
Derandomizing Multivariate Polynomial Factoring

for Low Degree Factors

Pranjal Dutta ∗ Amit Sinhababu † Thomas Thierauf ‡

November 26, 2024

Abstract

For a polynomial f from a class C of polynomials, we show that the problem to compute all

the constant degree irreducible factors of f reduces in polynomial time to polynomial identity

tests (PIT) for class C and divisibility tests of f by constant degree polynomials. We apply the

result to several classes C and obtain the constant degree factors in

1. polynomial time, for C being polynomials that have only constant degree factors,

2. quasipolynomial time, for C being sparse polynomials,

3. subexponential time, for C being polynomials that have constant-depth circuits.

Result 2 and 3 were already shown by Kumar, Ramanathan, and Saptharishi with a di�erent

proof and their time complexities necessarily depend on black-box PITs for a related bigger

class C 0. Our complexities vary on whether the input is given as a blackbox or whitebox.

We also show that the problem to compute the sparse factors of polynomial from a class C

reduces in polynomial time to PIT for class C, divisibility tests of f by sparse polynomials, and

irreducibility preserving bivariate projections for sparse polynomials. For C being sparse poly-

nomials, it follows that it su�ces to derandomize irreducibility preserving bivariate projections

for sparse polynomials in order to compute all the sparse irreducible factors e�ciently. When

we consider factors of sparse polynomials that are sums of univariate polynomials, a subclass

of sparse polynomials, we obtain a polynomial time algorithm. This was already shown by

Volkovich with a di�erent proof.

1 Introduction

The problem of multivariate polynomial factorization asks to �nd the unique factorization of a

given polynomial f 2 F[x1, . . . , xn] as a product of distinct irreducible polynomials over F. The

problem reduces to univariate polynomial factorization over the same �eld, for which a deter-

ministic polynomial time algorithm is known over the �eld Q. The complexity of multivariate

factorization depends on the representation of input and output polynomials. If we use dense

representation (where all the coe�cients are listed including the zero coe�cients), deterministic

∗School of Computing, National University of Singapore. Email: duttpranjal@gmail.com
†Dept. of Computer Science, Chennai Mathematical Institute, India. Email: amitkumarsinhababu@gmail.com
‡Ulm University, Germany. Email: thomas.thierauf@uni-ulm.de

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 197 (2024)

polynomial time algorithms for multivariate factoring are known [Kal85a]. If we use sparse repre-

sentation (where only the nonzero coe�cients are listed), only randomized polynomial time (in the

total sparsity of input polynomial and the output factors) algorithms are known [vzGK85, KT90].

There are other standard representations like arithmetic circuits, and blackbox models (that gives

the evaluations of the polynomial at any point, but the internal structure of the computation is

hidden). Randomized polynomial time factorization algorithms are known in these models due to

the classic results of Kaltofen [Kal89] and Kaltofen and Trager [KT90].

Towards derandomization of special cases of multivariate factoring, we ask the following.

Question 1 (Promise factoring[vzGK85]). Let f =
∏m
i=1 gi

ei, where each gi is an irreducible

polynomial with its sparsity at most s. Design a better-than-exponential time deterministic

algorithm in s, n, d, to output gi.

To our surprise, we do not know a deterministic subexponential-time algorithm even for the

special case of Question 1, when the given blackbox computes the product of just two irreducible

sparse polynomials.

Note that the factors of a sparse polynomial f might be nonsparse. Therefore, instead of �nding

all the irreducible factors, we only focus on those factors that are sparse.

Question 2. Design a better-than-exponential time deterministic algorithm that outputs all

the sparse irreducible factors of a sparse polynomial.

Multivariate polynomial factoring has various applications, such as low-degree testing [AS03],

constructions of pseudorandom generators for low-degree polynomials [Bog05, DGV24], computa-

tional algebraic geometry [HW00] and many more. Blackbox multivariate polynomial factorization

is extensively used in arithmetic circuit reconstruction [Shp07, Sin16], and polynomial equiva-

lence testing [Kay, Kay12, RR19]. Algebraic hardness vs randomness [KI03] results crucially use

multivariate factorization.

General framework of factoring. The typical steps in factorization algorithms for a given

polynomial f 2 C, from a class C are as follows.

1. Transform f to a polynomial bf that is monic in some newly introduced variable, using PIT;

for a detailed discussion see below.

2. Project bf to a bivariate polynomial such that the factorization pattern of bf is maintained (by

Hilbert Irreducibility Theorem; see Theorem 2.11).

3. Use the known algorithms to factor the projected bivariate polynomial.

4. Now often Hensel lifting is used to lift the projected factors back to the real factors. In

our setting, we avoid Hensel lifting and argue that we can use interpolation instead. This

interpolation trick was �rst used in the randomized black-box factoring algorithm of Kaltofen

and Trager [KT90].

5. To make sure that the computed polynomials are indeed factors, there is a divisibility test at

the end.

2

We now discuss some of the crucial steps and their importance in factoring a restricted class of

polynomials. In our restricted setting, we completely bypass the step of Hensel lifting.

PIT. Given an arithmetic circuit C, polynomial identity testing (PIT) asks to test if C computes

the zero polynomial. Randomization in factorization algorithms mostly stem from the fact that

these algorithms use PIT as a subroutine. Further, Kopparty, Saraf and Shpilka [KSS15] showed

that derandomization of white-box and blackbox multivariate circuit factoring reduces to deran-

domization of polynomial identity testing of arithmetic circuits in white-box and blackbox settings

respectively. However, we do not know if sparse factorization reduces to sparse PIT or constant-

depth arithmetic circuit PIT (the algorithms of [KSS15] reduce to general arithmetic circuit PIT).

Special cases of depth-4 polynomial identity testing are related to questions about sparse polyno-

mial factorization [Gup14, Vol17, BV22]. Recently, there has been some progress on these questions

by [KRS24, KRSV24]. Earlier works of Volkovich [Vol15, Vol17] made progress on several special

cases of sparse multivariate factoring. Shpilka and Volkovich [SV10] proved white-box/black-box

factoring of multilinear polynomials in a class C is equivalent to white-box/black-box derandom-

ization of PIT of class C.

Divisibility testing. In a factorization algorithm, we may want to check if a candidate factor

is truly a factor via divisibility testing. It asks to test if a polynomial g(z) divides a polyno-

mial f(z). Forbes [For15] showed that the divisibility testing question can be e�ciently reduced to

an instance of a PIT question of a model that relates to both f and g, see Lemma 2.8. Currently,

we do not know any deterministic polynomial time algorithm even when g and f are both sparse

polynomials. When f is a sparse polynomial and g is a linear polynomial, the problem reduces

to polynomial identity testing of any-order read-once oblivious branching programs (ROABPs),

see Section 3.4. We do not know a deterministic polynomial time algorithm, even for testing if a

quadratic polynomial g divides a sparse polynomial.

Irreducibility projection. For testing irreducibility of multivariate polynomials, one can use

some of the e�ective versions of Hilbert's irreducibility theorem [vzGK85, Kal85b, Kal95]. These

results can be also seen as an e�ective version of a classical theorem of Bertini in algebraic geome-

try. A multivariate irreducible polynomial f(x, z1, . . . , zn) may become reducible if we project the

variables to make it univariate, but irreducibility is preserved if we project it in a way to make it

a bivariate polynomial. Unfortunately, �nding such a projection in deterministic polynomial time

is hard. We do not know how to �nd such irreducibility preserving projections even for sparse

polynomials, though we know e�cient hitting set generators for them.

1.1 Our results

We show general results that exhibits properties of a class C of polynomials, such that we can

compute the constant-degree factors or the sparse factors of polynomials f 2 C. Thereby we get

a uni�ed and simple way reprove some known results and also some new results.

3

Constant-degree factors. In Theorem 3.2 we show that the irreducible constant-degree factors

of a polynomial f 2 C with their multiplicities can be computed in polynomial time relative to

• PIT for C,

• divisibility tests of C by constant-degree polynomials.

Considering the above general algorithmic framework, the PIT comes from step 1 and divisibility

from step 5. The Hilbert Irreducibility Theorem (see Theorem 2.11) yields a randomized way to

do step 2. The main point here is that we derandomize this step for constant-degree factors.

For a speci�c class C, it su�ces now to consider the complexity of the above two points that

we already described before. For example for C being polynomials that have only constant degree

factors, this yields a polynomial time algorithm for computing the constant degree factors, because

PIT is in polynomial time and we can skip the divisibility test (Theorem 3.1). For C being sparse

polynomials, we get a quasipolynomial-time algorithm (Corollary 3.3), and for C being polynomials

computed by constant-depth circuits, we get subexponential-time (Corollary 3.4).

The last two results were already shown by Kumar, Ramanathan and Saptharishi [KRS24] with

a di�erent technique, using Hensel lifting. However, there is a subtle di�erence. In our case, we

maintain the setting. That is, when the input is given whitebox, we use whitebox algorithms, and

similarly for blackbox. On the other hand, the factoring algorithm by Kumar, Ramanathan and

Saptharishi [KRS24] requires blackbox PIT algorithms, even when the input is given in whitebox.

This is due to PIT for the resultant polynomial where the unknown factor is involved.

In the above two results, this di�erence does not matter because we have the same complexity

bounds for whitebox and blackbox algorithms there. An example where this di�erence matters

are commutative read-once oblivious arithmetic branching programs (ROABP). There is a

polynomial time whitebox PIT algorithm for ROABPs [RS05], while the best-known blackbox PIT

algorithm for commutative ROABPs runs in quasipolynomial time [GKS17, GG20]. Moreover, it

follows from work of Forbes [For15] that the divisibility test for ROABPs by linear polynomials

reduces to a PIT for ROABPs. Hence, we have again polynomial, resp. quasipolynomial time

for the divisibility test in the whitebox, resp. blackbox setting. It follows that the linear factors

of polynomials computed by commutative ROABPs can be computed in polynomial time in the

whitebox setting, whereas it takes quasipolynomial time in the blackbox setting (Corollary 3.8).

Sparse factors. In Theorem 4.2 we show that the irreducible sparse factors of a polynomial f 2 C

with their multiplicities can be computed in polynomial time relative to

• PIT for C,

• divisibility tests of C by constant-degree polynomials,

• irreducible projection to bivariate polynomials.

For C being sparse polynomials, the di�culty lies in the third point: only exponential-time al-

gorithms are known to derandomize Hilbert Irreducibility Theorem for sparse polynomials. The

hardness stems from the fact that a sparse polynomial may have both sparse and non-sparse ir-

reducible factors. Hence, preserving irreducibility for sparse polynomials will not preserve the

4

factorization pattern, and therefore, it may be hard to get back the actual factor. Nevertheless,

Theorem 4.2 pinpoints the challenge to compute the sparse factors of sparse polynomials (Corol-

lary 4.4 and 4.5).

For polynomials that can be written as a sum of univariate polynomials, a subclass of sparse

polynomials, the irreducible projection problem can be solved in polynomial time. Therefore we

can compute the sum-of-univariate factors of sparse polynomials in polynomial time (Corollary 4.9).

2 Preliminaries

We take F = Q as the underlying �eld throughout the paper, although the results hold as well over

�elds with large characteristics.

Let P(n, d) be the set of n-variate polynomials of degree at most d, with variables z =

(z1, z2, . . . , zn). By deg(f) we denote the total degree of f. For an exponent vector e = (e1, e2, . . . , en),

we denote the monomial

ze = ze11 z
e2
2 � � � zenn .

Its degree is ||e||1 =
∑n
i=1 ei. The number of monomials of a polynomial f with nonzero coe�cient

is called the sparsity of f and is denoted by sp(f). The class of polynomials with sparsity s is

denoted by

Csp(s, n, d) = {p 2 P(n, d) | sp(p) � s } .

For deg(f) = d, we can write f =
∑d
k=0 fk, where fk = Homk[f] denotes the homogeneous

component of f of degree k. For the highest degree component, we also skip the index, i.e. we

de�ne Hom[f] = Homd[f] = fd. For a class C of polynomials, we de�ne

Hom[C] = {Hom[f] | f 2 C } .

We de�ne class ∂C as all the partial the derivatives of polynomials in C,

∂C =

{
∂ef

∂ze
| f 2 C, z a variable of f, and e � 0

}
.

Note that f 2 ∂C, because f = ∂0f
∂z0

.

Polynomial f(z) depends on variable zi, if
∂f
∂zi

6= 0. The variables that f depends on are denoted

by var(f),

var(f(z)) = { zi | f depends on zi } .

A polynomial f is called irreducible, if it cannot be factored into the product of two non-constant

polynomials.

Let x and z = (z1, . . . , zn) be variables and f(x, z) be a (n + 1)-variate polynomial. Then we

can view f as a univariate polynomial f =
∑
i ai(z) x

i over K[x], where K = F[z]. The x-degree

of f is denoted by degx(f). It is the highest degree of x in f. Polynomial f is called monic in x, if

the coe�cient adx(z) is the constant 1 polynomial, i.e. adx(z) = 1, where dx = degx(f).

An algorithm runs in subexponential time, if its running time on inputs of length n and ε > 0

is bounded by 2n
ε
.

5

2.1 Computational problems and complexity measures

For classes P,Q of multivariate polynomials, we de�ne the following computational problems.

• PIT(P): given p 2 P, decide whether p � 0.

• Factor(P |Q): given p 2 P, compute all its irreducible factors in Q with their multiplicities.

• Div(P/Q): given p 2 P and q 2 Q, decide whether q|p.

The time complexity to solve these problems we denote by TPIT(P), TFactor(P |Q), and TDiv(P/Q),

respectively.

The problems are further distinguished according to the access to the given polynomial p. In

the whitebox case, one gets the representation of p 2 P, for example a circuit or a formula, whereas

in the blackbox case, one can only evaluate p. For PIT, a blackbox solution therefore means to

compute a hitting set for a class P. This is a set H � Fn such that for every nonzero p 2 P there

exists a 2 H such that p(a) 6= 0.

The blackbox PIT-algorithm then simply evaluates p at all points a 2 H. Hence, the size of H is

crucial for the running time TPIT(P). The trivial hitting set for P(n, d) used in the Schwartz-Zippel

PIT-Lemma is

Hn,d = [d+ 1]n (1)

of size |Hn,d| = (d+ 1)n, i.e. exponential in the number n of variables. We will use it for constant-

variate polynomials. Then the size is polynomial.

For the decision problems PIT(P) and Div(P/Q) there is an associated construction problem.

In case of PIT(P), a decision algorithm also yields an algorithm that computes a point a 2 (F\{0})n

such that p(a) 6= 0, in case when p 6� 0.

Lemma 2.1. Let p 2 P be a nonzero polynomial. A point a 2 (F \ {0})n such that p(a) 6= 0

can be computed in time ndTPIT(P).

Proof. In the blackbox case, let H0 be the queries of the decision algorithm on the input of the

zero-polynomial. Note that H0 is a hitting set for the whole class P. Hence, we can �nd a 2 H0 in

time TPIT(P) such that p(a) 6= 0.

Still, some coordinates of a might be 0. In this case, we shift a: Let t be a new variable and

consider a+t = (a1+t, a2+t, . . . , an+t). Then p(a+t) is a nonzero polynomial in one variable of

degree d. LetM = |ai|, where ai is the minimum coordinate of a. Then all coordiantes of a+M+1

are positive and there is a t 2 {M+ 1,M+ 2, . . . ,M+d+ 1g, such that p(a+ t) 6= 0. For the time

complexity to �nd the right t, we have to add (d+ 1) evaluations of p.

In the whitebox case, one can search for a by assigning values successively to the variables and

do kind of a self-reduction. For each variable, one tries at most d values from {1, 2, . . . , d} for a

polynomial of degree d. If they all give 0, de�nitely d+1 works because it cannot be zero at (d+1)

many values. With n variables, this amounts to nd calls to the PIT-decision algorithm.

For time complexity, we assume that the polynomials are given in some model of computation,

such as circuits, branching programs, or formulas. With each model, we associate a complexity

6

measure µ : F[z] → N. For example, let f 2 F[z], some of the commonly used measures in the

literature are:

• µ(f) = sp(f), the number of monomials with nonzero coe�cients,

• µ(f) = size∆(f), the size of the smallest depth-∆ circuit that computes f,

• µ(f) = sizeROABP(f), the width of the smallest read read-once oblivious branching program

(ROABP) that computes f.

We de�ne classes of polynomials of bounded measure,

Cµ(s, n, d) = { f 2 P(n, d) | µ(f) � s } .

For example, when we skip the index µ, we just refer to circuit size,

C(s, n, d) = {p 2 P(n, d) | p has a circuit of size s } .

We also consider polynomials that can be computed by circuits of size s and depth t,

CDepth-t(s, n, d) = {p 2 C(s, n, d) | p has a circuit of depth t } .

We generally assume that all polynomials in this paper can be e�ciently evaluated at any

point a 2 Fn within the respective measure, where we consider the unit-cost model for operations

over F. This holds for all the computational models usually considered in the literature.

2.2 Transformation to a monic polynomial

Algorithms for factoring polynomials often assume that the given polynomial is monic. If this is

not the case for the given polynomial f, we apply a transformation τ to f that yields a monic

polynomial τ(f) that we can factor. From the factors of τ(f) we can then reveal the factors of f.

Although this is standard in the literature, we state it in the terms we introduced above.

Lemma 2.2 (Transformation to monic). Let Cµ = Cµ(s, n, d) be a class of polynomials, f(z) 2 Cµ,

and fd = Homd[f] be the homogeneous degree d component of f. For a new variable x, and

α = (α1, . . . , αn) 2 (F \ {0})n, de�ne a linear transformation τα on the variables zi:

τα : zi 7→ αix+ zi,

for i = 1, 2, . . . , n. Let fα(x, z) be the resulting polynomial.

We can compute α such that 1
fd(α)

fα(x, z) is monic in x in time

ndTPIT(Hom[C]) + poly(snd) .

Proof. Let f(z) 2 C be a polynomial of degree d with n variables z = (z1, . . . , zn) .

To see what the transformation does, let

f = f0 + f1 + � � �+ fd,

7

where fk = Homk[f], the homogeneous degree-k component of f. Consider the degree-d component,

fd(z) =
∑

|β|1=d

cβz
β.

Then, for fα, we have degx(fα) = d and the coe�cient of the leading x-term xd in fα is fd(α) =∑
|β|1=d

cβα
β.

Hence, the PIT algorithm for the homogeneous component fd of f yields an α 2 (F \ {0})n such

that fd(α) 6= 0, by Lemma 2.1. Then the polynomial 1
fd(α)

fα(x, z) is monic in x.

For simplicity of notation, assume in the following that fd(α) = 1, so that fα(x, z) is monic

in x.

Since we work with the shifted polynomial, we need to ensure that the shift of variables does

not a�ect the irreducibility of the factors; this is guaranteed by the following lemma. It is quite

standard in the literature; for a nice proof, see [KRSV24, Lemma B7].

Lemma 2.3. Let f(z) 2 F[z] be an n-variate irreducible polynomial. Then, for every a 2 Fn,

the polynomial f(ax+ z) is also irreducible.

2.3 Basics of factoring and interpolation and PIT

Berlekamp [Ber70] and Lenstra, Lenstra and Lov�asz [LLL82] gave e�cient factorization algorithms

for univariate polynomials over �nite �elds and Q, respectively. Kaltofen [Kal85c] showed how to

reduce the factorization of bivariate polynomials to univariate polynomials. In fact, the reduction

works for k-variate polynomials, for any constant k. In our case, we use it for the case k = 3.

Via standard interpolation, one can assume that the input is given as a dense representation.

Lemma 2.4 (Trivariate Factorization). Let f(x, y, z) be a trivariate polynomial of degree d.

Then there exists an algorithm that outputs all its irreducible factors and their multiplicities

in time poly(d).

The following lemma shows how to �nd the multiplicity of an irreducible factor g of a polyno-

mial f. It holds when char(F) = 0, or, large. For a concise proof, see [KRS24, Lemma 4.1].

Lemma 2.5 (Factor multiplicity). Let f(z), g(z) 2 F[z] be non-zero polynomials and let z 2

{z1, � � � , zn} be such that ∂z(g) 6= 0 and g is irreducible. Then the multiplicity of g in f is the

smallest non-negative integer e such that g - ∂
ef
∂ze .

Klivans and Spielman [KS01] derandomized the isolation lemma for PIT of sparse polynomials.

Their algorithm works over �elds of 0 or large characteristics.

Theorem 2.6 (Sparse PIT and interpolation [KS01]). Let Csp = Csp(s, n, d). Then PIT(Csp) can

be solved in time

TPIT(Csp) = poly(snd).

Furthermore, given f 2 Csp, in time poly(snd) one can compute a set of evaluation points

E � Fn of size poly(snd) such that given the evaluations of f at all points in E, one can solve

for the coe�cients of f in time poly(snd).

8

Limaye, Srinivasan, and Tavenas [LST21] designed a deterministic subexponential-time PIT for

constant-depth circuits.

Theorem 2.7 (PIT for constant depth circuits [LST21, Corollary 6]). Let ϵ > 0 be a real num-

ber. Let CDepth-t = CDepth-t(s, n, d) be such that s � poly(n) and t = o(log log logn). Then

PIT(CDepth-t) can be decided in time

TPIT(CDepth-t) =
�
nsO(t)

�O((sd)ε)
.

2.4 Divisibility testing reduces to PIT

Given a polynomial f to factor, our algorithms might compute a polynomial g that is a candidate

for a factor, but in fact, is not a factor. Hence, we have to verify whether g is a factor of f, i.e.,

whether g|f. Therefore, we are interested in the complexity of division algorithms.

When f, g can be computed by circuits of size s, Strassen [Str73] showed that if g|f, then h = f/g

can be computed by a circuit of size poly(sd), where d = deg(h). Forbes [For15] observed that

even in the case when g 6 | f, one can follow Strassen's argument and obtain a small size circuit that

computes a polynomial eh such that g|f ⇐⇒ f = geh. Hence, we have a reduction from divisibility

testing to PIT.

Lemma 2.8 (Divisibility reduces to PIT [For15, Corollary 7.10]). Let g(z) and f(z) be two

polynomials of degree at most d. Let S = [2d2+ 1] and α 2 Fn such that g(α) 6= 0. Then there

are constants {cβ,i}β2S,0�i�d, computable in time poly(d), such that for

eh(z) = ∑
β2S

f(βz+ α)
∑
0�i�d

cβ,i g(βz+ α)i, (2)

we have

g(z)|f(z) ⇐⇒ f(z+ α) = g(z+ α) eh(z).
A consequence from Lemma 2.8 is that divisibility testing of a polynomial computed by constant-

depth circuit by a sparse polynomial is in subexponential time.

Corollary 2.9 (Constant depth by sparse division). Let CDepth-t = CDepth-t(s, n, d) and Dsp =

Csp(s, n, d). For any ε > 0, we have that Div(CDepth-t/Dsp) can be decided in time

TDiv(CDepth-t/Dsp) =
�
n (sd)O(t)

�O((sd)ϵ)
.

Proof. We apply Lemma 2.8 with g 2 Csp and f 2 CDepth-t. Then eh in (2) can be computed by a

circuit of size O(sd2) and depth t+ 2. Therefore, the polynomial

ef = f(z+ α) − g(z+ α) � eh(z)
can be computed by a circuit of size O(sd2) and depth t+ 4. By Lemma 2.8, we have ef = 0 i� g|f,
and by Theorem 2.7, the identity can be checked in time

�
n (sd)O(t)

�O((sd)ϵ)
.

9

We also consider divisibility of sparse polynomials by constant-degree polynomials. Building

on Lemma 2.8, Forbes [For15] reduced the problem to a PIT that can be solved in quasipolynomial

time.

Corollary 2.10 (Sparse by constant degree division [For15, Corollary 7.17]). Let Csp = Csp(s, n, d)

and Dδ = P(n, δ). Then Div(Csp/Dδ) can be decided in time

TDiv(Csp/Dδ) = (snd)O(δ log s) .

2.5 Effective Hilbert’s Irreducibility Theorem

Factorization algorithms often start with an e�ective version of Hilbert's Irreducibility Theorem due

to Kaltofen and von zur Gathen. It shows how to project a multivariate irreducible polynomial down

to two variables, such that the projected bivariate polynomial stays irreducible. The proof shows

the existence of an irreducibility certifying polynomial G(b, c) in 2n variables corresponding to

the irreducible polynomial g(x, z). The nonzeroness of G proves the irreducibility of g(x, z) and also

gives a way to �nd an irreducibility-preserving projection to bivariate (see [Kal85b, Kal95, KSS15]).

Theorem 2.11. Let g(x, z) be an irreducible polynomial of total degree δ with n+ 1 variables

that is monic in x. There exists a nonzero polynomial G(b, c) of degree 2δ5 in 2n variables

such that for β,γ 2 Fn,

G(β,γ) 6= 0 =⇒ bg(x, t) = g(x,βt+ γ) is irreducible, (3)

where g(x,βt+ γ) = g(x, β1t+ γ1, . . . , βnt+ γn).

The certifying polynomial G immediately yields a randomized algorithm to construct the irre-

ducible projection bg via PIT. The derandomization of Hilbert's Irreducibility Theorem is a chal-

lenging open problem in general. Essentially it means to �nd a hitting set for G.

We de�ne a corresponding computational problem. Let C � P(n, d) be a class of polynomials

and g(z) 2 C. Assume we have already computed an α 2 (F \ {0}) as in Lemma 2.2 that the shifted

polynomial gα(x, z) is monic. Now we want to �nd a hitting set according to (3).

• Irred-Proj(C):

Given α 2 (F \ {0})n, compute a set Hα � F2n such that for all g 2 C where g(αx + z) is

monic in x, we have

g irreducible =⇒ 9(β,γ) 2 Hα g(αx+ βt+ γ) 2 F[x, t] is irreducible.

By TIrred-Proj(C) we denote the time complexity to compute Irred-Proj(C).

2.6 Isolation

Let Mδ be the set of monomials in n variables z = (z1, z2, . . . , zn) of degree bounded by δ,

Mδ = { ze | ||e||1 � δ } .

10

Note that Mδ is polynomially bounded, for constant δ,

|Mδ| �

n+ δ

δ

!
� (n+ δ)δ � (δ+ 1)nδ = O(nδ). (4)

There is a standard way to map the multivariate monomials in Mδ in a injective way to uni-

variate monomials of polynomial degree. For completeness, we describe the details.

Consider the standard Kronecker substitution on Mδ. De�ne

φ : zi 7→ y(δ+1)
i−1

.

By extending φ linearly to monomials ze 2Mδ, we get

φ : ze 7→ y
∑n

i=1 ei(δ+1)
i−1

,

Clearly, φ is injective onMδ. However, the degree of y can be exponentially large, up to (δ+1)n. A

way around is to take the exponents modulo some small prime number p. We have to determine p

in a way to keep the mapping injective onMδ. Hence, for any two terms ye, ye
0

we get from φ, we

have to ensure that e 6� e 0 (mod p). Equivalently p 6 | (e− e 0).

We have |e− e 0| � (δ+ 1)n and, by (4), there are (δ+ 1)2n2δ many pairs e, e 0 we get from Mδ

via φ. Prime p should not divide any of these di�erences, and hence, p should not divide their

product P. The product P is bounded by

P � ((δ+ 1)n)(δ+1)
2n2δ

= (δ+ 1)(δ+1)
2n2δ+1

.

Hence, P has at most log P � R = (δ + 1)3 n2δ+1 many prime factors. By the Prime Number

Theorem, there are more than log P primes in the set [R2]. Hence, we can �nd an appropriate

prime p � R2 = nO(δ).

Lemma 2.12. There is a prime p = nO(δ) such that the linear extension of

φp : zi 7→ ywi , where wi = (δ+ 1)i−1 mod p , for i = 1, 2, . . . , n,

to monomials is injective on Mδ. Moreover, we can �nd such a p in time nO(δ) and compute

and invert φp in time nO(δ).

Proof. We already argued about the existence of prime p. For the running time, recall that

|Mδ| = O(n
δ). Therefore we can search for p and check whether it works on Mδ in time nO(δ). At

the same time we can compute pairs of exponents (e, k) such that φp(z
e) = yk. These pairs can

be used to invert φp.

The mapping φp in Lemma 2.12 maintains factors of degree δ of a polynomial in the following

sense.

Lemma 2.13. Let polynomial f(z) factor as f = gh, where g(z) has degree δ. Let φp be the

map from Lemma 2.12. Then we have φp(f) = φp(g)φp(h), and g can be recovered from φp(g)

in time nO(δ).

11

Note that in Lemma 2.13, we do not claim that irreducibility is maintained: when g is irre-

ducible, still φp(g) might be reducible. Consider the example n = δ = 2. The weights {1, 3} make

sure that each monomial z21, z1z2, z
2
2 gets mapped to a distinct power in y. Let g(x, z) = x2 − z1z2.

Observe that g is irreducible, however g(x, y, y3) = (x− y2)(x+ y2) is reducible.

We combine Lemma 2.12 and Theorem 2.11 to obtain a projection of a multivariate polynomial

to a 3-variate polynomial that maintains irreducibility of polynomials up to degree δ.

Corollary 2.14. Let g(x, z) be an irreducible polynomial of constant degree δ with n + 1

variables that is monic in x. There exists w,w 0 2 Fn with wi, w
0
i = n

poly(δ) such that

Ψ(g) = g(x, yw1t+ yw
0
1 , . . . , ywnt+ yw

0
n) 2 F[x, y, t]

is irreducible. Moreover, we can compute and invert Ψ(g) in time npoly(δ).

Proof. Let G(a,b) be the polynomial of degree 2δ5 in 2n variables provided by Theorem 2.11

for g. Let w,w 0 2 Fn with wi, w
0
i = npoly(δ) be the exponents we get from Lemma 2.12 for G.

That is, bG(y) = G(yw1 , . . . , ywn , yw
0
1 , . . . , yw

0
n) 6= 0 .

Now, suppose that Ψ(g) is reducible. Then it would also be reducible at a point y = α, wherebG(α) 6= 0. But then bg(x, t) = Ψ(g)(x, α, t) would be reducible too, and this would contradict

Theorem 2.11. We conclude that Ψ(g) is irreducible.

For the complexity, we �rst determine prime p from Lemma 2.12 and then get the weightsw,w 0

from above. For a given g(x, z) =
∑
k,e ck,ex

kze, we can compute Ψ(g) in time npoly(δ). For a

monomial of g, the mapping looks as follows:

ck,e x
k ze 7→ ck,e x

k
n∏
i=1

(ywit+ yw
0
i)ei . (5)

To compute g from Ψ(g), set t = 0, i.e. consider Ψ(g)(x, y, 0). From (5) we see that monomials

then have the form

ck,e x
k y

∑n
i=1 eiw

0
i .

From these we get the exponents k and e similar as in the proof of Lemma 2.12.

Remark. In Corollary 2.14, when we say that we invert Ψ, it means that for a given h 2 F[x, y, t]

which is monic in x with x-degree � δ, we either detect that h is not in the codomain of Ψ, or we

compute g 2 F[x, z] such that Ψ(g) = h in time npoly(δ).

The inversion can be done similarly as described in the proof of Corollary 2.14. One can evaluate

t = 0, and then for every monomial xkyj, try to �nd xkze that would map to such a monomial

at t = 0. By the property of the map, while mapping the y-degrees, z-degree could be at most

δ, i.e. deg(xkze) � 2δ. We will, of course, return empty if the degree of any such monomial, after

inverting, becomes > δ. Finally, once we have got a candidate g of degree δ, we still have to check

whether Ψ(g) = h, because the inversion procedure ignores the variable t. The last step can also

be e�ciently checked.

12

The polynomial g of degree δ we considered so far can be thought to be a constant-degree factor

of a given polynomial f of degree d. Our goal would be to compute g. It is now easy to extend the

above results to hold for all degree-δ factors of f simultaneously.

Corollary 2.15. Let f(x, z) be a polynomial of degree d with n + 1 variables that is monic

in x, and let δ be a constant. There exists w,w 0 2 Fn with wi, w
0
i � dnpoly(δ) such that for

any irreducible factor g of degree δ of f, we have that Ψ(g) is an irreducible factor of Ψ(f).

Proof. The proof goes along the lines of Corollary 2.14, but we choose the weights slightly larger

so that the bG(y) polynomials for all the degree-δ factors g of f are non-zero simultaneously. That

is, we choose prime p in Lemma 2.12 as p = dnpoly(δ).

Finally, we conclude this subsection by a general remark that whenever n and δ are �xed, these

weights are �xed and can be found e�ciently.

3 Computing the low-degree factors

We show how to compute the factors of constant degree of a given polynomial f. In Section 3.2 for

the case when all factors of f have constant degree, and in Section 3.3 for general f. In both cases,

our algorithm starts by projecting the given polynomial to a 3-variate polynomial. We start with

this common part.

3.1 Projected constant degree factors

The following algorithm is an initiating step in both, Algorithm 2 and 3 in Sections 3.2 and 3.3.

It takes an n-variate polynomial f(z) of degree d. The �nal goal is to compute the factors of f

of degree δ, for some given constant δ. The initial steps are to project f to a trivariate monic

polynomial and then factorize the projection.

In more detail, the �rst step is to make f(z) monic in a new variable x via Lemma 2.2. That

is, we compute α 2 (F \ {0})n such that the transformed polynomial fα(x, z) = f(αx+ z) is monic.

Then we apply Corollary 2.15 to fα(x, z). That is, we compute the weightsw,w 0 2 Fn bounded

by dnpoly(δ) and explicitly compute Ψ(fα) 2 F[x, y, t] of degree at most ed = d2 npoly(δ). Note that

the x-degree of fα has not changed by mapping Ψ.

The next step is to factor 3-variate Ψ(fα) via Lemma 2.4. The following pseudo-code summarizes

the steps.

For the running time of Projected-Factoring we have ndTPIT(Hom[C]) for �nding α in step 1

by Lemma 2.2. Steps 2 and 3 take time poly(dnpoly(δ)). In summary, the time complexity of

Projected-Factoring is

ndTPIT(Hom[C]) + poly(dnpoly(δ)) .

3.2 Factors of a constant degree product

Given a polynomial that is the product of constant degree polynomials. We show that all the

factors can be computed in polynomial time.

13

Algorithm 1: Projected-Factoring

Input : f(z) 2 Cµ(s, n, d) and a constant δ.

Output: All projected factors of f of degree δ with their multiplicities.

1 Find α such that fα(x, z) = f(αx+ z) is monic /* by Lemma 2.2 */

2 Find w,w 0 2 Fn as in Corollary 2.15 and compute Ψ(fα) 2 F[x, y] in dense representation

3 Factorize Ψ(fα) = h
e1
1 h

e2
2 � � �hemm /* by Lemma 2.4, in dense representation */

4 De�ne SProj-Fac = {hi | degx(hi) � δ } and SProj-Fac-mult = { (hi, ei) | hi 2 SProj-Fac }

5 return SProj-Fac, SProj-Fac-mult

Theorem 3.1. For a constant δ, let Dδ = P(n, δ) and Cd � P(n, d) be the class of polynomials

that are a product of polynomials from Dδ, i.e. Cd =
∏
Dδ. Then Factor(Cd|Dδ) can be solved

in time TFactor(Cd|Dδ
) = poly(dnpoly(δ)).

Proof. We start by invoking Projected-Factoring for f to get S 0, the set of factors of the

transformed trivariate polynomial Ψ(τα(f)) with their multiplicities. Then we �rst invert the

transformation Ψ on the factors using Corollary 2.14 and its remark. Then we invert τα. Since f

and Ψ(τα(f)) have the same factorization pattern, we �nally get the factors of f. We summarize

the steps in Algorithm 2.

Algorithm 2: Constant-Degree-Factorization

Input : f(z) 2 Cµ(s, n, d) and a constant δ such that

all irreducible factors of f have degree � δ.

Output: All irreducible factors of f with their multiplicities.

1 L = ; /* Initialize output list */

2 (SProj-Fac, SProj-Fac-mult) = Projected-Factoring(f, δ)

3 for (eg, e) 2 SProj-Fac-mult do
/* Computing the irreducible factors via inversion */

4 Compute bg = Ψ−1(eg), by Corollary 2.14 and its remark

5 Compute g = τ−1α (bg), and add (g, e) to L

6 return L

For the time complexity of Constant-Degree-Factorization, recall that constant degree

polynomials are sparse, with sparsity s = O(nδ) by (4). Hence, we get TPIT(Hom[C]) = poly(dnδ)

by Theorem 2.6. The for-loop with the inverse mappings takes time poly(dnpoly(δ)).

Note that Theorem 3.1 solves a promise case. That is, we assume that f is a product of constant

degree polynomials, but we do not verify this assumption. So in case that the assumption does not

hold, one can anyway run the algorithm from Theorem 3.1, but then it might output polynomials

of degree δ that are not factors of f. In Section 3.3, we show how to compute the constant degree

factors of an arbitrary polynomial.

14

3.3 Constant degree factors

In Section 3.2, we computed the constant degree factors of a polynomial f under the assumption

that all factors of f are of constant degree. Now we skip the assumption and let f be a polynomial

from some class Cµ = Cµ(s, n, d) � P(n, d). We still want to compute the constant degree factors

of f from Dδ = P(n, δ), for some constant δ. We show that the problem can be reduced in

polynomial time to a PIT for Hom[Cµ] and divisibility tests Cµ by Dδ.

Theorem 3.2. Let Cµ = Cµ(s, n, d) and Dδ = P(n, δ), for a constant δ. Then Factor(Cµ|Dδ) can

be solved in time

TFactor(Cµ|Dδ
) = ndTPIT(Hom[Cµ]) + d

2npoly(δ)TDiv(∂Cµ/Dδ) + poly(s, npoly(δ), d).

Proof. Let f(z) 2 C. To compute the factors of degree δ of f, we start again by invoking

Projected-Factoring for f to get S, the set of factors of the transformed trivariate polyno-

mial Ψ(τα(f)). As in the proof of Theorem 3.1, we compute the inverses of the transformations,

g = τ−1α (Ψ−1(eg)).
However eg might also not correspond to a degree-δ factor of f. In this case, either the inverse

transformation does not go through properly, or the degree we get is larger than δ. In these cases,

we can immediately throw away eg; see the remark after Corollary 2.14. But it could also be that

we actually obtain a polynomial g of degree δ, just that it is not a factor of f. For that reason, we

�nally do a divisibility check whether g|f. That way we will compute all factors of f of degree δ. The

multiplicities of the factors we compute via Lemma 2.5. We summarize the steps in Algorithm 3.

Algorithm 3: Constant-Degree-Factors

Input : f(z) 2 Cµ(s, n, d) and a constant δ.

Output: All irreducible factors of f of degree � δ with their multiplicities.

1 L = ;, L 0 = ; /* Initialize output list and intermediate candidates list */

2 (SProj-Fac, SProj-Fac-mult) = Projected-Factoring(f, δ) /* Compute projected

3-variate factors */

3 for eg 2 SProj-Fac do
/* Computing candidate factors via divisibility */

4 Compute bg = Ψ−1(eg) (if the inverse exists) of degree � δ by Corollary 2.14

5 Compute g = τ−1α (bg)
6 If g|f then add g to L 0

7 for g 2 L 0 do

/* Computing multiplicities via Lemma 2.5 */

8 Let z be a variable that g depends on

9 Find the smallest e � 1 such that g 6 | ∂
ef
∂ze and add (g, e) to list L

10 return L

For the time complexity of the factoring algorithm, we have ndTPIT(Hom[C]) for transforming f

to monic fα by Lemma 2.2. Time poly(dnpoly(δ)) is used for map Ψ and the factoring of Ψ(fα).

15

Similar time is taken to invert and get the candidate factors. Finally, we have at most d2npoly(δ)

candidate polynomials g for which we test divisibility of g|f in Line 6. For the multiplicities, we

�rst �nd a variable z that g depends on in Line 8. Then we have at most d divisibility tests whether

g| ∂
ef
∂ze in Line 9.

As a consequence, we get a quasipolynomial-time algorithm to compute the constant-degree

factors of a sparse polynomial. With a di�erent proof, this was already shown by Kumar, Ra-

manathan, and Saptharishi [KRS24].

Corollary 3.3 (Constant-degree factors of sparse [KRS24]). Let Csp = Csp(s, n, d) and Dδ =

P(n, δ), for a constant δ. Then Factor(Csp|Dδ) can be solved in time

TFactor(Csp|Dδ
) = (snd)poly(δ) log s.

Proof. Homogeneous components as well as the derivatives of a sparse polynomial remain sparse.

Hence, we have TPIT(Hom[Csp]) = poly(snd) by Theorem 2.6, and TDiv(∂Csp/Dδ) = (snd)O(δ log s) by

Corollary 2.10. Hence, we get the desired complexity by Theorem 3.2.

Kumar, Ramanathan, and Saptharishi [KRS24] generalized sparse polynomials to polynomials

computed by constant-depth circuits and showed that the constant-degree factors can be computed

in subexponential time. We can now also derive this result via Theorem 3.2.

Recall that

CDepth-t(s, n, d) = {p 2 P(n, d) | p has a circuit of size s and depth t } .

We state some properties of CDepth-t.

(i) Csp(s, n, d) � CDepth-2(s+ 1, n, d).

(ii) CDepth-t is closed for homogeneous components: For a polynomial f 2 CDepth-t(s, n, d), all

homogeneous components of f are in CDepth-(t+1)(sd, n, d) (see [Oli16, Lemma 2.3]).

(iii) CDepth-t is closed under derivatives: For a polynomial f 2 CDepth-t(s, n, d), a variable z and e �

1, we have ∂ef
∂ze 2 CDepth-(t+1)(d

2 s, n, d) (see [Oli16, Lemma 2.5]).

We apply Theorem 3.2 to compute constant-degree factors of constant-depth circuits.

Corollary 3.4 (Constant-degree factors of constant-depth [KRS24]). Let CDepth-t = CDepth-t(s, n, d)

and Dδ = P(n, δ), for a constant δ. Then, for any ε > 0, Factor(CDepth-t|Dδ) can be solved in

time

TFactor(CDepth-t|Dδ
) =

�
n (sd)O(t)

�O((sd)ϵ)
.

Proof. Let f 2 CDepth-t. We consider the running times from Theorem 4.2 to factor f. We argue

that

TPIT(Hom[CDepth-t]) = TDiv(∂CDepth-t/Dδ) =
�
n (sd)O(t)

�O((sd)ϵ)
.

For the homogeneous components of f, this follows from property (ii) above that the components

have again bounded-depth circuits. Hence, for PIT, we can apply Theorem 2.7.

For the divisibility test, this follows from property (i) and (iii) above and Corollary 2.9.

16

3.4 Linear factors of ROABPs

We can apply Theorem 3.2 in the case of read-once oblivious arithmetic branching programs,

ROABPs, and compute linear factors. ROABPs are arithmetic branching programs (ABPs) where

there is an order on the variables and on every path of the ABP, every variable is evaluated in

this order and only once. As size measure for ROABPs, usually the width w is taken. Its size as

a graph is then bounded by nw, where n is the number of variables. Width and size can greatly

vary depending on the variable order. We consider the any-order model. That is, when we say

that a polynomial has an ROABP of width w, it is a bound for all orders of the variables. For a

more detailed de�nition see for example [GKS17, GKST17]. Let

CROABP(w,n, d) = {p 2 P(n, d) | p has an any-order ROABP of width w } .

ROABPs generalize sparse polynomials: Csp(s, n, d) � CROABP(s, n, d).

For our arguments, we need some folklore properties of ROABPs.

Lemma 3.5 (Properties of ROABP). Let f 2 CROABP(w1, n, d) and g 2 CROABP(w2, n, d). Then

(i) f+ g 2 CROABP(w1 +w2, n, d),

(ii) fg 2 CROABP(w1w2, n, 2d).

(iii) Homd[f] 2 CROABP((d+ 1)w1, n, d).

(iv) ∂ze(f) 2 CROABP(dw1, n, d− e), for a variable z and e � d.

(v) (a0 + a1z1 + a2z2 + � � �+ anzn)
d 2 CROABP(d+ 1, n, d), for a0, a1, a2, . . . , an 2 F.

There are e�cient PITs for ROABPs in the literature.

Lemma 3.6. Let CROABP = CROABP(w,n, d). Then PITCROABP can be solved in

• polynomial time poly(ndw), in the whitebox setting [RS05],

• quasipolynomial time (ndw)O(log logw), in the blackbox setting [GKS17, GG20].

For factorization of a polynomial f computed by an ROABP, we apply Theorem 3.2. The time

for PIT of homogeneous components of f follows from Lemma 3.5 (iii) and Lemma 3.6.

For divisions, we consider linear polynomials. This is the case δ = 1 in the above terminology.

That is, we consider class D1. We use Lemma 2.8 to reduce the divisibility test to a PIT instance

of a polynomial-size ROABP, which can be solved by Lemma 3.6. By Lemma 3.5 (iv), this holds

similarly for the partial derivatives.

Lemma 3.7 (ROABP by linear division). Let CROABP = CROABP(w,n, d) and D1 = P(n, 1).

Then Div(CROABP/D1) can be solved in time

• poly(ndw), in the whitebox setting,

• (ndw)O(log log dw), in the black-box setting.

17

Proof. Let f(z) 2 CROABP(w,n, d) and ℓ(z) be linear. We apply Lemma 2.8. Let S = [2d2 + 1]

and �nd an α 2 Fn such that ℓ(α) 6= 0. Such an α can be found in time O(n). Let cβ,i 2 F be

constants such that ℓ|f ⇐⇒ bf = f(z+ α) − ℓ(z+ α) ~h = 0, where

eh =
∑
β2S

f(βz+ α)
∑
0�i�d

cβ,iℓ(βz+ α)i .

We consider the width of an ROABP that computes bf. The terms ℓ(βz + α)i in eh have ROABPs

of width i + 1 � d + 1 by Lemma 3.5 (v). Applying Lemma 3.5 (i) and (ii), we get that eh has

an ROABP of width O(wd4). Hence, for bf, we get an ROABP of width O(w2d4). Now the claim

follows from Lemma 3.6.

We plug the time bounds from Lemma 3.6 and 3.7 in Theorem 3.2.

Corollary 3.8 (Linear factors of ROABPs). Let CROABP = CROABP(w,n, d) and D1 = P(n, 1).

Then Factor(CROABP|D1) can be solved in time

• poly(ndw) in the whitebox setting,

• (ndw)O(log log dw) in the blackbox setting.

When the input f is s-sparse, this result is already known due to Volkovich [Vol15, Theorem 4].

4 Computing the sparse factors

Recall the class of sparse polynomials,

Csp(s, n, d) = {p 2 P(n, d) | sp(p) � s } .

We want to compute the sparse factors of a given polynomial. For a polynomial f from a class Cµ,

we show that the sparse factors of f can be computed e�ciently relative to a PIT for Hom[Cµ],

a divisibility test of f by sparse candidate factors, and an irreducibility preserving projection of

sparse polynomials, Irred-Proj(Csp) (see Section 2.5).

Lemma 4.1. Given f 2 Csp, we can test whether f is irreducible in time poly(snd)TIrred-Proj(Csp).

Proof. The irreducibiltiy test �rst �nds an α 2 (F\{0})n such that Homd[f](α) 6= 0 in time poly(snd)

by Theorem 2.6. Then, by solving Irred-Proj(Csp), one can �nd a set Hα such that f(z) is reducible

if and only if f(αx + βt + γ) is reducible, for every (β,γ) 2 Hα. Whether a bivariate polynomial

is reducible can be checked in time poly(d) by Lemma 2.4.

Theorem 4.2 (Sparse factors). Let Cµ = Cµ(s, n, d) and Csp = Csp(s, n, d). Then Factor(Cµ|Csp)

can be solved in time

TFactor(Cµ|Csp)
= ndTPIT(Hom[Cµ]) + poly(snd)TIrred-Proj(Csp)TDiv(∂Cµ/Csp) .

18

Proof. Let f(z) 2 Cµ(s, n, d) and let g be a s-sparse irreducible factor of f with multiplicity e, that

is f = geh, where gcd(g, h) = 1. Let deg(g) = dg and deg(h) = dh.

The �rst step is to transform f to a monic polynomial by �nding an α 2 (F \ {0})n such

that Homd[f](α) 6= 0. Observe that Homd[f] = (Homdg [g])
eHomdh [h]. Therefore, we also have

Homdg [g](α) 6= 0.

The second step is to solve Irred-Proj(Csp) and compute a set Hα such that g(αx + βt + γ)

remains irreducible for some (β,γ) 2 Hα. We call such a (β,γ) a good point for g.

Since we do not know g for now, we also do not know which pair (β,γ) 2 Hα is a good point

for g. For that reason, we iteratively try all pairs (β,γ) 2 Hα in the following. Our algorithm will

detect when a pair is not good at some point and then ignore that pair. Consider a good point

(β,γ) 2 Hα and compute bivariate polynomial bf,
bf(x, t) = f(αx+ βt+ γ)

in dense representation by interpolation. Then factor g is mapped to bg(x, t) = g(αx + βt + γ), a

factor of bf. We factorize bf over F by Lemma 2.4. Let F = {bg1, bg2, . . . , bgm} be the set of irreducible
factors of bf. Note that for a good point (β,γ), we have bg 2 F.

Our task now is to �nd out which polynomials in F are coming from sparse factors of f and to

recover these factors. Let E = E(s, n, d) � Fn be the set of evaluation points to interpolate s-sparse

n-variate polynomials of degree d from Theorem 2.6. For any ω 2 E , we compute the trivariate

polynomial bfω, bfω(x, t1, t2) = f(αx+ βt1 + (ω− γ)t2 + γ)

in dense representation by interpolation. Factor g is mapped correspondingly to bgω(x, t1, t2) =

g(αx + βt1 + (ω − γ)t2 + γ). Note that bfω and bgω are monic polynomial in x and bgω remains

irreducible, since bgω(x, t, 0) = g(αx+βt+γ) is irreducible, for a good point (β,γ). We factorize bfω
over F by Lemma 2.4. Let Fω = {bgω,1, bgω,2, . . . , bgω,r} be the set of irreducible factors of bfω. Then
we have bgω 2 Fω.

Note that bf and bg are the projections of bfω and bgω for t2 = 0. That is

bf(x, t) = bfω(x, t, 0),bg(x, t) = bgω(x, t, 0).

The reason that we introduced the trivariate polynomials is that we can use them to get evaluation

points of g: We have bgω(0, 0, 1) = g(ω).

This we will use to get g via sparse interpolation by Theorem 2.6.

Recall that we know that bg 2 F and bgω 2 Fω. However, we �rst need to know which polynomial

in Fω corresponds to bg, for every ω 2 E . The polynomials in F are used as reference. That is, for

every bgj 2 F, we compute a list Lj of pairs

Lj = { (ω, ∆) | ω 2 E and 9bgω,i 2 Fω bgj(x, t) = bgω,i(x, t, 0) and ∆ = bgω,i(0, 0, 1) }
Observe that when bg = bgj, then Lj = { (ω, g(ω)) | ω 2 E } is a list of point-values for g. Hence we

can compute g by interpolation from the points in Lj by Theorem 2.6.

19

In case we consider a polynomial bgj 0 2 F such that bg 6= bgj 0 and do interpolation for list Lj 0 ,

we might still end up in a sparse polynomial, say g 0, but g 0 might be reducible or not be a factor

of f. Hence, after interpolation, we check whether g 0 is reducible via Lemma 4.1 and whether g 0

divides f to rule out the wrong choices.

Once we have the correct factor g in hand, we compute its multiplicity via Lemma 2.5. Algo-

rithm 4 summarizes the steps.

Algorithm 4: Sparse-Factors

Input : f(z) 2 Cµ(s, n, d).

Output: All irreducible s-sparse factors of f with their multiplicities.

1 L = ;, L 0 = ; /* Initialize output list and intermediate candidates list */

2 Find α 2 (F \ {0})n such that Homd[f](α) 6= 0 /* by Lemma 2.2 */

3 Compute Hα = Irred-Proj(Csp)(α)

4 for each (β,γ) 2 Hα do

5 Compute bf(x, t) = f(αx+ βt+ γ) in dense representation

6 Factorize bf. Let F = {bg1, bg2, . . . , bgm} be the set of its irreducible factors
7 Lj = ;, for j 2 [m] /* Initialize point-value lists */

8 Let E be the evaluation points for Csp(s, n, d) /* see Theorem 2.6 */

9 for each ω 2 E do

10 Compute bfω(x, t1, t2) = f(αx+ βt1 + (ω− γ)t2 + γ) in dense representation

11 Factorize bfω. Let Fω = {bgω,1, bgω,2, . . . , bgω,r} be the set of its irreducible factors
12 for each j 2 [m] do

13 Search for i 2 [r] such that bgj(x, t) = bgω,i(x, t, 0)
14 Ω = bgω,i(0, 0, 1)
15 add (ω,Ω) to Lj

16 for each j 2 [m] do

/* Compute irreducible factors using Theorem 2.6 and Lemma 4.1 */

17 Compute polynomial Pj by sparse interpolation on the points in Lj
18 If Pj is s-sparse, irreducible and Pj|f then add Pj to L

0

19 for each P 2 L 0 do

/* Compute multiplicities via Lemma 2.5 */

20 Let z be a variable that P depends on

21 Find the smallest e � 1 such that P 6 | ∂
ef
∂ze and add (P, e) to list L

22 return L

The time complexity is now easy to see. Steps 2 and 3 take time TPIT(Hom[Cµ]) and TIrred-Proj(Csp),

respectively. The for-loop line 4 - 18 is executed |Hα| � TIrred-Proj(Csp) times. Steps 5 - 17 take

time poly(snd) by Lemma 2.4 and Theorem 2.6. Line 18 takes time poly(snd)TIrred-Proj(Csp) to

test irreducibility by Lemma 4.1, plus the time to check divisibility, TDiv(Cµ/Csp).

In Line 20, since we have P computed explicitely, we can choose a variable z that occurs in P.

Then we have at most d divisibility tests with the derivatives of P in Line 21. In summary, we get

20

the time bound claimed in the theorem statement.

Let D � Csp be a class of polynomials that are sparse. We observe that the proof of Theorem 4.2

works completely analogous when we replace Csp by D. The only change is in line 18 of Sparse-

Factors when we have computed a sparse representation of Pj. There we also need to check the

membership of Pj in D. This is mostly trivial, for example for D = Dδ. However, in the general

setting D � Csp(s, n, d), we need to assume that, given a polynomial in sparse representation,

membership in D can be e�ciently decided, i.e. in time poly(snd).

Corollary 4.3. Let Cµ = Cµ(s, n, d) and D � Csp(s, n, d) with e�cient membership tests. Then

Factor(Cµ|D) can be solved in time

TFactor(Cµ|D) = ndTPIT(Hom[Cµ]) + poly(snd)TIrred-Proj(D)TDiv(∂Cµ/D) .

By choosing D = Dδ, the polynomials of degree δ in Corollary 4.3, we get an alternative way to

derive Theorem 3.2. Just observe that TIrred-Proj(Dδ) = poly(dnpoly(δ)). In the following, we show

further applications of Theorem 4.2 and Corollary 4.3.

4.1 Sparse factors of constant-depth circuits

A challenging open problem is to compute the sparse factors of a given sparse polynomial, or more

generally of a given polynomial computed by a constant-depth circuit. Only exponential-time algo-

rithms are known. It follows now that to make progress on this problem, it su�ces to derandomize

the irreducibility preserving projection of sparse polynomials in better than exponential time.

We apply Theorem 4.2 to output sparse factors of constant-depth circuits.

Corollary 4.4. Let CDepth-t = CDepth-t(s, n, d) and Csp = Csp(s, n, d). Then, for any ε > 0,

Factor(CDepth-t|Csp) can be solved in time

TFactor(CDepth-t|Csp)
=
�
n (sd)O(t)

�O((sd)ϵ)
TIrred-Proj(Csp) .

Proof. Let f 2 CDepth-t. We consider the running times from Theorem 4.2 to factor f. We can

use a similar argument as in the proof of Corollary 3.4. For PIT, we have TPIT(Hom[CDepth-t]) =�
n (sd)O(t)

�O((sd)ϵ)
and the same time bound we have for TDiv(∂CDepth-t/Csp) by Corollary 2.9.

It follows that a subexponential bound on TIrred-Proj(Csp) would yield a subexponential algorithm

to compute the sparse factors of a sparse polynomial, or, more general, of a polynomial computed

by a constant-depth circuit.

Corollary 4.5. If irreducibility preserving projection for sparse polynomials is in subexponen-

tial time, then the sparse factors of a sparse polynomial can be computed in subexponential

time,

TIrred-Proj(Csp) = (snd)O((sd)
ϵ) =⇒ Factor(Csp|Csp) = (snd)O((sd)

ϵ) .

21

4.2 Sum-of-univariate factors of sparse polynomials

Let us consider the family of polynomials that can be written as a sum of univariate polynomials,

CSU(n, d) =

{
n∑
i=1

pi(zi) | pi 2 P(1, d), for i = 1, 2, . . . , n

}
.

Note that CSU(n, d) (Csp(nd+ 1, n, d).

Given a sparse polyomial, we show that its factors that are sums of univariates can be computed

in polynomial time. The result was already shown by Volokovich [Vol15] with a di�erent technique.

We show that it also follows via Corollary 4.3.

We already know that PIT for sparse polynomials is in polynomial time. Moreover, Saha,

Saptharishi, and Saxena [SSS13] showed that divisibility of a sparse polynomial by a sum of uni-

variates is in polynomial time.

Theorem 4.6 ([SSS13, Theorem 5.2]). Let Csp = Csp(s, n, d) and CSU = CSU(n, d). Then

Div(Csp/CSU) can be computed in time TDiv(Csp/CSU) = poly(snd).

Therefore, it su�ces to give bounds on the time for irreducible projection Irred-Proj(CSU) (see

Section 2.5). We show that TIrred-Proj(CSU) is polynomially bounded. We crucially use the following

theorem.

Theorem 4.7 ([SSS13, Theorem 5.2]). Let p 2 CSU(n, d) with |var(p)| � 3. Then p is irreducible.

Lemma 4.8. TIrred-Proj(CSU) � O(n3d30).

Proof. Let p(z) =
∑
i2[n] pi(zi) 2 CSU(n, d) be irreducible and α 2 (F \ {0})n such that p(αx + z)

is monic in x. In order to apply Theorem 4.7, we consider var(p), the variables that p depends on.

If |var(p)| � 2, we can directly derandomize Theorem 2.11: Suppose var(p) = {z1, z2} so that

p(z) = p(z1, z2). There is a polynomial P in 2 �2 = 4 variables of degree 2d5 such that any non-root

of P gives an irreducible projection of p, where we set the other variables of p to zero, zi = 0 for

i = 3, 4, . . . , n. Hence, the trivial hitting set (1) of size (2d5 + 1)4 = O(d20) can be used for PIT

for P. Since we want to handle the blackbox case, we do not assume that we have p in hand.

Hence, we do not know whether actually var(p) = {z1, z2}. So �nally we will try all
�n
2

�
possibilities

to choose 2 variables. For each possibility, say {zi, zj}, we take the same hitting set, but put the

values at zi and zj and set the remaining z-variables to 0. That way we get
�n
2

�
hitting sets, and

take their union to get the �nal hitting set of size O(n2d20).

Now let |var(p)| � 3. Similar as in the above case, assume for now that {z1, z2, z3} � var(p),

and in the end, we will try all
�n
3

�
possibilities to choose 3 variables.

Consider the substituting ψ : zi 7→ αix, for i � 4. Then ψ(p) 2 CSU(4, d), since
∑n
i=4 pi(αix) is a

univariate polynomial in x. Because var(ψ(p)| � 3, polynomial ψ(p) is irreducible by Theorem 4.7.

Now we substitute also the �rst 3 variables by ϕ : zi 7→ αix+ zi, for i 2 [3]. Then

bp(x, z1, z2, z3) = ϕ(ψ(p)) = p1(α1x+ z1) + p2(α2x+ z2) + p3(α3x+ z3) + n∑
i=4

pi(αix)

22

is also irreducible and monic in x. Therefore, by Theorem 2.11, there exists a polynomial P of

degree 2d5 in 2 � 3 = 6 variables such that any non-root of P gives an irreducible projection of p,

where we set the other variables of p to zero, zi = 0 for i � 4. Hence, we may again take the

trivial hitting set (1) of size (2d5 + 1)6 = O(d30). Now we can argue similarly as above and build

the union of hitting sets over all
�n
3

�
possibilities to choose 3 variables. Hence, we end up with a

hitting set of size O(n3d30).

Theorem 2.6, Theorem 4.6, and Lemma 4.8 give all the time complexities used in Corollary 4.3.

We conclude that the sum-of-univariate factors of a sparse polynomial can be computed in poly-

nomial time.

Corollary 4.9 ([Vol15] Sum-of-univariate factors). Let Csp = Csp(s, n, d) and CSU = CSU(n, d).

Then Factor(Csp|CSU) can be computed in time TFactor(Csp|CSU) = poly(snd).

5 Conclusion

We conclude with some open questions.

1. Can we decide whether a given sparse polynomial is irreducible in deterministic subexponen-

tial time? The proof may already give a good bivariate projection that preserves irreducibil-

ity. Then Theorem 4.2 would give us a deterministic subexponential-time algorithm to �nd

irreducible sparse factors of a sparse polynomial.

2. Can we �nd bounded individual degree sparse factors of a sparse polynomial (that is not

restricted as bounded individual degree) in deterministic quasipolynomial time? Volkovich

asked if multilinear factors of a sparse polynomial can be found in deterministic polynomial

time [Vol15]. We do not even know a deterministic polynomial time algorithm to test if a

sparse polynomial is divisible by a multilinear polynomial.

3. Can one compute all the factors of a sparse polynomial/constant depth circuit by constant

depth circuits of small size? At least, can one �nd all the factors that are computable in

constant depth? The recent result in [KRSV24] gives a deterministic subexponential-time

algorithm that outputs a list of circuits (of unbounded depth and possibly with division

gates) that includes all such factors, but there might be spurious factors as well in the list.

4. Given a blackbox computing the product of sparse irreducible polynomials fi with bounded

individual degree, �nd fi's in deterministic polynomial time. [BSV20] gives a quasipolynomial

time algorithm, when the input is sparse with constant individual degree and the factors are

all sparse (polynomially upper bounded with respect to input polynomial's sparsity).

Acknowledgements P.D. is supported by the project titled \Computational Hardness of Lattice

Problems and Implications", funded by National Research Foundation (NRF) Singapore. T.T's

research supported by DFG grant TH 472/5-2. A.S. was supported by DFG grant TH 472/5-1

when the work started.

23

References

[AS03] Sanjeev Arora and Madhu Sudan. Improved low-degree testing and its applications.

Combinatorica, 3(23), 2003.

[Ber70] Elwyn R. Berlekamp. Factoring polynomials over large �nite �elds. Mathematics of

Computation, 24(111):713{735, 1970.

[Bog05] Andrej Bogdanov. Pseudorandom generators for low degree polynomials. In 37th ACM

Symposium on Theory of Computing (STOC), pages 21{30, 2005.

[BSV20] Vishwas Bhargava, Shubhangi Saraf, and Ilya Volkovich. Deterministic factorization of

sparse polynomials with bounded individual degree. Journal of the ACM (JACM),

67(2):1{28, 2020.

[BV22] Pranav Bisht and Ilya Volkovich. On solving sparse polynomial factorization related

problems. In 42nd IARCS Conference on Foundations of Software Technology and

Theoretical Computer Science (FSTTCS 2022). Schloss-Dagstuhl-Leibniz Zentrum

f�ur Informatik, 2022.

[DGV24] Ashish Dwivedi, Zeyu Guo, and Ben Lee Volk. Optimal pseudorandom generators for

low-degree polynomials over moderately large �elds. arXiv preprint arXiv:2402.11915,

2024.

[For15] Michael A. Forbes. Deterministic divisibility testing via shifted partial derivatives. In

56th Symposium on Foundations of Computer Science (FOCS), pages 451{465.

IEEE, 2015.

[GG20] Zeyu Guo and Rohit Gurjar. Improved explicit hitting-sets for ROABPs. In Ap-

proximation, Randomization, and Combinatorial Optimization. Algorithms and

Techniques (APPROX/RANDOM 2020). Schloss-Dagstuhl-Leibniz Zentrum f�ur In-

formatik, 2020.

[GKS17] Rohit Gurjar, Arpita Korwar, and Nitin Saxena. Identity testing for constant-width,

and any-order, read-once oblivious arithmetic branching programs. Theory Comput.,

13(1):1{21, 2017.

[GKST17] Rohit Gurjar, Arpita Korwar, Nitin Saxena, and Thomas Thierauf. Deterministic iden-

tity testing for sum of read-once oblivious arithmetic branching programs. computa-

tional complexity, 26:835{880, 2017.

[Gup14] Ankit Gupta. Algebraic geometric techniques for depth-4 pit & Sylvester-Gallai conjec-

tures for varieties. In Electronic Colloquium on Computational Complexity (ECCC),

volume 21, 2014.

[HW00] Ming-Deh Huang and Yiu-Chung Wong. Extended Hilbert irreducibility and its appli-

cations. Journal of Algorithms, 37(1):121{145, 2000.

24

[Kal85a] Erich Kaltofen. Computing with polynomials given by straight-line programs I: greatest

common divisors. In 17th ACM Symposium on Theory of Computing (STOC), pages

131{142, 1985.

[Kal85b] Erich Kaltofen. E�ective Hilbert irreducibility. Information and Control, 66(3):123{

137, 1985.

[Kal85c] Erich Kaltofen. Polynomial-time reductions from multivariate to bi-and univariate in-

tegral polynomial factorization. SIAM Journal on Computing, 14(2):469{489, 1985.

[Kal89] Erich Kaltofen. Factorization of polynomials given by straight-line programs. Random-

ness and Computation, 5:375{412, 1989.

[Kal95] Erich Kaltofen. E�ective Noether irreducibility forms and applications. Journal of

Computer and System Sciences, 50(2):274{295, 1995.

[Kay] Neeraj Kayal. E�cient algorithms for some special cases of the polynomial equivalence

problem. In 22nd ACM-SIAM Symposium on Discrete Algorithms (SODA), pages

1409{1421.

[Kay12] Neeraj Kayal. A�ne projections of polynomials. In 44th ACM Symposium on Theory

of Computing (STOC), pages 643{662, 2012.

[KI03] Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity tests

means proving circuit lower bounds. In 35th ACM Symposium on Theory of Com-

puting (STOC), pages 355{364, 2003.

[KRS24] Mrinal Kumar, Varun Ramanathan, and Ramprasad Saptharishi. Deterministic algo-

rithms for low degree factors of constant depth circuits. In ACM-SIAM Symposium

on Discrete Algorithms (SODA), pages 3901{3918. SIAM, 2024.

[KRSV24] Mrinal Kumar, Varun Ramanathan, Ramprasad Saptharishi, and Ben Lee Volk. Towards

deterministic algorithms for constant-depth factors of constant-depth circuits. arXiv

preprint arXiv:2403.01965, 2024.

[KS01] Adam R. Klivans and Daniel Spielman. Randomness e�cient identity testing of multi-

variate polynomials. In 33rd ACM Symposium on Theory of Computing (STOC),

pages 216{223, 2001.

[KSS15] Swastik Kopparty, Shubhangi Saraf, and Amir Shpilka. Equivalence of polynomial

identity testing and polynomial factorization. computational complexity, 24(2):295{

331, 2015.

[KT90] Erich Kaltofen and Barry M. Trager. Computing with polynomials given by black boxes

for their evaluations: Greatest common divisors, factorization, separation of numerators

and denominators. Journal of Symbolic Computation, 9(3):301{320, 1990.

25

[LLL82] Arjen K Lenstra, Hendrik Willem Lenstra, and L�aszl�o Lov�asz. Factoring polynomials

with rational coe�cients. Mathematische Annalen, 261:515{534, 1982.

[LST21] Nutan Limaye, Srikanth Srinivasan, and S�ebastien Tavenas. Superpolynomial lower

bounds against low-depth algebraic circuits. In 62nd Symposium on Foundations of

Computer Science (FOCS), pages 804{814. IEEE, 2021.

[Oli16] Rafael Oliveira. Factors of low individual degree polynomials. computational complex-

ity, 2(25):507{561, 2016.

[RR19] C. Ramya and BV Raghavendra Rao. Linear projections of the Vandermonde polyno-

mial. Theoretical Computer Science, 795:165{182, 2019.

[RS05] Ran Raz and Amir Shpilka. Deterministic polynomial identity testing in non-

commutative models. computational complexity, 14:1{19, 2005.

[Shp07] Amir Shpilka. Interpolation of depth-3 arithmetic circuits with two multiplication gates.

In 39th ACM Symposium on Theory of Computing (STOC), pages 284{293, 2007.

[Sin16] Gaurav Sinha. Reconstruction of real depth-3 circuits with top fan-in 2. In 31st Con-

ference on Computational Complexity (CCC). Schloss-Dagstuhl-Leibniz Zentrum f�ur

Informatik, 2016.

[SSS13] Chandan Saha, Ramprasad Saptharishi, and Nitin Saxena. A case of depth-3 identity

testing, sparse factorization and duality. Computational Complexity, 22(1):39{69,

2013.

[Str73] Volker Strassen. Vermeidung von Divisionen. Journal f�ur die reine und angewandte

Mathematik, 264:184{202, 1973.

[SV10] Amir Shpilka and Ilya Volkovich. On the relation between polynomial identity test-

ing and �nding variable disjoint factors. In International Colloquium on Automata,

Languages, and Programming, pages 408{419. Springer, 2010.

[Vol15] Ilya Volkovich. Deterministically factoring sparse polynomials into multilinear factors

and sums of univariate polynomials. In Approximation, Randomization, and Combi-

natorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015).

Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

[Vol17] Ilya Volkovich. On some computations on sparse polynomials. In Approximation, Ran-

domization, and Combinatorial Optimization. Algorithms and Techniques (AP-

PROX/RANDOM 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[vzGK85] Joachim von zur Gathen and Erich Kaltofen. Factoring sparse multivariate polynomials.

Journal of Computer and System Sciences, 31(2):265{287, 1985.

26

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

