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Abstract

In this work, we study the problem of testing m-grainedness of probability distributions over
an n-element universe U , or, equivalently, of whether a probability distribution is induced by
a multiset S ⊆ U of size |S| = m. Recently, Goldreich and Ron (Computational Complexity,
2023) proved that Ω(nc) samples are necessary for testing this property, for any c < 1 and
m = Θ(n). They also conjectured that Ω( m

logm ) samples are necessary for testing this property

when m = Θ(n). In this work, we positively settle this conjecture.
Using a known connection to the Distribution over Huge objects (DoHo) model introduced

by Goldreich and Ron (TheoretiCS, 2023), we leverage our results to provide improved bounds
for uniformity testing in the DoHo model.

1 Introduction

The field of distribution testing [BFR+00, BFF+01] is concerned with providing statistically
accurate information about large datasets or their underlying probability distributions, given very
scarce data (sample size). Drawing insights from property testing [GGR98, RS96], distribution
testing lies at the intersection of theoretical computer science, statistics, and learning theory; and
has received significant attention over the past two decades, with many algorithms, insights, and
new theoretical access models to the data being proposed and analyzed. We refer the reader to
recent surveys [Can20, BW18, Can22] and textbook [Gol17, Chapter 11] for more on distribution
testing and property testing.

In the most standard access model, the algorithm accesses the underlying unknown probability
distribution D (usually assumed to be over a known discrete domain of size n) by obtaining
independent, identically distributed (i.i.d.) samples from it. The goal of the algorithm is then, given
a fixed property Π ⊆ ∆n (a subset of the n-dimensional probability simplex ∆n) and a distance
parameter ε ∈ (0, 1], as follows:

• If D ∈ Π, the algorithm must output accept with probability at least 2/3;

• If dTV(D,Q) > ε for all Q ∈ Π, the algorithm must output reject with probability at least 2/3;

where dTV denotes the total variation distance between distributions, and the probability is taken
over the choice of the samples and the internal randomness of the algorithm. This is defined as the
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ε-testing of the property Π. The minimum number of samples s = s(n, ε) necessary to achieve this
task in the worst case (over all possible distributions D) is the sample complexity of testing Π. That
is, the testing task requires the algorithm, given as few samples as possible, to distinguish with high
probability between distributions which have the property, and those which are “far” from having it.

Many other access models have been introduced, providing additional types of queries to the
algorithm, or changing the distance metric, or both (see [Can20] for an overview): among them is the
Distribution over Huge Objects (DoHO) model, recently introduced by Goldreich and Ron [GR23b]
to capture settings where full access to the data sampled is itself costly or impractical, due to the
size of these objects. In the simplest version of this model, the distribution D is defined over the
n-dimensional hypercube {0, 1}n, where n is assumed to be very large; given a sample x ∼ D, the
algorithm must then choose which bits of x to observe, paying a unit cost for every such query
made. The distance metric to quantify “farness” between distributions also differs from that of
the standard formulation, and instead is taken to be the Earthmover distance (EMD) between
probability distributions, with underlying metric chosen to be the (relative) Hamming distance
between n-bit strings. (For the formal definition of this model, and the relation to the standard
sampling model, see Section 1.3.)

Many different properties of distributions have been studied, some of them quite extensively:
among those, uniformity (Π = {UΩ}, consisting of the single uniform distribution over the whole
domain Ω), generalized uniformity [BC17] (ΠU = {US : S ⊆ Ω}, consisting of all distributions
uniform over some subset of the domain), and parameterized uniformity (Πm = {US : S ⊆ Ω, |S| =
m}, consisting of all distributions uniform over some size-m subset of the domain) [GR23b], and
m-grainedness (denoted Π◦

m, which we will define shortly) [Gol16, GR23a] are the most relevant to
this work.

In this paper, we will focus on two distribution testing tasks, intimately related:

• Testing m-grainedness of distributions in the standard sampling model (property Π◦
m); and

• Testing parameterized uniformity in the DoHO model.

Grainedness of distributions. A probability distribution D ∈ ∆n over a discrete set Ω of n
elements is said to be m-grained, for a given parameter m, if all its probabilities are integer multiples
of 1/m. That is,

mD(x) ∈ N≥0, x ∈ Ω .

Such distributions naturally arise due to quantization (e.g., binning of continuous or discrete
distributions), or when sampling from datasets: that is, if S ⊆ Ω is a multiset of size m, uniformly
sampling from S with replacement yields an m-grained distribution DS over Ω.

Throughout this work, we will assume ε ∈ (0, 1) is a constant. Thus, m < n/ε = O(n). Previous
works fixed m = Θ(n) but these results can also be extended for m = O(n), and therefore our
results are stated in terms of m, instead of n.

Recent work of Goldreich and Ron [GR23a] showed that Ω(mc) samples are necessary for testing
this property, for any fixed c < 1. A sample complexity upper bound of O( m

logm) also follows from
previous work of Valiant and Valiant [Val11], which led [GR23a] to conjecture a lower bound of
Ω( m

logm) samples. Our main contribution is to resolve this conjecture, showing that, indeed, Θ( m
logm)

samples are necessary and sufficient for m-grainedness testing:

Theorem 1.1. Let n be a sufficiently large integer, m = O(n), and let ε ∈ (0, 1) be a sufficiently
small constant. Then, ε-testing m-grainedness of distributions over [n] requires Ω( m

logm) samples.
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We note that the restriction m = O(n) is necessary, as if m = n/α for some α < 1, every
distribution is α-close to being m-grained. Recall that we assume ε is a small constant. Moreover, the
problem of testing m-grainedness becomes trivial when m ≥ n/ε as in that case every distribution
is ε-close to being m-grained. Along the way, we also present as a warmup a new proof of the lower
bound of Ω(nc) samples for m-grainedness testing:

Theorem 1.2. Let n be a sufficiently large integer, m = O(n), and let ε ∈ (0, 1) be a sufficiently
small constant. Then, for any fixed constant c ∈ (0, 1), ε-testing m-grainedness of distributions over
[n] requires Ω(mc) samples.

While this is a strictly weaker result than our main lower bound, our proof strategy differs
significantly from that of [GR23a], and may be of independent interest.

Parameterized uniformity testing in the DoHO model. In a separate work [GR23b],
Goldreich and Ron studied the problem of parameterized uniformity testing in the Huge Object
model. Among other results, they established a connection between m-grainedness testing in the
standard model and testing Πm in the DoHO model:

Theorem 1.3 ([GR23b, Theorem 2.13]). Assume that, for constant ε ∈ (0, 1), ε-testing m-
grainedness in the standard model has sample complexity Ω( m

logm). Then, for every 1 ≤ m ≤ n

and constant ε′ ∈ (0, ε2), ε
′-testing Πm for distribution over {0, 1}n in the DoHO model has query

complexity Ω( m
logm).

Our lower bound for m-grainedness immediately implies that this result holds unconditionally.
In the same paper, the authors provided an algorithm for testing Πm using Õ(m) samples and
queries (for constant ε = Ω(1)), which together with the above – now unconditional – lower bound
settles the complexity of testing Πm in the DoHO model, up to logarithmic factors, for m ≤ n. One
may be tempted to assume the same query complexity lower bound holds in all parameter regimes:
perhaps surprisingly, our next result is a new and simple algorithm for testing Πm in the DoHO
model which takes O(m2/3) samples and performs O(m2/3n) queries:

Theorem 1.4. There is an algorithm which, given an integer m ∈ N and constant ε ∈ (0, 1),
ε-tests the property Πm of distributions over {0, 1}n in the DoHO model, taking O(m2/3) samples
and performing O(m2/3 · n) queries. Moreover, any ε-tester for Πm in the DoHO model must take
Ω(m2/3) samples.

Notably, this improves the upper bound of Goldreich and Ron whenever n3 ≤ m ≤ 2n, and rules
out any Ω̃(m) query complexity lower bound for the whole range of m.

1.1 Overview of our techniques

Lower bound for m-grainedness testing. Our lower bound approach follows Le Cam’s two-point
method: we will design two distributions of distributions Dyes and Dno such that the distributions
in Dyes are m-grained and the distributions in Dno are “far” from being m-grained in variation
distance. The name of the game is then to prove that it is information-theoretically impossible to
distinguish between Dyes and Dno.

To achieve this, we will rely on the moment-matching technique, particularly suited to properties
like m-grained (which are symmetric, i.e., invariant to relabelling of the domain elements). Broadly,
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if two probability distributions Dyes and Dno have sufficiently similar moments ∥Dyes∥tt ≈ ∥Dno∥tt,
for say 1 ≤ t ≤ K, then it is hard to distinguish (a permutation of) Dyes from (a permutation
of) Dno by using o(n1−1/K/K) samples. That is, the more moments one can match, the more
samples one needs to tell two distributions apart. Note that setting K = Θ(log n) would then
lead to an Ω( n

logn) lower bound (and that, as remarked later, in our case we can assume without
loss of generality, for the sake of the lower bound argument, that m = Θ(n).) This approach has
been used in the literature extensively [RRSS09, Val11, VV17, WY16, WY19, WY+20, CDKL22],
and has proven to be very successful in obtaining tight lower bounds for a range of symmetric
properties. We will rely on the formulation of the technique described by [WY+20], which maps the
problem of matching moments of two full probability distributions (an n-dimensional object) to
that of matching moments of two single-dimensional random variables U and V : these two random
variables will then be used to generate the probability distributions: intuitively (and as described
below), “n independent draws from U will give Dyes(1), . . . , Dyes(n)” (and similarly for Dno and V ).

Thus, a crucial ingredient in our lower bound is the construction of a pair of discrete random
variables U and V whose first logarithmically many moments are identical. Using n independent
copies of U (resp. V ), we will then define a random measure over [n], which corresponds to a
“yes”-instance Dyes (resp., a “no”-instance Dno). Thus, another requirement on our construction
of U and V is that the first one should yield an m-grained distribution, while the second should
correspond to a distribution far from being m-grained. We will formalize this in Lemma 2.2.

To build these two random variables U and V , we will, as previously done in the literature, rely
on the properties of the Chebyshev polynomial Td of degree d = O(log n), defining U and V to
be supported on disjoint subsets of the roots of a suitable polynomial P (x), where the probability
mass assigned to a given root r is proportional to 1/|P ′(r)|. The idea is that some of the roots of
P , those corresponding to U , will be multiples of 1/m (leading to m-grained probabilities) while
the others, corresponding to V , will be odd multiples of 1/(2m) (leading to “far-from-m-grained”
probabilities): for instance, we would take

P (x) = x

(
x− 1

2m

)(
1− 1

m

)
Td(c · x)

for some scaling constant c > 0. The remaining roots will be that of the Chebyshev polynomial Td,
which are there to ensure that we can match sufficiently many moments of U and V .

However, this approach, which underlies most of previous work, cannot be directly used here:
indeed, while the resulting two random variables U, V could be made to have many matching
moments, and as such be hard to distinguish, doing so will put a lot of probability mass on the
roots of the Chebyshev polynomial Td both for U and V ; and these roots are not multiples of 1/m.
This would have the undesirable effect of making both our distributions far from being m-grained.
Trying to fix this the obvious requires to ensure very little mass is put by U (and so V ) on the roots
of Td, which in turns limits the number of moments that can be matched. (Note that fixing this
by choosing not to use the Chebyshev polynomial Td at all but instead choosing P (x) of the form
P (x) = x

(
x− 1

2m

)
·
(
x− 1

m

)
· · ·
(
x− L

m

)
, for some large constant integer L, does get part of the

way there and provides a non-trivial result, leading to our (weaker) Ω(mc) lower bound for every
c < 1).

To remedy this, we take a different route, using an idea we believe to be of independent interest
and applicable to other lower bounds: instead of using Chebyshev polynomials directly, we will
be using a modified version of Chebyshev polynomials, T̃d, defined from Td by first rounding its
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roots to multiples of 1/m. By carefully analyzing the resulting polynomial, we can show that it
behaves, for our lower bound construction purposes, similarly to the Chebyshev polynomial, and so
we can use it to define both U and V . This allows us to match more moments, leading to our final
Ω(m/ logm) lower bound.

Upper bound for parameterized uniformity testing. In contrast, the idea underlying our
upper bound for testing Πm in the DoHO model is relatively straightforward: namely, by making
n queries per sample, we can simulate any testing algorithm in the standard sampling model, as
we now have observed the full samples. This, along with the relation between TV distance and
EMD distance, allows us to lift any s-sample tester for Πm in the standard sampling model to an
s-sample, s · n-query tester for Πm in the DoHO model.

The only issue with this plan is that there is no known (nontrivial) tester for Πm in the standard
sampling model. There is, however, a known testing algorithm for the related property of generalized
uniformity, ΠU . Our key contribution here is then to use this known tester A to derive a tester B
for Πm in the standard sampling model. Notably, this is not as immediate as it seems, and our
algorithm needs to use A in a whitebox way, and combine this with an additional test to estimate
the ℓ2 norm of the unknown distribution D. The subtlety here (and the reason for which we cannot
use any A in a blackbox fashion, but need to use a specific algorithm due to [BC17]) is that being
close to some uniform distribution over some subset does not immediately allow to conclude about
being close to some uniform distribution over some m-size subset – even if we are guaranteed the ℓ2
norm of D is close to 1/m.

1.2 Related work

The field of distribution testing has its roots in theoretical computer science with the work of
Goldreich and Ron [GR00], who designed a uniformity testing algorithm as a tool to check whether
a graph is an expander; and formally defined and introduced in [BFR+00]. [BFF+01] studied the
problem of identity testing, which generalizes the problem of uniformity testing. Over the last
two decades, this field has seen significant growth, and a host of new tools and techniques have
emerged, see [Pan08, ADK15, Gol16, DK16, DGPP18, DGPP19, CJKL22] to name a few. See the
surveys [Can20, BW18, Can22] and the book of [Gol17, Chapter 11] for more details.

The study of grained distributions was done implicitly in the work of [RRSS09], and later [Gol16]
studied it in more detail.

As mentioned earlier, the Huge Object model was introduced by [GR23b]. Since then, there
have been several works focusing on this model. [CFG+23] defined the notion of index-invariant
properties, a set of properties that are invariant under the permutation of the indices (these properties
are different than label-invariant properties). They showed that index-invariant properties whose
VC dimension of the support set is bounded can be learned using a constant number of queries,
depending only on the VC dimension. They also gave tight separation between adaptive and
non-adaptive testers for index and non-index-invariant properties. Later, [AF24] studied various
different notions of adaptivity, and showed several separation results. Very recently, [AFL24] studied
the problem of support size testing in this model.
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1.3 Preliminaries

For a positive integer n, let [n] denote the set {1, . . . , n}. We will use the standard asymptotic
notation O(·),Ω(·),Θ(·), and, in some cases, the (somewhat less) standard notation Õ(·), which
omits poly-logarithmic dependencies in the parameters for readability.

We will use several notions of distance between two distributions.

Definition 1.5. Let D1 and D2 be two probability distributions over a domain Ω. The ℓ1 distance
between D1 and D2 is defined as

∥D1 −D2∥1 =
∑
x∈Ω
|D1(x)−D2(x)|.

The total variation distance between D1 and D2 is defined as:

dTV(D1, D2) =
1

2
· ∥D1 −D2∥1 = sup

S⊆Ω
(D1(S)−D2(S)).

Definition 1.6 (EMD with respect to Hamming distance). Let D1, D2 be two distributions defined
over the n-dimensional Hamming cube {0, 1}n and dH be the (relative) Hamming distance over
{0, 1}n. Then the Earth Mover distance (EMD) between D1 and D2 is defined as follows:

dEM(D1, D2) := inf
T∈T (D1,D2)

E(x,y)∼T [dH(x, y)]

where T (D1, D2) denotes the set of all couplings between µ and τ .

Since we are working with the (relative) Hamming distance, dH(x, y) ≤ 1. Then directly from
the definitions of dEM(D1, D2) and dH(x, y), we get the following simple yet useful observation
connecting total variation and EMD distances between two distributions.

Observation 1.7 (Relation between EMD and TV distances). Let D1 and D2 be two distributions
over the n-dimensional Hamming cube {0, 1}n. Then,

dEM(D1, D2) ≤ dTV(D1, D2).

Definition 1.8 (Huge Object Model). Consider a discrete distribution D supported over the
n-dimensional Hamming cube {0, 1}n. D is accessed by obtaining iid samples, where each sample
obtained is an n-bit Boolean string. In addition to the sampling oracle, there is also a query oracle
associated with D, where the tester can query any index i ∈ [n] for any samples (say j-th sample
sj) obtained, and the query oracle will return the i-th bit of sj . The goal is then to minimize both
the total sample and query complexities required to decide a property.

Note that this Huge Object model is particularly suited for studying high-dimensional distributions,
where the dimension of the underlying domain is so large that even reading a single sample in its
entirety might not be feasible.

Finally, we state here some technical result which will be used in our lower bounds proofs:

Lemma 1.9 ([WY19, Lemma 4]). Let W1,W2 be discrete random variables taking values in [0,Λ].
If E[W t

1] = E[W t
2] for 1 ≤ t ≤ T , then

dTV

(
EW1 [Poi(W1)],EW2 [Poi(W2)]

)
≤
(
eΛ

2T

)T

.
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Fact 1.10 ([CDKL22, Fact 7], [Win21]). Let p be a degree-d polynomial with distinct roots r1, . . . , rd.

Then, for every 0 ≤ k ≤ d− 2, we have that
∑d

i=1
rki

p′(ri)
= 0.

We will be using the following two well-known trigonometric inequalities.

Fact 1.11. (i) For x ∈ [0, π], the following holds:

sinx ≥ 2

π
min(x, π − x) (1)

(ii) For x ∈ [−π/2, π/2], the following holds:

| 4
π
· x| ≥ | sinx| ≥ | 2

π
· x|, (2)

Organization The rest of the paper is organized as follows. In Section 2, we present a new proof
of the lower bound of Ω(mc) samples. Then in Section 3, we present the Ω(m/ logm) lower bound
for testing m-grainedness. In Section 4, we present our result of uniformity testing in the Huge
Object Model. We conclude in Section 5 with some open questions.

2 An Ω(mc) lower bound for testing m-grainedness

In this section, we prove Theorem 1.2, thereby presenting a new proof of the lower bound of
[GR23a].

Theorem 1.2. Let n be a sufficiently large integer, m = O(n), and let ε ∈ (0, 1) be a sufficiently
small constant. Then, for any fixed constant c ∈ (0, 1), ε-testing m-grainedness of distributions over
[n] requires Ω(mc) samples.

Note that it suffices to consider the case m = Θ(n), as if m≪ n one can then embed the hard
instances in a larger domain, lifting the lower bound. As a result, we hereafter assume without loss
of generality that m = Θ(n). We start by stating a relatively standard theorem which will be crucial
in the proof of our sample complexity lower bound, and whose proof is deferred to Appendix B.

Theorem 2.1. Fix positive integers m,n, s, where n > 4.3 × 108 and m ≤ C0(n − 1) for some
absolute constant C0 ∈ R. Suppose there exist random variables U and V , where U is supported on{
0, 1

m , . . . , mm
}
; Pr

[
V ∈

{
1
2m , 3

2m , . . . , 2m−1
2m

}]
≥ 2

3 ; and they satisfy the following three conditions,

max(U, V ) ≤ 20 log2(n− 1)

(n− 1)
, (3)

E[U ] = E[V ] ≤ 1

2(n− 1)
. (4)

dTV (E[Poi(sU)],E[Poi(sV )]) ≤ 1

20(n− 1)
, (5)

Then any tester taking less than s/2 number of samples from unknown distribution p cannot
distinguish between the cases that p is m-grained and p is at least 1

8C0
-far from any m-grained

distributions in TV distance with probability 3/5.
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In order to prove Theorem 1.2, we will be using the following lemma.

Lemma 2.2. There exist constants L, K, such that for any n and m = L(n− 1), there exist two
discrete random variables U and V such that the following Equations (6), (7), (8) and (9) hold.

Support(U) ⊆ Z
m

and Support(V ) ⊆ 2Z+ 1

2m
(6)

U, V ≤ L

m
(7)

E[U ] = E[V ] ≤ 1

2(n− 1)
. (8)

E[U t] = E[V t] for t ∈ [K]. (9)

In order to prove the above lemma, we will use the following polynomial to construct our U and
V (fix any positive integer L):

P (x) = x

(
x− 1

2m

)(
x− 2

2m

)(
x− 3

2m

)
. . .

(
x− 2L

2m

)
(10)

In the context of Lemma 2.2, the random variable U will be supported on the roots 0, 1
m , 2

m , . . . , L
m .

Similarly, the random variable V will be supported on the roots 1
2m , 3

2m , . . . , 2L−1
2m .

Proof of Lemma 2.2. We will first describe the construction of random variables U and V , associated
with the polynomial P . Namely, let Pr[U = r] ∝ 1

|P ′(r)| for r in the support of U (every derivative is

positive when r is in the support of U , i.e., r ∈ {0, 1
m , 2

m , . . . , L
m}). Similarly, we have Pr[V = r] ∝

1
|P ′(r)| for r in the support of V (likewise, all derivative will be negative). The normalization term is
simply

ZP :=
L∑
i=0

1

|P ′( i
m)|

=
L∑
i=1

1

|P ′(2i−1
2m )|

.

And we can show that

ZP =
L∑

k=0

(
2L
2k

)
(2m)2L

(2L)!
=

(2m)2L

(2L)!

L∑
k=0

(
2L

2k

)
=

(2m)2L

(2L)!
· 22L−1.

Applying Fact 1.10 with k = 0, we can notice that the two summations are equal (U has all positive
roots and V all negative).

Proof of Equation (7). The largest value of U and V is the largest root of the polynomial P :
max{U, V } ≤ L/m.
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Proof of Equation (8) Let us compute the derivative of the polynomial P in Equation (10). For
any k ∈ [2L] ∪ {0}, we have the following:

P ′
(

k

2m

)
=

k−1∏
ℓ=0

k − ℓ

2m

2L∏
ℓ=k+1

ℓ− k

2m
(−1)2ℓ−k

=
(−1)k

(2m)2L
k!(2L− k)!

= (−1)k (2L)!(
2L
k

)
(2m)2L

Now let us compute E[U ] as follows:

E[U ] = Pr[U = 0] · 0 +
∑

ℓ: ℓ even, ℓ∈[2m]

Pr

[
U =

ℓ

m

]
· ℓ
m

=
1

ZP

L∑
k=0

2k

2m

(
2L
2k

)
(2m)2L

(2L)!

=
1

m

∑L
k=0 k

(
2L
2k

)
22L−1

=
L

2m

We finally upper bound the expectation:

1

2(n− 1)
≥ L

2m
= E[U ]⇒ m ≥ L(n− 1). (11)

Proof of Equation (9) Their first K = 2L − 1 moments are matched by recalling Fact 1.10
(applied for k = t) and how U and V are constructed.

Proof of Theorem 1.2. Using Lemma 1.9 on random variables constructed in Lemma 2.2, by setting
m = 2L(n− 1) = Θ(n), we know Λ = s · Lm , we get that

dTV(E[Poi(sU),Poi(sV )]) ≤

(
es · Lm
2K

)K

≤ 1

2(n− 1)
,

which gives,

s ≤ 2(n− 1)

(
2K

e

)
·
(

1

2(n− 1)

)1/K

.

Further simplification yields,

s ≤
(
4L− 2

e

)
(2(n− 1))1−

1
2L−1 .

Applying Theorem 2.1, gives the lower bound s = Ω
(
n1− 1

2L−1

)
. For any constant c < 1, one can

choose L large enough such that c ≤ 1− 1
2L−1 , and thus concludes our proof.
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3 Ω( m
logm) lower bound for m-grainedness (Proof of Theorem 1.1)

In this section, we will be proving the following theorem:

Theorem 1.1. Let n be a sufficiently large integer, m = O(n), and let ε ∈ (0, 1) be a sufficiently
small constant. Then, ε-testing m-grainedness of distributions over [n] requires Ω( m

logm) samples.

Similar to the proof of Theorem 1.2, we will make use of Theorem 2.1 to prove our Ω( m
logm)

lower bound. Namely, we will construct two random variables U and V such that they can be used
to construct approximate probability vector for m-grained and mostly 2m-grained and their first
log(m) moments match. In particular, we will prove the following lemma:

Lemma 3.1. For m = 70(n− 1) and n > 20, there exist discrete random variables U and V such
that the following hold:

Pr[V =
1

2m
] ≥ 2/3. (12)

Support(U) ⊆ Z
m

(13)

0 ≤ U, V ≤ 20 log2(n− 1)

n− 1
. (14)

E[U ] = E[V ] ≤ 1

20(n− 1)
. (15)

E[U t] = E[V t] for t ∈ [3 · log(n− 1)] (16)

3.1 Construction of U and V

The main focus of this subsection is to establish Lemma 3.1.
Fact 1.10 allows us to define two random variables U and V with matching moments up to

the degree of some polynomial – similar to the analysis in Section 2, by simply defining U and V
through its roots and partitioning them by the signs of the derivatives at those roots. However,
the challenge here is, we need to match even higher degree (in Section 2, we can match them up to
a constant degree C1, here we need to match them up to Θ(logm) = Θ(log n) degree), all while
keeping every other conditions unchanged: U is m-grained and V on the most part is (2m)-grained;
maximum value of the support size does not blow up; and more importantly, the expectation could
be bounded by O(1/n). Notably, if we try to match higher degree: say instead of constant, we make
L = O(log n) in Equation (11), with m = Θ(n), using the construction in Section 2. It will fail
miserably – the expectation E[U ] will exceed O(1/n), and so when we take n copies of U or V , it
would not be a distribution in an approximate sense.

To work around this and match degree (by implication, moment) as high as possible, we take
the (shifted) Chebyshev polynomial of degree d and we will later use properties of this polynomial
to construct our prior variables U and V . Recall that the shifted Chebyshev polynomial of the first
kind is defined as follows:

10



pTd
(x) = Td(1−∆x) = 2d−1∆d ·

d∏
i=1

(x− ti), (17)

where Td(θ) = cos(d·arccos θ), for θ ∈ [−1, 1]; ti denotes the roots of the degree-d (shifted) Chebeshev
polynomial for every i ∈ [d]; ∆ ∈ R, a parameter to be chosen in the analysis later.

However, as mentioned in the introduction, instead of using the shifted Chebyshev polynomial
directly, we will be using a variant of it for our proof. For this purpose, we will define the polynomial
p̃Td

, a slightly modified Chebyshev polynomial of degree d, by “rounding up to the nearest multiple
of 1/m” its d roots:

p̃Td
(x) = T̃d(1−∆ · x) = 2d−1∆d ·

d∏
i=1

(x− t̃i) (18)

where 1
m + ti ≥ t̃i =

1
m⌈mti⌉ ≥ ti.

Putting these ideas together, we will focus on two polynomials based on the Chebyshev polynomial
and modified Chebyshev polynomial respectively (obtained by appending Chebyshev polynomial to
x(x− 1

2m)(x− 1
m)):

p(x) = x

(
x− 1

2m

)(
x− 1

m

)
· pTd

(x) (19)

p̃(x) = x

(
x− 1

2m

)(
x− 1

m

)
· p̃Td

(x) (20)

Through polynomial p̃ in Equation (20), we can construct two random variables U and V
identified by their probability mass function. Namely, we define U as follows:

Pr[U = r] ∝ 1

|p̃′(r)|
if p̃′(r) > 0 and r is a root of p̃ (21)

Similarly, we define the random variable V as follows:

Pr[V = r] ∝ 1

|p̃′(r)|
if p̃′(r) < 0 and r is a root of p̃ (22)

For both U and V , we assign probability 0 to the roots not specified. Thus, by setting k = 0 in
Fact 1.10 and noting that the negative and positive terms sum to 0, the normalization factor are
equal for both U and V , and can be expressed as follows:

Observation 3.2.

Zp̃ = Z(∆,m, d) =
1

p̃′(0)
+

1

p̃′( 1
m)

+
d∑

j=1

1{p̃′(t̃j)>0}

p̃′(t̃j)
=

1

|p̃′( 1
2m)|

+
d∑

j=1

1{p̃′(t̃j)<0}

|p̃′(t̃j)|
. (23)

The reasons we are taking the shifted Chebyshev polynomial and “round the roots up” are two-
fold: first, this kind of construction (before rounding) was used to prove lower bounds with
Ω(n/ log n) complexity before, by constructing a polynomial of degree Θ(log n) with certain
constraints [CDKL22]. Second, we need to make sure that the distributions derived from U
are m-grained with very high probability. Yet, using the shifted Chebyshev directly, some of the

11



roots of U (the positive roots) resulting from Td will not be m-grained with non-trivial probability.
Intuitively, we want to leverage the known properties of the shifted Chebyshev pTd

and argue that
rounding up and creating p̃Td

will only “mildly” change those properties.
Since we are deciding the support of U, V based on the evaluation of derivative at each root

of p̃Td
and argue that it is somewhat close to pTd

, we need to first make sure that the signs of
derivative at the main three roots remain the same as pTd

’s (the rest of the roots’ derivative’s signs,
the ones induced by p̃Td

, will not affect the argument). Note that the sign of the polynomial p̃Td

when evaluated at 0, 1/2m, 1/m is not changed (same as pTd
), as (0− tj) and (0− t̃j) have the same

sign; we also have 1/2m, 1/m ≤ tj ≤ t̃j , via a constraint on setting ∆ and therefore we can conclude
that

pTd
(0) · p̃Td

(0) > 0; pTd
(1/2m) · p̃Td

(1/2m) > 0; pTd
(1/m) · p̃Td

(1/m) > 0.

roots p′(rℓ) bounds on |p′(rℓ)|
r1 = 0 1

2m2 · Td(1) Θ
(

1
m2

)
r2 =

1
2m − 1

4m2 · Td

(
1− ∆

2m

)
Θ
(

1
m2

)
r3 =

1
m

1
2m2 · Td

(
1− ∆

m

)
Θ
(

1
m2

)
rℓ+3 = tℓ =

2
∆ sin2

(
π
2

(
2ℓ−1
2d

))
p′(tℓ) = tℓ ·

(
tℓ − 1

2m

)
·
(
tℓ − 1

m

)
· T ′

d(tℓ) Θ
(

ℓ5

∆2d4

)
Table 1: Properties of the polynomial p and its distinct d+ 3 roots. |p′(r1)|, |p′(r2)|, |p′(r3)|’s upper
and lower bound come from Claim A.7. |p′(rℓ+3)|’s bound is implied by Equation (50).

Next, we compute their corresponding derivatives of the two polynomials evaluated at the roots
tℓ and t̃ℓ.

p′(tℓ) = tℓ

(
tℓ −

1

2m

)(
tℓ −

1

m

)
2d−1∆d

∏
j ̸=ℓ

(tj − tℓ) (24)

p̃′(t̃ℓ) = t̃ℓ

(
t̃ℓ −

1

2m

)(
t̃ℓ −

1

m

)
2d−1∆d

∏
j ̸=ℓ

(t̃j − t̃ℓ) (25)

Here, note that by construction, all the roots of p̃Td
will be m-grained (see Equation (18)).

Moreover, 0 and 1
m are m-grained roots of p̃(x) (see Equation (20)). On the other hand, the root

1
2m of the polynomial p̃(x) is not m-grained by definition.

In the context of Lemma 3.1, the random variable U will be supported on the roots 0, 1
m , and a

subset of the roots t̃ℓ of the modified Chebyshev polynomial p̃Td
from Equation (18), for ℓ ∈ [d]. On

the other hand, the random variable V will be supported over 1
2m and a disjoint (from support of

U constructed by modified Chebeshev roots of p̃Td
) subset of the modified Chebyshev polynomial

roots. U and V ’s support form a partition for all roots of p̃Td
.

To prove Lemma 3.1, we need a few claims, that we state below. Each item of Claim 3.3 is
solidified and proved later in Appendix A.1.

12



Claim 3.3 (Relation between roots at p̃′ and p′).

|p̃′(t̃ℓ)|
|p′(tℓ)|

≥ exp

(
− 12∆

m/d2

)
for every ℓ ∈ [d]. (26)

1 ≤ |p̃
′(0)|
|p′(0)|

, 1 ≤ |p̃
′(1/m)|
|p′(1/m)|

≤ 6, 1 ≤ |p̃
′(1/2m)|
|p′(1/2m)|

≤ 6. (27)

We will prove Equation (26) in Appendix A.1 as Claim A.2 and Equation (27) in Claim A.3,
Claim A.4, Claim A.5 respectively. From now onwards, we will assume that Claim 3.3 holds.

For the lower bound, we will be choosing ∆ = m
20d2

and d =
√
10 log(n− 1).

Observation 3.4. Let tj and t̃j be the roots of the Cheybyshev and modified Chebyshev polynomials,
for any j ∈ [d]. When ∆ ≤ m

2d2
, we have that

t̃j ≥ tj ≥
1

m
.

Proof. Using Equation (2), we can lower bound tj for any j,

tj =
1

∆

(
1− cos

(
2j − 1

2d
π

))
=

2

∆
sin2

(
π

2

(
2j − 1

2d

))
≥ 2

∆

(
2j − 1

2d

)2

≥ 1

m
, (28)

where the last inequality follows from 2j − 1 ≥ 1 (which holds for all j ≥ 1), and our assumption on
∆. Moreover, we also have:

t̃j =
1

m
⌈mtj⌉ ≥ tj ≥

1

m

where the last inequality follows from Equation (28). This completes the proof.

We need the following two claims (Claim 3.5 and Claim 3.6) whose proofs are deferred to
Appendix A.2, to show that Pr[V = 1

2m ] ≥ Ω(1) in Claim 3.7 as required by Equation (12).

Claim 3.5. Suppose 1 ≤ |p̃′( 1
2m

)|
|p′( 1

2m
)| ≤ 6 holds and ∆ ≤ 2m

9d2
. Then we have,

Pr

[
V =

1

2m

]
∝ 1

|p̃′( 1
2m)|

≥ 2

3
m2.

Claim 3.6. Suppose that ∆ ≤ 2m
9d2

. For any j ∈ [d], let t̃j denote the j-th root of the modified
Chebyshev polynomial p̃. Then we have:

Pr

[
V ̸= 1

2m

]
∝

d∑
j=1

1{p̃′(t̃j)<0}

|p̃′(t̃j)|
≤ exp

(
12∆

m/d2

)
· 66
π
·∆2d4.

Claim 3.7. If ∆ ≤ m
20d2

, then

Pr

[
V =

1

2m

]
=

1

|p̃′( 1
2m)| · Z

≥ 5

6
,

where Z is the normalizing constant defined in Equation (23).
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Proof. Following the definition of the random variable V (Equation (22)) and the normalization
term Zp̃ (Equation (23)), we can say that:

Pr

[
V =

1

2m

]
=

1

|p̃′( 1
2m)| · Z

=
1

1 +

(∑d
j=1

1{p̃′(t̃j)<0}

|p̃′(t̃j)|

)
· |p̃′( 1

2m)|
.

Combining Claim 3.5 and Claim 3.6, we see that d∑
j=1

1{p̃′(t̃j)<0}

|p̃′(t̃j)|

 · |p̃′( 1

2m
)| ≤

3 exp
(

12∆
m/d2

)
2m2

· 66
π
·∆2d4

=
99

π
exp

(
12∆

m/d2

)
· ∆

2d4

m2

≤ 99

π
exp

(
12 m

20d2

m/d2

)
·
(

m
20d2

)2
d4

m2
[∵ ∆ ≤ m

20d2
]

≤ 99

π
exp(

12

20
) · 1

400
≤ 1

5
.

Thus, we can say that

Pr

[
V =

1

2m

]
=

1

1 +

(∑d
j=1

1{p̃′(t̃j)<0}

|p̃′(t̃j)|

)
· |p̃′( 1

2m)|
≥ 5

6
.

This completes the proof.

Now we are ready to prove Lemma 3.1.

Proof of Lemma 3.1. We now prove that the random variables U and V defined in Section 3.1
satisfies Equation (12)-Equation (16). We begin by setting ∆ = m

20d2
.

Proof of Equation (12) Using Claim 3.7, we know that

Pr

[
V =

1

2m

]
≥ 5/6.

Proof of Equation (14) The largest value of U and V are the largest root of the modified
Chebyshev polynomial. Now let us first upper bound the largest value of the roots of the Chebyshev
polynomial. The largest value of the roots of Chebyshev polynomial is:

max
ℓ∈[d]

tℓ = max
ℓ∈[d]

1

∆

(
1− cos

(
2ℓ− 1

2d
π

))
=

2

∆
sin2

(
π

2

(
2d− 1

2d

))
≤ 2

∆
,

where the last inequality is obtained via Equation (2). So, the largest value of the roots of the
modified Chebyshev polynomial is:

max
ℓ∈[d]

t̃ℓ =
1

m
⌈mtj⌉ ≤

2

∆
+

1

m
=

40d2 + 1

m
,

The last equality follows from the fact that ∆ = m
20d2

. Plugging the values of m = 70(n− 1) and

d =
√
10 log(n− 1), we have the result.
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Proof of Equation (15) Recall that the random variable U is supported on the roots 0, 1/m
and a subset of the roots of the modified Chebyshev polynomial (Equation (18)). Let us start by
computing an upper bound on E[U ].

E[U ] ≤ Pr[U = 0] · 0 + Pr[U =
1

m
] · 1

m
+

d∑
j=1

Pr[U = t̃j ] · t̃j

= Pr[U =
1

m
] · 1

m
+

1

Zp̃

 d∑
j=1

t̃j ·
1

|p̃′(t̃j)|

 [Zp̃ is the normalization term, see Equation (23)]

≤ 1

m
+

1

Zp̃

 d∑
j=1

(
tj +

1

m

)
·
exp

(
12∆
m/d2

)
|p′(tj)|

 [
∵ t̃j =

1

m
⌈mtj⌉ and Equation (26)

]

≤ 1

m
+

1

Zp̃

 d∑
j=1

(
1 +

1

2

)
tj ·

exp
(

12∆
m/d2

)
∆
4 · t

3
j ·

d
sin 2j−1

2d

 [∵ using Equations (49) and (47)]

=
1

m
+

1

Zp̃

 d∑
j=1

6 · exp
(

12∆
m/d2

)
∆ ·
(

4
∆2 sin

4
(
π
2 ·

2j−1
2d

))
· d
sin 2j−1

2d

 [∵ tj =
2
∆ sin2

(
π
2

(
2j−1
2d

))
]

≤ 1

m
+

1

Zp̃

 d∑
j=1

6 · exp
(

12∆
m/d2

)
(

4
∆ ·
(
2j−1
2d

)4)
· d

4
π
· (2j−1)

2d

 [∵ Via Equation (2)]

=
1

m
+

exp
(

12∆
m/d2

)
·∆d2

Zp̃
·

 d∑
j=1

6

π(j − 1/2)3


≤ 1

m
+ 17 ·

exp
(

12∆
m/d2

)
·∆d2

Zp̃

[
∵

∞∑
i=1

6

π · (i− 1/2)3
≤ 17

]

=
1

m
+

17× 3

2
·
exp

(
12∆
m/d2

)
·∆d2

m2

[
∵ Zp̃ ≥

1

|p̃′( 1
2m)|

≥ 2

3
m2 via Equation (23) & Claim 3.5

]
≤ 7

2m
=

1

20(n− 1)

[
∵ ∆ ≤ m

20d2
& m = 70(n− 1)

]
Since Equation (16) holds, as we will prove below, we know that E[U ] = E[V ]. This implies that

E[V ] ≤ 1
20(n−1) holds as well.

Proof of Equation (16) We have E[U t] = E[V t] for 1 ≤ t ≤ d + 1 from Fact 1.10 and
Observation 3.2.

15



3.2 Putting it together: proof of the Ω(m/ logm) lower bound

We are now ready to prove the lower bound of m-grainedness testing (Theorem 1.1): we will
combine the results from Lemma 3.1, Lemma 1.9 and Theorem 2.1 to show our main Ω(m/ logm)
lower bound in Theorem 1.1.

Proof of Theorem 1.1. Let us fix n > 20,m = 70(n− 1), and s ≥ 1 be a parameter (we will later on
set it to s = Θ(n/ log n)). From Lemma 3.1, we know that there exist two discrete random variables
U and V with the matching moments properties. Now we will use Lemma 1.9 for sU, sV . Following

Lemma 3.1 and Lemma 1.9, we have Λ ≤ s · 20 log
2(n−1)

n−1 and T = 3 · log(n− 1)

dTV (E[Poi(sU),E[Poi(sV )]]) ≤

e · s · 20 log
2(n−1)

n−1

3 · log(n− 1)

3·log(n−1)

.

And we want to satisfy Equation (5), as all others have been matched to use Theorem 2.1.e · s · 20 log
2(n−1)

n−1

3 · log(n− 1)

3·log(n−1)

≤ 1

20(n− 1)
⇔ e · s · 20 log(n− 1)

3(n− 1)
≤
(

1

20(n− 1)

) 1
3·log(n−1)

For n ≥ 21, we have

e · s · 20 log(n− 1)

3(n− 1)
≤ 1

4
≤
(

1

20(n− 1)

) 1
3·log(n−1)

,

and thus for s = 3(n−1)
80e log(n−1) , we can invoke, and get a sample complexity lower bound in Theorem 1.1,

noting that m = 70(n− 1) = Θ(n). Thus

s

2
=

3(n− 1)

160e log(n− 1)
= Ω

(
m

logm

)
.

This concludes our proof.

4 Uniformity Testing in the DoHo Model

In this section, we prove the following result on parameterized uniformity testing in the DoHO
model, which improves on the known Õ(m)-query upper bound in the regime m ≥ n3.

Theorem 4.1. For any m and constant ε > 0, the property Πm of distributions over {0, 1}n defined
as

Πm = {US : S ⊆ {0, 1}n, |S| = m}

can be ε-tested in the DoHO model using s = O(m2/3/ε6) samples and s · n queries. Moreover,
Ω(m2/3) samples are necessary.

Proof. The algorithm itself is quite simple, and follows from combining existing algorithms for
generalized uniformity testing in the standard sampling model [BC17, DKS18] with an additional
“check” of the ℓ2 norm of the distribution: the tester is described in Algorithm 1. The query
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Algorithm 1: Algorithm to test Πm

1: Set δ ← 1/6, and α = Θ(ε).
2: Run the adaptive ℓ2 norm estimator of [BC17, Lemma 3.1] to obtain an (1± ε/10) estimate ρ̂

of ∥D∥22 (with error probability δ) using O(
√
m/ε2) samples. If the algorithm does not

terminate with this number of samples, or if the estimate is not in (1± ε/10)/m, output reject.
3: Run the generalized uniformity tester of [BC17] on s (fully queried) samples from D with (TV)

distance parameter α and error probability δ. If it rejects, output reject.
4: Output accept.

complexity follows trivially from the stated sample complexity, as n queries suffice to read the full
sample.

Specifically, the algorithm is as follows:
We now argue correctness. By a union bound, both subroutines behave as they should with

overall probability 2/3: we hereafter assume their output is correct.

• Completeness: Assume D ∈ Πm. Then ∥D∥22 = 1
m , so ρ̂ ∈ [1−ε/10

m , 1+ε/10
m ] and the first step

does not reject. Similarly, D ∈ ΠU =
⋃∞

k=1Πk, so the generalized uniformity tester (which is
by definition a tester for ΠU ) accepts. Overall, Algorithm 1 returns accept.

• Soundness: By contrapositive, suppose Algorithm 1 returns accept. Since the second subroutine
did not reject, it must be the case that D is ε

2 -close (in total variation distance) to a distribution
UT , uniform on some subset T of a given size k. Moreover, the algorithm of [BC17] provides
the extra guarantee that (1−O(ε))∥D∥22 ≤ 1

k ≤ (1 +O(ε))∥D∥22 (see [BC17, Lemma 3.4]).1

Now, let US ∈ Πm be a closest distribution to D, over all subsets S of size m:

dTV(D,US) ≤ dTV(D,UT ) + dTV(UT , US) ≤
ε

2
+ 1− min(m, k)

max(m, k)

where the second inequality follows the minimum TV distance between two uniform distributions
on supports k and m, which occurs when the supports of the distributions overlap as much as
possible, and is equal to 1− min(m,k)

max(m,k) . In particular, we have 1− min(m,k)
max(m,k) ≤

ε
2 if

1

1− ε
2

·m ≤ k ≤ (1− ε
2) ·m

Now, to see why this holds, observe that by our first check, ∥D∥22 is within a (1± ε
10) factor of

1
m , and, by the additional guarantee of the [BC17] tester (adjusting the constant in the setting
of α), within a (1± ε

10) factor of
1
k . This implies that m and k are within a 1± ε

4 factor of

each other, and thus that 1− min(m,k)
max(m,k) ≤

ε
2 . Overall, this establishes that dTV(D,US) ≤ ε.

Finally, the claimed lower bound follows directly from the lower bound on generalized uniformity
testing of [DKS18], which holds even when the target size of the support is given.

1This is why we chose to use this specific algorithm, instead of that of [DKS18], which has better sample complexity
(with respect to ε) but does not provide this extra guarantee.
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5 Conclusion and open problems

In this work, we studied the problem of testing m-grainedness of distributions. We established
a new lower bound of Ω(m/ logm) samples, improving on the previous lower bound of Ω(mc)
due to [GR23a], thereby settling a conjecture by [GR23a]. Along the way, we also obtained an
alternative, simpler proof of the Ω(mc) lower bound. By leveraging a reduction between the testing
models due to [GR23b], our result implies an optimal lower bound for uniformity testing in the
DoHO (Distributions over Huge Objects) model, settling another conjecture of [GR23b]. Finally,
we provided a simple tester for uniformity testing in this DoHO model, with improved sample
complexity for a large range of the parameters.

Our work leaves open several new avenues of research in this context; we list two of them below:

(i) Our lower bound form-grainedness testing establishes the optimal dependence on the parameter
m, for constant proximity parameter ε = Ω(1). It would be interesting to fully characterize
the complexity of the question, including the dependence on ε.

(ii) From [GR23b], it is known that testing uniformity over an m-element subset of {0, 1}n requires
Ω(m/ logm) queries, for m ≤ n; and that Õ(m) queries are sufficient for all m. Our own
tester (Theorem 4.1) shows an upper bound of O(m2/3n) queries, better in the regime m ≥ n3.
This leaves understanding the landscape of parameterized uniformity testing, especially in the
intermediate regime n≪ m≪ n3, as an open and intriguing question.
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A Proof from Section 3

A.1 Proofs of Claim 3.3

In this section, we will prove the claims that we used in the proof in the previous section. Before
proceeding to the proofs, let us recall the definitions of p, p′, p̃ and p̃′.
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p(x) = x

(
x− 1

2m

)(
x− 1

m

)
· Td(1−∆ · x) (29)

where Td is defined as follows:

Td(1−∆ · x) = 2d−1∆d
d∏

j=1

(x− tj) (30)

p′(x) =

(
x− 1

2m

)(
x− 1

m

)
· Td(1−∆ · x) + x

(
x− 1

m

)
· Td(1−∆ · x)

+ x

(
x− 1

2m

)
· Td(1−∆ · x)−∆ · x

(
x− 1

2m

)(
x− 1

m

)
· T ′

d(1−∆ · x) (31)

Similarly, we have the following for the polynomial p̃.

p̃(x) = x

(
x− 1

2m

)(
x− 1

m

)
· T̃d(1−∆ · x) (32)

where T̃d is defined as follows:

T̃d(1−∆ · x) = 2d−1∆d
d∏

j=1

(x− t̃j) (33)

p̃′(x) =

(
x− 1

2m

)(
x− 1

m

)
· T̃d(1−∆ · x) + x

(
x− 1

m

)
· T̃d(1−∆ · x)

+ x

(
x− 1

2m

)
· T̃d(1−∆ · x)−∆ · x

(
x− 1

2m

)(
x− 1

m

)
· T̃ ′

d(1−∆ · x) (34)

Before proceeding to prove Claim 3.3, let us first prove a trigonometric inequality, which will be
used in our proof.

Claim A.1. Fix any integers d and ℓ such that d ≥ 1, and 1 ≤ ℓ ≤ d. Then

d∑
j=1

1j ̸=ℓ∣∣∣sin2 (π
2 ·

2j−1
2d

)
− sin2

(
π
2 ·

2ℓ−1
2d

)∣∣∣ ≤ C2 · d2

for some absolute constant C2 > 0. Moreover, one can take C2 = 6.

Proof. We will rely on the two following facts: first, the trigonometric identity

sin2 a− sin2 b = sin(a+ b) sin(a− b), a, b ∈ R ;

second, the inequalities

sinx ≥ 2

π
min(x, π − x), x ∈ [0, π] ; (35)
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| 4
π
· x| ≥ | sinx| ≥ | 2

π
· x|, x ∈ [−π/2, π/2]. (36)

Using these, we can write, for any 1 ≤ j ≤ d with j ̸= ℓ,

1∣∣∣sin2 (π
2 ·

2j−1
2d

)
− sin2

(
π
2 ·

2ℓ−1
2d

)∣∣∣
=

1

| sin
(
π
2 ·

(j−ℓ)
d

)
· sin

(
π
2 ·

j+ℓ−1
d

)
|

≤ d2

|j − ℓ| ·min(j + ℓ− 1, 2d− (j + ℓ− 1))
[∵

j + ℓ− 1

d
≤ 2] (37)

= d2max

(
1

|j − ℓ|(j + ℓ− 1))
,

1

|(d− j + 1)− (d− ℓ+ 1)|((d− j + 1) + (d− ℓ+ 1)− 1)

)
≤ d2

(
1

|j − ℓ|(j + ℓ− 1))
+

1

|(d− j + 1)− (d− ℓ+ 1)|((d− j + 1) + (d− ℓ+ 1)− 1)

)
.

Summing over all 1 ≤ j ≤ d with j ̸= ℓ, we get (setting j′ = d − j + 1 and ℓ′ = d − ℓ + 1 for
convenience):

d∑
j=1

1j ̸=ℓ∣∣∣sin2 (π
2 ·

2j−1
2d

)
− sin2

(
π
2 ·

2ℓ−1
2d

)∣∣∣ ≤ d2

 d∑
j=1

1j ̸=ℓ

|j − ℓ|(j + ℓ− 1)
+

d∑
j′=1

1j′ ̸=ℓ′

|j′ − ℓ′|(j′ + ℓ′ − 1)


≤ d2 ·

 ∞∑
j=1

1j ̸=ℓ

|j − ℓ|(j + ℓ− 1)
+

∞∑
j′=1

1j′ ̸=ℓ′

|j′ − ℓ′|(j′ + ℓ′ − 1)


≤ d2 · max

1≤ℓ≤d
2

∞∑
j=1

1j ̸=ℓ

|j − ℓ|(j + ℓ− 1)

≤ 6 · d2 ,

where for the last step we bounded the max of the sums (uniformly over d) as follows:

∞∑
j=1

1j ̸=ℓ

|j − ℓ|(j + ℓ− 1)
=

ℓ−1∑
j=1

1

(ℓ− j)(j + ℓ− 1)
+

∞∑
j=ℓ+1

1

(j − ℓ)(j + ℓ− 1)

=
ℓ−1∑
i=1

1

i(2ℓ− 1− i)
+

∞∑
i=1

1

i(i+ 2ℓ− 1)

≤ 1

ℓ

ℓ−1∑
j=1

1

i
+

∞∑
i=1

1

i2
(using 2ℓ− 1− i ≥ ℓ and i+ 2ℓ− 1 ≥ i)

≤ Hℓ

ℓ
+

π2

6
≤ 3 (Hℓ

ℓ ≤ 1 for all ℓ ≥ 1)

This concludes the proof of the claim.

Let us now start with the proof of Claim 3.3.
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Claim A.2 (Equation (26) restated). The following holds after fixing any d: for every ℓ ∈ [d],

|p′(tℓ)| ≤ exp

(
12∆

m/d2

)
· |p̃′(t̃ℓ)|.

Proof. Following Equation 31 and Equation 34, for any ℓ ∈ [d], we have the following:

|p′(tℓ)|
|p̃′(t̃ℓ)|

=

∣∣∣∣∣∣ tℓt̃ℓ · tℓ −
1
2m

t̃ℓ − 1
2m

·
tℓ − 1

m

t̃ℓ − 1
m

·
∏
j ̸=ℓ

tj − tℓ

t̃j − t̃ℓ

∣∣∣∣∣∣ (38)

Since we are rounding up every root in the modified Chebeshev polynomial, we know that

t̃ℓ ≥ tℓ ≥
1

m
≥ 1

2m
,

the latter inequalities come from setting ∆ appropriately. Hence, we can say that

tℓ

t̃ℓ
·
tℓ − 1

2m

t̃ℓ − 1
2m

·
tℓ − 1

m

t̃ℓ − 1
m

≤ 1.

Thus, combining the above with Equation (38), we can say that

|p′(tℓ)|
|p̃′(t̃ℓ)|

≤
∏
j ̸=ℓ

∣∣∣∣ tj − tℓ

t̃j − t̃ℓ

∣∣∣∣ ≤∏
j ̸=ℓ

|tj − tℓ|
|t̃j − t̃ℓ| − |t̃j − tj | − |t̃ℓ − tℓ|

≤
∏
j ̸=l

|tℓ − tj |
|tℓ − tj | − 2

m

≤
∏
j ̸=ℓ

1

1− 2
m|tℓ−tj |

.

Via Equation 37 and Equation 41, we see that (as long as ∆ ≤ m
d2
)

|tj − tℓ| ≥
2

∆d2
≥ 2

m
. (39)

From Equation (39), we have that 2
m|tℓ−tj | ≤ 0.5 (when ∆ = m

20d2
), which gives the following2:

∏
j ̸=ℓ

1

1− 2
m|tℓ−tj |

≤
∏
j ̸=l

exp

(
4

m|tℓ − tj |

)
≤ exp

∑
j ̸=ℓ

4

m|tℓ − tj |

 (40)

Using properties of the Chebyshev roots, we can write their difference in closed-form:

|tj − tℓ| =
1

∆

∣∣∣∣(1− cos

(
2j − 1

2d
π

))
−
(
1− cos

(
2ℓ− 1

2d
π

))∣∣∣∣
=

1

∆

∣∣∣∣2 sin2(π

2

(
2j − 1

2d

))
− 2 sin2

(
π

2

(
2ℓ− 1

2d

))∣∣∣∣ . (41)

Thus, combining the above with Equation (40), we have the following:

exp

∑
j ̸=ℓ

4

m|tℓ − tj |

 = exp

∑
j ̸=ℓ

4

m
∆

∣∣∣2 sin2 (π
2

(
2j−1
2d

))
− 2 sin2

(
π
2

(
2ℓ−1
2d

))∣∣∣


2The inequality 1
1−x

≤ exp(2x) holds for 0 < x ≤ 1
2
.
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= exp

∆

m

∑
j ̸=ℓ

4∣∣∣2 sin2 (π
2

(
2j−1
2d

))
− 2 sin2

(
π
2

(
2ℓ−1
2d

))∣∣∣


≤ exp

(
12∆

m/d2

)
.

where the first equality comes from Equation 41 and the last inequality follows from Claim A.1.
Thus, we conclude that

|p′(tℓ)|
|p̃′(t̃ℓ)|

≤ exp

(
12∆

m/d2

)
.

This completes the proof of the claim.

Claim A.3 (Equation (27) restated). We have:

|p̃′(0)|
|p′(0)|

≥ 1.

Proof. From Equation 31 and Equation 34, we have the following:

|p̃′(0)|
|p′(0)|

=

∣∣∣∣∣
(
0− 1

2m

) (
0− 1

m

)(
0− 1

2m

) (
0− 1

m

)∣∣∣∣∣ · |T̃d(1−∆ · 0)|
|Td(1−∆ · 0)|

=

d∏
j=1

|0− t̃j |
|0− tj |

≥ 1

The last inequality follows from the fact that t̃j =
1
m⌈mtj⌉ ≥ tj .

tj =
1

∆

(
1− cos

(
2j − 1

2d
π

))
= Θ

(
j2

∆d2

)
= Θ

(
j2

m

)

t̃j =
1

m
⌈mtj⌉; tj = Θ

(
j2

m

)
≫ 1

m

Claim A.4 (Equation (27) restated). Suppose ∆ ≤ m
4d2

. Then the following holds:

1 ≤
|p̃′( 1

m)|
|p′( 1

m)|
≤ 6.

Proof. Following Equation 31 and Equation 34, we can say that:

|p̃′( 1
m)|

|p′( 1
m)|

=

∣∣∣∣∣∣
1
m ·
(
1
m −

1
2m

)
1
m ·
(
1
m −

1
2m

) · d∏
j=1

t̃j − 1
m

tj − 1
m

∣∣∣∣∣∣
=

d∏
j=1

t̃j − 1
m

tj − 1
m

≤
d∏

j=1

tj +
1
m −

1
m

tj − 1
m

[∵ t̃j ≤ tj +
1

m
]
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≤
d∏

j=1

tj

tj − 1
m

=
d∏

j=1

(
1 +

1/m

tj − 1
m

)

≤ exp

 d∑
j=1

1

mtj − 1

 [∵ (1 + x) ≤ ex for every x]

≤ exp

 d∑
j=1

1

j2

 (42)

≤ exp

 ∞∑
j=1

1

j2

 ≤ exp

(
π2

6

)
< 6.

Equation 42 follows from the inequalities: from the definition of tj (Equation (28)), we can say
that

mtj − 1 =
2m

∆

(
2j − 1

2d

)2

− 1 ≥ j2 ⇔ 1

∆
≥ j2 + 1

(j − 1/2)2
· d

2

2m
⇔ ∆ ≤ m

d2
· 2(j − 1/2)2

j2 + 1

and
2(j − 1/2)2

j2 + 1
=

2j2 − 2j + 1
2

j2 + 1
=

2j2 + 2− 2− 2j + 1
2

j2 + 1
= 2−

2j + 3
2

j2 + 1
≥ 1

4
.

Therefore, ∆ ≤ 1
4 ·

m
d2

suffices for the last inequality to hold.
For the lower bound, since t̃j ≥ tj ≥ 1

m , we can say that

|p̃′( 1
m)|

|p′( 1
m)|

=

d∏
j=1

t̃j − 1
m

tj − 1
m

≥ 1.

This completes the proof of the claim.

Claim A.5 (Equation (27) restated). Suppose ∆ ≤ m
4d2

. Then we have

1 ≤
|p̃′( 1

2m)|
|p′( 1

2m)|
≤ 6.

Proof. The lower bound follows similar from the proof of Claim A.3, using the fact that t̃j ≥ tj ≥ 1
2m

in our setting of ∆. From the definitions of p′ and p̃′, we have the following:

|p̃′( 1
2m)|

|p′( 1
2m)|

=

∣∣∣T̃d

(
1− ∆

2m

)∣∣∣∣∣Td

(
1− ∆

2m

)∣∣
=

d∏
j=1

t̃j − 1
2m

tj − 1
2m
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≤
d∏

j=1

tj +
1
m −

1
2m

tj − 1
2m

[∵ t̃j ≤ tj +
1

m
]

≤
d∏

j=1

tj +
1
2m

tj − 1
2m

≤
d∏

j=1

(
1 +

1
m

tj − 1
2m

)
[∵ (1 + x) ≤ ex for every x]

≤ exp

 d∑
j=1

1

mtj − 1/2


≤ exp

 d∑
j=1

1

j2

 ≤ 6,

where the last two steps follow the same argument as Equation 42.

A.2 Properties of polynomial p and implications to its rounding variant p̃

Claim A.6. Suppose ∆ ≤ 2m
9d2

, we have the following chain of inequalities:

1 = Td(1) ≥ Td

(
1− ∆

2m

)
≥ Td

(
1− ∆

m

)
≥ 1

2
. (43)

Proof. This proof is a simple adaptation of the argument used in [CDKL22, Appendix B]. For the
sake of completeness, we will prove it again here. By Fact 1.11, and that premise that ∆ ≤ 2m

9d2
, we

can show that

cos(π/3d) = 1− 2 sin2
( π

6d

)
≤ 1− 2 ·

(
2

π
· π
6d

)2

= 1− 2

9d2
≤ 1− ∆

m
≤ 1− ∆

2m
≤ 1.

Because Td is monotonically increasing in the region [ π3d , 1], we can conclude that,

1 = Td(1) ≥ Td

(
1− ∆

2m

)
≥ Td

(
1− ∆

m

)
≥ cos(π/3) =

1

2
. (44)

Claim A.7. Suppose ∆ ≤ 2m
9d2

, we have

1

|p′(0)|
= Θ(m2),

1

|p′( 1
2m)|

= Θ(m2),
1

|p′( 1
m)|

= Θ(m2).

Proof. We know that

p′(x) =

(
x− 1

2m

)(
x− 1

m

)
· Td(1−∆ · x) + x

(
x− 1

m

)
· Td(1−∆ · x)

+ x

(
x− 1

2m

)
· Td(1−∆ · x)−∆ · x

(
x− 1

2m

)(
x− 1

m

)
· T ′

d(1−∆ · x)
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Through some calculations and Claim A.6, we have

p′(0) =

(
0− 1

2m

)(
0− 1

m

)
· Td(1) =

1

2m2
= Θ

(
1

m2

)
.

∣∣∣∣p′( 1

2m

)∣∣∣∣ = ∣∣∣∣ 1

2m

(
1

2m
− 1

m

)
· Td(1−

∆

2m
)

∣∣∣∣ = ∣∣∣∣− 1

4m2
· Td(1−

∆

2m
)

∣∣∣∣ = Θ(
1

m2
).

p′
(

1

m

)
=

1

m
· 1

2m
· Td(1−

∆

m
) =

1

2m2
· Td(1−

∆

m
) = Θ(

1

m2
).

Claim 3.5. Suppose 1 ≤ |p̃′( 1
2m

)|
|p′( 1

2m
)| ≤ 6 holds and ∆ ≤ 2m

9d2
. Then we have,

Pr

[
V =

1

2m

]
∝ 1

|p̃′( 1
2m)|

≥ 2

3
m2.

Proof of Claim 3.5. Recall that,

p′
(

1

2m

)
=

1

2m

(
1

2m
− 1

m

)
· pTd

(
1

2m

)
= − 1

4m2
· pTd

(
1

2m

)
,

where

pTd

(
1

2m

)
= Td

(
1− ∆

2m

)
= cos

(
d · arcos

(
1− ∆

2m

))
.

Thus, combining Claim A.6 and our claim premise, we have the following:

1∣∣p̃′ ( 1
2m

)∣∣ ≥ 1

6

1∣∣p′ ( 1
2m

)∣∣ ≥ 2m2

3
,

completing the proof of the claim.

Claim 3.6. Suppose that ∆ ≤ 2m
9d2

. For any j ∈ [d], let t̃j denote the j-th root of the modified
Chebyshev polynomial p̃. Then we have:

Pr

[
V ̸= 1

2m

]
∝

d∑
j=1

1{p̃′(t̃j)<0}

|p̃′(t̃j)|
≤ exp

(
12∆

m/d2

)
· 66
π
·∆2d4.

Proof of Claim 3.6. Recall that from Equation (26) in Claim 3.3, we know that |p̃′(t̃ℓ)|
|p′(tℓ)| ≥ exp

(
− 12∆

m/d2

)
holds for any ℓ ∈ [d]. Thus, we can say that

d∑
j=1

1{p̃′(t̃j)<0}

|p̃′(t̃j)|
≤

d∑
j=1

exp
(

12∆
m/d2

)
|p′(tj)|

. (45)

Now we proceed to lower bound |p′(tj)|. Recall that we have:

p′(tj) = tj ·
(
tj −

1

2m

)
·
(
tj −

1

m

)
· T ′

d(tj) = ∆ · tj ·
(
tj −

1

2m

)
·
(
tj −

1

m

)
· d∣∣∣sin 2j−1

2d

∣∣∣ (46)
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and we are in the setting where ∆ ≤ m
4d2

,

1

∆
·
(
2j − 1

d

)2

≥ tj
2

=
1

∆
sin2

(
π

2
· 2j − 1

2d

)
≥ 1

∆
·
(
2j − 1

2d

)2

≥ 1

m
. (47)

Moreover, we know that for x ∈ [−1, 1], the following holds:

|2x| ≥
∣∣∣sin(π

2
· x
)∣∣∣ ≥ |x|. (48)

So, we can lower bound p′(tj) as follows:

p′(tj) = ∆ · tj ·
(
tj −

1

2m

)
·
(
tj −

1

m

)
· d∣∣∣sin 2j−1

2d

∣∣∣ [From Equation (46)]

≥ ∆ · tj ·
tj
2
· tj
2
· d∣∣∣sin 2j−1

2d

∣∣∣ [12 · tj >
1
m ] (49)

≥ ∆ · 2

∆3
sin6

(
π

2
· 2j − 1

2d

)
· d∣∣∣sin 2j−1

2d

∣∣∣ [∵ tj =
2
∆ sin2

(
π
2

(
2j−1
2d

))
] (50)

≥ 2

∆2
·
(
2j − 1

2d

)6

· d
4
π ·

2j−1
2d

[From Equation (48)]

=
π

2∆2
·
(
2j − 1

2d

)5

· d

=
π

2∆2
· (j − 1/2)5

d4

Thus, summing over all j ∈ [d], we can say the following:

d∑
j=1

1

|p′(tj)|
≤ 2

π
·∆2d4 ·

d∑
j=1

1

(j − 1/2)5
≤ 66

π
·∆2d4,

where the last inequality follows from the fact that
∑d

j=1
1

(j−1/2)5
≤
∑d

j=1
25

(2j−1)5
≤
∑d

j=1
25

j5
≤ 33.

Combined with Equation (45), we finally have that d∑
j=1

1{p̃′(t̃j)<0}

|p̃′(t̃j)|

 ≤
 d∑

j=1

exp
(

12∆
m/d2

)
|p′(tj)|

 ≤ exp

(
12∆

m/d2

)
· 66
π
·∆2d4.

This completes the proof of the claim.

B Moment matching and testing lower bound

This proof is adapted from the argument used in [CJKL22, Proof of Theorem 7] and the idea
is to reduce distinguishing U and V (which is hard due to moment matching) to the problem of
testing m-grainedness.
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Theorem 2.1. Fix positive integers m,n, s, where n > 4.3 × 108 and m ≤ C0(n − 1) for some
absolute constant C0 ∈ R. Suppose there exist random variables U and V , where U is supported on{
0, 1

m , . . . , mm
}
; Pr

[
V ∈

{
1
2m , 3

2m , . . . , 2m−1
2m

}]
≥ 2

3 ; and they satisfy the following three conditions,

max(U, V ) ≤ 20 log2(n− 1)

(n− 1)
, (3)

E[U ] = E[V ] ≤ 1

2(n− 1)
. (4)

dTV (E[Poi(sU)],E[Poi(sV )]) ≤ 1

20(n− 1)
, (5)

Then any tester taking less than s/2 number of samples from unknown distribution p cannot
distinguish between the cases that p is m-grained and p is at least 1

8C0
-far from any m-grained

distributions in TV distance with probability 3/5.

Proof of Theorem 2.1. The reduction of the lower bound from our construction of U, V to our
distribution testing problem is as follows: for any (U1, . . . , Un−1), (V1, . . . , Vn−1) drawn independently
from U, V respectively one can construct actual valid distributions D = (D1, . . . , Dn), D

′ =
(D′

1, . . . , D
′
n).

3

D1 = U1, . . . , Dn−1 = Un−1, Dn = 1−

(
n−1∑
i=1

Di

)
.

D′
1 = V1, . . . , D

′
n−1 = Vn−1, D

′
n = 1−

(
n−1∑
i=1

D′
i

)
.

Note that with probability at least 0.89, this procedure generates actual distributions as long as
the following events happen. Let D be the set of all m-grained distributions

E1 =

{
D|

n−1∑
i=1

Di ≤ 1

}
;E2 =

{
D′|

n−1∑
i=1

D′
i ≤ 1 and dTV(D

′,D) ≥ 1

8C0

}
.

By an application of Hoeffding inequality, we have that for n > 4.3×108, (bound on maxi∈[n−1]Di ≤
20 log2(n−1)

n−1 ),

Pr[E1] = Pr

[
n−1∑
i=1

Di > 1

]
= Pr

[
n−1∑
i=1

Di >
1

2
+

n−1∑
i=1

(
1

2(n− 1)

)]

≤ Pr

[
n−1∑
i=1

Di >
1

2
+ E

[
n−1∑
i=1

Di

]}

≤ exp

− 2
(
1
2

)2∑n−1
i=1

(
20 log2(n−1)

(n−1)

)2


3We cannot simply normalize them like prior works as normalization would destroy m-grainedness.
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≤ exp

(
− (n− 1)

800 log4(n− 1)

)
≤ 0.05.

Similarly, we have the same bound for
∑n−1

i=1 Di > 1, i.e., Pr
[∑n−1

i=1 D′
i > 1

]
≤ 0.05. In addition,

conditioned on E2, D
′ is far from any m-grained distribution as long as it has enough mass on 1

2m
or anything that is a multiple of 1

2m (other than 0):

dTV(D
′,D) = min

D′′∈D
dTV(D

′, D′′)

≥ 1

2

n∑
i=1

min
k∈[m]

(∣∣∣∣D′
i −

k

m

∣∣∣∣)

≥ 1

2

n−1∑
i=1

m∑
ℓ=1

1{D′
i=

2ℓ−1
2m } × min

k∈[m]

(∣∣∣∣2ℓ− 1

2m
− k

m

∣∣∣∣)

≥ 1

2

n−1∑
i=1

m∑
ℓ=1

1{D′
i=

2ℓ−1
2m } ×

1

2m

=
1

4m

n−1∑
i=1

1{D′
i∈{ 2ℓ−1

2m
|ℓ=1,...,m}}.

By a Hoeffding bound,

Pr

[
n−1∑
i=1

1{D′
i∈{ 2ℓ−1

2m
|ℓ=1,...,m}} ≤

2

3
(n− 1)− 1

6
(n− 1)

]
≤ exp

(
−
2
(
1
6(n− 1)

)2
(n− 1)

)
= exp

(
−n− 1

18

)
≤ 0.01

By a union bound, we have Pr[E2] ≤ 0.06.
Conditioned on the event E1 (or E2), we can draw N ∼ Poi(s) samples from D and N ′ ∼ Poi(s)

samples from D′:
(C1, . . . , Cn) ∼ Mult((D1, . . . , Dn), N).

(C ′
1, . . . , C

′
n) ∼ Mult((D′

1, . . . , D
′
n), N

′).

where Mult((D1, . . . , Dn), N) denotes the multinomial distribution with parametersN and (D1, . . . , Dn).
Mult((D′

1, . . . , D
′
n), N

′) is defined similarly. By a standard argument (the Poissonization trick), we
know that, fixing Di, D

′
i (or U, V ), we have, over the randomness of N,N ′,

Ci ∼ Poi(sDi), C
′
i ∼ Poi(sD′

i).

For large enough s ≥ Ω(1), we have the following,

Pr
[
N ≥ s

2

]
= Pr

[
Poi(s) ≥ s

2

]
≥ 0.95.

Now we prove by contradiction: suppose there exists a tester T that solves m-grainedness testing
problem outlined in the statement, i.e., T can distinguish whether p is m-grained or 1/32-far from
beingm-grained in TV. IfN ≥ s

2 , we can simulate s/2 samples (randomly throw away the extra) from
D (m-grained) or D′ (1/32-far from m-grained in TV) and input the samples to T , which means that
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with probability ≥ 0.95 · 45 − 0.11 = 0.65, we can distinguish (C1, . . . , Cn) ∼ Mult((D1, . . . , Dn), s/2)
or (C ′

1, . . . , C
′
n) ∼ Mult((D′

1, . . . , D
′
n), s/2), where D (D′ resp.) are sampled conditioned on E1 (E2

resp.).
However, the success probability will be bounded by the TV distance between the two mixtures

0.65 ≤ dTV(Q|E1
, Q′

|E2
),

where

Q|E(1) = EU1,...,Un [(C1, . . . , Cn)|E1 and N ≥ s/2] and Q = E[(Poi(sU1), . . . ,Poi(sUn))].

Q′
|E(2) = EU ′

1,...,U
′
n

[
(C ′

1, . . . , C
′
n)|E2 and N ≥ s/2

]
and Q′ = E[(Poi(sV1), . . . ,Poi(sVn))].

By a union bound, one can show that Pr[E(1)] ≤ 0.1 and Pr[E(2)] ≤ 0.11.

dTV(Q|E1
, Q′

|E2
) =

1

2

n∑
i=1

|Qi|E(1) −Q′
i|E(2) |

≤ 1

2

n∑
i=1

|Qi|E(1) −Qi|+ |Qi −Q′
i|+ |Q′

i −Q′
i|E(2) |

≤ Pr[E(1)] + dTV(Q,Q′) + Pr[E(2)]

≤ 0.21 + n · dTV(Poi(sU),Poi(sV ))

≤ 0.21 + n · 1

20n
≤ 0.26.

Therefore it exists no tester distinguishing between (C1, . . . , Cn) ∼ Mult((D1, . . . , Dn), s/2) – an
m-grained distribution and (C ′

1, . . . , C
′
n) ∼ Mult((D′

1, . . . , D
′
n), s/2) with success probability higher

than 3/5.
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