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Abstract

In this paper, we address the black-box polynomial identity testing (PIT) problem for non-
commutative polynomials computed by +-regular circuits, a class of homogeneous circuits in-
troduced by Arvind, Joglekar, Mukhopadhyay, and Raja (STOC 2017, Theory of Computing
2019). These circuits can compute polynomials with a number of monomials that are doubly
exponential in the circuit size. They gave an efficient randomized PIT algorithm for +-regular
circuits of depth 3 and posed the problem of developing an efficient black-box PIT for higher
depths as an open problem.

We present a randomized black-box polynomial-time algorithm for +-regular circuits of any
constant depth. Specifically, our algorithm runs in sO(d2) time, where s and d represent the size
and the depth of the +-regular circuit, respectively. Our approach combines several key tech-
niques in a novel way. We employ a nondeterministic substitution automaton that transforms the
polynomial into a structured form and utilizes polynomial sparsification along with commuta-
tive transformations to maintain non-zeroness. Additionally, we introduce matrix composition,
coefficient modification via the automaton, and multi-entry outputs—methods that have not
previously been applied in the context of black-box PIT. Together, these techniques enable us
to effectively handle exponential degrees and doubly exponential sparsity in non-commutative
settings, enabling polynomial identity testing for higher-depth circuits. Our work resolves an
open problem from [AJMR19].

In particular, we show that if f is a non-zero non-commutative polynomial in n variables over
the field F, computed by a depth-d +-regular circuit of size s, then f cannot be a polynomial
identity for the matrix algebra MN (F), where N = sO(d2) and the size of the field F depending
on the degree of f . Our result can be interpreted as an Amitsur-Levitzki-type result [AL50] for
polynomials computed by small-depth +-regular circuits.
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1 Introduction

The non-commutative polynomial ring, denoted by F⟨X⟩, over a field F in non-commuting variables
X, consists of non-commuting polynomials in X. These are just F-linear combinations of words
(we call them monomials) over the alphabet X = {x1, . . . , xn}. Hyafil [Hya77] and Nisan [Nis],
studied the complexity of non-commutative arithmetic computations, in particular the complexity
of computing the determinant polynomial with non-commutative computations.

Non-commutative arithmetic circuit families compute non-commutative polynomial families in a
non-commutative polynomial ring F⟨X⟩, where multiplication is non-commutative (i.e., for distinct
x, y ∈ X, xy ̸= yx). We now recall the formal definition of non-commutative arithmetic circuits.

Definition 1.0.1 (Non-commutative arithmetic circuits). A non-commutative arithmetic circuit
C over a field F is a directed acyclic graph such that each in-degree 0 node of the graph is labelled
with an element from X ∪ F, where X = {x1, x2, . . . , xn} is a set of noncommuting variables.
Each internal node has fan-in two and is labeled by either (+) or (×) – meaning a + or × gate,
respectively. Furthermore, each × gate has a designated left child and a designated right child.
Each gate of the circuit inductively computes a polynomial in F⟨X⟩: the polynomials computed at
the input nodes are the labels; the polynomial computed at a + gate (respectively × gate) is the sum
(respectively product in left-to-right order) of the polynomials computed at its children. The circuit
C computes the polynomial at the designated output node. An arithmetic circuit is a formula if the
fan-out of every gate is at most one.

Designing an efficient deterministic algorithm for non-commutative polynomial identity testing
is a major open problem. Let f ∈ F⟨X⟩ be a polynomial represented by a non-commutative
arithmetic circuit C. In this work, we assume that the polynomial f is given by a black-box access
to C, meaning we can evaluate the polynomial f on matrices with entries from F or an extension
field. Note that the degree of an n-variate polynomial computed by the circuit C of size s can be
as large as 2s and the sparsity, i.e., the number of non-zero monomials, can be as large as n2

s
. For

example, the non-commutative polynomial (x+y)2
s
has degree 2s, doubly exponential sparsity 22

s
,

and has a circuit of size O(s).
The classical result of Amitsur-Levitzki [AL50] shows that a non-zero non-commutative polyno-

mial f of degree 2d− 1 does not vanish on the matrix algebra Md(F). Bogdanov and Wee [BW05]
have given an efficient randomized PIT algorithm for non-commutative circuits computing polyno-
mials of degree d = poly(s, n). Their algorithm is based on the result of Amitsur-Levitzki [AL50],
which states the existence of matrix substitutions M = (M1,M2, . . . ,Mn) such that the matrix
f(M1,M2, . . . ,Mn) is not the zero matrix, where the dimension of the matrices in M depends
linearly on the degree d of the polynomial f .

Since the degree of the polynomial computed by circuit C can be exponentially large in the
size of the circuit, their approach will not work directly. Finding an efficient randomized PIT
algorithm for general non-commutative circuits is a well-known open problem. It was highlighted
at the workshop on algebraic complexity theory (WACT 2016) as one of the key problems to work
on.

Recently, [AJMR19] gave an efficient randomized algorithm for the PIT problem when the
circuits are allowed to compute polynomials of exponential degree, but the sparsity could be ex-
ponential in the size of the circuit. To handle doubly-exponential sparsity, they studied a class
of homogeneous non-commutative circuits, that they call +-regular circuits, and gave an efficient
deterministic white-box PIT algorithm. These circuits can compute non-commutative polynomials
with the number of monomials doubly exponential in the circuit size. For the black-box setting,
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they obtain an efficient randomized PIT algorithm only for depth-3 +-regular circuits. In particu-
lar, they show that if a non-zero non-commutative polynomial f ∈ F⟨X⟩ is computed by a depth-3
+-regular circuit of size s, then f cannot be a polynomial identity for the matrix algebra Ms(F)
for a sufficiently large field F. Finding an efficient randomized PIT algorithm for higher depth
+-regular circuits is listed as an interesting open problem. We resolve this problem for constant
depth +-regular circuits. In particular, we show that if f ∈ F⟨X⟩ is a non-zero non-commutative
polynomial computed by a depth-d +-regular circuit of size s, then f cannot be a polynomial
identity for the matrix algebra MN (F), with N = sO(d2) and the size of the field F depends on
the degree of polynomial f . This resolves an open problem given in [AJMR19]. We note that we
get a black-box randomized polynomial time black-box PIT algorithm for constant depth +-regular
circuits.

Our results

We consider the black-box PIT problem for +-regular circuits. These are a natural subclass of
homogeneous non-commutative circuits and these circuits can compute polynomials of exponential
degree and a double-exponential number of monomials. Recall that a polynomial f is homogeneous
if all of its monomials have the same degree. The syntactic degree is inductively defined as follows:
For a leaf node labeled by a variable, the syntactic degree is 1, and 0 if it is labeled by a constant.
For a + gate, its syntactic degree is the maximum of the syntactic degree of its children. For a
× gate, its syntactic degree is the sum of the syntactic degree of its children. A circuit is called
homogeneous if all gates in the circuit compute homogeneous polynomials. Now we recall the
definition and some observations of +-regular circuits from [AJMR19].

Definition 1.0.2 (+-regular circuits [AJMR19]). A non-commutative circuit C, computing a poly-
nomial in F⟨X⟩, where X = {x1, x2, . . . , xn}, is +-regular if it satisfies the following properties:

1. The circuit is homogeneous. The + gates are of unbounded fanin and × gates are of fanin 2.

2. The + gates in the circuit are partitioned into layers (termed +-layers) such that if g1 and g2
are + gates in the same +-layer then there is no directed path in the circuit between g1 and
g2.

3. All gates in a +-layer have the same syntactic degree.

4. The output gate is a + gate.

5. Every input-to-output path in the circuit goes through a gate in each +-layer.

6. Additionally, we allow scalar edge labels in the circuit. For example, suppose g is a + gate in
C whose inputs are gates g1, g2, . . . , gt such that βi ∈ F labels edge (gi, g), i ∈ [t]. If polynomial
Pi is computed at gate gi, i ∈ [t], then g computes the polynomial

∑t
i=1 βiPi.

The +-depth, denoted by d+, refers to the number of + layers in C. The + layers in circuit
C are numbered from the bottom upwards. For i ∈ [d], let L+

i represent the i-th layer of addition
(+) gates, and let L×

i represent the i-th layer of multiplication (×) gates that are inputs to the
addition gates in L+

i . It’s important to note that all gates in L×
i and L+

i have the same syntactic
degree.

The sub-circuit in C between any two consecutive addition layers L+
i and L+

i+1 consists of
multiplication gates and is denoted by Π∗. The inputs of this sub-circuit come from layer L+

i . Let
L×
i+1 consist of all output gates of this sub-circuit, where 1 ≤ i ≤ d− 1. Note that all the gates of
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L×
i+1 are product gates. It is important to note that this sub-circuit depth, which is the number of

gates in any input-to-output gate path in the sub-circuit, can be arbitrary and is only bounded by
the size of the circuit C. The bottom-most ×-layer L×

1 can be assumed without loss generality to
be the input variables and gates in L+

1 compute homogeneous linear forms.

Remark 1.0.1. If the top layer is Π∗ (i.e., the output gate is a × gate), we can add an extra +
gate at the top with the + gate having a single input (i.e., fan-in 1). This ensures that the top layer
is a Σ layer. If the bottom layer is Π∗, then for each input variable, we can add a sum gate having
a single input. This will increase the circuit size by at most n+ 1, where n is the number of input
variables. This allows us to assume that in +-regular circuits, both the top and bottom layers are
Σ layers. This is done to simplify the analysis.

The size of the +-regular circuit is the number of gates in the circuit. As noted earlier, the
non-commutative polynomial (x + y)2

s
can be computed by a depth-3 +-regular circuit, denoted

by ΣΠ∗Σ, of size O(s) using repeated squaring. This circuit consists of two addition layers, namely
L+
1 ,L

+
2 and two multiplication layers, namely L×

1 ,L
×
2 . The multiplication layer L×

1 consists of only
the two input gates labeled by x and y respectively. The addition layer L+

1 consists of only one
addition gate computing the homogeneous linear form (x+y). The multiplication layer L×

2 consists
of only one gate computing the polynomial (x + y)2

s
. The addition layer L+

2 consists of only the
ouptut gate computing the polynomial (x+ y)2

s
. In this example, the top-most addition gate (i.e.,

the output gate) essentially has one input. The main result of the paper is the following theorem.

Theorem 1. Let f be a non-commutative polynomial of degree D over X = {x1, . . . , xn} computed
by a +-regular circuit of depth d and size s. Then f ̸≡ 0 if and only if f is not identically zero on
the matrix algebra MN (F), with N = sO(d2) and F is sufficiently large.

For degree D non-zero non-commutative polynomial f , the classical Amitsur-Levitzki [AL50]
theorem guarantees that f does not vanish on the matrix algebra MD

2
+1(F). If D = 2Ω(s), this

gives us an exponential time randomized PIT algorithm [BW05], where s is the size of the circuit
computing f . If the sparsity of the polynomial, i.e., the number of non-zero monomials, is doubly
exponential, then the main result of [AJMR19] gives only an exponential time randomized PIT
algorithm as their matrix dimension depends on the logarithm of the sparsity.

This above theorem demonstrates that if the polynomial f is computed by a +-regular circuit
of size s and depth o(

√
s/ log s), we can determine if f is identically zero or not using a 2o(s) time

randomized PIT algorithm, which is exponentially faster than the existing methods. In particular,
if depth is O(1) then our algorithm runs in polynomial time. It is important to note that the
number of product gates (within each Π∗ layers) in any input-to-output path can be arbitrary and
is only bounded by the circuit size s.

We note that [AJMR19] presented a white-box deterministic polynomial-time PIT for arbitrary
depth +-regular circuits. For the small-degree case, [RS05] provided a white-box deterministic
polynomial-time PIT for non-commutative ABPs, while [FS13, AGKS15] have shown a quasi-
polynomial-time black-box PIT algorithm for non-commutative ABPs.

1.1 Outline of the Proofs: High-level Idea

In the rest of the paper, we will use ”n.c.” as an abbreviation for ”non-commutative”. We first
explain the main ideas behind the randomized PIT algorithm for depth-5 +-regular circuits, as
this is the major bottleneck. Consider an n.c. polynomial f over X = {x1, . . . , xn} computed by a
ΣΠ∗ΣΠ∗Σ circuit of size s. The polynomial f , computed by a ΣΠ∗ΣΠ∗Σ circuit of size s, can be
written as follows:
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f =
∑
i∈[s]

∏
j∈[D2]

Qij . (1)

Here, the degree of each Qij , i ∈ [s], j ∈ [D2], is denoted by D1 and can be computed by a ΣΠ∗Σ
circuit of size at most s. As the size of the circuit is s, the output gate’s fan-in is bounded by
s. The syntactic degree D of the circuit can be expressed as D = D1 × D2. In general, both
D1 and D2 can be exponential in s. Note that each Qij is a polynomial computed at layer L+

2 .
One natural idea is that since each Qij can be computed by a ΣΠ∗Σ circuit, we can try to use
the known result of depth-3 +-regular circuits [AJMR19] and convert the given polynomial f into
a commutative polynomial, and then perform the randomized PIT using the Polynomial Identity
Lemma for commutative polynomials (also known as the DeMillo-Lipton-Schwartz-Zippel Lemma
[DL78, Zip79, Sch80]).

Recall that in [AJMR19], the given polynomial f is computed by a depth-3 +-regular circuit of

size s. That is, f is a sum of products of homogeneous linear forms. Formally, f =
s∑

i=1
Pi, where

for all i ∈ [s], Pi = Li,1 · · ·Li,D and D could be exponential in s. They show that there exists an
index set I ⊆ [D] of size at most s − 1 such that by considering only those linear forms positions
indexed by I as n.c. and the remaining as commutative, the non-zeroness of f is preserved. This
fact is crucially used in their black-box identity-testing algorithm for depth-3 +-regular circuits.
In our depth-5 setting, that is, when f =

∑
i∈[s]

∏
j∈[D2]

Qij , it is only natural to wonder if there exists

such a small index. Note that the number of Qij polynomials in each product, denoted by D2, can
be exponential, in general. It is generally impossible to have a small index set of polynomial size.
This is because if the index set is only polynomial in size, then as a result, no variables in some
of the Qij are considered non-commutative. Thus, these Qij are considered commutative, possibly
resulting in the commutative polynomial becoming 0. We cannot consider a n.c. polynomial as
commutative and still maintain non-zeroness, in general.

To resolve this problem, we convert the n.c. polynomial into a commutative polynomial in
several steps, utilizing the fact that a +-regular circuit computes it.

1.1.1 Step 1: Transforming the Polynomial for Improved Structure

In this step, we show that the polynomial can be converted into a more structured polynomial at
the cost of introducing some spurious monomials. We show that in each Qij there is a small index
set such that by considering only those homogeneous linear forms appearing in that Qij as n.c.
and the remaining as commutative, the non-zeroness of f is preserved. The index sets are encoded
using n.c. variables. This results in an exponential-sized index set. This is because the number of
terms in the product, denoted by D2, can be exponential in general and each term in the product
has a small index set.

This fact is formalized in Lemma 4.1.1. However, this fact alone will not be sufficient to design
an identity-testing algorithm for depth-5 +-regular circuits. This is because, to choose a small
index set from each Qij , one would have to know the boundary between Qij and Qi,j+1 (i.e., the
position at which Qij ends and Qi,j+1 begins), for any i ∈ [s], j ∈ [D2−1]. To know where Qij ends
and Qi,j+1 begins exactly, the algorithm will have to keep track of the degree (length) of Qij . This
is not feasible as the degree of Qij could be exponential in s. This is one of the main challenges
in designing a black-box identity-testing algorithm for depth-5 +-regular circuits and is one of the
main differences between depth-3 and depth-5 +-regular circuits (small depth +-regular circuits,
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in general).
To address this issue, we first convert each Qij into a more structured n.c. polynomial, which

we refer to as a k-ordered power-sum polynomial (see Definition 4.0.1), where k is the number of
variables. This new n.c. polynomial has the property that we can consider it as a commutative
polynomial preserving non-zeroness (Claim 4.0.1). Note that when the variables in any n.c. linear
form is considered commutative, then non-zeroness is preserved. However, this may not be true for
n.c. polynomials, in general. For example, the polynomial (xy− yx) is 0 if x and y are commuting
variables. This property (Claim 4.0.1) alone will not let us consider the whole polynomial as
commutative. This is because we are dealing with the sum of the product of Qij polynomials and
the number of terms in the product in general could be exponential. Thus, we can not use a fresh
set of variables for each k-ordered power-sum polynomial as this will have exponentially many new
variables, in general. Because of this, we use the same k variables to convert each Qij in the product
to a k-ordered power-sum polynomial, instead of using a fresh set of k variables for each Qij . If
we simply consider the resulting product as commutative, then variables that belong to k-ordered
power-sum polynomials of different Qi,j1 and Qi,j2 in the product, could mix (i.e., exponents of the
same variable appearing in different k-ordered power-sum polynomials gets added). As a result, we
cannot guarantee that the resulting commutative polynomial will preserve non-zeroness.

To address this issue, we will not be considering the modified polynomial as commutative at this
stage. Instead, we will transform eachQij polynomial into a more structured n.c. polynomial, which
we denote by Q̂ij , by introducing a new set of n.c. variables. We show that this transformation
preserves non-zeroness.

The substitution automaton we use for the first step generates some spurious monomials along
with a structured polynomial (Claim 4.1.4). The spurious monomials are produced because we
cannot definitively identify the boundaries of each Qij polynomial. We can consider spurious
monomials as noise generated by our approach.

Let F1 be the sum of all spurious monomials produced and f̂1 be the structured polynomial
resulting from this transformation. We will prove that f̂1 + F1 ̸≡ 0 (see Lemma 4.1.1 and Claim
4.1.5). The key to this proof lies in demonstrating that the spurious monomials possess a distinctive
property, allowing us to differentiate them from the structured part.

After completing Step 1, we can transform the polynomial computed by the depth-5 circuit
into a combination of a structured part and a spurious part. One of the outcomes of this first
step is that we can efficiently identify the boundaries of the Q̂ij polynomials in the structured
part, particularly using a small automaton, even though this process introduces some spurious
monomials. A similar concept of boundary also applies to the monomials in the spurious part, and
we show that these boundaries can also be identified using a small automaton. Another outcome
is that each Q̂ij polynomial can be treated as commutative without resulting in a zero polynomial.
These two outcomes are crucial for the remaining steps of our method.

1.1.2 Step 2: Product Sparsification

In the second step, we demonstrate that within the polynomial f̂1 if we treat a small number of the
Q̂ij polynomials as n.c. while considering the rest as commutative, non-zeroness is preserved. A key
aspect of this step is the ability to treat each Q̂ij polynomial as commutative. Although treating
n.c. polynomials as commutative while preserving non-zeroness is generally not feasible, in Step 1,
we transformed f into a sum of a structured part f̂1 and a spurious part F1. The n.c. polynomials
Q̂ij within f̂1 can be treated as n.c. without resulting in a zero polynomial (as established in Claim
4.0.1). We then show that the n.c. polynomial obtained after this transformation remains non-zero
(see Lemma 4.2.1), a result we refer to as product sparsification. We call this sparsification because
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we reduce the number of n.c. Q̂ij polynomials in each product, which can be exponential, to a
small number of them while preserving non-zeroness. It is important to note, however, that the
sum of the exponents of the n.c. variables (a.k.a n.c. degree) in this new polynomial can still be
generally exponential.

It’s important to highlight that this product sparsification step affects both the structured part
f̂1 and the spurious part F1 of the polynomial obtained after Step 1. Let f̂2 and F2 represent the
polynomials derived from f̂1 and F1 respectively as a result of this product sparsification step. We
first consider the product sparsification of the n.c. polynomial f̂1. We will return to f̂2 + F2 later.

1.1.3 Step 3: Commutative Transformation

In the third and final step, we show that the sum of products of a small number of structured Q̂ij

n.c. polynomials can be transformed into a commutative polynomial while preserving non-zeroness
(see Lemma 4.3.1). As mentioned earlier, the n.c. degree of the polynomial obtained after Step
2 can be exponential in general. However, we show that this exponential degree n.c. polynomial
can be converted into a commutative polynomial using only a small number of new commutative
variables. It is noteworthy that there is no known method to convert a general exponential degree
n.c. polynomial into a commutative polynomial with just a small number of commutative variables
while preserving non-zeroness.

Such transformations are known only when the number of non-zero monomials is bounded
single-exponentially (a.k.a sparsity of the polynomial) or when the polynomial is computed by a
ΣΠ∗Σ circuit [AJMR19]. The key to our transformation lies in the structured nature of the Q̂ij

polynomials, each of which requires only a small number of new commutative variables. Since the
number of n.c Q̂ij polynomials is small, we conclude that we have to introduce only a small number
of new commutative variables for this transformation while ensuring non-zeroness is maintained.

It’s important to highlight that this commutative transformation step also affects both the

structured part f̂2 and the spurious part F2 of the polynomial derived after Step 2. Let f̂
(c)
3 and

F
(c)
3 represent the polynomials derived from f̂2 and F2 respectively as a result of this commutative

transformation step. We are ready to consider the sum of the structured part and spurious part
now.

1.1.4 Efficient Coefficient Modifications

Both Steps (2) and (3) will be applied to the structured polynomial f̂1 and the spurious polynomial

F1 obtained after Step 1. Let f̂
(c)
3 and F

(c)
3 denote the respective commutative polynomials obtained

after applying these two steps to f̂1 and F1. Since the same commutative variables are used, it is
possible for monomials in f̂ (c) and F (c) to cancel each other.

If f̂
(c)
3 +F

(c)
3 ̸= 0, we have successfully transformed the exponential degree n.c. polynomial into

a commutative polynomial using only a small number of commutative variables while preserving

non-zeroness. We can then evaluate the resulting commutative polynomial f̂
(c)
3 +F

(c)
3 by randomly

chosen matrices for non-zeroness.
On the other hand, if f̂

(c)
3 + F

(c)
3 = 0, we know that the transformations in Steps (2) and (3)

carried out only on the structured part f̂1 obtained from Step (1) ensure that f̂
(c)
3 ̸= 0, which

implies that F
(c)
3 ̸= 0. If a group of n.c. monomials in f̂1 transform into a commutative monomial

m with coefficient αm in f̂
(c)
3 after Steps (2) and (3) then another group of n.c. monomials in F

transformed into the same commutative monomial m with the coefficient −αm in F
(c)
3 .
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To address this cancellation issue, we show that we can carefully modify the coefficients of
at least one such group of n.c. monomials in the polynomial f̂1 + F1 obtained after Step 1 before
executing Steps (2) and (3). The key to this coefficient modification lies in the fact that the spurious
monomials introduced in Step (1) have a distinctive property, enabling us to differentiate them from
the structured part using a small automaton. We show that such a coefficient modification preserves
non-zeroness (see Lemma 4.4.1). We then establish that if we apply Steps (2) and (3) on this newly
modified polynomial, we get a commutative polynomial while preserving non-zeroness.

Though our transformation of a non-commutative polynomial into a commutative one involves
modifying the monomial coefficients using substitution matrices obtained from an automaton, it
does not turn a zero polynomial into a non-zero one. Since we apply the same matrix substitution for
each occurrence of a given variable, monomials that cancel before the transformation will continue
to cancel afterward, as they are affected in the same way. This property is crucially used in applying
our method inductively for higher depths.

1.1.5 Matrix Compositions

Each of these steps (Steps (1)-(3) and coefficient modification step) is performed using a small
substitution automaton, which defines a substitution matrix for each n.c. variable. Throughout
the process, we obtain four different sets of matrices. It’s important to note that the matrices used
in each step evaluate a n.c. polynomial obtained from the previous step.

As our model is black-box, it is not possible to evaluate the polynomial in this way. We need
a single matrix substitution for each n.c. variable. We show that the substitution matrices used
across these four steps can be combined into a single matrix for each n.c. variable (see Lemma
3.0.1).

This lemma on matrix composition enables us to establish the existence of small substitution
matrices for testing non-zeroness in a sequence of steps, which is a key novelty and contribution
of this work. This enables us to develop an efficient randomized polynomial identity testing (PIT)
algorithm for depth-5 +-regular circuits (see Theorem 2). We further extend this idea to higher
depths to develop an efficient randomized PIT algorithm (see Theorem 5).

2 Preliminaries

2.1 Substitution Automaton

The paper uses the standard definition of substitution automaton from automata theory using the
terminology of [AJR16, AJR18, AJMR19].

Definition 2.1.1 (Substitution NFA). A finite nondeterministic substitution automaton is a finite
nondeterministic automaton A along with a substitution map

ψ : Q×X → P(Q× Y ∪ F),

where Q is the set of states of A, and Y is a set of variables and P(S) is the power set of S. If
(j, u) ∈ ψ(i, x) it means that when the automaton A in state i reads variable x it can replace x
by u ∈ Y ∪ F and can make a transition to state j ∈ Q. In our construction, Y consists of both
commuting and noncommuting variables.

Now, for each x ∈ X we can define the transition matrix M ′
x as follows:

M ′
x(i, j) = u, 1 ≤ i, j ≤ |Q|, where (j, u) ∈ ψ(i, x). (2)
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The substitution map ψ can be naturally extended to handle strings as follows: ψ̂ : Q×X∗ →
P(Q × (Y ∪ F)∗). For a state j ∈ Q and string m′ ∈ (Y ∪ F)∗, if (j,m′) ∈ ψ̂(i, x), then it means
that the automaton starting at state i, on input string m ∈ X∗, can nondeterministically move to
state j by transforming the input string m to m′ on some computation path.

Now, we explain how a substitution automaton A processes a given polynomial. First, we will
describe the output of a substitution automaton A on a monomial w ∈ XD. Let s and t be the
designated initial and final states of A, respectively. For each variable x ∈ X, we have a transition
matrix M ′

x of size |Q| × |Q|. If w = xj1xj2 . . . xjd , then the output of the substitution automaton
A on the monomial w is given by the (s, t)-th entry of the matrix M ′

w =M ′
xj1
M ′

xj2
. . .M ′

xjD
. Note

that this entry can be a polynomial since there could be multiple paths from s to t labeled by the
same monomial w.

2.2 Kronecker Product and the Mixed Product Property

We will crucially use the Kronecker product of matrices and the mixed product property of the
Kronecker product in the proof of Lemma 3.0.1. We define them below.

Definition 2.2.1. (Kronecker Product of Matrices) Let A be a m×n matrix and let B be a p× q
matrix. Then their Kronecker product A⊗B is defined as follows.

A⊗B =

 a11B a12B . . . a1nB
...

...
. . .

...
am1B am2B . . . amnB


where aij are the entries of matrix A.

Lemma 2.2.1. (Mixed Product Property) Let A,B,C,D be matrices of dimensions such that the
matrix products AB and CD can be defined. Then, the mixed product property states that:

(A⊗B) · (C ⊗D) = (A · C)⊗ (B ·D).

2.3 The Polynomial Identity Lemma

We state the well-known DeMillo-Lipton-Schwartz-Zippel lemma (a.k.a The Polynomial Identity
Lemma) for commutative polynomials.

Lemma 2.3.1 (DeMillo-Lipton-Schwartz-Zippel Lemma [DL78, Zip79, Sch80]). Let
f(x1, x2, . . . , xn) be a non-zero degree D polynomial over a field F, and let S ⊆ F be a
finite subset. If we choose a uniformly at random point a = (a1, a2, . . . , an) ∈ Sn then

Pr[f(a1, a2, . . . , an) = 0] ≤ D/|S|.

3 Composing Substitution Matrices

In our proof outline, we discussed the process of transforming the polynomial computed by a depth-
5 +-regular circuit into a commutative polynomial. Our method involves a series of transformations
of the polynomial computed by a depth-5 +-regular circuit (or any constant depth +-regular circuit,
in general). The final result is a commutative polynomial that maintains non-zeroness.

Each transformation uses substitution matrices obtained from the corresponding substitution
automaton. It is important to note that a sequence of matrix substitutions cannot be used in our
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black-box model, as it requires a single matrix substitution for each input variable. We show that
this sequence of substitutions can be combined into the substitution of a single matrix.

We formally present this in the following lemma, and the proof can be found in Appendix E.
The proof relies on the Kronecker product, and in particular, on the mixed product property of the
Kronecker product and matrix multiplication (see §2.2).

Lemma 3.0.1 (Composing K Substitution Matrices). Let f ∈ F⟨X⟩ be a non-zero n.c. polynomial
of degree D over X = {x1, . . . , xn}. Let K be a natural number. For each 2 ≤ i ≤ K + 1, ni ∈ N,
define sets of non-commutative variables Zi = {zi1, . . . , zini}, where ni ∈ N.

Assume we have matrices Ai = (Ai1, Ai2, . . . , Aini) of dimension di for each 2 ≤ i ≤ K+1. For
each j ∈ [ni], the matrix Aij belongs to Fdi×di⟨Zi+1⟩ and is expressed as:

Aij =

ni+1∑
k=1

A
(k)
ij zi+1,k,

where A
(k)
ij ∈ Fdi×di. Set n1 = n and define f0 = f . For i ≥ 1, let fi be the [1, di]-th entry of

fi−1(Ai1, Ai2, . . . , Aini) for all i ≥ 1.
There exists a matrix substitution C = (C1, C2, . . . , Cn) where each Ci is of dimension(∏
i∈[K] di

)
such that the polynomial fK is equivalent to the

[
1,
∏

i∈[K] di

]
-th entry of the matrix

f(C1, C2, . . . , Cn).

In our application of the above lemma, the final substitution matrices AK+1 only contain com-
mutative variables as their entries. Consequently, the resulting polynomial fK is a commutative
polynomial in these variables.

4 Black-Box PIT for ΣΠ∗ΣΠ∗Σ Circuits

In this section, we show that if f ∈ F⟨X⟩ is a n.c. polynomial of degree D computed by a depth-5
+-regular circuit of size s, then there exists an efficient randomized algorithm for identity testing
the polynomial f . The main result of this section is the following theorem.

Theorem 2. Let f be a n.c. polynomial of degree D over X = {x1, . . . , xn} computed by a
ΣΠ∗ΣΠ∗Σ circuit of size s. Then f ̸≡ 0 if and only if f is not identically zero on the matrix
algebra Ms6(F).

The polynomial f can be written as follows: f =
∑
i∈[s]

∏
j∈[D2]

Qij . Here, the degree of each Qij is

D1, where i ∈ [s], j ∈ [D2], and it can be computed by a ΣΠ∗Σ circuit of size at most s. We establish
the Theorem 2 in three steps. First, we transform each polynomial Qij into a more structured n.c.
polynomial, as defined below (see Definition 4.0.1). This structured polynomial has the property
that we can simply consider it as a commutative polynomial preserving non-zeroness (Claim 4.0.1).
As noted above, this is not true for n.c. polynomials, in general.

Definition 4.0.1. Let s ∈ N ∪ {0}. We call a n.c. polynomial g over ξ = {ξ1, ξ2, . . . , ξs} as an
s-ordered power-sum polynomial if it is of the form

g =
∑

i1≥0,...,is≥0

αi.ξ
i1
1 ξ

i1
2 . . . ξ

is
s , where αi ∈ F.
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q0 q1 q2 qs−3 qs−2 qs−1
y1iξ1 y2iξ2 · · · ys−2,iξs−2 ys−1,iξs−1

ys−1,iξs−1

ziξs

ziξ1 ziξ2 ziξ3 ziξs−2 ziξs−1 ziξs

Figure 1: The transition diagram for the variable xi : 1 ≤ i ≤ n

Remark 4.0.1. In the above definition, it is important to note that ij ≥ 0 for each j ∈ [s].
However, in this paper, we will focus on a special case of s-ordered power-sum polynomials, where
ij > 0, for each j ∈ [s− 1] and is ≥ 0.

We have the following observation about the s-ordered power-sum polynomial and a proof of
this can be found in Appendix G.1.

Claim 4.0.1. Suppose g ∈ F⟨ξ⟩ is an s-ordered power-sum polynomial. Let g(c) be the polynomial
obtained by treating variables in ξ as commutative. Then, g ̸≡ 0 if and only if g(c) ̸≡ 0.

Remark 4.0.2. We will later allow coefficients αi to be commutative polynomials. The proof of
this generalized statement follows the same reasoning as the proof of Claim 4.0.1.

Let us define the following concept, which will be relevant in subsequent sections:

Definition 4.0.2 (ξ-Pattern). We refer to the string ξℓ11 ξ
ℓ2
2 · · · ξℓss as a ξ-pattern, regardless of the

specific exponents of the ξ variables.

We now explain the three steps of our method to establish Theorem 2.

4.1 Step 1: Transforming the Polynomial for Improved Structure

The initial step of our method involves transforming the polynomial to introduce more structure.
During this process, we obtain a structured polynomial but also introduce some additional spurious
monomials. This is one of the main differences between this work and [AJMR19]. We show that
these spurious monomials have a distinguishing property that can be used to differentiate them
from the structured part. We discuss the process of transforming each polynomial Qij into an
s-ordered power-sum polynomial. To do this, we introduce a new set of commutative and n.c.
variables as follows.
Let Z = {z1, . . . , zn} and let Y = {yij | i ∈ [n] and j ∈ [s − 1]}. The variables in Y and Z are
commutative. Let ξ = {ξ1, ξ2, · · · , ξs} be the set of n.c. variables.

4.1.1 Idea of the Substitution Automaton

As each Qij polynomial can be computed by a ΣΠ∗Σ circuit of size bounded by s, it is natural
to try to use the PIT results that exist for ΣΠ∗Σ circuits. In [AJMR19], it was shown that there
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is a small substitution automaton that transforms the polynomial into a commutative polynomial
while preserving non-zeroness. We can try to transform each Qij polynomial into a commutative
polynomial using the result of [AJMR19]. This approach presents two issues.

1. As explained in the proof outline, one would have to identify the boundary between Qij and
Qi,j+1 (i.e., the position at which Qij ends and Qi,j+1 begins), for any i ∈ [s], j ∈ [D2 − 1].

2. We need to ensure that the resulting commutative polynomial is non-zero because the same
commutative variables appearing in different transformed Qij polynomials get mixed (i.e.,
exponents of the same variable appearing at different transformed Qij polynomials are added).

As the degree of Qij could be exponential in s, it is not feasible to detect the boundary by counting.
So we guess the boundary using a substitution automaton. The two states qs−2 and qs−1 of the
substitution automaton given in Figure 1 guess the boundary between Qij and Qi,j+1. We need two
states for guessing the boundary. This is because in [AJMR19], it was proved that for polynomials
computed by the ΣΠ∗Σ circuits, there is a small index set I such that if we consider all linear forms
appearing at positions indexed by I as n.c. and rest as commutative then non-zeroness is preserved.
Depending on whether the position of the last linear form is part of I or not, the automaton is
either in state qs−2 or qs−1, respectively.

We consider the output of the substitution automaton given in Figure 1 on the n.c. polynomial
f . The s× s substitution matrix Mxi

for each variable xi is defined from Figure 1, as follows:

Mxi
=


ziξ1 y1iξ1 0 . . . 0 0
0 ziξ2 y2iξ2 . . . 0 0
...

...
...

. . .
...

...
ys−1,iξs−1 0 0 . . . ziξs−1 ys−1,iξs−1

ziξs 0 0 . . . 0 ziξs


It is helpful to consider Mxi

as the sum of matrices as follows. This view is useful when we
compose matrices (see Lemma 3.0.1) from all three steps to obtain a single matrix later on.

Mxi
=


zi y1i 0 . . . 0 0
0 0 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 0
0 0 0 . . . 0 0

 · ξ1 + . . .+


0 0 0 . . . 0 0
0 0 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 0
zi 0 0 . . . 0 zi

 · ξs

Output of the Automaton

Let M = f(Mx1 ,Mx2 , . . . ,Mxn). Then we consider the output of the automaton as:

f ′ = M[q0, qs−1] (3)

which is a polynomial in the variables ξ⊔Y ⊔Z. This differs from previous works ([AJMR19, BW05])
where only a single matrix entry was used as the output.

Suppose a monomial m is computed by a +-regular circuit C. The monomial m has non-zero
coefficient in

∏
j∈[D2]

Qij for some i ∈ [s]. This monomial can be written as m = m1 ·m2 · · ·mD2 ,

where each sub-monomial mj ∈ XD1 has non-zero coefficient in Qij .
Next, we consider the output of the substitution automaton A onm. The automaton knows how

to replace any variable xj at any state q. For simplicity, Figure 1 illustrates only the information
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for variable xi. Suppose m = xi1 .xi2 .xi3 . . . xiD , the output of the substitution automaton A on the
monomial m is given by

Mm[q0, qs−1]

where Mm = Mxi1
·Mxi2

· · ·MxiD
. Each variable xi, i ∈ [n], is substituted by a degree two mono-

mial over ξ⊔Y ⊔Z (one n.c. variable and one commutative variable). Consequently, the automaton
transforms the monomial m into a degree 2D polynomial over ξ⊔Y ⊔Z. Importantly, the new n.c.
degree (i.e., sum of exponents of ξ variables) equals to the original degree D.

Computation by the substitution automaton

The automaton has exponentially many paths (with states allowed to repeat) from q0 to qs−1, all
labeled by the same monomial m. Each computation path transforms the monomial m, originally
over the variables X, into a new monomial over ξ ⊔ Y ⊔ Z.

For any path ρ from q0 to qs−1, we denote the transformed monomial as mρ. The polynomial
computed by Mm[q0, qs−1] is given by ∑

ρ:q0
m
⇝qs−1

mρ,

which is a polynomial in F[Y ⊔ Z]⟨ξ⟩. Recall that n.c. polynomials are F-linear combinations of
words/strings (called monomials). For a n.c. monomial m, we can identify the variable at position
c in m, where 1 ≤ c ≤ |m|.

Recall that m can be written as m = m1 ·m2 · · ·mD2 . Each computation path ρ substitutes
each n.c. variable in m according to the automaton’s transition rules, resulting in a monomial mρ

over new variables ξ ⊔ Y ⊔ Z. We group all commutative variables appearing in mρ and denote it
by cm, which is a commutative monomial over Y ⊔Z. The resulting monomial mρ has the following
form and the proof can be found in Appendix F

Proposition 4.1.1. Let ρ be a path from q0 to qs−1 labeled by the monomial m. The transformed
monomial mρ can be expressed in the form: mρ = cm · m′

1 · m′
2 · · ·m′

N , where N ≥ 1, cm is a

monomial over Y ⊔ Z, and each m′
ℓ is given by m′

ℓ = ξℓ11 .ξ
ℓ2
2 · · · ξℓss , where ℓk > 0, k ∈ [s − 1] and

ℓs ≥ 0.

For i ̸= j, the exponents of the ξ variables in the sub-monomials m′
i and m′

j can vary. In
particular, it is generally possible that (i1, i2, . . . , is) ̸= (j1, j2, . . . , js).

Types of sub-monomials: Two cases

It is important to note that the number of new sub-monomials m′
i, denoted as N , may not be equal

to D2. This is because N depends on how many times the path ρ returns to the initial state q0.
Also, the sum of exponents of ξ variables in each sub-monomial m′

i in mρ can vary. This leads us
to consider two possible cases for each computation path ρ: (recall m = m1 ·m2 · · ·mD2).

• Case 1: For each j < D2, the boundary between mj and mj+1 in m is respected by the path
ρ. In this computation path ρ, the state of A is at q0 precisely when it begins processing
each sub-monomial mj ∈ XD1 for j ∈ [D2]. This means that when A reads the last variable
of the sub-monomial mj−1 (for j > 1), it transitions back to state q0. As a result, A is in
state q0 exactly when it reads the first variable of the sub-monomial mj . This holds true for
all sub-monomials mj where j ∈ [N ]. By Proposition 4.1.1, the transformed monomial can
be expressed as: mρ = cm ·m′

1 ·m′
2 · · ·m′

N where cm is a monomial over Y ⊔ Z and each m′
ℓ
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is of form m′
ℓ = ξℓ11 · · · ξℓss . In this case, we observe that N = D2 since there are exactly D2

sub-monomials in m. or

• Case 2: For some j < D2, the boundary between mj and mj+1 in m is not respected by the
path ρ. In this case, there exists a sub-monomial mj , where j ∈ [D2], such that either (1)
the computation path ρ visits the state q0 while processing the variable located at position
c, where 1 < c ≤ D1. This means ρ returns to q0 in the middle of processing mj . or (2)
the path ρ is in a state qj , j ̸= 0 (i.e., other than the initial state q0) while processing the
variable that appears at the first position of the sub-monomial mj . By Proposition 4.1.1, the
transformed monomial can be expressed as: mρ = cm ·m′

1 ·m′
2 · · ·m′

N where cm is a monomial

over Y ⊔ Z and each m′
ℓ is of form m′

ℓ = ξℓ11 · · · ξℓss . In this case, we cannot definitively say
whether N is equal to D2 or not.

Remark 4.1.1. Any path ρ from q0 to qs−1 labeled by a monomial m ∈ XD will satisfy either
Case 1 or Case 2, but not both.

In Case 1, we can make the following important observation about the obtained monomial mρ and
the proof can be found in Appendix F. Recall that D1 is the degree Qij polynomial.

Claim 4.1.1. Let ρ be a path from q0 to qs−1 labeled by the monomial m that satisfies Case 1. In
this case, for each sub-monomial m′

ℓ, where ℓ ∈ [D2], of the monomial mρ, the sum of the exponents
of its n.c. variables is D1. That is,

∑
j∈[s] ℓj = D1.

For all paths ρ that satisfy Case 2, this is not true. We note this down as the following claim
and the proof can be found in Appendix F.

Claim 4.1.2. Let ρ be apath from q0 to qs−1 labeled by the monomial m that satisfies Case 2. In
this case, there exists a sub-monomial m′

ℓ, where ℓ ∈ [D2], in the obtained monomial mρ such that
the sum of the exponents of its n.c. variables is not equal to D1. That is,

∑
j∈[s] ℓj ̸= D1.

We crucially utilize Claims 4.1.1 and 4.1.2 later to ensure the non-zeroness of the transformed
commutative polynomial.

The structured part and the spurious part

For a monomial m = m1 ·m2 · · ·mD2 , we define the polynomial f̂m as the sum of all monomials that
are obtained from computation paths ρ labeled by m from Case 1 above. Similarly, the polynomial
Fm is defined as the sum of all monomials obtained from computation paths ρ labeled by m from
Case 2 above. We consider the output of the substitution automaton A on the given n.c. polynomial
f ∈ F⟨X⟩.

The output of the automaton is the sum of all monomials produced by computation paths ρ
starting from q0 and leading to qs−1, with these paths labeled by monomials generated by a depth-5
+-regular circuit.

Let Mon(f) be the set of all monomials computed/generated by the given depth-5 +-regular
circuit computing f . That is, suppose m is computed by

∏
j∈[D2]

Qi,j for some i ∈ [s], with
coefficient αm,i then αm,i ·m ∈Mon(f). Let

f̂ =
∑

αm,i·m∈Mon(f)

f̂αm,i·m and F =
∑

αm,i·m∈Mon(f)

Fαm,i·m.
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We refer to F as the sum of spurious monomials obtained from the automaton, which can be viewed
as noise resulting from our method.

We assume that the linear forms in the Qi,j polynomials are numbered from 1 to D1. For
I ⊆ [D1] with size at most s − 1, define Qi,j,I as the polynomial obtained from Qi,j by treating
linear forms indexed by I as noncommuting and the rest of the linear forms as commuting.

We have the following proposition regarding the polynomial f̂ . The proof can be found in
Appendix F.

Claim 4.1.3. The polynomial f̂ can be expressed as

f̂ =
∑
i∈[s]

∏
j∈[D2]

∑
I⊆[D1],|I|=s−1

Qi,j,I × ξI

where ξI = ξℓ11 .ξ
ℓ2−ℓ1
2 · · · ξD−ℓs−1

s for I = {ℓ1, ℓ2, · · · , ℓs−1} such that ℓ1 < ℓ2 < · · · < ℓs−1.

Let
Q̂ij =

∑
I⊆[D1],|I|=s−1

Qi,j,I × ξI .

Then we can express f̂ as:

f̂ =
∑
i∈[s]

 ∏
j∈[D2]

Q̂ij

 .

The output of the substitution automaton A on the polynomial f is given by:

f ′ = f̂ + F.

This is stated in the following claim. The proof can be found in Appendix F.

Claim 4.1.4. Let f be a homogeneous n.c. polynomial computed by a ΣΠ∗ΣΠ∗Σ circuit of size
s. Then, the output f ′ ∈ F[Y ⊔ Z]⟨ξ⟩ of the substitution automaton A on the polynomial f can
expressed as f ′ = f̂ + F.

4.1.2 Non-zeroness of f̂

We establish that f ′ is non-zero by first proving that f̂ is not zero. This is shown in Lemma 4.1.1,
which builds on the result of PIT for ΣΠ∗Σ circuits (see Section 6.2 in [AJMR19]). We briefly
discuss this result.

Let Z = {z1, . . . , zn} be the set of new commuting variables. Let g ∈ F⟨X⟩ be a polynomial of
degree D computed by a ΣΠ∗Σ circuit of size s. Then g can be expressed as g =

∑
i∈[s]

∏
j∈[D] Lij ,

where Lij are homogeneous linear forms. Let Pi =
∏

j∈[D] Lij , i ∈ [s]. We have g =
∑

i∈[s] Pi. For
I ⊆ [D] with size at most s − 1, define Pi,I as the polynomial obtained from Pi by treating linear
forms indexed by I as noncommuting and the rest of the linear forms as commuting. We replace
xi variable appearing in [D] \ I by a new commuting variable zi.

The number of n.c. variables appearing in Pi,I ∈ F[Z]⟨X⟩ is bounded by |I| < s. We refer to
this as the n.c. degree of the polynomial Pi,I . Since this degree is small, Pi,I can be converted

into a commutative polynomial while preserving its non-zeroness. Let P
(c)
i,I denote the commuta-

tive polynomial obtained from Pi,I and define gI =
∑

i∈[s] P
(c)
i,I . To keep all guesses of the set I

distinct, additional commutative variables ξ = {ξ1, ξ2, · · · , ξk+1} are introduced in [AJMR19]. The
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transformed commutative polynomial obtained in [AJMR19] is given by:

g⋆ =
∑

I⊆[D1],|I|=k

gI × ξ′I (4)

where ξ′I = ξℓ1−1
1 .ξℓ2−ℓ1−1

2 · · · ξD−ℓk
k+1 with I = {ℓ1, ℓ2, · · · , ℓk}. The degree of the monomial ξ′I is

D − |I|.
By Lemma 6.2 in [AJMR19], there exists a set of indices I ⊆ [D], |I| < s, such that gI ̸= 0

implying g⋆ ̸= 0. Replacing ξ′I with ξI = ξℓ11 .ξ
ℓ2−ℓ1
2 · · · ξD1−ℓk

k+1 in g⋆ retains the non-zeroness of g⋆

while the degree of ξI becomes D.

Remark 4.1.2. 1. Without loss of generality, we assume that the automaton nondeterministi-
cally guesses exactly (s−1) indices, i.e., |I| = s−1 and the rest as commutative. If |I| < s−1,
adding more indices still preserves non-zeroness.

2. If the degree of the polynomial g is smaller than (s− 1), we will handle this small-degree case
separately (See §4.1.3). For now, we assume D1 ≥ s− 1 in Lemma 4.1.1.

We have the following lemma that shows f̂ ̸= 0. The proof can be found in Appendix A.

Lemma 4.1.1. Let f =
∑

i∈[s]
∏

j∈[D2]
Qij be a n.c. polynomial over X = {x1, · · · , xn}, computed

by a ΣΠ∗ΣΠ∗Σ circuit of size s. Let D1 denote the degree of the polynomial Qij, i ∈ [s], j ∈ [D2].

Let f̂ ∈ F[Y ⊔ Z]⟨ξ⟩ be defined as f̂ =
∑

i∈[s]
∏

j∈[D2]
Q̂ij , where Q̂ij are as defined earlier. Then,

if f ̸= 0 then f̂ ̸= 0.

This above lemma 4.1.1 can be generalized. We will utilize this generalization to transform
polynomials computed by larger depth +-regular circuits. We note this as a remark.

Remark 4.1.3. The proof of Lemma 4.1.1 is based on the observation that if each polynomial Qij

(where i ∈ [s] and j ∈ [D2], computable by a depth-3 circuit) can be converted into a n.c. polynomial
Q̂ij while preserving non-zeroness, then this lemma asserts that this transformation can be applied

to each Qij to create the n.c. polynomial f̂ , maintaining the non-zeroness of the entire polynomial.
This can be extended to higher depths as follows: suppose f is computed by the sum of the products
of Qij’s, where each polynomial Qij is computed by a depth d +-regular circuit and each Qij can be
converted into a n.c. polynomial Q̂ij while preserving non-zeroness, then each Qij can be converted

to Q̂ij to create the n.c. polynomial f̂ , maintaining the non-zeroness of the entire polynomial. The
proof follows a similar structure to that of Lemma 4.1.1

The resulting n.c. polynomial f̂ still has an exponential degree in ξ variables, but each Q̂ij is

structured as s-ordered power-sum polynomials. Importantly, f̂ does not contain any monomials
from the spurious polynomial F =

∑
m∈Mon(f) Fm.

4.1.3 Small degree case

It is important to note that we require the degree D1 of each polynomial Qij to be at least
s − 1. If D1 < s − 1, we can not use Lemma 4.1.1. The advantage of this lemma lies in
the fact that in the polynomial f̂ , each polynomial Q̂ij is an s-ordered power-sum polyno-
mial. By Claim 4.0.1, each Q̂ij can be treated as a commutative polynomial without leading to a
zero polynomial. This property is essential for the product sparsification lemma (see Lemma 4.2.1).
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When D1 < s − 1, we can use a small substitution automaton of size c, bounded by s, to
substitute fresh n.c. double-indexed variables at each position within each Qij . Let Z = {zℓk | ℓ ∈
[c] and k ∈ [n]} be the new set of n.c. variables. The automaton replaces the variable xk in the
ℓ-th position of a monomial of Qij with zℓk. The resulting polynomial is denoted by Q̂ij , which
remains n.c. over Z. Unlike the high-degree case, in the small-degree case, the automaton can
identify the boundary between Qij and Qi,j+1, ensuring that no spurious monomials are produced,
that is, F = 0.

The substitution automaton that accomplishes these substitutions and the corresponding sub-
stitution matrix for each variable xj can be found in Appendix 6. The following proposition is true
because there is a bijection between monomials of Q̂ij and Qij .

Proposition 4.1.2. For i ∈ [s], j ∈ [D2], each Qij in the polynomial f ∈ F⟨X⟩ is transformed into
Q̂ij such that Q̂ij ≡ 0 if and only if Qij ≡ 0.

It is easy to observe the following because the first index of each variable zℓk indicates the
position of the variable xk within each Qij .

Observation 4.1.1. Suppose Q̂ij ̸= 0. If we treat the variables zℓk, ℓ ∈ [c], k ∈ [n], appearing in

Q̂ij as commuting, the resulting commutative polynomial Q̂
(c)
ij remains non-zero.

This guarantees that for the small degree case, we can transform the polynomial f similarly
to Lemma 4.1.1, ensuring that each Qij is transformed into Q̂ij which can be regarded as a com-
mutative polynomial without making it zero. While Q̂ij remains a n.c. polynomial over Z, we
acknowledge that our model is black-box and we do not know the value of D1. However, for the
purpose of analyzing the existence of matrices of small dimensions for identity testing, we can
assume D1 is known.

Thus, we can successfully transform the given polynomial in both scenarios – whetherD1 ≥ s−1
or D1 < s − 1 – ensuring that the resulting Q̂ij can be considered as a commutative polynomial
without making it a zero polynomial.

However, it is important to note that this transformation alone will not provide a black-box
PIT, as we cannot guarantee the non-zeroness of the sum of products of these Q̂ij polynomials if
we simply treat all Q̂ij as commutative. At this stage, the variables in Z are still considered n.c.

in the polynomial f̂ .

4.1.4 Non-zeroness of f ′

By Lemma 4.1.1, we established that f̂ ̸≡ 0. Next, we show that the polynomial f ′ = f̂+F ̸≡ 0. In
f̂ , for every monomial m = m1m2 · · ·mD2 , and for all ℓ ∈ [D2] each mℓ takes the form ξℓ11 .ξ

ℓ2
2 · · · ξℓss

where
∑

k∈[s] ℓk = D1 (see Claim 4.1.1). However, this property does not hold for monomials

appearing in F (see Claim 4.1.2). Specifically, for any monomial m′ = m′
1m

′
2 · · ·m′

N in F , there
exists a sub-monomial m′

a = ξa11 .ξ
a2
2 · · · ξass such that

∑
h∈[s] ah ̸= D1. This distinction ensures that

the monomials of f̂ do not cancel with those of F . Thus, we conclude that f ′ = f̂ + F ̸≡ 0. It’s
important to note that if f ≡ 0 then clearly f ′ ≡ 0 as well (converse statement). We note these
observations in the following claim.

Claim 4.1.5. Let f be a homogeneous n.c. polynomial computed by a depth-5 +-regular circuit of
size s. Then, f ̸≡ 0 if and only if f ′ = f̂ + F ̸≡ 0.

Next, we can simplify the polynomial f ′ using the Polynomial Identity Lemma for commutative
polynomials. We replace the commuting variables Y ⊔ Z with scalar substitutions from F or an
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extension field, yielding a non-zero polynomial. Let us denote this resulting non-zero polynomial
as f̃ . After this substitution, the only remaining variables in f̃ will be n.c. variables ξ.

Let us denote new polynomials obtained after replacing the commuting variables by scalars in
f̂ and F by f̂1 and F1 respectively. That is, f̃ = f̂1 + F1.

Remark 4.1.4. It is important to note that each monomial of f̃ is a product of ξ-patterns (see
Definition 4.0.2), and the boundaries of each ξ-pattern can be easily identified by an automaton
which is crucially used by the remaining steps.

4.2 Step 2: Product Sparsification

In the second step of our transformation, we focus on the sparsification of the n.c. polynomial
f̃ ∈ F⟨ξ⟩ with respect to the s-ordered power-sum polynomials Q̂ij . This transformation affects

both the good part f̂1 and the spurious part F1 of the polynomial f̃ .
We begin by analyzing the transformation of f̂1, which is defined as:

f̂1 =
∑
i∈[s]

 ∏
j∈[D2]

Q̂ij

 ,

where each Q̂ij is an s-ordered power-sum polynomial in the n.c. variables ξ = {ξ1, . . . , ξs}.
The key observation is that we can preserve the non-zeroness of f̂1 by retaining at most s − 1

of the s-ordered power-sum polynomials Q̂ij in each product
∏

j∈[D2]
Q̂ij as n.c. while treating

the remaining ones as commutative. This is stated in the following lemma, which we refer to as
the product sparsification lemma. This lemma generalizes Lemma 6.2 from [AJMR19]. Unlike
[AJMR19], we are dealing with the product of n.c. polynomials where the degree of individual
factors can be greater than 1 if we consider them as commutative they may become 0. The proof
of this lemma is crucially used the Claim 4.0.1, and the proof can be found in Appendix B. We will
revisit the combination of f̂1 and F1 in §4.4 to complete our analysis.

Lemma 4.2.1 (Product Sparsification Lemma). Let

f̂1 =
∑
i∈[s]

∏
j∈[D2]

Q̂ij ,

where each Q̂ij is an s-ordered power-sum polynomial over ξ = {ξ1, ξ2, . . . , ξs}. Then, there exists
a subset I ⊆ [D2] with size at most s − 1 such that if we treat the polynomials Q̂ij for j ∈ I, as

non-commutative and the others(j ̸∈ I) as commutative, then the polynomial f̂1 remains non-zero.

Remark 4.2.1. The proof of Lemma 4.2.1 relies only on the fact that each Q̂ij where i ∈ [s] and
j ∈ [D2], is an s-ordered power-sum polynomial. The size of the index set I depends only on the
number of summands s. Importantly, the proof does not depend on the fact that each Q̂ij is obtained
from a polynomial computed by a ΣΠ∗Σ circuit. This allows us to generalize the lemma to sums of
products of arbitrary k-ordered power-sum polynomials where k ∈ N, with a proof that is analogous
to that of the original lemma. We will utilize this generalization to transform polynomials computed
by higher-depth +-regular circuits.

Since we do not know the index set I, the substitution guesses the index set I. The substitution
automaton that accomplishes this product sparsification can be found in Appendix B.1. Since the
index set I ⊆ [D2] is unknown, the automaton non-deterministically selects which Q̂ij polynomials
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will be treated as non-commutative. Given the structured nature of the polynomial f̂ , we can
identify the boundary of each Q̂ij , ensuring that no additional spurious monomials are generated.

In the high-degree case (D1 ≥ s− 1), either ξs or ξs−1 followed by ξ1 indicates the end of each
Q̂ij , which can be easily recognized by the automaton. In the low-degree case (D1 < s − 1), the
smaller degree allows us to identify the ends of each Q̂ij with a small automaton of size at most
s− 2.

The substitution automaton selects at most (s − 1) of the Q̂ij polynomials to be treated as
n.c. while treating the remaining ones as commutative. The ξ variables in the chosen commutative
polynomials Q̂ij are substituted with fresh commutative variables ζ = {ζ1, . . . , ζs}. In the selected
commutative polynomials Q̂ij , each n.c. variable ξk, k ∈ [s] is replaced by the corresponding com-
muting variable ζk. Additionally, to distinguish between different guesses made by the substitution
automaton, we use fresh commutative block variables χ = {χ1, . . . , χs}.

Let J = {j1, j2, . . . , js−1} ⊆ [D2] with j1 < j2 < . . . < js−1. We define

χJ = χj1−1
1 .χj2−j1−1

2 . . . χ
D2−js−1
s . If the automaton guesses the Q̂ij polynomials corresponding to

the positions in the index set J as n.c., the output gJ of the substitution automaton for this specific
guess J will be

gJ =
∑
i∈[s]

∏
j∈J

Q̂ij

∏
j∈J

Q̂ij

× χJ .

Note that
(∏

j∈J Q̂ij

)
is a commutative polynomial over ζ = {ζ1, . . . , ζs}. We have the following

lemma.

Lemma 4.2.2. Let f̂1 ∈ F⟨ξ⟩ be the structured part of the polynomial obtained after Step 1. Let f̂
′
1

be the output of the substitution automaton given in Figure B.1 (can be found in Appendix B) on
the structured polynomial f̂1 and it can be expressed as

f̂
′
1 =

∑
J⊆[D2],|J |=s−1

gJ × χJ .

Moreover, f̂1 ̸= 0 if and only if f̂
′
1 = 0.

It’s evident that for distinct guesses J and J ′ where J ̸= J ′, the monomials of gJ and g′J will
not mix, since the sub-monomials χJ and χJ ′ are distinct. By Lemma 4.2.1, there exists index set
J ⊆ [D2] with size at most s− 1, such that gJ ̸= 0 implying f̂ ′1 ̸= 0.

Next, we can simplify f̂
′
1 by using the Polynomial Identity Lemma for commutative polynomials

to eliminate the commuting variables ζ ∪ χ by substituting scalars. As a result, the remaining
variables in the polynomial will be solely the n.c. variables ξ.

Let us denote the new polynomial obtained after replacing the commuting variables by scalars
in f̂ ′ by f̂2.

This product sparsification step affects both the good part f̂1 and the spurious part F1 of the
polynomial f̃ obtained after Step 1. We will denote the new polynomial derived from the spurious
part F1 by F2. In Step 2, we apply product sparsification to both f̂1 and F1, which yields the n.c.
polynomials f̂2 and F2 respectively (with all commuting variables replaced by scalars).

4.3 Step 3: Commutative Transformation of f̂2

In this final step, we describe how to transform f̂2 into a commutative polynomial while preserving
its non-zeroness. Note that f̂2 is a polynomial over F[ζ ∪ χ]⟨ξ⟩. If we treat f̂2 as commutative by
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considering the n.c. variables ξ as commutative, the exponents of the variable ξi (for i ∈ [s]) from
different n.c. Q̂ij polynomials will be summed (or mixed). This mixing makes it impossible to
guarantee that the resulting polynomial remains non-zero.

However, we can carefully convert f̂2 into a commutative polynomial while preserving its non-
zeroness.

This is stated in the following lemma and the proof can be found in Appendix C. The substi-
tution automaton for this step can be found in Appendix C.1.

Lemma 4.3.1. Let g =
∑

i∈[s] βi
(∏

j∈[s] Q̂ij), where βi ∈ F and each Q̂ij is an s-ordered power-
sum polynomial over ξ = {ξ1, ξ2, . . . , ξs} of degree D. This can be expressed as: g =

∑
m αmm,

where m =
(∏

j∈[s] ξ
ij1
1 ξ

ij2
2 . . . ξ

ijs
s ). The n.c. polynomial g can be transformed into a commutative

polynomial g(c) while preserving its non-zeroness.

Remark 4.3.1. Similar to Lemma 4.2.1, Lemma 4.3.1 is more general because its proof relies only
on the fact that each Q̂ij polynomial is an s-ordered power-sum polynomial, and the number of
products is bounded by some polynomial function in s. This allows us to generalize the lemma to
sum of products of arbitrary k-ordered power-sum polynomials where k ∈ N, with a proof that is
analogous to that of the original lemma. We will utilize this generalization to transform polynomials
computed by higher-depth +-regular circuits.

By applying Lemma 4.3.1, we can transform the polynomial f̂2, the structured part obtained

after Step 2, into a commutative polynomial while preserving its non-zeroness. Let f̂
(c)
3 denote the

resulting commutative polynomial derived from f̂2. Consequently, we establish that f̂
(c)
3 ̸≡ 0 as a

result of this lemma.
Next, given f̃ = f̂1 + F1, where f̃ was obtained after Step 1, we can likewise transform f̃ into

a commutative polynomial. Let F
(c)
3 represent the commutative polynomial obtained from F after

applying steps (2) and (3). If f̂
(c)
3 + F

(c)
3 ̸≡ 0, we have successfully converted a n.c. polynomial

f , computed by a depth-5 +-regular circuit, into a commutative polynomial that preserves non-
zeroness. We can now check the non-zeroness of this commutative polynomial using the Polynomial
Identity Lemma for commutative polynomials.

Assume f̂
(c)
3 +F

(c)
3 = 0. We will now detail how to modify the coefficients of certain monomials

in f̃ , which was obtained in Step 1, before executing Steps (2) and (3). We establish that this
coefficient modification maintains non-zeroness and remains non-zero even after the application of
Steps (2) and (3).

4.4 Coefficient Modification by Modulo Counting Automaton

Assuming f̂
(c)
3 + F

(c)
3 = 0, we know that f̂

(c)
3 ̸≡ 0 which implies that F

(c)
3 ̸≡ 0 and f̂

(c)
3 = −F (c)

3 .
To resolve this, we will carefully modify some of the monomial coefficients in the n.c. polynomial
f̃ = f̂1 + F1 (see Lemma 4.4.1) before proceeding with product sparsification (Lemma 4.2.1) and
commutative transformation (Lemma 4.3.1). We will show that these modifications ensure the
resulting polynomial remains non-zero after Steps (2) and (3). Recall that f̃ = f̂1 + F1 is derived
after replacing the commutative variables Y ⊔ Z in the polynomial f ′ ∈ F[Y ⊔ Z]⟨ξ⟩ with scalar
substitutions (as part of Step 1).

Let m̃ be a monomial in the commutative polynomial f̂
(c)
3 ∈ F[W ] with a non-zero coefficient

αm̃ ∈ F. This monomial also appears in F
(c)
3 ∈ F [Z] with coefficient −αm̃ ∈ F.

Now, consider a non-zero n.c. monomial m in f̂1. We use m ∈ f̂1 to denote this. The
monomial m can be expressed as m = m1.m2 . . .mD2 where mi = ξi11 .ξ

i2
2 . . . ξ

is
s for i ∈ [D2].
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By Claim 4.1.1, for all i ∈ [D2], we have
∑

j ij = D1. If we apply product sparsification and
commutative transformation (Steps (2) and (3)) to this monomial m, the resulting polynomial
Gm over commutative variables W may include the commutative monomial m̃ with a non-zero
coefficient, denoted as ∃m⇝ m̃.

We define the set Am̃
f̂1

= {m ∈ f̂1 | ∃m⇝ m̃} and the set Bm̃
F1

= {m′ ∈ F1 | ∃m′ ⇝ m̃}.

It’s important to note that Am̃
f̂1
∩Bm̃

F1
= ϕ. Let m′ ∈ Bm̃

F1
, expressed as m′ = m′

1.m
′
2 . . .m

′
N with

each m′
i = ξi11 .ξ

i2
2 . . . ξ

is
s , where N may differ from D2. By Claim 4.1.2, there exists an i ∈ [N ] such

that the exponents of the sub-monomial m′
i satisfies

∑
j ij ̸= D1.

To ensure non-zeroness during the commutative transformation, we will modify the coefficients
of the n.c. monomials in Am̃

f̂1
and Bm̃

F1
differently. Since only the monomials in Am̃

f̂1
⊔ Bm̃

F1
are

transformed into the commutative monomial m̃, after this coefficient modification the monomial m̃
will have a non-zero coefficient after product sparsification and commutative transformation (Steps
(2) and (3)).

It is important to note that, during this process, each n.c. variable ξi, i ∈ [s] is replaced by the
same n.c. variable ξi ensuring no additional monomials are created; the only change involves the
adjustment of the monomial coefficients.

This is stated in the following lemma and the proof can be found in Appendix D.

Lemma 4.4.1. Let f̃ = f̂1 + F1 ∈ F⟨ξ⟩ be the non-zero non-commutative polynomial obtained in

Step 1. Let f̂
(c)
3 be the commutative polynomial obtained from f̂1 after Steps (2) and (3) and let

F
(c)
3 be the commutative polynomial obtained from F1 after Steps (2) and (3). If f̂

(c)
3 + F

(c)
3 = 0,

then it is possible to modify the coefficients of f̃ obtained in Step (1) before executing Steps (2)
and (3) such that the resulting non-commutative polynomial f̃

′ ∈ F⟨ξ⟩ can be transformed into a
commutative polynomial through Steps (2) and (3) while ensuring that the resulting commutative
polynomial retains its non-zeroness.

4.5 Black-box Randomized PIT for ΣΠ∗ΣΠ∗Σ Circuits

Each of these three steps, along with the coefficient modification step, results in its own set of
matrices for evaluation. In particular, the matrices obtained in each step evaluate a n.c. polynomial
derived from the previous step.

Given that our model operates as a black box, we cannot evaluate the polynomial in this manner.
Instead, we require a single matrix substitution for each n.c. variable. To address this, we apply
Lemma 3.0.1 to combine the substitution matrices from all four steps into a single matrix for each
n.c. variable.

This approach allows us to establish an efficient randomized polynomial identity testing (PIT)
algorithm for depth-5 +-regular circuits, as demonstrated in the following theorem.

Theorem 3. Let f be a non-commutative polynomial of degree D over X = {x1, . . . , xn}, computed
by a ΣΠ∗ΣΠ∗Σ circuit of size s. Then f ̸≡ 0 if and only if it does not evaluate to zero on the matrix
algebra Ms6(F).

Proof. There are two directions in the proof. The backward direction is straightforward, as evalu-
ating a zero polynomial f will always result in a zero matrix. Now, we will proceed to demonstrate
the forward direction.

The dimensions of the substitution matrices obtained for Steps (1), (2), and (3) are s, (4s− 2),
and s2 respectively (see Figures 1, B.1 and C.1). Let A, B and C denote these substitution
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matrices. The output of Step 1 is the polynomial A[1, s]. Evaluating this output on B, we
obtain the output of Step 2, which is given by the polynomial B[1, 4s− 3] +B[1, 4s− 2]. Finally,
evaluating the output of Step 2 on C, gives us the output of Step 3, C[1, s2].

We define the dimensions as follows: let d1 = s, d2 = 4s− 3, d
′
2 = 4s− 2, and d3 = s2.

According to Lemma 3.0.1, the substitution matrices A = (A1, . . . ,An), B = (B1, . . . ,Bs) and
C = (C1, . . . ,Cs) can be combined into a single matrix substitution M = (Mx1 ,Mx2 , . . . ,Mxn)
of dimension O(s4). This results in an overall matrix substitution M = (Mx1 ,Mx2 , . . . ,Mxn) of
dimension O(s4). We evaluate the polynomial as O = f(Mx1 ,Mx2 , . . . ,Mxn).

The output of the substitution automaton is defined as the sum of two entries of the matrix O.

f (c) = O [1, (d1 · d2 · d3)] +O
[
1,
(
d1 · d′

2 · d3

)]
It is important to note that, by the matrix composition lemma (see Lemma 3.0.1), the polynomial
f (c) is equal to the polynomial obtained as the output of Step 3, which is C[1, s2]. This summation
arises because the automaton for Step (2) has two accepting states, leading to two entries in the
final composed matrix.

If f (c) ∈ F[W ] is identically zero, we can apply the coefficient modification step (See §4.4) to
obtain a non-zero commutative polynomial. The maximum dimension of the substitution matrix in
this modification step is O(s2) (see Figures 5 and 4), which will result in a final matrix of dimension
O(s6) due to the matrix composition lemma (Lemma 3.0.1).

Since one of the automatons used in the coefficient modifications step (see Figure 5) has two
accepting states, the output will be the sum of four entries of the resulting matrix. Consequently,
we have shown that f (c) ∈ F[W ] is non-zero if and only if f ̸= 0. The non-zeroness of f (c) implies
that at least one of the four entries of the matrix is non-zero. The summation of entries was defined
for analysis purposes.

Finally, the non-zeroness of the polynomial f (c) can be tested using the DeMillo-Lipton-
Schwartz-Zippel lemma. Thus, we conclude that the polynomial f is non-zero if and only if it
is not identically zero on the matrix algebra Ms6(F).

This completes the proof of the theorem.

Remark 4.5.1. We observe that the commutative polynomial f (c) ∈ F[W ] is an s2-ordered power-
sum polynomial over W , in the sense that we can arrange the variables in each monomial of f (c)

in increasing order according to the first index of the W variables, allowing for some exponents to
be zero as specified in Definition 4.0.1.

This is summarized in the following theorem.

Theorem 4. Let f be a non-commutative polynomial of degree D over X = {x1, . . . , xn} com-
puted by a ΣΠ∗ΣΠ∗Σ circuit of size s. Then, f can be transformed into an s2-ordered power-sum
polynomial while preserving its non-zeroness.

4.5.1 An Automaton for Theorem 4

We can envision a substitution automaton A for Theorem 4 as follows. By applying the ma-
trix composition Lemma 3.0.1, we can combine the substitution matrices obtained from Steps
(1) through (3), along with the modifications to coefficients, into a single substitution ma-
trix M = (Mx1 ,Mx2 , . . . ,Mxn) of dimension O(s6). We then evaluate the polynomial as
O = f(Mx1 ,Mx2 , . . . ,Mxn).
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The output of the substitution automaton is defined as the sum of several entries of the matrix
O (refer to the polynomial f (c) defined in the proof of Theorem 3).

It is crucial to note that each entry of the matrices in M = (Mx1 ,Mx2 , . . . ,Mxn) is a monomial
over Y ⊔ Z ⊔ ζ ⊔ χ ⊔W , where Y ⊔ Z are commutative variables from Step (1), and ζ ⊔ χ are
commutative variables from Step (2), while W contains commutative variables from Step (3).

As noted in Steps (1) and (2), we can replace the commutative variables in Y ⊔ Z ⊔ ζ ⊔ χ
with scalars without losing the non-zeroness of the output polynomial (by the Polynomial Identity
Lemma).

After these replacements, each entry of the matrices in M = (Mx1 ,Mx2 , . . . ,Mxn) trans-
forms into scalar multiples of variables over W . We denote the resulting matrices as M′ =
(M′

x1
,M′

x2
, . . . ,M′

xn
).

We can construct a substitution automaton A such that the substitution matrix for the variable
xi is given by the matrixM′

xi
, where the entries are scalar multiples of variables inW . These entries

correspond to transitions that substitute a n.c. variable with a scalar multiple of a variable in W .
This automaton A effectively transforms f into an s2-ordered power-sum polynomial f (c) while
preserving its non-zeroness.

We can view the resulting s2-ordered power-sum polynomial f (c) as a n.c. polynomial over
W . This idea is crucial for developing black-box randomized polynomial identity testing (PIT) for
circuits of larger depths using induction.

It is important to note that the monomials of f (c) do not correspond to a single entry of the
output matrix O = f(M′

x1
,M′

x2
, . . . ,M′

xn
). Instead, they represent the sum of several entries, as

indicated in the polynomial f (c) defined in the proof of Theorem 3. Effectively, the column numbers
of these entries form the set of accepting states for the new automaton A, with row 1 serving as
the starting state of this automaton.

5 Black-Box Randomized PIT for Small Depth +-Regular Cir-
cuits

In this section, we present an efficient randomized black-box polynomial identity testing (PIT)
algorithm for polynomials computed by small-depth +-regular circuits. The main result of this
section is the following theorem.

Theorem 5. Let f be a non-commutative polynomial of degree D over X = {x1, . . . , xn}, computed
by a +-regular circuit of size s and depth d. We denote the number of addition (i.e.,

∑
) layers in

the circuit by d+. Then, f ̸≡ 0 if and only if f is not identically zero on MN (F), where N = sO(d2)

and |F| is sufficiently large.

5.1 Transforming f into an ordered power-sum polynomial

To demonstrate Theorem 5, we first establish that the polynomial f can be transformed into a
more structured n.c. polynomial that facilitates the testing for non-zeroness. Specifically, we show
that f can be converted into a c-ordered power-sum polynomial while preserving its non-zeroness,
where c is a function of the depth d and size s. We have the following theorem.

Theorem 6. Let f be a non-commutative polynomial of degree D over X = {x1, . . . , xn} computed
by a +-regular circuit of size s and depth d. We denote the number of addition (i.e.,

∑
) layers in

the circuit by d+.
Then, f can be transformed into a s(d

+−1)-ordered power-sum polynomial while preserving its
non-zeroness.
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Proof. The proof is by induction on the number of
∑

layers in the circuit. In the rest of the proof,
+-regular circuits are referred to as circuits. The number of

∑
layers in the circuit is denoted as

d+ = (d+ 1)/2, and we refer to d+ as +-depth of the circuit.

• Base Cases: The theorem holds for the base cases: d+ = 1 (linear forms), and d+ = 2 (as
shown in [AJMR19]) and d+ = 3 as established in Theorem 4.

• Inductive Step:

– Induction Hypothesis: For the induction hypothesis, we assume that the theorem
holds for any polynomial g computed by a circuit of size s and +-depth (d+−1). Specif-
ically, this means that g can be converted to an s(d

+−1)-ordered power-sum polynomial
while preserving non-zeroness.

Now, suppose f is computed by a +-depth d+ circuit of size s. We can express this polynomial
as:

f =
∑
i∈[s]

∏
j∈[D2]

Qij .

Here, each Qij (for i ∈ [s], j ∈ [D2]) can be computed by a +-depth (d+ − 1) circuit of
size at most s. We denote the degree of Qij polynomials as D1. Therefore, f is a sum of
products of polynomials computed by +-depth (d+−1) circuits of size at most s. By induction
hypothesis, for all i ∈ [s], j ∈ [D2], each Qij can be converted into an s(d

+−2)-ordered power-
sum polynomial Q̂ij while preserving non-zeroness.

Next, we need to establish that these individual conversions preserve the non-zeroness of
the transformed polynomial. As noted in Remark 4.1.3, the proof of Lemma 4.1.1 can be
generalized to affirm this case. Specifically, the n.c. polynomial f̂1 defined as

f̂1 =
∑
i∈[s]

∏
j∈[D2]

Q̂ij ,

where each Q̂ij polynomial is a s(d
+−2)-ordered power-sum polynomial, maintains non-

zeroness.

Following this, the polynomial f̂1 can be product sparsified in a manner analogous to the
depth-5 case. As highlighted in Remark 4.2.1, the proof of Lemma 4.2.1 can be extended
to product sparsify the polynomial f̂1. Due to the structured nature of Q̂ij polynomials,
boundaries can be identified by an automaton. Thus, we can construct an automaton A2

similar to the one in Figure B.1. We consider the output of A2 on f̂1 and we can replace
the commutative variables from this resulting polynomial with scalars, yielding a new n.c.
polynomial f̂2 while maintaining non-zeroness.

Finally, the polynomial f̂2 can be converted into a commutative polynomial while maintaining
non-zeroness, similar to the depth-5 case. As noted in Remark 4.3.1, the proof of Lemma
4.3.1 can be generalized to convert f̂2 into a commutative polynomial f̂3 that preserves non-
zeroness. Similar to the depth-5 case, boundaries of Q̂ij polynomials can be identified by
an automaton due to their structured nature. Thus, we can construct an automaton A3

similar to one in Figure C.1. We consider the output of A3 on f̂2. The resulting commutative
polynomial is denoted f̂3. The commutative polynomial f̂3 is an s(d

+−1)-ordered power-sum
polynomial.
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Thus, we have shown that a polynomial f computed by a circuit of size s and +-depth d+

can be transformed into a s(d
+−1)-ordered power-sum polynomial while preserving its non-

zeroness.

5.1.1 An Automaton for Theorem 6

Let f =
∑

i∈[s]
∏

j∈[D2]
Qij be a polynomial computed by a depth-d circuit of size s. We denote the

number of addition (i.e.,
∑

) layers in the circuit by d+.
Suppose we have substitution matrices M = (Mx1 ,Mx2 , . . . ,Mxn) that transforms each Qij

polynomials into an s(d
+−2)-ordered power-sum polynomial while preserving its non-zeroness.. Let

A be the corresponding substitution automaton with these substitution matrices M.
We can then construct an automaton to perform Step (1) of our method, transforming f into

f1 = f̂1 + F1,

as follows. In §4.5.1, we described how to construct a substitution automaton that converts a
polynomial f computed by a depth-5 circuit into an s2-ordered power-sum polynomial f (c) while
preserving its non-zeroness. We can treat f (c) as a n.c. polynomial.

Given that f is a sum of products of Qij polynomials and that the boundaries of these Qij

polynomials are unknown, we can modify the substitution automaton A to guess the boundaries
of each Qij . This involves adding transitions to the starting state of automaton A (similar to the
automaton depicted in Figure 1). We denote the new substitution automaton by A′

Due to the uncertainty in identifying the boundaries, the polynomial f , computed by a depth-d
circuit, transforms into the n.c. polynomial

f1 = f̂1 + F1,

where F1 represents the spurious part resulting from incorrect guesses made by the automaton A′.
Here,

f̂1 =
∑
i∈[s]

∏
j∈[D2]

Q̂ij ,

where each Q̂ij being an s(d
+−2)-ordered power-sum polynomial. The polynomial f1 preserves

non-zeroness.
The advantage of f̂1 is that the boundaries of Q̂ij can be effectively identified by the automaton.

Subsequently, similar to the depth-5 case, Steps (2), (3), and coefficient modifications can be applied
to the polynomial f1. Using Lemma 3.0.1, the resulting substitution matrices at each step can be
combined to form a single matrix for each input variable of the polynomial f .

When we evaluate the polynomial f using these substitution matrices, the output is an s(d
+−1)-

ordered power-sum polynomial while preserving its non-zeroness. As in the depth-5 case, the output
is generally spread across several entries of the output matrix due to the automata used having
multiple accepting states.

Size of the substitution automaton A′

Let f̂1 be the structured part of the polynomial obtained after Step (1), applied to the polynomial
f , which is computed by a depth-d circuit of size s. Recall that f̂1 is a sum of products of s(d

+−2)-
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ordered power-sum polynomials.

• Automaton size for Step 2: The size of the substitution automaton that product-sparsifies
the polynomial f̂1 is (4s−2). It is very similar to the substitution automaton shown in Figure
B.1. We only need to add more transitions to this figure because f̂1 is a sum of products of
s(d

+−2)-ordered power-sum polynomials, where s(d
+−2) could be greater than s. Thus, there

are more variables than in the depth-5 case. Let the resulting polynomial be f̂2 with no
commutative variables.

• Automaton size for Step 3: The size of the substitution automaton that transforms f̂2
into a commutative polynomial, specifically into an s(d

+−1)-ordered power-sum polynomial,
is s(d

+−1). This automaton is quite similar to that used in the depth-5 case (see Figure 3).

• Automaton size for coefficients modification step: The size of the substitution au-
tomaton that filters out one spurious monomial from the polynomial F1 (obtained by Step
1) is at most 14s. This is due to the prime number p required for this step being bounded
by ≤ 4.4s (see Lemma D.0.1). Additionally, we need to 3 states to process the ξ-patterns
(see Definition 4.0.2). This automaton construction is similar to the automaton illustrated in
Figure 4 in the depth-5 case.

The size of the substitution automaton that modifies the coefficients of the polynomial f̂1+F1

(also obtained by Step 1) is bounded by 4.4s(d
+−1) + 3. This is analogous to Figure 5 in the

depth-5 case. Each ξ-pattern (see Definition 4.0.2) of f̂1 contains s(d
+−2) variables, and the

prime number p required for this step is bounded by 4.4 logD, where D is the degree of the
f and bounded by 2s. Therefore, with one starting state and two additional accepting states,
the automaton size becomes 4.4s(d

+−1) + 3.

Consequently, the maximum size of the automaton for this step is s(d
+−1) + 3.

• Automaton size for Step 1: Let

Mn =
∑
k odd
k≤n

k − 3

for n ≥ 5. Note that Mn represents the sum of all odd numbers up to n, excluding 3.

Assuming d ≥ 5, the automaton for this step has a size of O
(
18(d

+−3) · sMd−2

)
. This matches

the automaton size of Step 1 in the depth-5 case (where d+ = 3), which is s.

Therefore, the final automaton size is the product of the automaton sizes in each step. This
results in the following expression for the final automaton size:

Size = O
(
18(d

+−3) · sMd−2

)
×
(
4.4s(d

+−1) + 3
)
× (4s− 2)×

(
s(d

+−1)
)

= O
(
18(d

+−3) · sMd−2

)
×
(
17.6sd − 8.8s(2d

+−2) + 12sd
+ − 6s(d

+−1)
)

as d = (2d+ − 1)

= O
(
18(d

+−2) · sMd

)
= O

(
18(d

+−2) · sd2−3
)

= sO(d2)
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Remark 5.1.1. Similar to the depth-5 case, we can address both small and high degree scenarios:
D1 ≥ s− 1 and D1 < s− 1 (see §4.1.3).

It is important to note that while the automaton for Theorem 6 utilizes an automaton that
changes the coefficients of monomials, it does not turn a zero non-commutative polynomial f into a
non-zero one. Suppose f is computed by a depth d circuit of size s. We can express this polynomial
as:

f =
∑
i∈[s]

∏
j∈[D2]

Qij .

Now, consider the case where two monomials generated by f cancel each other out. Specifically,
suppose a monomial m is generated by two different products,

∏
j∈[D2]

Qi1j and
∏

j∈[D2]
Qi2j , where

i1 ̸= i2 and they cancel each other. Let M be the obtained substitution matrices as above. If we
evaluate these monomials on M , the two different ways of generating the monomial transform in
the same manner. Therefore, if they cancel each other before the transformation, they will also
cancel each other after the transformation.

5.2 Randomized Identity Test for Small Depth +-Regular Circuits

We are now ready to state and prove the main theorem.

Theorem 7. Let f be a non-commutative polynomial of degree D over X = {x1, . . . , xn}, computed
by a +-regular circuit of size s and depth d. We denote the number of addition (i.e.,

∑
) layers in

the circuit by d+. Then, f ̸≡ 0 if and only if f is not identically zero on MN (F), where N = sO(d2)

and |F| is sufficiently large.

Proof. We use Thoerem 6 to convert the n.c. polynomial f into an s(d
+−1)-ordered power-sum

polynomial fops, while preserving its non-zeroness. As discussed above, there is a substitution

automaton of size bounded by sO(d2), which results in substitution matrices of dimension sO(d2).
By Claim 4.0.1, fops can be treated as a commutative polynomial while preserving its non-zeroness.
Using the DeMillo-Lipton-Schwartz-Zippel lemma, we can have a randomized PIT for depth d +-
regular circuit of size s using matrices of dimension at most sO(d2). This completes the proof of the
theorem.

6 Discussion

In this work, we presented a randomized polynomial-time algorithm for black-box polynomial iden-
tity testing (PIT) for non-commutative polynomials computed by +-regular circuits. Our method
efficiently handles circuits of any constant depth. While our algorithm resolves the PIT problem
for +-regular circuits of constant depth, the randomized identity testing problem for general non-
commutative circuits, where the degree and sparsity can be exponentially large, remains an open
question. We hope that some of the ideas developed in this work will prove useful in addressing
the more general case.
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A
Proof of Lemma 4.1.1 (part of Step 1)

Proof. The proof is by induction on D2. Assume f is non-zero.

• Base Case: D2 = 1. For D2 = 1, each Qi1 for i ∈ [s] can be computed by a ΣΠ∗Σ circuit.
Since the sum of ΣΠ∗Σ circuits is also a ΣΠ∗Σ circuit, it follows that a ΣΠ∗Σ circuit can
compute the polynomial f . Furthermore, using the results from [AJMR19], the polynomial
f can be transformed into another polynomial f̃ preserving non-zeroness (see Equation 4).
Treating the block variables used in [AJMR19] as non-commuting maintains the non-zeroness
of f̃ . Thus, the resulting polynomial remains non-zero. This completes the proof of the base
case.

• Inductive Step:

– Inductive Hypothesis: We assume that the lemma holds for polynomials computed by
a sum of products of at most (D2−1) Qij polynomials. We will show it also holds for D2.

Consider the polynomial f expressed as:

f =
∑
i∈[s]

Qi1Pi,

where Pi =
∏D2

j=2Qij . We can expand Pi into a sum of monomials, denoting the coefficient
of a monomial m in Pi by [m]Pi. Thus, we can rewrite f as:

f =
∑
i∈[s]

Qi1

 ∑
m∈XD−D1

([m]Pi)×m

 ,

where D = D1 × D2 is the degree of the f and ([m]Pi) ∈ F. Since f ̸≡ 0, there exists a
monomial m ∈ XD−D1 such that the right derivative f (m) does not vanish. We define f (m)

as:
f (m) =

∑
i∈[s]

Qi1 × ([m]Pi) ,

where ([m]Pi) ∈ F.

Since f (m) ̸≡ 0, it can be computed by a ΣΠ∗Σ circuit of size at most s. This is because the
sum of ΣΠ∗Σ circuits is also a ΣΠ∗Σ circuit, it follows that a ΣΠ∗Σ circuit can compute
the polynomial f . This reduces to the base case. Therefore, f (m) can be transformed into
f̂ (m) =

∑
i∈[s] Q̂i1 × ([m]Pi) while preserving non-zeroness.
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Handling Variables in Qij:
We assume the linear forms in the Qi,j polynomials are indexed from 1 to D1. For a subset
I ⊆ [D1] of size s− 1, we define Qi,j,I as the polynomial obtained from Qi,j by treating linear
forms indexed by I as non-commuting and the rest of the linear forms as commuting. Let
I = {i1, i2, . . . , is−1} with i1 < i2 < . . . < is−1.

Next, we introduce sets of variables: Z = {z1, . . . , zn} and let Y = {yij | i ∈ [n] and j ∈
[s − 1]}, where variables in Y and Z are commutative. The set ξ = {ξ1, ξ2, · · · , ξs} consists
of non-commuting variables.

Replace the variable xi variable that appears in [D1] \ I with a new commuting variable zi.

The number of non-commuting variables in Qi,j,I ∈ F[Z]⟨X⟩ is bounded by |I| < s, which
is referred to as the n.c. degree of Qi,j,I . Since this degree is small, Qi,j,I can be converted
into a commutative polynomial while preserving its non-zeroness by replacing xi variables

of linear form that appears at position ik ∈ I by yk,i. Let Q
(c)
i,j,I denote the resulting

commutative polynomial, which lies in F[Y ⊔ Z]. To ensure all guesses of the set I are
distinct, additional variables ξ = {ξ1, ξ2, · · · , ξs} are introduced in [AJMR19]. We keep ξ
variables as non-commutative.

The transformed n.c. polynomial Q̂i1 ∈ F[Y ⊔ Z]⟨ξ⟩ can be expressed as:

Q̂i1 =
∑

I⊆[D1],|I|=s−1

Qi,1,I × ξI

where ξI = ξℓ11 .ξ
ℓ2−ℓ1
2 · · · ξD1−ℓs−1

s with I = {ℓ1, ℓ2, · · · , ℓs−1}. The degree of the monomial ξI
is D1. By Lemma 6.2 in [AJMR19], there exists a set of indices I ⊆ [D], |I| < s, such that
Qi,1,I ̸= 0 implying Q̂i1 ̸= 0.

Since f̂ (m) ∈ F[Y ⊔ Z]⟨ξ⟩ is non-zero, the polynomial

f † =
∑
i∈[s]

Q̂i1Pi,

is also non-zero. Note that the derivative is only for analysis; we will not compute the right
derivative of f .

Now, expand the polynomial Q̂i1 as a sum of monomials in f †:

f † =
∑
i∈[s]

∑
m∈ξD1

(
[m]Q̂i1

)
m× Pi.

The variables ξ are the only non-commuting variables in Q̂i1, and the n.c. degree of Q̂i1 is
exactly D1. Since f † ̸≡ 0, there exists a monomial m ∈ ξD1 such that the left derivative
of f † with respect to m does not vanish. Let f †(m) be this polynomial. Again, note that
this derivative is for analysis only, and we will not compute it. In this case, the coefficient
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(
[m]Q̂i1

)
is a polynomial in F[Y ⊔ Z].

f †(m) =
∑
i∈[s]

(
[m]Q̂i1

)
× Pi,

(
[m]Q̂i1

)
∈ F[Y ⊔ Z].

Clearly, f †(m) ̸≡ 0. To analyze this, we can simplify the polynomial f †(m) using the DeMillo-
Lipton-Schwartz-Zippel Lemma for commutative polynomials to eliminate the commuting
variables in Y ⊔Z. We can replace these commuting variables with scalar substitutions from
F or an extension field, preserving non-zeroness. Let f

′′
be the resulting polynomial, which

will have only variables non-commuting variables left:

f
′′
=
∑
i∈[s]

βi × Pi =
∑
i∈[s]

βi ×
D2∏
j=2

Qij , where βi ∈ F.

Observe that f
′′ ̸≡ 0 and the number of product terms in the polynomial Pi is exactly (D2−1).

By induction hypothesis, each Qij in f
′′
can be transformed into Q̂ij polynomial such that the

resulting polynomial is non-zero. Since f †(m) ̸≡ 0, the following polynomial is also non-zero:

f̂ =
∑
i∈[s]

∏
j∈[D2]

Q̂ij .

This completes the proof of the inductive step and therefore the lemma.

B
Proof of Lemma 4.2.1 (Step 2: Product Sparsification Lemma)

Here, we will present the proof of the product sparsification lemma. This proof follows the proof of
Lemma 6.2 in [AJMR19], but crucially uses Claim 4.0.1.

Proof. We use induction on s.

• Base Case: For s = 1, we have f̂ =
∏

j∈[D2]
Q̂1j . By applying Claim 4.0.1, we can treat each

n.c. polynomial Q̂1j as commutative. Since the product of non-zero commutative polynomials
is non-zero, we conclude that J = ∅ suffices.

• Induction hypothesis: Assume the lemma holds for sums of products of s-ordered
power-sum polynomials with at most s− 1 terms.

There are two directions to the proof. The backward direction is straightforward: by
contrapositive, if we have a zero n.c. polynomial, then treating some of its variables as
commuting does not yield a non-zero polynomial.
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Now, we prove the forward direction. Let Pi =
∏

j∈[D2]
Q̂ij for all i ∈ [s]. Suppose∑

i∈[s] βiPi ̸= 0. We want to show there exists a subset J ⊆ [D2] of size at most s − 1 such

that
∑

i∈[s] βiPi,J ̸= 0, where Pi,J =
(∏

j∈J Q̂ij

)(∏
j∈J Q̂ij

)
.

Let j0 ∈ [D2] be the smallest index such that dim{Q̂1,j0 , Q̂2,j0 , · · · , Q̂s,j0} > 1. If no such
index j0 exists, then all Pi are scalar multiples of each other, leading to

∑
i∈[s] βiPi = αP1

for some non-zero α, which reduces to the base case.

Assume j0 exists, we can renumber the polynomials such that {Q̂1,j0 , Q̂2,j0 , · · · , Q̂t,j0} are the
only linearly independent polynomials at j0, where 1 < t ≤ s. Each polynomial Pi can be
expressed as:

Pi = ciP · Q̂i,j0Q̂i,j0+1 · · · Q̂i,D2 , i ∈ [t] and ci ∈ F

Pi = ciP ·

∑
ℓ∈[t]

α
(i)
ℓ Q̂ℓ,j0

 Q̂i,j0+1 · · · Q̂i,D2 , i ∈ [t+ 1, s] and α
(i)
ℓ ∈ F

where P is a product of ΣΠ∗Σ circuits. Let P ′
i = ci

∏D2
j=j0+1 Q̂ij , for i ∈ [s].

The polynomial f̂ can be expressed as:

s∑
i=1

βiPi = P ×

(
t∑

i=1

βiQi,j0P
′
i

)
+ P ×

(
s∑

i=t+1

βiQi,j0P
′
i

)
.

Note that:

P ×

(
s∑

i=t+1

βiQi,j0P
′
i

)
= P ×

 s∑
i=t+1

βi

∑
ℓ∈[t]

α
(i)
ℓ Q̂ℓ,j0

P ′
i

 .

s∑
i=1

βiPi = P ×

(
t∑

i=1

βiQi,j0P
′
i

)
+ P ×

 s∑
i=t+1

βi

∑
ℓ∈[t]

α
(i)
ℓ Q̂ℓ,j0

P ′
i


= P ×

t∑
k=1

Qk,j0P
′′
k

where P
′′
k = βkP

′
k + βt+1α

(t+1)
k P ′

t+1 + βt+2α
(t+2)
k P ′

t+2 + · · ·+ βsα
(s)
k P ′

s, where k ∈ [t].

Note that since t > 1, each P
′′
k is a sum of at most s − 1 polynomials and each of these

polynomials is a product of linear forms.

Since we treat all polynomials Qk,j0 , k ∈ [t] as n.c. and all Qij are homgeneous poly-
nomials of the same degree D1, with each Qk,j0 being s-ordered power-sum polyno-
mials, we can view them as linear forms as follows. This is only for analysis. Let
Y = {yℓ | ℓ = (ℓ1, . . . , ℓs) and

∑
i ℓi = D1} be the set of new non-commuting variables. Each

monomial ma with coefficient βma in Qk,j0 can be expressed as ma = ξa11 · ξa22 · · · ξass and can
represented by (βma · za). Thus, we can envision Qk,j0 polynomial as a linear form over Y
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variables, denoted by Lk,j0 . Note that there is a bijection between monomials of Qk,j0 and
Lk,j0 (which consists of only variables from Y ).

Since all polynomials Qk,j0 for k ∈ [t] are linearly independent, it follows that the linear
forms Lk,j0 , k ∈ [t] are also linearly independent.

Let A be an invertible linear transform such that A : Lk,j0 7→ xk for k ∈ [t]. The dimension
of A corresponds to the cardinality of Y , i.e., |Y |. Applying the map A to the j0-th factor of

polynomial
(
P ×

∑t
k=1 Lk,j0P

′′
k

)
, we obtain:

Rj0 =

(
P ×

t∑
k=1

xkP
′′
k

)

Since
∑s

i=1 βiPi =
(
P ×

∑t
k=1Qk,j0P

′′
k

)
is non-zero, by applying Proposition 3.1 in

[AJMR19], we conclude that Rj0 ̸= 0. Consequently, there exists k ∈ [t] such that P
′′
k ̸= 0.

Given t > 1, P
′′
k is a sum of at most s − 1 polynomials. By the induction hypothesis, there

exists a subset J ′ ⊆ [j0 + 1, D2] with size at most s − 2 such that the resulting polynomial
remains non-zero:

P
′′
k,J ′ ̸= 0

where

P
′′
k,J ′ = βkP

′
k,J ′ + βt+1α

(t+1)
k P ′

t+1,J ′ + βt+2α
(t+2)
k P ′

t+2,J ′ + · · ·+ βsα
(s)
k P ′

s,J ′ .

Let J = {j0} ∪ J ′. We now show that the polynomial

s∑
i=1

βiPi,J = P (c) ×
t∑

k=1

Qk,j0P
′′
k,J ′

remains non-zero, where P (c) is the commutative polynomial obtained by replacing xi by
commuting variable zi in P . Since P is a product of s-ordered power-sum polynomials and
by Claim 4.0.1, we can treat each of these s-ordered power-sum polynomials as commutative,
while preserving the non-zeroness of P .

Thus, it suffices to demonstrate that
∑t

k=1Qk,j0P
′′
k,J ′ is non-zero. By Proposition 3.1

in [AJMR19], applying the linear transform A to the first position of the polynomial∑t
k=1Qk,j0P

′′
k,J ′ yields

∑t
k=1 xkP

′′
k,J ′ . This sum is zero if and only if each P

′′
k,J ′ is zero.

However, we established that there exists k ∈ [t] such that P
′′
k,J ′ ̸= 0.

This concludes the inductive step and completes the proof.
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B.1 Substitution Automaton for Product Sparsification (see §4.2)

Guess as non-commutative block 

Guess as commutative block 

Figure 2: Substitution automaton for product sparsification

Description of the automaton in Figure 2

Recall that the polynomial f̃ can be expressed as:

f̃ = f̂1 + F1.

where
f̂1 =

∑
i∈[s]

∏
j∈[D2]

Q̂ij .

According to product sparsification lemma 4.2.1, there exists an index set I ⊆ [D2] of size s− 1
such that for each i ∈ [s], considering only the Q̂ij where j ∈ [I], as non-commutative and the

remaining Q̂ij where j /∈ I as commutative preserves the non-zeroness of f̂ . Since I is unknown,
the automaton guesses the set I.

As previously mentioned (see Remark 4.1.4), each monomial m of the polynomial f̃ is a product
of ξ-patterns (see Definition 4.0.2). This holds for both f̂1 and F1. The automaton can identify
the boundary of each ξ-pattern because each ξ-pattern ends either with the variable ξs−1 or ξs.

For the structured polynomial f̂1, which is a sum of products of s-ordered power-sum polynomi-
als, the boundary of each Q̂ij can be identified. This allows us to explain the automaton’s process
of guessing the set I in terms of the Q̂ij polynomials.

The automaton applies its transformation to both f̂1 and F1. For any given monomial m in
f̃ , the automaton classifies some of the sub-monomials ( i.e., ξ-patterns) as non-commutative and
the rest as commutative. If the monomial m belongs to f̂1 it gives rise to set Q̂ij polynomials that
correspond to an index set I, that are considered non-commutative. However, if m belongs to F1,
no such index set I can be assigned, because the polynomial F1 is unstructured. Nevertheless, for
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each monomial in the unstructured polynomial F1, exactly s − 1 ξ-patterns are considered non-
commutative and the rest as commutative. We now explain the automaton’s guessing process using
the structured part f̂1.

In Figure B.1, the states labeled 4i+ 1 (for i ≥ 0) serve as guessing states. If a Q̂ij polynomial
is guessed as non-commutative by one of these guessing states, it will be processed by one of the
blocks marked as ”Guess as non-commutative block”. Similarly, if a Q̂ij polynomial is guessed as
commutative, it will processed by one of the blocks marked as ”Guess as commutative block”.

It is crucial to note that if a Q̂ij polynomial is guessed as non-commutative, all its monomials
are treated as non-commutative by replacing the non-commutative variable ξi in this polynomial
by the same non-commutative variable ξi. In particular, this Q̂ij polynomial is fully treated as
non-commutative before moving on to process the next factor, Q̂i,j+1.

Similarly, if a Q̂ij polynomial is guessed as commutative, all its monomials are treated as
commutative by replacing the non-commutative variable ξi by the commutative variable ζi. In
particular, this Q̂ij polynomial is fully treated as commutative before processing the next factor
Q̂i,j+1.

When a Q̂ij polynomial is guessed as commutative, the non-commutative variable ξi appearing
at the first position of each monomial in Q̂ij is replaced by a commutative monomial ζiχk where
k represents the count of previously guessed non-commutative Q̂i,k′ polynomials (for k′ < k).The
commutative χk variables are used to distinguish different guesses made by the automaton. If ξi
appears in positions other than the first, it will be replaced by the commutative variable ζi.

Given the structured nature of all Q̂ij polynomials, the automaton can easily identify the
boundaries of each Q̂ij , facilitating the guessing of the index set I.

C Proof of Lemma 4.3.1 (Step 3: Commutative Transformation)

Proof. The degree of the n.c. polynomial g is s×D, where D can be exponential in s. However, g
is in a more structured form as it is a sum of products of s s-ordered power-sum polynomials.

To define the position of substrings within the monomial m, we consider m as a string. Recall
that m can be thought of as a string since m is n.c..

For the commutative transformation, we introduce s3 fresh commutative variables W = {wij |
i ∈ [s2] and j ∈ [s]}. Each monomial m = m1.m2 . . .ms can be transformed as follows: for all
i ∈ [s], if mi = ξi11 ξ

i2
2 . . . ξ

is
s , we convert it to m′

i = wi1
(i−1)s+1,1w

i2
(i−1)s+2,2 . . . w

is
(i−1)s+s,s. Suppose the

degree of ξs in mi is 0 (i.e., is = 0), then we skip the variable w(i−1)s+s,s and continue from wis+1,1

for the next monomial mi+1. This adjustment simplifies our automaton.
This conversion is implemented by the substitution automaton given in Figure 3 and can be

achieved using substitution matrices of dimension s2. Importantly, this process does not introduce
new cancellations, as there is a bijection between the monomials in g and g(c).

Consider the mapping of monomials of g into the monomials of g(c) by the substitution
automaton in Figure 3. Note that every monomial of g gets mapped into exactly one monomial in
g(c). We establish that this mapping is a bijection as follows:

• One-to-One:
Let m and m′ be distinct monomials of g. Let m(c) and m′c be the corresponding transformed
commutative monomial (by the automaton). We can express these monomials as follows:
m = m1.m2 . . .ms and m′ = m′

1.m
′
2 . . .m

′
s.

We first convert the monomials m and m′ as follows: for each i ∈ [s], if mi does not include
the variable ξs (i.e., is = 0), we append ξ0s to mi, resulting in mi becoming mi · ξ0s . While

36



ξ0s = ϵ (empty string), we retain it as a placeholder for clarity in our proof. We apply the
same conversion to m′. We can refer to the modified monomials as m and m′ again.

After this conversion, each monomial m can be expressed as m = m1.m2 . . .ms where mi =
ξi11 ξ

i2
2 · · · ξiss with is ≥ 0 and ij > 0 for j ∈ [s − 1]. After these conversions, we still have

m ̸= m′.

Next, we consider any monomial m of g as a string over ξ and break this string into segments
by identifying maximal substrings containing the same variable ξi for i ∈ [s]. We encode the
position of each segment within m using the first index of the variables in W . It is important
to note that in any monomial m of g, there are at most s2 such segments. In particular,
following the conversion that adds ξ0s when it is absent, there are exactly s2 segments present.

If m ̸= m′, then there exists a segment k ∈ [s2] where the exponents of the variable in
that segment differ between m and m′. Assuming the variable in the k-th segment is ξj ,
we conclude that the exponents of wk,j in m(c) and m′c are not the same. For any variable
w ∈ W , we replace w0 by 1 in the transformed commutative monomial. This shows that
m ̸= m′ implies m(c) ̸= m′c.

• Onto :
Let m(c) be a monomial in g(c) ∈ F[W ]. We first order the variables in m(c) according to
the first index of the W variables appearing in m(c). Next, we break this into segments by
identifying maximal substrings that contain W variables, ensuring that the second subscript
of these variables is non-decreasing, either from 1 to s− 1 or from 1 to s. Each segment can
be represented in one of two forms:

(1) wℓ1
i,1 · w

ℓ2
i+1,2 · · ·w

ℓs−1

i+s−2,s−1 or

(2) wℓ1
i,1 · w

ℓ2
i+1,2 · · ·w

ℓs
i+s−1,s.

We then convert each of these segments into segments over the ξ variables. For instance, if
we take the segment wℓ1

i,1 · w
ℓ2
i+1,2 · · ·w

ℓs−1

i+s−2,s−1, we can convert it to ξℓ11 · ξℓ22 · · · ξℓs−1

s−1 .

This converts m(c) into a monomial m over ξ variables. It is clear that if we consider the
output of the automaton in Figure 3 on the monomial m, then it is the monomial m(c).

Thus, the n.c. polynomial g can be transformed into a commutative polynomial g(c) while
preserving its non-zeroness.

C.1 Substitution Automaton for Commutative Transformation

q0 q1 qs−2 qs−1 qs qs2−1

ξ2 → w2,2 · · · ξs → ws,s ξ1 → ws+1,1 · · ·

ξ1 → w1,1 ξ2 → w2,2
ξs−1 → ws−1,s−1 ξs → ws,s ξ1 → ws+1,1

ξs → ws2,s

ξ1 → ws+1,1

Figure 3: Automaton that converts n.c. variables to commutative variables
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As an example, we provide the substitution matrix Mξ1 obtained from Figure C.1 for the variable
ξ1.

Mξ1 =

q0 q1 . . . qs−2 qs−1 qs . . . qs2−1



q0 w1,1 0 . . . 0 0 0 . . . 0
q1 0 0 . . . 0 0 0 . . . 0
...

...
...

. . .
...

...
...

. . .
...

qs−2 0 0 . . . 0 0 ws+1,1 . . . 0
qs−1 0 0 . . . 0 0 ws+1,1 . . . 0

qs 0 0 . . . 0 0 ws+1,1 . . . 0
...

...
...

. . .
...

...
...

. . .
...

qs2−1 0 0 . . . 0 0 0 . . . 0

D Proof of Lemma 4.4.1 (Coefficient Modification by Automaton)

We recall the following proposition from [DESW11] (see Proposition 1).

Proposition D.0.1. Let n ∈ N. Suppose we have two strings, x and y such that |x| ̸= |y| and
|x|, |y| ≤ n. There exists a DFA with a number of states bounded by O(log n) that can distinguish
between the two strings. Specifically, when processing the strings x and y from the initial state, the
DFA will reach different states for each string. This DFA essentially computes the string length
modulo p.

This above proposition relies on a lemma from [SB96] (also see Lemma 1 from [DESW11]).

Lemma D.0.1. Let n ∈ N. If k ̸= m, and both k and m are less than or equal to n, then there is
a prime p ≤ 4.4 log n such that k ̸≡ m (mod p).

Proof of Lemma 4.4.1:

Proof. Recall that f̃ = f̂ + F ∈ F⟨ξ⟩ is the polynomial obtained after Step (1). It is important to
note that any monomial in f̃ , including all monomials in Am̃

f̂
and Bm̃

F , is formed by concatenating

ξ-patterns (see Defintion 4.0.2).
Consider a monomialmj = mj,1mj,2 · · ·mj,Nj ∈ Bm̃

F , wheremj,1,mj,2, . . . ,mj,Nj are ξ-patterns.
While the degree of mj matches the overall degree D = D1 × D2 of the polynomial, we cannot
assert whether Nj is equal to D2 or not (See Case 2 in 4.1.1). However, we can affirm that there
is at least one ξ-pattern in mj for which the sum of the exponents does not equal D1.

For Bm̃
F , there are two possibilities:

In each of the two cases, we construct an automaton M to evaluate the polynomial f̃ using
substitution matrices obtained from the automaton. Let Mξi denote the substitution matrix corre-
sponding to the variable ξi obtained from the automaton. We then evaluate the polynomial f̃ on
these matrices, leading to the resulting matrix: f̃(Mξ1 ,Mξ2 , . . . ,Mξs). It is important to note that
this can be expressed as:

f̃(Mξ1 ,Mξ2 , . . . ,Mξs) = f̂(Mξ1 ,Mξ2 , . . . ,Mξs) + F (Mξ1 ,Mξ2 , . . . ,Mξs).
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• Case 1: There exists a monomial ml ∈ Bm̃
F such that Nl ̸= D2. Let λ ≡ D2 mod p.

Let’s fix such a monomial ml ∈ Bm̃
F represented as mℓ = mℓ,1mℓ,2 · · ·mℓ,Nℓ

. As previously
noted, an automaton can identify the boundaries between any two sub-monomials mℓ,i and
mℓ,i+1 (for i < Nℓ) in the monomial mℓ. Therefore, for any natural number p we can compute
Nℓ mod p using an automaton.

Recall that for each monomial in Am̃
f̂
, the number of sub-monomials (i.e., the number of

ξ-patterns) is exactly D2. We can compute the number of ξ-patterns modulo p as boundaries
between any two sub-monomials mℓ,i and mℓ,i+1 can be identified by the automaton.

Since Nj , D2 ≤ D, by Proposition D.0.1, there exists an automaton M with a number of
states bounded by O(logD). If we consider the output state of M when processing ml, it
will differ from the output state of all monomials in Am̃

f̂
. The automaton M does not change

the monomial; it simply maps the n.c. variable ξi to itself while computing the number of
ξ-patterns modulo p. Notably, all monomials in Am̃

f̂
reach the same state in the automaton,

which we denote as λ (with λ = O(logD)).

By Proposition D.0.1, at least one monomial ml ∈ Bm̃
F will not reach the state λ. If we

consider the output of the automaton M in Figure 4 on f̃ as (q0, qλ)-th entry of the resulting
matrix, then the n.c. polynomial at this entry is given by

fλ = f̂ + F̃

where the coefficient of the monomialml in the polynomial F̃ is 0. Importantly, sinceml ∈ Bm̃
F

the coefficient of ml in F is non-zero.

It is crucial to note that fλ ̸= 0 because f̂ ̸= 0 (by Lemma 4.1.1), and the non-zero monomials
of F̃ are a subset of the non-zero monomials of F , with no common non-zero monomials
between f̂ and F (see Claims 4.1.1 and 4.1.2).

Additionally, while f̃ ̸= fλ, all monomials of Am̃
f̂

are included in fλ with the same coefficients

as in f̃ . However, at least one monomial ml ∈ Bm̃
F is absent from F̃ , thus from fλ. Since only

monomials in Am̃
f̂
⊔ Bm̃

F are transformed into the commutative monomial m̃ during product

sparsification and commutative transformation (Steps 2 and 3), performing these steps on fλ
will yield a non-zero commutative polynomial, specifically ensuring that the coefficient of m̃
is non-zero in the transformed commutative polynomial.

• Case 2: For each monomial mℓ ∈ BF
m, Nℓ = D2. Let λ ≡ D1 mod p.

Let’s fix a monomial mℓ ∈ BF
m expressed as mℓ = mℓ,1mℓ,2 · · ·mℓ,D2 . For any monomial mℓ

and r ∈ [D2], we define

Kmℓ,r
=

s∑
k=1

ℓk.

We know that there exists an ξ-pattern mℓ,r in the monomial mℓ, such that Kmℓ,r
̸= D1 by

Claim 4.1.2. For all mt ∈ Am̃
f̂
, it follows that Kmt,r = D1 for each r ∈ [D2] (as Nt = D2) by

Claim 4.1.1.
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As previously noted, an automaton can identify the boundaries between any two sub-
monomials mℓ,i and mℓ,i+1 (for i < Nℓ) in the monomial mℓ. Since we do not know which
sub-monomial mℓ,r has the property Kmℓ,r

̸= D1, the automaton guesses r ∈ [D2] and com-
putes

(
Kmℓ,r

mod p
)
for a given natural number p.

Given that Kmℓ,r
, D1 ≤ D, by Proposition D.0.1, there exists an automaton M that computes(

Kmℓ,r
mod p

)
. The automaton we construct has the number of states bounded by O(s2),

that is O(log2D) as D is exponential in s for us. The output state of M when processing ml

will differ from the output state of all monomials in Am̃
f̂
.

As in Case 1, the automaton M does not modify the monomial; it simply computes the sum of
the exponents of the r-th sub-monomial mℓ,r of the monomial mℓ modulo p. The substitution
automaton M given in Figure 5 does exactly this, with the initial state q0 guessing the sub-
monomial number r ∈ [D2] and the remainder of the automaton calculating

(
Kmℓ,r

mod p
)
.

For any monomial mt ∈ Am̃
f̂
, for every guess r ∈ [D2], we have λ ≡ Kmt,r mod p, where

Kmt,r = D1. Thus, when considering the output of the automaton M on the monomial mℓ

as the sum of two entries
M [q0, qf1 ] +M [q0, qf2 ],

the coefficient αmt of the monomial mt is scaled by a factor of D2.

Conversely, for the above fixed monomial mℓ ∈ Bm̃
F , there exists a guess r ∈ [D2] such that

Kmℓ,r
̸= D1 (by Claim 4.1.2). Therefore, this computation path will not reach either of the

final states qf1 or qf2 . Thus, the coefficient αmℓ
of the monomial mℓ is scaled by at most a

factor of (D2 − 1) in M [q0, qf1 ] +M [q0, qf2 ].

Then the resulting output n.c. polynomial is given by

fλ = D2 · f̂ + F̃ ,

where the coefficient of the monomial ml in the polynomial F̃ is at most αmℓ
· (D2 − 1).

It is important to note that fλ ̸= 0. While f̃ ̸= fλ, all monomials of Am̃
f̂

are present in fλ

with their coefficients scaled by exactly D2. However, at least one monomial ml ∈ Bm̃
F has

its coefficient in f̃ scaled by at most (D2 − 1).

Since only monomials in Am̃
f̂
⊔ Bm̃

F are transformed into the commutative monomial m̃ after

product sparsification and commutative transformation (Steps 2 and 3), performing these
steps on fλ, will yield a non-zero commutative polynomial. In particular, the coefficient of m̃
is non-zero.

As only monomials in Am̃
f̂
⊔Bm̃

F are transformed into the commutative monomial m̃ after prod-

uct sparsification and commutative transformation (Steps 2 and 3), if we carry out product
sparsification and commutative transformation on fλ, the resulting commutative polynomial
is non-zero. In particular, the coefficient of m̃ is non-zero in the transformed commutative
polynomial.

This completes the proof of the lemma.
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D.1 Substitution Automaton for Case 1

Consumes a -pattern

Consumes a -pattern

Figure 4: Substitution automaton that computes number of ξ-patterns modulo p.

Description of the automaton in Figure 4

Recall that the polynomial f̃ can be expressed as:

f̃ = f̂1 + F1.

Given that each monomial of f̃ is a product of ξ-patterns (see Definition 4.0.2), we can explain
the automaton’s workings in terms of these ξ-patterns. The automaton in Figure 4 computes
the number of ξ-patterns modulo p in a given monomial m. Each ξ-pattern is fully processed by
a section of the automaton marked as Consumes a ξ-pattern before the next one is considered.
Through this mechanism, the automaton keeps track of the number of ξ-patterns encountered,
maintaining a count modulo p.

41



D.2 Substitution Automaton for Case 2

Figure 5: Modulo counting automaton that changes coefficients. Here, λ ≡ D1 mod p

Description of the automaton in Figure 5

Recall that the polynomial f̃ can be expressed as:

f̃ = f̂1 + F1.

Given that each monomial of f̃ is a product of ξ-patterns (see Defintion 4.0.2), it is logical to
explain the automaton’s guesses in terms of these ξ-patterns.

The substitution automaton in Figure 5 guesses a ξ-pattern to compute the sum of the exponents
of this guessed ξ-pattern modulo a prime number p. The initial state q0 is the only guessing state
in the automaton, where the automaton selects a ξ-pattern for calculating the sum of exponents
mod p.

Suppose the sum of the exponents for the guessed ξ-pattern is D1. This guess will lead to either
state qf1 or state qf2 based on the following two conditions:

• It reaches the final state qf2 if the guessed ξ-pattern is the last ξ-pattern appearing in the
given monomial m (the last variable could be either ξs−1 or ξs, influencing the transition from
either state qs−1,λ−1 or qs,λ) or

• It reaches the final state qf1 if the guessed ξ-pattern is not the last one, indicating that there
exists at least one other ξ-pattern following it.

We use two different final states, qf1 and qf2 , to ensure that each ξ-pattern is fully processed before
considering the next one.
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Similarly, suppose the sum of the exponents for the guessed ξ-pattern is denoted by K. In that
case, the automaton will transition to the states based on the value K mod p and the variable
appearing in the last position (either ξs−1 or ξs).

The correct guess happens on the variable occurring at the last position of the ξ-pattern, which
can be either ξs−1 or ξs. In this case, the automaton will transition to the state q1,0. Since the
first variable of any ξ-pattern is ξ1, and upon making a correct guess, the automaton continues to
process the guessed ξ-pattern further.

However, if the guess is incorrect— meaning the automaton transitions to the state q1,0 while
still processing the current ξ-pattern— it indicates that additional variables (ξs−1 or ξs) still needs
to be processed. Once the automaton reaches the state q1,0, there will be no transition for the
variables ξs−1 or ξs, resulting in the discarding of this particular guess.

E
Proof of Lemma 3.0.1 (Composing K Substitution Matrices)

Proof. The proof is by induction on K.

• Base Case: K = 1
We have f1 = f0(A11, . . . , A1n1) = f(A11, . . . , A1n). The lemma holds for Ci = A1i, i ∈ [n].

• Base Case: K = 2
Let f =

∑
m∈XD αm.m. Each matrix Aij can be expressed as

Aij =

ni+1∑
k=1

A
(k)
ij zi+1,k,

where A
(k)
ij ∈ Fdi×di for all k ∈ [ni + 1].

Consider a non-zero monomial m defined as m = xℓ1xℓ2 . . . xℓD , where ℓi ∈ [n] for all i ∈ [D].
If we replace each variable xℓi by A1ℓi in m, let f1,m denote the (1, d1) entry of the matrix

product
∏D

j=1A1ℓj . We note that f1,m ∈ F⟨Z2⟩.

Next, we substitute z2i with A2i in f1,m, yielding f2,m as the (1, d2) entry of the matrix
f1,m(A21, A22, . . . , A2n2).

Now, consider a = (a1, . . . , aD) ∈ [n2]
D and define the n.c. monomial ma,Z2 =

∏D
i=1 z2,ai . We

can express:

D∏
i=1

A1ℓi =

D∏
i=1

(
n2∑
k=1

A
(k)
1ℓi
z2k

)

=
∑

(a1,...,aD)∈[n2]D

(
D∏
i=1

A
(ai)
1ℓi

)
×ma,Z2
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This factorization holds because ma,Z2 is generated only by the terms
∏D

i=1

(
A

(ai)
1ℓi

z2ai
)
, where

A
(ai)
1ℓi

∈ Fd1×d1 for all i ∈ [D].

Let α1,d1 be the (1, d1)-th entry of the matrix
∏D

i=1A
(ai)
1ℓi

. This α1,d1 ∈ F represents the

coefficient of the monomial ma,Z2 in the (1, d1) entry of
∏D

i=1A1ℓi .

Recall that A1j =
∑n2

k=1A
(k)
1j z2k for all j ∈ [n1]. For each i ∈ [n], define:

Ci =

n2∑
k=1

A
(k)
1i ⊗A2k.

Thus, Ci is a matrix of dimension (d1 · d2).

We aim to show that f2 corresponds to the (1, d1 × d2)-th entry of the matrix obtained by
substituting xℓi with Cℓi for all i ∈ [D]. Substituting xℓi by Cℓi for all i ∈ [D] in m, we have

Cℓ1Cℓ2 . . . CℓD =

D∏
i=1

(
n2∑
k=1

A
(k)
1ℓi
⊗A2k

)
.

Expanding this, we have:

=
∑

(a1,...,aD)∈[n2]D

(
D∏
i=1

A
(ai)
1ℓi

⊗A2ai

)
.

By the mixed product property of ⊗ and matrix multiplication (See Lemma 2.2.1), we have:

=
∑

(a1,...,aD)∈[n2]D

((
D∏
i=1

A
(ai)
1ℓi

)
⊗
(

D∏
i=1

A2ai

))
.

Let Ma,Z2 =
∏D

i=1A2ai and β1,d2 be the (1, d2)-th entry of the matrix Ma,Z2 . This β1,d2 ∈ F
corresponds to evaluating the monomial ma,Z1 using matrices A2 = (A21, A22, . . . , A2n2) by
replacing z2j with A2j .

The (1, d1.d2)-th entry of the matrix
(∏D

i=1A
(ai)
1ℓi

)⊗(∏D
i=1A2ai

)
is equal to (1, d2)-th entry

of Ma,Z2 scaled by α1,d1 . Summing over all a ∈ [n2]
D, the (1, d1 · d2)-th entry of this matrix∏D

i=1Cℓi equals f2,m.

By linearity, this extends to f(C1, C2, . . . , Cn), showing that the (1, d1 · d2)-th entry of the
matrix f(C1, C2, . . . , Cn) is equal to the polynomial f2.

This completes the base case, where K = 2.

• Inductive Step:
Induction Hypothesis: Assume that for K − 1, we can express f evaluated at matrices
Ai = (Ai1, . . . , Aini) as
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fi = fi−1(Ai1, Ai2, . . . , Aini)

for all i ≥ 1. Let fK−1 be the resulting polynomial over the n.c. variables ZK =
{zK1, . . . , zKnK

}.
For the induction hypothesis, we assume that there is a matrix substitution B =
(B1, B2, . . . , Bn) such that each Bi has dimensions

∏
i∈[K−1] di and the polynomial fK−1 is

equal to the (1,
∏

i∈[K−1] di)-th entry of the matrix f(B1, B2, . . . , Bn). Each matrix Bi can be
written as:

Bi =

nK∑
j=1

B
(j)
i zK,j .

By the inductive hypothesis, we find that fK−1 is equivalent to the (1,
∏

i∈[K−1] di)-th entry
of the matrix f(B1, B2, . . . , Bn). Define:

fK = fK−1(AK1, . . . , AKnK
)[1, dK].

This reduces to the base case.

Consequently, there exists a matrix substitution C = (C1, C2, . . . , Cn), where each Ci has
dimensions

∏
i∈[K] di and is given by:

Ci =

nK∑
j=1

B
(j)
i ⊗AK,j .

Thus, the polynomial fK matches the (1,
∏

i∈[K] di)-th entry of the matrix f(C1, C2, . . . , Cn).
This concludes the proof of the lemma.

F Missing Proofs from §4.1

F.1 Proof of Proposition 4.1.1

Proof. The path ρ starts at q0 and ends at the state qs−1, labeled by the monomial m. When
this path ρ returns to q0 for the k-th time, it has converted some initial part of the monomial
m into αkm

′
1 · m′

2 · · ·m′
k, where αk ∈ F[Y ⊔ Z]. The number of sub-monomials, denoted by N ,

depends on the number of times the path ρ returns to the initial state q0 before eventually reaching
either qs−1 or q0. We can see from the automaton given in Figure 1 that each m′

ℓ is of the form

m′
ℓ = ξℓ11 .ξ

ℓ2
2 · · · ξℓss , where ℓk > 0, k ∈ [s− 1] and ℓs ≥ 0. The commutative part is grouped into the

coefficient αk. Note that ℓk > 0, k ∈ [s− 1]. This is because to return to q0, the path ρ has to use
transitions involving ξ1, . . . , ξs−1 variables. But the exponent ℓs ≥ 0, because to return to q0 the
path ρ may use the transition from qs−2 to q0 instead of going to the state qs−1, and ξs variable
only appears at the transition from qs−1 to itself. This completes the proof.

F.2 Proof of Claim 4.1.1

Proof. The path ρ respects the boundary between mj and mj+1 in m for all j < D2. The proof
follows by noting that each transition of the substitution automaton A has exactly one ξ variable
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in it and each transition of the automaton consists of reading a variable appearing at some position
in m and substituting it according to transition rules of A.

F.3 Proof of Claim 4.1.2

Proof. We will consider the following two possibilities for ρ:

• Case 1: Suppose the path ρ visits the state q0 in the middle of processing some sub-monomial
mj ofm (that is when the automaton visits the state q0 when it reads some variable appearing
in a position other than the first position). At this point, the length of the prefix of m that
has been processed is not a multiple of D1. Additionally, at this stage, the sum of exponents
of ξ variables in at least one of the generated m′

ℓ up to this point is not equal to D1.

• Case 2: Suppose ρ is in a state qr, r ̸= 0, while replacing the variable appearing at the 1st
position of the sub-monomial mj . That is ρ starts replacing the sub-monomial mj from a
state qr that is not q0. If ρ reaches q0 again in the middle of mj , then this scenario is already
handled by Case 1. Otherwise, it fully replaces mj before returning to the state q0. Note that
since ρ started processing the sub-monomial mj from a state qr ̸= q0 and it fully replaces
at least mj before returning q0, we can make the following observation. At this point, the
sum of exponents of ξ variables in the sub-monomial m′

ℓ, which is generated by ρ after fully
processing mj and returning to q0, is strictly greater than D1. This is because when ρ is
in state qr, the path ρ has recently transitioned from q0 while processing some earlier sub-
monomial mj′ where j

′ < j. Between the time ρ returning to q0 after starting from q0 for mj′

and the completion of mj , at least all sub-monomials mj′ ,mj′+1, . . . ,mj of the monomial m
are processed to produce a single m′

ℓ in mρ. Thus, the sum of exponents of ξ variables in the
sub-monomial m′

ℓ is strictly greater than D1 and in particular we can say that it is c × D1

where c > 1.

This completes the proof.

F.4 Proof of Claim 4.1.3

Proof. Recall that f =
∑

i∈[s]
∏

j∈[D2]
Qi,j . For ease of notation, we assume that the position of

linear forms within each Qi,j polynomial starts from 1. For a monomial m = m1 ·m2 · · ·mD2 with

coefficient αm, the polynomial f̂αm·m is the sum of all monomials obtained from computation paths
ρ labeled by m from Case 1:

f̂αm·m = αm · f̂m
= αm ×

∑
ρ:q0

m
⇝qs−1

mρ.

For each j < D2, the boundary between mj and mj+1 in m is respected in all such computation
paths ρ. In particular, for each path ρ and sub-monomial mj , we can associate a set Iρ,j ⊆ [D1]
such that r ∈ Iρ,j , if the path ρ makes transition from qk−1 to qk (for some k ∈ [s−1]) or from qs−2

to q0 while reading a variable at position r in mj . The transition is unique for given ρ and r ∈ Iρ,j .
Since computational path ρ respects all boundaries of the sub-monomials, it makes exactly s − 1
transitions and returns to q0 when starting to process mj+1. Thus, |Iρ,j | = s− 1.

Let Iρ,j = {ℓ1, ℓ2, · · · , ℓs−1}, where ξIρ,j = ξℓ11 .ξ
ℓ2−ℓ1
2 · · · ξD−ℓs−1

s (ℓ1 < ℓ2 < · · · < ℓs−1). From
the automaton in Figure 1, it follows that Iρ,j can be any subset of size s− 1. For a sub-monomial
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mj ofm, letm′
j,ρ be the transformed sub-monomial that includes both commutative variables Y ⊔Z

and n.c. variables ξ. Define cj,ρ as the commutative part of m′
j,ρ. Then m

′
j,ρ = cj,ρ · ξIρ,j .

Given ρ, we can define the sequence of sets Iρ,j ⊆ [D1] for j ∈ [D2] of size s− 1 and conversely
for a sequence of sets Ij ⊆ [D1] for j ∈ [D2] of size s− 1, we can define the path ρ.

We can then express f̂m as:

f̂m =
∑

ρ:q0
m
⇝qs−1

mρ

=
∑

ρ:q0
m
⇝qs−1

∏
j

m′
j,ρ


=

∑
ρ:q0

m
⇝qs−1

∏
j

cj,ρ · ξIρ,j


=

D2∏
j=1

 ∑
ρ:q0

m
⇝qs−1

cj,ρ · ξIρ,j


=

D2∏
j=1

 ∑
I⊆[D1],|I|=s−1

cj,IξI


Here, cj,ρ and cj,I are commutative monomials over Y ⊔ Z defined by the path ρ and the set

I, respectively. The last two equalities hold because, Iρ,j can be any subset of size s − 1 and is
independent of Iρ,k for k ̸= j (where k ≤ D2).

Recall that Mon(f) is the set of all monomials computed by the depth-5 +-regular circuit for
f . Since coefficients of sub-monomials do not change due to the automaton’s operations, we can
ignore them in the notation for ease. Therefore, we have:

f̂ =
∑

m∈Mon(f)

f̂m

=
∑

m∈Mon(f)

D2∏
j=1

 ∑
I⊆[D1],|I|=s−1

cj,IξI


=

∑
i∈[s]

∏
j∈[D2]

 ∑
I⊆[D1],|I|=s−1

Qi,j,I × ξI


The last equality holds because if m ∈ Mon(f), it can be written as m = m1 ·m2 · · ·mD2 and

for some i ∈ [s] such that each sub-monomial mj ∈ XD1 , has a non-zero coefficient in Qij . Also
suppose m is computed by

∏
j∈[D2]

Qi,j for some i ∈ [s] then by definition m ∈ Mon(f). This
completes the proof.

F.5 Proof of Claim 4.1.4

Proof. Let m ∈ XD be a monomial computed by the depth-5 circuit that computes f . For some
i ∈ [s], m has a non-zero coefficient in

∏
j Qij . The output of the substitution automaton A on m
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can be expressed as f̂m + Fm. Consequently, the output of the automaton A on the polynomial f
is given by:

f ′ =
∑

m∈Mon(f)

(f̂m + Fm)

which is the polynomial f ′ = f̂ + F .

G Additional Proofs and Automaton

G.1 Proof of Claim 4.0.1

Proof. Since g is an ordered power-sum polynomial, we can treat the n.c. variables ξ =
{ξ1, ξ2, . . . , ξs} as commutative variables without introducing any new cancellations. This is be-
cause the exponents of the variables ξ = {ξ1, ξ2, . . . , ξs} are different for any two distinct monomials
of g. Thus, g as a n.c. polynomial is non-zero if and only if g as a commutative polynomial is
non-zero.

G.2 Substitution Automaton for Small Degree Case (see §4.1.3)

q0 q1 q2 qc−1
x1j x2j · · ·

xcj

Figure 6: The transition diagram for the variable xj : 1 ≤ j ≤ n

Mxj
=


0 x1j 0 . . . 0
0 0 x2j . . . 0
...

...
...

. . .
...

0 0 0 . . . xc−1,j

xc,j 0 0 . . . 0


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