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Abstract

We study query-to-communication lifting. The major open problem in this area is to prove
a lifting theorem for gadgets of constant size. The recent paper (Beame and Koroth, 2023)
introduces semi-structured communication complexity, in which one of the players can only
send parities of their input bits. They have shown that for any m ≥ 4 deterministic decision
tree complexity of a function f can be lifted to the so called semi-structured communication
complexity of f ◦ Indm, where Indm is the Indexing gadget.

As our main contribution we extend these results to randomized setting. Our results also
apply to a substantially larger set of gadgets. More specifically, we introduce a new complexity
measure of gadgets, linear diversity. For all gadgets g with non-trivial linear diversity we show
that randomized decision tree complexity of f lifts to randomized semi-structured communication
complexity of f ◦ g. In particular, this gives tight lifting results for Indexing gadget Indm, Inner
Product gadget IPm, and Majority gadget MAJm for all m. We prove the same results for
deterministic case.

From our result it immediately follows that deterministic/randomized decision tree complexity
lifts to deterministic/randomized parity decision tree complexity. For randomized case this is the
first result of this type. For deterministic case, our result improves the bound in (Chattopadhyay
et al., 2023) for Inner Product gadget.

To obtain our results we introduce a new secret sets approach to simulation of semi-structured
communication protocols by decision trees. It allows us to simulate (restricted classes of)
communication protocols on truly uniform distribution of inputs.

1 Introduction

In recent years numerous results emerged that lift the complexity of a function in a weak model
of computation to the complexity of a modified version of the function in a stronger model of
computation (Göös et al., 2018; Loff and Mukhopadhyay, 2019; Chattopadhyay et al., 2019; Göös
et al., 2020; Chattopadhyay et al., 2021; Lovett et al., 2022). These results proved to be extremely
useful for solving open problems in various areas of computational complexity (Raz and McKenzie,
1999; Robere et al., 2016; Pitassi and Robere, 2017; Göös and Pitassi, 2018; Garg et al., 2020).
In this type of results we start with a function f : {0, 1}n → {0, 1} that is hard for a weak
computation model (like decision trees) and for a gadget g : {0, 1}m → {0, 1} we consider a function
f ◦gn : {0, 1}nm → {0, 1} in which we substitute each variable of f by an output of g applied to fresh
variables. Our goal is to show that the resulting function f ◦ gn is hard for a strong computation
model (like communication complexity or Boolean formula complexity). We would like the result to
hold for as simple g, as possible.
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In this paper we are mostly interested in lifting from decision tree complexity to communication
complexity, which is sometimes called query-to-communication lifting. This particular type of
lifting has seen numerous results (Raz and McKenzie, 1999; Göös et al., 2018; Hatami et al., 2018;
Chattopadhyay et al., 2019; Göös et al., 2020; Chattopadhyay et al., 2021). In these papers the
results of this type were obtained and gradually improved for both deterministic and randomized
cases and for gradually increasing set of possible gadgets. The size of the gadget is a parameter
that is of importance for applications. The smallest known size of the gadget for both deterministic
and randomized case is logarithmic. For deterministic case, the results for logarithmic size of
gadgets were obtained in (Chattopadhyay et al., 2019) and (Wu et al., 2017). For randomized
case, the first result was obtained in (Göös et al., 2020) with a gadget of polynomial size. The
paper (Chattopadhyay et al., 2021) reduced the size of gadget for randomized case to logarithm.
Obtaining the lifting results with the gadgets of constant size remains a major open problem.

One of the possible approaches to this problem is to address lifting to restricted models of
communication or even simpler computational models and to try to obtain lifting with constant-
size gadget in this setting. Some progress in this direction was obtained in recent independent
papers (Beame and Koroth, 2023; Chattopadhyay et al., 2023).

The paper (Chattopadhyay et al., 2023) shows lifting from deterministic decision tree complexity
Ddt(f) to deterministic parity decision tree complexity Ddt

⊕ (f ◦ g) for a wide range of gadgets g,
including gadgets of constant size. More specifically, for each gadget g they introduce a stifling
complexity measure k and they show that Ddt

⊕ (f ◦ g) ≥ Ω(k ·Ddt(f)). In particular, from there result
it follows that Ddt

⊕ (f ◦ Indm) ≥ Ω(logm ·Ddt(f)) and Ddt
⊕ (f ◦ IPm) ≥ Ω(Ddt(f)) for any positive m,

where Indm and IPm are Indexing and Inner Product gadgets that are among the most standard in
this field (see Section 2.3 for the definition of these functions).

The paper (Beame and Koroth, 2023) introduces semi-structured communication complexity.
In this model one of the players is allowed to send only parities of their input bits. This model is
restricted compared to regular communication complexity model, but is more powerful (up to a
factor of 2) compared to parity decision trees, as players can easily simulate a parity decision tree
with a semi-structured communication protocol. The paper (Beame and Koroth, 2023) shows lifting
from deterministic decision trees to semi-structured communication protocol with Indk gadget for
any k ≥ 4.

Our results. We show that for a wide range of gadgets (including constant size) lifting is possible
from randomized decision trees to randomized semi-structured communication complexity.

More specifically, we introduce a complexity measure linear diversity for gadgets. Informally, it
is equal to the number of distinct (up to negation) non-constant linear functions (over F2) in Bob’s
variables we can obtain by fixing Alice’s variables. We observe that the linear diversity of Indm is
m and the linear diversity of IPm is 2m − 1.

We show that for any function (or relation) f for any k ≥ 2 and for any gadget g with linear
diversity k randomized semi-structured communication complexity of f ◦ g is greater or equal
to Ω(log k · Rdt(f)), where by Rdt(f) we denote the minimal depth of probabilistic decision tree
computing f . In particular, our result applies to gadgets of constant size. Our result gives tight
bounds for both Indm and IPm gadgets. When lifting to probabilistic parity decision trees, our
result also gives tight bounds for the MAJm gadget using a trick described in Section 3.4.

Similarly to (Chattopadhyay et al., 2023) we extend our result to give the same lower bound for
the logarithm of the size of the randomized semi-structured communication protocol and to a version
of communication complexity, in which Bob is allowed to send indicator functions of subspaces of
his input bits.
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Although our techniques (see below) is designed specifically for randomized case, we translate
our results to deterministic case as well. Compared to (Beame and Koroth, 2023) the deterministic
version of our results apply to a wide range of gadgets.

As an immediate corollary, we have the same results (both randomized and deterministic) for
lifting to parity decision trees. Compared to (Chattopadhyay et al., 2023) the deterministic version
of our result for parity decision trees uses linear diversity complexity measure instead of stifling.
We discuss the comparison between these two measures below.

Our results can be used to obtain lower bounds on randomized parity decision tree complexity
of boolean functions. We provide a couple of examples of bounds we can obtain.

Linear diversity vs. stifling. A function g : {0, 1}m → {0, 1} is k-stifled if for any subset
S ⊆ [m] of k input variables and any bit b we can fix all other variables in such a way that g
evaluates to b no matter what the values of the variables in the subset S are.

The binary logarithm of linear diversity measure is greater than stifling at least for some functions.
A notable example is IPm function that is a common gadget in lifting results. Its linear diversity is
maximal, but its stifling is just 1.

Our techniques. The proof of our results builds on so-called simulation argument in the style
of (Göös et al., 2020; Chattopadhyay et al., 2021). In this argument, given a randomized communi-
cation protocol Π computing f ◦ gn of cost d, we build a randomized decision tree T computing f of
depth O(d/ log k). The tree T simulates Π, querying the necessary information. Next we describe
the simulation argument and then explain the new ideas.

For convenience we introduce the following notations:

− The gadget: it is convenient to consider gadgets of the form g : [k]× {0, 1}m → {0, 1}, where
[k] corresponds to the inputs of Alice and {0, 1}m corresponds to the inputs of Bob, and the
linear diversity of g is k; that is, for convenience, we assume that for any fixed first input of g
the resulting function on the second input is linear.

− The collection of all gadgets: G := gn : [k]n × ({0, 1}m)n → {0, 1}n.
− The input to the i-th gadget: (xi, yi) ∈ [k]× {0, 1}m.
− The whole inputs of Alice and Bob: x = (x1, . . . , xn), y = (y1, . . . , yn).

Simulation argument. The main idea is that T on input z ∈ {0, 1}n simulates Π on a random
input (x, y) that is distributed uniformly on G−1(z). Since f ◦G(x, y) = f(z), T(z) will output f(z)
as long as the simulation of Π performed correctly.

The main difficulty in this approach is to simulate Π on (x, y) ∼ G−1(z) without knowing z. To
overcome this problem, it was shown in (Göös et al., 2020; Chattopadhyay et al., 2021) that the
distribution (x, y) ∼ G−1(z) does not differ substantially (from the perspective of the players) from
the uniform distribution on all inputs. Thus, the tree T can instead simulate Π on (x, y), where
(x, y) is distributed uniformly on [k]n × ({0, 1}m)n, until Π reveals too much information about
some block of inputs (xi, yi). Once this happens for some i, the tree T queries zi and proceeds with
the simulation knowing the correct distribution of the pair (xi, yi).

However, in this approach the simulation becomes approximate. To be able to assume that the
uniform distribution on G−1(z) does not differ too much from the uniform distribution on all inputs,
we need that the size of the gadget is at least logarithmic in n (we need this to bound the error
probability of the simulation). Thus, it is not clear how to use this approach for gadgets of smaller
size.
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The key idea of our approach is to simulate Π precisely on the distribution (x, y) ∼ G−1(z).
This allows us to work with the gadgets of constant size. To address the issue of the simulation
with unknown z, we introduce the main key ingredient of our argument, the secret sets technique.

Secret sets. Let Si be some subset of {i} × [m]. Assume for now that zi equals the XOR of
variables of y on the positions in Si. Then we can show that as long as Si is not in a linear span
of linear functions sent by Bob in Π, the uniform distribution on g−1(zi) is indistinguishable (by
players) from the uniform distribution on the whole i-th block of input. This allows us to simulate
Π as if zi is known. Once Si falls into a linear span of functions sent by Bob, we just query zi and
proceed with the simulation. To prove our bound, we must show that Bob needs to send many
(about log2 k) messages in Π on average to force us to query zi. Recall that Si is actually random.
The intuition is that Bob must send roughly log2 k linear functions for their linear span to capture
a random Si.

There are two key ingredients to actually prove that the secret set technique forces Bob to send
many messages. Below is the brief description of them.

Narrowing Bob’s messages to blocks. For each Bob’s message we assign a block which will
account for it. For each message assigned in block {i} × [m], we remove the part of it that lies
outside of {i} × [m]. Denote by Li this set of truncated messages that assigned to ith block.

Each Li will admit the following property. Si is not lying in the linear span of messages sent
by Bob as long as it is not lying in the linear span of Li. At some point, the property can become
violated after Bob sends a message, but we will send additional messages for Alice and Bob to
restore the property. More precisely, we pick a linear combination of messages assigned to ith block
that annulates Si. We subtract Si from this linear combination, in which we take untruncated
messages, and send this new message for Bob recursively.

Entropy. We use the idea of fixed/unfixed blocks that was also used in the previous lifting
theorems that utilized entropy. At the beginning, we consider all Si to be unfixed. Note that,
initially, the binary entropy of Si is log2 k, since xi is uniformly distributed on [k]. We want to show
that Si rarely lies in the linear span of Li when a new element is added to Li. The case when the
entropy of Si is sufficiently larger than |Li| is favorable for us, since in this case Si does not lie in
the linear span of Li with a high probability. When the entropy of Si goes below that level, we fix
Si (Alice sends xi). Since Alice and Bob must send a lot of messages to decrease the entropy of Si
below the desired level or to increase the size of Li, the number of fixed Si is low.

As another feature of our approach we would like to mention that unlike the previous papers our
simulation algorithm has a very simple description: we fix Alice’s input randomly and maintain the
linear space generated by Bob’s messages to decide on querying zis. Correctness of the algorithm
easily follows from its description and the most technical part of the proof shifts to the complexity
analysis.

For the deterministic version of our result we again use the simulation argument in the style
of Göös et al. (2020); Chattopadhyay et al. (2021) and more specifically, our general strategy is very
similar to the one of Beame and Koroth (2023) (with the necessary generalization to a wide range
of gadgets).

Organization. The rest of the paper is organized as follows. In Section 2 we give the necessary
preliminary information and introduce key notions and notation. In Section 3 we give a formulation
our results. In Section 4 we introduce additional notation that is used in the proofs. In Section 5.1
we begin the proof of our main result and as a first step reformulate the theorem in the form that
is convenient for the proof. In Section 5.2 we describe the protocol to simulate communication
protocol by decision tree. In Section 5.3 we proof correctness of the simulation. In Section 5.4 we

4



prove the bound on the number of queries in the simulation (this is the most technically heavy
part of the proof). In Section 6 we extend the result to the size of the communication protocols
and to the case of subspace queries. In Section 7 we prove the deterministic versions of our results.
In Section 8 we extend the deterministic result to the size of the communication protocols and to
the case of subspace queries. In Section 9 we prove results for Majority gadget and provide some
generalizations. In Section 10 we show some applications of our results.

2 Preliminaries

2.1 Standard Notation

Here we will describe some notation that we use. We denote [n] := {1, 2, ..., n} for a non-negative
integer n. The addition mod 2 is denoted by XOR or ⊕. Sometimes, we view {0, 1}n as a vector
space Fn

2 .

2.2 Computational Models

For functions of the form f : {0, 1}n × {0, 1}m → {0, 1} we consider semi-structured communication
protocols introduced in (Beame and Koroth, 2023). In these protocols Bob is only allowed to send
the XOR of some subset of his input bits (and Alice is not restricted). A randomized semi-structured
protocol is just a distribution over deterministic semi-structured protocols. We say that such a
protocol computes the function f correctly, if on every input the probability of the correct output is
at least 2

3 . The complexity Rcc
→⊕(f) of f in this model is the minimal depth of a protocol computing

f .
We also consider a subspace-query model. Consider communication protocols in which Bob is

only allowed to send indicators of whether his input lies in an affine subspace of Fm
2 . We denote by

sRcc
→⊕(f) the minimum complexity of a randomized protocol computing f , where the protocol is

taken from the restricted class.
Additionally, let us introduce a size-complexity of a protocol. A deterministic communication

protocol can be represented by a tree in which in every node either Alice or Bob sends a message. We
call the size-complexity of the protocol to be the number of leafs in this tree. Denote by sizeRcc

→⊕(f)
the minimum size-complexity of a randomized semi-structured protocol computing f .

We denote by Dcc
→⊕(f), sizeD

cc
→⊕(f) and sDcc

→⊕(f) the deterministic versions of these complexity
measures.

We can define the semi-structured complexity measures for relations f ⊆ (X × {0, 1}m) × R
completely analogously. Here a deterministic protocol Π is said to compute f if for any (x, y) ∈
X × {0, 1}m it outputs any z such that (x, y, z) ∈ f , if there is such z (the protocol can give any
output if there is no such z).

For a function f : {0, 1}n → {0, 1} we denote by Ddt(f) the minimal depth of a decision tree
computing f . We denote by Ddt

⊕ (f) the minimal depth of a parity decision tree computing f (on
each step such a decision tree can query an XOR of a subset of the input bits). Analogously
to semi-structured communication complexity, we denote by Ddt

⊕ (f), sizeD
dt
⊕ (f), sD

dt
⊕ (f), R

dt
⊕ (f),

sizeRdt
⊕ (f) and sRdt

⊕ (f) complexity measures defined by deterministic and randomized parity decision
trees.

There is the following standard connection between parity decision trees and communication
complexity protocols.
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Lemma 1. For any function f : {0, 1}n × {0, 1}m → {0, 1} we have

Dcc
→⊕(f) ≤ 2Ddt

⊕ (f),

Rcc
→⊕(f) ≤ 2Rdt

⊕ (f).

Proof. Given a (randomized) parity decision tree for f Alice and Bob can use it to compute the
function f by a (randomized) communication protocol. For this they simulate each query one by
one computing XOR of their portion of the input and sending them to each other. Simulation of
each query requires two bits of communication.

2.3 Gadgets

We first define a class of gadgets that is of use for us.

Definition 1 (Family of linear functions). The gadget g : [k]×{0, 1}m → {0, 1} is a family of linear
functions of order k, if the following is true

(1) ∀i ∈ [k] g(i, ·) is a non-trivial linear function as a function of the second argument (that is, it
is an XOR of a nonempty subset of its inputs),

(2) ∀i, j ∈ [k], i ̸= j g(i, ·) ̸= g(j, ·).

For convenience from now on we will use the notation gi(y) := g(i, y).

We will use the following notion of gadget reduction.

Definition 2 (Gadget reduction). Consider two gadgets g : X ×{0, 1}m → {0, 1}, h : Y ×{0, 1}n →
{0, 1}. Then g is reducible to h, if there are mappings φ : X → Y, ψ : {0, 1}m → {0, 1}n, such that

(1) ∀x ∈ X , y ∈ {0, 1}m g(x, y) = h(φ(x), ψ(y))
(2) ψ is linear, that is ∀y1, y2 ∈ {0, 1}m ψ(y1 ⊕ y2) = ψ(y1)⊕ ψ(y2)

Note that gadget reduction relation is transitive.
Gadget reduction is useful for us due to the following lemma.

Lemma 2. Assume that a gadget g reduces to a gadget h. Then for any relation f ⊆ {0, 1}n ×R
we have

Rcc
→⊕(f ◦ gn) ≤ Rcc

→⊕(f ◦ hn),

sizeRcc
→⊕(f ◦ gn) ≤ sizeRcc

→⊕(f ◦ hn).

sRcc
→⊕(f ◦ gn) ≤ sRcc

→⊕(f ◦ hn).

The same inequalities are true for the deterministic complexities.

Proof. If Alice and Bob would like to compute f ◦ gn, they can just compute the mappings
φ : X → Y, ψ : {0, 1}m → {0, 1}n on their inputs individually and use the protocol for f ◦ hn. Since
ψ : {0, 1}m → {0, 1}n is linear, Bob can simulate the protocol for f ◦ hn sending only XORs of his
input bits. To see that, denote by ei := {0}i−1 × {1} × {0}m−i. Thus, ψ is uniquely determined
by ψ(e1), . . . , ψ(em). Let x be Bob’s input, and let y = ψ(x). An arbitrary parity message of y
can be represented as ⟨y, y′⟩ for some y′. Here, ⟨·, ·⟩ is the dot product modulo 2. Observe that
⟨y, y′⟩ = ⟨ψ(x), y′⟩ =

∑
i xi · ⟨ψ(ei), y′⟩. In other words, to compute ⟨y, y′⟩, it is enough to take the

XOR of all those xi for which ⟨ψ(ei), y′⟩ equals one. This means that Bob can translate parity
messages of y to parity messages of x.
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Next we define the main complexity measure for the gadgets.

Definition 3 (Linear diversity). We let linear diversity of a function h : Y × {0, 1}n → {0, 1} be
the maximal k such that there is a family of linear functions g : [k]× {0, 1}m → {0, 1} of order k
such that g reduces to h.

Next we introduce a couple of standard gadgets that will be important for us.

Definition 4 (Index function). Let Indm : [m]× {0, 1}m → {0, 1} be the function that on input
(i, y) outputs yi.

Definition 5 (Inner product function). Let IPm : {0, 1}m × {0, 1}m → {0, 1} be the function that
on input (x, y) outputs

⊕n
i=1(xi ∧ yi).

Lemma 3. Indm is a family of linear functions of order m. IPm has linear diversity 2m − 1.

Proof. The statement of the lemma is almost immediate. For Indm, note that for any i ∈ [m] the
output of Indm is yi, which is a linear function. For IPm, note that for any fixed x ∈ {0, 1}n the
output of IPm is ⊕i:xi=1 yi, which is a non-trivial linear function for each x ̸= 0. The reduction
from a family of linear functions is trivial (ψ is an identity function and ϕ sends an integer to its
binary representation).

Lemma 4. With probability approaching 1 as m tends to infinity, a random gadget g : [22
m
] ×

{0, 1}m → {0, 1} has linear diversity at least 2m/2. (The values of g on each input are chosen
randomly and independently.)

The proof of this lemma is provided in Appendix A.

3 Results Statement

3.1 Randomized Semi-Structured protocols

Theorem 5. Let g : [k]× {0, 1}m → {0, 1} be a family of linear functions of order k ≥ 2. Then for
any relation f ⊆ {0, 1}n ×R we have

Rcc
→⊕(f ◦ gn) = Θ(log2 k · Rdt(f)).

We note that big-O part is trivial, since Alice and Bob in communication protocol can simulate
a decision tree for f and spend O(log2 k) bits of communication for each tree query to compute the
function g on the corresponding inputs.

We prove the following stronger versions of Theorem 5.

Theorem 6. Let g : [k]× {0, 1}m → {0, 1} be a family of linear functions of order k ≥ 2. Then for
any relation f ⊆ {0, 1}n ×R we have

log2 sizeR
cc
→⊕(f ◦ gn) = Θ(log2 k · Rdt(f)).

Theorem 7. Let g : [k]× {0, 1}m → {0, 1} be a family of linear functions of order k ≥ 2. Then for
any relation f ⊆ {0, 1}n ×R we have

sRcc
→⊕(f ◦ gn) = Θ(log2 k · Rdt(f)).
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For both theorems big-O part follows since Rcc
→⊕(h) ≥ log2 sizeR

cc
→⊕(h) and Rcc

→⊕(h) ≥ sRcc
→⊕(h)

for any function h.
As a corollary of these theorems and Lemma 2 we immediately obtain the following.

Corollary 8. Let h : Y × {0, 1}n → {0, 1} have linear diversity at least k for k ≥ 2. Then for any
relation f ⊆ {0, 1}n ×R we have

Rcc
→⊕(f ◦ hn) = Ω(log2 k · Rdt(f)).

The same result is true for log sizeRcc
→⊕(f ◦ hn) and sRcc

→⊕(f ◦ gn).

3.2 Deterministic Semi-structured protocols

We translate our results to deterministic case as well.

Theorem 9. Let g : [k]× {0, 1}m → {0, 1} be a family of linear functions of order k ≥ 2. Then for
any relation f ⊆ {0, 1}n ×R we have

Dcc(f ◦ gn) = Θ(log2 k · Ddt(f)),

log2 sizeD
cc
→⊕(f ◦ gn) = Θ(log2 k · Ddt(f)),

sDcc
→⊕(f ◦ gn) = Θ(log2 k · Ddt(f)).

Corollary 10. Let h : Y × {0, 1}n → {0, 1} have linear diversity at least k for k ≥ 2. Then for any
relation f ⊆ {0, 1}n ×R we have

Dcc
→⊕(f ◦ hn) = Ω(log2 k · Ddt(f)).

The same result is true for log sizeDcc
→⊕(f ◦ hn) and sDcc

→⊕(f ◦ gn).

3.3 Parity decision trees

Finally, we prove that our results imply the same results for parity decision trees instead of
semi-structured communication protocols.

Theorem 11. Let h : Y × {0, 1}n → {0, 1} have linear diversity k for k ≥ 2. Then for any relation
f ⊆ {0, 1}n ×R we have

Rdt
⊕ (f ◦ hn) = Ω(log2 k · Rdt(f)).

The same is true for log sizeRcc
→⊕(f ◦ hn) and sRcc

→⊕(f ◦ gn). The same results are also true for the
deterministic complexities.

The part of this theorem concerning Rdt
⊕ is a direct consequence of Lemma 1, Theorem 5, and

Lemma 2. The same applies to Ddt
⊕ .

The part of this theorem about log sizeRdt
⊕ and sRdt

⊕ does not follow from previous theorems that
easily, and we prove it in Section 6. The deterministic version is proved in Section 8.
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3.4 More powerful gadget reduction

In this section, we describe a more general version of a gadget reduction than in Definition 2. We
apply the reduction to the MAJ gadget, obtaining tight bounds for lifting to parity decision trees.

More specifically, we can consider the domain {0, 1}m of a gadget as a vector space Fm
2 and

input variables x1, . . . , xm as coordinates in the standard basis. The idea is that we can switch to
another basis in this vector space, consider new coordinates as variables and apply the reduction
in Definition 2 after that. Since the transformation to the new variables is linear, new variables
can be expressed as an XOR of old variables and vise versa. Thus, the parity decision trees in new
and old variables can simulate each other (this does not hold for communication complexity setting,
since switching to the new basis mixes up the variables belonging to Alice and Bob).

We illustrate this idea on a MAJ gadget. Recall that MAJm is a function that returns 1 iff at
least m/2 of its m variables are equal to 1.

Lemma 12. For any relation f ⊆ {0, 1}n ×R and m ≥ 12, Rdt
⊕ (f ◦MAJnm) = Ω(m · Rdt(f)).

This method can be applied to gadgets other than MAJ. We formulate this approach in a
theorem.

Theorem 13. Let r : {0, 1}m → {0, 1}, h : X × {0, 1}l → {0, 1}, g : Y → {0, 1} — be functions
such that linear diversity of h is at least k ≥ 2. Suppose that r ◦ hm reduces to g after a change of
basis. Then, for any relation f ⊆ {0, 1}n ×R,

Rdt
⊕ (f ◦ gn) = Ω(Rdt(f ◦ rn) log k)

By reduction we mean Definition 2. Here g depends on x, and we consider some linear change of
basis x→ y. We also decide on some way to split variables y between Alice and Bob before applying
Definition 2.

Proofs of these results are provided in Section 9.

4 Notation for proving main theorems

In this section we introduce notation and facts about entropy that will be used for proving the main
theorems in the subsequent sections. Recall that in a semi-structured communication protocol, Bob
can send only parities of its input. In a lifting setting, Bob is given n ·m boolean variables. For each
of n variables of the initial function, there are m gadget’s variables. To analyze Bob’s messages, we
introduce the following definitions.

4.1 Notation

Definition 6 (XOR of a subset). For a set S ⊆ [m] and y ∈ {0, 1}m, we define

yS :=
⊕
j∈S

yj .

Analogously, we define yS if y ∈ ({0, 1}m)n and S ⊆ [n]× [m].

If y ∈ ({0, 1}m)n is the Bob’s input, then each of his messages can be represented as yS for some
S ⊆ [n]× [m].
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Definition 7. (Subsets of [n]× [m] as a linear space) We view subsets of [n]× [m] as vectors in a
linear space over F2 (where addition (+) corresponds to symmetric difference).

With this notation, for any S, T ⊆ [n]× [m], y ∈ ({0, 1}m)n, yS+T = yS ⊕ yT .

Definition 8. (Linear Order on [n]× [m]) We introduce a lexicographic linear order on [n]× [m].
A pair (i, j) ∈ [n]× [m] is said to be lower than (i′, j′) if i < i′ or i = i′, j < j′.

Definition 9. (Principal variable of a non-empty subset) For a non-empty set S ⊆ [n]× [m], denote
by p(S) its lowest element.

Definition 10. (Block) We refer to {i} × [m] as i-th block. A non-empty subset S ⊆ [n] × [m]
touches i-th block if p(S) ∈ {i} × [m].

Definition 11. (Bernoulli distribution) Denote by Bern(p) a distribution of a random variable
that takes value 0 with probability 1− p and 1 with probability p.

Definition 12. (Entropy) For a random variable x, denote by H(x) its binary entropy. If X is a
set, then we define its entropy as H(X) := log2 |X|. If p is a number, then H(p) denotes the binary
entropy of the distribution Bern(p).

Recall that the binary entropy of a random variable taking n values with non-zero probabilities
p1, ..., pn equals to

n∑
i=1

−pi log2 pi

4.2 Entropy theorems

We state well-known results that will be used for proving our main theorems.

Lemma 14 (Gibbs’ inequality (Cover and Thomas, 2006)). Let 0 ≤ p ≤ 1, 0 < q < 1. Then,

H(p) ≤ p log2
1

q
+ (1− p) log2

1

1− q

Lemma 15 (Fano’s Inequality (Cover and Thomas, 2006)). Let X,Y be random variables. Let
ε = P (X ̸= Y ) ≤ 1/2. Then,

H(X|Y ) ≤ H(ε) + ε log2(|X | − 1),

where X denotes the support of X.

5 Proof of Theorem 5

5.1 Reformulation of Theorem 5

As we noted in Section 3, the ≤-direction is simple. Thus, it remains to prove the other direction.
Let Π be a randomized semi-structured protocol computing f ◦ gn. Denote by d the depth of Π.

Our goal is to construct a randomized tree T of depth O(d/ log2 k), that computes f(z) for any
given z.

The idea is to simulate Π on a randomly uniformly chosen pair (x, y) satisfying gn(x, y) = z.
For convenience, denote Pz = {(x, y) | gn(x, y) = z}. For any pair (x, y) ∈ Pz we have that
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Π(x, y) = f(z) with probability at least 2/3. Thus, if we sample (x, y) ∼ U(Pz), the protocol
Π(x, y) will also be equal to f(z) with probability at least 2/3.

We use the following general strategy for T: sample (x, y) ∼ U(Pz), sample Π ∼ Π (recall
that Π is a random distribution on deterministic protocols), and output Π(x, y). Note that the
choice of the pair (x, y) is independent from the choice of Π, and thus it does not matter in which
order we sample Π and (x, y). As a result, what is left to do is to simulate the given deterministic
semi-structured protocol Π on a random pair (x, y) ∼ U(Pz).

We are going to prove the following intermediate theorem.

Theorem 16. Let Π be a deterministic semi-structured protocol with inputs from [k]n × ({0, 1}m)n.
Let d be equal to the depth of Π. Then, there exists a randomized decision tree T which, on input
z ∈ {0, 1}n, outputs a random variable that is destributed as Π(x, y) for (x, y) ∼ U(Pz). The expected
number of queries to z made by T is O(d/ log2 k), where the expectation is taken over (x, y) for a
fixed z.

Before proceeding to the proof of Theorem 16 we show how to prove Theorem 5 based on
Theorem 16.

Proof of Theorem 5. The computation of f on input z proceeds as follows. We choose a random
Π ∼ Π and run T provided by Theorem 16 on input z. By definition, T(z) has the same distribution
as Π(x, y) for (x, y) ∼ U(Pz). Thus, T computes f(z) with probability at least 2

3 .
The average number of queries made by T is at most O(d/ log2 k). To achieve this number of

queries in the worst case, we halt T if it makes 10 times more queries than the expected number.
By Markov’s inequality, this only happens with probability at most 1

10 , the probability of the correct
answer is still a constant greater than 1/2 and it can be increased to 2/3 by the standard argument
for error reduction.

Now we proceed to the proof of Theorem 16. For this we need to describe how T simulates Π.
In the subsequent sections we will heavily use the notation introduced in Section 4.

5.2 Simulation algorithm for T

In this section we describe the algorithm for T.
T starts by sampling a random a ∼ U([k]n) and assuming that x = a.
After that, T starts the simulation of Π. Since x is fixed (T knows x but for Π it is a random

variable), Alice’s messages are easily simulated. Next, we describe how T simulates Bob’s parity
messages on the (unknown) variables y.

Recall that we can view g as a family of linear functions {g1, . . . , gk} of order k (one function
for each value of x). Since g1, ..., gk are linear functions, we can represent them as gj(x) = xGj for
some Gj ⊆ [m].

Let Si := {i} ×Gxi . Note that all Sis are linearly independent since they are in distinct blocks.
From now on we will call S1, ..., Sn the secret sets.

Consider an arbitrary step of simulation and assume Bob has already sent the parities of his
inputs for the sets Q1, ..., Qt ⊆ [n]× [m] and is now supposed to send the parity of y’s in the set
Qt+1 ⊆ [n] × [m]. Note, that it can be assumed that Qt+1 is linearly independent of Q1, ..., Qt:
otherwise, the message Qt+1 does not reveal any new information and can be omitted from the
protocol. There are two cases:

(1) There is a linear combination of Qis that includes Qt+1 and equals to some linear combination
of the secret sets:

11



Qi1 +Qi2 + ...+Qik +Qt+1 = Sj1 + ...+ Sjl .

In this case, the value yQt+1 is uniquely determined since

yQt+1 = yQi1
+ yQi2

+ ...+ yQik
+ zj1 + ...+ zjl .

The y’s parities on the sets Qi1 , ..., Qik are already known from the previous messages of Bob.
Therefore, T queries zj1 , ..., zjl (if it hasn’t already), and we calculate the value yQt+1 that
Bob sends in this vertex.

(2) Such a linear combination does not exist. In this case, T sends a random bit Bern(1/2) as an
XOR of y on the set Qt+1. In terms of the protocol Π, this corresponds to proceeding to one
of the left and right children with equal probabilities.

Thus, we have described how to simulate each Bob’s message. Once T reaches leaf of Π, it
outputs the value written in this leaf.

5.3 Correctness of the simulation of Π done by T

Next, we need to show that T(z) indeed simulates Π on a random pair (x, y) ∼ U(Pz), and that
T(z) makes O(d/ log2 k) queries on average. We start with the correctness of the simulation.

It is easy to see that for any z the projection of U(Pz) onto x is the uniform distribution on
U([k]n), therefore fixing x = a ∼ U([k]n) correctly corresponds to the distribution of (x, y) we would
like to simulate the protocol on.

Note that once x is fixed the only constraints on y are of the form gj(yi) = zi, where j = xi. In
particular, any variable in y, not included in {i} ×Gxi , has a Bern(1/2) distribution.

Next, we justify why the algorithm can send Bern(1/2) as an XOR ofQt+1 if no linear combination
exists (Case 2 above). Indeed, the y’s parities of Q1, ..., Qt, S1, ..., Sn define an affine subspace in
our linear space. Since Qt+1 is linearly independent of Q1, ..., Qt, S1, ..., Sn, each of the conditions
yQt+1 = 0 and yQt+1 = 1 is satisfied by exactly half of the points of the affine subspace.

If there exists a linear combination of Qis that includes Qt+1 and equals a linear combination of
Sis (Case 1 above), then given the previous messages and the value of z there is only one possible
value for yQt+1 , which T indeed sends in our simulation.

Thus, the distribution of T(z) matches Π(x, y) for (x, y) ∼ U(Pz).

5.4 Upper bound on the average number of queries made by T

Next we show that T(z) makes O(d/ log2 k) queries to the variables z on average. For this we
introduce some complexity measures and study their behaviour during the execution of the protocol.
To make this analysis cleaner we first modify the protocol Π to add more messages to it. This does
not change the output of the protocol, but it allows us to simplify the exposition of time analysis.
In the next section we describe the modified protocol. Next we discuss its connection to T. Finally,
in subsubsection 5.4.3, we derive the upper bound on the number of queries made by T.

Since we need to show the upper bound on the number of queries of T(z) for any z, we fix z for
the whole argument.
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5.4.1 Description of the modified protocol Πz

Here we describe Πz, a refined version of Π. Note that the protocol depends on z, which is fixed
throughout the whole argument. We will be interested only in the behaviour of the protocol on
inputs in Pz.

We modify the protocol in two ways. First, we modify the messages sent by Bob into equivalent
messages. This does not actually change the information transmitted by Bob, this modification
is needed only for the purpose of the analysis of the protocol. Next, at some moments of time we
add additional messages sent by the players. The information transmitted in these messages is not
affecting the following messages in the protocol. One can think of this in the following way: at
some points of the protocol the players pause the execution of the protocol, exchange some extra
information, and then resume the execution of the protocol as if nothing happened. These extra
messages are needed just to introduce new intermediate vertices in communication tree that will
allow us to analyse the complexity of T in a cleaner way.

The pseudocode for the algorithm Πz is provided in Figure 1. Next we describe the protocol
and introduce some important notation related to it.

First of all, observe that if Bob sends b1, b2 as parities on the sets Q1, Q2 ⊆ [n]× [m] respectively,
this is equivalent to sending b1, b1 ⊕ b2 as parities on Q1, Q1 + Q2 respectively. More generally,
applying an invertible linear transformation to Bob’s messages does not change the information
transmitted.

Recall that by Si = {i} ×Gxi we denote the secret sets. Note that Si depends on x and, thus,
initially are only known to Alice. Initially, all Si are unrevealed, and over the course of the simulation,
they will be gradually revealed. We also introduce a separate notion that of Si being fixed. Initially,
all Si are unfixed and then will change status to fixed over the course of the simulation. A revealed
Si will also be fixed, but not necessarily vice versa.

Suppose that at the current moment of simulating Π, Bob has sent parities on the sets Q1, ..., Qt ⊆
[n] × [m] and now he wants to send the parity on the set Q ⊆ [n] × [m]. We will maintain the
principle variable invariant : all p(Qi) are distinct and, if i < j, then p(Qi) is lower than p(Qj).
The variables p(Qi) will be referred to as principal. In particular, from this invariant, it follows that
Q1, ..., Qt are linearly independent.

Define the procedure sift, which will transform Q to an equivalent message. The procedure sift
iterates over i = 1, . . . , t and replaces Q with Q+Qi if p(Qi) ∈ Q. Note that after this procedure
for any i we have that p(Qi) /∈ Q.

We run the procedure sift on Q. If it turns into an empty set, then Bob’s message does not
provide any new information. In this case we finish its processing and move on to further simulation
of Π. If the resulting Q is not empty, then it contains a principal variable. Since after sift, Q does not
contain principal variables of previous messages, the principal variable of Q does not coincide with
the principal variable of previous messages. We insert a copy of Q into the sequence Q1, ..., Qt in such
a way that the principle variable invariant is maintained. That is, now the length of the sequence is
t+ 1. Assume that p(Q) is in the i-th input block. Let Li := {Qj ∩ {i} × [m] | p(Qj) ∈ {i} × [m]}.
In other words, we consider all sets whose principal variables are in the i-th block and intersect
them with the i-th block. Note that sets in Li are linearly independent. Denote by Li the linear
span of Li with the zero vector (empty set) removed.

At this point, we apply the second modification to the protocol. If the binary entropy of Si
is less than 1

10 log2 k + log2 |Li|+ 1
3 , Alice sends Si, and Si is considered fixed. Here the protocol

views Si to be a random variable of the distribution (x, y) ∼ U(Pz) conditioned on the information
about (x, y) that the protocol has learnt so far. Note that we fixed z in advance, and we assume
that the inputs given to the players are indeed in Pz (we are not interested in the behaviour of the
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protocol on other inputs). As a result, both players can compute the entropy of Si and compare it
to 1

10 log2 k + log2 |Li|+ 1
3 without communication.

After that Alice sends a message indicating if Si lies in Li1. If this is not the case or if Si
has already been revealed on one of the previous steps, we finish processing the message Q and
proceed with the further simulation of the protocol Π. If Si lies in Li, then we consider Si to be
revealed. In this case Alice sends Si, and we fix Si if it was not already fixed before. Bob sends ySi .
Next, let Qj1 , ..., Qjl be the sets whose linear combination, when intersected with the i-th block,
equals the secret set Si. The set Q must be present among them: otherwise, Si would have been
revealed at an earlier step. Without loss of generality we can assume that Qj1 = Q. We update Q
to Q← Q+Qj2 + ...+Qjl + Si and perform the same procedure with the updated Q starting with
sift (note that from this players can compute yQ for the new Q without additional communication
since ySi is known). Note, that during this iteration we removed from Q all elements in the i-th
block without introducing anything to Q in the previous blocks (all sets in the combinations had
their principle variables in the i-th block). As a result, the updated Q lies within the blocks that
are higher than i-th block and the whole procedure of updating Q will be finished eventually.

5.4.2 Connection between T and Πz

The protocol Πz is useful for upper bounding the complexity of T due to the following lemmas.

Lemma 17. The following is a while-loop invariant in Πz: If a linear combination of Q1, ..., Qt

equals a linear combination of S1, ..., Sn, then all Sis in this linear combination are revealed.

Proof. First note that for all i such that Si is unrevealed, Si does not lie in Li. Otherwise, at the
line 25 of the algorithm, Si would have been revealed.

Assume that this invariant is violated. Let this linear combination be Qj1 + ...+Qjl = I, where
j1 < ... < jl. If there are many linear combinations that violate invariant, then choose the one with
the greatest j1. Let i be the block of the variable p(Qj1). Then, I ∩ {i} × [m] must be equal to Si,
since I ∩ {i} × [m] ̸= ∅. It follows that Si must be revealed, since it lies in Li. At the line 28 of the
algorithm, it is ensured that a linear combination Qj1 + ...+Qjl + Si = I + Si is added to the set
of Qs. I + Si is contained in blocks strictly higher than i-th block and, by assumption, is equal
to a linear combination of S1, ..., Sn containing an unrevealed secret set. Therefore, we obtained a
contradiction with the maximality of j1.

Next we establish the connection between T and Πz. By construction, T(z) simulates Π on a
random input (x, y) ∼ U(Pz). Fix r to be the outcome of the random bits of the tree T. Then
Tr(z) will simulate Π on some pair (xr, yr) ∈ Pz.

We show the following.

Lemma 18. The number of queries to z made by Tr(z) is less or equal than the number of revealed
sets in protocol Πz on input (xr, yr).

Proof. By definition of T, it queries zi only if there is some linear combination of S1, ..., Sn containing
Si that equals a linear combination of Q1, ..., Qt. By Lemma 17, we get that zi is queried by T only
if Si is revealed. Hence, the statement of the lemma follows.

1Note that this might be redundant if we just communicated the whole Si. We choose to keep this step even if it is
redundant to make the pseudocode in Figure 1. In the analysis below the redundancy of these messages is reflected in
Observation 23.
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Refined protocol Πz on input (x, y) ∼ U(Pz):

1: Initialize: v = root of Π, Q1, ..., Qt ⊆ [n] × [m] — sets which parities Bob sends,
initially t = 0

2: while v is not a leaf [ invariant: p(Qi) is lower than p(Qj) when i < j ]
3: Let v0, v1 be children of v
4: if Bob speaks at v then
5: Let Q ⊆ [n]× [m] be the set which parity Bob sends at v
6: Let b = yQ
7: ▷ Bob sends b and we update v ← vb ▷ (B1)

8: for i = 1..t do
9: if p(Qi) ∈ Q then

10: Q← Q+Qi

11: end if
12: end for
13: if Q ̸= ∅ then
14: Insert a copy of Q in Q1, ..., Qt so that invariant holds
15: Let i ∈ [n] be the block containing p(Q)
16: // Li = {Qj ∩ {i} × [m] | p(Qj) ∈ {i} × [m]}
17: // Li denotes linear span of Li without null vector
18: // Si = {i} ×Gxi — a secret set in ith block
19: if H(Si) <

1
10 log2 k + log2 |Li|+ 1

3 then
20: ▷ Alice sends Si; Si is fixed now ▷ (A3)
21: end if
22: ▷ Alice communicates whether Si is in Li ▷ (A2)
23: if Si ∈ Li and Si is not revealed then
24: ▷ Alice sends Si; Si is fixed now ▷ (A3)
25: Si is considered to be revealed
26: ▷ Bob sends ySi ▷ (B2)
27: Find distinct j1, ..., jl, s.t. Q = Qj1 and

(Qj1 + ...+Qjl) ∩ {i} × [m] = Si
28: Q← Q+Qj2 + ...+Qjl + Si
29: Go to 8−th line
30: end if
31: end if

32: else Alice speaks at v
33: Let b be the bit she sends
34: ▷ Alice sends b and we update v ← vb ▷ (A1)
35: end if
36: end while
37: return the value of the leaf v

Figure 1: The modified (deterministic) protocol Πz. The original protocol Π can be recovered
by ignoring lines 8–31 and the red text. Lines 8–31 are used to maintain the invariant and prove
the estimate on the number of revealed sets. The classification (A1), (A2), (A3), (B1), (B2) of the
actions made by Alice and Bob is used in Section 5.4.3. Note that Alice can send more than 1-bit
of information for the message of type (A3). 15



The lemma holds for all r. In particular, if we average over r, then we get that the expected
number of queries made by T is bounded by the expected number of revealed sets in protocol Πz on
a random (x, y) ∼ U(Pz). Therefore, it remains to obtain an upper bound on the expected number
of revealed sets.

5.4.3 Upper bound on the expected number of revealed sets in Πz

For each vertex v of the protocol Πz, define

Pz,v = {(x, y) | Πz reaches vertex v on input (x, y) and gn(x, y) = z}

In other words, if Xv × Yv is the rectangle corresponding to the vertex v in the protocol Πz,
then Pz,v = Xv × Yv ∩ (gn)−1(z).

Essentially, if the protocol Πz has reached the vertex v, then (x, y) can be any element of the set
Pz,v. Now consider the uniform distribution U(Pz) and run Πz on a random pair (x, y) from this
distribution. Then U(Pz,v) is precisely the conditional distribution of the pair (x, y), given that Πz

has reached v. In what follows, we consider (x, y) ∼ U(Pz,v). We will be interested in the entropy
of the projection of this distribution onto x, hence we introduce the following notation

Hv = H(x),

Hv
i = H(xi).

Let Si be the secret set in the i-th block. The set Si depends on xi and, moreover, there is a one-to-
one correspondence between Sis and xis. Therefore, their entropies are equal: H(Si) = H(xi) = Hv

i .
Denote by Lv

i the set Li corresponding to the vertex v, and by Lvi its linear span with the zero
vector removed. That is, |Lvi | = 2|L

v
i | − 1.

Using Fano’s inequality, we can show the following.

Lemma 19. Let v be a vertex of the protocol Πz in which Alice sends a message revealing whether
Si lies in the linear span Lv

i (this is (A2) type of message on Figure 1). Then, if Hv
i ≥ log2 |Lvi |+

1
10 log2 k +

1
3 , then Si does not lie in Lvi with probability at least 1

100 .

Proof. Define Y to be equal to Si if Si ∈ Lvi , and to be equal to any element in Lvi otherwise. Note
that with this definition, P (Si /∈ Lvi ) = P (Si ̸= Y ). Denote this probability by ε. Then, by Fano’s
inequality we have

H(Si)− log2 |Lvi | ≤ H(Si)−H(Y ) ≤ H(Si|Y ) ≤ H(ε) + ε log2 k.

Assume that ε < 1/100. Then

H(Si) <
1

10
log2 k + log2 |Lvi |+H(1/100).

Since H(1/100) < 1/3, we get at a contradiction with the statement of the lemma.

Now let’s show that if at vertex v Alice or Bob sends one-bit message, then the entropy H(x)
on average does not decrease significantly.

Lemma 20. Let Iv : Pz,v → {0, 1} denote the bit of information that Alice or Bob sends at vertex
v. Then

H(x|Iv) ≥ H(x)−H(Iv) ≥ H(x)− 1.
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Proof. We have that
H(x|Iv) +H(Iv) = H(x, Iv) ≥ H(x)

and
H(x|Iv) ≥ H(x)−H(Iv) ≥ H(x)− 1.

In other words, the entropy H of the distribution of x drops by no more than 1 on average on
one step of the protocol. Next, we introduce the deficiency of the distribution. Let

Uv
i =

{
log2 k, if Si is not fixed;

0, if Si is fixed,

and let the deficiency be

Dv =

(
n∑

i=1

Uv
i

)
−Hv.

Note that H(Si) = 0 if Si is fixed. Thus, D
v ≥ 0 for any v, as

∑n
i=1 U

v
i ≥

∑n
i=1H

v
i ≥ Hv. We

will omit the superscript v if the vertex is clear from the context.
Now we consider (x, y) ∼ U(Pz) and introduce some random variables for various types of

messages of Πz on the input (x, y).
For this we consider a finer classification of the messages sent by Alice, compared to the one in

Figure 1:

(A1) A message that Alice sends in Π.

(A2’) A message Si
?
∈ Li, such that we have Hi ≥ log2 |Li|+ 1/3 + 1

10 log2 k before sending this
message. In other words, in these messages Si was not previously fixed.

(A2”) A message Si
?
∈ Li, such that we have Hi < log2 |Li|+ 1/3 + 1

10 log2 k before sending this
message. In other words, in these messages Si was previously fixed.

(A3’) A message that Alice sends to find out the exact value of Si, and Si was not fixed before
sending this message.

(A3”) Same as (A3’) but Si was fixed before sending this message.

For Bob we use the same classification of messages as in Figure 1:

(B1) A message that Bob sends in Π.
(B2) A message in which Bob communicates the value ySi

Let A1, A
′
2, A

′′
2, A

′
3, A

′′
3, B1, B2 denote the number of messages of the corresponding type sent by

the protocol during the whole computation. All of these are random variables depending on (x, y),
which we draw randomly: (x, y) ∼ U(Pz).

The following inequality hold.

Observation 21. EA′
2 ≤ 100 · EB1.

Proof. When Alice sends a message of type (A2’), by Lemma 19 the secret set Si does not lie in
Li with probability at least 1

100 . If it does not lie in Li, the processing of the Bob’s message is
over. Thus, for each query of type (B1), there will be no more than 100 queries of type (A2’) on
average.
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Observation 22. At the end of the computation, the number of fixed Si is greater or equal than A′
3.

In particular, there are at least A′
3 coordinates i such that Ui decreased from log2 k to 0. During

each of these decreases of Uis, D decreases by at least max{0, 9
10 log2 k− 1/3− log2 |Li|} on average.

Proof. By definition, A′
3 is precisely equal to the number of the fixed secret sets Si. When the status

of Si changes from unfixed to fixed, Ui drops from log2 k to 0. Since Ui changes to 0 only when
Hi becomes less than log2 |Li|+ 1/3 + 1

10 log2 k (as ensured by if’s on lines 19 and 23), sending Si
transmits no more than log2 |Li|+ 1/3 + 1

10 log2 k information. Thus, we get the required decrease
of D by at least max{0, 9

10 log2 k − 1/3− log2 |Li|} on average.

Observation 23. Messages of types (B2), (A2”), and (A3”) do not affect D.

Proof.
A message of the type (B2) does not change D since pairs (x, y) ∈ Pz have a property that

g(xi, yi) = zi. Thus, message ySi does not decrease the entropy of the distribution.
Just before a message M of type (A2”) is sent, by definition, we have that Hi < log2 |Li|+1/3+

1
10 log2 k. But in lines 19− 21 it is ensured that if Hi is lower than this threshold, then Si will be
fixed. Thus, Hi is not only lower than log2 |Li|+ 1/3 + 1

10 log2 k, but also equals to 0. Thus, (A2′′)
does not influence D.

By definition, Si is fixed before sending a message of type (A3”). Thus, Hi = 0 and sending Si
does not reveal any information.

Observation 24. At the end of the protocol’s execution,
∑

i |Li| ≤ B1 +B2.

Proof. A new set Q is generated and added to the list of Qis either when a message of type (B1) is
sent, or after a message of type (B2) is sent.

Let’s show how the desired bound follows from these lemmas. Note that if Si is revealed, then
it must be fixed. As a consequence, we get B2 ≤ A′

3 since B2 equals the number of revealed sets
and A′

3 equals the number of fixed ones. Our goal is to upper bound the number of revealed sets.
Thus, we only need to upper bound EA′

3 by E(A1 +B1)/ log2 k, as A1 +B1 is exactly the number
of messages sent by the protocol Π.

Lemma 25. EA′
3 = O(E(A1 +B1)/ log2 k)

Proof. By Lemma 20 messages of type (A1) and (B1) increase D by no more than 1 on average.
The same is true for messages of type (A2’). As a result, due to Observation 22 and Observation 23,

E

(
−A′

3 ·
(

9

10
log2 k − 1/3

)
+
∑
i

log2 |Li|+A1 +B1 +A′
2

)
≥ 0,

since D is always greater or equal than than 0. Applying Observation 21 and rearranging we get

E

(∑
i

log2 |Li|+ 101 ·B1 +A1

)
≥ EA′

3 ·
(

9

10
log2 k − 1/3

)
.

Now we consider two cases.

(1) k ≥ 3
Note that

∑
i log2 |Li| ≤

∑
i |Li| ≤ B1 +B2. Using the fact that B2 ≤ A′

3 and the inequality
above, we obtain
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E (102 ·B1 +A1) ≥ EA′
3 ·
(

9

10
log2 k − 4/3

)
.

Since 9
10 · log2 k > 4/3, we get EA′

3 = O

(
EA1 +B1

log2 k

)
.

(2) k = 2
Note that if we are sending a message of type (A3’) and it is true that |Li| ≤ 1, then D
decreases by at least 1− (1/10 + 1/3) ≥ 1

2 on average. The number of is such that |Li| ≥ 2

does not exceed B1+B2
2 by Observation 24. As a result,

E
(
−1

2
·
(
A′

3 −
B1 +B2

2

)
+A1 +B1 +A′

2

)
≥ 0.

Using B2 ≤ A′
3, we get

E (5/4 ·B1 + 100 ·B1 +A1) ≥ EA′
3 · 1/4.

Thus, we again obtain EA′
3 = O(E(A1 +B1)).

6 Randomized Size and Subspace models

In this section, we will prove Theorem 6, Theorem 7, as well as the randomized part of Theorem 11.

6.1 Proof of Theorem 6

We start with the proof of Theorem 6.
For this we consider a more detailed classification of messages of type (B1) made by Bob:

(B1’) A message about a parity of Q that eventually reduced to ∅ and there were no messages of
type (A2’) in the process.

(B1”) Other messages of type (B1).

The following is a stronger version of Observation 24.

Observation 26. At the end of the protocol’s execution,
∑

i |Li| does not exceed B′′
1 +B2.

Proof. The crucial observation for this proof is that in Bob’s message of type (B1’) Q eventually
reduces to ∅. During the processing of these messages we might reveal several subsets Si. This
results in messages of type (B2) and into increasing of

∑
i |Li|. But on the last step Q becomes an

empty set and does not contribute to
∑

i |Li|. Taking this into account we can replace B1 by B′′
1 in

the proof of Observation 24 and the statement follows.

We also need the following observation.

Observation 27. Messages of types (B1’) increase D by no more than B2 in total.

Proof. Consider a Bob’s message of type (B1’) that sends an XOR of the set Q. Since it is (B1’),
its processing will result in Q = ∅. In particular, the statement of if at line 23 was always true.
Let l denote the number of times a message of type (B2) was sent during the processing of Q. If
l = 0, then Q reduced to ∅ immediately after sift. In this case, this message does not reveal any
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new information, so D stays the same. Now consider a case l > 0. Note that D increases by no
more than 1 when we send a message of type (B1’). Thus, since l > 0, if we sum up all inequalities
∆D ≤ l over all messages of type (B1’), we get the desired bound.

The following observation shows why we want to consider messages of type (B1”) instead of
type (B1).

Observation 28. For messages of type (B1”) the probability of both 0 and 1 message is at least 1
200 .

Proof. By definition, either Q was non-empty in the end or a message of type (A2’) was made. In
the first case, Bob sends a random bit Bern(1/2) (this was shown in Section 5.3). In the second
case, by Lemma 19, Si does not lie in Li with probability at least 1

100 . If Si indeed does not lie in
Li, then the processing of Q will finish with Q being non-empty. In this case Bob’s message will be
Bern(1/2) again. Thus, in both cases, we obtain the desired probability for sending either of the
messages 0 and 1.

However, to finish the proof of the theorem we need to also substitute A1 by something smaller
in the statement of Lemma 25 as A1 might be too large. Consider the situation when Alice sends a
message of type (A1). Let Iv : Pz,v → {0, 1} denote her message depending on her input. Let b be
the bit she sends. When it is sent, the protocol gains H(Pz,v)−H(Pz,v|Iv = b) information. Define
AH1 to be the sum of the information gained by the protocol when Alice was sending messages of
type (A1). Note that EAH1 ≤ EA1 since H(Iv) ≤ 1.

Observation 29. The sum of increases of D when a message of type (A1) is being is sent is
bounded by AH1.

Proof. By definition, D increases by the quantity of information that a message has revealed. AH1

equals exactly the total amount of information that was gained during the sending of messages
(A1).

Now we can prove a stronger version of Lemma 25.

Lemma 30. EA′
3 = O(E(AH1 +B′′

1 )/ log2 k)

Proof. We first comment on how to replace B1 with B′
1, and then how to replace A1 with AH1.

By Observation 27, the contribution of (B1’) to D can be bounded by B2, and by Observation 26,
(B1’) does not contribute to

∑
|Li|. Thus, we can just repeat the same argument as in Lemma 25

using (B1”) instead of (B1). However, a more careful analysis is need in case k = 2 due to the
additional +B2 term.

In the proof of Lemma 25, we use A1 only to bound the growth of D. Thus, we can replace
A1 by AH1 since AH1 exactly equals to the contribution of Alice’s messages to D as stated in
Observation 29.

The full proof can be found in Appendix D.

Now we prove Theorem 6 using these lemmas.

Proof of Theorem 6. As in the previous section, to show an upper bound on the size of the decision
tree we need to prove an upper bound on B2. Again we use B2 ≤ A′

3. Thus, it is enough to upper
bound the expectation of A′

3. We use Lemma 30 and upper bound B′′
1 and AH1 separately.
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For a vertex v of the protocol Π, let Size(v) denote the size of its subtree. After each message of
type (B1”), Size(v) on average decreases at least by a factor of 1/

(
99
100 + 1

2 ·
1

100

)
= 200

199 . As a result,
we get EB′′

1 = O(log Size(root)).
Consider a vertex v at which Alice makes a message of type (A1). Let b denote the bit she sends.

Let p = Pr(b = 0). Denote q = Size(v0)/Size(v), where v0 is the 0−child of v. Let’s estimate the
change of the logarithm of the size of the subtree.

Eb (log2 Size(v)− log2 Size(vb)) = p log2
1

q
− (1− p) log2

1

1− q
≥ H(p).

The last inequality is the application of Lemma 14. As a result, EAH1 = O(log2 Size(root)).
As a result, we obtain the desired bound on the depth of T.

6.2 Proof of the part of Theorem 11 related to sizeRdt
⊕

To prove the bound for sizeRdt
⊕ in Theorem 11, we introduce the following modification of the

deterministic semi-structured protocols, that we will denote Π⊕. In each communication round of
Π⊕, Alice computes an arbitrary Boolean function of her input, while Bob computes the XOR of
some subset of his input. Let b1 be the value computed by Bob and b2 the value computed by Alice.
In this round protocol learns b1 ⊕ b2, but the values b1 and b2 themselves remain unknown.

Let T⊕ be the deterministic decision tree computing f ◦ hn, which queries the XORs of subsets
of variables. It is clear how to transform T⊕ into Π⊕ protocol without increasing the protocol’s size.
Each query of the tree T⊕ is simulated by one round of Π⊕ by definition. Thus, essentially, the tree
Π⊕ will be the same as the tree T⊕. As a result, their sizes are the same.

Therefore, this new model is stronger than the parity decision tree. Hence, it suffices to show a
bound for it. Let’s state this formally.

Let Π⊕ be the randomized version of the protocol Π⊕ that computes f ◦ hn. We claim that

log Size(Π⊕) ≥ Ω(log2 k · Rdt(f)).

The rest of the section is devoted to the proof of this statement. It is easy to see that Lemma 2
holds for this modified version of semi-structured complexity. Therefore, we can assume that h is a
family of linear functions of order k.

Similarly to the proof of Theorem 5, we will simulate this protocol on a random input from Pz.
Hence, it suffices to prove the bound for the deterministic protocol Π⊕.

We will construct a semi-structured protocol Π based on Π⊕, which will copy the actions of Π⊕
as follows. When one round of Π⊕ occurs, Bob computes and sends the XOR of the required subset
of variables b1, and Alice computes and sends the value of the required Boolean function b2. In this
way, we learn the value b1 ⊕ b2 and follow the protocol Π⊕, producing the same output in the end.
However, note that the size of Π may increase exponentially compared to the size of Π⊕ (imagine
that Π⊕ is structured like a bamboo tree). But we will still show, using the way Π⊕ is simulated
by Π, that the depth of the tree T will be small on average. Recall that the tree T is constructed
based on the protocol Π, which in turn is based on the protocol Π⊕.

We use the same notation for the protocol Π as before. Therefore, according to Lemma 30, we
need to show the bound E(AH1 +B′′

1 ) = O(log Sizeroot(Π⊕)) to complete the argument.
We have that the protocol Π simulates Π⊕. Let v be the node of the protocol Π⊕ where the

simulation is currently located. A round of the protocol Π⊕ is divided into two messages of the
protocol Π of types (A1) and (B1). Let Bob send his message b1 first, and then Alice sends b2. Recall
that b1 and b2 are random variables over U(Pz,v). Denote by Q the set whose XOR is computed
and sent by Bob.
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A key fact for proving the necessary bound is the following lemma.

Lemma 31. Let E be the event that Q is not contained in the linear span of Q1, . . . , Qt and
S1, . . . , Sn. Then, when U(Pz,v) is conditioned on E, b1 is independent of b2. Moreover, b1 is
distributed as Bern(1/2).

Proof. For either of the two possible values of b2, b1 will be Bern(1/2) because the number of points
in the affine space such that yQ = 0 and yQ = 1 is the same.

The rest of the proof is very similar to the proof of Theorem 6.
In the proof of Lemma 19, we have shown that the probability of E is at least 1

100 when Bob
sends a message of type (B1”). Therefore, according to the lemma, b1 ⊕ b2 will also be Bern(1/2)
conditioned on E. Thus, analogously to the proof of Theorem 6 we have substantial probability to
move to the left and right child of v. From this, we get that EB′′

1 = O(log Sizeroot(Π⊕)).
Next we bound AH1. When Alice sends her message b2, its entropy is either H(b2|b1 = 0) or

H(b2|b1 = 1) depending on what Bob sent. Since Π⊕ computes b1 ⊕ b2, the entropy H(vb1⊕b2 |b1) is
exactly equal to H(b2|b1), where v0, v1 are the children of v. Therefore, analogously to the proof of
Theorem 6, by Gibbs’ inequality, we obtain that AH1 increases by no more than the decrease in
log2 Sizev(Π⊕) on average. That is, EAH1 = O(log2 Sizeroot(Π⊕)).

6.3 Proof of Theorem 7

To prove Theorem 7, we use the same argument as in (Chattopadhyay et al., 2023). We modify

Bob’s message model. Bob will be allowed to make queries of the form yQ
?
= b about his input y.

The answer to such a query will either be ≪Correct≫ if yQ = b or ≪Incorrect≫ if yQ ̸= b. After Bob
makes such a query, he then sends the message yQ as usual. The cost of Bob’s message is the total
number of queries that received an ≪Incorrect≫ response. Note that all of Alice’s messages still cost
1, as usual. We will refer to this complexity as conditional complexity.

In this model, Bob can easily communicate the membership of y in any arbitrary affine subspace.
A query about membership in an arbitrary affine subspace can be expressed as the following
conjunction:

yQ1 = b1 ∧ yQ2 = b2 ∧ · · · ∧ yQm = bm.

Bob will sequentially ask the questions yQ1

?
= b1, yQ2

?
= b2, . . . until he receives an ≪Incorrect≫ re-

sponse. This would indicate that y does not belong to the subspace. Note that from the perspective
of conditional complexity, the total cost of such a series of messages is 1. Therefore, communicating
membership in an affine subspace can be easily simulated in this model.

Now we will bound the complexity of T.

Lemma 32. The expected number of queries made by T during the simulation of Π is bounded by
O(dc/ log2 k), where dc is the conditional complexity of Π.

Proof. The type of messages that Alice sends does not change, so A1 = O(dc). It remains to
estimate the number of (B1”)-type messages sent by Bob. According to Observation 28, we have
EB′′

1 = O(dc). Thus, using Lemma 30, we obtain the desired bound.

Proof of Theorem 7. As we have shown, we can communicate the membership of y in any arbitrary
affine subspace in the model with conditional complexity. Therefore, the desired bound follows from
Lemma 32.
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6.4 Proof of the Theorem 11 part about sRdt
⊕

In this section we show how to prove the part of Theorem 11 about sRdt
⊕ .

Recall that a randomized decision tree is a distribution over deterministic decision trees. Our
strategy that for every deterministic decision tree sT with subspace queries in the distribution we
will construct a deterministic semi-structured protocol (with the same type of messages) whose
depth will be bounded by the depth of sT . Then, using Lemma 32, we will obtain the desired
bound.

A query on the membership in an arbitrary subspace can be expressed as:

xQ1 = b1 ∧ xQ2 = b2 ∧ · · · ∧ xQm = bm.

Alice and Bob are going to run the semi-structured protocol Π of the same type as in sub-
subsection 5.4.1, that will proceed as follows. For each query Bob sequentially iterates through
i = 1, . . . ,m, computes XOR of his variables from Qi and sends it. If during the processing of
this message players see that Bob’s message is actually of type (B1”), Alice then sends her part
of the XOR for Qi. Since Bob’s message is of type (B1”), the probability that the XOR of their
messages equals bi is no more than 199

200 , according to Lemma 19 and Lemma 31. In other words,
with a probability of at least 1

200 , x will not belong to the affine subspace, meaning that this query
can be finished. If players see that Bob’s message is of type (B1’), Alice does not send her part
of the XOR for Qi. Indeed, in this case, since the query reduced to an empty set players already
learned all the information.

If Bob has iterated through all i = 1, . . . ,m and for all of his (B1”)-type messages xQi = bi
holds, then Alice uses exactly 1 bit to communicate whether x lies in the affine space. She can do
this because Bob has provided all the necessary information.

We have shown that, while processing this tree query, the expected number of (B1”)-type
messages is no more than 200. Moreover, the expected number of (A1)-type messages is no more
than the number of (B1”)-type messages plus 1. Thus, according to Lemma 25, we obtain the
desired bound on the depth of T.

7 Proof of the part of Theorem 9 for Dcc

As in the previous sections we will use the notation introduced in Section 4. Before describing the
decision tree that will simulate a semi-structured communication protocol, we will introduce invariants
that we will maintain during the simulation and discuss some properties of these parameters.

7.1 Invariants

During the algorithm’s execution, we will maintain the variables X,Y,Q, ρ. Here X is the set of the
inputs of Alice that are consistent with the answers to the queries, Y is the set of consistent inputs
of Bob. Q is roughly the list of sets for which Bob had already sent their parities and ρ reflects
which coordinates of z are fixed.

Before describing the algorithm itself, we describe properties that these variables must satisfy.

Definition 13 (Y is Q-fixed). Let Y ⊆ ({0, 1}m)n and Qi ⊆ [n]× [m]. We say that Y is Q-fixed,
where Q = [Q1, ..., Qt], if the following holds:

∀y, y′ ∈ Y, ∀Qi ∈ Q, yQi = y′Qi
.
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Basically, this means that the parity of variables on positions Qi is the same for all inputs in
Y . If Y is Q-fixed and Qi ∈ Q, then we let YQi to be yQi for some y ∈ Y . By Definition 13 YQi is
well-defined.

Definition 14. ((X,Y ) is ρ-fixed). For X ⊆ [k]n, Y ⊆ ({0, 1}m)n, ρ ∈ {0, 1, ∗}n, we say that (X,Y )
is ρ-fixed if the following holds:

(1) ∀i ∈ [n] : ρ(i) ̸= ∗,∀x, x′ ∈ X, xi = x′i,
(2) ∀i ∈ [n] : ρ(i) ̸= ∗,∀x ∈ X, y ∈ Y, g(xi, yi) = ρ(i).

The first condition says that the projection of X onto the i-th block is a singleton. We let Xi to
be equal to xi, for some x ∈ X. This notation is correctly defined since xi is the same for all x ∈ X.
The second condition essentially means that the value of the function g in the i-th block is always
equal to ρ(i).

Definition 15 (ρ-Structured-Triple). Consider X ⊆ [k]n, Y ⊆ ({0, 1}m)n, ρ ∈ {0, 1, ∗}n and
Qj ⊆ [n]× [m] for j = 1, . . . , t.

Define Li = {Qj ∩ ({i}× [m]) | p(Qj) ∈ {i}× [m]}. That is, Li contains intersections of Qj with
i−th block, whose principal variable touches it.

Let Li to be equal to the linear span of Li with zero vector removed.
We say that the triple (X,Y,Q = [Q1, ..., Qt]) is ρ-structured if the following holds:

(1) X ̸= ∅, Y ̸= ∅,
(2) p(Qi) is lower than p(Qj) if i < j,
(3) Y is Q-fixed, and Y is an affine subspace of co-dimension t,
(4) (X,Y ) is ρ−fixed,
(5) ∀x ∈ X, i ∈ [n] : ρ(i) = ∗ ↔ {i} ×Gxi /∈ Li,
(6) For any i such that ρ(i) ̸= ∗, it holds that {i} ×GXi can be expressed as a linear combination

of Q1, ..., Qt.

Note that condition (2) implies that Qis are linear independent. Thus, by condition (3), we get
that Y is essentially a solution to the system of linear equations given by Q1, ..., Qt.

Lemma 33. Let (X,Y,Q = [Q1, ..., Qt]) be ρ-structured, and let x ∈ X be arbitrary. Let Si =
{i} ×Gxi. Then, no linear combination of Q1, ..., Qt equals a linear combination of S1, ..., Sn, in
which there is a set Si such that ρ(i) = ∗.

Proof. Assume the contrary. Let this linear combination be Qj1 + ...+Qjl = I, where j1 < ... < jl.
If there are many linear combinations, then choose one with the greatest j1. Let i be the block
of the variable p(Qj1). Then, I ∩ {i} × [m] must be equal to Si, since I ∩ {i} × [m] ̸= ∅. By
(5) it follows that ρ(i) ̸= ∗, since Si lies in Li. By (6), it is ensured that a linear combination
Qj1 + ...+Qjl + Si = I + Si is also in the linear span of {Q1, ..., Qt}. I + Si is contained in blocks
strictly higher than the i-th block and, by assumption, is equal to a linear combination of S1, ..., Sn
containing a set Si such that ρ(i) = ∗. Therefore, we obtained a contradiction with the maximality
of j1.

Lemma 34 (Arbitrary Extension). Let (X,Y,Q = [Q1, ..., Qt]) be ρ-structured. Then for any
z ∈ {0, 1}n that agrees with ρ (that is, ρ(i) = zi for all i, such that ρ(i) ̸= ∗), there exist
x ∈ X, y ∈ Y such that

∀i, g(xi, yi) = zi.

24



Proof. Consider any x ∈ X, and let Si = {i} × Gxi . Let F = {i | ρ(i) = ∗} be the set of free
coordinates. Consider any i such that ρ(i) = ∗. By Lemma 33, it follows that Si does not lie in the
linear span of {Q1, ..., Qt} ∪ {Si | ρ(i) ̸= ∗}. Thus, Si is linearly independent of {Q1, ..., Qt} and it
follows that each of the conditions ySi = 0 and ySi = 1 is satisfied by some input. In particular,
it follows that there exists y ∈ Y such that ySi = zi. Let X ′ = {x}, Y ′ = {y ∈ Y | ySi = zi},
Q′ ← Q∪ {Si}, ρ′(j) = zj if j = i and ρ′(j) = ρ(j) otherwise. Note that ρ′ contains one less ∗ than
ρ. Thus, we can proceed by induction on ρ′-structured triplet (X ′, Y ′,Q′).

7.2 Description of the algorithm of T

Next we describe the simulation of Π by the tree T . We denote by X the set of available values
for x, and by Y the set of available values for y. Let Q1, ..., Qt be the queries made by Bob, ρ be
a function such that ρ(i) = zi if we have queried zi, and ρ(i) = ∗ if we have not yet queried it.
Initially, t = 0, X = [k]n, Y = ({0, 1}m)n, ρ = ∗n. We will also maintain a variable F ⊆ [n], which
initially equals ∅. It will be used later for complexity analysis, and it is equal to the subset of fixed
coordinates. Over the course of the simulation some indices will be added to F . The pseudocode of
the algorithm can be seen in Figure 1.

Suppose we are currently at vertex v of the protocol Π. Let v0 and v1 be the children of v.
It is easy to process the Alice’s messages. Suppose Alice sends a message at a vertex v. Then X

is divided into two parts: X = X0 ⊔X1, corresponding to vertices v0 and v1. We descend to the
vertex vb, where X

b is at least half the size of X.
Now consider the case where Bob sends a message about y’s parity of the set Q ⊆ [m]n at a

vertex v. As with the randomized algorithm, we run it through the sift procedure. In this process,
we also maintain the XOR of the messages that we subtract from it during the sift procedure. This
XOR will be denoted by b. Thus, the value of Bob’s original message is the value of transformed
one XORed with b.

If after running Q through sift it becomes an empty set, then the value of Bob’s original message
can computed through his previous messages and equals b. Therefore, we simply descend to the
vertex vb.

If Q is non-empty, then we insert its copy into the sequence Q1, ..., Qt in such a way that
the invariant on principal variables is maintained. Let i be the block that contains p(Q). Set
X0 = {x ∈ X | {i} ×Gxi ∈ Li}. That is, X0 contains all x ∈ X such that the secret set {i} ×Gxi

falls within the linear span Li. Let X
1 = X \X0.

First of all, if |X1| < 1
100 |X|, then we choose the most frequent element a of Xi and update

X := {x ∈ X | xi = a}. We add index i to F .
If the size of X1 is at least 1

100 of X or ρ(i) ̸= ∗, then we replace X with X1. We will show
that X1 cannot be empty. We will also show that the parity of y on Q can both 1 and 0 without
violating any restrictions. For definiteness, we set it to 1, narrowing Y accordingly. The value of
the original Bob’s message equals to b⊕ 1. Therefore, we descend to the vertex vb⊕1.

Now consider the case when the size of X1 is less than 1
100 and ρ(i) = ∗. In this case, i ∈ F due

to the if above, so {xi | x ∈ X} is a singleton. We query zi and set ρ(i)← zi. We filter Y so that
it satisfies yS = zi to keep (X,Y ) ρ-structured.

Since {i} ×GXi falls into Li, there exist distinct j1, ..., jl such that

(Qj1 + ...+Qjl) ∩ {i} × [m] = S.

Moreover, Q must participate in this linear combination, which we will prove later. Therefore,
we consider Q = Qj1 . We set Q equal to Q+Qj1 + ...+Qjl + S. At the same time, b needs to be
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XORed with YQj1
⊕ ...⊕ YQjl

⊕ zi. After this, we repeat the same procedure with Q, starting with
sift.

7.3 Correctness of the algorithm of T

Lemma 35. (X,Y,Q) - ρ-structured is a while-loop invariant.

First we show how the correctness of T follows from the above lemma before proving it. During
the algorithm’s execution, the invariant is maintained that (X,Y,Q) is ρ-structured. Therefore, by
Lemma 34 when the simulation reaches a leaf v, there exist x ∈ X, y ∈ Y such that ∀i g(xi, yi) = zi.
Since X × Y are the inputs on which Π reaches v, the value of the leaf v will be equal to the f(z).
Hence, T outputs the correct answer.

Proof of Lemma 35. It’s easy to verify that the invariant is maintained if Alice sends a message at
a vertex v.

Therefore, it remains to check that the invariant holds when Bob sends a message at a vertex v.
We will show that all properties except for the 6th are met every time the algorithm enters the

lines 14 or 2.
First, note that the principal coordinate invariant is maintained since we perform a sift on Q

before we insert its copy into Q1, ..., Qt.
Second, we’ll show that Y is always Q-fixed. At line 31, Y is filtered because Q is added to Q. At

line 25, Y is filtered because S is contained in the linear span of Q after the set Q+Qj2 + ...+Qjl +S
is processed.

Y is filtered to exactly comply the new sets added to Q. Since Q is linearly independent, Y will
have co-dimension t.

Next, note that (X,Y ) is ρ-fixed. It suffices to note that when ρ(i)← zi occurs, we appropriately
filter down X and Y .

Let’s show that the condition (1) is met. X cannot become empty at line 20. We check that it
cannot become empty at line 31. It could only become empty if ρ(i) ̸= ∗ and |X1| = 0. However,
this could not happen since |X0| = 0 in this case due to properties (4) and (5).

Finally, let’s show that (5) is met. Note that we either update X ← X1, or X ← {x ∈ X0 | xi =
a}.

We prove that in the first case, the invariant is met. If ρ(i) = ∗, then X1 is simply the set of all
x ∈ X, such that {i} ×Gxi does not lie in Li. Therefore, by definition, (5) is met. If ρ(i) ̸= ∗, then
{i} ×GXi is already in Li, and hence, (5) is met.

We prove that in the second case, the invariant is met. In the second case, by the algorithm’s
description, ρ(i) becomes not equal to ∗. Any x ∈ X0 lies in Li. Therefore, (5) is met.

It remains to show that (6) is met after several runs of Q through sift.
Note that (6) can become violated only at line 24, where we change ρ(i) ← zi. We need

{i} × GXi to be represented by a linear combination of Q1, ..., Qt. Note that we add a new set
Q+Qj2 + ...+Qjl +S at the line 27. Therefore, after it is processed and added to Q, S = {i}×GXi

will lie in the linear span of all Qi.

7.4 Number of queries made by T

To analyze the complexity of T , we introduce the following notation and parameters. For convenience
we think of T as a tree, where we have vertices for all intermediate steps described in Figure 2. The
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Tree T on input z:

1: Initialize: v = root of Π, Q1, ..., Qt ⊆ [n] × [m] — queries made by Bob, initially
t = 0, X = [k]n, Y = ({0, 1}m)n, ρ = ∗n, F = ∅.

2: while v is not a leaf [ invariant: (X,Y, [Q1, ..., Qt]) — ρ-structured triple ]
3: Let v0, v1 be children of v
4: if Bob speaks at v then
5: Let Q ⊆ [n]× [m] be the query that Bob communicates at v ▷ B1
6: b← 0
7: for i = 1..t do
8: if p(Qi) ∈ Q then
9: Q← Q+Qi; b← b⊕ YQi

10: end if
11: end for
12: if Q ̸= ∅ then
13: Insert Q in Q1, ..., Qt so that condition (1) from ρ-Structured-Triple is satisfied
14: Let i ∈ [n] — be the block, containing p(Q)
15: // Li = {Qj ∩ {i} × [m] | p(Qj) ∈ {i} × [m]}
16: // Li denotes linear span of Li without null vector
17: Let X0 = {x ∈ X | {i} ×Gxi ∈ Li}, X1 = X \X0.
18: if |X1| < 1

100 · |X| then
19: a← argmaxa |{x ∈ X | xi = a}|
20: X = {x ∈ X0 | xi = a};F ← F ∪ {i} ▷ A3
21: end if
22: if |X1| < 1

100 · |X| and ρ(i) = ∗ then
23: S ← {i} ×Ga

24: Query zi and update ρ(i)← zi
25: Y = {y ∈ Y | yS = zi}
26: Find distinct j1, ..., jl s.t. Q = Qj1 and (Qj1 + ...+Qjl) ∩ {i} × [m] = S
27: Q← Q+Qj2 + ...+Qjl + S ▷ B2
28: b← b⊕ YQj2

⊕ ...⊕ YQjl
⊕ zi

29: Go to the 7-th line of the algorithm
30: else
31: X ← X1; Y = {y ∈ Y | yQ = b⊕ 1}; v ← v1 ▷ A2
32: end if
33: else Q = ∅
34: v ← vb
35: end if
36: else Alice speaks at v
37: Let X0 ⊔X1 = X be partition according to Alice’s function at v
38: Let b ∈ {0, 1} be such that |Xb| ≥ 1

2 · |X|
39: X ← Xb; v ← vb ▷ A1
40: end if
41: end while
42: return the value of the leaf v

Figure 2: The algorithm of the tree T on input z. The symbols �A1, A2, A3, B1, B2 denote types
of actions. This classification is used in analyzing the number of queries made by T .
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complexity of T is still measured in the number of queries to z. Suppose the computation is in a
vertex v in T . Let Xv denote the set X when T reaches v. Let x ∼ U(X). Let

Hv := H(x) = log2 |X|,

Hv
i := H(xi).

Lemma 36. Let v correspond to the vertex of the protocol T where T queries whether |X1| < 1
100 ·|X|.

Then, if Hv
i ≥ log2 |Lvi |+ 1

10 log2 k +
1
3 , then |X

1| ≥ 1
100 · |X|.

Proof. Consider x ∼ U(X). Let Si = {i} ×Gxi . Let Y to be equal to Si if Si ∈ Lvi , and to be equal

to any element in Lvi otherwise. Note that with this definition, |X1|
|X| = P (Si /∈ Lvi ) = P (Si ̸= Y ),

denote this probability by ε. Then, by Fano’s inequality we have

H(Si)− log2 |Lvi | ≤ H(Si)−H(Y ) ≤ H(Si|Y ) ≤ H(ε) + ε log2 k.

Assume that ε < 1/100. Then

H(Si) <
1

10
log2 k + log2 |Lvi |+H(1/100).

Since H(1/100) < 1/3, we get at a contradiction with the lemma’s statement.

We introduce the deficiency of the distribution:

Uv
i =

{
log2 k, i /∈ F v,

0, i ∈ F v

Dv =

(
n∑

i=1

Uv
i

)
−Hv

Note that Dv ≥ 0 for any v, as
∑n

i=1 U
v
i ≥

∑n
i=1H

v
i ≥ Hv. We will omit the superscript v if it

is clear from the context.
Let A1, A2, A3, B1, B2 represent the number of actions of the corresponding type that T performed

on input z.

Observation 37. After each action of type (A2), the entropy of X decreases by no more than
log2 100 ≤ 7.

Proof. When the update X ← X1 happens, there are two cases. Either ρ(i) ̸= ∗ or |X1| ≥ 1
100 · |X|.

In the first case, xi = x′i for any x, x
′ ∈ X. So, X1 = X and entropy does not decrease at all. In

the second case, the entropy decreases by no more than 7 by definition.

Observation 38. At least A3 times Ui decreased from log2 k to 0. During this decrease, D decreased
by at least max{0, 9

10 log2 k − 1/3− log2 |Li|}.

Proof. When an action of type (A3) happens, Hi becomes equal 0, and Ui changes from log2 k to 0.
Thus, D decreases by at least max{0, 9

10 log2 k − 1/3− log2 |Li|}.

Observation 39. At the end of the execution of T ,
∑n

i=1 |Li| does not exceed B1 +B2.

Proof. Q is being created during a message of type (B1) or a message of type (B2), so the total
number of Q’s is upper bounded by B1 +B2.
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Let’s demonstrate how the desired bound follows from these lemmas. Note that B2 ≤ A3. Note
that A3 equals to the number of queries made by T . Therefore, the only thing we need to do is to
upper bound A3 by O((A1 +B1)/ log2 k), as the sum of A1 +B1 represents the number of actions
performed by the protocol Π.

Lemma 40. A3 = O((A1 +B1)/ log2 k).

Proof. A message of type (A1) increases D by no more than 1. A message of type (A2) increases D
by no more than 7 according to Observation 37. Consequently, due to Observation 38,

E

(
−A3 ·

(
9

10
log2 k − 1/3

)
+
∑
i

log2 |Li|+A1 + 7 ·A2

)
≥ 0,

since D is always no less than 0. Applying Observation 39 and bounding B2 ≤ A3 we get

B1 +A1 + 7 ·A2 ≥ A3 ·
(

9

10
log2 k − 4/3

)
.

If k ≥ 3, then 9
10 log2 k − 4/3 > 0, obtaining the desired bound on A3.

If k = 2, then we use the following argument.
Note that if, during an action of type (A3), it was true that |Li| ≤ 1, then D decreases by at

least 1− (1/10 + 1/3) ≥ 1
2 . The number of i such that |Li| ≥ 2 does not exceed B1+B2

2 according to
Observation 39. Consequently,

−1

2
·
(
A3 −

B1 +B2

2

)
+A1 + 7 ·A2 ≥ 0.

Using B2 ≤ A3, we get

5/4 ·B1 +A1 + 7 ·A2 ≥ A3 · 1/4.

Since A2 ≤ B1, we obtain A3 = O(A1 +B1).

8 Deterministic Size and Subspace models

In this chapter, we will prove Theorem 9 for sizeDcc
→⊕ and sDcc

→⊕, as well as part of Theorem 11
about deterministic complexities.

8.1 Proof of the Theorem 9 part for sizeDcc
→⊕

We begin by proving that log sizeDcc
→⊕(f ◦ hn) = Ω(log2 k · Ddt(f)).

To do this, we will consider a more detailed classification of type (B1) messages sent by Bob:

(B1’) A message about the y’s parity on Q, which reduces to ∅ at the end of its processing.
(B1”) Other messages of type (B1).

The following lemma is an enhanced version of Observation 39.

Lemma 41. At the end of the protocol execution,
∑

i |Li| does not exceed B′′
1 +B2.

Proof. Since Q becomes ∅ after Bob’s type (B1’) message, (B1’) does not contribute to
∑

i |Li|.
Therefore, the statement follows from Observation 39.
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Note that a message of type (B1’) does not increase D. A message type (B1’) query only triggers
actions of types (B2) and (A3). However, for the proof of Lemma 40, we do not need an upper
bound on B2 and A3. Therefore, in the proof of Lemma 40, we can use B′′

1 instead of B1.
Note that the algorithm reaches line 31 during a message of type (B1”). As indicated in the

description of the algorithm, the y’s parity of the set Q can be either 0 or 1. Therefore, let’s modify
line 31 to v ← vb, where the size of the subtree vb is smaller than that of v1−b. After making this
modification, we obtain that B′′

1 ≤ log2 Sizeroot.
However, we also need to replace A1 with something smaller in the proof of Lemma 40, as A1

can be too large. Let us consider the situation when Alice sends a type (A1) message. Let’s modify
line 38, where the algorithm chooses b. According to Lemma 14, we can choose b ∈ {0, 1} such that
log2 Sizev − log2 Sizevb ≥ H −H ′, where H ′ denotes the entropy of x after Alice’s message. Define
AH1 as the sum of H −H ′ over all of Alice’s messages.

In the proof of Lemma 40, we only use A1 to estimate the growth of D. Therefore, we can
replace A1 with AH1, as AH1 precisely corresponds to the contribution of Alice’s messages to D.
Thus, we obtain an even stronger version of Lemma 40:

Lemma 42. EA3 = O(E(AH1 +B′′
1 )/ log2 k).

The proof of this lemma is fully analogous to Lemma 30, and therefore is omitted.
Now, from Lemma 42, it immediately follows that log sizeDcc

→⊕(f ◦ hn) = Ω(log2 k · Ddt(f)).

8.2 Proof of Theorem 9 for sDcc
→⊕, and also Theorem 11 for sDdt

⊕ and sizeDdt
⊕

To prove the bound for sizeDdt
⊕ in Theorem 11, we will consider a modification of the semi-structured

protocol described in Section 6 for sizeRdt
⊕ . The subsequent proof for this model follows exactly the

same reasoning as in Section 6. In the randomized model, B′′
1 was bounded because Bob’s message

of this type had a 1
2 probability of being either 0 or 1. In the deterministic model, we can choose

the value directly by modifying the line 31 of the algorithm accordingly. Therefore, B′′
1 is bounded

in exactly the same way. AH1 is also bounded similarly, as we described for the sizeDcc
→⊕ model.

To prove that log sDcc
→⊕(f ◦ hn) = Ω(log2 k · Ddt(f)), let us consider the conditional complexity

defined in Section 6. By modifying the line 31 of the algorithm, we can force an ≪Incorrect≫ value
of the Bob’s message. Repeating the proof from Section 6 for sRcc

→⊕, we obtain a similar result for
sDcc

→⊕.
The same reasoning applies to sDdt

⊕ . In Section 6, we simulated it using the semi-structured
protocol Π and then proved bounds on AH1 and B′′

1 . The same simulation and proof also work for
sDdt

⊕ .

9 Majority Gadget

In this section, we describe a more general version of a gadget reduction.

Proof of Lemma 12. For simplicity assume m = 4 · k. Consider a MAJ4k(x1, ..., x4k) gadget. Define
a new basis y, where y2i+1 = x2i+1 + x2i+2 and y2i = x2i. Let us give variables y2i+1 to Alice, and
variables y2i to Bob for all i.

Partition variables x1, ..., x4k into blocks of 4 elements each. For i−th block, Alice will either fix
y4i+1 = 1, y4i+3 = 0 or y4i+1 = 0, y4i+3 = 1. In both of these cases, the i−th block of x-variables
will strictly contain three 1’s and one 0, or three 0’s and one 1.

30



More precisely, if Alice fixes y4i+1 = 1, y4i+3 = 0, then the number of ones in the block will be
determined by Bob’s variable y4i+4. If Alice does the other fix, then the number of ones in the block
will be determined by y4i+2.

Note that given such a restriction on Alice’s variables, we have that

MAJ4k(x1, ..., x4k) = MAJk(MAJ4(x1, x2, x3, x4), ...,MAJ4(x4k−3, x4k−2, x4k−1, x4k)).

For each i, MAJ4(x4i+1, x4i+2, x4i+3, x4i+4) = Ind2(y4i+1, y4i+2, y4i+4) on the restricted subset
of ys.

Thus, Rdt
⊕ (MAJ4k) = Ω(Rdt(MAJk)) and, more generally, for any relation f ⊆ {0, 1}n ×R,

Rdt
⊕ (f ◦MAJn4k)≫ Rcc

→⊕(f ◦MAJnk ◦ Indn·k
2 )≫ Rdt(f ◦MAJnk)≫ k · Rdt(f).

Here α ≫ β denotes α = Ω(β). The first inequality is due to Lemma 2 and the fact that the
change of basis does not change parity decision tree complexity. The second inequality is Corollary 8
applied to Ind2 gadget. The third inequality is explained in Appendix B.

Proof of Theorem 13. As we have noted, the change of basis does not affect parity decision tree
complexity. Thus,

Rdt
⊕ (f ◦ gn) = Ω(Rdt

⊕ (f ◦ rn ◦ hn·m))

Since h has linear diversity ≥ 2, we can apply Theorem 11, lifting f ◦ rn using h.

10 Applications

10.1 Recursive Majority Function

Let MAJ⊗1
3 := MAJ3 be the majority function that returns 1 if at least two of its three input bits

equal to 1, otherwise it returns 0.
For k > 1, define

MAJk3(x1, ..., x3k) = MAJ3(MAJk−1
3 (x1, ..., x3k−1),MAJk−1

3 (x3k−1+1, ..., x2·3k−1),MAJk−1
3 (x2·3k−1+1, ..., x3k))

In Magniez et al. (2010), it is shown that

Ω(2.57143k) ≤ Rdt(MAJ⊗k
3 ) = O(2.64944k)

Using our results, we can show that Rdt
⊕ (MAJ⊗k

3 ) = Ω(Rdt(MAJ⊗k
3 )). Thus, parity queries do

not help in computing MAJ⊗k
3 .

Due to the following lemma, we can use MAJ⊗2
3 as a gadget.

Lemma 43. MAJ⊗2
3 has linear diversity 2.

The proof of this lemma can be found in Appendix C.
Together with Theorem 11 this lemma implies Rdt

⊕ (MAJ⊗k+2
3 ) = Ω(Rdt(MAJ⊗k

3 )). Note that

Rdt(MAJ⊗k+2
3 ) = O(Rdt(MAJ⊗k

3 )), since we can compute MAJ⊗k+2
3 by computing 9 times MAJ⊗k

3 .
So, the desired bound is obtained.

The same approach can be applied to formulas having the form of complete binary AND-OR-tree.
In other words, this function is obtained by repeated iteration of f(x) = (x1 ∨ x2) ∧ (x3 ∨ x4). It
was shown in Santha (1991) that Rdt of this function is at least n0.7537..., where n is the number of
inputs. Since f can be used as a gadget, we translate this result to parity decision trees.
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10.2 Quantum Complexity

Our lifting theorem can be applied to exhibit a separation between randomized parity decision tree
complexity and bounded-error quantum complexity. Let k ≤ log n. It was shown in Bansal and

Sinha (2020) that there is a ⌈k/2⌉ versus
∼
Ω(n1−

1
k ) separation between the quantum and randomized

query complexity. The separation was shown for a partial function f called k-fold Forrelation.
Using our result, we can lift this separation to randomized parity query complexity. Consider

the function f ◦ Indn
2 . On the one hand, its quantum complexity is the same as the quantum

complexity of f (up to a factor), since a quantum protocol can extract inputs to f from Ind2 in
constant number of additional queries. On the other hand, by Theorem 5, the randomized parity
query complexity of f ◦ Indn

2 is no less than its randomized query complexity. Hence, we obtain the
same separation even if our query model can ask parity queries.

An alternative method to obtain separation between randomized parity query and quantum
complexity was given in Blais et al. (2015). They also relied on the result of Bansal and Sinha
(2020). They used Fourier analysis and properties of k-Fold Forrelation to derive their result. In
contrast, our lifting theorem can lift any function f that exhibits the separation.
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A Proof of Lemma 4

First, let’s prove the following lemma.

Lemma 44. Let m ≥ 10, and let f1, ..., f24/5·m : {0, 1}m → {0, 1} be functions satisfying (1) from
Definition 1. Let f : {0, 1}m → {0, 1} be a random function chosen uniformly from those that satisfy
(1). Then f ⊕ fi is non-constant ∀i with probability of at least 1

2 .

Proof. There are a total of 2m − 1 options for f . Of these, 24/5·m options are forbidden. Therefore,
the desired probability is at least

1− 24/5·m

2m − 1
≥ 1/2.

Lemma 45. For any i, the probability that gi satisfies (1) is at least 2m−1−2m.

Proof. There are a total of 2m − 1 linear non-constant functions, and a total of 22
m

functions.
Therefore, the desired probability is (2m − 1)/22

m ≥ 2m−1−2m

Proof of Lemma 4. Let’s estimate the probability that gi satisfies (1) from Definition 1. There are
a total of 2m − 1 linear non-constant functions, and a total of 22

m
functions. Therefore, the desired

probability is (2m − 1)/22
m ≥ 2m−1−2m . Hence, the expected number of such i for which gi is linear

and non-constant is at least 2m−1. By Markov’s inequality, we obtain that the probability of having
at least 24/5·m linear non-constant functions among gi tends to 1. Denote by I ⊆ [22

m
] the indices

of these non-constant linear functions. Let I ′ obtained from I by removing the largest indices if
|I| > 24/5·m. Thus, |I ′| = 24/5·m with probability approaching to 1.

By Lemma 44 for each i ∈ I ′, we have

P (gi ̸= gj ∀ j < i, j ∈ I ′ | g1, ..., gi−1, I) ≥
1

2
.

Thus, the expected number of i for which the condition is satisfied is at least 1
2 ·2

4/5·m conditioned

on the event |I| ≥ 24/5 ·m. Applying Markov’s inequaility again and the fact that P (|I| ≥ 24/5 ·m)→
1, we get that with probability tending to 1 the number of i for which the condition is satisfied is
at least 22/3·m. Denote J to be the set of these indices. {gi | i ∈ J} satisfy (1) and (2), so linear
diversity of g is at least 22/3·m with probability tending to 1.

B Finishing proof of Lemma 12

Here we explain why for any relation f ⊆ {0, 1}n ×R, Rdt(f ◦MAJnm) = Ω(m · Rdt(f)) holds.
To demonstrate this, we use an approach similar to the secret sets technique. For simplicity, let

m = 2 · k + 1. Consider an assignment to MAJm where the first k inputs are equal to 1, and the
remaining k + 1 inputs are equal 0. Assume we want MAJm function to output a bit b ∈ {0, 1}. To
achieve this, we randomly select a 0 in this assignment and change it to b. The new assignment
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forces MAJm to output b. Moreover, a randomized decision tree must make Ω(k) queries on average
to identify the hidden b in this assignment. By hiding each xi in ith MAJn gadget, we can apply
the same simulation method as in the secret sets technique. The randomized decision tree is forced
to make at least Ω(k) queries in each coordinate on average to force us to query the value of a
hidden variable. Thus,

Rdt(f ◦MAJnm) = Ω(m · Rdt(f)).

C Proof of Lemma 43

Proof. Consider the following 2 partial assignments of the input to MAJ⊗2
3 :

(1) (1, 0, b1, 0, 0, b2, 1, 1, 1)
(2) (0, 0, b1, 1, 0, b2, 1, 1, 1)

Variables corresponding to b1 and b2 are given to Bob. Other variables are given to Alice.
In the first partial assignment the value of MAJ⊗2

3 equals b1, while in the second it is equal to
b2. Thus, Ind2 can be reduced to MAJ⊗2

3 . Since Ind2 has linear diversity 2, so has MAJ⊗2
3 .

D Full proof of Lemma 30

Proof. We consider two cases: k ≥ 100 and k = 2. The case 2 < k < 100 follows from the case
k = 2.

Case k ≥ 100. By Lemma 20 and Observation 29 messages of types (A1), (B1”), (A2’) increase D
by no more than AH1 +B′′

1 +A′
2 in total. Messages of type (B1’) increase D by no more than B2

in total by Observation 27. As a result, due to Observation 22 and Observation 23,

E

(
−A′

3 ·
(

9

10
log2 k − 1/3

)
+
∑
i

log2 |Li|+AH1 +B′′
1 +A′

2 +B2

)
≥ 0,

since D is always greater or equal than than 0. Applying Observation 21 and rearranging we get

E

(∑
i

log2 |Li|+ 101 ·B′′
1 +AH1 +B2

)
≥ EA′

3 ·
(

9

10
log2 k − 1/3

)
.

Note that
∑

i log2 |Li| ≤
∑

i |Li| ≤ B′′
1 + B2. Using the fact that B2 ≤ A′

3 and the inequality
above, we obtain

E
(
102 ·B′′

1 +AH1

)
≥ EA′

3 ·
(

9

10
log2 k − 1/3− 2

)
.

Since 9
10 · log2 100 > 1/3 + 2, we get EA′

3 = O

(
EAH1 +B′′

1

log2 k

)
.

Thus, we obtain EA′
3 = O(E(AH1 +B′′

1 )).
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Case k = 2. To handle this case, we need a more careful approach. First, we are going to modify
the 19th line of the modified protocol Πz (Figure 1):

if H(Si) <
1

10
log2 k +

1

3
or |Li| ≥ 2 then

With this modification, Si will be fixed not only if Si has low entropy, but also if Q is not the
first set in the ith block. Note that log2 |Li| = 0 if |Li| = 1. Thus, the first part of the statement is
the same as before.

We also introduce another modification. Bob will send a message of type (B1) after the processing
of Q. See Figure 3. The 7th line of Figure 1 is moved to the 31th line of Figure 3. Since, during the
processing of Q, we subtract from Q sets for which we know y’s XOR on them, sending y’s XOR on
the initial set Q, is the same as sending y’s XOR on the modified Q.

The definition of deficiency D and the types of messages (A1), (A2’), (A2”), (A3’), (A3”), (B1’),
(B1”) are the same as before. AH1 is also defined in the same way. However, we must introduce a
new variable L3.

Let L3 be the number of times the left part of the if on the 18th line was false and the right
part was true.

We show the following bound on L3.

Observation 46. L3 ≤ A′
2.

Proof. Consider a moment when L3 increases by one. Since H(Si) ≥ 1
10 log2 k +

1
3 , then at some

previous step Alice sent a message of type (A2’) in the ith block. Note that L3 could increase by
one no more than once for each block i because after Si is fixed, the first part of the 18th line’s if
will be always true. Thus, L3 cannot exceed A′

2.

We also restate observations that were stated in Section 5.4.3 and Section 6.

Observation 47. EA′
2 ≤ 100 · EB′′

1 .

Proof. The proof is the same as the one for Observation 21.

Observation 48. Each message of type (B1’) does not change D.

Proof. Since Q eventually reduced to ∅, the Bob’s message has not revealed any new information.

Observation 49. Messages of types (B2), (A2”), (A3”) do not change D.

Proof. The proof is analogous to the one for Observation 23.

Observation 50. Alice’s messages of type (A1) increase D by at most AH1.

Proof. The proof is the same to the one for Observation 29.

Lemma 51. A′
3 = O(AH1 +B′′

1 ).

Proof. A message of type (A3’) decreases D by at least 9
10 log2 k − 1/3 on average except when it

has happened due to the second part being true and the first part being false in the 18th line’s if.
Thus, D has decreased by 9

10 log2 k − 1/3 on average at least A′
3 − L3 times.

Messages of types (A1), (B1”), and (A2’) increase D by no more than AH1 +B′′
1 +A′

2. Thus,
since D is non-negative, we get

E
(
−(A′

3 − L3) ·
(

9

10
log2 k − 1/3

)
+AH1 +B′′

1 +A′
2

)
≥ 0.
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Refined protocol Πz on input (x, y) ∼ U(Pz):

1: Initialize: v = root of Π, Q1, ..., Qt ⊆ [n] × [m] — sets which parities Bob sends,
initially t = 0

2: while v is not a leaf [ invariant: p(Qi) is lower than p(Qj) when i < j ]
3: Let v0, v1 be children of v
4: if Bob speaks at v then
5: Let Q ⊆ [n]× [m] be the set which parity Bob sends at v
6: Let b = yQ

7: for i = 1..t do
8: if p(Qi) ∈ Q then
9: Q← Q+Qi

10: end if
11: end for
12: if Q ̸= ∅ then
13: Insert a copy of Q in Q1, ..., Qt so that invariant holds
14: Let i ∈ [n] be the block containing p(Q)
15: // Li = {Qj ∩ {i} × [m] | p(Qj) ∈ {i} × [m]}
16: // Li denotes linear span of Li without null vector
17: // Si = {i} ×Gxi — a secret set in ith block
18: if H(Si) <

1
10 log2 k +

1
3 or |Li| ≥ 2 then

19: ▷ Alice sends Si; Si is fixed now ▷ (A3)
20: end if
21: ▷ Alice communicates whether Si is in Li ▷ (A2)
22: if Si ∈ Li and Si is not revealed then
23: ▷ Alice sends Si; Si is fixed now ▷ (A3)
24: Si is considered to be revealed
25: ▷ Bob sends ySi ▷ (B2)
26: Find distinct j1, ..., jl, s.t. Q = Qj1 and

(Qj1 + ...+Qjl) ∩ {i} × [m] = Si
27: Q← Q+Qj2 + ...+Qjl + Si
28: Go to 8−th line
29: end if
30: end if

31: ▷ Bob sends b and we update v ← vb ▷ (B1)
32: else Alice speaks at v
33: Let b be the bit she sends
34: ▷ Alice sends b and we update v ← vb ▷ (A1)
35: end if
36: end while
37: return the value of the leaf v

Figure 3: A slight modification of Figure 1. The 18th line if ’s condition is weakened, and Bob is
now sending a message of type (B1) after the red part.
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Applying L3 ≤ A′
2 ≤ 100 ·B′′

1 ,

E
(
−A′

3 ·
(

9

10
log2 k − 1/3

)
+AH1 + 201 ·B′′

1

)
≥ 0.

By rearranging, we get

E
(
AH1 + 201 ·B′′

1

)
≥ A′

3 ·
(

9

10
log2 k − 1/3

)
.
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