either particular natural distributions, or even in the worst-case, when restricting attention to
systems of equations satisfying the condition that appropriate solutions exist.1

The main purpose of this paper is to provide an assumption that generalizes all these assump-
tions (i.e., is implied by all of them), yet suffices for obtaining secure PKE. Indeed, the main result
of this paper is that hardness of a notion of white-box learning achieves this goal.

White-box Learning Perhaps the most common noisy linear algebra-based assumption is the
hardness of the Learning With Error (LWE) problem [Reg09], which, in essence, stipulates the
hardness of recovering a vector x given A,Ax+ e, where A is a matrix, e is some “small” noise
vector and all arithmetic is modulo some prime p. In more detail, we typically require an stronger
condition: not only that is hard to recover x, but also that it is hard to compute a value “close”
to aTx for a random vector a. In other words, we can think of x as the description of a function
fx(a) = aTx that we are trying to improperly approximately learn given noisy samples—thus the
name “learning with error”.

In fact, there is also a different way to think about the LWE problem that will be useful for our
purposes (which follows from the construction of Regev’s PKE [Reg09]): We are given the code of a
sampler Px that enables providing samples of the form (a, fx(a)+e), and the goal is to approximate
fx(a

′) on a new fresh sample a′ according to the same distribution as a.2 We refer to this alternative
way of thinking of LWE as an instance of (improper) white-box learning, where, more generally, we
are given the code of a sampler P that generates noisy samples of the form (y, f(y)+ϵ) and the goal
is to approximate f(y′) for a fresh sample y′ according to the same distribution, using a polynomial-
size circuit. In essence, this problem is generalizing the LWE problem from (improperly) learning
linear functions from noisy samples, to (improperly) learning a polynomial-size circuit from noisy
samples, and given white-box access to the sampler3; the white-box access feature can be viewed
as a generalization of Valiant classic PAC-learning model [Val84] to a setting where the learner not

1In more detail, we require worst-case hardness to hold when conditioning on instances that define a lattice where
the shortest vector is long compared to amount of noise.

2The reason for this is that givenA,Ax+ e, we can generate noisy samples of fx(a
′) by taking linear combinations.

See [Reg09] and Section 6.1 for more details.
3As we will discuss in more detail later, it is also more general than the LWE problem in the aspect the LWE

sampler has a particular form, but we here may consider more general classes of samplers.

2

only gets random samples, but also gets the code of the sampler.
In more detail, given a sampler circuit P that samples “labeled instances” (y, z) (where we

think of z ∈ N as a, perhaps, noisy label for y), let Comp∆ϵ (P) denote the set of circuits f that with
probability 1− ϵ over (y, z)← P satisfy the property that |z − f(y)| ≤ ∆ (when interpreting both
z and f(z) as elements in N). For a function ∆: {1}∗ → N, let ∆-WBLearn denote the following
learning problem:

• Input: Circuit P ∈ {0, 1}n, with the promise that there exists a circuit Ĉ ∈ {0, 1}n such that

Ĉ ∈ Comp
∆(1n)/n10

n−10 (P).

• Output: Circuit C ∈ Comp
∆(1n)
1/3 (P).4

In other words, we are given a sampler that with very high (1− n−10) probability outputs labelled
samples where the label is very close (∆(1n)/n10) to being correct, and the goal is to, given the
code of the sampler P , simply find a circuit C that with probability 2/3 approximates the label
within ∆(1n) (i.e., with a factor n10 higher error). We use ExactWBLearn to denote ∆-WBLearn
when ∆(1n) = 0.

Hardness of Learning v.s. (Public-Key) Cryptography Roughly speaking, the main result
of this paper will be to show that under certain restrictions on samplers P (which come from the
study of time-bounded Kolmogorov complexity [Kol68; Sol64; Cha69; Ko86; Har83; Sip83] and in
particular the notion of computational depth [AFVMV06]), this generalization of the LWE problem
not only suffices to realize a PKE, but will also be necessary. In more detail, worst-case hardness
of ∆-WBLearn under these conditions will characterize the existence of public-key encryption. As
such, our results yield insight on the extent with which LWE “overshoots” the task of public-key
encryption.

We highlight that we are not the first ones to consider connections between learning-theory and
cryptography; however, as far as we know, all earlier connections were between the hardness of
learning and private-key cryptography (i.e., the notion of one-way functions), as opposed to public-
key cryptography. Indeed, classic results from [KV94; BFKL93] demonstrate the equivalence of
the hardness of a notion of average-case PAC-learning of polynomial-size circuits (i.e., black-box
learning) and one-way functions.5 In contrast, our focus here is on PKE, and instead of considering
black-box learning, we consider white-box learning. An additional difference is that we consider
worst-case hardness, as opposed to average-case hardness, of the learning theory problem. As was
recently shown in [HN23], this issue can be overcome (in the context of characterizing one-way
functions) through the use of a (alternative) notion of computational depth (more details on the
relationship with this work below). To put out result in context, we additionaly show that exactly
the same problem that we demonstrate characterizes PKE, also characterizes one-way functions
once modified to only provide the learner black-box access to the sampler.

4We remark that for efficient algorithms, outputting a circuit that approximates a function f is essentially equiv-
alent to approximating the value of f(y′) on a random sample y′. Indeed, the circuit implementation of an algorithm
for the latter task, is a valid output for the first task.

5And the results of [IL90] can be thought of as characterizing one-way functions through a different type of
learning.

3

1.1 Our Results

Towards explaining our results in more detail, let us first recall the notion of computational
depth [AFVMV06]. Let the t-computational depth of x, denoted cdt(x), be defined as cdt(x) =
Kt(x)−K(x) where K(x) denotes the Kolmogorov complexity of x and Kt denotes the t-bounded
Kolmogorov complexity of x. That is, cdt(x) measures how much more x could be compressed if
the decompression algorithm may be computationally unbounded, as opposed to it running in time
bounded by t(|x|).

We will focus on instances P of the ∆-WBLearn problem having the property that (P, Ĉ) is
“computationally shallow”, where Ĉ is a circuit that agrees with P with high probability: let
∆-WBLearn|CSt denote ∆-WBLearn with the additional promise that cdt(P, Ĉ) ≤ 2 log n.6

Characterizing PKE through Hardness of White-Box Learning Our main results is that
the hardness of this problem characterizes the existence of public-key encryption:

Theorem 1.1. Let ϵ > 0 be a constant and let ∆: {1}∗ → N be an efficiently computable function

such that ∆(1n) ≤ 2n
(1−ϵ)

, and t : N→ N be polynomial such that t(n) ≥ n1+ϵ. Then, following are
equivalent:

• PKE exists.

• ∆-WBLearn|CSt /∈ ioFBPP.

Computational depth is typically thought of as measure of “unnaturality” of strings: strings with
low computational depth are considered “natural” and those with high computational depth are
considered “unnatural”.7 Given this interpretation, our characterization of public key encryption
is thus in terms of the worst-case hardness of white-box learning for “natural” instances.

As far as we know, this thus yields the first problem whose worst-case hardness not only suffices
for public-key encryption (such as e.g., [Reg09]) but also is necessary.

On the Use of Computational Depth We note that Antunes and Fortnow [AF09] elegantly
used computational depth to connect worst-case hardness of a problem when restricting attention to
elements with small computational depth and errorless average-case hardness on sampleable distri-
butions; errorless hardness, however, is not sufficient for cryptographic applications. Nevertheless,
inspired by the work of [AF09], worst-case hardness conditioned on instances with small compu-
tational depth was used in [LP23] (and independently using a variant of this notion in [HN23])
to characterize one-way functions; additionally, an (interactive) variant of such a notion was also
implicitly used in [BLMP23] to characterize key exchange protocols. Our techniques are similar
to those employed in [LP23; BLMP23] but instead of applying them to study the hardness of a
time-bounded Kolmogorov complexity problem (following [LP20]), we here instead apply them to
study a learning theory problem (namely, white-box learning).

6We note that there is nothing special about the constant 2; it can be anything that is strictly larger than 1.
7The reason why low computational depth captures “natural string” is as follows: random strings are known to

have low computational depth; furthermore, known results (c.f. slow growth laws [HN23]) show (at least under de-
randomization assumptions) that one needs to have a long running time to even find a string with high computational
depth. So strings with high computational depth are rare and “hard to find”, which is why they can be thought of
as “unnatural”.

4

We note that learning theory problems conditioned on small computational depth were recently
used in [HN23] to characterize one-way functions, but our techniques here are more similar to [LP23;
BLMP23]. In particular, [HN23] does not actually use the standard notion of computational depth
but instead define a new alternative variant; in contrast, we here rely on just the standard notion.

Relating Exact and Approximate White-Box Learning Note that in Theorem 1.1, the
equivalence hold for any (sufficiently small) choice of ∆, as such we directly get as a corollary the
equivalence of Exact and Approximate White-box Learning:

Corollary 1.2. Let ϵ > 0 be a constant and let ∆: {1}∗ → N be any efficiently computable function

such that ∆(1n) ≤ 2n
(1−ϵ)

, and let t : N → N be any polynomial such that t(n) ≥ n1+ϵ. Then the
following are equivalent:

• ExactWBLearn|CSt /∈ ioFBPP

• ∆-WBLearn|CSt /∈ ioFBPP

Bounded-Degree Learning and LWE While in the ∆-WBLearn problem, we allow the function
we are trying to learn to be any polynomial-size circuit, we may also consider a restricted version of
the problem, denoted ∆-WBLearndq , where we restrict attention to functions that can be computed
by a degree d polynomial, and we assume that arithmetic is now over Zq.

We first remark that our main theorem can next be generalized (basically using padding) to
show that it suffices to use learning of degree-nϵ polynomials to characterize PKE:

Theorem 1.3. Let ϵ > 0 be a constant and let ∆, q : {1}∗ → N be efficiently computable functions

with ∆(1n) ≤ q(1n)/4 and q(1n) ≤ 2n
(1−ϵ)

, and t : N→ N be polynomial such that t(n) ≥ n1+ϵ. The
following are equivalent:

• PKE exists.

• ∆-WBLearn|CSt /∈ ioFBPP.

• ∆-WBLearnnq |CSt /∈ ioFBPP.

• ∆-WBLearnn
ϵ

q |CSt /∈ ioFBPP.

Additionally, as informally discussed above, we note that the hardness of the LWE problem,
implies hardness of the ∆-WBLearn1q problem (i.e., white-box learning of linear functions.)

Lemma 1.4 (Lemma 6.4, informal). Assuming the hardness of LWE, there exists a polynomial t
such that ∆-WBLearn1q |CSt ̸∈ ioFBPP where ∆ = q/4.

Lemma 1.4 thus shows that white-box learning of linear functions is at least as weak an assump-
tion as LWE. At first sight, one would expect that a converse result may also hold due to known
worst-case to average-case reductions for the LWE problem [Reg09; Pei09; BLPRS13] and thus that
LWE is equivalent to white-box learning of linear functions. However, the problem with proving
the converse direction is that the known worst-case to average-case reductions for LWE only work
when the LWE instance defines a lattice where the shortest vector is long compared to amount of
noise. Instances sampled from P may not necessarily satisfy this promise, and thus is it not clear

5

how to use an LWE oracle to generally solving white-box learning of linear functions. Thus, it
would seem that hardness even of just ∆-WBLearn1q |CSt is seemingly a weaker (and therefore more
general) assumption than LWE. (Of course, it may be that a stronger worst-case to average-case
reduction can be established for the LWE problem, in which case equivalence would hold.)

We finally investigate what happens in the regime of “intermediate-degree” polynomials. We
remark that using standard linearization techniques, the constant-degree problem is equivalent to
the case of degree 1:

Lemma 1.5. For every constant d ∈ N, and functions t, q,∆: N→ N, there exist t′, q′,∆′ : N→ N
such that

∆-WBLearndq |CSt ≤p ∆
′-WBLearn1q′ |CSt′ ,

and
∆-WBLearndq ≤p ∆

′-WBLearn1q′ .

Black-box Learning Finally, to put our results in context, we consider the standard PAC learn-
ing model [Val84] where the learner only get access to samples: Let ∆-BBLearn denote identically
the same problem as WBLearn with the exception that the learner gets oracle access (i.e., black-box
access) to the sampler (as opposed to white-box access to the sampler). This notion is equivalent to
the notion of improper ∆-approximate PAC learning for polynomial-size circuits (and when ∆ = 0
to simply improper PAC learning).

As before, let ∆-BBLearn|CSt denote the problem ∆-BBLearn with the additional promise that

cdt(P, Ĉ) ≤ 2 log n, and let ExactBBLearn and ExactBBLearn|CSt to denote ∆-BBLearn and ∆-
BBLearn|CSt when ∆(1n) = 0.

The following theorem can be viewed as the worst-case analog of the classic result of [KV94;
BFKL93] characterizing one-way functions through the hardness of average-case PAC learning.

Theorem 1.6. Let ϵ > 0 be a constant and let ∆: {1}∗ → N be any efficiently computable function

such that ∆(1n) ≤ 2n
(1−ϵ)

, and let t : N → N be any polynomial such that t(n) ≥ n1+ϵ. Then the
following are equivalent:

• One-way function exists

• ∆-BBLearn|CSt /∈ ioFBPP

As mentioned, [HN23] also recently obtained a worst-case characterization of one-way functions
through a learning problem, and using a notion of computational depth. The problems, however,
are somewhat different. As opposed to [HN23], we here consider the standard PAC learning problem
(whereas they consider a more general learning problem), and condition on the standard notion
of low computational depth (whereas they condition on a new notion of low computational depth
that they introduce).8

We remark that our Theorem 1.6 differs from [KV94; BFKL93] not only in the worst-case condi-
tion, but also generalizes those results in the sense that we handle the hardness of ∆-approximate
learning for any ∆. As a consequence, we again get an equivalence of approximate and exact
black-box learning:

8Of course, on a conceptual level, these results are similar; the key point we are trying to make here is that exactly
the same learning problem characterizes either one-way functions or PKE, depending on whether the learner gets
black-box or white-box access to the sampler.

6

Corollary 1.7. Let ϵ > 0 be a constant and let ∆: {1}∗ → N be any efficiently computable function

such that ∆(1n) ≤ 2n
(1−ϵ)

, and let t : N → N be any polynomial such that t(n) ≥ n1+ϵ. Then the
following are equivalent:

• ExactBBLearn|CSt /∈ ioFBPP

• ∆-BBLearn|CSt /∈ ioFBPP

Open Problems We leave as an intriguing open problem the question of whether white-box
learning of polynomial, or even logarithmic-degree polynomials, also can be collapsed down to the
case of constant-degree functions (and thus to linear functions); if this were possible, it would show
that PKE, in essence, inherently requires the structure of the LWE problem.

Additionally, as discussed above, even when just restricting attention to learning linear func-
tions, our learning problem generalizes LWE. It would appear that despite this, cryptographic
applications of LWE (e.g., to obtain fully homomorphic encryption [Gen09; BV14]) nevertheless
may still be possible from this generalized version; we leave an exploration of this for future work.

Finally, it is an intriguing open problem to relate black-box and white-box learning. By our
results, doing so is equivalent to relating public-key and secret-key encryption. We note that
relating black-box and white-box learning is interesting even just for the case of linear functions
(which by our results is equivalent to O(1)-degree polynomials). Indeed, Regev’s construction of a
PKE [Reg09] can be thought of a reduction from black-box learning to white-box learning of linear
functions for a specific distribution; it is possible that a similar reduction may be applicable more
generally.

1.2 Proof Overview

We here provide a detailed proof overview for the proof of Theorem 1.1. For simplicity, we will show
the equivalence between PKE and the worst-case hardness of the exact version, ExactWBLearn|CSt .
We start with the construction of PKE based on the hardness of ExactWBLearn|CSt .

Weak PKE First, we use the well-known fact that a PKE is simply a two-rounds key-agreement
protocol. Moreover, by the Key-agreement Amplification Theorem of Holenstein [Hol06] and an
application of the Goldreich-Levin theorem [GL89], to obtain (full-fledged) PKE, it suffices to obtain
a weak form of two-rounds key-agreemnt, which we simply refer to as Weak PKE defined as follows:
There exist some ϵ = 1/poly such that agreement between A and B happens with probability 1− ϵ.
Security requires that Eve cannot guess the key (output by Alice) with probability better than
1− 20ϵ.

The Weak PKE protocol We will next define the weak PKE protocol. We note that this
construction resembles the universal key-agreement construction from [HKNRR05], but with some
crucial difference that enable our security proof. The parties A and B on input n perform the
following steps:

• Sample random program: A samples a random length λ ∈ [2n], and a random program Π of
length λ.

7

• Run random program: Next, A runs the program Π for at most t(n) steps to get an output, and
interprets the output as a pair of circuits P : {0, 1}r → {0, 1}k×{0, 1}ℓ and C : {0, 1}k → {0, 1}ℓ.
(Think of P as the sampler for a white-box learning instance, and of C as a potential solution
to the problem.) If the output of Π is not a valid encoding of such a pair, A sets P = P0 and
C = C0 for two fixed circuits P0, C0 that always output 0.

• Agreement estimation: A estimates the “agreement probability” of P and C (i.e., checking
whether C indeed is a good solution): it samples n20 random inputs w1, . . . , wn20 for P , and
computes (xi, si) = P (wi). It then lets α̂ = Pri←[n20][C(xi) = si]. If α̂ ≤ 1 − n−9, A reset the
pair (P,C) = (P0, C0).

• First message: A sends (the “sampler”) P to B.

• Second message: B applies P on a random input w, and computes (x, s) = P (w). It then sends
x to A.

• Outputs: A outputs C(x) and Bob outputs s.

Agreement We claim that with probability 1 − 1/n8, Alice and Bob will agree (i.e., the final
outputs are the same). Note that if (P,C) = (P0, C0), Alice and Bob always agree. Moreover, let
α = Pr(x,s)←P (Ur)[C(x) = s]. Then, the probability of Alice and Bob to agree given that Alice uses
(P,C) as the circuits in the protocol, is exactly α. We observe that by the Chernoff bound, the
probability that α̂ is far from α is small, and thus Alice uses (P,C) only when α is larger than
1− n−8.

Security We claim that Eve that can guess s with probability 1 − n−7 can be used to solve
ExactWBLearn|CSt . In more detail, consider such Eve, and let P be an input for ExactWBLearn|CSt .
The idea is to construct an algorithm Learner, that on input P outputs a circuit C, such that C(x)
simply simulates Eve on the messages P and x. C then outputs Eve’s output. For simplicity, in
the following we assume that Eve (and thus Learner) is deterministic. (We note that this is a non-
black-box reduction: We are using the code of Eve to generate C—in particular, we are including
the code of Eve into this circuit.9)

Let P be a random variable distributed according to the same distribution of the first message
in the above protocol. By assumption, we have that

Pr
[
C ′ = Learner(P); (x, s)← P(Ur);C

′(x) = s
]
≥ 1− n−7.

It follows by a simple averaging argument that

Pr
P,C′=Learner(P)

[
Pr
w

[
(x, s)← P(w);C ′(x) = s

]
≥ 2/3

]
≥ 1− 3n−7.

Namely, Learner solves ExactWBLearn with probability at least 1− 3n−7 over the distribution of P.
We next use ideas from [LP23; BLMP23] to show this implies that Learner solves ExactWBLearn|CSt
in the worst case.

9This particular non-black usage of Eve is not inherent. We could have considered a different formalization of the
learning theory problem which simply requires the attacker to succeed on a randomly sampled instance. Subsequent
parts of the argument, however, will use non-black-box access to Eve more inherently.

8

Indeed, assume that Learner fails on some instance P of ExactWBLearn|CSt . By the promise

of the problem, there exists a circuit Ĉ such that cdt(P, Ĉ) ≤ 2 log n, and Ĉ agrees with P with
probability at least 1 − n−10. Let ℓ = Kt(P, Ĉ). Our goal is to show that K(P, Ĉ) < ℓ − 2 log n,
which is a contradiction.

Toward this goal, let Let Sℓ be the set of all pairs of circuits (P ′, Ĉ ′) with Kt(P ′, Ĉ ′) = ℓ that
agree with probability at least 1 − n−10, and on which Learner fails, so that (P, Ĉ) ∈ Sℓ. Fix

(P ′, Ĉ ′) ∈ Sℓ, and let Π be the length ℓ program that outputs (P ′, Ĉ ′) in time t. Observe that the

probability of A to sample (P ′, Ĉ ′) in the first step of the above protocol is at least its probability to

sample the program Π, which is 1/2n · 2−ℓ. Since (P ′, Ĉ ′) agree with high probability, the equality
test it the third step of the protocol will pass with high probability, and thus A will send P ′ to B
with probability at least 1/4n · 2−ℓ. In other words,

Pr
[
P = P ′

]
≥ 1/4n · 2−ℓ

for every (P ′, Ĉ ′) ∈ Sℓ, and thus

Pr[(P, ·) ∈ Sℓ] ≥ |Sℓ| · 1/4n · 2−ℓ

(here we say that (P, ·) ∈ Sℓ if there is some C such that (P,C) ∈ Sℓ).
On the other hand, by definition of Sℓ, Learner fails on every (P ′, Ĉ ′) ∈ Sℓ. Since Learner fails

with probability at most 3n−7 on P, it must holds that

3n−7 ≥ Pr[(P, ·) ∈ Sℓ].

Combining the above, we get that
|Sℓ| ≤ 12n−6 · 2ℓ.

We can now use the bound on Sℓ to bound the Kolmogorov complexity of (P, Ĉ). To describe
(P, Ĉ), it is enough to describe the set Sℓ, and the index of the pair (P, Ĉ) in this set. That is,

K(P, Ĉ) ≤ K(Sℓ) + log|Sℓ|+O(log log n) ≤ K(Sℓ) + ℓ− 6 log n+O(log log n).

We conclude the proof with the observation that to describe Sℓ it is enough to describe n (which
can be done using log n + O(log log n) bits), ℓ (log n bits) and Eve (that can be described with
constant many bits10). Thus, K(Sℓ) ≤ 3 log n, and we get that

K(P, Ĉ) < ℓ− 2 log n,

as we wanted to show.

Hardness of ExactWBLearn|CSt from PKE. We next show that the existence of PKE implies the
hardness of ExactWBLearn|CSt . We now sketch the proof. Let Gen be the algorithm the generate pair
(pk, sk) of public and secret key, and let Enc,Dec be the encryption and decryption protocols. For
a random pair of keys (pk, sk)← Gen(r), we construct two circuits, P (w, s) = (x = Encpk(s;w), s),

and Ĉ(x) = Decsk(x).

10This non-black-box usage of Eve (which is taken from [LP23; BLMP23]) is seemingly inherent to our proof
technique. Note that we are here relying on the fact that Eve is a uniform algorithm, but as we discuss in the formal
section, the argument can be extended to work also in the non-uniform setting.

9

By the security of the PKE scheme, it follows that with high probability over the randomness of
Gen, it is hard to learn the function of C, as the circuit P only uses the public key, and the function
C computes is the decryption of a random encryption. This already implies that ExactWBLearn is
hard, but we still need to show that P is inside the promise of the problem ExactWBLearn|CSt .

It follows by the correctness of the PKE scheme that Ĉ computes the function that is sampled
by P . Thus, to be in the promise of ExactWBLearn|CSt , we only need that (P, Ĉ) has small com-

putational depth. This, however, is not necessarily the case. To solve this, we simply pad Ĉ with
the randomness used by Gen. That is, we let Ĉ ′ be a functionally equivalent circuit to Ĉ, with
r encoded to it, where r is such that Gen(r) = (pk, sk). It follows that when t is large enough,

Kt(P, Ĉ ′) ≤ |r| + O(1) (as we can describe them by simply describing the randomness and the

algorithm Gen). On the other hand, K(P, Ĉ ′) ≥ K(r) (since r can be obtained from Ĉ ′), which is
at least |r|−O(1) with high probability. Together, we conclude that with high probability over the

randomness of Gen, the circuits (P, Ĉ ′) are in the promise of ExactWBLearn|CSt .

Comparison with [BLMP23] We remark that at a high-level, our construction of a two-
message key-agreement protocol shares many similaries with the key-agreement protocol developing
in [BLMP23], relying on the hardness of an interactive notion of time-bounded Kolmogorov com-
plexity, conditionned on an analog of computational shallowness. They central difference is that
the protocol in [BLMP23] requires at least 3 rounds due to the use of an equility check protocol
to determine whether Alice and Bob managed to agree on a key. In contrast, our protocol does
not rely on such an equality check step (and thus it can be executed in only two rounds, which
is crucial to get PKE); indeed, we replaced the equality protocol with a step where Alice on her
own can determine whether the message she sends will enable agreement to happen. Of course, the
reason why we can do this is that we are reducing security from a different problem.

Other features of the protocol are quite similar; this is because we also rely on the worst-case
hardness of a problem “conditioning on computationally shallow instances”. Indeed, as described
above, our security proof shares many features with those of [LP20; BLMP23].

Comparison with Universal Constructions Universal constructions of PKE are known (see
[HKNRR05]); that is, constructions having the property that they are secure if (any) PKE exist.
We emphasize that while the details of the protocol from [HKNRR05] are somewhat different, the
“agreement estimation” step performed there is very similar to what we do. Furthermore, we can
interpret our protocol as an alternative (variant) universal PKE protocol in which Alice chooses
a random (key-generation) program Gen and executes it to get an encryption scheme Encpk and
description scheme Decsk, with the keys pk, sk hardcoded to the scheme.11 Alice then estimates
the agreement probability of the encryption, and if it is high enough, she sends the encryption
scheme as the public-key, and uses the decryption scheme as the private-key. If PKE exists, with a
noticeable probability over the choice of Gen, this scheme will be secure. We emphasize that since
we base the security of our protocol (and thus also the above universal one) on the hardness of
the white-box learning problem, it enables an approach for measuring the concrete security of the
protocol by relating it to the security of the learning theory problem.

11In the protocol of [HKNRR05], Alice would instead choose random programs for Alice and Bob to run; we do
not know how to prove the security of such a protocol under our assumption.

10

2 Preliminaries

2.1 Notations

All logarithms are taken in base 2. We use calligraphic letters to denote sets and distributions,
bold uppercase for random variables, and lowercase for values and functions. Let poly stand for
the set of all polynomials. Let ppt stand for probabilistic poly-time, and n.u.-poly-time stand for
non-uniform poly-time. An n.u.-poly-time algorithm A is equipped with a (fixed) poly-size advice
string set {zn}n∈N (that we typically omit from the notation), and we let An stand for A equipped
with the advice zn (used for inputs of length n). For a randomized algorithm A, we denote by A(·; r)
the algorithm A with fixed randomness r ∈ {0, 1}∗. Let neg stand for a negligible function. Given
a vector v ∈ Σn, let vi denote its i

th entry, let v<i = (v1, . . . , vi−1) and v≤i = (v1, . . . , vi). Similarly,
for a set I ⊆ [n], let vI be the ordered sequence (vi)i∈I . For x, y ∈ {0, 1}∗, we use x||y to denote
the concatenation of x and y. For a set S ⊆ {0, 1}∗, we use S||y to denote the set {x||y : x ∈ S}.

2.2 Distributions and Random Variables

When unambiguous, we will naturally view a random variable as its marginal distribution. The
support of a finite distribution P is defined by Supp(P) := {x : PrP [x] > 0}. For a (discrete)
distribution P, let x ← P denote that x was sampled according to P. Similarly, for a set S, let
x ← S denote that x is drawn uniformly from S. For m ∈ N, we use Um to denote a uniform
random variable over {0, 1}m (that is independent from other random variables in consideration).
The statistical distance (also known as, variation distance) of two distributions P and Q over a
discrete domain X is defined by SD(P,Q) := maxS⊆X |P(S)−Q(S)| = 1

2

∑
x∈S |P(x)−Q(x)|.

The following lemma is proven in Appendix A.

Lemma 2.1. There exists an efficient oracle-aided algorithm A such that the following holds. Let
(X,Y) be a pair of jointly distributed random variables over {0, 1}∗×{0, 1}n, and let R be a uniform
independent random variable over {0, 1}n. Let E be an algorithm such that Pr[E(X,R) = ⟨Y,R⟩] ≥
1− ϵ, for 0 ≤ ϵ. Then Pr

[
AE(1n,X) = Y

]
≥ 1− 8ϵ− neg(n).

2.3 Circuits

In this paper we consider circuits over the De-Morgan Basis, which contains the following gates: ∧
(“and” gate with fan-in 2), ∨ (“or” gate with fan-in 2), and ¬ (“not” gate with fan-in one). The
size of a circuit C, is the number of gates in C.

We consider encoding of a circuit as a string over {0, 1}∗ in the following natural way: Given
a circuit C, we first encode the length of C using a prefix-free encoding, and then for every gate
g, according to a topological order, we encode its type (input, output, ∧,∨, or ¬), and the (up to
two) gates wired into g.

Observe that every circuit C of size s can be encoded to a string of length O(s log s). Moreover,
given the encoding and an input x to C, C(x) can be computed efficiently (in polynomial time in
the encoding length).

We identify a string in {0, 1}∗ with the circuit it encodes. For example, for C ∈ {0, 1}n we use
C(x) to denote the value of the circuit encoded by C applied on the input x. We denote by |C| the
length of the encoding of C.

11

Finally, by encoding first the size of C, we assume that for every encoding of a circuit C, and
for every z ∈ {0, 1}∗, the string C||z encodes the same circuit as C.12

2.4 Entropy

For a random variable X, let H(X) = E[log 1
Pr[X=x]] denote the (Shannon) entropy of X, and let

H∞(X) = minx∈Supp(X) log
1

Pr[X=x] denote the min-entropy of X.

min
x∈Supp(X)

log
1

Pr[X = x]
.

For a random variable X and an event E, we use H∞(X | E) to denote the min-entropy of the
distribution X|E . We will use the following facts.

Fact 2.2. Let X and Y be independent random variables. Then H∞(X,Y) = H∞(X) + H∞(Y).

2.5 Complexity Classes

We define the complexity classes FBPP and ioP/poly.

Definition 2.3 (Infinitely-often FBPP (ioFBPP)). A binary relation R ⊆ {0, 1}∗ × {0, 1}∗ is in
ioFBPP if there exists ppt algorithms A such that the following holds for infinitely many n’s:

For every x ∈ {0, 1}n such that there exists y ∈ {0, 1}∗ with (x, y) ∈ R,

Pr
[
(x,A(x, 1k)) ∈ R

]
≥ 1− 1/k,

for every k > 0. R is in ioP/poly if the above holds with respect to n.u. − poly − time algorithms
A.

2.6 One-Way Function

Definition 2.4 (One-way function). A polynomial-time computable function f : {0, 1}∗ → {0, 1}∗
is called a one-way function if for every polynomial-time algorithm A,

Pr
x←{0,1}n

[
A(1n, f(x)) ∈ f−1(f(x))

]
= neg(n)

Definition 2.5 (Weak one-way function). Let m ∈ poly be a polynomial-time computable function.
A polynomial-time computable function f : {0, 1}m(n) → {0, 1}∗ is called α-weak one-way function
if for every polynomial-time algorithm A, for every large enough n,

Pr
x←{0,1}m(n)

[
A(1n, f(x)) ∈ f−1(f(x))

]
≤ 1− α(n)

f is a weak one-way function if it is 1/p-weak one way function, for some p ∈ poly.

Theorem 2.6 (Weak to strong OWFs, [Yao82]). One-way functions exist if and only if weak-one
way functions exist.

12We actually only use the fact that we can encode z into the circuit. This can be done by adding dummy gates
that do not change the output of C, where each gate gi is either ∧ or ∨ according to the ith bit of z.

12

2.7 Public-Key Encryption

Definition 2.7 (Public-key encryption scheme (PKE)). A triplet of randomized, efficiently com-
putable functions (Gen,Enc,Dec) is a (α(n), β(n))-public-key encryption scheme (PKE) if the follow-
ing holds:

• Correctness: For every large enough n ∈ N and any m ∈ {0, 1},

Pr
(sk,pk)←Gen(1n)

[Dec(sk,Enc(pk,m)) = m] ≥ 1− α(n)

• Security: For every PPT Eve, for every large enough n ∈ N,

Pr
(sk,pk)←Gen(1n),m←{0,1}

[Eve(pk,Enc(pk,m)) = m] ≤ 1/2 + β(n).

Such a scheme is a PKE if it is (1/nc, 1/nc)-PKE for every c ∈ N.

The following lemma shows that it is possible to amplify an 1-bit weak key-agreement protocol
into a key-agreement. This lemma is a simple case of the more general result of Holenstein [Hol06].

Lemma 2.8 (PKE amplification, [Hol06]). The following holds for every constants c1 > c2. Assume
there exists an (n−c1 , 1/2− n−c2)-PKE. Then, there exists a PKE.

We also define weak-PKE.

Definition 2.9 (Weak Public-key encryption scheme (weak-PKE)). For an efficiently computable
function d : {1}∗ → N, a triplet of randomized, efficiently computable functions (Gen,Enc,Dec) is a
(α(n), β(n), γ(n))-weak-public-key encryption scheme (weak-PKE) if the following holds:

• For every n ∈ N, given pk and randomness r, Enc(pk; r) outputs a message m(pk; r) and an
output o(pk; r) ∈ N.

• Correctness: For every large enough n ∈ N

Pr
(sk,pk)←Gen(1n),r

[|Dec(sk,m(pk, r))− o(pk, r)| ≤ d(1n)] ≥ 1− α(n)

• Security: For every PPT Eve, for every large enough n ∈ N,

Pr
(sk,pk)←Gen(1n),r

[|Eve(pk,m(pk, r))− o(pk, r)| ≤ γ(n) · d(1n)] ≤ β(n).

We prove the following lemma, stating that weak-PKE can be used to construct PKE.

Lemma 2.10 (Weak-PKE amplification). The following holds for every constants c1 > c2. Assume
there exists an (n−c1/2, 1− 10n−c2 , 2nc1)-weak-PKE. Then, there exists a PKE.

Proof. Let (Gen,Enc,Dec) be a (n−c1/2, 1 − 10n−c2 , 2nc1)-weak-PKE with parameter d. Consider
a scheme (Gen′,Enc′,Dec′) where Gen′ is identical to Gen, and Enc′, Dec′ defined as follows:

13

• Given a pk, a bit b to encrypt and randomness r, Enc′ first executes Enc to get m(pk, r) and
o(pk, r). Then Enc′ chooses a random shift σ ← [0, 2nc1d(1n)] and a random vector v ← {0, 1}ℓ,
where ℓ is (an upper bound on) the length of the bit representation of o(pk, r). It then computes

ô =
⌈
o(pk,r)+σ
2nc1d(1n)

⌉
, and outputs (m(pk, r), σ, v, ⟨v, ô⟩ ⊕ b).

• Let Dec′ be the algorithm that given sk and (m,σ, v, c), first executes Dec(sk,m) to get a number

o′, and then outputs ⟨
⌈

o′+σ
2nc1d(1n)

⌉
⟩ ⊕ c).

We next show that (Gen′,Enc′,Dec′) is an (1−n−c1 , 1/2−n−c2)-PKE, which implies the lemma by
Lemma 2.8.

For correctness, it is enough to show that
⌈

o′+σ
2nc1d(1n)

⌉
is equal to

⌈
o(pk,r)+σ
2nc1d(1n)

⌉
with high proba-

bility. Let O,O′ be the values of the o(pk, r) and o′ in a random execution of the above protocol.
Recall that by the correctness of (Gen,Enc,Dec), it holds that Pr[|O−O′| ≤ d(1n)] ≥ 1− n−c1/2.
Moreover, for any two numbers O,O′ such that |O −O′| ≤ d(1n), it holds that

Pr
σ

[⌈
O + σ

2nc1d(1n)

⌉
̸=

⌈
O′ + σ

2nc1d(1n)

⌉]
≤ n−c1/2.

Indeed, assume without loss of generality that O ≤ O′,

Pr
σ

[⌈
O + σ

2nc1d(1n)

⌉
̸=

⌈
O′ + σ

2nc1d(1n)

⌉]
≤ Pr

σ

[⌈
O + σ

2nc1d(1n)

⌉
̸=

⌈
O + d(1n) + σ

2nc1d(1n)

⌉]
= Pr

σ

[⌈
σ

2nc1d(1n)

⌉
̸=

⌈
d(1n) + σ

2nc1d(1n)

⌉]
≤ d(1n)/2nc1d(1n) = n−c1/2.

Thus we conclude that Pr[O = O′] ≥ 1− nc1 .

For security, assume there exists an ppt algorithm Eve that given (m(pk, r), σ, v, ⟨v,
⌈
o(pk,r)+σ
2nc1d(1n)

⌉
⟩⊕

b) can guess the value of b with probability 1 − n−c2 . Then, there exists an algorithm Eve′ that

can guess the value of ⟨v,
⌈
o(pk,r)+σ
2nc1d(1n)

⌉
⟩ with the same probability. By Lemma 2.1, such an algorithm

Eve′ can be used to output w =
⌈
o(pk,r)+σ
2nc1d(1n)

⌉
with probability 1− 10n−c2 (given m(pk, r), σ). Since

w · (2nc1d)−σ is an approximation of o(pk, r) within distance at most 2nc1d(1n), we get that there
exists an efficient algorithm, that breaks the assumed security of (Gen,Enc,Dec). □

2.8 Kolmogorov Complexity and Computational Depth

Roughly speaking, the t-time-bounded Kolmogorov complexity, Kt(x), of a string x ∈ {0, 1}∗ is
the length of the shortest program Π = (M,y) such that, when simulated by an universal Turing
machine, Π outputs x in t(|x|) steps. Here, a program Π is simply a pair of a Turing Machine M
and an input y, where the output of P is defined as the output of M(y). When there is no running
time bound (i.e., the program can run in an arbitrary number of steps), we obtain the notion of
Kolmogorov complexity.

In the following, fix universal TM U with polynomial simulation overhead, and let U(Π, 1t)
denote the output of Π when emulated on U for t steps. We now define the notion of Kolmogorov
complexity with respect to the universal TM U.

14

Definition 2.11. Let t be a polynomial. For all x ∈ {0, 1}∗, define the t-bounded Kolmogorov
complexity of x

Kt(x) = min
Π∈{0,1}∗

{|Π| : U(Π, 1t(|x|)) = x}

where |Π| is referred to as the description length of Π. When there is no time bound, the Kolmogorov
complexity of x is defined as

K(x) = min
Π∈{0,1}∗

{|Π| : ∃t ∈ NU(Π, 1t) = x}.

The computational depth of x [AFVMV06], denoted by cdt,∞(x), is defined to be

cdt,∞(x) = Kt(x)−K(x).

We use K(x, y) to denote the Kolmogorov complexity of some generic self-delimiting encoding
of the pair x, y. Recall that we use K(x||y) to denote the complexity of the concatenation of x and
y. We will use the following well-known fact:

Fact 2.12. For every x, y ∈ {0, 1}∗,

K(x, y) ≤ K(x) + K(y) + log(K(x)) + 2 log log(K(x)) +O(1).

We will also use the following bound on the Kolmogorov complexity of strings sampled from
distributions with high min-entropy.

Lemma 2.13. For every n ∈ N, and every distribution D, it holds that

Pr
x←D

[K(x) ≥ H∞(D)− log n] ≥ 1− 1/n.

Proof. There are at most 2H∞(D)−logn strings x with K(x) < H∞(D)− log n. Thus,

Pr
x←D

[K(x) < H∞(D)− log n] ≤ 2H∞(D)−logn · 2−H∞(D) = 1/n.

□

We will also use the well-known Chernoff bound in our proof.

Fact 2.14 (Hoeffding’s inequality). Let A1, ...,An be independent random variables s.t. Ai ∈
{0, 1}. Let Â = 1/n · Σn

i=1Ai and µ = E
[
Â
]
. For every ϵ ∈ [0, 1] it holds that:

Pr
[∣∣∣Â− µ

∣∣∣ ≥ ϵ
]
≤ 2 · e−ϵ2·n.

3 White-Box Distributional Learning

Let P : {0, 1}r → {0, 1}k × {0, 1}ℓ be a circuit that, given r bits of randomness, samples labeled
instances (x, s). In the following we view s as a binary representation of a number in N (and
respectively all the operations below are over N, and we use |·| to denote the absolute value). We
define the set of all circuits that approximate P with high probability,

Comp∆ϵ (P) =

{
C : {0, 1}k → {0, 1}ℓ : Pr

(x,s)←P (Ur)
[|C(x)− s| ≤ ∆] ≥ 1− ϵ

}
.

We define the following white-box learning problem WBLearn:

15

Definition 3.1 (∆-WBLearn). For a function ∆: {1}∗ → N, let ∆-WBLearn be the following
learning problem:

• Input: Circuit P ∈ {0, 1}n, with the promise that there exists a circuit Ĉ ∈ {0, 1}n such that

Ĉ ∈ Comp
∆(1n)/n10

n−10 (P).

• Output: Circuit C ∈ Comp
∆(1n)
1/3 (P)

In this work we are focusing on inputs P for which the circuit Ĉ that agree with P with high
probability, is such that the description of Ĉ and P is computational shallow. Formally, for a
time function t : N→ N, we denote by ∆-WBLearn|CSt the problem ∆-WBLearn with the additional

promise that cdt(P, Ĉ) ≤ 2 log n.
We use ExactWBLearn and ExactWBLearn|CSt to denote ∆-WBLearn and ∆-WBLearn|CSt when

∆(1n) = 0. Note that ExactWBLearn and ∆-WBLearn|CSt are incomparable: While in ∆-WBLearn|CSt
we only need to find a circuit that approximates P , the promise in ExactWBLearn is stronger. Yet,
there is a simple reduction from ExactWBLearn to ∆-WBLearn|CSt .

Lemma 3.2. For every ∆: {1}∗ → N such that ∆ ∈ 2o(n/ logn), it holds that

ExactWBLearn ≤p ∆-WBLearn.

Similarly, for any such ∆ and a function t : N→ N, there exists t′ : N→ N, such that

ExactWBLearn|CSt ≤p ∆-WBLearn|
CSt

′ .

Proof. We start with the first reduction ExactWBLearn ≤p ∆-WBLearn. Given a circuit P : {0, 1}r →
{0, 1}k×{0, 1}ℓ of length n, the reduction outputs a circuit P ′ : {0, 1}r → {0, 1}k×{0, 1}ℓ+n, which
is equivalent to P , with additional n output gates that always output 0. That is, P ′(w) = (x, s′),
where P (w) = (x, s) and s′ = 2n · s. As we only added n gates to P , P ′ can be encoded using
O(n log n) bits. Using padding we assume that |P ′| ∈ Θ(n log n).

For correctness, observe that if there exists Ĉ ∈ Comp0n−10(P), then there exists such Ĉ ′ ∈
Comp0n−10(P ′) (where Ĉ ′ is defined similarly to P ′ using Ĉ). Moreover, an approximation of the
output s′ of P ′ within a distance of 2n/4 is equivalent to the exact output s of P . Indeed, given
an 2n/4-approximation of s′ we can find s by simply dividing s′ by 2n and rounding to the closest
integer.

Finally, to see the second reduction, it is enough to show that cdt
′
(P ′, Ĉ ′) ≤ 2 log|P ′|. Since

P ′, Ĉ ′ can be efficiently constructed given P, Ĉ, and similarly P, Ĉ can be efficiently constructed
given P ′, Ĉ ′, it holds that for large enough (polynomial time t′, cdt

′
(P ′, Ĉ ′) ≤ cdt(P, Ĉ) + O(1) ≤

2 log n+O(1) ≤ 2 log n+ 2 log log n ≤ 2 log|P ′|. □

We prove the following theorem.

Theorem 3.3. Let ϵ > 0 be a constant and let ∆: {1}∗ → N be any efficiently computable function

such that ∆(1n) ≤ 2n
(1−ϵ)

, and let t : N → N be any polynomial such that t(n) ≥ n1+ϵ. Then the
following are equivalent:

• PKE exists

16

• ∆-WBLearn|CSt /∈ ioFBPP

As a corollary, we get a result of independent interest relating exact and approximate white-box
learning:

Corollary 3.4. Let ϵ > 0 be a constant and let ∆: {1}∗ → N be any efficiently computable function

such that ∆(1n) ≤ 2n
(1−ϵ)

, and let t : N → N be any polynomial such that t(n) ≥ n1+ϵ. Then the
following are equivalent:

• ExactWBLearn|CSt /∈ ioFBPP

• ∆-WBLearn|CSt /∈ ioFBPP

Theorem 3.3 follows by Theorems 4.1 and 5.1 which are stated and proven in Sections 4 and 5.

4 Worst-Case hardness of ∆-WBLearn|CSt =⇒ PKE

In this section we prove the following theorem, that states that the worst-case hardness ofWBLearn|Qt

implies the existence of public-key encryption scheme.

Theorem 4.1. Let t(n) be a polynomial and ∆: {1}∗ → N an efficiently computable function.
Then if ∆-WBLearn|CSt /∈ ioFBPP, PKE exist.

In the following, let C0 : {0, 1} → {0, 1} be the circuit that always outputs 0, and P0 : {0, 1} →
{0, 1} × {0, 1} be the circuit that always outputs (0, 0).

To prove the above theorem, fix t = t(n) and ∆ = ∆(1n), and consider the following scheme
(Gen,Enc,Dec):

Algorithm 4.2 (Gen).

Parameter: function t : N→ N.
Input: 1n.

Operation:

1. Sample λ← [3n] and Π← {0, 1}λ.

2. Run Π for t(2n) steps to get circuits C : {0, 1}k → {0, 1}ℓ, P : {0, 1}r → {0, 1}k × {0, 1}ℓ for
some k, r, ℓ. If the output of Π is not two such circuits, set C = C0, P = P0, r = k = ℓ = 1.

3. Randomly sample (x1, s1), . . . , (xn20 , sn20)← P (Ur), and compute α̂ = Pri←[n20]

[
|C(xi)− si| ≤ ∆(1n)/n10

]
.

If α̂ < 1− 2n−8, reset C = C0 and P = P0.

4. Output (k, ℓ, C) as the secret key, and (r, k, ℓ, P) as the public key.
. .

Algorithm 4.3 (Enc).

Input: public-key (r ∈ N, k ∈ N, ℓ ∈ N, P : {0, 1}r → {0, 1}k × {0, 1}ℓ).
Operation:

17

1. Sample randomness z ← {0, 1}r.

2. Compute P (z) to get (x, s).

3. Output m = x and o = s.
. .

Algorithm 4.4 (Dec).

Input: secret-key (k ∈ N, ℓ ∈ N, C : {0, 1}k → {0, 1}), cipher x ∈ {0, 1}k.
Operation:

1. Compute C(x) = s′.

2. Output s′.
. .

Observe that the size of the circuits C and P sampled by Gen(1n) is at most t(2n). Thus,
all of the above algorithms can be implemented efficiently. Below we bound the correctness and
the security of the above scheme. For every n ∈ N, let (Kn,Ln,Cn) and (Rn,Kn,Ln,Pn) be
the random variables distributed according to the secret and public keys (k, ℓ, C), (r, k, ℓ, P) in a
random execution of Gen(1n). Let Mn and On be the output of Enc(Rn,Kn,Ln,Pn) in a random
execution.

4.1 Correctness

We start by analyzing the correctness probability of the scheme.

Lemma 4.5. For every n ∈ N, it holds that

Pr
[
|Dec((Kn,Ln,Cn),Mn)−On| ≤ ∆(1n)/n10

]
≥ 1− n−7.

To prove Lemma 4.5 we will use the following simple claim, which is immediate from the
Hoffeding bound.

Claim 4.6. Let C : {0, 1}k → {0, 1}ℓ and P : {0, 1}r → {0, 1}k × {0, 1}ℓ be two circuits. Let A be
a random variable distributed according to the following process:

Sample (x1, s1) . . . , s(xn20 , sn20)← P (Ur), and let A = Pri←[n20][|C(xi)− si| ≤ ∆].

Let µ = Pr(x,s)←P (Ur)[|C(x)− s| ≤ ∆]. Then Pr
[
|A− µ| ≥ n−9

]
≤ 2−n.

Proof. Immediate by Fact 2.14. □

Proof of Lemma 4.5. When Gen(1n) outputs C0 and P0, the scheme has perfect correctness. More-
over, when the secret and public key are (k, ℓ, C) and (r, k, ℓ, P), it holds that

Pr
[
|Dec((k, ℓ, C),M))−O| ≤ ∆(1n)/n10

]
= Pr

(x,s)←P (Ur)

[
|C(x)− s| ≤ ∆(1n)/n10

]
.

18

Thus,

Pr
[
|Dec((Kn,Ln,Cn),Mn)−On| ≤ ∆(1n)/n10

]
≥ (1− 3n−8) · Pr

Rn,Kn,Pn,Cn

[
Pr

(x,s)←Pn(URn)

[
|Cn(x)− s| ≤ ∆(1n)/n10

]
≥ 1− 3n−8

]
≥ 1− 3n−8 − Pr

Rn,Kn,Pn,Cn

[
Pr

(x,s)←Pn(URn)

[
|Cn(x)− s| ≤ ∆(1n)/n10

]
< 1− 3n−8

]
.

The lemma now follows since by Lemma 4.5, the probability of circuits P,C with

Pr
(x,s)←P (Ur)

[
|Cn(x)− s| ≤ ∆(1n)/n10

]
< 1− 3n−8

to pass the test in Step 3 is at most 2−n. □

4.2 Security

We next bound the leakage of the scheme.

Lemma 4.7. Assume there exists an algorithm Eve such that

Pr[|Eve(1n, (Rn,Kn,Ln,Pn),Mn)−On| ≤ ∆(1n)] ≥ 1− n−6

for infinitely many n’s. Then ∆-WBLearn|CSt ∈ ioBPP.

In the following, let Eve be an algorithm that uses rEve(n) bits of randomness and guesses M

with probability at least 1−n−6. Recall that for w ∈ {0, 1}rEve(n), Eve(1n, (r, k, ℓ, P),m;w) denotes
the execution of Eve when its randomness is fixed to be w.

Algorithm 4.8.

Input: P ∈ {0, 1}n.
Operation:

1. Let r, k, ℓ be such that P : {0, 1}r → {0, 1}k × {0, 1}ℓ.

2. Sample w ← {0, 1}rEve(n) uniformly at random.

3. Construct a circuit C ′ such that C ′(x) = Eve(1n, (r, k, ℓ, P), x;w).

4. Return C ′.
. .

We prove the following lemma.

Lemma 4.9. Assume that

Pr[|Eve(1n, (Rn,Kn,Ln,Pn),Mn)−On| ≤ ∆(1n)] ≥ 1− n−6

for infinitely many n’s. Then the following holds for infinitely many n’s. For every input P ∈
{0, 1}n ∩Q∆

t , Algorithm 4.8 outputs C ∈ Comp∆1/4(P) with probability at least 1/2.

19

We prove Lemma 4.9 below, but first we use it to prove Lemma 4.7.

Proof of Lemma 4.7. Assume there exists an algorithm Eve such that

Pr[|Eve(1n, (Rn,Kn,Ln,Pn),Mn)−On| ≤ ∆(1n)] ≥ 1− n−6

for infinitely many n’s.
By Lemma 4.9, for infinitely many n’s, Algorithm 4.8 outputs C ∈ Comp∆1/4(P) with probability

at least 1/2, for every P ∈ {0, 1}n ∩ Q∆
t . We want to construct an algorithm Sol that, given P

and 11/δ, outputs C ∈ Comp1/3(P) with probability at least 1− δ, for every such n.

Let Sol be the algorithm that, given input (P : {0, 1}r → {0, 1}k × {0, 1}ℓ, 11/δ), first run
Algorithm 4.8 on P for 2⌈log 1/δ⌉ times, to get circuits C1, . . . , C2⌈log 1/δ⌉. Then, for every circuit
Ci, Sol samples (x1, s1), . . . , (x(100⌈log 1/δ⌉)2 , s(100⌈log 1/δ⌉)2)← P (Ur), and computes

pi = Pr
j←[(100⌈log 1/δ⌉)2]

[|Ci(xj)− sj | ≤ ∆(1n)].

Finally, Sol outputs the circuit Ci for the index i with maximal value of pi.
We now analyze the success probability of Sol. Using Fact 2.14, for every i, the probability

that
∣∣pi − Pr(x,s)←P (Ur)[|Ci(x) = s| ≤ ∆(1n)]

∣∣ ≥ 1/25 is at most

2−4(⌈log 1/δ⌉)
2+1 ≤ 1/(δ(4⌈log 1/δ⌉)).

Thus, by the union bound, the probability that
∣∣pi − Pr(x,s)←P (Ur)[|Ci(x) = s| ≤ ∆(1n)]

∣∣ ≥ 1/25
for some i is at most δ/2. Next, by the success probability of Algorithm 4.8, with probability at
least

1− (1− 1/2)2 log 1/δ ≥ 1− δ/2,

at least one of the circuits C1, . . . , C2 log 1/δ is in Comp∆1/4(P) ⊆ Comp∆1/3(P). Let i∗ be the index of
such a circuit. Then, with probability at least 1 − δ/2 − δ/2 = 1 − δ, such i∗ exists, and pi∗ is at
least (3/4− 1/25), while for every i with Ci /∈ Comp∆1/3(P), pi is at most

(2/3 + 1/25) < (3/4− 1/25) ≤ pi∗ ,

which implies that the output of Sol is in Comp∆1/3(P). □

4.3 Proving Lemma 4.9

To prove Lemma 4.9, we start with the following claim.

Claim 4.10. Let P : {0, 1}r → {0, 1}k × {0, 1}ℓ be a circuit, and assume that

Pr
(x,s)←P (Ur)

[|Eve(1n, (r, k, ℓ, P), x)− s| ≤ ∆(n)] ≥ 9/10.

Then, on input P , Algorithm 4.8 outputs C ∈ Comp∆1/4(P) with probability at least 1/2.

Proof of Claim 4.10. Let P : {0, 1}r → {0, 1}k × {0, 1}ℓ be a circuit such that

Pr
(x,s)←P (Ur)

[|Eve(1n, (r, k, ℓ, P), x)− s| ≤ ∆(n)] ≥ 9/10.

20

Then, by definition it holds that

E
w←{0,1}rEve(n)

[
Pr

(x,s)←P (Ur)
[|Eve(1n, (r, k, ℓ, P), x)− s| > ∆(n)]

]
≤ 1/10.

Using Markov’s inequality, we gets that

Pr
w←{0,1}rEve(n)

[
Pr

(x,s)←P (Ur)
[|Eve(1n, (r, k, ℓ, P), x)− s| > ∆(n)] > 1/4

]
≤ 1/2,

which implies that the circuit C ′ = Eve(1n, (r, k, ℓ, P), ·;w) is in Comp∆1/4(P) with probability at
least 1/2 over the choice of w, as we wanted to show. □

Given Claim 4.10, we are now ready to prove Lemma 4.9.

Proof of Lemma 4.9. Assume that Eve is such that

Pr[|Eve(1n, (Rn,Kn,Ln,Pn),Mn)−On| ≤ ∆(1n)] ≥ 1− n−6

for infinitely many n’s. In the following, fix such large enough n ∈ N. We show that

Pr
(x,s)←P (Ur)

[|Eve(1n, (r, k, ℓ, P), x)− s| ≤ ∆(n)] ≥ 9/10 (1)

for every P : {0, 1}r → {0, 1}k×{0, 1}ℓ with P ∈ Q∆
t ∩{0, 1}

n. The proof then follows by Claim 4.10.
To see the above, let Pk = (Rn,Kn,Ln,Pn)), and notice that

Pr
Rn,Kn,Ln,Pn,Cn

Pk=(Rn,Kn,Ln,Pn)

[
Pr

Mn,On,W←{0,1}rEve
[|Eve(1n,Pk,Mn;W)−On| ≤ ∆(n)] < 9/10

]
≤ 10n−6. (2)

Indeed, it holds that

1− n−6 ≤ Pr[|Eve(1n,Pk,Mn)−On| ≤ ∆(n)]

≤ Pr
Pk

[Pr[|Eve(1n,Pk,Mn)−On| ≤ ∆(n)] ≥ 9/10]

+ 9/10 · Pr
Pk

[Pr[|Eve(1n,Pk,Mn)−On| ≤ ∆(n)] < 9/10]

= (1− Pr
Pk

[Pr[|Eve(1n,Pk,Mn)−On| ≤ ∆(n)] < 9/10])

+ 9/10 · Pr
Pk

[Pr[|Eve(1n,Pk,Mn)−On| ≤ ∆(n)] < 9/10]

= 1− 1/10 · Pr
Pk

[Pr[|Eve(1n,Pk,Mn)−On| ≤ ∆(n)] < 9/10]

which implies that Equation (2) holds. Next, we use Equation (2) and the upper bound on the
computational depth of instances in Q∆

t , to show that Equation (1) holds for every P ∈ Q∆
t . To

do so, fix P ∈ Q∆
t ∩ {0, 1}

n and let C ∈ {0, 1}n ∩ Comp
∆/n10

n−10 (P) with cdt,∞(C,P) ≤ 2 log n be the
circuit promised by the definition of Q∆

t . Assume towards a contradiction that

Pr
(x,s)←P (Ur)

[|Eve(1n, (r, k, ℓ, P), x)− s| ≤ ∆(n)] < 9/10.

21

We want to upperbound K(P,C), to get a lower bound on the computational depth of (P,C).

To this end, let S be the set of all pairs (P ′, C ′) ∈ {0, 1}n×{0, 1}n, such that C ′ ∈ Comp
∆/n10

n−10 (P ′),
Kt(P ′, C ′) = Kt(P,C), and on which Eve fails to approximate s with probability more than 1/10.

By our assumption on (P,C), it holds that (P,C) ∈ S. We next bound the size of S. First, we
claim that for every (P ′, C ′) ∈ S,

Pr
[
Pn = P ′,Cn = C ′

]
≥ 1/6n · 2−Kt(C,P). (3)

Indeed, by definition there exists a program Π of length Kt(C,P) that outputs (C ′, P ′) in at most
t(2n) steps. Thus, Gen samples Π with probability at least 1/3n · 2−Kt(C,P). Next, by Claim 4.6,
the test in Step 3 of Gen passes with probability at least 1 − 2−n > 1/2, since by definition of

Comp
∆/n10

n−10 , Pr(x,s)←P ′(Ur

[
|C ′(x)− s| ≤ ∆(1n)/n10

]
− n−9 ≥ 1 − n−10 − n−9 ≥ 1 − 2n−7. In this

case that the test passes, P ′ and C ′ are the output of Gen, and thus Equation (3) holds.
By Equation (3) and the definition of S, we get that

Pr
Rn,Kn,Ln,Pn,Cn

Pk=(Rn,Kn,Ln,Pn)

[
Pr

Mn,On,W←{0,1}rEve
[|Eve(1n,Pk,Mn;W)−On| ≤ ∆(n)] < 9/10

]
≥ |S|·1/6n·2−Kt(C,P).

Combining the above with Equation (2) yields that

|S| ≤ 10n−6

1/6n · 2−Kt(C,P)
≤ 2K

t(C,P)+logn−6 logn+6.

Observe that S can be (inefficiently) computed given n,Kt(C,P) and Eve. Thus, to encode (P,C),
it is enough to encode S and the index of (P,C) in S (according to the lexicographic order). We
conclude that,

K(P,C) ≤ K(n, λ,Eve) + 2 log(K(n, λ,Eve)) + log|S|+O(1)

≤ 2 log n+ 4 log log n+ Kt(C,P)− 5 log n+O(1)

< Kt(C,P)− 2 log n,

where the last inequality holds for every large enough n. By the above, Kt(C,P)−K(P,C) > 2 log n,
in contradiction to the choice of (P,C). This yields that Equation (1) holds for every P ∈ Qt, as
we wanted to show. □

4.4 Proving Theorem 4.1.

We are now ready to use Lemma 2.8 in order to prove Theorem 4.1.

Proof of Theorem 4.1. By Lemmas 4.5 and 4.7, (Gen,Enc,Dec) is a (n−7, 1− n−6, n10)-weak-PKE
(for d(1n) = ∆(1n)/n10), and thus it is also a (n−6.9/2, 1 − 10n−6.1, 2n6.9)-weak-PKE. Thus, by
Lemma 2.8, (Gen,Enc,Dec) can be amplified into a PKE. □

Remark 4.11 (The non-uniform setting). A similar theorem can be proven when assuming that
∆-WBLearn|CSt /∈ ioP/poly, and when the PKE is secure against non-uniform adversaries. In this
case, we assume that Eve is a non-uniform algorithm that breaks the PKE protocol, and want to
construct a non-uniform (randomized) algorithm that decides WBLearn|Qt.

22

The issue with the above proof is that we cannot simply use Eve to bound the Kolmogorov
complexity of (C,P) as done in the proof of Lemma 4.7, as Eve does not have constant size.
However, we can find Eve using a small Turing machine: Let M be the (inefficient) Turing machine
that, given a constant c such that nc is a bound on the size of Eve, and an input for Eve, first find
the circuit E′n of size at most nc that maximize the advantage in predicting M given an encryption
of M by Enc, and then execute E′ on the input. Observe that M has prediction advantage at least
as the advantage of Eve. The theorem now follows using the same proof, by replacing Eve in the
proof of Lemma 4.7 with M , and replacing Eve in Algorithm 4.8 with E′ = {E′n}n∈N.

5 PKE =⇒ Hardness of ∆-WBLearn|CSt

In this part, it is shown that if a public-key encryption scheme exists, ∆-WBLearn|CSt is hard. We
prove the following theorem.

Theorem 5.1. Assume there exists a PKE. Then for any constant ϵ > 0 and any t(n) ≥ n1+ϵ and

any efficiently computable ∆: {1}∗ → N such that ∆(1n) ≤ 2n
(1−ϵ)

, ∆-WBLearn|CSt /∈ ioFBPP.

To prove Theorem 5.1, it will be convenient to assume that in the PKE scheme (Gen,Enc,Dec),
the public and secret keys are simply the circuits used to encrypt and decrypt, respectively. For this,
we define circuit-PKE (cPKE) and show that we can assume the above without loss of generality.

Definition 5.2 (circuit PKE (cPKE)). A randomized, function Gen′ is a (α(n), β(n))-circuit PKE
(cPKE) if the following holds:

• Gen(n) outputs two circuits pk : {0, 1} × {0, 1}r(n) → {0, 1}k(n) and sk : {0, 1}k(n) → {0, 1}.

• Correctness: For every large enough n ∈ N and any m ∈ {0, 1},

Pr
(pk,sk)←Gen(1n),w←{0,1}r(n)

[sk(pk(m,w)) = m] ≥ 1− α(n)

• Security: For every PPT Eve, for every large enough n ∈ N,

Pr
(pk,sk)←Gen(1n),m←{0,1},w←{0,1}r(n)

[Eve(1n, pk, pk(m,w)) = m] ≤ 1/2 + β(n).

Such a scheme is a cPKE if it is (1/nc, 1/nc)-cPKE for every constant c ∈ N.

We say that cPKE has key of length ℓ if the description size of pk, sk is at most n/2 bits.

Lemma 5.3. Assume there exists a PKE. Then there exists a cPKE.
Moreover, under the same assumption there exists a cPKE such that Gen(n) runs in time nϵ

and has keys of length nϵ.

Proof. Let (Gen,Enc,Dec) be a PKE, and assume without loss of generality that Dec is deterministic
algorithm (by adding its randomness to the secret-key). Let t(n) be an upper bound on the running
time of Enc when executed on pk sampled from (·, pk)← Gen(1n) and a messagem ∈ {0, 1}. Observe
that t(n) bounds both the randomness used by Enc and the length of the output of Enc(pk,m). By
using appropriate padding, assume without loss of generality that |Enc(pk,m)| = t(n) for any m
and every (sk, pk)← Gen(1n), and let r(n) = k(n) = t(n).

23

Let Gen′(n) be the algorithm that execute Gen(1n) to get (sk, pk), and then construct circuits

sk′ : {0, 1}k(n) → {0, 1} and pk′ : {0, 1} × {0, 1}r(n) → {0, 1}k(n) such that sk′(e) = Dec(sk, e) for

every e ∈ {0, 1}k(n), and pk′(m,w) = Enc(pk,m;w). It is not hard to see that Gen′ can be imple-
mented in polynomial time, and that it has the same correctness and security as (Gen,Enc,Dec).

The moreover part follows by a simple security leveraging. Let t(n) be an upper bound on the
length of sk′, pk′ and the running time of Gen′. Let δ be a constant such that t(nδ) ≤ nϵ (which
exists since t can be bounded with a polynomial). Let Gen′′(1n) := Gen′(1n

ϵ
). It is not hard to see

that Gen′′ has a running time and keys of length nϵ, where the security follows by the security of
Gen. □

The main lemma in this part states that the conclusion of Theorem 5.1 holds assuming cPKE
exists.

Lemma 5.4. Assume that for any constant ϵ there is a cPKE such that Gen(n) runs in time nϵ,
and has keys of length nϵ. Then for any constant ϵ, ∆-WBLearn|CSt /∈ ioFBPP for every t(n) ≥ nϵ

and any ∆ ≤ 2n
1−ϵ

/4.

Proof of Lemma 5.4. Let Gen′ be a cPKE. Let Gen be tha algorithm that samples (pk′, sk′) ←
Gen′(1n; r), and construct a circuit pk′′ that on input (m,w) outputs pk′(m,w), (m||0n(1−2ϵ)

) (where

m||0(n1−ϵ)
is the binary representation of the number m · 2n(1−ϵ)

). Similarly, let sk′′ be the circuit

that on input e outputs sk(e)||0(n1−ϵ)
. Note that |sk|, |pk| ≤ n/2. let pk = pk′′||0|pk′′|−n/2 and

sk = sk′′||r. In the following, assume toward a contradiction that ∆-WBLearn|CSt ∈ ioFBPP, and
let Sol be the algorithm that, for infinitely many n’s, solves ∆-WBLearn|CSt . We will show that
Sol contradicts the secrecy assumption of Gen. We observe that assuming we can approximating
the output of pk, it follows using rounding that we can guess the MSB of the output with the same
probability (as the output of pk is either 0 or 2n

1−ϵ
). That is, we can guess the value of m. In the

following we assume that Sol simply outputs the MSB of the output of pk.
Specifically, consider the following algorithm Eve that uses Sol to guess the message m given

an encryption e = pk(m,w).

Algorithm 5.5 (Eve).

Input: pk, e.

Operation:

1. Execute Sol(pk, 1100) to get a circuit C.13

2. Compute C(e) and output its output.

. .

First, notice that Eve is an efficient algorithm if Sol is. Indeed, since C is the output of Sol,
its size is bounded by the running time of Sol, and thus C can be evaluated on e in polynomial
time.

Next, observe that if for infinitely many n’s,

Pr
(sk,pk)←Gen(n)|En,

m←{0,1},e←pk(m,Ur(n))

[C(e) = m] ≥ 1/2 + 1/50, (4)

13Recall that the second input for Sol is the accuracy parameter, see Definition 2.3.

24

then Eve breaks the security of Gen. By assumption, for every P ∈ Qt′ , with probability at least
1 − 1/100, Sol(P, 1100) finds a circuit C ∈ Comp1/3(P). In this case, C agrees with P with
probability at least 2/3. Thus,

Pr
(sk,pk)←Gen(n),

m←{0,1},e←pk(m,Ur(n))

C←Sol(pk,1100)

[C(e) = m] ≥ Pr
(sk,pk)←Gen(n)

[pk ∈ Qt′] · (1− 1/100) · 2/3.

So to show Equation (4), it is enough to show that

Pr
(sk,pk)←Gen(n)

[pk ∈ Qt′] ≥ 4/5. (5)

To do so, recall that pk and sk are two circuits with description size n. Moreover, by the correctness
of the PKE scheme, with all but negligible probability over the choice of (sk, pk)← Gen(n),

Pr
m←{0,1},e←pk(m;Ur(n))

[sk(e) = m] ≥ 1− n−10.

Thus, we are only left to show that cdt
′,∞(C,P) ≤ 2 log n with high probability.

To bound the computational depth, first notice that Kt′(C,P) ≤ Kt(C,P) ≤ s(n)+ log n+O(1)
where s(n) is the amount of randomness used by Gen. Indeed, to encode pk and sk it is enough to
encode the algorithms Gen together with n and the randomness used by Gen to sample pk, sk.

On the other hand, since sk contains the randomness used by Gen, the distribution of (pk, sk)
sampled by Gen(n) has min-entropy s(n), we get by Lemma 2.13 that with probability at least
1 − 1/100, K(P,C) ≥ s(n) − 0.5 log n. Combining the above together, we get that cdt

′,∞(C,P) ≤
1.5 log n+O(1) < 2 log n with probability at least 1− 1/100. Overall, the correctness property and
the above bound on the computational depth holds simultaneously with probability strictly larger
than 4/5, and so Equation (5) holds. □

Proving Theorem 5.1

Proof of Theorem 5.1. The proof follows by Lemmas 5.3 and 5.4. □

6 Bounded-Degree Learning

In this part we consider the WBLearn problem, when we restrict the target function to be a low
degree polynomial. In the following we fix some q = q(n), and all the operations are with respect

to Zq. We fix an encoding of elements in Zq in {0, 1}⌈log q⌉, and consider pairs of circuit P and
circuit C of the form P : {0, 1}r → Zk

q × Zq and C : Zk
q → Zq. We define

Comp∆ϵ (P) =

{
C : Zk

q → Zq : Pr
(x,s)←P (Ur)

[|C(x)− s| ≤ ∆] ≥ 1− ϵ

}
,

where the ”−” operation is now over Zq. For any bound d on the degree, we define,

Definition 6.1 (∆-WBLearnd). For functions ∆, q : {1}∗ → N, let ∆-WBLearndq be the following
learning problem:

25

• Input: Circuit P ∈ {0, 1}n, with the promise that there exists a circuit Ĉ ∈ {0, 1}n such that

Ĉ ∈ Comp
∆(1n)/n10

n−10 (P) and Ĉ computes a degree d polynomial (over Zq(1n)) on its input.

• Output: Circuit C ∈ Comp
∆(1n)
1/3 (P)

We similarly define ∆-WBLearndq |CSt to be the above problem with the additional promise that

cdt(Ĉ, P) ≤ 2 log n.
The next theorem states that the hardness of ∆-WBLearndq |CSt is equivalent to the existence of

PKE in which the decoding procedure (for any fixed secret key) is a degree d polynomial. Recall
that for circuit-PKE, the secret key is a circuit (computing the function f(·) = Dec(sk, ·)). We thus
say that the secret key computes a low degree polynomial if the above function f can be computed
by a low degree polynomial.

Theorem 6.2. Let ϵ > 0 be a constant and let ∆, q : {1}∗ → N be efficiently computable functions
with ∆(1n) ≤ q(1n)/4, and t : N → N be polynomial such that t(n) ≥ n1+ϵ. Assume circuit-PKE
such that the secret key computes a degree d polynomial over Zq. Then ∆-WBLearndq′ |CSt /∈ ioFBPP
for some efficiently computable function q′.

Theorem 6.2 follows by the exact same proof of Theorem 5.1. We also note that any boolean
function over n variables is computable by a exponentially long polynomial of degree n (where we
use the natural embedding of {0, 1} in Zq). Using this fact in the proof of Lemma 5.3, we get the
following stronger theorem:

Theorem 6.3. Let ϵ > 0 be a constant and let ∆, q : {1}∗ → N be efficiently computable functions
with ∆(1n) ≤ q(1n)/4, q(1n) ≤ 2n

1−ϵ
, and t : N → N be polynomial such that t(n) ≥ n1+ϵ. The

following are equivalent:

• PKE exists.

• ∆-WBLearn|CSt /∈ ioFBPP.

• ∆-WBLearnnq |CSt /∈ ioFBPP.

• ∆-WBLearnn
ϵ

q |CSt /∈ ioFBPP.

6.1 Learning with Errors and ∆-WBLearn1q|CSt

We next discuss LWE as a specific case of ∆-WBLearndq |CSt . First, we recall Regev’s PKE [Reg09].
This encryption scheme (parametrized by n,m, q,B) can be described as follows (where all the
operation are in Zq):

• The secret key is a random vector x ∈ Zn
q .

• The public key is a pair (A,b) where A is a matrix of size m×n and b is a vector of size m, for
some m = m(n) ≥ Ω(n log q). A is a uniformly random matrix in Zm×n

q , and b = Ax+ e where
each ei is sampled from a fixed noise distribution such that |ei| ≤ B. (Let c ≥ 1 be a constant
such that the public key can be sampled in time nc.)

• To encrypt a bit m ∈ {0, 1}, we sample a random r ∈ {0, 1}m, and compute a′ = rTA, u =
r · b+m · (q/2).

26

• To decrypt, we compute a′ · x− u, and check if the result is closer to 0 (in which case we output
0) or to q/2 (in which case we output 1).

Observe that Regev’s PKE has a decryption algorithm that can be implemented by an inner
product (which is a linear function over Zq) together with a rounding gate. Combining this with
Theorem 6.2, it follows that the security of Regev’s PKE implies the hardness of the learning
problem ∆-WBLearndq |CSt where d is the degree of rounding. Next, we aim to show that the
implication still holds if d is fixed to be 1; that is, it implies the hardness of learning linear
functions.

Lemma 6.4. Assume that Regev’s PKE scheme is secure with B ≤ q/(4mn20c). Then, there exists
a polynomial t and an efficiently computable function q′ : N → N such that ∆-WBLearn1q′ |CSt ̸∈
ioFBPP where ∆ = q′(1n)/4.

Proof. Consider t(n) = n4c (where c defined as above is the exponent in the runtime bound of
public key generation). For any x ∈ Zn

q , define P as the circuit (hardcoding A and b) that on

input r ∈ {0, 1}m, outputs a′ = rTA, b′ = r · b. In addition, let C be the circuit (hardcoding
x together with all the randomness used to generate A and b) that on input a ∈ Zn

q , outputs
a · x ∈ Zq. Notice that (the description length) |P |, |C| ≤ n2c (since (A,b) can be generated in
time nc).

We move on to proving that P satisfies the promise in our learning problem ∆-WBLearn1q |CSt .
The “witness” for the circuit P is just the circuit C. Observe that C is a linear function over Zq.
Next, we show that P produces instances together with noised labels that C computes. Note that
|C(a′)− b′| = |rTAx−r ·b| = |r ·e| ≤ m ·B ≤ ∆/(n2c)10. It remains to argue that (C,P) has small
computational depth. Since (C,P) together hardcodes all the randomness, it follows from the last
two paragraphs in the proof of Lemma 5.4 that this happens with probability at least 1− 1/100.

Given the public key (A,b), we prepare the circuit P and feed it to the ∆-WBLearn1q |CSt attacker.
If P satisfies the promise in ∆-WBLearn1q |CSt (which happens with probability at least 1/100), it
will find a circuit C ′ (with probability 1− 1/100) such that

Pr
r←{0,1}m

[|C ′(a′)− b′| ≤ q/4] ≥ 2/3

This will allow us to decrypt a ciphertext (a′, u) by computing C ′(a′)− u and rounding to either 0
or q/2. Thus, we can distinguish the encryption of 0 and encryption of 1 with advantage at least
2/3−2/100. Finally, we need to deal with the issue that the ∆-WBLearn1q |CSt attacker only succeeds
on infinitely many input lengths. We will instead prepare many padded copies of P , one copy for
each description length in [n2c, (n + 1)2c), and feed all of them to the attacker. The attacker will
find a circuit C ′ for each copy, and we can test whether C ′ breaks the PKE scheme by generating
encryption of zeros and ones and estimating the distinguishing gap. We will deploy C ′ with the
best (empirical) distinguishing gap. □

6.2 ∆-WBLearndq with constant degree

We next observe that for any constant degree d, there is a reduction between ∆-WBLearndq and

∆′-WBLearn1q (with slightly different parameters). For simplicity, we prove it for the exact version
of the problems.

27

Lemma 6.5. For every constant d ∈ N and efficiently computable function q : {1}∗ → N, there
exists an efficiently computable function q′ such that ExactWBLearndq ≤p ExactWBLearn1q′.

Note that the other direction holds trivially.

Proof. Given a circuit P : {0, 1}r → Zk
q × Zq, the reduction outputs the following circuit P ′. Let

P ′ : {0, 1}r → Z(
k+1
d+1)

q × Zq be the circuit that given an input w computes P (w) = (s,m), where

s ∈ Zk
q , sets s

′ ∈ Z(
k+1
d+1)

q to be all the degree at most d monomials over s, and outputs (s,m). The
correctness follows since every circuit C that computes a degree-d polynomial over s, computes a
linear function of s′, and vice versa. □

A similar reduction gives the following theorem.

Lemma 6.6. For every constant d ∈ N, and functions t : N → N, q : {1}∗ → N, there exists
t′ : N→ N, q′ : {1}∗ → N such that ExactWBLearndq |CSt ≤p ExactWBLearn1q′ |CSt′ .

Proof. The proof follows by the same reduction as Lemma 6.5, where we pad P ′ such that |P ′| ≥
nd+1 (where nd+1 is an upper bound on the length of P ′). Since P ′ can be computed efficiently from
P , and P can be computed efficiently from P ′, we have that, for large enough t′ and every circuit C,
cdt

′
(P ′, C) ≤ cdt(P,C)±O(1). We get that cdt

′
(P ′, Ĉ) ≤ cdt(P, Ĉ)+O(1) ≤ 2 log n+O(1) ≤ log|P ′|.

□

Using the same reduction we get the following result.

Lemma 6.7. For every constant d ∈ N, and functions t : N → N, q,∆: {1}∗ → N there exist
t′ : N→ N and q′,∆′ : {1}∗ → N such that

∆-WBLearndq |CSt ≤p ∆
′-WBLearn1q′ |CSt′ ,

and
∆-WBLearndq ≤p ∆

′-WBLearn1q′ .

7 Black-Box Distributional Learning and One-Way Functions

In this section, we consider the standard PAC learning model [Val84] where the learner only get
access to samples. The following definition is identical to the definition of WBLearn with the
exception that the learner gets oracle access (i.e., black-box access) to the sampler (as opposed to
white-box access to the sampler). It is equivalent to the notion of improper ∆-approximate PAC
learning for polynomial-size circuits (and when ∆ = 0 to simply improper PAC learning).

Definition 7.1 (∆-BBLearn). For a function ∆: {1}∗ → N, let ∆-BBLearn be the following learning
problem:

• Input: Oracle access to samples from the output distribution of a circuit P ∈ {0, 1}n, with the

promise that there exists a circuit Ĉ ∈ {0, 1}n such that Ĉ ∈ Comp
∆(1n)/n10

n−10 (P).

• Output: Circuit C ∈ Comp
∆(1n)
1/3 (P)

28

As before, let ∆-BBLearn|CSt denote the problem ∆-BBLearn with the additional promise that

cdt(P, Ĉ) ≤ 2 log n, and let ExactBBLearn and ExactBBLearn|CSt to denote ∆-BBLearn and ∆-
BBLearn|CSt when ∆(1n) = 0.

The following theorem can be view as a worst-case analog of the classic result of [KV94; BFKL93]
characterizing one-way functions through average-case PAC learning. (We remark that our theorem
differs not only in the worst-case condition, but also generalizes [KV94; BFKL93] in the sense that
we handle the hardness of ∆-approximate learning for any ∆.)

Theorem 7.2. Let ϵ > 0 be a constant and let ∆: {1}∗ → N be any efficiently computable function

such that ∆(1n) ≤ 2n
(1−ϵ)

, and let t : N → N be any polynomial such that t(n) ≥ n1+ϵ. Then the
following are equivalent:

• One-way function exists

• ∆-BBLearn|CSt /∈ ioFBPP

To prove Theorem 7.2, we actually prove that the hardness of ∆-BBLearn|CSt /∈ ioFBPP is
equivalent to the existence of secret-key encryption scheme. As a result, the proof of Theorem 7.2
is almost identical to the proof of Theorem 3.3. We will use an encryption scheme with security
against Chosen Plaintext Attack (CPA).

Definition 7.3 (CPA-secure private-key encryption scheme). A triplet of randomized, efficiently
computable functions (Gen,Enc,Dec) is a (α(n), β(n))-CPA-secure private-key encryption scheme if
the following holds:

• Correctness: For every large enough n ∈ N and any m ∈ {0, 1},

Pr
sk←Gen(1n),Enc

[Dec(sk,Enc(sk,m)) = m] ≥ 1− α(n)

• CPA-Security: For every oracle-aided PPT Eve, for every large enough n ∈ N,

Pr
sk←Gen(1n),m←{0,1}

[
EveEncsk(Enc(sk,m)) = m

]
≤ 1/2 + β(n),

where Encsk is the (randomized) function defined by Encsk(m) = Enc(sk,m).

Such a scheme is a CPA-secure encryption scheme if it is (1/nc, 1/nc)-PKE for every c ∈ N.

The existence of such a scheme is equivalent to the existence of one-way functions.

Proposition 7.4 ([Gol04]). CPA-secure encryption scheme exists if and only if one-way function
exists.

We can naturally define weak variant of CPA-secure encryption, that corresponds to our defi-
nition of weak-PKE (Definition 2.9).

Definition 7.5 (Weak CPA-secure encryption scheme). For an efficiently computable function
d : {1}∗ → N, a triplet of randomized, efficiently computable functions (Gen,Enc,Dec) is a (α(n), β(n), γ(n))-
weak CPA-secure encryption scheme if the following holds:

29

• For every n ∈ N, given sk and randomness r, Enc(sk; r) outputs a message m(sk; r) and an
output o(sk; r) ∈ N.

• Correctness: For every large enough n ∈ N

Pr
sk←Gen(1n),r

[|Dec(sk,m(sk, r))− o(sk, r)| ≤ d(1n)] ≥ 1− α(n)

• Security: For every oracle-aided PPT Eve, for every large enough n ∈ N,

Pr
sk←Gen(1n),r

[∣∣∣EveEncsk(1n,m(sk, r))− o(sk, r)
∣∣∣ ≤ γ(n) · d(1n)

]
≤ β(n),

where Encsk is the (randomized, no-input) function defined by Encsk() = Enc(sk).

We remark that such a weak CPA-secure encryption scheme can be amplified to a CPA-secure
encryption scheme. This result may be known to follow using the techniques of [Hol06] but, as far
as we know, such a result has not previously been stated. For sake of self containment, we present
a direct and simple proof of the following (secret-key) analog of Lemma 2.10, and defer the proof
to Appendix A.2:

Lemma 7.6 (CPA-secure encryption amplification). The following holds for every constants c1 >
c2. Assume there exists an (n−c1/2, 1− 10n−c2 , 2nc1)-weak CPA-secure encryption scheme. Then,
there exists a CPA-secure encryption scheme.

Theorem 7.2 next follows by the following two theorems.

Theorem 7.7. Let t(n) be a polynomial and ∆: {1}∗ → N an efficiently computable function.
Then if ∆-BBLearn|CSt /∈ ioFBPP, CPA-secure encryption scheme exist.

Proof sketch. The proof is almost identical to the proof of Algorithm 4.2, where we change the
algorithm Gen (Algorithm 4.2) to output (r, k, ℓ, C, P) as the secret-key, and Enc, Dec gets are
defined similarly. In the security prove, we give Eve oracle access to samples from P instead of the
description of P as input (but assume that Eve gets r, k, ℓ as input). □

Theorem 7.8. Assume there exists a CPA-secure encryption scheme. Then for any constant
ϵ > 0 and any t(n) ≥ n1+ϵ and any efficiently computable ∆: {1}∗ → N such that ∆(1n) ≤ 2n

(1−ϵ)
,

∆-BBLearn|CSt /∈ ioFBPP.

The proof of Theorem 7.8 is similar to the proof of Theorem 4.1, where we replace cPKE with
the following defined circuit-Encryption.

Definition 7.9 (Circuit Encryption). A randomized, function Gen′ is a (α(n), β(n))-circuit Encryp-
tion if the following holds:

• Gen(n) outputs two circuits pk : {0, 1} × {0, 1}r(n) → {0, 1}k(n) and sk : {0, 1}k(n) → {0, 1}.

• Correctness: For every large enough n ∈ N and any m ∈ {0, 1},

Pr
(pk,sk)←Gen(1n),w←{0,1}r(n)

[sk(pk(m,w)) = m] ≥ 1− α(n)

30

• Security: For every oracle aided PPT Eve, for every large enough n ∈ N,

Pr
(pk,sk)←Gen(1n),m←{0,1},w←{0,1}r(n)

[
EveOpk(1n, pk(m,w)) = m

]
≤ 1/2 + β(n),

where Opk is an oracle that samples from the distribution of pk(U1, Ur).

Such a scheme is a circuit encryption if it is (1/nc, 1/nc)-circuit encryption for every constant c ∈ N.

Proof sketch. The proof follows similarly to the proof of Theorem 4.1, where we first construct circuit
encryption from CPA secure encryption (letting sk′(e) = Dec(sk, e) and pk′(m,w) = Enc(sk,m;w)),
and then replace the use of cPKE with the circuit encryption scheme. □

Theorem 7.2 follows directly by Theorems 7.7 and 7.8 and Proposition 7.4.

Proof of Theorem 7.2. Follows by Theorems 7.7 and 7.8 and Proposition 7.4. □

7.1 Bounded-Degree Black-Box Learning

Similarly to the white-box case, we can define black-box learning of bounded degree functions.
For a degree d, let ∆ − BBLearndq and ∆-BBLearndq |CSt be defined similarly to ∆ −WBLearndq and

∆-WBLearndq |CSt in the black-box setting.
Similarly to Lemma 6.7 and using the same reduction, we get the following result.

Lemma 7.10. For every constant d ∈ N, and functions t : N → N, q,∆: {1}∗ → N there exist
t′ : N→ N and q′,∆′ : {1}∗ → N such that

∆-BBLearndq |CSt ≤p ∆
′-BBLearn1q′ |CSt′ ,

and
∆-BBLearndq ≤p ∆

′-BBLearn1q′ .

References

[ABW10] Benny Applebaum, Boaz Barak, and Avi Wigderson. “Public-key cryptography from
different assumptions”. In: Proceedings of the forty-second ACM symposium on The-
ory of computing. 2010, pp. 171–180 (cit. on p. 2).

[AD97] Miklós Ajtai and Cynthia Dwork. “A Public-Key Cryptosystem withWorst-Case/Average-
Case Equivalence”. In: stoc29. See also ECCC TR96-065. 1997, pp. 284–293 (cit. on
p. 2).

[AF09] Luis Antunes and Lance Fortnow. “Worst-case running times for average-case al-
gorithms”. In: 2009 24th Annual IEEE Conference on Computational Complexity.
IEEE. 2009, pp. 298–303 (cit. on p. 4).

[AFVMV06] Luis Antunes, Lance Fortnow, Dieter Van Melkebeek, and N Variyam Vinodchan-
dran. “Computational depth: concept and applications”. In: Theoretical Computer
Science 354.3 (2006), pp. 391–404 (cit. on pp. 3, 4, 15).

31

[Ale03] Michael Alekhnovich. “More on average case vs approximation complexity”. In: 44th
Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings.
IEEE. 2003, pp. 298–307 (cit. on p. 2).

[BCNHR22] Andrej Bogdanov, Miguel Cueto Noval, Charlotte Hoffmann, and Alon Rosen. “Public-
Key Encryption from Homogeneous CLWE”. In: Theory of Cryptography: 20th In-
ternational Conference, TCC 2022, Chicago, IL, USA, November 7–10, 2022, Pro-
ceedings, Part II. Springer. 2022, pp. 565–592 (cit. on p. 2).

[BFKL93] Avrim Blum, Merrick Furst, Michael Kearns, and Richard J Lipton. “Cryptographic
primitives based on hard learning problems”. In: Annual International Cryptology
Conference. Springer. 1993, pp. 278–291 (cit. on pp. 3, 6, 29).

[BLMP23] Marshall Ball, Yanyi Liu, Noam Mazor, and Rafael Pass. “Kolmogorov Comes to
Cryptomania: On Interactive Kolmogorov Complexity and Key-Agreement”. In:
2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS).
IEEE. 2023, pp. 458–483 (cit. on pp. 4, 5, 8–10).

[BLPRS13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé.
“Classical hardness of learning with errors”. In: Proceedings of the forty-fifth annual
ACM symposium on Theory of computing. 2013, pp. 575–584 (cit. on p. 5).

[BV14] Zvika Brakerski and Vinod Vaikuntanathan. “Efficient fully homomorphic encryption
from (standard) LWE”. In: Journal of the ACM 43.2 (2014), pp. 831–871 (cit. on
p. 7).

[Cha69] Gregory J. Chaitin. “On the Simplicity and Speed of Programs for Computing Infi-
nite Sets of Natural Numbers”. In: J. ACM 16.3 (1969), pp. 407–422 (cit. on p. 3).

[DH76] Whitfield Diffie and Martin E. Hellman. “New Directions in Cryptography”. In:
IEEE Transactions on Information Theory (1976), pp. 644–654 (cit. on p. 2).

[ElG84] Taher ElGamal. “A Public Key Cryptosystem and a Signature Scheme Based on
Discrete Logarithms”. In: Annual International Cryptology Conference (CRYPTO).
1984, pp. 10–18 (cit. on p. 2).

[Gen09] Craig Gentry. “Fully homomorphic encryption using ideal lattices”. In: Proceedings
of the forty-first annual ACM symposium on Theory of computing. 2009, pp. 169–178
(cit. on p. 7).

[GL89] Oded Goldreich and Leonid A. Levin. “A Hard-Core Predicate for all One-Way
Functions”. In: Proceedings of the twenty-first annual ACM symposium on Theory
of computing (STOC). 1989, pp. 25–32 (cit. on p. 7).

[Gol04] Oded Goldreich. Foundations of Cryptography – VOLUME 2: Basic Applications.
Cambridge University Press, 2004 (cit. on p. 29).

[Har83] J. Hartmanis. “Generalized Kolmogorov complexity and the structure of feasible
computations”. In: 24th Annual Symposium on Foundations of Computer Science
(sfcs 1983). 1983, pp. 439–445. doi: 10.1109/SFCS.1983.21 (cit. on p. 3).

32

[HKNRR05] Danny Harnik, Joe Kilian, Moni Naor, Omer Reingold, and Alon Rosen. “On robust
combiners for oblivious transfer and other primitives”. In: Advances in Cryptology–
EUROCRYPT 2005: 24th Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Aarhus, Denmark, May 22-26, 2005. Pro-
ceedings 24. Springer. 2005, pp. 96–113 (cit. on pp. 7, 10).

[HN23] Shuichi Hirahara and Mikito Nanashima. “Learning in Pessiland via Inductive Infer-
ence”. In: 2023 IEEE 64th Annual Symposium on Foundations of Computer Science
(FOCS). IEEE. 2023, pp. 447–457 (cit. on pp. 3–6).

[Hol06] Thomas Holenstein. “Strengthening key agreement using hard-core sets”. PhD thesis.
ETH Zurich, 2006 (cit. on pp. 7, 13, 30).

[IL90] Russell Impagliazzo and Leonid A. Levin. “No Better Ways to Generate Hard NP
Instances than Picking Uniformly at Random”. In: focs31. 1990, pp. 812–821 (cit. on
p. 3).

[Ko86] Ker-I Ko. “On the Notion of Infinite Pseudorandom Sequences”. In: Theor. Comput.
Sci. 48.3 (1986), pp. 9–33. doi: 10.1016/0304-3975(86)90081-2. url: https:
//doi.org/10.1016/0304-3975(86)90081-2 (cit. on p. 3).

[Kol68] A. N. Kolmogorov. “Three approaches to the quantitative definition of information”.
In: International Journal of Computer Mathematics 2.1-4 (1968), pp. 157–168 (cit.
on p. 3).

[KV94] Michael Kearns and Leslie Valiant. “Cryptographic limitations on learning boolean
formulae and finite automata”. In: Journal of the ACM (JACM) 41.1 (1994), pp. 67–
95 (cit. on pp. 3, 6, 29).

[LP20] Yanyi Liu and Rafael Pass. “On one-way functions and Kolmogorov complexity”. In:
2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS).
IEEE. 2020, pp. 1243–1254 (cit. on pp. 4, 10).

[LP23] Yanyi Liu and Rafael Pass. “On One-way Functions and the Worst-case Hardness
of Time-Bounded Kolmogorov Complexity”. In: Cryptology ePrint Archive (2023)
(cit. on pp. 4, 5, 8, 9).

[McE78] Robert J McEliece. “A public-key cryptosystem based on algebraic”. In: Coding Thv
4244 (1978), pp. 114–116 (cit. on p. 2).

[Pei09] Chris Peikert. “Public-key cryptosystems from the worst-case shortest vector prob-
lem”. In: Proceedings of the forty-first annual ACM symposium on Theory of com-
puting. 2009, pp. 333–342 (cit. on p. 5).

[Rab79] Michael O Rabin. Digitalized signatures and public-key functions as intractable as
factorization. Tech. rep. Massachusetts Inst of Tech Cambridge Lab for Computer
Science, 1979 (cit. on p. 2).

[Reg09] Oded Regev. “On lattices, learning with errors, random linear codes, and cryptog-
raphy”. In: Journal of the ACM (JACM) 56.6 (2009), pp. 1–40 (cit. on pp. 2, 4, 5,
7, 26).

[RSA78] Ronald L Rivest, Adi Shamir, and Leonard Adleman. “A method for obtaining digital
signatures and public-key cryptosystems”. In: Communications of the ACM 21.2
(1978), pp. 120–126 (cit. on p. 2).

33

[Sho99] Peter W Shor. “Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer”. In: SIAM review 41.2 (1999), pp. 303–332 (cit.
on p. 2).

[Sip83] Michael Sipser. “A Complexity Theoretic Approach to Randomness”. In: 1983, pp. 330–
335 (cit. on p. 3).

[Sol64] R.J. Solomonoff. “A formal theory of inductive inference. Part I”. In: Information
and Control 7.1 (1964), pp. 1 –22. issn: 0019-9958. doi: https://doi.org/10.
1016/S0019-9958(64)90223-2 (cit. on p. 3).

[Val84] Leslie G Valiant. “A theory of the learnable”. In: Communications of the ACM 27.11
(1984), pp. 1134–1142 (cit. on pp. 2, 6, 28).

[Yao82] Andrew C. Yao. “Theory and Applications of Trapdoor Functions”. In: Annual Sym-
posium on Foundations of Computer Science (FOCS). 1982, pp. 80–91 (cit. on p. 12).

A Missing proofs

A.1 Proving Lemma 2.1

.
To prove Lemma 2.1, we use the following weak version of GL.

Lemma A.1. There exists a ppt oracle-aided algorithm Dec such that the following holds. Let
n ∈ N be a number, x ∈ {0, 1}n, and and let Pred be an algorithm such that

Pr
r←{0,1}n

[Pred(r) = GL(x, r)] > 3/4 + 0.01,

where GL(x, r) := ⟨x, r⟩ is the Goldreich-Levin predicate. Then Pr
[
DecPred(1n) = x

]
= 1− neg(n).

Proof of Lemma A.1. We use Pred to decode each bit of x separately. For every i, let ei be the
vector that has 1 in the i-th entry, and 0’s everywhere else. Observe that, for a uniformly chosen
R← {0, 1}n,

Pr[Pred(R) = GL(x,R) ∧ Pred(R⊕ ei) = GL(x,R⊕ ei)] ≥ 1/2 + 0.01.

Thus,
Pr[Pred(R)⊕ Pred(R⊕ ei) = GL(x,R)⊕GL(x,R⊕ ei)] ≥ 1/2 + 0.01.

By linearity of the inner product we get that,

Pr[Pred(R)⊕ Pred(R⊕ ei) = xi] ≥ 1/2 + 0.01.

Let Dec be the algorithm that for every i, computes Pred(R)⊕Pred(R⊕ ei) for n random values of
R, and let x′i to be the majority of the outputs. Then, Dec outputs x′ = x′1, . . . , x

′
n. By Chernoff

bound, x′i is equal to xi with all but negligible probability. By the union bound, the above is true
for all i’s simultaneously with all but negligible probability, as we wanted to show. □

We are now ready to prove Lemma 2.1.

34

Proof of Lemma 2.1. Let A be the algorithm that given 1n, X and an oracle to E, executes DecPred(1n)
where Dec is the algorithm promised by Lemma A.1, and Pred(r) = E(X, r). It is enough to show
that PrX [PrR[E(X,R) = ⟨X,R⟩] ≥ 3/4 + 0.01] ≥ 1− 8ϵ.

Assume toward a contradiction that PrX [PrR[E(X,R) = ⟨X,R⟩] ≥ 3/4 + 0.01] < 1− 8ϵ. Then,

Pr
X,R

[E(X,R) = ⟨X,R⟩] < (1− 8ϵ) · 1 + 8ϵ · (3/4 + 0.01) < 1− ϵ,

which is a contradiction to the assumption. □

A.2 Proving Lemma 7.6

Lemma A.2 (CPA-secure encryption amplification, restated). The following holds for every con-
stants c1 > c2. Assume there exists an (n−c1/2, 1 − 10n−c2 , 2nc1)-weak CPA-secure encryption
scheme. Then, there exists a CPA-secure encryption scheme.

Proof. We prove a stronger claim - that (n−c1 , 1 − 5n−c1 , 1)-weak CPA-secure encryption scheme
implies the existence of a one-way function. This implies the lemma using Proposition 7.4. Let
(Gen,Enc,Dec) be such scheme. For a large enough polynomial k to be chosen later, we define a
weak one-way function f as follows:

f(1n, rGen, r1, . . . , rk) = 1n,Enc(Gen(1n; rGen); r1), . . . ,Enc(Gen(1
n; rGen); rk),

∑
i

bi,

where bi ∈ {0, 1} is equal to one if |Dec(Gen(1n; rGen),mi)− oi| ≤ d(1n) for (mi, oi) = Enc(Gen(1n; rGen); ri).
We next prove that f is indeed n−c1-weak one-way function. Using Theorem 2.6, we get that one-
way function exists.

Assume that there exists an efficient algorithm A that inverts f with probability at least 1−n−c1
for infinitely many n’s. We claim that we can use A to break the security of the weak CPA-
secure encryption scheme (Gen,Enc,Dec). Indeed, let Eve be the algorithm that on input 1n,m
and oracle Encsk, samples k pairs (m1, o1), . . . , (mk, ok) using the oracle. Let r1, . . . , rk be the
randomness used by the oracle (so that (mi, oi) = Enc(sk, ri)). It then uses A to invert f on
1n, (m1, o1), . . . , (mk, ok), v for every value of v ∈ [k]. Let 1n, r′Gen, r

′
1, . . . , r

′
k be the output of A on

the largest value of v for which A successfully found a preimage. Finally, Eve computes a secret-key
sk′ using Gen(r′Gen) and outputs o′ = Dec(sk′,m). Let b′i ∈ {0, 1} be 1 if |Dec(sk′,mi)− oi| ≤ d(1n),
or 0 otherwise.

We first notice that on a random key sk ← Gen(1n), and for v∗ =
∑

bi, the distribution
of Eve’s query (1n, (m1, o1), . . . , (mk, ok), v

∗) to A is the exact distribution of the image of f on
a random input. Thus, with probability at least 1 − n−c1 , A outputs r′Gen, r

′
1, . . . , r

′
k such that

Enc(sk′; r′i) = (mi, oi) for every i ∈ [k] for sk′ = Gen(1n; r′Gen), and where
∑

b′i ≥ v∗.
In the following we show that with probability at least 1− n−c1 over sk and the randomness of

the oracle calls r1, . . . , rk, it follows that any such r′Gen, r
′
1, . . . , r

′
k with

∑
b′i ≥ v∗,

Pr
(m,o)←Enc(sk)

[∣∣Dec(sk′,m)− o
∣∣ ≤ d(1n)

]
≥ v∗/k − n−c1 . (6)

Using the union bound, we will then get that with probability at least 1 − 2n−c1 Eve outputs a
key sk′ for which Equation (6) holds. The proof then follows by the observation that the expected
value of v∗/k is at least 1− n−c1 .

35

To see that Equation (6) holds with high probability, fix sk and sk′ such that Equation (6) does
not hold. We will show that with probability at least 1 − n−c1/2|sk

′| (over the randomness of the
oracle calls r1, . . . , rk), any r′Gen, r

′
1, . . . , r

′
k such that sk′ = Gen(1n; r′Gen) is not a valid pre-image of

(m1, o1), . . . , (mk, ok), v for v ≥ v∗. Equation (6) then follows using the union bound on all possible
keys sk′.

By our choice of sk and sk′, it holds that

Pr
(m,o)←Enc(sk)

[∣∣Dec(sk′,m)− o
∣∣ ≤ d(1n)

]
< v∗/k − n−c1 . (7)

Using Fact 2.14, for k ≥ n2c1(|sk′|+ c1 log n+ 1), we get that

Pr
(m1,o1),...,(mk,ok)←Encsk

[∣∣{i : ∣∣Dec(sk′,mi)− oi
∣∣ ≤ d(1n)

}∣∣ ≥ v∗
]
≤ n−c1/2|sk

′|.

The proof follows as
∑

i b
′
i = |{i : |Dec(sk′,mi)− oi| ≤ d(1n)}|. □

36

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

