
On one-way functions and the average time complexity of

almost-optimal compression

Marius Zimand∗

Abstract

We show that one-way functions exist if and only if there exists an efficiently-samplable dis-
tribution relative to which almost-optimal compression is hard on average. The result is obtained
by combining a theorem of Ilango, Ren, and Santhanam [IRS21, IRS22] and one by Bauwens and
Zimand [BZ23].

1 Introduction

Several recent papers show that the existence of one-way functions (OWF) is equivalent to the hardness
of certain problems in meta-complexity [LP20, LP21, RS21, IRS21, IRS22, LP23a, LP23b, HLO24,
LS24]. The motivation for this research line comes primarily from cryptography, where one-way func-
tions play a central role1. Ilango, Ren and Santhanam [IRS21, IRS22] have obtained a result of this
type involving standard (unbounded) Kolmogorov complexity. Informally speaking, they have shown
that one-way functions exist if and only if “finding good approximations of Kolmogorov complexity”
is hard on average with respect to some polynomial-time samplable distribution. Bauwens and Zi-
mand [BZ23] have shown that given a good approximation of the Kolmogorov complexity of a string
x, one can compress x in probabilistic polynomial time to a string of length close to its complexity (so,
x is almost-optimally compressed). The combination of these 2 results yields the following theorem.

Theorem 1 (Informal statement). The following two assertions are equivalent:

1. There exists a one-way function.

2. Almost optimal compression is hard on average with respect to some polynomial-time samplable
distribution.

The result of Ilango et. al. [IRS21, IRS22] is not exactly stated in the form that we mentioned
above. For this reason, we prefer to give a proof which does not directly invoke [IRS21, IRS22], but
which closely follows their method. In one direction, it is based on results of Impagliazzo, Levin
and Luby[IL90, IL89] connecting the existence of OWFs to the hardness of approximating poly-time
samplable distributions, and, in the other direction, it is based on the connection between OWFs and
pseudo-random generators established by H̊astad, Impagliazzo, Levin and Luby [HILL99].

2 Definitions, and technical tools

Kolmogorov complexity. We fix an optimal universal Turing machine U with prefix-free domain.
A program for string x is a string p such that U(p) = x. The prefix-free Kolmogorov complexity K(x)
of the string x is the length of a shortest program for x.2

∗Department of Computer and Information Sciences, Towson University, Baltimore, MD. Partially supported by a
grant from the School of Emerging Technologies at Towson University.

1See [HLO24] and [LS24] for a discussion of some of these and related works.
2The prefix-free Kolmogorov complexity K(x) is a little more convenient for the proof than the plain complexity

C(x). The difference K(x)− C(x) is bounded by 2 log |x| and, therefore, the result is valid for C(x) as well.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 201 (2024)

Distributions. We consider ensembles of distributions. An ensemble has the form D = (Dn)n∈N,
where each Dn is a distribution on {0, 1}n. The ensemble D is samplable if there exists a probabilistic
algorithm Samp, such that for every n and every x ∈ {0, 1}n,

Prob [Samp(1n) = x] = Dn(x)

(the probability is over the randomness of Samp).

D is said to be P-samplable, in case Samp runs in polynomial time.

Some notation: For every x, we denote D(x) = D|x|(x). For every m, Um denotes the uniform
distribution over m-bit strings.

Lemma 1. If D is samplable, then for every x in its support,

K(x) ≤ log
1

D(x)
+ 3 log(|x|) +O(1).

Proof. Fix a binary string x and let n be its length. Given n and the code of Samp, one can compute
Dn(y) for all strings y of length n and then list all these strings in descending order of their Dn(·)
probability (with ties broken, say, lexicographically). The string x is described by its rank t in this
list. Since the Dn-probability of the first t strings in the order is at most 1 and at least t ·Dn(x), it
follows that t ≤ ⌈1/Dn(x)⌉. An overhead of 2 log(|x|) + O(1) bits is added to obtain a self-delimited
description in the standard way.

Lemma 2. For every distribution D, and every ∆ ≥ 0,

Probx←D [K(x) ≥ log
1

D(x)
−∆] ≥ 1− 2−∆.

Proof. The complement of the event in the probability is E = {x | D(x) ≤ 2−∆ · 2−K(x)}. We have

D(E) =
∑
x∈E

D(x) ≤
∑
x∈E

2−∆ · 2−K(x) ≤ 2−∆
∑

x∈{0,1}∗
2−K(x) ≤ 2−∆ · 1 = 2−∆.

In the penultimate transition, we have used the Kraft inequality, which is legitimate because K(·)
represents the lengths of a prefix-free code.

Formal statement of Theorem 1. The following 2 assertions are equivalent:

Assertion (1): The hypothesis “ ∃ OWF”: There exists a polynomial-time computable f :
{0, 1}∗ → {0, 1}∗ with the following property: For every probabilistic polynomial-time algorithm
Inverter, every q ∈ N and almost every length n ∈ N,

Probx←Un,Inverter[Inverter(1
n, f(x)) ∈ f−1(f(x))] ≤ 1/nq.

(The notation Probx←Un,Inverter means that the probability is over Un × randomness of Inverter.)

Assertion (2): The hypothesis “almost optimal compression is hard on average” : There
exists a P -samplable distribution D and a constant c with the following property: For every proba-
bilistic polynomial-time algorithm Compress, at almost every length n,

Probx←Dn,Compress[Compress (x) outputs a program of x of length ≥ K(x) + c log2 n] > 1/100.

(The event in the probability expresses the failure of almost optimal compression, and thus assertion
(2) states that for any efficient algorithm this failure happens with significant probability.)

Remark. The “infinitely often” version of Theorem 1 is also true, with essentially the same proof.
More precisely, if we modify Assertions 1 and 2 by replacing “almost every length n” with “infinitely
many lengths n,” the modified assertions are also equivalent.

Also, the version in which the additive overhead c log2 n is replaced by nγ (for every γ ∈ (0, 1)) is
true with essentially the same proof.

2

Results from the literature that we use.

Theorem 2 ([IL89, IL90]; this variant is stated and proved in [IRS21]). Assume the hypothesis “∃
OWF” is not true. Let D = (Dn)n∈N be a P-samplable ensemble of distributions, and q ∈ N. There
exists a probabilistic polynomial-time algorithm A and a constant c > 1 such that for infinitely many
n,

Probx←Dn,A [Dn(x)/c ≤ A(x) ≤ Dn(x)] ≥ 1− 1

nq
.

In other words: If there are no one-way functions, then P-samplable distributions can be approximated
efficiently in the average sense.

Theorem 3 ([BZ23]). There exists a probabilistic polynomial-time algorithm Compress that for every
input triple (x ∈ {0, 1}∗,m ∈ N, rational ϵ > 0) outputs with probability 1 a string z of length m +
O(logm · log |x|/ϵ) and if m ≥ K(x) then

ProbCompress[z is a program for x] ≥ 1− ϵ.

In other words: Given a good approximation of the Kolmogorov complexity of a string x, one can
efficiently compress x almost optimally (where efficiently means in probabilistic polynomial time).

3 Proof of Theorem 1

Proof of assertion (2) → assertion (1).
We actually prove the contrapositive: �∃ OWF⇒ ¬ assertion (2) (i.e, almost optimal compression

is easy on average).
Let D = (Dn)n∈N be a P-samplable ensemble. By Lemma 2 and Lemma 1, for some constant c,

for every n

Probx←Dn
[log

1

Dn(x)
− c log n ≤ K(x) ≤ log

1

Dn(x)
+ c log n] ≥ 1− 1/n.

Under our assumption “�∃ OWF ,” Theorem 2 states that there exists an algorithm that approximates
Dn(x) with high probability, and therefore it also approximates K(x) with high probability. More
precisely, by rescaling, we get a probabilistic polynomial-time algorithm A such that, for every n,

Probx←Dn,A[K(x) ≤ A(x) ≤ K(x) + c log n] ≥ 1− 1/n.

Then, the algorithm Compress from Theorem 3 with m = A(x) and ϵ = 1/200 shows the invalidity of
assertion (2).

Proof of assertion (1) → assertion (2).
(∃ OWF⇒ almost optimal compression is hard on average.)

The idea is that an efficient good compressor would break the security of any candidate pseudo-
random generator (p.r.g.), because the output of the generator can be compressed to a much shorter
string, whereas a genuinely random string cannot. Therefore, pseudorandom generators would not
exist and hence there would be no OWF, contradicting assertion (1). Now, the details.

Suppose “∃ OWF” is true. Then, by [HILL99] combined with the methods to obtain ensembles
of p.r.g.’s with every possible output length [Gol01, Section 3.3.3], there exists an ensemble of p.r.g.’s
G = (Gn)n∈N, computable in polynomial time (uniformly), with Gn : {0, 1}s(n) → {0, 1}n, where
the seed length s(n) is bounded by n1/3, that satisfies the following security guarantee: For every
probabilistic polynomial-time algorithm T (the hypothetical distinguisher) and every q ∈ N, for almost
every n ∈ N, the probabilities that (a) T accepts Gn(Us(n)) and (b) T accepts Un, differ by at most
1/nq.

Consider the following P-samplable distribution Dn:
with probability 1/2, output G(Us(n)) and with probability 1/2, output Un.

Clearly, if assertion (2) is false, then there exists a constant c, a probabilistic polynomial-time
algorithm A (derived from Compress in the straightforward way), and an infinite set B, so that at

3

every length n ∈ B, with Dn × (randomness of A)-probability ≥ 1 − 1/100 approximates K(x) with
slack at most c log2 n. Let

BAD = {x ∈ {0, 1}n | ProbA[|A(x)−K(x)| ≥ c log2 n] ≥ 5/100}.

(In other words: BAD is the event which says that A fails to approximateK with significant probability
over the randomness of A.)

Then, for every n ∈ B, by Markov’s inequality,

Probx←Dn
[BAD] ≤ 1/5,

By inspecting the sampling procedure, we see that each element x in BAD has Dn-probability mass
at least (1/2) · 2−n and thus 1/5 ≥ Dn(BAD) ≥ (#BAD) · (1/2 · 2−n) = 1/2 · ProbUn [BAD], and so

ProbUn
[BAD] ≤ 2/5.

Also, each element in BAD ∩ Im(G(Us(n)) has Dn-probability mass at least (1/2) · 2−s(n), which,
similarly to the above, implies that

ProbUs(n)
[BAD ∩ Im(G(Us(n)))] ≤ 2/5.

We now define the probabilistic polynomial-time distinguisher T : T on input z of length n, executes
A on input z, and accepts, if A(z) ≤ n1/2, and rejects otherwise. Note that G(Us(n)) with probability 1

has prefix-free complexity at most s(n)+ 2 log s(n)+O(1) ≤ n1/3 +O(log n). Therefore, if G(Us(n)) ̸∈
BAD and if A uses randomness that yields good approximation, then T accepts G(Us(n)). Also, Un,
with probability at least 1-1/n, has complexity at least n − log n. If this is the case, and Un ̸∈ BAD,
and A uses correct randomness, then T rejects Un.

Therefore, for every n ∈ B,

ProbUs(n),T [T accepts G(Us(n))] ≥ (1− 2/5) · (1− 5/100) = 57/100

(the probability that G(Us(n)) is not in BAD is at least 1 − 2/5 and for strings not in BAD the
probability that A uses correct randomness is at least 1− 5/100).

Also, for every n ∈ B,

ProbUn,T [T accepts Un] ≤ 1/n+ 2/5 + 5/100 = 45/100 + 1/n.

(1/n is the probability that Un has complexity less than n− log n, 2/5 is the probability that Un is in
BAD, and 5/100 is the probability conditioned on Un ̸∈ BAD that A is using wrong randomness).

We are done, because the two inequalities contradict the security of G.

References

[BZ23] Bruno Bauwens and Marius Zimand. Universal almost optimal compression and Slepian-
Wolf coding in probabilistic polynomial time. J. ACM, 70(2):1–33, 2023. (arxiv version
posted in 2019).

[Gol01] O. Goldreich. Foundations of Cryptography. Cambridge University Press, 2001.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid Levin, and Michael Luby. A pseudorandom
generator from any one-way function. SIAM Journal on Computing, 28(4):1364–1396, 1999.
A preliminary version appeared in 21rst STOC, 1989.

[HLO24] Shuichi Hirahara, Zhenjian Lu, and Igor C Oliveira. One-way functions and pkt complexity.
Cryptology ePrint Archive, 2024.

[IL89] Russell Impagliazzo and Michael Luby. One-way functions are essential for complexity based
cryptography (extended abstract). In 30th Annual Symposium on Foundations of Computer
Science, Research Triangle Park, North Carolina, USA, 30 October - 1 November 1989,
pages 230–235. IEEE Computer Society, 1989.

4

[IL90] Russell Impagliazzo and Leonid A. Levin. No better ways to generate hard NP instances
than picking uniformly at random. In 31st Annual Symposium on Foundations of Computer
Science, St. Louis, Missouri, USA, October 22-24, 1990, Volume II, pages 812–821. IEEE
Computer Society, 1990.

[IRS21] Rahul Ilango, Hanlin Ren, and Rahul Santhanam. Hardness on any samplable distribution
suffices: New characterizations of one-way functions by meta-complexity. Electron. Collo-
quium Comput. Complex., TR21-082, 2021.

[IRS22] Rahul Ilango, Hanlin Ren, and Rahul Santhanam. Robustness of average-case meta-
complexity via pseudorandomness. In Stefano Leonardi and Anupam Gupta, editors, STOC
’22: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June
20 - 24, 2022, pages 1575–1583. ACM, 2022.

[LP20] Yanyi Liu and Rafael Pass. On one-way functions and kolmogorov complexity. In 2020
IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS), pages 1243–
1254. IEEE, 2020.

[LP21] Yanyi Liu and Rafael Pass. On the possibility of basing cryptography on exp ̸= bpp exp ̸=
bpp. In Advances in Cryptology–CRYPTO 2021: 41st Annual International Cryptology
Conference, CRYPTO 2021, Virtual Event, August 16–20, 2021, Proceedings, Part I 41,
pages 11–40. Springer, 2021.

[LP23a] Yanyi Liu and Rafael Pass. On one-way functions and the worst-case hardness of time-
bounded kolmogorov complexity. Cryptology ePrint Archive, 2023.

[LP23b] Yanyi Liu and Rafael Pass. One-way functions and the hardness of (probabilistic) time-
bounded kolmogorov complexity wrt samplable distributions. In Annual International Cryp-
tology Conference, pages 645–673. Springer, 2023.

[LS24] Zhenjian Lu and Rahul Santhanam. Impagliazzo’s worlds through the lens of conditional
kolmogorov complexity. In 51st International Colloquium on Automata, Languages, and Pro-
gramming (ICALP 2024), pages 110–1. Schloss Dagstuhl–Leibniz-Zentrum für Informatik,
2024.

[RS21] Hanlin Ren and Rahul Santhanam. Hardness of kt characterizes parallel cryptography.
Cryptology ePrint Archive, 2021.

5

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

