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Abstract

The Huge Object model of property testing [Goldreich and Ron, TheoretiCS 23] concerns
properties of distributions supported on {0, 1}n, where n is so large that even reading a single
sampled string is unrealistic. Instead, query access is provided to the samples, and the efficiency
of the algorithm is measured by the total number of queries that were made to them.

Index-invariant properties under this model were defined in [Chakraborty et al., COLT
23], as a compromise between enduring the full intricacies of string testing when considering
unconstrained properties, and giving up completely on the string structure when considering
label-invariant properties. Index-invariant properties are those that are invariant through a
consistent reordering of the bits of the involved strings.

Here we provide an adaptation of Szemerédi’s regularity method for this setting, and in
particular show that if an index-invariant property admits an ϵ-test with a number of queries
depending only on the proximity parameter ϵ, then it also admits a distance estimation algorithm
whose number of queries depends only on the approximation parameter.
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1 Introduction

Distribution testing is a sub-field of property testing [RS96, GGR98] which has received a significant
amount of attention in the past few decades (See e.g., [Fis04, Ron08, Ron10, CS10, RS11, Gol17,
Can20, Can22, BY22]). In the classical setting of distribution testing, an algorithm can draw
independent samples from an unknown input distribution µ, and needs to either accept or reject it
based on the drawn samples. An ϵ-testing algorithm for some distribution property P is required
to accept every distribution satisfying P with high probability, and reject every distribution that
has distance of at least ϵ from any distribution satisfying P with high probability, while drawing
as few samples as possible.

One particular setting of interest, mainly due to its resemblance to real-world data, is the setting
where the distribution is supported on a high dimensional product space. In the classical setting of
distribution testing, it is implicitly assumed that the algorithm has complete access to the sampled
elements. However, for product spaces with extremely large dimension, such access is impractical:
Even obtaining the entire label of a single drawn element might be too expensive.

To handle this setting, Goldreich and Ron [GR23] defined and initiated the Huge Object model.
In this model the algorithm can draw samples from the distribution, but since the samples are
not fully accessible, the algorithm is provided with query access to the sampled strings. The
distance notion is changed accordingly from the total variation distance to the Earth Mover’s
distance. Various properties and algorithmic behaviors have been studied under the huge object
model (See [GR23, CFG+23, AF24, AFL24, CSY25]).

When considering properties of distributions, it is commonly the case that the property at hand
has some “symmetry” in its structure. One such symmetry is label-invariance. A property is label-
invariant if applying any permutation to the labels does not effect membership in the property.
Label-invariant properties have been extensively studied in the literature [BDKR05, Pan08, GR11,
Val11, DKN14, CDVV14, ADK15, VV17, BC17, DKS18, CFG+22].

Recently, Chakraborty et al. [CFG+23] considered the general task of testing index-invariant prop-
erties under the huge object model. A property of distributions supported on {0, 1}n is called
index-invariant if any permutation π : [n] → [n] of the indices of the strings does not effect mem-
bership in the property. Note that the class of index-invariant properties extends the class of
label-invariant properties, since the invariance condition is weaker compared to label-invariance: It
only considers relabeling strings by rearranging their symbols through a common permutation of
the indices. In particular, index-invariance still allows for properties to have some string-related
structure. For example, monotonicity of the probability mass function with respect to the natural
partial order on {0, 1}n is an index-invariant property but not a label-invariant one.

The main result of [CFG+23] showed that the number of queries is controlled through upper and
lower bounds depending on the VC-dimension of the support of the distributions in the property
(along with the proximity parameter). In addition, they showed that for properties that are not
index-invariant such bounds are not guaranteed, and that there exists an almost tight quadratic
gap between adaptive testers (i.e., the setting where queries might depend on answers to previous
queries) and non-adaptive testers (i.e., the setting where queries are determined in advanced) of
index-invariant properties. Note that such a distinction is non-existent in the classical model of
distribution testing, as there is no notion of adaptivity when the algorithm is only allowed to draw
independent samples from the distribution.
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In this work, we complement the result of [CFG+23] and show that for any index-invariant prop-
erty that is ϵ-testable using a constant (depending only on ϵ) number of queries, there exists an
estimation algorithm that approximates the distance of the input distribution from the property,
by performing only a constant (depending only on ϵ) number of queries.

Theorem 1 (Informal statement of Theorem 2). If P is an index-invariant property of distri-
butions over {0, 1}n which is ϵ′-testable with a constant number of queries for any fixed ϵ′ > 0,
then there is an estimation algorithm with a constant number of queries for any fixed ϵ > 0, that
for a distribution µ of distance d from P, outputs a distance approximation η such that with high
probability |η − d| ≤ ϵ.

This brings index-invariant properties under the umbrella of properties for which constant-query
testability implies constant-query estimability, similar to dense graph properties, and in contrast
to general string properties and also general Huge Object model properties. Along the way, we
provide a “regularity-like” framework to index-invariant properties, to treat them using a “meta-
testing” scheme. More on this will be discussed in Section 1.1. It is important to note that the
dependencies here are not a tower function of 1/ϵ, a distinction from most regularity-like frameworks
in the literature, which usually provide a dependency which is a tower in the other parameters, or
even worse. In particular, the query complexity in our result has double-exponential dependency
on 1/ϵ. Section 1.2 contains more information on this and relations to prior works.

1.1 Technical overview

The proof of our main result is motivated by Szemerédi’s regularity lemma for graphs [Sze75].
Intuitively, Szemerédi’s regularity lemma states that a graph can be partitioned into a bounded
number of parts such that the subgraphs between the parts are “random-like”. In addition, we take
inspiration from [FN07b] that proves an analogous estimation result for the dense graph testing
model, and in particular we define and use a notion inspired by the notion of robust partitions from
[FN07b].

1.1.1 Detailings

Our starting point is to define a notion that resembles that of a graph partition for the setting of
distributions. For technical reasons, we define a notion that is slightly more generalized. A detailing
ξ of a distribution µ over {0, 1}n with respect to some set A is a distribution on {0, 1}n × A such
that the distribution on {0, 1}n that is projected from ξ is equal to µ. Loosely speaking, a detailing
of µ with respect to A is in particular a representation of µ as a weighted sum of distributions,
where the weights are given by the distribution over A projected from ξ, and for every a ∈ A the
corresponding “component distribution” µa results from conditioning ξ to the event {0, 1}n × {a}.

One particular type of a detailing which we consider extensively in this work is a detailing by a
set of variables. For a set U ⊆ {1, . . . , n} the detailing of µ with respect to U is a distribution
µU supported over {0, 1} × A for A = {0, 1}U , where for a ∈ A the component µa is exactly the
conditioning of µ to the event {x ∈ {0, 1}n : xU = a}. Note that this detailing is actually a
partition of the probability space to weighted subcubes indexed by assignments to variables in U .
A detailing by variables can be better handled by a testing algorithm as compared to a general
detailing, because a draw (x,a) ∼ µU can be easily obtained by taking a sample x ∈ {0, 1}n from
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µ and augmenting it with a = xU . In comparison, a draw from a general detailing ξ is not always
easily obtainable given only samples from the input distribution µ.

The notion of a detailing allows us to extract some useful statistics of the underlying distribution.
The statistic of a detailing ξ with respect to A is essentially the distribution η over A that is the
projection of ξ to the second argument, along with a multiset of type vectors {t1, . . . , tn} over [0, 1]A
where ti(a) = Prx∼µa [xi = 1]. Namely, ti(a) is the probability that the variable xi is set to one
conditioned on the event that a draw from ξ lies in {0, 1}n × {a}. Equivalently, the multiset of
type vectors can be identified with a distribution Λ supported on vectors in [0, 1]A. We refer to η
as the weight distribution, and to Λ as the type distribution of the detailing ξ. Intuitively, one can
consider the statistic as a sort of a “lossy compression scheme” for the underlying distribution.

1.1.2 Goodness and predictability

One important property that a detailing can have is being (ϵ, q)-good. For ϵ ∈ (0, 1) and q ∈ N, we
say that a single distribution ν is (ϵ, q)-good if at least a 1− ϵ fraction of the q-tuples of variables
under this distribution are ϵ-close to being independent (this is a weak form of being “somewhat
q-wise independent”). We say that a detailing ξ of µ is (ϵ, q)-good if at least a 1− ϵ fraction of the
component distributions µa (counted by their weights in the detailing) are (ϵ, q)-good.

This property is extremely beneficial for finding a distribution that approximates the distribution of
samples and queries made by a canonical algorithm using the statistic of ξ. A canonical algorithm
for a distribution property P is a randomized procedure that picks a set of s independent samples
drawn from the distribution µ, and a set of q variables (that is “coordinates” from the space {0, 1}n,
identified by their indices from {1, . . . , n}), chosen uniformly at random, and makes its decision
(either accept or reject) based on the samples restricted to the chosen variables (and possibly on
its internal random coins). In particular, the acceptance probability of the tester is determined by
a function α : {0, 1}s×q → [0, 1]. Considering canonical testers suffices for our needs, since for any
index-invariant property having a testing algorithm making s samples and q queries, there exists a
corresponding canonical tester which makes at most sq queries, by [CFG+23].

The goodness property allows us to simulate the behaviour of a canonical algorithm by using only
the detailing statistic (this is essentially the “meta-testing” concept that was featured in [FN07b,
AFNS06]). In particular, to simulate the behaviour of a canonical algorithm with s samples and q
queries we first draw a1 . . . ,as independently from the weight distribution η of the detailing, and
then draw q vectors t1, . . . , tq from Λ independently. Then, we draw a random matrixM ∈ {0, 1}s×q

such that for every (i, j) ∈ {1, . . . , s}×{1, . . . , q}, the value Mi,j is drawn independently according
to the Bernoulli distribution with parameter tj(ai).

Essentially, for every i ∈ {1, . . . , s} the draw ai simulates the choice of the respective component
distribution µai of ξ, and the values t1(ai), . . . , tq(ai) simulate the queries to the sample i. Note
that since tj(ai) corresponds to the j-th marginal of a draw from the component distribution µai ,
and the drawn component distribution with high probability satisfies the goodness condition, the
distribution of the string Mi,1, . . . ,Mi,q is close to the distribution of a sample drawn from µ and
restricted to the set of q uniformly random indices. The matrix M is then used along with α to
determine the acceptance probability of the algorithm. This implies a predictability property of the
detailing: One can approximate the acceptance probability of a canonical algorithm by using only
its statistic and without actually performing the queries to the input.
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1.1.3 Robustness and inheritance

The predictability notion is tied to a more general notion of robustness. Roughly speaking, a
detailing is robust if whenever it is extended to a more refined detailing (but still with a limited
degree of refinement), the perceived probabilities of the outcomes in individual indices will not
change by much. In other words, for the most parts, the values appearing in the type distribution
of the extended detailing will be inherited from their counterparts in the type distribution of the
original detailing. Such an inheritance feature will be crucial for designing the distance estimation
algorithm. To facilitate such a feature, instead of tracking all the individual probabilities we go the
route of Szemerédi’s regularity lemma, and define a single “detailing-index” measure for a detailing,
with respect to which robustness is defined. The above robustness notion is then proved to follow
from satisfying the detailing-index-related measure.

However, due to the access we have to the input we are unable to find such a robust detailing.
We can only consider extensions which are obtained by fixing a subset of the bits in the string.
As a result, we define a weaker notion of robustness. A detailing ξ is said to be weakly robust if
extending it to a more refined detailing obtained by fixing a randomly chosen and not too large
subset of the bits (as opposed to arbitrary refinements in the general definition of robustness) will
not change the perceived probabilities of the outcomes in individual indices by much. We later
prove that being a weakly robust detailing implies the general notion of robustness, and implies
the above mentioned goodness notion as well.

1.1.4 Distance estimation algorithm

A main engine of our work is an efficient query algorithm that provides an approximation of the
statistic of a robust detailing. We set the robustness requirement to go beyond what is needed
just for predictability, as the above-mentioned inheritance feature will be required for distance
estimation later on. Given the detailing statistic, we then consider hypothetical distributions with
hypothetical detailings featuring predictability.

For such a hypothetical detailing we first require that its statistic must predict acceptance (or at
least predict a high enough probability of not rejecting) by a testing algorithm. For a statistic
satisfying this requirement, we check its hypothetical distance from the distribution (which we
actually measure using a distance measure between the corresponding type statistics). The smallest
such hypothetical distance gives us our estimate.

On the one hand, if there exists a relatively close distribution that satisfies the property, it would
imply a corresponding hypothetical detailing statistic: We consider a predictive detailing of this
target distribution, and show how to “combine” it with the detailing we obtained from the input
to demonstrate a distance close to the hypothetical one. Here the inheritance property is crucial,
since the combined detailing is related to a refinement of the detailing of the input, and we need it
to maintain its type statistic.

On the other hand, if there exists a good hypothetical detailing statistic with a small hypothetical
distance, it would imply the existence of a “fake” distribution that has a similar distance bound
from the input distribution, and additionally is not rejected by the test (and hence there must
be a “real” distribution satisfying the property that is not much further away). Building such a
distribution is mostly a matter of considering a draw from a detailing, and then altering each co-
ordinate independently with some probability that is tailored to eventually match the hypothetical
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acceptable statistic.

1.2 Relation to prior works

The study of tolerant property testing and distance approximation (also known as estimation) was
initiated by Parnas, Ron and Rubinfeld [PRR06]. In the setting of tolerant testing, the algorithm
is required to accept with high probability if the input is close to the property, and reject with high
probability if the input is far from any other input satisfying the property. The relation between
“non-tolerant” property testing and distance approximation depends much on whether invariance
restrictions are imposed on a property. While testable graph properties (which must be invariant
with respect to graph isomorphism) were proved to admit full distance estimation in [FN07b], in
the general string testing model (where the properties are not required to satisfy any invariance
condition) the existence of non-tolerantly testable properties which are not estimable, and in fact
not even tolerantly testable, was proved in [FF06]. Later, it was proved in [BFLR20] that there are
testable properties that require a near-linear number of queries for a tolerant test.

The results here exhibit the role that invariance requirements can play in the setting of the Huge
Object Model. In the most general Huge Object Model setting, features of traditional string
testing factor in, and in particular one can use the reductions from the original [GR23] to convert
the properties from [FF06] or [BFLR20] to create non-tolerantly testable properties which are not
tolerantly testable in the Huge Object model (as mandated by Theorem 1, these properties are
indeed not index-invariant).

In [GR23] two invariance notions were considered. These are label-invariance which discards most
of the “string-ness” of this model and focuses on distribution properties (such as uniformity and
bounded support size) that just happen to be represented by distributions on strings, and the
even more restrictive notion of mapping-invariance. In [CFG+23] a study of a milder notion of
invariance was initiated, namely the notion of index-invariance. This work proves that index-
invariant properties already belong to the domain where testability implies estimability, as is the
case with the dense graph model.

The influence of Szemerédi’s regularity-like constructions in property testing also has a long his-
tory, starting with [AFKS00] (in fact a mathematical result in this direction has already been
presented in [RD85]). Such constructions were usually required to go beyond the original regu-
larity lemma, at times in terms of strength (as in [AFKS00]) and at other times in terms of the
objects involved outside standard graphs, such as product posets [FN07a], graphs in the sparse
model [BS11, BCCZ19, BCCZ18, CFSZ21] or vertex-ordered graphs [ABEF17].

To avoid ad-hoc constructions, there are several mathematical approaches to systematically strength-
ening the notion of regularity and defining it for other objects, and two of them gained particular
prominence. The most influential one is the analytic approach, developed in [LS06, BCL+06a,
BCL+06b, LS07, BCL+08, LS10, BCL+12], which has many applications to other research do-
mains (see e.g., [HKM+13, CR20, GHHS20, Sim23]). For an extensive introduction to the analytic
approach see [Lov12]. This approach works particularly well in settings where the exact dependency
functions do not matter. The other approach is that of robust partitions (or objects) which was
first used in [FN07b]. Many times both approaches work, compare e.g. the robustness approach of
[ABEF17] with its analytic counterpart [BEFLY21, GHHS20]. It is the robustness approach that
we use here.
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A disconcerting feature of regularity-related approaches is that they almost always provide param-
eter dependencies that are a tower function or even worse (e.g. tower of towers). The analytic
approach tends to do away with explicit dependencies altogether. However, there are exceptions,
and much research went into reducing the dependencies in cases that allow it, starting with [FK99].
Of particular interest is the work of [GKS23], which provided a version of the estimability result
from [FN07b] whose parameter dependency is not a tower. Also in this work the resulting depen-
dency is not a tower, although its (constant) number of exponentiations leaves something to be
desired. Considering the lower bounds in [CFG+23] related to the VC dimension, it is unlikely that
this dependency can be reduced.

Another interesting insight from the comparison with the work of [GKS23] is gained by noting that
in our work the regularity framework in itself has a non-tower dependency, while for the dense
graph setting this is not possible by the lower bound of [Gow97] (see also [MS16]). In [GKS23]
they manage to move the specific estimability proof to use the weak regularity framework of [FK99]
instead.

1.3 Organization of the paper

We start with somewhat longer than usual preliminaries, Section 2, that provide the basic ground-
work for our handling of distributions. Then, in Section 3 we develop our definitions of a detailing
of a distribution, and the definition for its goodness and robustness. In Section 4 we show how from
only knowing the statistic of a good detailing we can predict the behavior of a canonical test over
a given input distribution, while in Section 5 we show how to find a robust (and good) detailing by
variables, and estimate its statistic. The final Section 6 is where all of this comes together in our
distance estimation algorithm.

2 Preliminaries

2.1 Basic handling and manipulation of distributions

For an integer n, we will denote the set {1, . . . , n} as [n]. We use boldface letters (such as x)
to denote random variables. Given two vectors x and y in {0, 1}n, we denote by dH(x, y) the

normalized Hamming distance between x and y, that is, dH(x, y)
def
= 1

n · |{i ∈ [n] : xi ̸= yi}| .

Given a discrete distribution µ over Ω, for x ∈ Ω we use Prµ[x] and µ(x) interchangeably (while for
an event S ⊆ Ω we only use Prµ[S] =

∑
x∈S µ(x) for its probability). For p ∈ [0, 1], we let Ber(p)

denote the Bernoulli distribution with parameter p.

To streamline the arguments and analysis in the following, we will define and use a somewhat
uncommon notation for some very common probabilistic notions.

Definition 2.1 (Restriction of a distribution). Let µ be a distribution over Ω and S ⊆ Ω be an
event such that Prµ[S] ̸= 0. Then µ|S is the distribution µ restricted to S, which is defined over S

as follows: For every x ∈ S, Prµ|S [x] =
Prµ[x]
Prµ[S]

. We also sometimes pad the conditional distribution

to Ω by defining µ|S(x) = 0 for x ∈ Ω \ S.
Definition 2.2 (Projection of a distribution). Let µ be a distribution over Ω =

∏n
ℓ=1Aiℓ and

i1, . . . , ik be a set of integers from [n] such that i1 < · · · < ik. The projection µ|{i1,...,ik} of µ
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to a set of coordinates {i1, . . . , ik} is the distribution supported on
∏

ℓ∈[k]Aiℓ obtained by first

drawing x ∼ µ and returning x|{i1,...,ik}. Moreover, for an event S ⊆ Ω, we denote by µ|S{i1,...,ik}
the conditioning of µ over S followed by the projection on {i1, . . . , ik}.

Definition 2.3 (Conditioning shorthand). When we have a distribution µ on a set Ω which is a
product, we use a shorthand notation when we condition it by the coordinate values. For example,
for Ω = A×B and a ∈ A, we use µ|1:a to denote the conditioning µ|{a}×B, and similarly for A′ ⊆ A
use µ|1:A′

to denote µ|A′×B. We extend this notation to multiple coordinates as well. For example,
for Ω = A×B × C and a ∈ A and c ∈ C, we use µ|1,3:(a,c) or µ|1:a,3:c to denote µ|{a}×B×{c}.

For two distributions that “agree on a common variable” we define a way to unify them into a
single distribution, named after the database operation resembling it.

Definition 2.4 (Join of distributions). Given two distributions µ over A × B and ν over B × C
that satisfy µ|2 = ν|1, we define their join µ ▷◁ ν, as the following distribution over A×B × C:

(µ ▷◁ ν)(a, b, c) = µ(a, b) · ν|1:b2 (c) = µ|2:b1 (a) · ν(b, c).

Whenever µ|2(b) = ν|1(b) = 0 we (as expected) define (µ ▷◁ ν)(a, b, c) = 0. In cases where it is not
clear which coordinate we unify (for example when A = B) we state it explicitly.

We also define a way to “adjust” a distribution over a product set to have a desired projections to
one of its coordinates.

Definition 2.5 (Adjustment). Given a distribution η over A × B and a distribution ν over A,
such that ν(a) = 0 whenever η|1(a) = 0, the adjustment of η to ν, denoted ν � η, is defined as the
following distribution over A×B:

(ν � η)(a, b) = ν(a) · η|1:a2 (b).

Whenever η|1(a) = 0 (and then also ν(a) = 0) we as expected define (ν � η)(a, b) = 0.

2.2 Distribution distances

The following is the most basic distance notion between distributions.

Definition 2.6 (Variation distance). Let µ and τ be two probability distributions over a discrete
set Ω. The variation distance between µ and τ is defined as:

dTV(µ, τ)
def
=

1

2

∑
w∈Ω
|µ(w)− τ(w)|.

Central to our work will be the notion of Earth Mover distance, with some variants. Before defining
it, let us consider the notion of transfer distribution.

Definition 2.7 (Transfer distribution). Let µ and τ be two distributions defined over two sets A
and B, respectively. A distribution T over A × B is said to be a transfer distribution between µ
and τ if for every a ∈ A, Pr(x,y)∼T [x = a] = µ(a), and for every b ∈ B, Pr(x,y)∼T [y = b] = τ(b)
(in other words, T |1 = µ and T |2 = τ). The set of all transfer distributions between µ and τ is
denoted by T (µ, τ).
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Definition 2.8 (EMD with respect to a distance function). Let µ and τ be two distributions
defined over a set Ω and dΩ be a distance function defined over Ω. Then the Earth Mover distance
(EMD) between µ and τ with respect to dΩ is defined as follows:

dEM(µ, τ)
def
= inf

T∈T (µ,τ)
E

(x,y)∼T
[dΩ(x,y)]

where T (µ, τ) denotes the set of all possible transfer distributions between µ and τ .

Unless stated otherwise, whenever Ω = {0, 1}n, we use dEM to refer to the EMD over the normalized
Hamming distance.

We will not really have to take care of limits in our arguments due to the following observation.

Observation 2.9. If µ and τ are distributions over a finite set, then T is compact and in particular
there exists a transfer distribution T ∈ T achieving the respective EMD distance.

The following observation, that variation distance is essentially also a special case of the Earth
Mover distance, is well-known.

Observation 2.10. The Earth Mover distance over the Kronecker distance function is identical
to the total variation distance. That is,

dTV(µ, τ)
def
= inf

T∈T (µ,τ)
E

(x,y)∼T

[
1{x̸=y}

]
,

where 1{x̸=y} is the indicator function for the event that x ̸= y.

Keeping with tradition, in the variation distance setting we will also refer to a transfer distribution
as a coupling. The following lemma (which will be useful to us in the sequel) is a good example of
an application of the above observation.

Lemma 2.11. If ν is a distribution over A and η is a distribution over A×B, then the adjustment
of η to ν (see Definition 2.5) satisfies dTV(η, ν � η) ≤ dTV(η|1, ν).

Proof: Assume that T is an optimal coupling between η|1 and ν. That is, E(a,a′)∼T

[
1{a̸=a′}

]
=

dTV(η, ν). We use it to define a (not necessarily optimal) coupling T ′ between η and ν�η for which

dTV(η, ν � η) ≤ E((a,b),(a′,b′))∼T ′

[
1{(a,b)̸=(a′,b′)}

]
≤ E(a,a′)∼T

[
1{a̸=a′}

]
, which completes the proof.

A draw ((a, b), (a′, b′)) ∼ T ′ is taken as follows: We first draw (a,a′) ∼ T . If a = a′, then we let
b = b′ be the result of a single draw from η|1:a2 . If a ̸= a′, then we let b be the result of a draw
from η|1:a2 , and let b′ be the result of an independent draw from η|1:a′

2 .

It is not hard to see that T ′ is indeed a transfer distribution between between η and ν � η. For
example, T ′|1(a, b) = T |1(a) · η|1:a2 (b) = η|1(a) · η|1:a2 (b) = η(a, b), and the proof for T ′|2 = ν � η is
similar. It remains to bound the probability for the event (a, b) ̸= (a′, b′), and this follows from
noting that the definition of T ′ explicitly states that a = a′ implies b = b′.

In the sequel, we will also use the Earth Mover distance over the weighted ℓ1 norm.
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Definition 2.12 (EMD with respect to weighted ℓ1-distance). Let η be a distribution over A.
Also, let x and y be two vectors in [0, 1]A. The η-weighted ℓ1-distance between x and y is defined
as

dηℓ1(x, y)
def
= E

a∼η
[|xa − ya|].

Considering two distributions Λ and Υ defined over [0, 1]A, the EMD between them with respect
to the η-weighted ℓ1-distance is denoted by dηEM(Λ,Υ).

In our setting, the distributions Λ and Υ will always be finitely-supported (even that Ω itself is
infinite), and in particular, Observation 2.9 will still apply.

2.3 The testing model

The Huge Object model uses the following oracle access to the unknown input distribution.

Definition 2.13 (Huge Object oracle). In the Huge Object model, the algorithm can access the
input distribution µ in the following manner: At every stage, the algorithm may ask for a new
sample x ∼ µ, independently of all previous samples, or it may ask to query a coordinate j ∈
{1, . . . , n} of a previously obtained sample x′. When such a query is made, the output of the oracle
is x′

j ∈ {0, 1}.

Definition 2.14 (Distribution Property). A distribution property P is a sequence P1,P2, . . . such
that for every n ≥ 1, Pn is a compact subset of the set of all distributions over {0, 1}n.

Definition 2.15 (Distance of a distribution from a property). Let P = (P1,P2, . . .) be a property
and µ be a distribution over {0, 1}n for some n. The distance of µ from P is defined as dEM(µ,P) =
minτ∈Pn{dEM(µ, τ)}.

Testing and tolerant testing are defined as follows.

Definition 2.16 (ϵ-tester). Fix 0 < ϵ ≤ 1 and let P be a property of distributions supported on
{0, 1}n. An ϵ-tester for P is a randomized procedure that has Huge Object oracle access to an
input distribution µ and satisfies the following with probability at least 2/3:

1. (Completeness) If µ ∈ P, then the algorithm outputs Accept.

2. (Soundness) If dEM(µ,P) > ϵ, then the algorithm outputs Reject.

Definition 2.17 ((ϵ1, ϵ2)-tolerant tester). Fix 0 ≤ ϵ1 < ϵ2 ≤ 1 and let P be a property of distri-
butions supported on {0, 1}n. An (ϵ1, ϵ2)-tolerant tester for P is a randomized procedure that has
Huge Object oracle access to an input distribution µ and satisfies the following with probability at
least 2/3:

1. (Completeness) If dEM(µ,P) ≤ ϵ1, then the algorithm outputs Accept.

2. (Soundness) If dEM(µ,P) > ϵ2, then the algorithm outputs Reject.

Note that an (non-tolerant) ϵ-tester for a property P is the same as a “(0, ϵ)-tolerant” tester for P.
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In this work we will be interested in the following class of properties.

Definition 2.18 (Index-invariant property). Let µ be a distribution over {0, 1}n. For any permu-
tation π : [n] → [n], let µπ be the distribution such that µ(x1, . . . , xn) = µπ(xπ(1), . . . , xπ(n)) for
every x ∈ {0, 1}n. A distribution property P is called index-invariant if {µπ : µ ∈ P} = P for
every permutation π.

2.4 Canonical testers

The following is the definition of the information obtained by a specific sampling and querying
pattern from an input distribution µ.

Definition 2.19 (Canonical distribution). Fix s, q ∈ N and let µ be a distribution over {0, 1}n.
The (s, q)-canonical distribution for µ is a distribution Ds,q

test over {0, 1}s×q obtained by the following
process. Draw s independent samples (x1, . . . ,xs) from µ, then pick a uniformly random q-tuple
(j1, . . . , jq) ∈ [n]q, and finally return the following matrix:

M =


x1
j1
· · · x1

jq
...

...
xs
j1
· · · xs

jq

 .

When s and q are clear from the context, we omit the superscript and use Dtest to denote the above.

Canonical testers are defined as those testers that sample and query according to the above pattern.

Definition 2.20 ((s, q)-canonical tester). Fix ϵ ∈ (0, 1). An (s, q)-canonical tester with proximity
parameter ϵ for some distribution property P, is a randomized procedure that acts by obtaining a
matrix M from the (s, q)-canonical distribution Dtest and then accepting or rejecting based on M
and possibly some internal coin tosses. We let αϵ : {0, 1}s×q → [0, 1] so that αϵ(M) denotes the
probability that the (s, q)-canonical tester (with proximity parameter ϵ) acceptsM. The acceptance

probability of the tester is denoted by accϵ(µ)
def
= EM∼Dtest [αϵ(M)].

In particular, an (s, q)-canonical ϵ-test must satisfy the following. If µ ∈ P then the tester accepts
with probability at least 2/3 (i.e., accϵ(µ) ≥ 2/3) and if d(µ,P) > ϵ, then the tester rejects with
probability at least 2/3 (i.e., accϵ(µ) < 1/3). The total number of queries of such a test is sq.

The following lemma states that for index-invariant properties, general (even adaptive) testers can
be converted to canonical testers at a cost that is at most quadratic in their number of queries.

Lemma 2.21 (Theorem 1.7 in [CFG+23]). Fix ϵ ∈ (0, 1). Let P be an index-invariant property
such that there exists a (possibly adaptive) ϵ-test for P with s samples and q queries. Then there
exists an (s, q)-canonical ϵ-test for P performing at most sq ≤ q2 queries.

2.5 Quantized distributions and distance bounds

We now define the notion of quantized distributions, which will feature heavily in our estimation
algorithm. Quantizing will allow us to apply “finite” algorithms over objects which are defined over
infinite sets.
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Definition 2.22 (ρ-quantized distribution). For r ∈ N and ρ = 1/r ∈ (0, 1), we say that a
distribution µ over Ω is ρ-quantized if for any w ∈ Ω it holds that µ(w) is an integer multiple of ρ.
That is, the measure takes the form µ : Ω→ {0, ρ, 2ρ, . . . , 1}.

The following lemma is folklore. For completeness we provide it with a proof sketch.

Lemma 2.23. Any distribution µ over a finite set Ω can be transformed to a ρ-quantized distri-
bution µ′ so that µ′(x) ∈ {ρ⌈µ(x)/ρ⌉, ρ⌊µ(x)/ρ⌋} for every x ∈ Ω. In particular µ′(x) = µ(x)
whenever µ(x) ∈ {0, 1}, |µ(x)− µ′(x)| < ρ for all x ∈ Ω, and dTV(µ, µ

′) < ρ
2 · |Ω|.

Proof: We construct µ′ by finding for every x ∈ Ω a choice of µ′(x) ∈ {ρ⌈µ(x)/ρ⌉, ρ⌊µ(x)/ρ⌋} so
that µ′ will be a distribution, i.e.

∑
x∈Ω µ′(x) = 1. To produce this choice, we set an order Ω =

{x1, . . . , xr} where r = |Ω|, and then inductively choose µ′(xi) = ρ⌈µ(xi)/ρ⌉ if
∑

j∈[i−1] µ
′(xj) ≤∑

j∈[i−1] µ(xj) and µ′(xi) = ρ⌊µ(xi)/ρ⌋ otherwise. It is not hard to see that this way we maintain

the invariant
∑

j∈[i] µ(xj)− ρ <
∑

j∈[i] µ
′(xj) <

∑
j∈[i] µ(xj) + ρ, and in particular

∑
j∈[r] µ

′(x) = 1
since it is an integer multiple of ρ that lies strictly between 1− ρ and 1 + ρ.

We continue with more definitions and results regarding approximate distributions, mainly centered
around the quantization notion.

Definition 2.24 (ρ-legitimate approximation). Fix t ∈ [0, 1]A and ρ ∈ (0, 1). A vector t̃ ∈ [0, 1]A

is a ρ-legitimate approximation of t if ∥t̃− t∥∞ ≤ ρ.

Observation 2.25. Let η be a distribution over a set A. For any vector t ∈ [0, 1]A we have a
ρ-legitimate approximation t̃ satisfies dηℓ1(t̃, t) ≤ ρ.

Proof: By definition of the η-weighted ℓ1 distance dηℓ1(t̃, t) =
∑

a∈A η(a) · |t̃(a)− t(a)| ≤ ρ.

We will need to quantize not only the probabilities, but also the probability space itself (if it were
not finite to begin with).

Definition 2.26. For ρ ∈ (0, 1) and a distribution Λ over [0, 1]A, we define Λρ to be a distribution
over {0, ρ, 2ρ, . . . , 1}A obtained in the following way. Sample t according to Λ and round each entry
in t to the nearest multiple of ρ to obtain a ρ-legitimate approximation t̃ of t.

Now we have the following lemma which connects these two definitions.

Lemma 2.27. Let ρ ∈ (0, 1) and fix a distribution Λ over [0, 1]A. Then for any distribution η over
A, dηEM(Λ,Λρ) ≤ ρ/2.

Proof: We consider the following transfer function T : [0, 1]A → [0, 1]A from Λ to Λρ:

T (x, y)
def
=

{
Λ(x) if y = x̃

0 otherwise,

where x̃ denotes the vector obtained from x by rounding the entries to the nearest multiple of
ρ, which is at most ρ/2 away from the unrounded value. From Observation 2.25 we have that
whenever T (x, y) ̸= 0 we have dηℓ1(x, y) ≤ ρ/2. Therefore,

dηEM(Λ,Λρ) ≤
∑

x,y∈[0,1]A
T (x, y) · dηℓ1(x, y) ≤

ρ

2

∑
x,y∈[0,1]A

T (x, y) ≤ ρ/2.
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As a sort of a summary of the above, we now formulate a “quantize everything” lemma.

Lemma 2.28. Fix ρ = 1/r for some r ∈ N, and let Λ be a distribution over [0, 1]A for some finite
set A of size ℓ. There exists a ρ/(r + 1)ℓ-quantized distribution Λ′ over {0, ρ, 2ρ, . . . , 1}A such that
dηEM(Λ′,Λ) < ρ.

Proof: We use Lemma 2.27 to obtain a distribution Λρ over Ω = {0, ρ, 2ρ, . . . , 1}A such that
dηEM(Λ,Λρ) ≤ ρ/2, and apply Lemma 2.23 using ρ′ = ρ/(r + 1)ℓ = ρ/|Ω| to obtain a ρ′-quantized
distribution Λ′ over {0, ρ, 2ρ, . . . , 1}A, such that dTV(Λρ,Λ

′) ≤ ρ/2. Overall, using the triangle
inequality, we have:

dηEM(Λ′,Λ) ≤ dηEM(Λ′,Λρ) + dηEM(Λρ,Λ) ≤ ρ.

We conclude with a lemma that allows us to move to guarantee a small change in the weighted
Earth Mover distance when we need to use an approximation of the weight distribution η.

Lemma 2.29. Let η and η′ be two distributions over A satisfying dTV(η, η
′) ≤ ρ, and let Λ and Υ

be two discrete distributions over [0, 1]A. Then, dη
′

EM(Λ,Υ) ≤ dηEM(Λ,Υ) + 2ρ.

Proof: Let T denote an optimal transfer function between Λ and Υ with respect to dηEM(Λ,Υ)

(which might be sub-optimal with respect for dη
′

EM(Λ,Υ)). Using also the fact that |t(a)− t′(a)| ≤ 1
for any t, t′ ∈ [0, 1]A and a ∈ A we obtain:

dη
′

EM(Λ,Υ)− dηEM(Λ,Υ) ≤ E
(t,t′)∼T

[
E

a∼η′
|t(a)− t′(a)|

]
− E

(t,t′)∼T

[
E

a∼η
|t(a)− t′(a)|

]
= E

(t,t′)∼T

[∑
a∈A

(η′(a)− η(a)) · |t(a)− t′(a)|

]

≤ E
(t,t′)∼T

[∑
a∈A
|η′(a)− η(a)| · |t(a)− t′(a)|

]
≤
∑
a∈A
|η′(a)− η(a)| ≤ 2dTV(η, η

′) ≤ 2ρ.

2.6 Some useful probabilistic inequalities

We will use some well-known large deviation inequalities.

Lemma 2.30 (Multiplicative Chernoff bound, see [DP09]). Let X1, . . . ,Xn be independent random

variables such that Xi ∈ [0, 1] for every i ∈ [n]. For X =
n∑

i=1
Xi, the following holds for any

0 ≤ δ ≤ 1.
Pr[|X−E[X]| ≥ δE[X]] ≤ 2 exp

(
−E[X]δ2/3

)
.
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Lemma 2.31 (Additive Chernoff bound, see [DP09]). Let X1, . . . ,Xn be independent random

variables such that Xi ∈ [0, 1] for every i ∈ [n]. For X =
n∑

i=1
Xi and a ≤ E[X] ≤ b, the following

hold for any δ > 0.

(i) Pr [X ≥ b+ δ] ≤ exp
(
−2δ2/n

)
.

(ii) Pr [X ≤ a− δ] ≤ exp
(
−2δ2/n

)
.

Lemma 2.32 (Hoeffding’s Inequality, see [DP09]). Let X1, . . . ,Xn be independent random variables

such that ai ≤ Xi ≤ bi and X =
n∑

i=1
Xi. Then, for all δ > 0,

Pr [|X−E[X]| ≥ δ] ≤ 2 exp

(
−2δ2/

n∑
i=1

(bi − ai)
2

)
.

Lemma 2.33 (Hoeffding’s Inequality for sampling without replacement [Hoe94]). Let n and m
be two integers such that 1 ≤ n ≤ m, and x1, . . . , xm be real numbers, with a ≤ xi ≤ b for every
i ∈ [m]. Suppose that I is a set that is drawn uniformly from all subsets of [m] of size n, and let
X =

∑
i∈I

xi. Then, for all δ > 0,

Pr [|X−E[X]| ≥ δ] ≤ 2 exp
(
−2δ2/n · (b− a)2

)
.

We will also use some second moment lower bounds.

Lemma 2.34 (Cauchy-Schwartz inequality). Given any distribution with two random variables X
and Z,

E
Z

[
E[X2 | Z]

]
≥ E

Z

[
E[X | Z]2

]
.

This is a direct implication of E[X2] − (E[X])2 = E[(X − E[X])2] ≥ 0 when considered over any
possible conditioning of the probability space to a value of Z.

Observation 2.35 (Defect form Cauchy-Schwartz inequality). If X is a random variable satisfying
Pr[|X−E[X]| ≥ α] ≥ β, then

E[X2]− (E[X])2 = E[(X−E[X])2] ≥ α2β.

In addition, we will use the following well-known bound.

Lemma 2.36 (Reverse Markov’s inequality). For any γ ∈ (0, 1), let X be a random variable in
[−1, 1] with E[X] ≥ γ. Then Pr[X ≥ γ/2] ≥ γ/2.

3 Detailing, variable types and robustness

In this section we define the main objects that we use throughout this work.
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3.1 Detailing and refinements

Our most basic definition is that of a detailing of a distribution µ. Essentially it is a possible
“deconstruction” providing additional information to aid with the analysis of µ, in analogy to the
notion of a vertex partition of a graph.

Definition 3.1 (Detailing). Let µ be a distribution over Ω and A be a set. A detailing ξ of µ with
respect to A is a distribution over Ω × A that satisfies ξ|1 = µ. |A| is referred to as the length of
the detailing. When |A| = 1, we call ξ the trivial detailing and identify it with µ itself.

The following immediate observation is in fact the motivation for Definition 2.5.

Observation 3.2. If ν is a distribution over A and η is a distribution over A × B, then the
adjustment ν � η of η to ν is in particular a detailing of ν with respect to B.

We will also define ρ-quantized detailings, even when the original distribution is not quantized.
Such detailings are not quantized by themselves, only their “detailing portion” is quantized.

Definition 3.3 (Quantized detailing). Let µ be a distribution over Ω, A be a set and ξ be a
detailing of µ with respect to A. For ρ ∈ (0, 1) for which 1/ρ ∈ N, we say that ξ is ρ-quantized if
for every x ∈ Ω for which ξ|1(x) > 0, the conditional distribution ξ|1:x is ρ-quantized.

The following is an immediate consequence of Lemma 2.23.

Observation 3.4. For a distribution µ on a finite set Ω, any detailing ξ of µ with respect to a finite
A can be transformed to a ρ-quantized detailing ξ′, so that ξ′|1:x(a) ∈ {ρ⌈ξ|1:x(a)/ρ⌉, ρ⌊ξ|1:x(a)/ρ⌋}
for every x ∈ Ω and a ∈ A. In particular ξ′(x, a) = ξ(x, a) whenever ξ′|1:x(a) ∈ {0, 1} and
dTV(ξ, ξ

′) < ρ
2 · |A|.

Proof: We will use Lemma 2.23 over ξ|1:x for every x ∈ Ω with ξ|1(x) > 0.

Any given detailing of a distribution can be “detailed further”, resulting in a refinement.

Definition 3.5 (Refinement of a detailing). Let µ be a distribution defined over Ω and ξ be a
detailing of µ with respect to A. A refinement of ξ by a set B is a detailing ξ′ of ξ with respect
to B. As there is a natural bijection between Ω × (A × B) and (Ω × A) × B, ξ′ can and will be
considered also as a detailing of µ with respect to A×B.

Specific to our investigation, we also need a definition for a “do-nothing” detailing (or refinement),
to which we refer as flat.

Definition 3.6 (Flat detailing). Let µ be a distribution over Ω and A be a set. A detailing ξ of
µ with respect to A is said to be a flat detailing if it is a product distribution over Ω × A, i.e.
ξ(x, a) = µ(x) · ξ|2(a) for every x ∈ Ω, a ∈ A.

Definition 3.7 (Flat refinement of a detailing). Let µ be a distribution over Ω = {0, 1}n and ξ be
a detailing of µ with respect to A. Consider a refinement ξ′ of ξ with respect to B, i.e., a detailing
of µ with respect to A × B for which ξ′|1,2 = ξ. Such a ξ′ is said to be a flat refinement if it is a
flat detailing of ξ.
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A detailing will usually have a continuum of possible refinements, even with respect to a set of
size 2. Moreover, there is no good way to sample from a detailing or a refinement in its general
form when we only have access to samples from µ, and even then we only have query access to the
samples from µ. A specific way to define a detailing which is tangible for a testing algorithm is to
“partition” µ by the restriction of the samples to a specific set of variables.

Definition 3.8 (A refinement by a set of variables U). Let µ be a distribution over Ω = {0, 1}n
and ξ be a detailing of µ with respect to a set A. For a subset U ⊆ [n], the refinement ξU of ξ by
the set U is the distribution over Ω× (A× {0, 1}|U |) that satisfies the following:

1. ξU (x, a, v) = 0 if xU ̸= v, and

2. ξU (x, a, v) = ξ(x, a) if xU = v.

Note that the length of the detailing ξU is |A| · 2|U |. When ξ is the trivial detailing (i.e. ξ = µ) we
denote the refinement by U as µU , and also call it the detailing of µ defined by the variable set U .

3.2 Type distributions

When trying to analyze a distribution by its detailing with respect to a set A, a major role is given
to its “weights” as given by its projection over A.

Definition 3.9 (Weight distribution of a detailing). Let µ be a distribution defined over Ω, and
let ξ be a detailing of µ with respect to a set A. The weight distribution of ξ is defined as ξ|2.

We sometimes go the other way and define a flat refinement of a detailing ξ by its weight distribution
(which should “conform” to the weight distribution of ξ).

Definition 3.10 (Flat refinement by weights). Given a detailing ξ of µ over A, and a detailing
η of ξ|2 over B (that is, a distribution over A × B for which η|1 = ξ|2, thus “extending” the
weight distribution of ξ), we denote by ξ⟨η⟩ the specific flat refinement of ξ defined by ξ⟨η⟩(x, a, b) =
ξ(x, a) · η|1:a2 (b) = ξ|2:a1 (x) · η(a, b). In other words, ξ⟨η⟩ = ξ ▷◁ η.

We now define the other important aspect of a detailing of a distribution over {0, 1}n, the “type”
of a variable i ∈ [n] as defined by its distribution in the component ξ|2:a1 for every a ∈ A.

Definition 3.11 (Variable types of a detailing). Let µ be a distribution of {0, 1}n. Let us consider
a detailing ξ of µ with respect to A. The type ti of a variable i ∈ [n] with respect to ξ, is a vector
in [0, 1]A defined by

ti
def
=

〈
Pr

(x,a)∼ξ|µ×{a}
[xi = 1]

〉
a∈A

.

For any a ∈ A for which ξ|2(a) = 0, the value ti(a) is set arbitrarily (and will not affect any
computation in the following).

Definition 3.12 (Type distribution). Let ξ be a detailing of µ with respect to A. The type
distribution of ξ is denoted by Λ and defined over [0, 1]A, where a sample from Λ is obtained as
follows: Choose i ∈ [n] uniformly at random and report its type ti.

We also look at the types that we would expect from a flat refinement of a detailing.
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Definition 3.13 (Flat extension). Given a vector t ∈ [0, 1]A and a set B, its flat extension with
respect to B is the vector t′ ∈ [0, 1]A×B defined by t′(a, b) = t(a) for all a ∈ A and b ∈ B. Given
a finitely supported distribution Λ over [0, 1]A, its flat extension with respect to B, denoted by
Λ⟨B⟩, is correspondingly defined as the distribution for which Λ⟨B⟩(t

′) = Λ(t) for any t ∈ [0, 1]A and

t′ ∈ [0, 1]A×B which is the flat extension of t.

Observation 3.14. If ξ is a detailing of A, and ξ′ is any flat refinement of ξ with respect to B,
then for any i, the type t′i of any variable i with respect to ξ′ is exactly the flat extension of the type
ti of i by ξ with respect to B (not counting pairs (a, b) for which ξ′|2,3(a, b) = 0, for which t′i(a, b)
is anyway arbitrarily defined).

Respectively, the type distribution of such an ξ′ is the flat extension with respect to B of the type
distribution of ξ.

While usually converting the multi-set of variables’ types to a distribution as per Definition 3.12,
we sometimes consider the other direction of starting with a distribution and “implementing” it as
an ordered sequence of elements. We formulate the following with respect to a general space Ω,
and then provide some lemmas for a corresponding general Earth Mover distance, but here we will
almost always use the space [0, 1]A for some A and an η-weighted ℓ1 metric for some η, as befits
distributions over variable types.

Definition 3.15 (Implementation). Let Λ be a discrete distribution over Ω. An implementation
of Λ is a function h : [n]→ Ω, so that |{i ∈ [n] : h(i) = t}| = n · Λ(t) for all t ∈ Ω.

Given a detailing ξ of some µ over {0, 1}n admitting type distribution Λ, the implementation of Λ
demonstrated by the detailing ξ is the map h defined by h(i) = ti, where ti is the type of i under
the detailing ξ.

Note that an implementation of Λ is equivalent to a uniform distribution π over n tuples (i, w) ∈
[n]×Ω, where every i ∈ [n] appears in exactly one of the pairs and Λ(w) = Prπ[[n]×{w}] = π|2(w).

The proof of the following lemma is obtained using linear programming.

Lemma 3.16 (Follows from the proof of Claim 6.5 in [CFG+23]). Fix a space Ω with a distance
measure d. If two finitely supported distributions Λ and Λ′ over Ω are 1

n -quantized, then there exists
a 1

n -quantized transfer function T from Λ to Λ′ which is optimal with respect to dEM(Λ,Λ′), that is,

dEM(Λ,Λ′) = E
(t,t′)∼T

[
d(t, t′)

]
The following “satisfiable pigeon-hole principal” is trivial.

Observation 3.17. If L is a multiset of members from X×Y and N is a multiset of members from
Y × Z, and the multisets ⟨b : (a, b) ∈ L⟩ and ⟨b : (b, c) ∈ N⟩ are identical, then there is a multiset
J of members from X × Y × Z for which ⟨(a, b) : (a, b, c) ∈ J⟩ = L and ⟨(b, c) : (a, b, c) ∈ J⟩ = N .

Using Lemma 3.16 and Observation 3.17 the following lemma is immediate, by identifying the
1
n -quantized distributions with the corresponding n element multisets, and using the fact that an
implementation is a 1

n -quantized distribution over [n]×Ω, whose restriction to the first coordinate
is uniform over [n].
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Lemma 3.18. Fix a space Ω with a distance mesure d. If Λ and Λ′ are 1
n -quantized, than any

implementation h of Λ can be extended to an implementation H of a transfer distribution κ between
Λ and Λ′ such that

dEM(Λ,Λ′) = E
(t,t′)∼κ

[
d(t, t′)

]
= E

i∼[n]
[d(((H(i))1, (H(i))2)]

We end by noting that the above lemma has an easy “converse”.

Observation 3.19. Let Λ and Λ′ be distributions over some Ω with distance measure d, let h :
[n]→ Ω be an implementation of Λ and h′ : [n]→ Ω be an implementation of Λ′. Then,

dEM(Λ,Λ′) ≤ E
i∼[n]

[
d(h(i), h′(i))

]
.

Proof: By the definition of dEM(Λ,Λ′), it is enough to construct a transfer distribution T between
Λ and Λ′ for which E(t,t′)∼T [d(t, t′)] ≤ Ei∼[n] [d(h(i), h

′(i))]. To construct such a T , we define a
draw (t, t′) ∼ T as the result of uniformly drawing i ∼ [n] and setting (t, t′) = (h(i), h′(i)).

3.3 Notions of robustness

Definition 3.20 (Index of a detailing). Let ξ be a detailing of µ with respect to A. The index of
ξ is defined as

Ind(ξ)
def
= E

i∼[n]

[
E

a∼ξ|2

[
Prx∼ξ|2:a1

[xi = 1]2
]]

Note that for any detailing ξ, 0 ≤ Ind(ξ) ≤ 1.

We first define the robustness of a detailing in its general form.

Definition 3.21 (Robust detailing). Let δ ∈ (0, 1) and ℓ ∈ N be constants. A detailing ξ of µ with
respect to A is called (δ, ℓ)-robust if there exists no refinement ξ′ of ξ with respect to a set B such
that |B| ≤ ℓ and Ind(ξ′) ≥ Ind(ξ) + δ.

The second type of robustness concerns only refinements obtained by a set of variables, and even
then puts its requirement over most (rather than all) candidate variable sets.

Definition 3.22 (Weakly robust detailing). Let δ ∈ (0, 1) and k ∈ N be constants. A detailing ξ
is said to be (δ, k)-weakly robust if for at least a 1 − δ fraction of the sets U ⊆ [n] of size at most
k, it holds that Ind(ξU ) < Ind(ξ) + δ.

A useful feature of the way robustness is defined, is that the existence of a robust refinement of a
given detailing follows almost immediately from the definition. We state here the variant of such a
lemma that will be useful to us later on.

Lemma 3.23. For any k and δ, if ξ is any detailing of µ with respect to a set A, then there exists
a set U of size at most k/δ such that ξU is (δ, k)-robust.
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Proof: We consider the following sequence of sets U0, U1, . . . , Ur defined by the following inductive
process: We start with the basis U0 = ∅, and given Ui we check whether there exists a set Vi ⊂ [n]
of size at most k so that Ind(ξUi∪Vi) ≥ Ind(ξUi)+ δ. If there exists such a set, we set Ui+1 = Ui∪Vi

and continue this process for Ui+1. Otherwise, we set r = i, U = Ui and terminate the process.

By definition, once this process is terminated, we obtain a (δ, k)-weakly robust detailing ξU (in fact
the termination condition is slightly stronger than the condition of Definition 3.22). Additionally,
noting that for every i ≤ r we have Ind(ξUi) ≥ Ind(ξ) + i · δ and |Ui| ≤ ik by induction, and that
Ind(ξW ) ∈ [0, 1] by definition, for any set W ⊆ [n], we conclude that r ≤ 1/δ and so |U | ≤ rk ≤ k/δ,
as required.

We now define what it means for a detailing to be (ϵ, k)-good, a notion that will provide us a degree
of predictability with respect to testing algorithms.

Definition 3.24 (ϵ-independent tuple). Fix ϵ ∈ (0, 1) and let µ be a distribution over {0, 1}n, and
i1, . . . , ik ∈ [n] be a set of integers. We say that the k-tuple (i1, . . . , ik) an ϵ-independent tuple with

respect to µ if dTV

(
µ|{i1,...,ik},

∏k
ℓ=1 µ|iℓ

)
≤ ϵ.

Definition 3.25 ((ϵ, k)-good detailing). Let µ be a distribution supported on {0, 1}n and let ξ be
a detailing of µ over some A. Let J ⊆ A be the set of elements where a ∈ J if at least (1 − ϵ)nk

of the k-tuples in [n] are ϵ-independent with respect to ξ|2:a1 . We call the detailing (ϵ, k)-good if
Pra∼ξ|2 [a ∈ J ] ≥ 1− ϵ, and refer to J as the good set.

3.4 From variable weak robustness to goodness

We prove here that variable weak robustness implies goodness, as stated in the following lemma.

Lemma 3.26. If a detailing ξ is ( ϵ6

64k3
, k − 1)-weakly robust, then it is also (ϵ, k)-good.

Before we prove the lemma, we set the stage with some technical tools and definitions. In the
following, for a distribution µ supported on {0, 1}n, given a tuple α = (i1, . . . , ik) ∈ [n]k and an
assignment v = (vi1 , . . . , vik) ∈ {0, 1}k we let µ|i1:vi1 ,...,ik:vik denote the conditioned distribution
µ|xα=v. Note that this is not a new definition but just a new use for Definition 2.3.

Lemma 3.27. If the tuple {i1, . . . , ik} is not ϵ-independent, then there exists an index 1 ≤ ℓ ≤ k
and a set V ⊆ {0, 1}k−1, such that Prµ|{i1,...,iℓ−1,iℓ+1,...,ik} [V ] ≥ ϵ/2k, and for every member v =

(vi1 , . . . , viℓ−1
, viℓ+1

, . . . , vik) ∈ V we have
∣∣∣µ|iℓ(1)− µ|i1:v1,...,iℓ−1:vℓ−1,iℓ+1:vℓ+1,...,ik:vk

iℓ
(1)
∣∣∣ ≥ ϵ/2k.

The proof of Lemma 3.27 follows from the following one.

Lemma 3.28. Let µ be a distribution over {0, 1}n. Then

dTV

µ|{i1,...,ik},
k∏

j=1

µ|ij

 ≤ ℓ∑
j=1

E
x∼µ

[∣∣∣µ|i1:xi1
,...,iℓ−1:xiℓ−1

iℓ
(1)− µ|iℓ(1)

∣∣∣]

Proof: We use Observation 2.10, and prove the statement by constructing an appropriate coupling
(transfer distribution) T which demonstrates this distance bound (with respect to the Kronecker

norm) between ν
def
= µ|{i1,...,ik} and τ

def
=
∏k

j=1 µ|ij . To draw (x,y) ∼ T (where (x,y) ∈ ({0, 1}k)2),
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for ℓ ∈ [k] we draw xℓ and yℓ inductively considering the values of x1, . . . ,xℓ−1 and y1, . . . ,yℓ−1.
The base case (before we draw any bits) is trivial.

To draw xℓ and yℓ we first calculate

αℓ = Pr
z∼µ|i1:x1,...,iℓ−1:xℓ−1

[zjℓ = 1] = µ|i1:x1,...,iℓ−1:xℓ−1

iℓ
(1)

and βℓ = µ|iℓ(1). Then if αℓ ≥ βℓ we set (xℓ,yℓ) = (1, 1) with probability βℓ, (xℓ,yℓ) = (1, 0) with
probability αℓ−βℓ, and (xℓ,yℓ) = (0, 0) with probability 1−αℓ. If αℓ ≤ βℓ then we analogously set
(xℓ,yℓ) = (1, 1) with probability αℓ, (xℓ,yℓ) = (0, 1) with probability βℓ−αℓ, and (xℓ,yℓ) = (0, 0)
with probability 1− βℓ.

It is not hard to see that this is indeed a coupling between ν and τ . Also, for every ℓ clearly

Pr
(x,y)∼T

[xℓ ̸= yℓ] = E
x∼µ

[|αℓ − βℓ|] = E
x∼µ

[∣∣∣µ|i1:xi1
,...,iℓ−1:xjℓ−1

iℓ
(1)− µ|iℓ(1)

∣∣∣]
and hence by a union bound

Pr
(x,y)∼T

[x ̸= y] ≤
ℓ∑

j=1

E
x∼µ

[∣∣∣µ|i1:xi1
,...,iℓ−1:xjℓ−1

iℓ
(1)− µ|iℓ(1)

∣∣∣]
completing the proof.

Proof of Lemma 3.27: Assume that the conclusion of the lemma does not hold. We define for all
ℓ ∈ [k] the set Vℓ ⊆ {0, 1}k−1 of all v for which

∣∣∣µ|iℓ(1)− µ|i1:v1,...,iℓ−1:vℓ−1,iℓ+1:vℓ+1,...,ik:vk
iℓ

(1)
∣∣∣ ≥ ϵ/2k.

We then note that δℓ = Ex∼µ

[∣∣∣µ|i1:xi1
,...,iℓ−1:xjℓ−1

iℓ
(1)− µ|iℓ(1)

∣∣∣] satisfies
δℓ = E

x∼µ

[∣∣∣∣ Ez∼µ

[
µ|

i1:xi1
,...,iℓ−1:xjℓ−1

,iℓ+1:ziℓ+1
,...,ik:zk

iℓ
(1)− µ|iℓ(1)

]∣∣∣∣]
≤ E

x∼µ

[∣∣∣µ|i1:xi1
,...,iℓ−1:xjℓ−1

,iℓ+1:xiℓ+1
,...,ik:xk

iℓ
(1)− µ|iℓ(1)

∣∣∣]
≤ Pr

µ|{i1,...,iℓ−1,iℓ+1,...,ik}
[Vℓ] · 1 + Pr

µ|{i1,...,iℓ−1,iℓ+1,...,ik}
[{0, 1}k−1 \ Vℓ] ·

ϵ

2k
=

ϵ

k

Then Lemma 3.28 would have implied that dTV(µ|{i1,...,ik},
∏k

ℓ=1 µ|iℓ) ≤
∑

ℓ∈[k] δℓ ≤ ϵ, in contra-
diction to our premise.

Definition 3.29 (Pivot tuple). Fix k ∈ [n], let µ be a distribution over {0, 1}n and ϵ ∈ (0, 1). We
say that a (k − 1)-tuple (i1, . . . , iℓ−1, iℓ+1, . . . , ik) ∈ [n]k−1 is a pivot tuple for iℓ with respect to µ
if the following holds. There exists a set V ⊆ {0, 1}k−1 such that Prµ|{i1,...,iℓ−1,iℓ+1,...,ik} [V ] ≥ ϵ/2k,

and for every v ∈ V we have
∣∣∣µ|iℓ(1)− µ|i1:v1,...,iℓ−1:vℓ−1,iℓ+1:vℓ+1,...,ik:vk

iℓ
(1)
∣∣∣ ≥ ϵ/2k.

We now prove, in two stages, that if a detailing is not (ϵ, k)-good, then there exist many tuples
that are pivot over much of the weight for many variables.

Observation 3.30. Fix k ∈ [n], let µ be a distribution over {0, 1}n and ϵ ∈ (0, 1). If there exists
a set S ∈ [n]k of at least ϵnk tuples that are not ϵ-independent, then there is a set S ′ ⊆ [n]k−1 of at
least ϵ

2k ·n
k−1 tuples such that each of them is a pivot tuple for at least ϵ

2k ·n variables outside of it.
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Proof: Note that Lemma 3.27 immediately implies that for every U ∈ S there exists iU ∈ U so
that U \{iU} is a pivot tuple with respect to iU . By the premise of the observation, if we uniformly
pick a tuple U ′ ∈ [n]k−1 and i ∈ [n], then with probability at least ϵ we will obtain that U ′∪{i} ∈ S
(and also in particular |U ′ ∪ {i}| = k), and so with probability at least ϵ/k we obtain that U ′ is a
pivot tuple for i (since the probability for i = iU ′∪{i} conditioned on U ′ ∪ {i} = U ∈ S is 1/k).

A reverse Markov inequality then implies that there exists a set S ′ of at least ϵ
2k · n

k−1 tuples so
that for every U ′ ∈ S ′ there exist at least ϵ

2k · n many variables for which it is a pivot tuple.

Lemma 3.31. If a detailing ξ of µ over A is not (ϵ, k)-good, then there exists a set S ⊆ [n]k−1 of at

least ϵ
4k · n

k−1 tuples, so that for every U ∈ S there exists a set KU ⊆ A for which Prξ|2 [KU ] ≥ ϵ2

4k ,
satisfying that for every a ∈ KU the tuple U is a pivot tuple for at least ϵ

2k · n many variables with
respect to ξ|2:a1 .

Proof: We let K be the set of all a ∈ A for which ξ|2:a admits a set Sa ⊆ [n]k of at least ϵnk tuples
which are not ϵ-independent. By the premise of ξ not being (ϵ, k)-good we have Prξ|2 [K] ≥ ϵ. By

invoking Observation 3.30 for every a ∈ K, we obtain S ′a ⊆ [n]k−1 of size at least ϵ
2k · n

k−1 so that
every U ∈ S ′a is a pivot tuple for at least ϵ

2k · n many variables with respect to ξ|2:a.

In particular, if we draw uniformly a tuple U ∈ [n]k−1 and according to ξ|2:K2 a value a ∈ K, with
probability at least ϵ

2k the tuple U is pivot tuple for at least ϵ
2k · n many variables with respect to

ξ|2:a. To finalize, we use a reverse Markov inequality, and find a set S ⊆ [n]k−1 of at least ϵ
4k ·n

k−1

many tuples, so that every U ∈ S satisfies the above assertion with respect to a set KU ⊆ K
satisfying Prξ|2:K2

[KU ] ≥ ϵ
4k and hence Prξ|2 [KU ] ≥ ϵ2

4k .

We are now ready to prove that a sufficient (weak) robustness of a detailing implies its goodness.

Proof of Lemma 3.26: As ξ is not (ϵ, k)-good, we use Lemma 3.31 to find the set S ⊆ [n]k−1

satisfying its conclusion, and also note the set KU ⊆ A promised by the lemma for every U ∈ S.
Additionally, for every U ∈ S and a ∈ KU we note the set IU,a ⊆ n of (at least ϵ

2k ·n many) variables
for which U is a pivot tuple with respect to ξ|2:a1 .

To conclude, we bound from below Ind(ξU )− Ind(ξ) for every U ∈ S. We set ∆
def
= Ind(ξU )− Ind(ξ)

and analyze it:

∆ =
1

n

∑
i∈[n]

(
E

(a,v)∼ξU |2,3

[
Pr

x∼ξU |2,3:(a,v)
1

[xi = 1]2

]
− E

a∼ξ|2

[
Pr

x∼ξ|2:a1

[xi = 1]2

])

=
1

n

∑
i∈[n]

(
E

a∼ξ|2

[
E

v∼ξU |2:a3

[
Pr

x∼ξU |2,3:(a,v)
1

[xi = 1]2 − Pr
x∼ξ|2:a1

[xi = 1]2

]])

= E
a∼ξ|2

 1

n

∑
i∈[n]

 E
v∼ξU |2:a3

[
Pr

x∼ξU |2,3:(a,v)
1

[xi = 1]2

]
− E

v∼ξU |2:a3

[
Pr

x∼ξ|2,3:(a,v)
1

[xi = 1]

]2
≥ Pr

a∼ξ|2
[KU ] E

a∼ξ|2:KU
2

 1

n

∑
i∈IU,a

 E
v∼ξU |2:a3

[
Pr

x∼ξU |2,3:(a,v)
1

[xi = 1]2

]
− E

v∼ξU |2:a3

[
Pr

x∼ξ|2,3:(a,v)
1

[xi = 1]

]2
≥ ϵ2

4k
· E
a∼ξ|2:KU

2

[
|IU,a|
n
·
( ϵ

2k

)2 ϵ

2k

]
≥ ϵ6

64k5
,
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where in the last line we used Observation 2.35 for the variable Xa,i = Pr
x∼ξ|2,3:(a,v)1

[xi = 1] and

the probability space v ∼ ξU |2:a3 , for every a ∈ KU and i ∈ IU,a, with α = β = ϵ
2k .

3.5 From variable weak robustness to general robustness

In this section we prove that weak variable robustness implies even the seemingly much stronger
notion of general robustness, as stated in the following lemma.

Lemma 3.32. Fix γ ∈ (0, 1), ℓ ∈ N and let ξ be a detailing of µ with respect to A. If ξ is

(γ/2, C · ℓ8

γ38 )-weakly robust for some absolute constant C > 1, then it is (γ, ℓ)-robust.

The above lemma is a direct consequence of the following lemma (which will be proved here), which
is a slightly strengthened restatement of Lemma 3.32 in a “contrary form”.

Lemma 3.33. Fix γ ∈ (0, 1), let ξ be a detailing of µ with respect to A, and let ζ be a refinement

of ξ with respect to A×B such that Ind(ζ)− Ind(ξ) ≥ γ. Then, there exists k = O
(
|B|8
γ38

)
such that

the following holds. A uniformly random k-tuple α ∈ [n]k satisfies Ind(ζ) − Ind(ξα) < γ/2, with
probability at least 1/2.

To prove Lemma 3.33, we need the following progress lemma to be proved in Section 3.5.1.

Lemma 3.34. If ξ is a detailing of µ with respect to A, and ζ is a refinement of ξ with respect to

A×B satisfying Ind(ζ)− Ind(ξ) ≥ γ, then for at least Ω
(
γ19n
|B|4

)
many i ∈ [n] we have Ind(ξ{i})−

Ind(ξ) ≥ Ω
(

γ19

|B|4

)
.

We now define some notations. Let α = (x1, . . . ,xk) ∈ [n]k be a uniformly random k-tuple and
define X1, . . . ,Xk to be the following random variables for every t ∈ [k] (which depend on α),

Xt =

{
0, if Ind(ξ{x1,...,xt})− Ind(ξ{x1,...,xt−1}) < ρ

1, otherwise
,

where ρ = Ω
(

γ19

|B|4

)
, with the implicit coefficient in this expression to be later determined in the

proof of Lemma 3.34. Next, for every t ∈ [k] we define the random variable Rt ∈ [n] ∪ {0} as

Rt =

{
xt, if Xt = 1

0, otherwise
,

Now we have the following lemma which lower bounds the probability of the event Rt ̸= 0 condi-
tioned on the values of R1, . . . ,Rt−1 for every t ∈ [k].

Lemma 3.35. Let t ∈ [k] and r1, . . . , rt−1 ∈ [n]∪{0}. If Ind (ζ)− Ind(ξ{r1,...,rt−1}\{0}) ≥ γ/2, then

Pr
α∼[n]k

[Rt ̸= 0 | R1 = r1, . . . ,Rt−1 = rt−1] ≥ ρ,

where ρ = Ω
(

γ19

|B|4

)
.
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Proof: We apply Lemma 3.34 with the detailing ξ{r1,...,rt−1}\{0}, and γ/2 instead of γ. By our
assumptions we have Ind (ζ) − Ind(ξ{r1,...,rt−1}\{0}) ≥ γ/2, so there exists a set S ⊆ [n] of size at

least Ω
(
γ19n
|B|4

)
, such that for any xt ∈ S, we have

Ind(ξ({r1,...,rt−1}\{0})∪{xt})− Ind(ξ{r1,...,rt−1}\{0}) ≥ Ω

(
γ19

|B|4

)
. (1)

Note that if xt ∈ S, then since Equation (1) holds, we must have that Xt = 1 and Rt = xt ̸= 0.

As the probability that xt ∈ S is at least Ω
(

γ19

|B|4

)
the lemma follows.

Now we will use the following lemma from [AFL24].

Lemma 3.36 ([AFL24]). Let G ⊂ R∗ be a set of goal sequences, satisfying that if u is a prefix of
v and u ∈ G then v ∈ G. Additionally, let R1, . . . ,RM be a set of random variables and p1, . . . , pM
be values in [0, 1], such that for every 1 ≤ t ≤ M and v = (r1, . . . , rt−1) ∈ Rt−1 \ G (that can
happen with positive probability), we have Pr [Ri ̸= 0 | R1 = r1, . . . ,Rt−1 = rt−1] ≥ pt. For every
1 ≤ t ≤ M , let Xt ∈ {0, 1} be an indicator for Rt ̸= 0 and X =

∑M
t=1Xt. Under these premises,

for every 0 < δ < 1, the following holds:

Pr

[
((R1, . . . ,RM ) /∈ G) ∧

(
X < (1− δ)

M∑
t=1

pt

)]
<

(
e−δ

(1− δ)1−δ

)∑M
t=1 pt

Proof of Lemma 3.33: We define the set of goals as follows

G def
=
{
(r1, . . . , rk) ∈ ([n] ∪ {0})k : Ind(ζ)− Ind(ξ{r1,...,rk}\{0}) < γ/2

}
Set M = k for some k to be defined later. Let p1 = . . . = pk = ρ, where ρ = γ19

C·|B|4 for some large

enough absolute constant C > 1. By following Lemma 3.36 and Lemma 3.35, we have that for
every δ ∈ (0, 1),

Pr

[
((R1, . . . ,Rk) /∈ G) ∧

(
X < (1− δ)

k∑
t=1

ρ

)]
<

(
e−δ

(1− δ)1−δ

)∑k
t=1 ρ

.

As
(

e−δ

(1−δ)1−δ

)
≤ e−

δ2

2 for δ ∈ (0, 1), we have:

Pr [((R1, . . . ,Rk) /∈ G) ∧ (X < (1− δ)ρ · k)] < e−
δ2ρk

2 ,

which implies that

Pr [((R1, . . . ,Rk) ∈ G) ∨ (X ≥ (1− δ)ρ · k)] ≥ 1− e−
δ2ρk

2 .

Next, we show that the event X ≥ (1−δ)ρ ·k is empty. We set k
def
= ⌈8/ρ2⌉ = O

(
|B|8
γ38

)
and δ = 1/2.

Then, (1− δ)ρ · k ≥ 1/ρ+ 1, and by the definition of the random variables Xt we have that

Ind(ξ{x1,...,xk}\{0}) ≥ (1− δ)ρ · k · ρ > 1,

which is a contradiction to the fact that the index of a detailing is bounded by 1.

This implies that for the setting of k = ⌈8/ρ2⌉ and δ = 1/2, Prα∼[n]k [(R1, . . . ,Rk) ∈ G] ≥ 1/2.
Therefore, by the definition of G, we have that with probability at least 1/2 for a uniformly random
k-tuple α = (x1, . . . ,xk) it holds that Ind(ζ)− Ind(ξ{x1,...,xk}\{0}) < γ/2 as required.
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3.5.1 Proof of the progress lemma

To prove Lemma 3.34 we begin with the following.

Lemma 3.37. Fix γ ∈ (0, 1) and suppose that there is a detailing ξ of µ with respect to A and a
refinement ζ of ξ over A×B such that Ind(ζ)− Ind(ξ) ≥ γ. Then the following hold:

1. There exists a set A′ ⊆ A such that ξ|2(A′) ≥ γ/2, and for every a ∈ A′ there exists ba ∈ B

(depending on a) such that
ζ|2,3(a,ba)

ξ|2(a) = ζ|2:a3 (ba) ≥ γ
4|B| for which

E
i∼[n]

[
Pr

x∼ζ|2,3:(a,ba)
1

[xi = 1]2 − Pr
x∼ξ|2:a1

[xi = 1]2

]
≥ γ/4.

2. For every fixed a ∈ A′ and b ∈ B, ζ|2:a3 (b) ≤ 1− γ/8.

Proof: We start by proving the first item. By the premise that Ind(ζ)− Ind(ξ) ≥ γ we have:

γ ≤ E
i∼[n]

[
E

(a,b)∼ζ|2,3

[
Pr

x∼ζ|2,3:(a,b)
1

[xi = 1]2
]
− E

a∼ξ|2

[
Pr

x∼ξ|2:a1

[xi = 1]2

]]

= E
i∼[n]

[
E

a∼ξ|2

[
E

b∼ζ|2:a3

[
Pr

x∼ζ|2,3:(a,b)
1

[xi = 1]2
]
− Pr

x∼ξ|2:a1

[xi = 1]2
]]

= E
a∼ξ|2

[
E

b∼ζ|2:a3

[
E

i∼[n]

[
Pr

x∼ζ|2,3:(a,b)
1

[xi = 1]2 − Pr
x∼ξ|2:a1

[xi = 1]2
]]]

.

Therefore, by using the reverse Markov’s inequality (Lemma 2.36) we have that there exists a set
A′ ⊆ A with Prξ|2 [A

′] ≥ γ/2 such that for every a ∈ A′ it holds that

γ/2 ≤ E
b∼ζ|2:a3

[
E

i∼[n]

[
Pr

x∼ζ|2,3:(a,b)1

[xi = 1]2 − Pr
x∼ξ|2:a1

[xi = 1]2
]]

. (2)

By using the reverse Markov’s inequality again, for every a ∈ A′ there exists a set Ba with
Prζ|2:a3

[Ba] ≥ γ/4 so that for every b ∈ Ba,

γ/4 ≤ E
i∼[n]

[
Pr

x∼ζ|2,3:(a,b)1

[xi = 1]2 − Pr
x∼ξ|2:a1

[xi = 1]2
]
. (3)

Finally, by an averaging argument (noting that |Ba| ≤ |B|), for every a ∈ A′ there exists ba ∈ Ba

with ζ|2:a3 (ba) ≥ γ/4|B| which satisfies Equation (3), completing the proof of the first item.

For the second item, note that from Equation (2) for any fixed a ∈ A′ we have that

γ/2 ≤ E
i∼[n]

[
E

b∼ζ|2:a3

[
Pr

x∼ζ|2,3:(a,b)1

[xi = 1]2
]
− Pr

x∼ξ|2:a1

[xi = 1]2
]
= Ind(ζ|2:a)− Ind(ξ|2:a). (4)

23



Suppose that there is b∗ ∈ B such that ζ|2:a3 (b∗) > 1− γ/8. Then,

Ind(ζ|2:a) = E
i∼[n]

[
E

b∼ζ|2:a3

[
Pr

x∼ζ|2,3:(a,b)1

[xi = 1]2

]]
= E

b∼ζ|2:a3

[
Ind(ζ|2,3:(a,b))

]
= ζ|2:a3 (b∗) · Ind(ζ|2,3:(a,b∗)) +

∑
b̸=b∗∈B

ζ|2:a3 (b) · Ind(ζ|2,3:(a,b))

≤ Ind(ζ|2,3:(a,b∗)) + γ

8
. (5)

On the other hand,

Ind(ξ|2:a) = E
i∼[n]

 E
b∼ζ|2:a3

[
Pr

x∼ζ|2,3:(a,b)1

[xi = 1]

]2 ≥ E
i∼[n]

(ζ|2:a3 (b∗) · Pr
x∼ζ|2,3:(a,b

∗)
1

[xi = 1]

)2


≥ (1− γ/8)Ind(ζ|2,3:(a,b∗)).

Plugging in Equation (5) we get that

Ind(ζ|2:a) ≤ Ind(ξ|2:a)
(1− γ/8)

+ γ/8 ≤ Ind(ξ|2:a)(1 + γ/8) + γ/8 ≤ Ind(ξ|2:a) + γ

4
,

which is a contradiction to Equation (4).

Definition 3.38 (Complement outside b). Given a detailing ζ of µ over A × B, for every a ∈ A
and b ∈ B we define κa,b, the complement outside b, as the distribution

ζ|2:a,3:B\{b}
1 =

1

1− ζ|2:a3 (b)

∑
b′ ̸=b∈B

ζ|2:a3 (b′) · ζ|2,3:(a,b
′)

1 .

Lemma 3.39. Fix (a, b) ∈ A×B and γ ∈ (0, 1). If

E
i∼[n]

[
Pr

x∼ζ|2,3:(a,b)1

[xi = 1]2 − Pr
x∼ξ|2:a1

[xi = 1]2

]
≥ γ,

then there exists a set Sa ⊆ [n] of size at least γn/2 such that for every i ∈ Sa it holds that

Pr
x∼ζ|2,3:(a,b)1

[xi = 1]− Pr
x∼κa,b

[xi = 1] ≥ γ/4.

Proof: By the reverse Markov inequality there exists a set Sa ⊆ [n] of size at least γn/2 such that
for each i ∈ Sa it holds that Pr

x∼ζ|2,3:(a,b)1

[xi = 1]2−Prx∼ξ|2:a1
[xi = 1]2 ≥ γ/2. Since c2−d2 ≤ 2|c−d|

for c, d ∈ [0, 1], for all i ∈ Sa we have

Pr
x∼ζ|2,3:(a,b)1

[xi = 1]− Pr
x∼ξ|2:a1

[xi = 1] ≥ γ/4. (6)

Note that since Prx∼ξ|2:a1
[xi = 1] = ζ|2:a3 (b)·Pr

x∼ζ|2,3:(a,b)1

[xi = 1]+(1−ζ|2:a3 (b))Prx∼κa,b
[xi = 1] and

Pr
x∼ζ|2,3:(a,b)1

[xi = 1] > Prx∼ξ|2:a1
[xi = 1], we must have that Prx∼κa,b

[xi = 1] < Prx∼ξ|2:a1
[xi = 1].

Combining that with Equation (6) implies the lemma.
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Lemma 3.40. For any a ∈ A, if there exists ba ∈ B and Sa ⊆ [n] such that for all i ∈ Sa it holds
that

Pr
x∼ζ|2,3:(a,ba)

1

[xi = 1]− Pr
x∼κa,ba

[xi = 1] ≥ γ,

then it holds that Varx∼ξ|2:a1

[∑
i∈Sa

xi

]
≥ γ2δ1δ2|Sa|2, where δ1 = ζ|2:a3 (ba) and δ2 = 1− δ1.

Proof: Let X
def
=
∑

i∈Sa
xi and let Z ∈ {1, 2} be a random variable such that Z = 1 with

probability δ1 and Z = 2 with probability δ2. We can think of the distribution of x ∼ ξ|2:a1 as

first drawing Z and then drawing x from ζ|2,3:(a,ba)1 or κa,ba based on whether Z = 1 or Z = 2,
respectively. By using Cauchy-Schwartz inequality (Lemma 2.34),

E
x∼ξ|2:a1

[X2] = E
Z

[
E
x
[X2 | Z]

]
≥ E

Z

[
E
x
[X | Z]2

]
.

By the premise of the lemma we have that

E
x
[X | Z = 1]−E

x
[X | Z = 2] ≥ γ|Sa|.

Combining the above (and using δ1 + δ2 = 1),

Var
x∼ξ|2:a1

[X] = E[X2]−E[X]2 ≥ E
Z

[
E[X | Z]2

]
−
(
E
Z
[E[X | Z]]

)2

= δ1E[X | Z = 1]2 + δ2E[X | Z = 2]2 − δ21 E[X | Z = 1]2 − δ22 E[X | Z = 2]2

− 2δ1δ2E[X | Z = 1]E[X | Z = 2]

= δ1(1− δ1)E[X | Z = 1]2 + δ2(1− δ2)E[X | Z = 2]2 − 2δ1δ2E[X | Z = 1] ·E[X | Z = 2]

= δ1δ2 (E[X | Z = 1]−E[X | Z = 2])2

≥ γ2δ1δ2|Sa|2

This completes the proof of the lemma.

Now we prove that given that the conclusion of Lemma 3.40 holds, that is, Varx∼ξ|2:a1
[
∑

i∈Sa
xi]

is large, there exists a subset of indices S′
a ⊆ Sa such that for every index i ∈ S′

a, there is a large
number of indices j ∈ Sa with large covariance between xi and xj .

Lemma 3.41. Let Sa ⊆ [n] be such that Varx∼ξ|2:a1

[∑
i∈Sa

xi

]
≥ β|Sa|2 for some β > 0. Then

there is a subset S′
a ⊆ Sa with |S′

a| ≥ β|Sa|/4, such that for every i ∈ S′
a there exists a set Ai,a ⊆ Sa

with at least β|Sa|/2 many indices, where for all j ∈ Ai,a we have Covx∼ξ|2:a1
(xi,xj) ≥ β/4.

Proof: For every i ∈ Sa we define

Ai,a
def
= {j ∈ Sa : Cov(xi,xj) > β/4},

and let
S′
a

def
= {i ∈ Sa : |Ai,a| ≥ β|Sa|/2}.
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Then, for all i, j ∈ Sa, using the fact that Cov(xi,xj) ≤ 1 for all i, j ∈ [n] we have:

β|Sa|2 ≤ Var
x∼ξ|2:a1

[∑
i∈Sa

xi

]
=
∑

i,j∈Sa

Cov(xi,xj)

=
∑
i∈S′

a

 ∑
j∈Ai,a

Cov(xi,xj) +
∑

j /∈Ai,a

Cov(xi,xj)

+
∑
i/∈S′

a

 ∑
j∈Ai,a

Cov(xi,xj) +
∑

j /∈Ai,a

Cov(xi,xj)


≤ |S′

a||Sa|+ |Sa \ S′
a|(β|Sa|/2 + β|Sa|/4)

≤ |S′
a||Sa|+ |Sa|2 ·

3β

4
,

This implies that β
4 |Sa| ≤ |S′

a|, which finishes the proof.

Lemma 3.42. Fix γ ∈ (0, 1) and suppose that there is a detailing ξ of µ with respect to A and
a refinement ζ of ξ over A × B such that Ind(ζ) − Ind(ξ) ≥ γ. Then there exists a set A′ with

Prξ|2 [A
′] ≥ γ/2, and a set S′

a ⊆ [n] of size at least γ5

210|B|n for every a ∈ A′, so that for all i∗ ∈ S′
a

we have

Ind((ξ|2:a){i∗})− Ind(ξ|2:a) ≥ γ13

228|B|3

Proof: Before constructing A′ and S′
a, let us prove an index lower bound for every a ∈ A and

i∗ ∈ [n]. Let Za
i be a random variable defined by the following process. We draw j ∈ {0, 1} such

that j = 1 with probability Prx∼ξ|2:a1
[xi∗ = 1] and let Za

i = Prx∼ξ|2:a1
[xi = 1 | xi∗ = j]. Note that

Ej [Z
a
i ] = Prx∼ξ|2:a1

[xi = 1] and therefore,

Varj [Z
a
i ] =Ej

[
(Za

i −E[Za
i ])

2
]
=

∑
j∈{0,1}

Pr
x∼ξ|2:a1

[xi∗ = j]

(
Pr

x∼ξ|2:a1

[xi = 1 | xi∗ = j]− Pr
x∼ξ|2:a1

[xi = 1]

)2

≥ Pr
x∼ξ|2:a1

[xi∗ = 1]

(
Pr

x∼ξ|2:a1

[xi = 1 | xi∗ = 1]− Pr
x∼ξ|2:a1

[xi = 1]

)2

≥ Pr
x∼ξ|2:a1

[xi∗ = 1]2

(
Pr

x∼ξ|2:a1

[xi = 1 | xi∗ = 1]− Pr
x∼ξ|2:a1

[xi = 1]

)2

=

(
Pr

x∼ξ|2:a1

[xi = 1 ∧ xi∗ = 1]− Pr
x∼ξ|2:a1

[xi = 1] Pr
x∼ξ|2:a1

[xi∗ = 1]

)2

=

(
E

x∼ξ|2:a1

[xixi∗ ]− E
x∼ξ|2:a1

[xi] E
x∼ξ|2:a1

[xi∗ ]

)2

=
(
Covx∼ξ|2:a1

(xi∗ ,xi)
)2

.

Thus, by the definition of the index of a distribution,

Ind((ξ|2:a){i∗})− Ind(ξ|2:a) = E
i∼[n]

 ∑
j∈{0,1}

Pr
x∼ξ|2:a1

[xi∗ = j] Pr
x∼ξ|2:a1

[xi = 1 | xi∗ = j]2 − Pr
x∼ξ|2:a1

[xi = 1]2


= E

i∼[n]

[
E
j
[(Za

i )
2]−E

j
[Za

i ]
2

]
= E

i∼[n]
[Varj [Z

a
i ]].
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Now we go back to constructing out sets. We use Lemma 3.37 to obtain A′, noting also ba for every
a ∈ A′. Then we use Lemma 3.39 for every a ∈ A′ along with ba with parameter γ/4, noting the
resulting set Sa, whose size is at least γn/8. Next we use Lemma 3.40 over this with parameter
γ/16, also recalling that in the notation of that lemma δ1 ≥ γ/4|B| and δ2 ≥ γ/8 (as guaranteed

by Lemma 3.37) to obtain the bound Varx∼ξ|2:a1

[∑
i∈Sa

xi

]
≥ γ2δ1δ2|Sa|2 ≥ γ4

32|B| |Sa|2.

Now we use Lemma 3.41, with β = γ4

32|B| to obtain the set S′
a and the sets Ai,a for all i ∈ S′

a. Note

that the obtained bounds here are |S′
a| ≥

γ4

32|B| |Sa| ≥ γ5

210|B|n and |Ai,a| ≥ γ5

210|B|n, where for i ∈ S′
a

and j ∈ Ai,a we have Covx∼ξ|2:a1
(xi,xj) ≥ γ4

29|B| . Thus, for every a ∈ A′ and i∗ ∈ S′
a we have

Ind((ξ|2:a){i∗})− Ind(ξ|2:a) = 1

n

∑
i∈[n]

Varj [Z
a
i ] ≥

1

n

∑
i∈[n]

(
Covx∼ξ|a1 (xi∗ ,xi)

)2
≥ 1

n

∑
i∈Ai∗,a

(
γ4

29|B|

)2

=
γ13

228|B|3
,

completing our proof.

Proof of Lemma 3.34: We start by invoking Lemma 3.42 to obtain the sets A′ and S′
a for every

a ∈ A that are guaranteed by it. Now note that

E
i∼[n]

[
Ind(ξ{i})− Ind(ξ)

]
= E

i∼[n]

[
E

a∼ξ|2

[
Ind(ξ{i})− Ind(ξ)

]]
= E

a∼ξ|2

[
E

i∼[n]

[
Ind(ξ{i})− Ind(ξ)

]]
≥ Pr

ξ|2
[A′] E

a∼ξ|2:A′
2

[
|S′

a|
n

E
i∼S′

a

[
Ind(ξ{i})− Ind(ξ)

]]
≥ γ

2
E

a∼ξ|2:A′
2

[
γ5

210|B|
E

i∼S′
a

[
γ13

228|B3|

]]
=

γ19

239|B|4
.

To conclude, we use the reverse Markov inequality to obtain that there exists a set of at least
γ19

240|B|4n indices i for which Ind(ξ{i})− Ind(ξ) ≥ γ19

240|B|4 holds.

4 Predicting the acceptance probability of a canonical tester

In this section we show that knowing the statistics of a good detailing is sufficient to approximate
the acceptance probability of a property testing algorithm without actually running it.

4.1 Simulation of a canonical tester

We describe here a randomized process, Simulate (see Figure 1), that given the statistic of a
detailing ξ of a distribution µ provides a simulated result of a canonical query pattern, without
making any further queries to µ (eventually we will only use queries to find ξ and its statistic).

From now on we denote by Dsim(η,Λ) the distribution over the output of Simulate(s, q, η,Λ) (note
that this output is a randomized s× q matrix). We now show that given a robust enough detailing
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Procedure Simulate(s, q, η,Λ)

Input: Integers s, q ∈ N corresponding to samples and queries, weight distribution η and
type distribution Λ of a detailing ξ.
Output: A matrix M ∈ {0, 1}s×q.

1. For each j ∈ [q], draw tj ∼ Λ independently.

2. For each i ∈ [s], draw ai ∼ η independently.

3. For every (i, j) ∈ [s]× [q], draw Mi,j ∼ Ber(tj(ai)) independently.

4. Return M

Figure 1: Description of the Simulate procedure.

of µ, this simulated distribution is indeed close to the distribution Dtest generated by an actual
canonical s× q query pattern.

Lemma 4.1. Fix s, q ∈ N and ϵ ∈ (0, 1). If ξ is
(

ϵ
3(s+1) , q

)
-good and n ≥ 6q2(s+1)

ϵ , then

dTV(Dsim(η,Λ),Dtest) ≤ ϵ.

Proof: Let ϵ′ = ϵ
3·(s+1) and consider the following coupling T∗ (see Observation 2.10) between

Dsim(η,Λ) and Dtest:

We first draw j1, . . . , jq uniformly and independently from [n] (with repetitions), and let t1, . . . , tq
be their respective types in ξ. Note that t1, . . . , tq are distributed the same as independent draws
from Λ. Then, we draw a1, . . . ,as independently from ξ|2. Also, we let j′1, . . . , j

′
q be equal to

j1, . . . , jq if they contain no repetition, and otherwise let (j′1, . . . , j
′
q) be uniformly drawn without

repetitions from [n]q (independently of j1, . . . , jq).

For every i ∈ [s], let Ti denote an optimal transfer distribution between
∏

j∈[q]Ber(tj(ai)) and

ξ|2:ai

{j′1,...,j′q}
. That is, Pr(x,x̃)∼Ti

[x ̸= x̃] = dTV(
∏

j∈[q]Ber(tj(ai)), ξ|2:ai

{j′1,...,j′q}
). To obtain M and M̃,

for every i ∈ [s] independently, we draw ((Mi,1, . . . ,Mi,q), (M̃i,1, . . . , M̃i,q)) from Ti.

In addition, we define the following random events:

• E0 is the event that (j1, . . . , jq) = (j′1, . . . , j
′
q).

• E1 is the event that a1, . . . ,as ∈ J where J is the good set as per Definition 3.25.

• E2 is the event that the q-tuple (j′1, . . . , j
′
q) is ϵ

′-independent with respect to all ξa1 , . . . , ξas .

• E3 is the event that (Mi,1, . . . ,Mi,q) = (M̃i,1, . . . , M̃i,q) for all i ∈ [s].

We now note that

dTV(Dsim,Dtest) ≤ PrT∗ [M ̸= M̃] = Pr[¬E3]

≤ Pr[¬E0] +Pr[¬E1] +Pr[¬E2 ∧ E1] +Pr[¬E3 ∧ E0 ∧ E1 ∧ E2]

≤ Pr[¬E0] +Pr[¬E1] +Pr[¬E2 | E1] +Pr[¬E3 | E0 ∧ E1 ∧ E2]

28



By the fact that the detailing is (ϵ′, q)-good, using a union bound we get Pr[¬E1] ≤ s · ϵ′. Similarly,
the probability of a q-tuple (j′1, . . . , j

′
q) to be ϵ′-independent with respect to ξ|2:ai is at least 1− ϵ′,

and thus the probability that the q-tuple is ϵ′-independent with respect to all ξ|2:a1 , . . . , ξ|2:as is
greater than 1 − s · ϵ′ (equivalently Pr[¬E2|E1] ≤ s · ϵ′). To bound the probability of ¬E0, note

that if n ≥ 2q2/ϵ′, then by the birthday paradox Pr[¬E0] ≤ q(q−1)
2n ≤ ϵ′. It is left to bound

Pr[¬E3|E0 ∧ E1 ∧ E2].

Pr[¬E3|E0 ∧ E1 ∧ E2] ≤
∑
i∈[s]

Pr
(Mi,∗,M̃i,∗)∼Ti

[
Mi,∗ ̸= M̃i,∗ | E0 ∧ E1 ∧ E2

]

≤
∑
i∈[s]

dTV

∏
j∈[q]

Ber(tj(ai)), ξ|2:ai

{j′1,...,j′q}

 ≤ s · ϵ′,

where the last inequality follows from the q-tuple being ϵ′-independent with respect to all ξai with
i ∈ [s]. Overall, we get

dTV(Dsim(η,Λ),Dtest) ≤ s · ϵ′ + 2s · ϵ′ + ϵ′ = (3s+ 1)ϵ′ ≤ ϵ.

However, our eventual estimation algorithm will not be able to accurately find η and Λ, but only
approximations thereof. For this reason we will need “continuity lemmas” for these quantities,
showing that the output distribution Dsim of Simulate will not degrade by much.

The next lemma handles the setting where we only have an approximation Λ̃ of the type distribution
Λ, that is close enough to it in the η-weighted ℓ1 Earth Mover distance.

Lemma 4.2. For q, s ∈ N and ϵ ∈ (0, 1), if dηEM(Λ, Λ̃) ≤ ϵ
s·q then dTV(Dsim(η,Λ),Dsim(η, Λ̃)) ≤ ϵ.

Proof: By the premise of the lemma we have that dηEM(Λ, Λ̃) ≤ ϵ
s·q , so let T be a the transfer

distribution over ([0, 1]A)2 exhibiting the distance. We consider the following coupling T∗ between
Dsim(η,Λ) and Dsim(η, Λ̃). Sample (t1, t̃1), . . . , (tq, t̃q) ∼ T and a1, . . . ,as ∼ η, all independently.

To set M and M̃, perform the following for every i ∈ [s] and j ∈ [q] independently:

(i) If tj(ai) ≤ t̃j(ai), then we do the following:

(a) with probability tj(ai) set (Mi,j , M̃i,j) = (1, 1),

(b) with probability t̃j(ai)− tj(ai) set (Mi,j , M̃i,j) = (0, 1),

(c) with probability 1− t̃j(ai) set (Mi,j , M̃i,j) = (0, 0).

(ii) If t̃j(ai) ≤ tj(ai), then we do the following:

(a) with probability t̃j(ai) set (Mi,j , M̃i,j) = (1, 1),

(b) with probability tj(ai)− t̃j(ai) set (Mi,j , M̃i,j) = (1, 0),

(c) with probability 1− tj(ai) set (Mi,j , M̃i,j) = (0, 0).
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Using the above coupling, we have

dTV(Dsim(η,Λ),Dsim(η, Λ̃)) ≤ Pr
(M,M̃)∼T∗

[M ̸= M̃] ≤
∑

(i,j)∈[s]×[q]

Pr
(M,M̃)∼T∗

[Mi,j ̸= M̃i,j ]

≤
∑

(i,j)∈[s]×[q]

E
(tj ,t̃j)∼T

E
ai∼η

[|tj(ai)− t̃j(ai)|]

=
∑

(i,j)∈[s]×[q]

dηEM(Λ, Λ̃) ≤ ϵ.

Next, we handle the setting where we only have a distribution η̃ that is close to η in the variation
distance.

Lemma 4.3. For any q, s ∈ N, ϵ ∈ (0, 1), if dTV(η, η̃) ≤ ϵ
s , then dTV(Dsim(η,Λ),Dsim(η̃,Λ)) ≤ ϵ.

Proof: Let T be an optimal coupling (transfer distribution) between η and η̃. Namely, dTV(η, η̃) =
Pr(a,ã)∼T[a ̸= ã]. We construct a coupling T∗ between Dsim(η,Λ) and Dsim(η̃,Λ). First, draw

(a1, ã1), . . . , (as, ãs) ∼ T and t1, . . . , tq ∼ Λ, all independently. We define M and M̃ as follows:

For every (i, j) ∈ [s]× [q], if ai = ãi, then draw a bit b ∼ Ber (tj(ai)) and set Mi,j = M̃i,j = b. If

ai ̸= ãi, then independently set Mi,j ∼ Ber(tj(ai)) and M̃i,j ∼ Ber(tj(ãi)). Then,

dTV(Dsim(η,Λ),Dsim(η̃,Λ)) ≤ Pr
(M,M̃)∼T∗

[M ̸= M̃] ≤
∑
i∈[s]

Pr(ai,ãi)∼T[ai ̸= ãi] ≤ ϵ.

The following lemma bundles together the approximation results in this section.

Lemma 4.4. Fix s, q ∈ N and ϵ ∈ (0, 1) and suppose that dηEM(Λ, Λ̃) ≤ ϵ/3sq and dTV(η, η̃) ≤ ϵ/3s.

If n ≥ 18q2(s+ 1)/ϵ and ξ is
(

ϵ
9(s+1) , q

)
-good then dTV(Dsim(η̃, Λ̃),Dtest) ≤ ϵ.

Proof: First note that by the triangle inequality

dTV

(
Dsim(η̃, Λ̃),Dtest

)
≤ dTV

(
Dsim(η̃, Λ̃),Dsim(η, Λ̃)

)
+ dTV

(
Dsim(η, Λ̃),Dsim(η,Λ)

)
+ dTV (Dsim(η,Λ),Dtest) .

Applying Lemma 4.3, Lemma 4.2 and Lemma 4.1, all with ϵ/3 instead of ϵ, gives that every term
in the above sum is bounded by ϵ/3.

4.2 Acceptance probability computation

With Lemma 4.4 in mind, we construct an “acceptance predictor” procedure, Accept-Probability
(see Figure 2), which is intended to calculate the estimated acceptance probability of a test. It
works by calculating (instead of actually running) the output distribution of Simulate. Recall
that we denote the probability that the canonical tester with proximity parameter ϵ accepts µ with
accϵ(µ).
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Procedure Accept-Probability(s, q, η,Λ, ϵ′)

Input: Integers s, q ∈ N corresponding to samples and queries, weight distribution η, type
distribution Λ of a detailing ξ of µ with respect to A and test proximity parameter ϵ′ ∈ (0, 1).
Output: An estimated acceptance probability ãccϵ′(η,Λ) ∈ [0, 1].

1. Let αϵ′ : {0, 1}s×q → [0, 1] be the acceptance probability function of the canonical tester
with proximity parameter ϵ′, as per Definition 2.20.

2. For each M ∈ {0, 1}s×q, a ∈ As and t ∈ ([0, 1]A)q in the support of Λ compute

D̃(M,a, t) =
∏
i∈[s]

η(ai) ·
∏
j∈[q]

Λ(tj) ·
∏

i,j∈[s]×[q]

(1Mi,j=1 · tj(ai) + 1Mi,j=0 · (1− tj(ai))

3. Set

ãccϵ′(η,Λ) =
∑

(M,a,t)∈{0,1}s×q×As×[0,1]A×q

D̃(M,a, t) · αϵ′(M) = E
M∼D̃|1

[αϵ′(M)]

4. Return ãccϵ′(η,Λ).

Figure 2: Description of the Accept-Probability procedure.

Lemma 4.5. Fix ϵ′ ∈ (0, 1) and let P be an index-invariant property that admits a canonical tester
with proximity parameter ϵ′ using sample complexity s = s(ϵ′) and query complexity q = q(ϵ′). Fix

ϵ ∈ (0, 1), and let (η,Λ) be the parameters of an
(

ϵ
9(s+1) , q

)
-good detailing of µ with respect to

U ⊆ [n]. If n ≥ 18q2(s+1)/ϵ, then given (η̃, Λ̃) such that dTV(η, η̃) ≤ ϵ
3s and dηEM(Λ, Λ̃) ≤ ϵ

3sq , the

subroutine Accept-Probability(s, q, η̃, Λ̃, ϵ′) reports ãccϵ′(µ) such that

|ãccϵ′(η,Λ)− accϵ′(µ)| ≤ ϵ.

Proof: By using Lemma 4.4, we have dTV(Dsim(η̃, Λ̃),Dtest) ≤ ϵ. We next analyze the calcu-
lated quantity ãccϵ′(η,Λ). Let D̃ denote the distribution over {0, 1}s×q ×As ×

(
[0, 1]A

)q
such that

D̃(M,a, t) is the probability that Simulate draws (t1, . . . , tq) = t, (a1, . . . ,as) = a, and M = M .

Therefore, D̃|1 = Dsim(η̃, Λ̃) and hence ãccϵ′(η,Λ) = EM∼Dsim(η̃,Λ̃)
[αϵ′(M)].

This all means that

|ãccϵ′(η,Λ)− accϵ′(µ)| =

∣∣∣∣∣ E
M∼Dsim(η̃,Λ̃)

[αϵ′(M)]− E
M∼Dtest

[αϵ′(M)]

∣∣∣∣∣ ≤ dTV(Dsim(η̃, Λ̃),Dtest) ≤ ϵ

concluding the proof.

5 Finding a weakly robust detailing and estimating its parameters

This section is devoted to finding a variable set defining a (weakly) robust partition, and then
to estimating its weight and type distributions. The final estimation algorithm will make all its
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queries deploying the algorithms developed here.

5.1 Estimating the index of a detailing

In this section, we describe and analyze an algorithm for estimating the index of a detailing (Fig-
ure 3).

Procedure Estimate-Index(U, κ, γ)

Input: Sample and query access to a distribution µ over {0, 1}n, a set of indices U ⊆ [n], and
parameters κ, γ ∈ (0, 1).

Output: An estimate Ĩnd(µU ) for Ind(µU ) such that
∣∣∣Ĩnd(µU )− Ind(µU )

∣∣∣ ≤ κ with

probability at least 1− γ.

1. Take a multi-set of samples S from µ with |S| =
⌈
1000 · 22|U|

κ3 log
(
2|U|

κγ

)⌉
.

2. Construct the multi-set of vectors S|U by restricting the samples over the indices U .

3. For every v ∈ {0, 1}|U |, let

η̃(v) =
| {s ∈ S : sU = v} |

|S|
.

4. Sample a set of indices uniformly at random without replacement I ⊆ [n] where

|I| =
⌈
100 · 1

κ2 log
(
2|U|

γ

)⌉
.

5. For every v ∈ {0, 1}|U | and i ∈ I, set

t̃i,v =

{ |{s∈S : sU=v ∧ si=1}|
|{s∈S : sU=v}| , if {s ∈ S : sU = v} ≠ ∅

0 otherwise.

6. For every v ∈ {0, 1}|U |, compute t̃v = 1
|I| ·

∑
i∈I

t̃
2
i,v.

7. Return Ĩnd(µU ) =
∑

v∈{0,1}|U|
η̃(v) · t̃v.

Figure 3: Description of the Estimate-Index procedure.

We will prove that with high probability, the estimate of the index of µU returned by the algorithm
Estimate-Index is indeed close to Ind(µU ).

Lemma 5.1. Consider Estimate-Index(U, κ, γ) as described in Figure 3. Given a subset of indices

U ⊆ [n] and parameters κ, γ ∈ (0, 1) as input, the procedure makes at most O
(
22|U|

κ5 log2
(
2|U|

κγ

))
queries, and outputs Ĩnd(µU ) such that |Ĩnd(µU )− Ind(µU )| ≤ κ holds with probability at least 1−γ.
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Fix v ∈ {0, 1}|U | and let η(v)
def
= µU |2(v) = Prx∼µ[xU = v]. In addition, for i ∈ [n] let

ti,v =

{
Prw∼µU |2:v1

[wi = 1], if µU |2(v) ̸= 0

0, otherwise
.

For v ∈ {0, 1}|U |, let tv = 1
n

n∑
i=1

t2i,v. Observe that the index of the detailing µU can be expressed as

Ind(µU ) =
∑

v∈{0,1}|U|

η(v) · tv.

Let r = 2|U |, and define

J
def
= {v ∈ {0, 1}|U | : η(v) ≥ κ/5r}.

Definition 5.2 (Definition of the event E∗). The event E∗ is defined as the intersection of the
following two events.

E1 (Approximating η(v)’s): For every v ∈ {0, 1}|U |, if v ∈ J then |η̃(v)− η(v)| ≤ κ
10r , and if v /∈ J

then η̃(v) ≤ 3κ
10r .

E2 (Approximating tv’s): For every v ∈ J , |̃tv − tv| ≤ 6κ
10 .

Lemma 5.3. Event E∗ holds with probability at least 1− γ.

For the proof of the above lemma we need the following two lemmas (in fact the next lemma is also
used inside the proof of the following one).

Lemma 5.4 (Approximating η(v)’s). Consider v ∈ {0, 1}|U |. The following hold with probability
at least 1− κγ

30r :

(i) If η(v) ≥ κ
5r then |η̃(v)− η(v)| ≤ κ

10r .

(ii) If η(v) < κ
5r then η̃(v) ≤ 3κ

10r .

Proof: For s ∈ S, we let χs be the indicator random variable for sU = v and note that E[χs] =
η(v). Note that η̃(v) =

∑
s∈Sχs. Applying an additive Chernoff bound, we have that

Pr
[
|η̃(v)− η(v)| ≥ κ

10r

]
≤ 2 exp

(
−2κ2

100r2
· |S|

)
= 2 exp

(
−2κ2

100r2
· 1000r

2

κ3
log

(
r

κγ

))
<

κγ

30r
.

Note that this covers both cases v ∈ J and v /∈ J .

Lemma 5.5. Consider v ∈ J . Then |̃tv − tv| ≤ 6κ
10 holds with probability at least 1− 2γ

3r .

Let us define t′v as 1
n

∑
i∈[n]

t̃
2
i,v, where v ∈ {0, 1}U . We prove Lemma 5.5 with the help of the two

following lemmas.

Lemma 5.6. For any v ∈ {0, 1}U , |̃tv − t′v| ≤ κ
10 holds with probability at least 1− γ/3r.
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Proof: Note that by taking expectation over the set of indices I, we have EI

[
t̃v

]
= 1

n

∑n
i=1 t̃

2
i,v =

t′v. Applying Hoeffding’s inequality for sampling without replacement (Lemma 2.33), we have

Pr
[
|̃tv − t′v| >

κ

10

]
= Pr

[∣∣∣∣∣ 1|I|∑
i∈I

t̃
2
i,v −

1

n

n∑
i=1

t̃
2
i,v

∣∣∣∣∣ > κ

10

]

≤ 2 exp

(
−2 · κ

2

100
· |I|
)

≤ 2 exp

(
−2 · κ

2

100
· 100
κ2

log

(
r

γ

))
< γ/3r.

Lemma 5.7. For any v ∈ J , |t′v − tv| ≤ 5κ
10 holds with probability at least 1− γ/3r.

To prove the above lemma, we need the following definition of the notion of a variable being bad
or good with respect to v ∈ {0, 1}U , and a claim about the probability of a variable being bad.

Definition 5.8. A variable i ∈ [n] is said to be bad for v ∈ {0, 1}U if |̃t2i,v − t2i,v| > κ
5r . Otherwise,

i is said to be good for v.

Lemma 5.9. For any fixed i ∈ [n] and v ∈ J , i is bad for v with probability at most κγ/15r.

Proof: We first argue that

Pr
[
|̃ti,v − ti,v| ≤

κ

10

]
≥ 1− κγ

15r
.

This will imply that

Pr
[
|̃t2i,v − t2i,v| ≤

κ

5

]
≥ 1− κγ

15r
,

due to the fact that |a2 − b2| ≤ 2 · |a− b| when a, b ∈ (0, 1).

Let S = {sj}j∈[|S|] be the multi-set of samples drawn in Step (1) of the procedure. For every
j ∈ [|S|], consider an indicator random variable χj,v,i such that χj,v,i = 1 if and only if sjU = v

and sji = 1. Let χv,i =
∑

j∈[|S|]χj,v,i. From the definition of t̃i,v from Figure 3 and the definition
of χv,i, we have

t̃i,v =
|{s ∈ S : sU = v ∧ si = 1}|

|{s ∈ S : sU = v}|
=

χv,i

|{s ∈ S : s|U = v}|
.

From the definition of η̃(v) in Figure 3, this means that

t̃i,v =
χv,i

η̃(v) · |S|
. (7)

In addition, note that for any z ∈ N:

E
[
t̃i,v | η̃(v) · |S| = z

]
= E

[
χv,i

η̃(v) · |S|

∣∣∣∣ η̃(v) · |S| = z

]
=

z ·Prw∼µU |wU=v
1

[wi = 1]

z

= Pr
w∼µU |wU=v

1

[wi = 1] = ti,v.
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For s ∈ S, let Ys,v,i be the random variable defined as Ys,v,i =
χs,v,i

η̃(v)·|S| . Let Yv,i =
∑

s∈SYs,v,i.

Since χs,v,i ∈ {0, 1},Ys,v,i ∈
{
0, 1

η̃(v)·|S|

}
. We would like to apply the Hoeffding bound (Lemma 2.32)

to bound Yv,i. But η̃(v) · |S| is a random variable, so instead we apply the Hoeffding bound con-
ditioned on η̃(v) · |S| = z, where z ∈ N. Note that, when η̃(v) · |S| = z, the number of s such that
Ys,v,i ̸= 0 is at most z. Hence,

Pr

[
|̃ti,v − ti,v| >

κ

10

∣∣∣∣ η̃(v) · |S| = z

]
≤ 2 exp

(
− 2(κ/10)2

z · (1/z)2

)
= 2 exp

(
−2κ2z

100

)
.

As v ∈ J , it holds that η(v) ≥ κ
5r . From Lemma 5.4, with probability at least 1− κγ/30r, it holds

that |η̃(v)− η(v)| ≤ κ/10r, and in particular η̃(v) · |S| ≥ κ
10r · |S|.

Hence,

Pr
[
|̃ti,v − ti,v| >

κ

10

]
≤ Pr

[
η̃(v)|S| < κ

10r
· |S|

]
+Pr

[
η̃(v)|S| ≥ κ

10
· |S|

]
·Pr

[
|̃ti,v − ti,v| >

κ

10

∣∣∣∣ η̃(v)|S| ≥ κ

10r
· |S|

]
≤ κγ

30r
+ 1 · 2 exp

(
−2 · κ

2 · (κ/10r) · |S|
100

)
≤ κγ

30r
+ 2 exp

(
−2 · κ3

1000r
· 1000r

2

κ3
log

(
r

κγ

))
≤ κγ

15r
.

Proof of Lemma 5.7: For i ∈ [n], let Xi denote the random variable defined as

Xi =

{
1 i is bad for v

0 otherwise

Let X = 1
n

∑
i∈[n]

Xi, which denotes the fraction of variables that are bad for v. By Lemma 5.9,

E[Xi] ≤ κγ
15r . Hence, E[X] ≤ κγ

15r . Using Markov Inequality, Pr [X ≥ κ/5] ≤ γ
3r . So, with probabil-

ity 1− γ/3r, there are at most κn/5 bad variables for v.

Note that, ∣∣t′v − tv
∣∣ = ∣∣∣∣∣ 1n

n∑
i=1

t̃
2
i,v −

1

n

n∑
i=1

t2i,v

∣∣∣∣∣ ≤ 1

n

n∑
i=1

∣∣∣̃t2i,v − t2i,v

∣∣∣.
For every variable i ∈ [n] that is not bad for v,

∣∣∣̃t2i,v − t2i,v

∣∣∣ ≤ κ
5 . For every bad variable i ∈ [n],∣∣∣̃t2i,v − t2i,v

∣∣∣ can be trivially upper bounded by 1. As there are there are at most κn/5 bad variables

for v with probability 1− γ/3r, we have |t′v − tv| ≤ 2κ/5 < 6κ/10 with the same probability.

Proof of Lemma 5.5: Considering Lemma 5.6 and Lemma 5.7, a use of the triangle inequality
and a union bound complete the proof.

Proof of Lemma 5.3: Event E1 happens with probability at least 1 − γ
3 by a union bound of

Lemma 5.4 over all v ∈ {0, 1}|U |. Event E2 happens with probability at least 1− 2γ
3 by a union bound
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of Lemma 5.5 over all v ∈ J . A final union bound implies that event E∗ occurs with probability at
least 1− γ, as required.

Now we are ready to prove Lemma 5.1.

Proof of Lemma 5.1: Conditioned on E∗ (which by Lemma 5.3 holds with probability at least
1− γ) we have that, for every v ∈ J , |η̃(v)− η(v)| ≤ κ

10r and |̃tv − tv| ≤ 6κ
10 hold. Hence,∑

v∈J
|η̃(v)̃tv − η(v)tv| ≤

∑
v∈J

η̃(v)
∣∣∣̃tv − tv

∣∣∣+∑
v∈J

tv |η̃(v)− η(v)|

≤
∑
v∈J

η̃(v) · 6κ
10

+
∑
v∈J

tv ·
κ

10r

Note that
∑
v∈J

η̃(v) ≤ 1 and tv ≤ 1 for each v ∈ J . So,

∑
v∈J
|η̃(v)̃tv − η(v)tv| ≤

7κ

10
. (8)

For v /∈ J , we have that

|η̃(v)̃tv − ηvtv| ≤ max{η̃(v)̃tv, η(v)tv} ≤ max{η̃(v), η(v)} ≤ 3κ

10r
.

Therefore, ∑
v∈{0,1}|U|\J

|η̃(v)̃tv − η(v)tv| ≤
3κ

10
. (9)

From Equation (8) and Equation (9) we have:∣∣∣∣∣∣
∑

v∈{0,1}|U|

η̃(v)̃tv − Ind(ξU )

∣∣∣∣∣∣ ≤
∣∣∣∣∣∑
v∈J

η̃(v) · t̃v − η(v)tv

∣∣∣∣∣+
∣∣∣∣∣∣

∑
v∈{0,1}|U|\J

η̃(v) · t̃v − η(v)tv

∣∣∣∣∣∣
≤ 7κ

10
+

3κ

10
= κ.

For the query complexity, note that the total number of queries that the procedure makes to the

samples is at most |S| · (|I|+ |U |) = O
(
22|U|

κ5 log2
(
2|U|

κγ

))
. This completes the proof.

5.2 Verifying and searching for a weakly robust detailing

In this section we will show how to obtain a weakly robust detailing with respect to a set of variables.
We first describe a procedure that will be used as a single step towards this goal.

Lemma 5.10. Fix γ, δ ∈ (0, 1), U ⊆ [n], k ∈ [n]. Consider Test-Weakly-Robust-Detailing(δ, k, γ, U)
as described in Figure 4. With probability at least 1− γ, the algorithm either accepts U or reports
some U ′ ⊆ [n] \ U such that |U ′| ≤ k, satisfying the following:

1. If µU is not (δ, k)-weakly robust, then Test-Weakly-Robust-Detailing does not accept and out-
puts some U ′;
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Procedure Test-Weakly-Robust-Detailing(δ, k, γ, U)

Input: Sample and query access to a distribution µ over {0, 1}n, U ⊆ [n], parameters k ∈ [n]
and γ ∈ (0, 1).
Output: Either Accept or a set U ′ ⊆ [n] \ U with |U ′| ≤ k.

1. Set Ĩnd(µU ) = Estimate-Index(U, δ/10, γ/3).

2. Let L = {U ′ ⊆ [n] \ U : |U ′| ≤ k}.

3. Sample r =
⌈
log(3/γ)

δ

⌉
sets U′

1, . . . ,U
′
r ∈ L uniformly at random.

4. For i = 1 to r do:

(a) Set Ĩnd(µU∪U′
i) = Estimate-Index(U ∪U′

i, δ/10, γ/3r).

(b) If Ĩnd(µU∪U′
i)− Ĩnd(µU ) > 7δ/10, Return U′

i.

5. Return Accept.

Figure 4: A description of the Test-Weakly-Robust-Detailing procedure.

2. If Test-Weakly-Robust-Detailing outputs some U ′, then Ind(µU∪U ′
) > Ind(µU ) + 4δ/10.

The total number of queries that the algorithm makes is at most O
(
22(|U|+k)

δ6
· log3

(
2|U|+k

δγ

))
.

Proof: We start by proving (1). By Lemma 5.1, we have that with probability at least 1− γ/3,

|Ĩnd(µU )− Ind(µU )| ≤ δ/10. In addition, since µU is not (δ, k)-weakly robust, we have that for at
least δ|L| of the sets U ′ ∈ L, it holds that Ind(µU∪U ′

)− Ind(µU ) > δ. Therefore, with probability
at least 1 − γ/3, one such set U∗ is sampled in Step 3 of the algorithm. By applying Lemma 5.1
and a union bound, we have that with probability at least 1 − γ/3, for all i ∈ [r] it holds that

|Ĩnd(µU∪U′
i)− Ind(µU∪U′

i)| ≤ δ/10. Therefore, in particular,

Ĩnd(µU∪U∗
)− Ĩnd(µU ) ≥ Ind(µU∪U∗

)− Ind(µU )− 2δ

10
≥ 8δ

10
,

and U∗ (or some other set) will be returned by the algorithm. A union bound over the above three
events completes the proof of this item.

To prove (2), note that when some U′ is returned, we have that Ĩnd(µU∪U′
) − Ĩnd(µU ) > 7δ/10.

By Lemma 5.1, similarly to item (1), with probability at least 1 − 2γ/3 we have |Ĩnd(µU∪U′
) −

Ind(µU∪U′
)| ≤ δ/10 and |Ĩnd(µU ) − Ind(µU )| ≤ δ/10. Conditioned on this, if Ind(µU∪U′

) −
Ind(µU ) ≤ 4δ/10, then we have

Ĩnd(µU∪U′
)− Ĩnd(µU ) ≤ 4δ

10
+

2δ

10
<

7δ

10
,

which is a contradiction to U′ being reported by the algorithm.

To finish the proof we bound the total number of queries that the algorithm makes. Note that
the algorithm uses one call to Estimate-Index with U and the rest of the r calls to Estimate-Index
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with a set U ∪ U ′ which can be of size at most |U |+ k. Therefore, the total number of queries the

algorithm makes is at most O
(
22(|U|+k)

δ6
· log3

(
2|U|+k

δγ

))
.

Now we leverage Test-Weakly-Robust-Detailing to design a procedure, Find-Weakly-Robust-Detailing
(see Figure 5), which finds a weakly robust detailing µU with respect to some U ⊆ [n]. This
procedure along with the parameter estimation procedure in the next section serve as the main
information-gathering mechanism in our estimation algorithm.

Procedure Find-Weakly-Robust-Detailing(δ, k, γ)

Input: Sample and query access to a distribution µ over {0, 1}n, k ∈ [n] and parameters
δ, γ ∈ (0, 1).
Output: U ⊆ [n] such that with probability at least 1− γ, µU is (δ, k)-weakly robust.

1. Set U = ∅ and ℓ = 1.

2. While ℓ ≤
⌈
10
4δ

⌉
do:

(a) Set Z = Test-Weakly-Robust-Detailing(δ, k, 2γδ/10, U)

(b) If Z = Accept, then Return U .

(c) Otherwise,

• U ′ ← Z.

• Set U = U ∪ U ′ and ℓ = ℓ+ 1.

3. Return Fail

Figure 5: A description of the Find-Weakly-Robust-Detailing procedure.

Lemma 5.11. Consider Find-Weakly-Robust-Detailing(δ, k, γ) as described in Figure 5. With proba-
bility at least 1−γ, the procedure outputs U ⊂ [n] such that |U | = O(k/δ) and µU is (δ, k)-weakly ro-

bust. The total number of queries that the procedure makes is at most O
(
25k(1/δ+1)

δ7
log3

(
2k(1/δ+1)

γδ

))
.

Proof: Note that since ℓ ≤ ⌈10/4δ⌉, by a union bound we have that with probability at least 1−γ
all the calls for Test-Weakly-Robust-Detailing(δ, k, 2γδ/10, U) satisfy the conclusions of Lemma 5.10.
Conditioned on this event, whenever in Step (2) the detailing µU was not (δ, k)-weakly robust we
obtained a set U ′ so that Ind(µU ′

)− Ind(µU ) > 4δ/10 (and in particular did not return U).

In addition, conditioned on the above event, since the index of a detailing is always between 0 and
1 it is not possible to pass through all ⌈104δ ⌉ iterations of Step (2) and reach the failure mode of Step
(3). Hence, eventually the algorithm will return a set U in Step (2b), such that µU is a (δ, k)-weakly
robust detailing.

To bound the number of queries note that since the algorithm starts with U = ∅, and by the
guarantees of Test-Weakly-Robust-Detailing, at any of the ℓ iterations of the algorithm the size of
the input U to Test-Weakly-Robust-Detailing is at most k(104δ + 1) = O(k/δ). Therefore the total

number of queries is at most O
(
25k(1/δ+1)

δ7
log3

(
2k(1/δ+1)

γδ

))
.
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5.3 Estimation of detailing parameters

In this section we will design a procedure, Estimate-Parameters (see Figure 6), for estimating the
parameters of a detailing µU with respect to some U ⊆ [n] admitting type distribution Λ and weight
distribution η = µU |2. Our main goal for this section is to prove the following.

Lemma 5.12. Let µ be a distribution over {0, 1}n, U ⊆ [n] and κ, γ ∈ (0, 1) be parameters. Then
the procedure Estimate-Parameters(µ,U, κ, γ) (see Figure 6) outputs a pair of distributions (η̃, Λ̃)
such that with probability at least 1 − γ, dTV(η̃, η) ≤ κ and dηEM(Λ̃,Λ) ≤ κ, where η = µU is
the weight distribution of µU and Λ is the type distribution of µU . The algorithm makes at most

O

(
22|U|

κ2|U|+1+5
· log2

(
2|U|

γκ2|U|

))
queries to the input.

We start by setting the stage with some definitions and preliminary results. Consider some ρ ∈ (0, 1)

that satisfies ρ = 1/z for z ∈ N. We use R to denote the set {0, ρ/10, . . . , 1}2|U|
and note that

|R| = (10/ρ+ 1)2
|U|

.

Definition 5.13. Fix U ⊆ [n]. We say that a vector w ∈ [0, 1]2
|U|

is a ρ-approximation of the type

t ∈ [0, 1]2
|U|

of µU if |w(v)− t(v)| ≤ ρ for any v ∈ {0, 1}2|U|
for which µU |2(v) ≥ ρ/2|U |.

Observation 5.14. Let η = µU |2 and fix i ∈ [n]. Let ti ∈ [0, 1]2
U
be the type of a variable i with

respect to µU , and let w ∈ [0, 1]2
U
be a ρ-approximation of ti. Then, dηℓ1(ti, w) ≤ 2ρ.

Proof: By definition of the η-weighted ℓ1 distance,

dηℓ1(ti, w) = E
v∼η

[|ti(v)− w(v)|]

=
∑

v∈{0,1}U : η(v)≥ρ/2|U|

η(v) · |ti(v)− w(v)|+
∑

v∈{0,1}U : η(v)<ρ/2|U|

η(v) · |ti(v)− w(v)|

≤ ρ+ 2|U | · ρ

2|U | = 2ρ.

Definition 5.15. Let U ⊆ [n], S be a multi-set over {0, 1}n, and ρ ∈ (0, 1) be a parameter so that

1/ρ ∈ N. For each v ∈ {0, 1}|U | and i ∈ [n], let α̂
(i)
v to be the fraction of x’s in S such that xU = v

and xi = 1, and let α̃
(i)
v be the element in {0, ρ, 2ρ, . . . , 1} closest to α̂

(i)
v . Let α̂(i) = ⟨α̂(i)

v ⟩v∈{0,1}|U|

and α̃(i) = ⟨α̃(i)
v ⟩v∈{0,1}|U| . We call α̂(i) the type of i according to S and α̃(i) its ρ-rounding.

We also define the distribution Λ̂ as the distribution over R = {0, ρ, 2ρ, . . . , 1}2|U|
such that the

probability of a ∈ R is the fraction of i ∈ [n] such that α̃(i) = a.

Definition 5.16 (ρ-Good Sample Set). A multi-set S over {0, 1}n is said to be a ρ-good sample
set with respect to µU , if for at least (1− ρ)n of the variables i ∈ [n], α̃(i) is a ρ-approximation of
the type ti of the detailing µU .

Lemma 5.17. Fix U ⊆ [n], ρ ∈ (0, 1) and let µU be the detailing of µ with respect to U admitting
type distribution Λ. If S ⊆ {0, 1}n is a ρ-good sample set with respect to µU , then letting η = µU |2
we have dηEM(Λ, Λ̂) ≤ 3ρ.
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Procedure Estimate-Parameters(µ,U, κ, γ)

Input: Sample and query access to a distribution µ over {0, 1}n, U ⊆ [n] and parameters
κ, γ ∈ (0, 1).
Output: A pair of distributions (η̃, Λ̃), where η̃ is a distribution on A = {0, 1}|U | and Λ̃ is a
distribution on [0, 1]A.

1. Set ρ = 1
4·⌈1/κ⌉ and r = 2|U |. Also, let R = {0, ρ/10, . . . , 1}2|U|

.

2. Take a multi-set of samples S from µ with |S| =
⌈
50 · r2

ρ3
log r

ργ

⌉
= O

(
22|U|

κ3 log 2|U|

κγ

)
.

3. Construct the multi-set of vectors S|U by restricting the samples over the indices U .

4. For every v ∈ {0, 1}|U | let

η̃(v) =
| {s ∈ S : s|U = v} |

|S|
.

5. Sample a set of indices uniformly at random without replacement I ⊆ [n] where

|I| =
⌈
20 · |R|2

ρ2
log |R|

γ

⌉
, noting that |R| =

(
10
ρ + 1

)2|U|

.

6. For every v ∈ {0, 1}|U | and i ∈ I, set

(i) α̂v,i =
|{s∈S: s|U=v ∧ si=1}|

|{s∈S: s|U=v}| if {s ∈ S : s|U = v} ≠ ∅, and α̂v,i = 0 otherwise.

(ii) Round off α̂v,i to the nearest value in {0, ρ/10, . . . , 1}, and denote this value by
α̃v,i.

7. For each i ∈ I, assign it the type vector α̃(i) = ⟨α̃v,i⟩v∈{0,1}|U| ∈ R.

8. Construct a distribution Λ̃ over R such that for each a ∈ R, we have:

Λ̃(a) =
|{i ∈ I : α̃(i) = a}|

|I|
.

9. Return (η̃, Λ̃).

Figure 6: A description of the Estimate-Parameters procedure.

Proof: As S is a ρ-good sample set, we know that for at least (1−ρ)n of the variables i ∈ [n], α̃(i)

is a ρ-approximation of the type ti. Let W ⊆ [n] be the set of all such variables with |W | ≥ (1−ρ)n.
By Observation 5.14,

W ⊆
{
i ∈ [n] : dηℓ1(α̃

(i), ti) ≤ 2ρ
}
.

Consider the function f :
(
[0, 1]2

|U|
)2
→ [0, 1] defined as follows.

f(a, b) =

{
|{i∈W : ti=a}|

n α̃(i) = b

0 otherwise
.
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From the definition of f and Observation 5.14, note that f(a, b) ̸= 0 implies that dηℓ1(a, b) ≤ 2ρ.

Consider a transfer function T :
(
[0, 1]2

|U|
)2
→ [0, 1] from Λ̂ to Λ satisfying T (a, b) ≥ f(a, b) for

all a, b ∈ [0, 1]2
|U|

. Note that such a T exists, since clearly
∑

a,b∈[0,1]2|U| f(a, b) ≤ 1. Also note that∑
a,b∈[0,1]2|U| f(a, b) = 1 − |W |/n ≥ 1 − ρ, and hence

∑
a,b∈[0,1]2|U|

: f(a,b)=0
T (a, b) ≤ ρ. Thus, we

have

dηEM(Λ̂,Λ) ≤ E
(a,b)∼T

[dηℓ1(a, b)]

=
∑

a,b∈[0,1]2|U|
: f(a,b)̸=0

T (a, b) · dηℓ1(a, b) +
∑

a,b∈[0,1]2|U|
: f(a,b)=0

T (a, b) · dηℓ1(a, b)

≤ 2ρ ·
∑

a,b∈[0,1]2|U|
: f(a,b)̸=0

T (a, b) +
∑

a,b∈[0,1]2|U|
: f(a,b)=0

T (a, b) · 1 ≤ 3ρ,

and the lemma follows.

Definition 5.18. Let U ⊆ [n], S be a multi-set over {0, 1}n, and ρ ∈ (0, 1) where 1/ρ ∈ N be
a parameter. Let α̂(i) be the type of i according to S and α̃(i) be its ρ-rounding over S, as per
Definition 5.15. For each a ∈ R, let fa be the fraction of i ∈ [n] such that α̃(i) = a. Let I ⊆ [n] be
a multi-set of variables. For each a ∈ R, let f̃a be the fraction of i ∈ I such that α̃(i) = a.

The approximate type distribution Λ̃ with respect to I and S is a distribution over R such that
the probability of a ∈ R is the fraction of i ∈ I such that α̃(i) = a.

Definition 5.19 (ρ-Good Variable Set). Let S be a multi-set over {0, 1}n. Using the notation
of Definition 5.18, a multi-set I over [n] is said to be ρ-Good-Variable-Set with respect to S if
|f̃a − fa| ≤ ρ/|R| for each a ∈ R.

Lemma 5.20. Let S be a multi-set over {0, 1}n and I ⊆ [n] be a ρ-good variable set with respect
to S. Then, dTV(Λ̂, Λ̃) ≤ ρ.

Proof: By definition of the distributions Λ̂ and Λ̃,

dTV(Λ̂, Λ̃) ≤
∑
a∈R
|Λ̂(a)− Λ̃(a)| =

∑
a∈R
|f̃a − fa| ≤ |R| ·

ρ

|R|
≤ ρ.

Lemma 5.21. Let η = µU |2 for some U ⊆ [n]. Let S ⊆ {0, 1}n be a ρ-good-sample set and I ⊂ [n]
be a ρ-good variable set with respect to S. Then, dηEM(Λ, Λ̃) ≤ 4ρ.

Proof: From Lemma 5.17, we know that dηEM(Λ, Λ̂) ≤ 3ρ. Also, from Lemma 5.20, we have that

dTV(Λ̂, Λ̃) ≤ ρ, and hence dηEM(Λ̂, Λ̃) ≤ ρ. Using the triangle inequality we obtain dηEM(Λ, Λ̃) ≤ 4ρ,
completing the proof of the lemma.

5.3.1 Proof of Lemma of 5.12

Definition 5.22 (Definition of the event E∗). The event E∗ is defined as the intersection of the
following three events:
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Eη̃: The output η̃ produced by Algorithm 6 satisfies dTV(η̃, η) ≤ κ.

ES: The multi-set of samples S taken in Step 2 of Algorithm 6 is a κ/4-good sample set.

EI: The set of indices I taken in Step 5 of Algorithm 6 is a κ/4-good variable set.

We will prove Lemma 5.12 by a series of lemmas stated below. The lemmas themselves will be
proved in Section 5.3.2.

Lemma 5.23. Event Eη̃ holds with probability at least 1− γ/3.

Lemma 5.24. Event ES holds with probability at least 1− γ/3.

Lemma 5.25. Event EI holds with probability at least 1− γ/3.

Proof of Lemma 5.12: Assuming that Lemma 5.23, Lemma 5.24 and Lemma 5.25 hold, the
event E∗ holds with probability at least 1− γ by a union bound.

When E∗ holds, we know that dTV(η̃, η) ≤ κ, the multi-set of samples S taken in Step 2 is a good
sample set as well as that the set of indices I is a good variable set. Following Lemma 5.21, we
have that dηEM(Λ, Λ̃) ≤ 4ρ ≤ κ.

Note that since |R| = (10/ρ+1)2
|U|

and ρ = O(κ), the total number of queries the algorithm makes

is at most |S| · (|I|+ |U |) = O

(
22|U|

κ2|U|+1+5
· log2

(
2|U|

γκ2|U|

))
.

5.3.2 Proofs of Lemmas 5.23, 5.24 and 5.25

We state the following lemmas whose proofs are identical to the proofs of Lemma 5.4 and Lemma 5.5
respectively and are thus omitted.

Lemma 5.26. Fix U ⊆ [n] and ρ, γ ∈ (0, 1) and let r = 2|U |. Consider the detailing µU and let
η = µU |2 and J = {v ∈ {0, 1}|U | : η(v) ≥ ρ/r}. For v ∈ {0, 1}|U |, we define the following event
Eη̃(v): The value η̃(v) defined in Step 4 of Estimate-Parameters satisfies the following.

(i) If v ∈ J , |η̃(v)− η(v)| ≤ ρ
2r .

(ii) If v /∈ J , η̃(v) ≤ 3ρ
2r .

Then the probability that Eη̃(v) holds is at least 1− ργ
6r .

Lemma 5.27. Fix U ⊆ [n] and ρ, γ ∈ (0, 1) and let r = 2|U |. Consider the detailing µU and let
η = µU |2 and J = {v ∈ {0, 1}|U | : η(v) ≥ ρ/r}. For each v ∈ J and i ∈ [n], we let Eα̂v,i

be the event
that the value α̂v,i satisfies |α̂v,i − ti(v)| ≤ ρ

4 . Then the probability of Eα̂v,i
is at least 1− ργ

3r .

From Lemma 5.27 we obtain the following lemma.

Lemma 5.28. Fix i ∈ [n]. Then α̃(i) is a ρ-approximation of ti with probability at least 1− ργ/3.
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Proof: Let E be the following event:

E : |α̃(i)
v − ti(v)| ≤ ρ for each v ∈ J.

If the event E holds, then α̃(i) is a ρ-approximation of ti. Hence, it remains to show that Pr[E ] ≥
1− γρ/3.

Consider any particular v ∈ J , i.e, η(v) ≥ ρ
r . By Lemma 5.27, |α̂(i)

v − ti(v)| ≤ ρ
4 with probability

at least 1 − ργ/3r. From the construction of α̃(i)
v , note that |α̃(i)

v − α̂(i)
v | ≤ ρ/20. By the triangle

inequality, |α̃(i)
v − ti(v)| ≤ 3ρ/10 < ρ. By the union bound over all v ∈ J , event E holds with

probability at least 1− ργ/3.

Now we are ready to prove Lemma 5.23, Lemma 5.24 and Lemma 5.25.

Proof of Lemma 5.23: By Lemma 5.26 and a union bound we have that the following holds
for all v ∈ {0, 1}|U | with probability at least 1− ργ/4 > 1− γ/3. If v ∈ J , |η̃(v)− η(v)| ≤ ρ

2r , and

otherwise η̃(v) ≤ 3ρ
2r . Conditioned on that,

dTV(η̃, η) =
1

2

(∑
v∈J
|η̃(v)− η(v)|+

∑
v/∈J

|η̃(v)− η(v)|

)
≤ 1

2

(∑
v∈J

ρ

2r
+
∑
v/∈J

3ρ

2r

)
≤ ρ.

As ρ = 1
4⌈1/κ⌉ the lemma follows.

Proof of Lemma 5.24: Let Xi be a random variable such that

Xi =

{
1 α̃(i) is not a ρ-approximation of ti

0 otherwise
.

Let X = 1
n

∑
i∈[n]

Xi. From Lemma 5.28, E[Xi] ≤ ργ
3 , and hence E[X] ≤ ργ

3 . By Markov inequality,

we have

Pr [X ≥ ρ] ≤ E[X]

ρ
≤ γ

3
.

Thus, with probability at least 1−γ/3, for at least (1−ρ)n variables i ∈ [n], α̃(i) is a ρ-approximation
of ti. Hence, S is a ρ-good sample set with probability at at least 1− γ/3.

Proof of Lemma 5.25: Recall that Λ̂ be the type distribution over R with respect to S such
that, for a ∈ R,

Λ̂(a) =
|{i ∈ [n] : α̃(i) = a}|

n
.

Also, consider the distribution Λ̃ reported by the algorithm. Note that Λ̃ is the type distribution
over R with respect to I and S, i.e., for a ∈ R,

Λ̃(a) =
|{i ∈ I : α̃(i) = a}|

|I|
.

Consider a fixed a ∈ R, and note thatEI[Λ̃(a)] = Λ̂(a). By using the Hoeffding bound (Lemma 2.33),

Pr

[
|Λ̃(a)− Λ̂(a)| ≥ ρ

|R|

]
≤ γ

3|R|
.
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In the above, we have used |I| =
⌈
20 · |R|2

ρ2
log |R|

γ

⌉
. Applying the union bound over all a ∈ R, we

can say that for all a ∈ R, |Λ̃(a)− Λ̂(a)| ≤ ρ
|R| with probability at least 1− γ/3. Since ρ = 1

4⌈1/κ⌉ ,

this implies that the event EI holds with probability at least 1− γ/3. This concludes the proof of
the lemma.

6 The estimation algorithm

In this section we prove our main result, that index-invariant properties that admit tests whose
number of queries is independent of n also admit such distance-estimation procedures.

Theorem 2. Let P be an index-invariant property of distributions supported on {0, 1}n. If P
is ϵ′-testable with s = s(ϵ′) ∈ N samples and q = q(ϵ′) ∈ N queries for every ϵ′ ∈ (0, 1), and
n ≥ 2poly(2

q ,s,1/ϵ′), then for every ϵ ∈ (0, 1) there exists an algorithm that given access to an un-
known distribution µ over {0, 1}n, performs at most exp

(
exp

(
2q(Ω(ϵ)) · poly (s(Ω(ϵ)), q(Ω(ϵ)), 1/ϵ)

))
queries, and outputs a value d̃ such that with probability at least 2/3 it holds that |d̃−dEM(µ,P)| ≤ ϵ.

Theorem 2 follows directly from the following lemma about the existence of an (ϵ1, ϵ2)-tolerant test
for any index-invariant property P which admits an ϵ-test for ϵ = (ϵ2 − ϵ1)/12 with s samples and
q queries (see Claim 2 in [PRR06]).

Lemma 6.1. Suppose that an index-invariant property of distributions P has an ϵ-test with s(ϵ)
samples and q(ϵ) queries for every ϵ ∈ (0, 1). Then, for every 0 < ϵ1 < ϵ2 < 1, Tolerant-Tester (see
Figure 7) is an (ϵ1, ϵ2)-tolerant tester for P that makes at most

exp (exp (2q · poly (s((ϵ2 − ϵ1)/12), q((ϵ2 − ϵ1)/12), 1/(ϵ2 − ϵ1))))

queries to the samples obtained from the unknown input distribution.

The proof of Lemma 6.1 follows from the following two lemmas, proved in Section 6.1 and Sec-
tion 6.2, respectively.

Lemma 6.2. Fix 0 < ϵ1 < ϵ2 < 1, and set s = s((ϵ2 − ϵ1)/12) and q = q((ϵ2 − ϵ1)/12). For any
n ≥ 18q2(s + 1)/(ϵ2 − ϵ1), if a distribution µ over {0, 1}n is ϵ1-close to P, then Tolerant-Tester
accepts it with probability at least 2/3.

Lemma 6.3. Fix 0 < ϵ1 < ϵ2 < 1, and set s = s((ϵ2 − ϵ1)/12) and q = q((ϵ2 − ϵ1)/12). For any
n ≥ 2poly(2

q ,s,1/(ϵ2−ϵ1)), if a distribution µ over {0, 1}n is ϵ2-far from P, then Tolerant-Tester rejects
it with probability at least 2/3.

Proof of Lemma 6.1: Assuming Lemma 6.2 and Lemma 6.3 hold, the correctness of Tolerant-Tester
is immediate. To bound the query complexity, note that the algorithm performs all of its queries
in steps (2) and (3). Thus, by the choice of parameters, Lemma 5.11 and Lemma 5.12, the size
of U is at most 2q · poly(s, q, 1/(ϵ2 − ϵ1)), and the query complexity of the algorithm is at most
exp (exp (2q · poly (s, q, 1/(ϵ2 − ϵ1)))).
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Procedure Tolerant-Tester(µ,P, ϵ1, ϵ2, s, q)

Input: Sample and query access to µ, index-invariant property P, and parameters
ϵ1, ϵ2 ∈ (0, 1) such that ϵ1 < ϵ2, number of samples s and queries q.
Output: Accept if µ is ϵ1-close to P, and Reject if µ is ϵ2-far from P.

1. Let δ = (ϵ2−ϵ1)2

105·q3(s+1)6
, k = q − 1, k′ = Θ(28k/δ/δ38) and ρ =

(⌈
36sq
ϵ2−ϵ1

⌉)−1
.

2. Call Find-Weakly-Robust-Detailing(δ,k′,1/6) on µ and obtain the detailing µU with
respect to a set of variables U ⊆ [n].

3. Call Estimate-Parameters(µ,U, ρ, 1/6) to obtain (η̃, Λ̃) where η̃ is the weight distribution

over 2U and Λ̃ is the type distribution over [0, 1]2
U
.

4. For each B of size |B| ≤ 2k/δ, any 2ρ
2U ·|B| -quantized detailing η′ of η̃ with respect to B,

and any ρ

(1/ρ+1)2
|U|·|B|

-quantized type distribution Υ̃ on {0, ρ, 2ρ, . . . , 1}2U×B, do the

following:

(a) Call Accept-Probability(s, q, Υ̃, η′, ϵ2−ϵ1
12 ). If the output is at least 1/2, go to the

next step. Otherwise, go to the next option for B, η′ and Υ̃.

(b) Compute dη
′

EM(Λ̃⟨B⟩, Υ̃), where Λ̃⟨B⟩ is the flat extension of Λ̃ with respect to B. If
the computed distance is at most ϵ1+ϵ2

2 , output Accept and terminate.

5. Output Reject.

Figure 7: Description of the Tolerant-Tester procedure.

6.1 Completeness (Proof of Lemma 6.2)

In this section, we prove that if the unknown distribution µ is ϵ1-close to the index-invariant
property P, then it will be accepted by Tolerant-Tester (Figure 7) with probability at least 2/3.

Lemma 6.4. Fix δ ∈ (0, 1), ℓ ∈ N, let µ be a distribution over {0, 1}n and let ξ be a (δ, ℓ)-robust
detailing of µ with respect to some set A. In addition, let ξ′ be a refinement of ξ with respect to a set

B of size ℓ, and let ξ⟨η⟩
def
= ξ⟨ξ′|2,3⟩ be a flat refinement of ξ with respect to η

def
= ξ′|2,3. Then, letting

Λ′ and Λ⟨B⟩ be the type distributions of ξ′ and ξ⟨η⟩ respectively, we have that dηEM(Λ′,Λ⟨B⟩) ≤
√
δ.
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Proof: By definition of the index and the fact that ξ is (δ, ℓ)-robust, we can say the following:

δ ≥ Ind(ξ′)− Ind(ξ) = E
i∼[n]

[
E

(a,b)∼η

[
Pr

x∼ξ′|2,3:(a,b)
1

[xi = 1]2

]
− E

a∼η|1

[
Pr

x∼ξ|2:a1

[xi = 1]2

]]

= E
i∼[n]

 E
a∼η|1

 E
b∼η|1:a2

[
Pr

x∼ξ′|2,3:(a,b)
1

[xi = 1]2

]
− E

b∼η|1:a2

[
Pr

x∼ξ′|2,3:(a,b)
1

[xi = 1]

]2
= E

i∼[n]

 E
(a,b)∼η

( Pr
x∼ξ′|2,3:(a,b)

1

[xi = 1]− Pr
x∼ξ|2:a1

[xi = 1]

)2
 . (10)

Now, letting Λ be the type distribution of ξ and using the fact that ξ⟨η⟩ is a flat refinement of ξ,
by Observation 3.19 (using the η-weighted ℓ1 distance as the metric):

dηEM(Λ′,Λ⟨η⟩) ≤ E
i∼[n]

E
(a,b)∼η

[∣∣∣∣∣ Pr
x∼ξ′|2,3:(a,b)

1

[xi = 1]− Pr
x∼ξ⟨η⟩|

2,3:(a,b)
1

[xi = 1]

∣∣∣∣∣
]

≤ E
i∼[n]

E
(a,b)∼η

[∣∣∣∣∣ Pr
x∼ξ′|2,3:(a,b)

1

[xi = 1]− Pr
x∼ξ|2:a1

[xi = 1]

∣∣∣∣∣−
∣∣∣∣∣ Pr
x∼ξ|2:a1

[xi = 1]− Pr
x∼ξ⟨η⟩|

2,3:(a,b)
1

[xi = 1]

∣∣∣∣∣
]

= E
i∼[n]

E
(a,b)∼η

[∣∣∣∣∣ Pr
x∼ξ′|2,3:(a,b)

1

[xi = 1]− Pr
x∼ξ|2:a1

[xi = 1]

∣∣∣∣∣
]

≤

√√√√√ E
i∼[n]

E
(a,b)∼η

( Pr
x∼ξ′|2,3:(a,b)

1

[xi = 1]− Pr
x∼ξ|2:a1

[xi = 1]

)2
 ≤ √δ,

where in the last line we used the Cauchy-Schwartz inequality (Lemma 2.34), followed by Equa-
tion (10).

In the following we will deal with a detailing Ξ of a transfer distribution between two distributions
µ and τ over {0, 1}n with respect to a set A, rather than with a detailing of a “single distribution”
over {0, 1}n. So typically such Ξ can be viewed as a distribution over {0, 1}n × {0, 1}n × A, and
in particular Ξ|1,3 would be a detailing of µ and Ξ|2,3 would be a detailing of τ . The following
lemma connects the EMD between µ and τ to a distance between the type distributions of the two
detailings resulting from such Ξ.

Lemma 6.5. Let T be a transfer function realizing the EMD between µ and τ , and let Ξ be a
detailing of T with respect to A. Additionally, let Λ∗ be the type distribution of the detailing Ξ|1,3
over µ, let Υ∗ be the type distribution of the detailing Ξ|2,3 of τ , and set η = Ξ|3 to be the weight
distribution (common to all detailings mentioned here). Then, dηEM(Λ∗,Υ∗) ≤ dEM(µ, τ).
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Proof: We first note that by definition of the EMD:

dEM(µ, τ) = E
(x,y)∼T

[dH(x,y)] = E
a∼Ξ|3

[
E

(x,y)∼Ξ|3:a
[dH(x,y)]

]
= E

a∼Ξ|3

[
E

(x,y)∼Ξ|3:a

[
E

i∼[n]
[1{xi ̸=yi}]

]]
= E

i∼[n]

[
E

a∼Ξ|3

[
E

(x,y)∼Ξ|3:a

[
1{xi ̸=yi}

]]]
= E

i∼[n]

[
E

a∼Ξ|3

[
Pr

(x,y)∼Ξ|3:a
[xi = 0,yi = 1] + Pr

(x,y)∼Ξ|3:a
[xi = 1,yi = 0]

]]
. (11)

On the other hand, by Observation 3.19, we can say that:

dηEM(Λ∗,Υ∗) ≤ E
i∼[n]

[
E

a∼Ξ|3

∣∣∣∣ Pr
(x,y)∼Ξ|3:a

[xi = 1]− Pr
(x,y)∼Ξ|3:a

[yi = 1]

∣∣∣∣]
= E

i∼[n]

[
E

a∼Ξ|3

∣∣∣ Pr
(x,y)∼Ξ|3:a

[xi = 1,yi = 0]− Pr
(x,y)∼Ξ|3:a

[xi = 0,yi = 1]
∣∣∣]

≤ E
i∼[n]

[
E

a∼Ξ|3

[
Pr

(x,y)∼Ξ|3:a
[xi = 1,yi = 0] + Pr

(x,y)∼Ξ|3:a
[xi = 0,yi = 1]

]]
.

Combined with Equation (11) the lemma follows.

As a heads-up, the above lemma will be eventually used for a detailing Ξ with respect to a cross-
product set A × B, because it will be constructed from a join (see Definition 2.4) involving two
detailings of two respective individual distributions. We are now ready to prove the completeness
of Tolerant-Tester.

Proof of Lemma 6.2: Suppose that there exists a distribution τ ∈ P for which dEM(µ, τ) ≤ ϵ1,
and let T be a transfer function exhibiting the distance. We will show that in such case, the

algorithm Tolerant-Tester accepts. Let k = q−1, δ = (ϵ2−ϵ1)2

105·(s+1)6q3
and k′ = Θ

(
28k/δ

δ38

)
. Let µU be the

detailing returned by the call to Find-Weakly-Robust-Detailing(δ,k′,1/6), let η = µU |2 be its weight
distribution and let Λ be its type distribution.

Note that by the guarantees of Find-Weakly-Robust-Detailing (Lemma 5.11) we have that with prob-
ability at least 5/6, the returned set U defines a (δ, k′)-weakly robust detailing. In addition, from the
guarantees of Estimate-Parameters (Lemma 5.12) we have that dTV(η̃, η) ≤ ρ and dηEM(Λ̃,Λ) ≤ ρ
with probability at least 5/6. We henceforth condition on the intersection of the above events
(which happens with probability at least 2/3), and prove that in this case the algorithm will indeed
accept.

Set Ξ′ = T ▷◁ µU (see Definition 2.4, where in the join operation unify the first coordinate of T
with the first coordinate of µU ), considering it as a distribution on {0, 1}n×{0, 1}n×{0, 1}|U |, and

note that this is a detailing of T with respect to A
def
= {0, 1}|U |. Also set ζ = Ξ′|2,3, and note that

this is a detailing of τ with respect to A. However, ζ is a general detailing of τ , not necessarily one
defined by variables.

Next, use Lemma 3.23 to find a refinement ζV which is (δ, k)-weakly robust, where V ⊂ [n] is a

variable set of size at most k/δ. By Lemma 3.26, the detailing ζV is also
(

ϵ2−ϵ1
100(s+1) , q

)
-good.

We now set Ξ = Ξ′ ▷◁ ζV . We consider it to be a distribution over {0, 1}n × {0, 1}n × (A× B) for
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B
def
= {0, 1}|V |, noting that it is a refinement of Ξ′ with respect to B. We also note that Ξ|2,3 = ζV ,

and that Ξ|1,3 is a refinement of ξ with respect to B (and is in particular a detailing of µ, but no
longer one defined by variables). We now let η∗ = Ξ|3 be the weight distribution of Ξ (this is a
distribution over A×B which is a detailing of η with respect to B), let Λ∗ be the type distribution
of Ξ|1,3, and let Υ∗ be the type distribution of Ξ|2,3.

By Lemma 2.23 and Lemma 2.28, there exists a 2ρ
|A|·|B| -quantized detailing (in the sense of Def-

inition 3.3) η̂ of ξ|2 = η|1 with respect to B and a ρ
(1/ρ+1)|A|·|B| -quantized distribution Υ̃ over

{0, ρ, . . . , 1}A×B, for which dTV(η
′, η∗) ≤ ρ and dη

∗

EM(Υ̃,Υ∗) ≤ ρ.

Now note that η̃(v) = 0 whenever η̂(v) = ξ|2(v) = 0, and let η′ = η̃� η̂ be the adjustment of η̂ to η̃
(see Definition 2.5). While η̂ may not be a distribution that is considered by the loop in Step 4 of
Tolerant-Tester, the distribution η′ (as a ρ-quantized detailing of η̃) is considered there. Note that
by Lemma 2.11 dTV(η̂, η

′) ≤ ρ, and hence by the triangle inequality dTV(η
′, η∗) ≤ 2ρ. To conclude

the completeness proof, we will show that the algorithm will accept µ through the consideration of
the pair (η′, Υ̃).

Using Lemma 4.5 we have that Accept-Probability(s, q, Υ̃, η′, ϵ2−ϵ1
12 ) deviates from the true acceptance

probability by at most 1/20. Therefore, since the canonical tester accepts τ with probability at
least 2/3, Accept-Probability returns a value which is at least 2/3− 1/20 ≥ 1/2, so the pair (η′, Υ̃)
passes Step (4a) in Tolerant-Tester.

It remains to bound dη
′

EM(Λ̃⟨B⟩, Υ̃). Note that using Lemma 3.32 and the fact that µU is (δ, k′)-

weakly robust, we have that µU is also (2δ, 2k/δ)-robust. Therefore, letting Λ⟨B⟩ (respectively Λ̃⟨B⟩)

be the flat extension of Λ (respectively Λ̃) over B, from Lemma 6.4 we have that dη
∗

EM(Λ⟨B⟩,Λ
∗) ≤√

2δ. In addition, since taking a flat extension does not change the distance, dη
∗

EM(Λ̃⟨B⟩,Λ⟨B⟩) =

dηEM(Λ̃,Λ) ≤ ϵ2−ϵ1
12 . Using Lemma 2.29, Lemma 6.5 and the triangle inequality:

dη
′

EM(Λ̃⟨B⟩, Υ̃) ≤ dη
∗

EM(Λ̃⟨B⟩, Υ̃) + 2ρ

≤ dη
∗

EM(Λ̃⟨B⟩,Λ⟨B⟩) + dη
∗

EM(Λ⟨B⟩,Λ
∗) + dη

∗

EM(Λ∗,Υ∗) + dη
∗

EM(Υ∗, Υ̃) + 2ρ

≤ ϵ2 − ϵ1
12

+
√
2δ + ϵ1 + 3ρ

≤ ϵ2 − ϵ1
12

+
ϵ2 − ϵ1

55/2s3q3/2
+ ϵ1 +

ϵ2 − ϵ1
9sq

≤ ϵ2 + ϵ1
2

.

Therefore, we have that (conditioned on the probability 2/3 event described at the beginning of
the proof), the algorithm Tolerant-Tester indeed accepts through (η′, Υ̃), as required.

6.2 Soundness (Proof of Lemma 6.3)

Next, we will show that Tolerant-Tester is sound. That is, if µ is ϵ2-far from the index-invariant
property P, then it will be rejected by Tolerant-Tester with probability at least 2/3.

We define a procedure (used later only for an existence proof) that given a detailing ξ over A of a
distribution µ, a detailing η of ξ|2 with respect to B, a “target” type distribution Λt on [0, 1]A×B,

and an implementation H : [n] →
(
[0, 1]A×B

)2
of a transfer function between the “source” type
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distribution Λs = Λ⟨B⟩ of ξ⟨η⟩ and Λt which extends the implementation of Λs that is demonstrated
by ξ⟨η⟩, produces a sample from a detailing Ξ of a transfer distribution between µ and some τ ,
so that the corresponding detailing of τ with respect to A × B has type distribution Λt, and the
distance between µ and τ is bounded by the average of the distances between the types provided
in H.

Procedure Change-types(ξ, η,H)

Input: A detailing ξ of µ with respect to A, a detailing η of ξ|2 with respect to B, and an

implementation H : [n]→
(
[0, 1]A×B

)2
of a transfer distribution between the type distribution

Λs = Λ⟨B⟩ of ξ⟨η⟩ and a target type distribution Λt, such that H extends the implementation
of Λs demonstrated by ξ⟨η⟩.
Output: A sample from a distribution Ξ over {0, 1}n × {0, 1}n × (A×B) which is a detailing
of a transfer distribution between µ and some τ .

1. Draw (x,a, b) ∼ ξ⟨η⟩.

2. For every i ∈ [n] independently, set yi conditioned on the value of xi. If xi = 1, then set

yi = 0 with probability max
{
0, (H(i))1(a,b)−(H(i))2(a,b)

(H(i))1(a,b)

}
, and if xi = 0, then set yi = 1

with probability max
{
0, (H(i))2(a,b)−(H(i))1(a,b)

1−(H(i))1(a,b)

}
.

3. return (x,y, (a, b)).

Figure 8: A description of the Change-types procedure

We will later use Change-types to show that if Tolerant-Tester does not reject with high probability
then there exists some distribution τ which is close to µ and is not rejectable by a ϵ2−ϵ1

12 -test for
P, meaning that µ itself is not very far from P. But first we need to prove its properties, starting
with the following trivial observation (which follows from the construction of Ξ).

Observation 6.6. The distribution Ξ of the output of Change-types(ξ, η,H) satisfies Ξ|1,3 = ξ⟨η⟩,
and in particular the type distribution of Ξ|1,3 equals Λ⟨B⟩.

The following shows that the detailing Ξ|2,3 of the distribution τ = Ξ|2 indeed has the required
target type distribution.

Lemma 6.7. The procedure Change-types produces a sample from a distribution Ξ such that the
detailing Ξ|2,3 of τ admits the type distribution Λt.

Proof: We prove for every i that indeed Pr(x,y)∼Ξ|3:(a,b) [yi = 1] = (H(i))2(a, b), which means that
the corresponding type for this coordinate is indeed (H(i))2.

Pr
(x,y)∼Ξ|3:(a,b)

[yi = 1] = Pr
(x,y)

[yi = 1 | xi = 0] · Pr
(x,y)

[xi = 0] + Pr
(x,y)

[yi = 1 | xi = 1] · Pr
(x,y)

[xi = 1].

In the case (H(i))1(a, b) ≥ (H(i))2(a, b), this gives

Pr
(x,y)∼Ξ|3:(a,b)

[yi = 1] = 0 + (H(i))1(a, b) ·
(
1− (H(i))1(a, b)− (H(i))2(a, b)

(H(i))1(a, b)

)
= (H(i))2(a, b).
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In the case (H(i))1(a, b) < (H(i))2(a, b), this gives

(1− (H(i))1(a, b)) ·
(H(i))2(a, b)− (H(i))1(a, b)

1− (H(i))1(a, b)
+ (H(i))1(a, b) = (H(i))2(a, b).

The next lemma bounds the distance between µ = Ξ|1 and τ = Ξ|2.

Lemma 6.8. The procedure Change-types produces a distribution Ξ such that

dEM(Ξ|1,Ξ|2) ≤ E
i∼[n]

[
E

(a,b)∼η

[∣∣∣(H(i))2(a, b)− (H(i))1(a, b)
∣∣∣]] .

Proof: Noting that Ξ|3 = η, we have that:

dEM(Ξ|1,Ξ|2) ≤ E
(x,y)∼Ξ|1,2

[dH(x,y)] = E
(a,b)∼η

[
E

(x,y)∼Ξ|3:(a,b)
[dH(x,y)]

]
= E

i∼[n]

[
E

(a,b)∼η

[
Pr

(x,y)∼Ξ|3:(a,b)
[xi = 0 ∧ yi = 1] + Pr

(x,y)∼Ξ|3:(a,b)
[xi = 1 ∧ yi = 0]

]]
.

(12)

For a fixed i ∈ [n] and (a, b) ∈ A×B we have that

Pr
(x,y)∼Ξ|3:(a,b)

[xi = 0 ∧ yi = 1] = Pr
(x,y)∼Ξ|3:(a,b)

[yi = 1 | xi = 0] · Pr
(x,y)∼Ξ|3:(a,b)

[xi = 0]

= (1− (H(i))1(a, b)) ·max

{
0,

(H(i))2(a, b)− (H(i))1(a, b)

1− (H(i))1(a, b)

}
= max {0, (H(i))2(a, b)− (H(i))1(a, b)} ,

and similarly,

Pr
(x,y)∼Ξ|3:(a,b)

[xi = 1 ∧ yi = 0] = max {0, (H(i))1(a, b)− (H(i))2(a, b)} .

Therefore,

Pr
(x,y)∼Ξ|3:(a,b)

[xi = 0 ∧ yi = 1] + Pr
(x,y)∼Ξ|3:(a,b)

[xi = 1 ∧ yi = 0] =
∣∣∣(H(i))2(a, b)− (H(i))1(a, b)

∣∣∣.
Plugging into Inequality (12), we have the final result:

dEM(Ξ|1,Ξ|2) ≤ E
i∼[n]

[
E

(a,b)∼η

[∣∣∣(H(i))2(a, b)− (H(i))1(a, b)
∣∣∣]] .

The final and rather important property of the output distribution of Change-types is the preserva-
tion of goodness. Namely, that if ξ was an (ϵ, q)-good detailing of the unknown input distribution
µ, then Ξ|2,3 will be an (ϵ, q)-good detailing of the “new” τ .

Lemma 6.9. Fix ϵ ∈ (0, 1) and q ∈ N. Let ξ be a detailing of µ with respect to A, and let η be a
distribution over A × B which is a detailing of ξ|2 with respect to B. If ξ is (ϵ, q)-good, then the
detailing Ξ|2,3 of τ = Ξ|2, as obtained by the output distribution of Change-types, is also (ϵ, q)-good.
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Proof: Since ξ is (ϵ, q)-good, there exists J ⊆ A with Prξ|2 [J ] > 1 − ϵ such that for any a ∈ J ,
at least (1 − ϵ)nq of the q-tuples in [n]q are ϵ-independent. Consider the flat extension ξ⟨η⟩ with
respect to η. Since ξ⟨η⟩ is a flat extension, for any a ∈ J and α ∈ [n]q which is ϵ-independent with

respect to ξ|2:a1 , the tuple α is also ϵ-independent with respect to ξ⟨η⟩|
2:(a,b)
1 = ξ|2:a for all b ∈ B.

Next we claim that if a tuple α ∈ [n]q is ϵ-independent with respect to ξ⟨η⟩|
2:(a,b)
1 , then it is also

ϵ-independent with respect to ν
def
= Ξ|3:(a,b)2 . Let (j1, . . . , jq) ∈ [n]q be an ϵ-independent tuple with

respect to ξ⟨η⟩|
2:(a,b)
1 . Then, we have that

dTV

(ξ⟨η⟩|2:(a,b)1

)
|{j1,...,jq},

∏
ℓ∈[q]

(
ξ⟨η⟩|

2:(a,b)
1

)
|jℓ

 ≤ ϵ.

Let σ denote an optimal coupling from the distribution
(
ξ⟨η⟩|

2:(a,b)
1

)
|{j1,...,jq} to the corresponding

product distribution
∏

ℓ∈[q]

(
ξ⟨η⟩|

2:(a,b)
1

)
|jℓ , in the sense that

dTV

(ξ⟨η⟩|2:(a,b)1

)
|{j1,...,jq},

∏
ℓ∈[q]

(
ξ⟨η⟩|

2:(a,b)
1

)
|jℓ

 = E
(x,x′)∼σ

[
1{x̸=x′}

]
We construct a coupling σ′ from the distribution ν|{j1,...,jq} to the corresponding product distribu-
tion

∏
ℓ∈[q] ν|jℓ and and prove that

E
(y,y′)∼σ′

[
1{y ̸=y′}

]
≤ E

(x,x′)∼σ

[
1{x̸=x′}

]
.

We define the coupling σ′ as follows. We first sample (x,x′) ∼ σ. Then for every ℓ ∈ [q], if
xjℓ = x′

jℓ
then we apply Step (2) of Change-types for xjℓ to obtain yjℓ

and set y′
jℓ

= yjℓ
(this

means that we “use the same random coins” for handling xjℓ and x′
jℓ
). If xjℓ ̸= x′

jℓ
then we just

apply Step (2) of Change-types separately for xjℓ to obtain yjℓ
and for x′

jℓ
to obtain y′

jℓ
(note that

in this case only one of the two applications uses randomness). The last two things to note are that
y has the same distribution as the output of Change-types over x restricted to {j1, . . . , jq}, while
y′ distributes as the corresponding product, and that under this process x = x′ implies y = y′.
Hence E(y,y′)∼σ′ [1{y ̸=y′}] ≤ E(x,x′)∼σ[1{x̸=x′}], as required.

Since the above argument holds for any ϵ-independent tuple with respect to ξ⟨η⟩|
2:(a,b)
1 for any

(a, b) ∈ A × B (showing the tuple to be ϵ-independent also for Ξ|3:(a,b)2 ), it implies that (ϵ, q)-
goodness is indeed transferred from ξ⟨η⟩ to Ξ|2,3.

Our application to this lemma would be to show that predictability still holds for the resulting
detailing of τ (with respect to the weight distribution η and the type distribution Λt), just as it
held for a good enough detailing ξ of µ.

Lemma 6.10. Fix ϵ, γ ∈ (0, 1), s, q ∈ N, a detailing ξ of µ with respect to A, and a distribution

η over A × B extending ξ|2. Let δ = ϵ6

105·q3·s6 , let accγ(Ξ|2) denote the acceptance probability of

the canonical tester with proximity γ applied on Ξ|2, where Ξ is the output distribution of Change-
types, and denote by Υ the type distribution of Ξ|2,3. If ξ is (δ, q−1)-weakly robust, then the output
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ãccγ(Ξ|2) of the procedure Accept-Probability(s, q, η,Υ, γ) satisfies

|ãccγ(Ξ|2)− accγ(Ξ|2)| ≤ ϵ/20.

Proof: Since ξ is (δ, ϵ)-weakly robust, by Lemma 3.26 it is also (ϵ′, q)-good for some ϵ′ ≤ ϵ
1000s . By

Lemma 6.9, we have that the detailing Ξ|2,3 is also (ϵ′, q)-good. Therefore, we can use Lemma 4.5
to conclude that |ãccγ(Ξ|2)− accγ(Ξ|2)| ≤ ϵ/20, as required.

Proof of Lemma 6.3: By the guarantees of Find-Weakly-Robust-Detailing (Lemma 5.11) we have
that with probability at least 5/6 the returned set U defines a (δ, k′)-weakly robust detailing µU of µ.
In addition, from the guarantees of Estimate-Parameters (Lemma 5.12) we have that dTV(η̃, η) ≤ ρ
and dηEM(Λ̃,Λ) ≤ ρ with probability at least 5/6, where η = µ|U is the weight distribution of µU

and Λ is its type distribution. We henceforth condition on the intersection of the above events
(which happens with probability at least 2/3).

We will show that if the algorithm accepts, then there exists a distribution τ∗, which is accepted
by the canonical test with probability larger than 1/3 (and hence satisfies dEM(τ∗,P) ≤ ϵ2−ϵ1

12 ),
satisfying also dEM(µ, τ∗) ≤ 11ϵ2+ϵ1

12 . By the triangle inequality, this will imply that dEM(µ,P) ≤ ϵ2.

Let us denote A = {0, 1}|U |, as in the proof of Lemma 6.2. Note that if Tolerant-Tester accepts, then
there exist a 2ρ

|A|·|B| -quantized detailing η′ of η̃ with respect to A×B, and a ρ
(1+1/ρ)|A|·|B| -quantized

type distribution Υ̃ over {0, ρ, . . . , 1}A×B, that satisfy dη
′

EM(Λ̃⟨B⟩, Υ̃) ≤ (ϵ1 + ϵ2)/2 and such that

Accept-Probability(s, q, Υ̃, η′, ϵ2−ϵ1
12 ) returns a value that is at least 1/2.

Noting that in particular η̃(u) = 0 whenever µ|U (u) = 0, let η∗ = µ|U � η′ be the adjustment of η′

to µ|U = µU |2, and let µU
⟨η∗⟩ be the flat refinement of µU with respect to η∗. By Lemma 2.11 we

have dTV(η
′, η∗) ≤ ρ. Next we apply Lemma 2.28, assuming n ≥ (1/ρ+1)2

|U|·|B|

ρ = 2poly(2
q ,s,1/(ϵ2−ϵ1)),

to obtain a distribution Υ∗ which is 1
n -quantized such that dTV(Υ

∗, Υ̃) ≤ ρ.

By Lemma 2.29 we have dη
∗

EM(Λ⟨B⟩,Υ
∗) ≤ dη

′

EM(Λ⟨B⟩,Υ
∗) + 2ρ. Now let h : [n] → {0, ρ, . . . , 1}A×B

the implementation of Λ⟨B⟩ demonstrated by µU
⟨η∗⟩. We next note that we can apply Lemma 3.18

and obtain an implementation H : [n] →
(
{0, ρ, . . . , 1}A×B

)2
of an optimal transfer function κ

between Λ⟨B⟩ and Υ∗ over η∗, with (H(i))1 = h(i) for all i ∈ [n]. Thus,

dη
∗

EM(Λ⟨B⟩,Υ
∗) = E

i∼[n]

[
E

(a,b)∼η∗

[∣∣(H(i))2(a, b)− (H(i))1(a, b)
∣∣]]

We construct a distribution τ∗ along with a detailing Ξ∗ of a transfer distribution T ∗ from µ to τ∗

with respect to A × B as follows. Recall that µU denotes the detailing of µ obtained in Step 2 of
the algorithm.

We define Ξ∗ as the distribution over the output of Change-types with respect to µU , η∗ and H.
That is, a sample (x,y, (a, b)) ∼ Ξ∗ is obtained by calling Change-types(µU , η∗, H). We will not
take actual samples from Ξ∗, but only analyze the distance bounds that it implies.

Observe that by construction the distribution τ∗ = Ξ∗|2 is supported on {0, 1}n, and by Lemma 6.7
the detailing ζ = Ξ∗|2,3 of τ∗ admits the target weight distribution η∗ and type distribution Υ∗.

Then, by Lemma 6.8, using also the facts that dη
′

EM(Υ̃,Υ∗) ≤ dTV(Υ̃,Υ∗) and dη
∗

EM(Λ⟨B⟩, Λ̃⟨B⟩) =

52



d
µ|U
EM(Λ, Λ̃) we have that

dEM(µ, τ∗) ≤ E
i∼[n]

[
E

(a,b)∼η∗
[|(H(i))2(a, b)− (H(i))1(a, b)|]

]
= dη

∗

EM(Λ⟨B⟩,Υ
∗)

≤ dη
∗

EM(Λ⟨B⟩, Λ̃⟨B⟩) + dη
∗

EM(Λ̃⟨B⟩,Υ
∗)

≤ dη
∗

EM(Λ⟨B⟩, Λ̃⟨B⟩) + dη
′

EM(Λ̃⟨B⟩,Υ
∗) + 2ρ

≤ d
µ|U
EM(Λ, Λ̃) + dη

′

EM(Λ̃⟨B⟩, Υ̃) + dTV(Υ̃,Υ∗) + 2ρ

≤ ρ+
ϵ1 + ϵ2

2
+ ρ+ 2ρ ≤ 11ϵ2 + ϵ1

12

It remains to show that τ∗ is accepted by the canonical tester (with proximity parameter ϵ2−ϵ1
12 )

with probability greater than 1/3. Indeed, by our choice of parameters and using Lemma 6.10, we
have that ∣∣∣ãcc ϵ2−ϵ1

12

(τ∗)− acc ϵ2−ϵ1
12

(τ∗)
∣∣∣ ≤ 1/20,

which implies that τ∗ is accepted by the canonical tester with probability at least 1/2−1/20 > 1/3,
and the proof is complete.
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[Sze75] Endre Szemerédi. Regular partitions of graphs. Stanford University, 1975.

[Val11] Paul Valiant. Testing symmetric properties of distributions. SIAM Journal on Com-
puting, 40(6):1927–1968, 2011.

[VV17] Gregory Valiant and Paul Valiant. Estimating the unseen: improved estimators for
entropy and other properties. Journal of the ACM, 64(6):37:1–37:41, 2017.

57
ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il


