
Lifting to Randomized Parity Decision Trees

Farzan Byramji∗ Russell Impagliazzo†

Abstract

We prove a lifting theorem from randomized decision tree depth to randomized parity decision tree
(PDT) size. We use the same property of the gadget, stifling, which was introduced by Chattopadhyay,
Mande, Sanyal and Sherif [ITCS’23] to prove a lifting theorem for deterministic PDTs. Moreover, even
the milder condition that the gadget has minimum parity certificate complexity at least 2 suffices for
lifting to randomized PDT size.

To further improve the dependence on the gadget g in the lower bounds for composed functions, we
consider a related problem g∗ whose inputs are certificates of g. It is implicit in the work of Chattopadhyay
et al. that for any function f , lower bounds for the ∗-depth of f∗ give lower bounds for the PDT size of
f . We make this connection explicit in the deterministic case and show that it also holds for randomized
PDTs. We then combine this with composition theorems for ∗-depth, which follow by adapting known
composition theorems for decision trees. As a corollary, we get tight lifting theorems when the gadget is
Indexing, Inner Product or Disjointness.

1 Introduction

Lifting theorems provide a way to convert lower bounds for a function f in a weak model of computation to
lower bounds in a stronger model of computation by composing with a function g, typically called a gadget.
Given functions f : {0, 1}n → {0, 1} and g : {0, 1}m×{0, 1}, their composition f ◦ g : ({0, 1}m)n → {0, 1} is
defined by

(f ◦ g)(x1, x2, . . . , xn) = f(g(x1), g(x2), . . . , g(xn)).

Typically such lifting theorems show that for certain choices of the gadget g, the two-party communication
complexity of f ◦ g in some model is lower bounded by the complexity of f in a related query model [RM97,
GPW18, GKPW19, GPW20, CFKMP21, LMMPZ22]. These have several applications and have led to
the resolution of some long-standing problems [RM97, GP18, GGKS18, CKLM19, PR18]. An important
challenge in the area is to decrease the gadget size to a constant. Current proofs require the gadget size to
be logarithmic in the input length of the outer function.

As a stepping stone towards query-to-communication lifting theorems with improved gadget size, we may
consider the problem of lifting to models which lie between communication protocols and decision trees. One
such natural model is that of parity decision trees (PDTs). A parity decision tree is a decision tree where
each node queries a parity

∑

i∈S xi for some S ⊆ [n] and the sum is over F2. While being interesting on its
own, another motivation for proving PDT lower bounds comes from proof complexity. The minimum size of
a refutation of an unsatisfiable CNF formula φ in the proof system tree-like Resolution over parities (Res(⊕))
is (essentially) equal to the minimum size of a deterministic parity decision tree solving the related false
clause search problem for φ [IS20]. Lifting theorems for deterministic parity decision trees using constant
size gadgets were recently proved by Chattopadhyay, Mande, Sanyal and Sherif [CMSS23] and independently
by Beame and Koroth [BK23] which gave a direct way to transform tree-like Resolution lower bounds to
tree-like Res(⊕) lower bounds.

∗University of California, San Diego. fbyramji@ucsd.edu. Supported by NSF Award AF: Medium 2212136.
†University of California, San Diego. rimpagliazzo@ucsd.edu. Supported by NSF Award AF: Medium 2212136.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 202 (2024)

mailto:fbyramji@ucsd.edu
mailto:rimpagliazzo@ucsd.edu

As a next step, we may ask for lifting theorems for randomized parity decision trees. While lower bounds
for randomized PDTs, do not seem to directly imply lower bounds for stronger proof systems, lower bound
techniques against randomized PDTs (along with several other ideas) have been recently used to prove lower
bounds against certain subsystems of (dag-like) Res(⊕) [EGI24, BCD24, AI24]. (More precisely, they use
distributional lower bounds against deterministic PDTs.)

In this work, we prove a lifting theorem from randomized decision tree (DT) depth to randomized parity
decision tree (PDT) size with constant size gadgets. To state this precisely, let us fix some notation. For
a function f , we use D

dt(f) to denote the deterministic DT depth of f and R
dt(f) to denote the 1/3-error

randomized DT depth of f . Similarly, we use DSize
dt(f) and RSize

dt(f) to denote the corresponding size
measures. We use ⊕ in the superscript to denote the analogous PDT measures. For example, RSize⊕-dt(f)
denotes the minimum size of any randomized PDT computing f to error 1/3.

To prove the lifting theorem for randomized PDTs, we use the same property of the gadget, stifling, which
was introduced by [CMSS23] to prove their lifting theorem for deterministic PDTs. A function g : {0, 1}m →
{0, 1} is said to be k-stifled if for all S ⊆ [m] of size k and b ∈ {0, 1}, there is some way to fix all bits other
than those in S to force the function g to output b. A function g which is 1-stifled is also simply called stifled.

Theorem 1.1. For any function f : {0, 1}n → {0, 1}, any stifled function g : {0, 1}m → {0, 1},

logRSize⊕-dt(f ◦ g) ≥ Ωm(Rdt(f))

where the implicit constant depends on the gadget size m.

Our results also hold for relations f (like most other lifting theorems) and partial g, but we focus on total
functions in this section for simplicity.

Other than ideas used in the deterministic lifting theorem for PDTs [CMSS23, BK23], our proof also
relies on some ideas from [BCD24]. Bhattacharya, Chattopadhyay and Dvořák [BCD24] showed that for
stifling gadgets g, like Inner Product, Indexing and Majority, of constant size m, the uniform distributions
on g−1(0) and g−1(1) have the following useful property. For any i ∈ [m], with constant probability, the bits
other than i form a certificate of g in which case the ith bit is uniformly distributed. Using this property for
such balanced distributions, a parity query across multiple blocks can be simulated by a constant number of
actual queries in expectation. This simple idea is key for our simulation proving Theorem 1.1.

To our knowledge, the simpler question of lifting from randomized DT depth to randomized DT size also
does not seem to have been considered before. In the deterministic case, Alekseev, Filmus and Smal [AFS24]
showed that a resistant gadget allows lifting DT depth to DT size, where a gadget is resistant if fixing a
single bit of the input cannot fix the value of the function. We observe that their ideas can also be used to
prove the analogous statement for randomized decision trees.

Theorem 1.2. For any function f : {0, 1}n → {0, 1}, any resistant function g : {0, 1}m → {0, 1},

logRSizedt(f ◦ g) ≥ Ωm(Rdt(f)).

Theorems 1.1 and 1.2 are in fact slightly stronger than stated since they lift to rank, a measure which
lower bounds log size. This is also true of the deterministic PDT lifting theorem [CMSS23, BK23] and the
simulation-based proof of the deterministic DT size lifting theorem [AFS24], though they do not explicitly
mention it. PDT rank also lower bounds depth in subspace decision trees. A subspace decision tree is a
decision tree where each internal node can query the indicator of an affine subspace. Since the proofs for
rank are essentially the same as those for size, we will focus on rank from now on.

Let us recall the definition of rank, introduced by Ehrenfeucht and Haussler [EH89]. It will be convenient
to work with the following alternative way of looking at rank (see Section 2 for the more common definition
of rank). Consider decision trees where at each node, one of the two outgoing edges is marked, and define
the cost of such a marked decision tree to be the maximum number of marked edges along any root-to-leaf
path. The rank of a function g, DRankdt(g), is the minimum cost of such a marked decision tree computing
g. Compared to size, rank is closer in spirit to depth, which better motivates some of the ideas discussed
later.

2

The general question of whether randomized DT size satisfies a composition theorem ‘Does logRSizedt(f ◦
g) = Ω(Rdt(f) logRSizedt(g)) hold for all f and g up to polylog factors?’ was recently asked by Dahiya
[Dah24, Chapter 8, Open Problem 1]. The corresponding question in the deterministic case has a positive
answer up to a log factor in the input length of g, as shown by Dahiya and Mahajan [DM23]. They actually
show that deterministic DT rank satisfies a composition theorem which implies the composition theorem for
size.

The composition question is interesting even in the most basic setting of decision tree depth. While a
composition theorem for deterministic depth has been known for long [Sav02, Tal13, Mon14], the case of
randomized depth is more subtle. It is still unknown whether we have R

dt(f ◦ g) = Ω(Rdt(f)Rdt(g)) for all
total functions f and g. In fact, it is known that the statement is false in its most general form for the
composition of a relation and a partial function [GLSS23] and even for the composition of partial functions
[BB20]. There is a long line of work [ABK16, BK18, AGJK+18, GJPW18, GLSS23, BDGH+20, BB20,
BBGM22, CKMP+23, San24] studying this question and proving lower bounds on R

dt(f ◦ g) of the form
Ω(Rdt(f)M(g)) or Ω(M(g)Rdt(g)) where M(·) is some complexity measure. We now have such composition
theorems which are optimal [BB20, BBGM22] for partial functions in the following sense. Ben-David, Blais,
Göös and Maystre [BBGM22] defined a measure LR such that an inner composition theorem holds for LR,
i.e. R

dt(f ◦ g) ≥ Ω(Rdt(f)LR(g)), and if another measure M(·) satisfies an inner composition theorem for
all partial functions, then for all g, LR(g) ≥ Ω(M(g)). Similarly, Ben-David and Blais [BB20] proved an
outer-optimal composition theorem.

Theorem 1.2 can be used to show that a composition theorem for rank implies one for depth, or, taking
the contrapositive, counterexamples for depth also provide counterexamples for rank. Still, some of these
composition theorems [BK18, GLSS23, BBGM22] can be adapted to give analogous composition theorems
for randomized DT rank.

Motivated by the work on the composition question for ordinary decision trees, we try to better understand
the dependence on the inner function in the lower bounds on PDT rank for composed functions. [CMSS23]
proved that for any k-stifled g, DRank⊕-dt(f ◦g) ≥ kDdt(f) and the dependence on stifling in this lower bound
cannot be improved since for some functions g such as Indexing, g is k-stifled and DRank

⊕-dt(g) = k + 1.
Still, there may be other measures M(·) such that for all f, g, DRank⊕-dt(f ◦ g) ≥ D

dt(f)M(g) which in some
cases give a better lower bound than that obtained from stifling.

This is a natural possibility, considering that the stifling property is quite fragile. For instance, it is
possible that, for an m-bit function g which is Ω(m)-stifled, the function h1(x) := g(Ax) fails to be stifled,
where A is some invertible matrix in F

m×m
2 . Similarly the function h2 : {0, 1}m×{0, 1} → {0, 1} defined by

h2(x, y) := g(x)⊕ y is never stifled. It is clear that even though h1, h2 may not be stifled, on composing any
of these with some outer function f , we should get Ω(Ddt(f)m) as a lower bound on the PDT rank of the
composed function since g is Ω(m)-stifled.

We observe that the ideas in [CMSS23] also work with an adaptive version of stifling. To state this notion
precisely, we consider the following task. Let g : {0, 1}m → {0, 1} be a Boolean function. Given query access
to a certificate z ∈ {0, 1, *}m of g, recognize whether z is a 0-certificate or a 1-certificate. Let g∗ denote
this problem. Now instead of counting all queries in the cost, only include the queries which evaluate to ∗.
The minimum number of ∗’s required to solve g∗ is denoted by D

∗-dt(g∗). Using this notion, we show the
following.

Theorem 1.3. For all functions f : {0, 1}n → {0, 1}, g : {0, 1}m → {0, 1},

DRank
⊕-dt(f ◦ g) ≥ D

dt(f)(D∗-dt(g∗)− 1).

This is inspired by discussion at the end of the talk [She23b], where it is shown that for the Inner Product
gadget we can get linear dependence on the gadget size even though Inner Product is not 2-stifled. Observe
that if g is k-stifled, then D

∗-dt(g∗) > k since the first k queries made by an algorithm could all be ∗ and it
has still not determined whether z is a 0-certificate or a 1-certificate. Thus, the above lower bound is always
at least as good as the one obtained from stifling. When g is Inner Product or Disjointness on 2m bits, g is
not 2-stifled but D∗-dt(g∗) = m, which shows that this bound can sometimes be better.

3

To prove Theorem 1.3, we proceed in two steps. In the first step, we observe that the proof in [CMSS23]
implicitly uses a general reduction showing that for all functions, DRank⊕-dt(f) ≥ D

∗-dt(f∗). In particular,
f does not need to be of composed form. This lower bound even works for relations, once we consider a
suitable generalization of the task defined above. We prove this explicitly in Lemma 4.1. In Appendix A, we
use this lemma and other ideas in this work to give simple proofs of some known lower bounds for tree-like
Res(⊕) and some improvements to prior results on regular Res(⊕) [EGI24, BCD24].

With the lower bound DRank
⊕-dt(f) ≥ D

∗-dt(f∗) in hand, the next step is to simply note that D
∗-dt

satisfies a composition theorem D
∗-dt(f ◦ g) ≥ D

dt(f)(D∗-dt(g)−1) (analogous to the composition theorem for
deterministic depth). Combining these gives Theorem 1.3.

With the same proof strategy, we prove a randomized analogue of Theorem 1.3.

Theorem 1.4. For all functions f : {0, 1}n → {0, 1}, g : {0, 1}m → {0, 1},
RRank

⊕-dt(f ◦ g) ≥ Ω(Rdt(f)(LR∗(g∗)−O(1))).

Here LR
∗ is the natural ∗ analogue of the linearized complexity measure introduced in [BBGM22] where an

inner composition theorem R
dt(f ◦ g) = Ω(Rdt(f)LR(g)) was proved. For a function h : {0, 1, *}m → {0, 1, *},

LR
∗(h) = inf

T
max

x

cost*(T , x)
bias(T , x) ,

where T varies over randomized decision trees on {0, 1, *}n, x varies over inputs in the domain of h, cost*(T , x)
denotes the expected number of ∗’s seen when running T on x and bias(T , x) = max{0, 2Pr[T (x) = h(x)]−1}.

Using this, we can show that when the inner function is Inner Product, Disjointness or Indexing, the
upper bound RRank

⊕-dt(f ◦ g) ≤ O(Rdt(f)RRank⊕-dt

ǫ (g)) for ǫ ≪ 1/Rdt(f) is the best one can do. For these
inner functions, the deterministic PDT rank is equal to the randomized PDT rank (up to constants) so the
upper bound is simply O(Rdt(f)RRank⊕-dt(g)).

Corollary 1.5. For m ≥ 2, for all functions f : {0, 1}n → {0, 1},
RRank

⊕-dt(f ◦DISJ2m) = Θ(Rdt(f)RRank⊕-dt(DISJ2m)),

RRank
⊕-dt(f ◦ IP2m) = Θ(Rdt(f)RRank⊕-dt(IP2m)),

RRank
⊕-dt(f ◦ INDm+2m) = Θ(Rdt(f)RRank⊕-dt(INDm+2m)).

While Theorems 1.3 and 1.4 do imply the lifting theorems mentioned earlier1, they still work in the
standard basis. It is natural to consider analogues of the above measures which work with parity certificates
instead of ordinary certificates, and indeed we can prove analogues of the above results using such measures.
However, the description of the query model for affine subspaces is slightly involved even though the ideas
for proving the results stay the same, so we defer the precise definitions and statements to later sections.

Finally, we study the question of which gadgets allow lifting to parity decision trees. Alekseev, Filmus
and Smal [AFS24] completely classified gadgets based on when polynomial lifting (logDSize⊕-dt(f ◦ g) =
Ωg(D

dt(f)ǫ) for some ǫ > 0) is possible, but this does not answer the question of when truly linear lifting

(logDSize⊕-dt(f ◦g) = Ωg(D
dt(f))) is possible. We observe by considering a mild generalization of stifling, for

any gadget g whose minimum parity certificate complexity is at least 2, for all f , DRank⊕-dt(f ◦ g) ≥ D
dt(f).

This can be seen as the natural parity analogue of the statement that if g has minimum certificate complexity
at least 2, then for all f , DRankdt(f ◦ g) ≥ D

dt(f) [AFS24, DM23].
The similarities go further. The class of gadgets g which are not already captured by the above condition

(possibly after first moving to a subfunction) are the ones which satisfy DRank
⊕-dt(g) = 1. When g is a

total function which cannot be computed by a single parity query and satisfies DRank
⊕-dt(g) = 1, we show

that there is some gadget h such that understanding whether g allows lifting to PDT rank is equivalent to
understanding whether h allows lifting to DT rank. More precisely, we have the following.

1Strictly speaking, Theorem 1.4 does not seem to directly imply Theorem 1.1 because of the additive constant loss in LR
∗.

However, one can use other measures for which an inner composition theorem holds, like sabotage complexity, in place of LR∗

to recover Theorem 1.1 (see Remark 5.7).

4

Proposition 1.6. Let g : {0, 1}m → {0, 1} be a total function which is not a parity. Then one of the
following holds:

• DRank
⊕-dt(g) ≥ 2 and for all functions f , we have DRank

⊕-dt(f ◦ g) ≥ D
dt(f) and

RRank
⊕-dt(f ◦ g) ≥ Ωm(Rdt(f)).

• DRank
⊕-dt(g) = 1 and there exists some h : {0, 1}k → {0, 1} such that for all functions f , we have

DRank
⊕-dt(f ◦ g) = DRank

dt(f ◦ h) and RRank
⊕-dt(f ◦ g) = Θ(RRank⊕-dt(f ◦ h)).

Related work. Other than the work on lifting theorems and composition theorems, our work also takes
inspiration from work on regular resolution over parities [EGI24, BCD24]. More recently, subsystems of
Res(⊕) have also been studied in [CD24] and [AI24]. Chattopadhyay and Dvořák [CD24] extended the
simulation theorem of [CMSS23] to give a simulation for tree-like affine DAGs which also preserves the
width. They use this lifting theorem to give supercritical tradeoffs for tree-like Res(⊕) from the tradeoffs for
tree-like Resolution.

Alekseev and Itsykson [AI24] proved a Resolution width to Res(⊕) width lifting theorem and strong
lower bounds in regular Res(⊕) and bounded-depth Res(⊕) by lifting from strategies in certain games. Very
informally, their main technical lifting theorem uses 2-stifling gadgets to lift Delayer strategies in a variant
of the Prover-Delayer game to give a lower bound on the probability that a random walk on a Res(⊕) proof
ends at a ‘good’ clause where the definition of good depends on the kind of lower bound one wants to prove.
They then combine this with another layer of composition and a mixing operation to prove lower bounds
on the size of regular Res(⊕) proofs starting from only a lower bound on depth of Resolution proofs. This
simpler starting assumption comes at a price, however, since the mixing operation in the applications they
present blows up the number of clauses by a large polynomial.

One can modify their argument for regular Res(⊕) to use (the distributional version of) Theorem 1.1
instead of their main lifting theorem. However, this seems to be weaker than their result since we need to
start with a distributional lower bound for a complicated game, instead of just a deterministic depth lower
bound. Despite this, we feel Theorem 1.1 may still be useful for some other applications. For instance,
Theorem 1.1 allows a larger class of gadgets which may make it easier to reduce a formula obtained by
composition to a more natural formula of interest.

Organization. In Section 2, we state definitions and notation for the query complexity measures used.
In Section 3, we prove Theorems 1.1 and 1.2. In Section 4, we prove Theorem 1.3 and its generalization
using parity certificates, along with some observations comparing different stifling-related measures. In
Section 5, we prove Theorem 1.4 and its generalization. In Section 6, we prove Proposition 1.6 and give a
counterexample to a stronger version of a conjecture of Alekseev, Filmus and Smal [AFS24]. In Appendix
A, we discuss applications to subsystems of Res(⊕). In Appendix B, we adapt known composition theorems
to block decision trees, which generalize all query models considered here. These composition theorems are
used in Sections 4 and 5.

2 Preliminaries

For a positive integer n, we use [n] to denote the set {1, 2, . . . , n}. All logs are to the base 2. We use |x| to
denote the Hamming weight of a string x ∈ {0, 1}n. Let R ⊆ {0, 1}n×O be a relation. Let g : M → {0, 1, *}
be a partial function on some domainM (typicallyM = {0, 1}m). Then the composed relationR◦g ⊆Mn×O
is defined as follows. If for x ∈Mn, there is some i ∈ [n] such that g(xi) = ∗, then (x, o) ∈ R◦ g for all o ∈ O
(in this case, we think of x as lying outside the domain). Otherwise (x, o) ∈ R◦g if and only if (gn(x), o) ∈ R.
For a relation R and input x ∈ {0, 1}n, we sometimes use R(x) := {o ∈ O|(x, o) ∈ O} to denote the legal
outputs on x. A partial function g : {0, 1}m → {0, 1, *} is also sometimes interpreted as the relation where
x is related to g(x) if x is in the domain of g and otherwise x is related to all possible outputs {0, 1}.

5

We use standard Ω(·), O(·) notation in most places to only represent universal constants and when re-
quired, we will explicitly note which parameters need to be large for the inequalities to hold. Additionally, if
the constant depends on some parameter or function, this will be indicated by a subscript.

We now define the query complexity measures used in this work. Refer to [BdW02] for a survey about
some of these measures.

Decision trees. A deterministic decision tree T on {0, 1}n is a binary rooted tree with leaves being labeled
from some set O and internal nodes labeled by i ∈ [n] each with two outgoing edges labeled 0 and 1. On an
input x ∈ {0, 1}n, starting at the root, we repeatedly follow the edge according to the value of xi where i is
the label of the current node, until we reach a leaf. The label of the leaf is the output of T on x, which we
denote by T (x).

The cost of T on x, depth(T, x) (or sometimes cost(T, x)), is the number of queries made by T on x. The
depth of T is defined by depth(T) = maxx∈{0,1}n depth(T, x). The size of T , denoted size(T), is the number
of leaves of T . The rank of T is defined in the following inductive way. If T has depth 0, rank(T) = 0.
Otherwise suppose the two subtrees of T are T0 and T1. Then

rank(T) =

{

rank(T0) + 1, if rank(T0) = rank(T1)

max{rank(T0), rank(T1)}, otherwise.

It will often be convenient to work with a different way of describing rank. We will consider binary
trees where one of the outgoing edges from each internal node is marked. For such a marked tree, the cost
associated with this marking is the maximum number of marked edges on any root-to-leaf path. The rank
of a tree T is the minimum cost of any marking of T . This equivalence is proved in [CMP22] but the idea
also appears implicitly in prior work. For such a marked tree T , we will use cost(T, x) to denote the number
of marked edges on the root-to-leaf path taken by x.

For a relation R ⊆ {0, 1}n×O, a decision tree T is said to compute R if for all x ∈ {0, 1}n, (x, T (x)) ∈ R.
Define D

dt(R) to be the minimum depth of a deterministic decision tree computing R. Define DSize
dt(R)

and DRank
dt(R) to be the minimum size and rank respectively of a decision tree computing R.

A randomized decision tree T is a probability distribution over deterministic decision trees. We will use
the same notation as in the deterministic case to denote the worst-case depth, size or rank of a randomized
decision tree. We also use the corresponding expected measures described next. On input x ∈ {0, 1}m, we
define cost(T , x) = ET∼T [cost(T, x)]. Define cost(T) = maxx cost(T , x). Similarly rank(T) = ET∼T [rank(T)]
and size(T) = ET∼T [size(T)].

For a relation R, a randomized decision tree T is said to compute R to error ǫ if for all x ∈ {0, 1}n,
Prt∼T [(x, T (x)) ∈ R] ≥ 1− ǫ. We use R

dt

ǫ (R),RSizedtǫ (R),RRankdtǫ (R) to denote the worst case analogues of
D

dt(R),DSizedt(R),DRankdt(R) for randomized decision trees that compute R to error ǫ. The corresponding

expected measures are denoted by R
dt

ǫ (R),RSizedtǫ (R),RRankdtǫ (R). We omit the subscript when dealing with
error ǫ = 1/3.

The following relations between size and rank are well known.

Proposition 2.1 ([EH89]). For any decision tree T on {0, 1}n,

rank(T) ≤ log size(T) ≤ rank(T) log(n+ 1).

This directly implies for a randomized decision tree T , rank(T) ≤ log size(T) by applying the above relation
to each tree in the support of T . To get the corresponding relation for the expected complexity measures, we
use Jensen’s inequality to get ET∼T [rank(T)] ≤ ET∼T [log size(T)] ≤ logET∼T [size(T)], which in our notation
is rank(T) ≤ log size(T). The first inequality in Proposition 2.1 also holds for other kinds of decision trees
(like parity decision trees).

A parity decision tree (PDT) T is like a decision tree but the internal nodes can now query parities. We
will denote a parity in different ways, 〈α, x〉 for some α ∈ F

n
2 or as

∑

i∈S xi where α is the indicator vector
for S. The notation for parity decision trees is similar to that for (ordinary) decision trees. We will use

6

⊕ in the superscript to denote the parity analogue of an ordinary query complexity measure. For example,

RRank
⊕-dt(R) denotes the minimum expected rank of a parity decision tree computing R to error 1/3. When

dealing with a parity v on inputs with an underlying block structure ({0, 1}m)n, for i ∈ [n], we use v|i to
denote the projection of v onto the ith block.

We next describe 0-depth and 1-depth. The 0-depth of an ordinary decision tree T is the maximum
number of edges labeled 0 on any root-to-leaf path in T . We use D0-dt(R) to denote the minimum 0-depth of
a deterministic decision tree for R, and similar notation with 0 in the superscript for other 0-query complexity
measures. The measures related to 1-depth are defined similarly.

Certificate complexity. A partial assignment C is a string in {0, 1, *}n. Say that C is consistent with
x ∈ {0, 1}n if for all i ∈ [n], Ci = xi or Ci = ∗. Abusing notation, we will sometimes interpret a partial
assignment as the subcube it defines, {x ∈ {0, 1}n |x is consistent with C}. So we write x ∈ C to express
that x is consistent with C.

C is said to be a certificate for a relation R ⊆ {0, 1}n×O if there exists some o ∈ O, such that for all
x ∈ C, (x, o) ∈ R. For a partial function g : {0, 1}m → {0, 1, *} and b ∈ B, a partial assignment C is said
to be a b-certificate if for all x ∈ C, (x, b) ∈ g (interpreting g as a relation). In other words, we require
that for all x ∈ C, g(x) ∈ {b, ∗}. The size of a certificate C is the number of non-∗’s in it. The certificate
complexity of a relation R at x ∈ {0, 1}n, denoted C(R, x), is defined as the minimum size of a certificate
which is consistent with x. The certificate complexity of R, C(R) is the maximum certificate complexity of
any input. The minimum certificate complexity of R,Cmin(R), is the minimum size of a certificate for R.

When working with a partial function g, we will sometimes only be interested in certificates whose
corresponding subcubes are completely contained in the domain of g. We will call these domain certificates.
We will drop the word domain when clear from context or when working with total functions.

A parity certificate for R ⊆ {0, 1}n×O is given by a collection of F2 linear equations on {0, 1}n, S =
{〈α1, x〉 = b1, 〈α2, x〉 = b2, . . . , 〈αk, x〉 = bk} such that there exists o ∈ O for which for all x ∈ F

n
2 satisfying

the equations in S, we have (x, o) ∈ R. The size of a parity certificate is the number of equations in it. Note
that we may always assume that the linear forms involved in a parity certificate are linearly independent,
since we can remove redundant equations without changing the defined affine subspace. The minimum
parity certificate complexity of R, C⊕

min
(R), is the minimum size of a parity certificate for R. A domain

parity certificate of a partial function g is a parity certificate for g whose corresponding affine subspace is
completely contained in the domain of g.

We now mention two standard techniques for proving lower bounds on deterministic decision tree depth
and rank. To prove lower bounds on D

dt(R) for a relation R, it suffices to give an Adversary strategy in the
Querier-Adversary game for the relation R. In this game, Adversary has a hidden string x and Querier’s
goal is to find some o related to x according to R while making as few queries as possible. This technique is
complete in the sense that if Ddt(R) = d, then there is an Adversary strategy scoring d points. This game
also works for other deterministic query complexity measures by changing the kinds of queries Querier is
allowed to make.

A similar game can be used to characterize the rank of a relation. In the Prover-Delayer game [PI00] for
relation R, similar to the Querier-Adversary game, Prover makes queries to a hidden string x and Delayer
responds by revealing the corresponding bits of x, except for the following change. Delayer may instead
choose to respond with ∗, which is interpreted as Prover getting to decide how to fix the queried bit. Delayer
gets to know what bit Prover picks in this case. The game continues in this manner until Prover can correctly
output an o which is related to x. Delayer’s score is the number of ∗’s announced during the game. The
maximum score guaranteed by a Delayer strategy for R is equal to the rank of R (see [DM23] for a proof).

The Prover-Delayer game can be equivalently described in a way closer to the Querier-Adversary game
in the following way. Now instead of just picking some xi to query, Querier also picks a bit b ∈ {0, 1} and
Adversary gets a point only if the announced value is equal to b. The best score achievable by an Adversary
strategy in this game is equal to the best score of a Delayer strategy. This equivalent view can be seen as
the natural game corresponding to the description of rank using marked decision trees.

7

By changing the allowed queries, the Prover-Delayer game can capture rank in other query models. For
instance, rank in PDTs is captured by the parity Prover-Delayer game [IS20].

3 Basic lifting theorems for randomized decision trees and parity
decision trees

In this section, we describe simple simulation theorems which lift randomized decision tree depth to size in
randomized decision trees and parity decision trees.

3.1 Lifting to randomized decision tree size

Alekseev, Filmus and Smal [AFS24] showed that resistant gadgets suffice for lifting decision tree depth to
size by generalizing Urquhart’s argument for the XOR gadget [Urq11]. A function g is said to be k-resistant
if Cmin(f) ≥ k + 1.

Theorem 3.1 ([AFS24, DM23]). For any k-resistant function g and any relation R,

logDSizedt(R ◦ g) ≥ DRank
dt(R ◦ g) ≥ kDdt(R).

This also follows from results of Dahiya and Mahajan [DM23] who show that DRankdt(R◦g) ≥ (DRankdt(g)−
1)Ddt(R) and DRank

dt(g) ≥ Cmin(g).
We prove the following for randomized decision trees.

Theorem 3.2. Suppose g : {0, 1}m → {0, 1, *} is k-resistant. For any relation R ⊆ {0, 1}n×O,

logRSizedtǫ (R ◦ g) ≥ RRank
dt

ǫ (R ◦ g) ≥
k

2m
R
dt

ǫ (R).

By standard arguments, we get lifting in the worst case (Theorem 1.2) if we incur an additive loss in the
error. This additive loss can be removed by standard amplification when the outer relation is a function. It
will be convenient to work with an equivalent distributional description of resistant functions.

Definition 3.3 (balanced function). A function g : {0, 1}m → {0, 1, *} is p-balanced for p ∈ (0, 1/2] if for
every b ∈ {0, 1}, there is a distribution µb supported on g−1(b) such that for each i ∈ [m], for each c ∈ {0, 1},
Prx∼µb

[xi = c] ≥ p. A function is balanced if it is p-balanced for some p ∈ (0, 1/2].

Note that a balanced function is necessarily resistant. It is also easy to see that being resistant is a
sufficient condition for being balanced, as shown below.

Observation 3.4. If g : {0, 1}m → {0, 1} is k-resistant, then it is k/(2m)-balanced.

Proof. For b ∈ {0, 1}, the distribution µb witnessing that g is k/(2m)-balanced is defined in the following
way:

1. Select a subset S of [m] of size k uniformly at random.

2. For each i ∈ S, pick xi uniformly at random (independently of other bits).

3. Finally set all remaining bits so that the resulting string is a b-input for g.

This last step can be performed by the assumption that g is k-resistant. Each i ∈ [m] is included in S with
probability k/m and conditioned on being included in the first step, it is fixed to c ∈ {0, 1} with probability
1/2.

8

We now show that any balanced gadget can be used for lifting to randomized decision tree size. Using the
distributions coming from the above observation, the simulation below is equivalent to applying a suitable
random projection as in the second proof of the depth to size lifting theorem in [AFS24]. However, it is
analyzed differently for which presenting it as a simulation is more convenient.

Proposition 3.5. Let g : {0, 1}m → {0, 1, *} be p-balanced for some p ∈ (0, 1/2]. Then for all relations
R ⊆ {0, 1}n×O,

RRank
dt

ǫ (R ◦ g) ≥ pRdt

ǫ (R).

Proof. We will show how to simulate a randomized decision tree T computing R◦ g with error probability ǫ
by a randomized decision tree T ′ to compute R with the same error probability. The expected depth of T ′

on any input will be at most rank(T)/p.
Let µ0 and µ1 be the distributions on g−1(0) and g−1(1) respectively showing that g is p-balanced. For

each x ∈ {0, 1}n, let µx be the distribution on ({0, 1}m)n defined by independently sampling for each i ∈ [n],
the block zi from µxi

. The simulation essentially samples z ∼ µx, where x is the input on which we wish
to compute R, and executes T on z. Since x is unknown, the individual blocks of z are sampled as they
are queried by the decision tree T . Since T computes R ◦ g correctly for each z with probability 1 − ǫ, the
probability that T ′ outputs incorrectly on input x is at most Ez∼µx [Pr[(z, T (z)) /∈ R◦g]] ≤ ǫ where the inner
probability is over the randomness of T . So T ′ computes R to error ǫ.

We now describe T ′ in more detail. Since a randomized decision tree T is a distribution over deterministic
decision trees Tk, it is enough to show how to simulate a deterministic decision tree Tk while making at most
rank(Tk)/p queries in expectation. Suppose Tk queries zi,j at the root. Then we query xi and sample zi ∼ µxi

.
Now that zi is known, we move to the appropriate child. In the future, if Tk makes any queries to bits of zi,
we move according to the already sampled zi. We keep doing this repeatedly until we reach a leaf at which
point we output the label of the leaf reached. Note that this procedure also generates Tk(z) where z ∼ µx

since µx =
∏

i∈[n] µxi
.

To estimate the number of queries made to x, we will show next that starting at any node in Tk during
the simulation, the number of queries made until we cross a marked edge is at most 1/p. At any node, one of
the outgoing edges is marked. By the assumption on µ0, µ1, whenever a query is made, we follow the marked
edge with probability at least p. Thus, it takes at most 1/p queries in expectation to cross a marked edge.
(During the simulation, we may reach a node where we directly move to the unmarked child with probability
1 because the bit there had already been sampled earlier, but in this case no new query is made at that
node.)

To get the total number of queries made in expectation when simulating Tk, define for each i ∈ [rank(Tk)],
the random variable Xi counting the number of queries made between crossing the (i−1)th marked edge and
crossing the ith marked edge during the simulation. If we have reached a leaf of Tk without crossing i edges,
then Xi = 0. Let Si be the random variable encoding the blocks zj that have already been sampled when
the ith marked edge is crossed. (If we reach a leaf before crossing i edges, then Si encodes all the sampled
zj .) For convenience, we also let S0 be the random variable in which all zj are free (with probability 1). Note
that Si determines the node reached in Tk after crossing the ith marked edge Then for any i ∈ [rank(T)],
every possible s in the support of Si−1, E[Xi|Si−1 = s] is either 0 if vi is a leaf or at most 1/p as argued
above. This implies E[Xi] ≤ 1/p for all i ∈ [rank(Tk)].

Now the total number of queries made is
∑rank(Tk)

i=1 Xi since we must reach a leaf in Tk after crossing
rank(Tk) many marked edges. By linearity of expectation,

E[

rank(Tk)
∑

i=1

Xi] =

rank(Tk)
∑

i=1

E[Xi] ≤ rank(Tk)/p.

The total number of queries made when simulating T is at most ET∼T [rank(T)/p] = rank(T)/p.

Theorem 3.2 now follows from combining Observation 3.4 and Proposition 3.5.

9

3.2 Lifting to randomized parity decision tree size

We now prove that stifled gadgets allow lifting to randomized parity decision tree size.

Definition 3.6 (stifled functions). A function g : {0, 1}m → {0, 1, *} is k-stifled if for every subset S of [n]
of size k and each b ∈ {0, 1}, there is a domain b-certificate C ∈ {0, 1, *}n of g which leaves S free, i.e. Ci = ∗
for all i ∈ S.

Similar to the case of ordinary decision trees in the previous subsection, it will be convenient to work
with an equivalent property arising from certain distributions on the 0-inputs and 1-inputs of the gadget.
The following definition is a slight generalization of balanced functions considered in [BCD24].

Definition 3.7 (affine balanced functions). A function g : {0, 1}m → {0, 1, *} is p-affine balanced if for each
b ∈ {0, 1}, there is a distribution µb supported on g−1(b) such that for each i ∈ [m], there exist distributions

Ai
b on {0, 1}

m
and Bi

b on {0, 1}
m−1

such that µb can be written as the mixture µb = (1−2p)Ai
b+(2p)Bi

b×U1.
Here U1 is a uniform random bit independent of Bi and we think of U1 as the bit zi and Bi

b as assigning bits
in z[m]\{i}.

The above definition says we can sample z from µb in the following way:

• With probability 1− 2p, sample z ∼ Ai
b.

• With probability 2p, set zi uniformly at random, and independently z[m]\{i} ∼ Bi
b.

We call such functions affine balanced since the value of any linear form on a random input from the
above distribution is not too biased. Specifically, for any a ∈ F

m
2 , any c ∈ F2, Prz∼µb

[〈a, z〉 = c] ≥ p.

Observation 3.8. If g : {0, 1}m → {0, 1, *} is k-stifled, then it is k/2m-affine balanced.

Proof. The distribution µb witnessing that g is k/(2m)-affine balanced is defined in the following way:

1. Select a subset S of [m] of size k uniformly at random.

2. Fix the bits outside S to a domain b-certificate for g.

3. Finally for each i ∈ S, pick xi independently and uniformly at random.

The second step can be performed by the assumption that g is k-stifled. Each i ∈ [m] is included in S
with probability k/m and conditioned on being included in the first step, it is fixed to each c ∈ {0, 1} with
probability 1/2.

We now prove the lifting theorem for randomized PDTs. In the proof below, we do not give a truly online
simulation but after each query, we simplify the PDT being simulated. This is primarily done to make it easy
to verify correctness and analyze the number of queries made. We could alternatively have given a simulation
closer to the one in [CMSS23] by keeping a list of parity queries made during the simulation.

Proposition 3.9. Let g : {0, 1}m → {0, 1, *} be a p-affine balanced function. For any relation R ⊆
{0, 1}n×O,

RRank
⊕-dt

ǫ (R ◦ g) ≥ pRdt

ǫ (R).

Proof. Let T be a randomized parity decision tree computing R ◦ g. Let µ0 and µ1 be distributions on
g−1(0) and g−1(1) respectively showing that g is p-affine balanced. For each x ∈ {0, 1}n, define µx to be the
distribution on ({0, 1}m)n defined by independently sampling for each i ∈ [n], the block zi from µxi

. We will
define a randomized decision tree T ′ computing R by simulating T on the distribution µx. The correctness
of T ′ follows from the correctness of T .
T ′ is defined in the following way. First sample a deterministic parity decision tree T from T . We simulate

it by a randomized decision tree in the following way. Suppose the query
∑

(i′,j′)∈S zi′,j′ at the root of T

10

involves a variable zi,j . Query the variable xi and suppose it was b ∈ {0, 1}. We will now set the variables
in block zi according to distribution µb in the following way. Recall that µb can be written as a mixture
(1 − 2p)Aj

b + 2pBj
b × U1 where Aj

b is a distribution on strings in g−1(b) and Bj
b is a distribution on domain

b-certificates that leave the jth bit free. We set zi as follows:

1. With probability 1− 2p, set zi according to Aj
b

2. With the remaining probability 2p, set bits zi,j′(j
′ 6= j) according to the distribution Bj and indepen-

dently ‘set’
∑

(i′,j′)∈S zi′,j′ = c for a random bit c.

In the second case, even though the parity may depend on variables from blocks other than i, we may
informally think of it equivalently as fixing zi,j =

∑

(i′,j′)∈S\{(i,j)} zi′,j′ + c. Note that irrespective of the
distribution of blocks other than i, it is indeed true that the above parity is equally likely to be 0 or 1 if
we are the second case. This follows by noting that this holds once we condition on the remaining blocks
since zi,j is a uniform random bit which appears in the parity. Additionally, note that after conditioning
on zi,j =

∑

(i′,j′)∈S\{(i,j)} zi′,j′ + c and the other zi,j′ , the distribution on all blocks other than i is still
∏

j∈[n]\{i} µxj
since block i is independent of the rest.

Once we have set zi as above (where possibly zi,j is a linear form depending on other blocks) we substitute
them in the tree T and simplify appropriately. Specifically if any query node becomes a constant we remove
it and directly attach the appropriate child to its parent. In particular, if we are in the second case, then the
query at the root is set to a random c and we move to that child. Note that this simplification preserves the
action of the tree T on the distribution µx when conditioned on the revealed zi.

Since the distribution on the other blocks stays
∏

j∈[n]\{i} µxj
, we can now repeat this process with the

query at the new root (which may be the same as the previous one if we were in case one, with all variables
from block zi removed). This is done until T has become just a leaf and we give the same output in T ′.

We now analyze the expected number of queries made by T ′ in simulating T and show that it is at most
rank(T)/p on any input x. We will show by induction that a PDT of rank at most r which only depends on
variables from at most l blocks is simulated using at most Q(r, l) := r/p queries in expectation.

Since a PDT with rank 0 or which does not depend on any blocks is just a leaf, the statement holds
whenever r = 0 or l = 0. Suppose the statement holds for all pairs (r′, l′) with l′ < l. Let T be a PDT
of rank at most r and depending on at most l blocks. Suppose xi is the first variable queried by the above
simulation because of some zi,j appearing in the query at the root.

Consider what happens after we simplify the tree T based on the sampled zi. In all cases, the rank of
the resulting tree, say T1 is at most r since the rank cannot increase by removing parts of the tree, and the
number of blocks on which the tree depends has decreased by 1. Since case 2 while sampling zi happens with
probability 2p, with probability p we go down the marked edge and the rank of T1 is at most r − 1. Thus,
the expected number of queries made in simulating T is at most

1 + (1− p)Q(r, l − 1) + pQ(r − 1, l − 1)

≤ 1 + (1− p)
r

p
+ p

r − 1

p
=

r

p
(by induction)

Since the simulation of a randomized PDT T corresponds to a distribution over trees simulating the determin-
istic PDTs T , we get that on any input x, the expected number of queries made is at most ET∼T [rank(T)/p]

which is RRank⊕-dt

ǫ (R ◦ g)/p if we take an optimal RPDT T for R ◦ g.

Combining Observation 3.8 and Proposition 3.9, we get the following.

Theorem 3.10. Suppose g : {0, 1}m → {0, 1, *} is k-stifled. For any relation R ⊆ {0, 1}n×O,

logRSize⊕-dt

ǫ (R ◦ g) ≥ RRank
⊕-dt

ǫ (R ◦ g) ≥ k

2m
R
dt

ǫ (R).

11

Remark 3.11. The factor m loss in the lower bound in Theorem 3.10 is necessary at least when we allow
g to be a partial function as the following example shows. We will take the outer function to be parity ⊕n

and the inner function to be approximate majority ApproxMAJm,k which is defined as follows.

ApproxMAJ(y) =

0, if |y| ≤ k

1, if |y| ≥ m− k

∗, otherwise.

Note that k determines the ends (and not the gap which is more common).
When kn ≤ m/4 and ǫ = 1/3, the lower bound from Theorem 3.10 is at most 1/24. For this regime of

parameters, there is a PDT computing⊕n◦ApproxMAJm,k which makes 1 parity query. For each block i ∈ [n],
pick ji ∈ [m] uniformly. Except with probability at most p := k/m, we have xi,ji = ApproxMAJm,k(xi).

The PDT simply outputs the parity of (x1,j1 , x2,j2 , . . . , xn,jn). The error probability is at most 1−(1−2p)n

2 ≤
1−2−4pn

2 ≤ 1/3 where the inequalities use kn ≤ m/4.

4 Deterministic parity decision trees for composed problems

In this section, we study deterministic parity decision tree rank for composed problems in more detail.

4.1 Reduction to ∗-depth and the Blocker-Certifier game

The proof of the lifting theorem for deterministic PDT size [CMSS23] implicitly contains a claim which
reduces the task of proving lower bounds on PDT rank to the simpler task of proving lower bounds in a
certain query model where one can only query one coordinate at a time but the input is a partial assignment
instead of a binary string. This reduction works for all relations and, in particular, does not need the problem
to be of composed form. (Our presentation in this section is closer to the one in talks [She23a, She23b] on
[CMSS23] and the exposition in [AFS24] than the article itself.)

To describe the reduction, we need some definitions. Let R ⊆ {0, 1}n×O be a relation. Define the
relation R∗ ⊆ {0, 1, *}n×O as follows. For every y ∈ {0, 1, *}n,

R∗(y) = ∪x∈{0,1}n:x∈yR(x).

In words, o ∈ O is a correct output on y if there is some x consistent with y for which o is a correct output
according to relation R.

Let us mention two special kinds of relations R ⊆ {0, 1}n×O for which R∗ is particularly useful and
simple to describe.

• For a Boolean function f : {0, 1}n → {0, 1, *}, the input to the partial functions f∗ : {0, 1, *}n → {0, 1, *}
is promised to be a domain certificate of f and the goal is to output whether it is a 0-certificate or
a 1-certificate. Recall that for a partial function f , for ρ ∈ {0, 1, *}n to be a domain certificate, we
require that the subcube corresponding to ρ is completely contained in the domain of f . Such f∗ will
be useful when stating the lifting theorem for deterministic PDT size.

• For a false clause search problem Rφ ⊆ {0, 1}n×[m] coming from a CNF formula φ on n variables and

m clauses, the goal in solving Rφ
∗ is to output the index i ∈ [m] clause such that each literal appearing

in the clause is set to 0 or ∗ by the partial assignment.

Similar to 0-depth and 1-depth for ordinary decision trees, we may define ∗-depth for decision trees on
{0, 1, *}n. For a relation R ⊆ {0, 1, *}n×O, let D

∗-dt(R) be the smallest number of ∗’s any deterministic
decision tree (which is only allowed to query an index at a time) computing R must see in the worst case.

Similarly let R∗-dt
ǫ (R) and R

∗-dt
ǫ (R) be the analogous randomized query complexity measures when computing

R to error ǫ.

12

Since we mainly care about the ∗-depth of relations of the form R∗, we now introduce a game capturing
D

∗-dt(R∗), called the Blocker-Certifier game. This is essentially obtained by specializing the usual Querier-
Adversary game corresponding to decision tree depth to our setting. However, since the score only depends
on the number of ∗’s, we may allow the Adversary to fix positions to 0 or 1 before they are queried (similar
to some Delayer strategies in the Prover-Delayer game) and then Querier only picks a coordinate to be fixed
to ∗. In the game below, Blocker’s role is similar to that of Querier (or Prover) and Certifier corresponds to
an Adversary (or Delayer).

Let R denote ({0, 1}n×O) \ R, the complement of R. The Blocker-Certifier game for R is played on a
string s ∈ {0, 1, ∗, †}n which is initially †n. The game is played in rounds. In a round,

1. Certifier picks a subset S ⊆ {i ∈ [n] | si = †} and for each i ∈ S, sets si = bi for some bi ∈ {0, 1}.

2. Blocker picks an i ∈ [n] such that si = † and sets si = ∗.

The game ends when we have the following situation. There is some o ∈ O, such that for every way of fixing
the remaining †’s in s to bits {0, 1}, there is a way to fix ∗’s in s to bits such that the resulting string x
satisfies (x, o) ∈ R. In other words, the game has not ended if for every o ∈ O, Certifier can fix the remaining
†’s to bits to get an o-certificate for R. Certifier’s score is the number of ∗’s in s at the end of the game. The
Blocker-Certifier value BCval(R) is the maximum score guaranteed by a Certifier strategy for the Blocker-
Certifier game on R. The equivalence between the Blocker-Certifier game and the usual Querier-Adversary
game in this setting (or equivalently the definition of ∗-depth) is proved in Lemma B.3.

We can now relate PDT rank for a relation R and the ∗-depth of R∗. In the proof below, we use a
Certifier strategy in the Blocker-Certifier game to give a parity Delayer strategy, but the argument can also
be expressed as a simulation.

Lemma 4.1 (implicit in [CMSS23]). For any relation R,

DRank
⊕-dt(R) ≥ BCval(R) = D

∗-dt(R∗).

Proof. Suppose we have a Certifier strategy for the Blocker-Certifier game on R scoring r points. We will
use this to give a Delayer strategy for the parity Prover-Delayer game on R achieving the same score.

Delayer essentially imitates the Certifier strategy by localizing the parity queries of Prover to the input
x so that they may be treated as positions that have been touched by Blocker in the Blocker-Certifier game.
Delayer will have fixed some bits in x to 0 or 1 while some positions would have been marked (denoted ∗) based
on the queries made by Prover. Each such marked position corresponds to a linear equation xi =

∑

i′∈S xi′

coming from a parity query, where xi is marked and none of the positions in S were marked at the time of
the query.

We now explain this in detail. In the beginning, Delayer fixes bits in x exactly according to the move made
by Certifier at the start of the Blocker-Certifier game. On a parity query

∑

i′∈S xi′ , Delayer first simplifies
this parity query according to previously fixed bits to get a parity b+

∑

i′∈S′ xi′ where b ∈ F2 and all variables
in S′ are still free. If S′ = ∅, then Delayer simply responds with b. Otherwise arbitrarily mark some i ∈ S′

and respond with ∗. Suppose Prover responds with c ∈ F2. Then the equation xi = b+ c+
∑

i′∈S′:i′ 6=i xi′ is
added to the collection of equations (which in the beginning is empty).

Next in the Blocker-Certifier game, Blocker sets xi to ∗ to which Certifier responds by (possibly) fixing
some other bits of x. As before, Delayer fixes the variables in the same way. Later queries of the Prover
are handled in essentially the same way as before, but the simplification now also has to remove any marked
variables appearing the query by substituting suitable parities using the appropriate equations coming from
the previous queries.

We claim the Prover-Delayer game cannot end unless the corresponding Blocker-Certifier game is over.
Suppose less than r variables have been marked so far. For every o ∈ O, we will create an input x consistent
with all the parity queries made so far such that (x, o) /∈ R. Since fewer than r variables are set to ∗ in the
Blocker-Certifier game, there is a way to fix the remaining free variables such that for all x consistent with
it, (x, o) /∈ R. We now fix all the marked bits according to the equations. Since the marked variables are

13

the pivots of these equations, such an extension indeed exists. By construction, this satisfies all the parity
queries made so far and, thus, Delayer can always score r points.

In Appendix A, we discuss how this lemma can be used to reprove certain lower bounds for tree-like
Res(⊕).

To get a lifting theorem for PDT rank, the above lemma can now be combined with a lower bound
on the Blocker-Certifier value for composed problems. First, note that D

∗-dt((R ◦ g)∗) ≥ D
∗-dt(R ◦ g∗)

since in the problem R ◦ g∗, we are only required to be correct when each block lies in the domain of g∗,
i.e. is a domain certificate of g. To get the lifting theorem for any k-stifled gadget g, [CMSS23] use that
D

∗-dt(R◦g∗) ≥ kDdt(R). This inequality is in the same spirit as Ddt(R◦g) ≥ D
dt(R)C(g) or DRankdt(R◦g) ≥

D
dt(R)(Cmin(g) − 1). Similar to the case of decision tree depth or rank for composed problems, we can get

an essentially tight lower bound on the ∗-depth of composed problems.

Lemma 4.2. For any relation R ⊆ {0, 1}n×O and any function g : {0, 1, *}m → {0, 1, *},

D
∗-dt(R ◦ g) ≥ D

dt(R)(D∗-dt(g)− 1).

This is proved in the same way as the usual composition theorem for deterministic (ordinary) decision tree
depth [Sav02, Tal13, Mon14]. For completeness, we sketch a proof of a more general composition theorem,
Proposition B.2, in Appendix B which implies Lemma 4.2.

Combining Lemmas 4.1 and 4.2, we obtain the following.

Theorem 4.3. For any relation R ⊆ {0, 1}n×O and any function g : {0, 1}m → {0, 1, *},

DRank
⊕-dt(R ◦ g) ≥ D

dt(R)(BCval(g)− 1).

The unique disjointness function UDISJ2m is an example of a function for which the Blocker-Certifier
value is much larger than how stifled it is. Recall that UDISJ2m : ({0, 1}2)m → {0, 1, *} is the partial function
such that UDISJ(x1, x2, . . . , xm) = ∨i∈[m](xi1 ∧ xi2) where we are promised that there is at most one i ∈ [m]
such that xi1 ∧ xi2 = 1. This is a subfunction of both inner product and disjointness. It is easy to see that
UDISJ is not 2-stifled, since there is no 0-certificate which leaves both x11 and x12 free.

On the other hand, there is a simple Certifier strategy in the Blocker-Certifier game for UDISJ2m
2 which

achieves score m. Initially Certifier does not fix any bits. Suppose Blocker sets xi1 = ∗ (the case xi2 = ∗ is
analogous). Then Certifier responds by setting xi2 = 0 to ensure that xi1 ∧ xi2 = 0. Certifier follows this
strategy until the end of the game ensuring that for each i, either both xi1, xi2 are unset or at least one of
them is fixed to 0. We claim that the game cannot end before m rounds. Indeed if fewer than m rounds
have taken place, then there is some i ∈ [m] such that xi1 = xi2 = †. Moreover Certifier’s strategy ensures
that wherever this is not the case, we have xi1 = 0 or xi2 = 0. Therefore, for any b ∈ {0, 1}, by setting
xi1 = xi2 = b and all other unset bits to 0, we obtain a domain b-certificate for UDISJ which is consistent
with all the moves made so far.

4.2 Parity stifling and the parity Blocker-Certifier game

In this subsection, we start by giving a different way in which the lifting theorem of [CMSS23] can be slightly
improved. In the original description of the simulation [CMSS23], a parity query is only localized to a block
i ∈ [n] instead of a single variable. Such a block is said to be marked by this parity query. It is only when
a block has been marked k times that we consider which variables in this block can be chosen as pivots for
the queries marking the block, and set the remaining according to a certificate using the k-stifled property
of the gadget.

We observe that it is not necessary to only consider certificates which fix bits. Instead it suffices to have
any parity certificate which is completely independent of the linear forms coming from these marked queries

2This strategy is essentially from discussion at the end of the talk [She23b], but we have been unable to recognize who
suggested it.

14

obtained by projecting onto the block i. We say that two linear subspaces A and B of Fm
2 are independent if

A ∩ B = {0m}. For two collections C and D of linearly independent linear forms, we say that C and D are
independent if their respective spans are independent. In other words, there is no non-zero linear form which
can be expressed both as a linear combination of forms from C and a linear combination of forms from D.

Definition 4.4. A function g : {0, 1}m → {0, 1, *} is k-parity stifled if for every k-dimensional subspace
V ⊆ F

n
2 (viewed as part of the dual space, i.e. a collection of parities) and every b ∈ {0, 1}, there is a domain

b-parity certificate C such that C and V are independent. Here by C and V being independent, we actually
mean that the linear forms involved in the constraints of C are independent of V .

If g is 1-parity stifled, then we sometimes drop the 1 and simply say that g is parity stifled. Note that a
k-stifled function is also k-parity stifled by using the idea of localizing a basis for any k-dimensional subspace
V to a set of k indices in [n] and considering a certificate which only fixes the remaining n − k bits. On
the other hand, there exist 1-parity stifled functions which do not contain any subfunctions (when only
restricting bits) which are 1-stifled. An example of such a function is g(x1, x2, x3) = x1 ⊕ (x2 ∧ x3). It is
1-parity stifled by the following. Consider any parity

∑

i∈S xi (for some subset S ⊆ [3]). If S = {1}, then a
b-parity certificate is given by {x1 + x2 = b, x3 = 1}. Otherwise, S contains at least one i ∈ {2, 3}. Then a
b-certificate is given by {x1 = b, x5−i = 0} which sets x2 ∧ x3 = 0 so that g becomes determined by x1.

We now argue that being parity stifled is also sufficient for lifting to PDTs by making a small change
to the original proof of [CMSS23] for stifled gadgets. Since we will prove something stronger later, we only
sketch the changes to the proof of [CMSS23] required for the following proposition.

Proposition 4.5. Let g : {0, 1}m → {0, 1, *} be k-parity stifled. Then for all relations R,

DRank
⊕-dt(R ◦ g) ≥ kDdt(R).

Proof sketch. After a block zi has been marked k-times, a query is made to xi. Since g is k-parity stifled,
there exists a domain parity certificate which only fixes parities that do not lie in the span of the projections
of the parities which marked zi. The linear equations coming from this parity certificate are now added
to the list of equations and used for simplifying any future parity queries. Since the added parities only
depend on a particular block and are independent of the projections onto that block of the corresponding
marked parities, the final matrix of coefficients corresponding to the collection of equations can be written
as a block-triangular matrix where each block on the diagonal has linearly independent rows. This implies
that there exists a solution to this system of equations.

We now combine ideas of parity stifling and the Blocker-Certifier game to unify the lower bounds on PDT
rank of composed functions discussed so far. Let Vm denote the collection of all affine subspaces of Fm

2 . We
will define a model of decision trees for computing functions of affine subspaces of Fm

2 . Such a decision tree
makes parity queries to learn whether these parities are free (∗) or fixed to some b ∈ {0, 1}. To properly
define such a decision tree, we need the notion of a partial subspace.

Definition 4.6. A partial subspace V of Fm
2 is defined by a pair (C,B) where C is a collection of linear

equations (or constraints), B is a collection of linear forms and B and C are independent. We interpret V as
being the collection of affine subspaces U such that U is consistent with C (every input in U satisfies C) and
every v ∈ span(B) is free in U . We do not distinguish between different representations of the same partial
subspace obtained by performing some invertible transformation on C or B.

We will assume that C and B do not contain any redundant constraints or linear forms, so the involved
linear forms are always linearly independent.

Definition 4.7. A (⊕, ∗)-decision tree is a decision tree for affine subspaces on F
m
2 where each query is a

parity and the set of inputs reaching a node is defined by some partial subspace (C,B). We will require
that the parity query v at a node with the partial subspace (C,B) must be independent of the linear forms
appearing in C and B, i.e. it cannot be expressed as a linear combination of the linear forms (defining the

15

constraints) in C and the forms in B. Such a node has exactly 2 · 2|B| + 1 children. One child corresponds
to v being free, i.e. the partial subspace (C,B ∪ {v}). The edge between the nodes (C,B) and (C,B ∪ {v})
is labeled by ∗. For every S ⊆ B and b ∈ {0, 1}, we have the partial subspace (C ∪ {v +

∑

w∈S w = b}, B).
The corresponding edge is labeled by the new constraint v +

∑

w∈S w = b.

Observe that these 2|B|+1 + 1 partial subspaces indeed form a partition of (C,B). Also note that since
each query increases the dimension of C ∪B, m queries always suffice to fully determine any affine subspace.

To prove a relation similar to Lemma 4.1, we first generalize the notion of a (⊕, ∗)-decision tree to also
apply to inputs in Vn

m. Such a decision tree makes queries like an (⊕, ∗)-decision tree on Vm but each query
is contained in a single block. So each node now corresponds to an n-fold product of partial subspaces of Vm
and each query only affects one of these n partial subspaces.

The ∗-depth of an (⊕, ∗)-decision tree T is the maximum number of ∗’s on any root-to-leaf path in T .
The ∗-depth of a relation R ⊆ Vn

m ×O, denoted D
⊕,∗-dt(R) is the minimum ∗-depth of a (⊕, ∗)-decision tree

computing R.
We now define for any relation R with a natural block structure on the input bits, a related problem

whose ∗-depth will give a lower bound on the PDT rank of R. For simplicity, we will assume below that
these blocks have the same size m, but this is not required for the proof. Different partitions into blocks will
lead to different relations but we will suppress the dependence on the partition, since the statements hold for
all partitions (unless noted otherwise). Let R ⊆ ({0, 1}m)n ×O. Define R⊕,∗ ⊆ Vn

m ×O as follows. For any
input U = U1, U2, . . . , Un ∈ Vn

m, we have (U, o) ∈ R⊕,∗ iff there is some y ∈ ({0, 1}m)n such that (y, o) ∈ R
and y is consistent with U in the sense that for each i ∈ [n], yi is in Ui. Again D

⊕,∗-dt(R⊕,∗) may be captured
by a game, which is the parity analogue of the Blocker-Certifier game. In this game, Certifier picks some
parities which are to be fixed to 0 or 1 and Blocker picks a parity contained in a block (independent from
previously picked parities) to be left free in each round. The game ends when Blocker can announce an o ∈ O
such that every z ∈ Vn

m consistent with the current partial subspace contains some x ∈ ({0, 1}m)n such that
(x, o) ∈ R. Define BCval

⊕(R) to be the maximum score a parity Certifier strategy can guarantee in the
parity Blocker-Certifier game for relation R. We again have BCval

⊕(R) = D
⊕,∗-dt(R⊕,∗) (see Lemma B.3 for

a proof).

Proposition 4.8. Let R ⊆ ({0, 1}m)n ×O. Then

DRank
⊕-dt(R) ≥ BCval

⊕(R) = D
⊕,∗-dt(R⊕,∗).

This can be proved by lifting a Certifier strategy in the parity Blocker-Certifier game to a parity Delayer
strategy for R, but we phrase it as a simulation below.

Proof. Let T be a parity decision tree computing R. We will give a (⊕, ∗)-decision tree T ′ for R⊕,∗ of ∗-depth
at most rank(T).

To perform the simulation, for each i ∈ [n], we will keep a set Pi of linear equations which correspond
to the free parities Bi in the ith partial subspace of the current node in the (⊕, ∗)-decision tree. For each
v ∈ Bi, there will be some equation v = w + b in Pi where b ∈ F2 and w is a parity on (Fm

2)n which only
depends on variables from blocks j > i. Each such equation in Pi will be equivalent to a constraint coming
from parity queries made in T combined with the constraints in Ci (i ∈ [n]), where Ci is the collection of
fixed parities of the ith partial subspace.

In the beginning, each Pi is empty. Suppose we are at a node in T with the parity query v = 〈α, z〉+ b.
Clean it up in the following manner. For each i ∈ [n],

• If v|i lies in the span of the linear forms in Bi and Ci, let T1 ⊆ Bi and T2 ⊆ Ci such that v|i =
∑

w∈T1
w +

∑

w∈T2
w. Let T ′

1 ⊆ Pi be the collection of equations corresponding to the forms in T1.
Update v by substituting v|i using the equations in T ′

1 and T2. (Note that now v|i = 0 and for j < i,
v|j continue to be 0.)

• Otherwise, exit the loop.

16

At this point, if v ∈ F2, we simply move to the child corresponding to v without making any queries.
Otherwise, consider the smallest i such that some variable of zi still appears in v. We make a query v|i

in T ′. If the response is ∗ (so that in the updated partial subspace, we have v|i ∈ Bi), then in T , we move
to the marked child, corresponding to say c ∈ F2 and add the equation v|i = (v − v|i) + c to Pi.

Now suppose the response is v|i + v′ = b where v′ lies in the span of Bi. Then we apply the clean-up
procedure again (with the updated Ci) and continue as above. Note that this process must terminate since
with each clean-up phase at the same query, we are clearing away one block.

Once we are at a leaf of T , we give the same output in T ′. It is easy to see that the cost of T ′ is at most
rank(T) since each time we see a ∗ in T ′, we move to the marked child in T . Let us verify that T ′ correctly
solves R⊕,∗. Suppose the input to T ′ is U = U1U2 . . . Un. We claim that there is a string y ∈ ({0, 1}m)n

consistent with U which is also present in the leaf of T which is reached by performing the above simulation
with input U . To see this, we fix each block yi in reverse order (i = n, n−1, . . . , 1) according to the equations
in Pi and Ci. Some such yi exists since Bi and Ci are independent, the projections of Pi onto block i give
exactly Bi and each equation in Pi only depends on blocks j ≥ i. Since Ui belongs to the partial subspace
(Ci, Bi), we see that yi is indeed consistent with Ui. Also note that y reaches the leaf reached during the
simulation since we always ensure that every parity constraint on the root-to-leaf path is implied by the
equations in

⋃n
i=1 Pi ∪ Ci.

We may now combine this with a composition statement for (⊕, ∗)-decision trees which follows from the
general composition theorem for block decision trees, Proposition B.2, to get the following theorem.

Theorem 4.9. For any relation R ⊆ {0, 1}n×O, any function g : {0, 1}m → {0, 1, *},

DRank
⊕-dt(R ◦ g) ≥ D

dt(R)(BCval⊕(g)− 1).

By BCval
⊕(g), we refer to the game when considering the trivial partition where all variables are contained

in just one block.
It is easy to see that if g is k-parity stifled, then BCval

⊕(g) ≥ k+1 since any (⊕, ∗)-decision tree for g⊕,∗
must make see at least k+ 1 ∗’s on the input which corresponds to the whole space F

m
2 . We now verify that

the parity Blocker-Certifier game (on the partition into one block) is at least as hard as the Blocker-Certifier
game (which can be thought of as the parity Blocker-Certifier game on the partition into singletons). This
shows that Theorem 4.9 also implies Theorem 4.3.

Lemma 4.10. For any relation R ⊆ {0, 1}n×O,

BCval
⊕(R) ≥ BCval(R).

Proof. Suppose T is a (⊕, ∗)-decision tree solving R⊕,∗. We will give a decision tree T ′ for R∗ whose ∗-depth
is at most that of T .

The simulation is similar to the one in Lemma 4.1. We will use M ⊆ [n] to denote the set of all coordinates
in z which have been revealed to be ∗. During the simulation, we will follow the root-to-leaf path in T which
is taken by the subcube provided as input to T ′. So we will ensure that in the current partial subspace
(C,B), all constraints in C are implied by the fixed coordinates in the input z ∈ {0, 1, *}n and that M gives
a collection of pivots for the linear forms in B. This would imply correctness of our simulation. To see why
each linear form in the span of B is free, simply note that every v ∈ span(B) must contain some variable in
M since M is a collection of pivots. Since M gives pivots for B, we also have |M | = |B|.

Suppose the current query in T is v =
∑

i∈S zi. We first clean up v by adding a suitable linear combination
of linear forms from B so that v does not depend on any of the coordinates in M . This can be done because
of our invariant that M gives pivots for B. Now if v is already determined because of the previous queries, we
move to the appropriate child in T without making any queries in T ′. If there is some variable zi appearing
in v which hasn’t already been queried, query it. If it is ∗, we add i to M and move to the ∗-child in T and
repeat this process. Note that we still have that M is a collection of pivots for B. If zi is revealed to be some
b ∈ B, we continue querying any other unfixed variables in v. If all variables in v have been fixed in z, then
we move to the appropriate child in T .

17

Once we are at a leaf of T , we give the same output in T ′. The bound on the ∗-depth follows by our
invariant |M | = |B|.

4.3 Relations and separations between measures related to stifling

In this subsection, we try to understand whether the stifling-related measures considered in this section can
be separated or if they coincide in some cases.

We first give a contrived example showing that parity stifling does not imply stifling, even if we are allowed
to restrict some of the bits.

Proposition 4.11. For n = 2m + 1, consider the function g : {0, 1}n → {0, 1} defined by g(x) = MAJ(y)
where y ∈ {0, 1}n is defined by yi = ⊕i

j=1xi. The function g is m-parity stifled, but no subfunction of g is
stifled (which is equivalent to saying that BCval(g) ≤ 1).

Proof. The function g is m-parity stifled since it is essentially MAJ after a change of basis and MAJ is m-
stifled. In more detail, for a set of m linearly independent forms, we consider their coordinate representation
in the basis defined by y. Now find a set of pivots and fix the m + 1 non-pivot yi’s appropriately to get a
parity certificate for g(x) = MAJ(y).

We now argue that no restriction of g is stifled. Observe that any subfunction h of g is a threshold
function, on say l bits with threshold k, of the form Thl,k(b1 ⊕ z1, b2 ⊕ z2, . . . , bl ⊕ zl) where each bi ∈ {0, 1}
and zi = ⊕i

j=1xmj
for some free indices 1 ≤ m1 < m2 < . . .ml ≤ n.

Without loss of generality, suppose k ≤ l/2. We will show that there is no 0-certificate of h which leaves
xm1

free. Consider any fixing of the other free bits xmi
, i ≥ 2. For 1 ≤ i ≤ l, define ci = ⊕i

j=2xmi
. Now set

xm1
= 1 ⊕MAJ(b1 ⊕ c1, b2 ⊕ c2, . . . , bl ⊕ cl). For this x, we get b ⊕ z such that at least l/2 positions are 1.

So this input is a 1-input for h.

As discussed in the proof, even though the function is not stifled, it is stifled after performing a change of
basis. Formally, there is a stifled function g and an invertible n×n matrix A over F2 such that f(x) = g(Ax).
Let us call such a function ∃-stifled. In other words, f is ∃-stifled if there is a basis v1, v2, . . . , vn of Fn

2 such
that for every i ∈ [n], b ∈ {0, 1}, there is a domain parity certificate only setting vi(i 6= j) which fixes the
function value to b.

We now note that for total functions, the notions of parity stifling and ∃-stifling (qualitatively) coincide.
Before proving it, it will be useful to make some observations about parity stifled functions. For b ∈ {0, 1},
say that function f is parity stifled with respect to b if for every v ∈ F

n
2 , there is a domain parity certificate

〈v1, x〉 = b1, 〈v2, x〉 = b2, . . . , 〈vn−1, x〉 = bn−1 fixing the value of f to b, where v, v1, v2, . . . , vn−1 form a basis
of Fn

2 .

Observation 4.12. If f : {0, 1}n → {0, 1, *} is a partial function which is parity stifled with respect to b,
then there exist n+ 1 b-inputs x0, x1, . . . , xn such that x0 + x1, x0 + x2, . . . , x0 + xn is a basis for Fn

2 .

Proof. Since f is parity stifled with respect to b, there is no affine subspace of codimension 1 fixing the output
to 1− b. This implies that the affine span of the b-inputs has dimension n and so there must be n+1 inputs
satisfying the conditions in the statement of the observation.

Observation 4.13. Suppose x0, x1, . . . , xn are b-inputs of f and x0 + x1, x0 + x2, . . . , x0 + xn are linearly
independent. Then f is stifled w.r.t b in some basis.

Proof. Let vi = x0 + xi for all i ∈ [n]. Define wi(i ∈ [n]) such that they satisfy

〈wi, vj〉 =
{

1, if i = j

0, otherwise.

In other words, wi’s are the rows of the inverse of the matrix which has vi’s as the columns.
Then f is stifled w.r.t b in the basis w1, w2, . . . , wn. Indeed for any i ∈ [n], the affine subspace defined by

the equations 〈wj , x〉 = 〈wj , x0〉 (j 6= i) only contains the inputs x0 and xi which are b-inputs.

18

Call a matrix M ∈ {0, 1}n×m
good, if for every i ∈ [n], there exist columns j1 and j2 which differ only

on the ith coordinate. Now for a function f , let the matrix Mb be the matrix with all b-inputs as columns
(their order is irrelevant). Then f is stifled w.r.t b if Mb is good. More generally, f is stifled w.r.t b in some
basis if there is some invertible n × n matrix A such that AMb is good. Also, f is ∃-stifled if there is some
invertible A such that both AM0 and AM1 are good.

Proposition 4.14. Let f : {0, 1}n → {0, 1} be a total function. Then f is parity stifled if and only if f is
∃-stifled.
Proof. One direction is clear: if f is stifled in some basis, it is also parity stifled.

For the other direction, we consider two cases depending on |f−1(0)|.
• |f−1(0)| = |f−1(1)| = 2n−1

We will show that for any basis A, if f is not stifled w.r.t. 0 in the basis A, it is not stifled w.r.t. 1 in
the same basis A. Using this, we get that if AM1 is good (such an A exists since f is parity stifled),
then so is AM0.

Suppose f is not stifled w.r.t. 0 in the basis A. This means that for some i ∈ [n], all columns in AM0|−i

(the matrix AM0 with row i removed) are distinct. Since there are exactly 2n−1 columns, this means
that AM0 contains exactly one input from each pair {x, x⊕i}, where x⊕i denotes x with the ith bit
flipped. All other inputs must appear as columns of AM1. So AM1 also contains exactly one input
from each pair {x, x⊕i} and thus all columns in AM1|−i are distinct.

• |f−1(0)| 6= |f−1(1)|
Without loss of generality, assume |f−1(0)| < |f−1(1)|.
Observe that any matrix n × m matrix M with m > 2n−1 is good since | {0, 1}n−1 | = 2n−1. This
implies that since M1 has more than 2n−1 columns, for every n×n matrix A, the matrix AM1 is good.

Now, we only need to show that f is stifled w.r.t 0 in some basis. This follows from combining
Observations 4.12 and 4.13.

We will show next that the above proposition fails for partial functions. The following lemmas will be
useful.

Lemma 4.15. Let M be a good n × (n + 1) matrix whose first column is 0n. In the hypercube {0, 1}n,
consider the subgraph G induced by the vertices given by the columns of M . Then G is a tree containing an
edge in each direction i ∈ [n].

Proof. We first argue that G is connected which follows from the following claim.

Claim 4.16. For any good matrix N of dimensions n×m, we must have m ≥ n+1. Moreover if m = n+1,
then the subgraph contains a spanning tree in which edges in all n directions appear.

Proof of claim. Consider the subgraph H corresponding to N . By removing edges, we will remove all cycles
in H while ensuring that for each i ∈ [n], there is an edge in direction i. This can be done since any cycle
must contain, for each i ∈ [n], an even number of edges in direction i.

So now we have a forest F which is a subgraph of H and which contains an edge in direction i for each
i ∈ [n]. Thus the number of vertices in F (and so in H) is at least n + 1. Moreover if m = n + 1, F is a
tree.

By the above claim, G is connected. Consider a spanning tree T of G containing edges in all directions.
We need to show that G = T . Towards a contradiction, suppose there is an edge e in G but not in T . The
graph T ∪ e contains a cycle. This cycle must contain, for each i ∈ [n], an even number of edges in direction
i but this is not possible since T only contains one edge in each direction.

Lemma 4.17. The number of n× (n+ 1) good matrices whose first column is 0n is exactly (n+ 1)n−1n!.

19

Proof. By the previous lemma, every n × (n + 1) good matrix corresponds to a tree with n + 1 vertices in
the hypercube (along with an ordering on the vertices). Such a tree can be described by a labelled tree T on
vertices {0, 1, 2, . . . , n}, along with a distinct edge label i ∈ [n] for each edge of T and a vertex v ∈ {0, 1}n.
The corresponding tree in {0, 1}n is given by mapping vertex 0 of T to v and then using the edge labels of
T to find the other vertices.

Thus the number of trees which send vertex 0 to 0n is exactly the number of labelled trees on {0, 1, . . . , n}
multiplied by the number of ways of giving edge labels. By Cayley’s formula, this is (n+ 1)n−1n!.

We are now in a position to prove the existence of partial functions which are parity stifled but not
∃-stifled.
Proposition 4.18. For n ≥ 8, there exists a partial function f : {0, 1}n → {0, 1, *} which is parity stifled
but not ∃-stifled.
Proof. The function f is defined randomly in the following way. Let w1, w2, . . . , wn be linearly independent
vectors in F

n
2 picked uniformly at random.

f(x) =

0, if |x| ≤ 1

1, if x ∈ {1n, 1n + w1, 1
n + w2, . . . , 1

n + wn}
∗, otherwise

For the above function to be well-defined, we need that none of 1n+w1, 1
n+w2, . . . , 1

n+wn have weight

at most 1. The probability that there is some i such that |1n+wi| ≤ 1 is at most n(n+1)
2n−1 by the union bound.

Any function f defined as above is parity stifled by Observation 4.13. We will show that f is ∃-stifled
with low probability. For any fixed basis A such that f is stifled w.r.t. 0 in the basis A, we will estimate the
probability that f is also stifled w.r.t. 1 in the basis A, and then use the union bound over all good bases
for 0.

Let A be an invertible matrix such that f is stifled w.r.t 0 in the basis corresponding to A. This
means that AM0 is good where M0 consists of 0n followed by the identity matrix. But this is the same
as [0n|A] being good. To estimate the probability that AM1 is good, we first consider the shifted matrix
M ′

1 = [0|w1|w2| . . . |wn] obtained by adding 1n to each column of M1. Note that AM1 is good iff AM ′
1 is

good. By Lemma 4.17, AM ′
1 is good if it is one of (n + 1)n−1n! matrices. So the probability that AM1 is

good is at most (n+1)n−1n!
(2n−1)(2n−2)...(2n−2n−1) .

We will now use the union bound over all possible A. Note that since changing the order of the basis
vectors does not affect whether AM1 is good, it suffices to consider such A up to permuting the vectors. By
Lemma 4.17, there are (n+ 1)n−1 such good bases (disregarding order).

Pr[f is stifled in some basis]

= Pr[∃ good basis A such that f is stifled w.r.t.1 in basis A]

≤
∑

good A

Pr[f is stifled w.r.t.1 in basis A]

≤ (n+ 1)n−1 · (n+ 1)n−1n!

(2n − 1)(2n − 2) . . . (2n − 2n−1)
.

Combining this with the probability that the function f is not well-defined, we get that except with

probability (n+1)n
2n−1 + (n+1)2(n−1)n!

(2n−1)(2n−2)...(2n−2n−1) , f satisfies the properties we want. This quantity is strictly less

than 1 for n ≥ 8.

5 Randomized parity decision trees for composed problems

In this section, we prove randomized analogues of the statements in Section 4.

20

5.1 Reduction to randomized ∗-depth
The following lemma is the randomized analogue of Lemma 4.1.

Lemma 5.1. For any relation R ⊆ {0, 1}n×O,

RRank
⊕-dt

ǫ (R) ≥ 1

2
R
∗-dt
ǫ (R∗).

Proof. Let T be a randomized PDT computing R to error ǫ. We will give a randomized decision tree T ′

for computing R∗ with expected ∗-depth at most 2 rank(T). To do this, on any input z ∈ {0, 1, *}n, we will
simulate T on the distribution µz which is the uniform distribution over all strings in the subcube defined
by z.

By the definition of R∗, T ′ makes an error only when T makes an error on the input in z being simulated.
Therefore,

Pr[T ′ makes an error on input z] = Pr
T∼T ,x∼µz

[T makes an error on x] = Ex∼µz
[Pr
T∼T

[T makes an error on x]] ≤ ǫ.

We now describe how T ′ simulates T . First sample a deterministic PDT T ∼ T . The tree will keep track
of a list L of linear equations xi = 〈αi, x〉, one for each xi that has already been queried. The linear form on
the right hand side of any such linear equation does not depend on any of the variables that have previously
been queried. From this description, it is clear that these equations are linearly independent. Moreover, for
each such i, if zi ∈ {0, 1}, the corresponding equation in L is exactly xi = zi. We will additionally maintain
the invariant that the system L is equivalent to the system defined by all the parities from the root to the
current node when combined with equations xi = zi for all zi which have already been queried and are not ∗.

Starting at the root of T , the tree performs the following steps until a leaf is reached in T .

1. Let
∑

i∈S′ xi (for some S′ ⊆ [n]) be the query at the current node v of T . Iteratively perform substitu-
tions using the equations in L until the query has been simplified to c+

∑

i∈S xi which does not contain
any variables that have already been queried and c ∈ F2. Set U = ∅ which will later store which i ∈ S
have already been queried.

2. Repeat the following

• Pick any i ∈ S \ U and query zi. If zi = ∗, go to step 3(a). Otherwise add i to U , and xi = zi to
L.

until all xi, i ∈ S have been queried. When this happens, go to step 3(b).

3. (a) (zi = ∗) Pick b ∈ {0, 1} uniformly at random. Move to the child of v corresponding to c+
∑

j∈S xj =
b. Add to L the equation xi = c+ b+

∑

j∈T zj +
∑

j∈S\T∪{i} xj .

(b) (none of zi, i ∈ S is ∗) Since all zi’s in the parity have been determined, move to the appropriate
child c+

∑

j∈S xi = c+
∑

j∈S zi.

The output is the same as the label of the leaf reached in T .
Lemma 5.2 (proved later) shows that each leaf of T is reached with the correct probability according to

the distribution µz. As argued earlier, this implies the correctness of the tree.
We now analyze the expected ∗-depth of the above randomized decision tree simulating T . Note that in

each round, the tree sees one ∗ if we reach step 3(a) and otherwise no ∗’s. We will keep track of the number
of marked edges seen as a measure of progress. In step 3(b), the number of ∗’s seen has not changed this
round. On the other hand, in step 3(a), since we move to a random child, with probability at least 1/2 we
move down the marked edge in T . Thus, in expectation, after 2 ∗’s, the we move down a marked edge in
T . By linearity of expectation, after at most 2 rank(T) queries in expectation, a leaf is reached since the
maximum number of marked edges on any root to leaf path is rank(T).

21

Lemma 5.2. Let T be a deterministic PDT on {0, 1}n. Let z ∈ {0, 1, *}n. Let Wz(v) be the event that node
v of T is visited by the randomized procedure described in the proof of Lemma 5.1 when run on input z. Let
Vz(v) be the event that for a random x ∈ µz, running T on x reaches v. Then for every z ∈ {0, 1, *}n, v ∈ T ,
we have Pr[Wz(v)] = Pr[Vz(v)].

Proof. Fix z ∈ {0, 1, *}n. The proof is by induction on the depth of v. The statement holds when v is the
root since in this case, Pr[Wz(v)] = Pr[Vz(v)] = 1.

Now suppose v has depth at least 1. Let w be its parent. If Pr[Wz(w)] = 0, then by induction Pr[Vz(w)] =
0 and, therefore, Pr[Vz(v)] = Pr[Wz(v)]. Hence, we may assume that Pr[Wz(w)] = Pr[Vz(w)] > 0. We can
write Pr[Vz(v)] = Pr[Vz(w)] Pr[Vz(v) | Vz(w)] and Pr[Wz(v)] = Pr[Wz(w)] Pr[Wz(v) | Wz(w)]. So it suffices
to prove that Pr[Vz(v) | Vz(w)] = Pr[Wz(v) |Wz(w)].

Let Lw be the list L of equations at the begin of the round where the current node is w during the
execution of the decision tree simulation with z as the input string. Let Qw be the set of all zi that were
queried before reaching w and which are not ∗. Let 〈α, x〉 = ∑

j∈S′ xj be the parity query at w and let b
be such that v is the child corresponding to

∑

j∈S xj = b. So Pr[Vz(v) | Vz(w)] is the probability that for
a random x ∼ µz,

∑

j∈S′ xj = b conditioned on all the equations from the root to w being satisfied. Note
that since xi = zi whenever zi ∈ {0, 1}, we may additionally condition on any subset of these fixed xi’s being
the corresponding zi’s. By the invariants, the system of equations Lw is equivalent to the system containing
equations describing the parities from the root to w as well as the queries made to zi so far. Therefore, by
abuse of notation, we may express Pr[Vz(v) | Vz(w)] as Pr[

∑

j∈S′ xj = b | Lw] where we view Lw as the event
that all equations in Lw hold. Moreover under Lw, the parity

∑

j∈S′ xj is equal to c+
∑

j∈S xj for some S
as in step 1 of the round. So we have Pr[Vz(v) | Vz(w)] = Prx∼µz

[c+
∑

j∈S xj = b | Lw].
Now we only need to verify that when simulating the query at node w we go to v with the correct

probability Prx∼µz
[c+

∑

j∈S xj = b | Lw]. There are two cases to consider:

1. For all i ∈ S, we have zi ∈ {0, 1}. In this case, all zi are queried and step 3(b) is executed in the round
starting at w. So we move to the correct child with probability 1 = Prx∼µz

[c+
∑

j∈S xj = c+
∑

j∈S zj |
Lw].

2. Step 3(a) is executed in the round starting at w. In this case, there is some i ∈ S such that zi = ∗.
Since c+

∑

j∈S xj is independent of Lw by construction, Prx∼µz
[c+

∑

j∈S xj = b | Lw] = 1/2.

This finishes the proof.

We now combine Lemma 5.1 with a composition theorem for randomized ∗-depth. Recall that a tight
composition theorem does not hold in general for ordinary decision trees when composing a relation with a
partial function and so we cannot have such a statement for ∗-depth (by lifting with, say, (MAJ3)∗). However,
we can still adapt known randomized composition theorems to the setting of ∗-depth. In Appendix B, we
adapt the composition theorem of [BBGM22] to prove a composition theorem for a general class of decision
trees, Theorem B.4. This composition theorem provides the best dependence on the inner function (see
Theorem B.8) up to some loss by a constant multiplicative factor and an additive constant.

Lemma 5.3 (following [BBGM22]). For any relation R ⊆ {0, 1}n×O, any function g : {0, 1, *}m → {0, 1, *},

R
∗-dt
ǫ (R ◦ g) ≥ Ω(Rdt

ǫ (R)(LR∗(g)− 4)).

Here LR
∗(g) is the linearized ∗-cost of g defined as follows.

LR
∗(g) = min

T
max

x

cost*(T , x)
bias(T , x)

where we write cost*(T , x) to denote the expected ∗-cost when running T on x and bias(T , x) = max{0, 2Pr[T (x) =
g(x)]−1}. Here T varies over randomized decision trees on {0, 1, *}m and x varies over inputs in the domain
of g.

Combining Lemmas 5.1 and 5.3, we get the following.

22

Theorem 5.4. For any relation R ⊆ {0, 1}n×O, any function g : {0, 1}n → {0, 1, *},

RRank
⊕-dt

ǫ (R ◦ g) ≥ Ω(Rdt

ǫ (R)(LR∗(g∗)−O(1))).

We get lifting in the worst case if we allow the error in the lower bound to be larger by an additive

constant, RRank⊕-dt

ǫ (R ◦ g) ≥ Ω(Rdt

ǫ+1/10(R)(LR∗(g∗)−O(1))). This follows from 10Rdt

ǫ (R) ≥ R
dt

ǫ+1/10(R) by
the usual idea of terminating the algorithm if it runs for too long (which by Markov’s inequality happens
with low probability). If the outer relation is a function f , then by repeating a constant number of times,
the error probability can be brought back down, so R

dt(f) = Θ(Rdt

ǫ (f)) when ǫ is a constant.
Using Theorem 5.4 or some other related composition theorem, we can show that, for instance, when the

inner function is UDISJ or IND, then the naive upper bound on PDT rank of R ◦ g is optimal.

Corollary 5.5. For any relation R ⊆ {0, 1}n×O, for any m ≥ 2,

RRank
⊕-dt(R ◦UDISJ2m) = Θ(Rdt(R)m),

RRank
⊕-dt(R ◦ INDm+2m) = Θ(Rdt(R)m).

Proving the lower bound for UDISJ will suffice to prove it also for IND since IND2m+22m contains UDISJ2m
as a subfunction. By Theorem 5.4, it is sufficient to show that LR

∗(UDISJ∗) ≥ Ω(m). Instead of showing
this directly, we will instead show that the simpler quantity sabotage ∗-complexity of (UDISJ2m)∗ is Ω(m).
Sabotage complexity was first defined by Ben-David and Kothari [BK18] for ordinary decision trees.

Sabotage complexity R
∗
sab(g) is the expected zero-error query complexity of the following task. Let

g : {0, 1, *}m → {0, 1, *} be a partial function. Given a string z ∈ {0, 1, ∗, †}m, where we interpret † as repre-
senting that the coordinate is free, find a † in z under the promise that z is consistent with some 0-input x and
some 1-input y. It can alternatively be characterized as R∗

sab(g) = maxµ minT E(x,y)∈µ[sep
∗
T (x, y)] [GLSS23,

Theorem B.1], where µ varies over distributions on pairs in g−1(0) × g−1(1), T varies over deterministic
decision trees solving g and sep∗T (x, y) denotes the number of marked edges (∗-queries) on the path from the
root to the node v where x and y separate. More precisely, v is the unique node in T such that both x and
y reach v but they disagree on the query made at node v.

The composition theorem using sabotage complexity [BK18] is fairly straightforward to adapt to ∗-decision
trees, R∗-dt

ǫ (R ◦ g) ≥ R
dt

ǫ (R)R∗
sab(g), so we omit it.

Lemma 5.6. R
∗
sab((UDISJ2m)∗) ≥ m−1

4 .

Proof. For brevity, let hm to denote (UDISJ2m)∗. The hard distribution µm is generated as follows. First
sample z ∈ ({0, 1, ∗, †}2)m in the following way. Pick i ∈ [m] uniformly. Set zi to (1, †) or (†, 1) uniformly.
For each j 6= i, independently set zi to (0, ∗) or (∗, 0) uniformly. Finally, obtain x by replacing the † in z by
0 and y by replacing the † by 1. Observe that after conditioning on i 6= m, the distribution on z1 . . . zm−1 is
exactly what we would get if we performed the above procedure for m− 1. This will let us use induction.

Let l(m) = minT Eµm
[sep∗T (x, y)]. We will show that l(m) ≥ m−1

4 by induction. The base case m = 1 is
clear. For the induction step, we start by making some simplifying assumptions about T since we only care
about the cost of T on the distribution µ. Since our distribution is invariant under permuting blocks and
permuting bits within a block, we may assume that the query at the root in T is wm1 (we use w to denote
the queries in T to avoid confusion with x, y, z). In the subtree where wm1 = 0, for any query to wm2, we
remove it and directly attach its parent to the subtree where wm2 = ∗. We do the same with the roles of
0 and ∗ interchanged. Note that this does not affect correctness of T on µ since in any pair (x, y) in the
support of µ, if xm1 = ym1 = 0, then also xm2 = ym2 = ∗, and similarly the other way around. Also the cost
of T does not increase by performing this simplification.

By the observation above, since the distribution µ conditioned on i 6= m is identical to µm−1, the subtrees
where xm1 = 0 and xm1 = ∗ give trees solving the separation task on the distribution µm−1. Therefore, we
have the recurrence,

23

l(m) ≥ m− 1

m

(

1

2
+ l(m− 1)

)

,

which by induction gives l(m) ≥ m−1
4 .

Proof of Corollary 5.5. The upper bounds follow from simulating a randomized decision tree T for R by
using a deterministic tree for the inner function at each node of T .

For the lower bounds, as stated earlier, a lower bound for R ◦ UDISJ2m also implies the same lower
bound for R ◦ IND2m+22m . So we only need to show the lower bound for R ◦ UDISJ2m. By combining

R
∗-dt
ǫ (R ◦ g) ≥ R

dt

ǫ (R)R∗
sab(g) and Lemma 5.6, we get R∗-dt

ǫ (R ◦ (UDISJ2m)∗) = Ω(Rdt

ǫ (R)m). Now using this

with Lemma 5.1, we get RRank⊕-dt

ǫ (R ◦ g) = Ω(Rdt

ǫ m).

Note that UDISJ2m is a subfunction of both IP2m and DISJ2m. So the lower bound for UDISJ also
implies the lower bounds for inner product and disjointness. This proves Corollary 1.5.

Remark 5.7. The simulation for proving the simulation using stifling gadgets, Theorem 3.10, can be under-
stood as using the fact that for a k-stifled function g, R∗

sab(g∗) ≥ k/m. Indeed, if we couple the distributions
of certificates underlying µ0 and µ1 used in that proof according to the set of coordinates that are fixed, any
decision tree correctly computing g∗ must see a ∗ on the first query with probability k/m.

5.2 Reduction to randomized (⊕, ∗)-decision trees

We now prove the randomized analogue of Proposition 4.8. We only need to combine the ideas used in that
proof with the ideas used in the reduction to randomized ∗-depth in the previous subsection.

Proposition 5.8. For any relation R ⊆ ({0, 1}m)n ×O,

RRank
⊕-dt

ǫ (R) ≥ 1

2
R
⊕,∗-dt
ǫ (R⊕,∗).

Proof. Let T be a randomized parity decision tree computing R to error ǫ. We will give a randomized
(⊕, ∗)-decision tree T ′ for R⊕,∗ of expected ∗-depth at most 2 rank(T).

As before, we will run T on the distribution obtained by picking a uniformly random vector in each of
the n subspaces of the input to T ′. This will imply correctness since for each string z ∈ ({0, 1}m)n, T is
correct with probability at least 1− ǫ.

Let T be a deterministic PDT in the support of T . Our invariants will be the same as in the deterministic
(⊕, ∗)-decision tree simulation. Let us recall them. For each i ∈ [n], there is a set Pi of linear equations
which correspond to the free parities Bi in the ith partial subspace of the current node in the (⊕, ∗)-decision
tree. For each v ∈ Bi, there will be some equation v = w + b in Pi where b ∈ F2 and w is a parity on
(Fm

2)n which only depends on variables from blocks j > i. Each such equation in Pi will be equivalent to a
constraint coming from parity queries made in T combined with the constraints in Ci (i ∈ [n]), where Ci is
the collection of fixed parities of the ith partial subspace.

In the beginning, each Pi is empty. Suppose we are at a node in T with the parity query v = 〈α, z〉+ b.
We clean up the parity query v as in the deterministic case. Now, if v is fixed to some b ∈ F2, we simply
move to the child corresponding to b without making any queries.

Otherwise, consider the smallest i such that some variable of zi still appears in v. We make a query v|i
in T ′. If the response is ∗ (so that in the updated partial subspace, we have v|i ∈ Bi), then in T , we move
to a child uniformly at random. Suppose this child corresponds to setting the parity to c ∈ F2. Then we add
the equation v|i = (v − v|i) + c to Pi.

Now suppose the response is v|i + v′ = b where v′ lies in the span of Bi. Then we apply the clean-up
procedure again (with the updated Ci) and continue as above.

Once we are at a leaf of T , we give the same output in T ′. The expected cost of T ′ is at most 2 rank(T)
since each time we see a ∗ in T ′, we move to the marked child in T with probability 1/2. By an argument

24

similar to the one for Lemma 5.2, it can be shown that the above simulation reaches each node of T with
the same probability as an input obtained by picking a vector in each of the n affine subspaces uniformly at
random. This implies correctness as explained in the beginning of the proof.

By combining this with the randomized composition theorem for block decision trees, Theorem B.4, we
get the following.

Theorem 5.9. For all relations R ⊆ {0, 1}n×O, all functions g : {0, 1}m → {0, 1, *},

RRank
⊕-dt

ǫ (R ◦ g) ≥ Ω(Rdt

ǫ (R)(LR⊕,∗(g⊕,∗)−O(1))).

6 Classification of gadgets which allow lifting

In this section, we try to better understand which gadgets allow lifting to parity decision trees. This question
was studied by Alekseev, Filmus and Smal [AFS24] in the deterministic case who gave a classification of
gadgets which allow lifting from DT depth to depth and size in PDTs when composing with a total function.
They show that gadgets which affine project to AND and OR allow lifting. However, this lifting theorem for
PDTs actually lifts from certificate complexity and to get lifting from DT depth, they use the known relation
D

dt(f) ≤ C(f)2 because of which the exponent in the lower bound is only 1/2 instead of 1. It is unclear if
these gadgets allow linear lifting, logDSize⊕-dt(f ◦ g) ≥ Ωg(D

dt(f)) for all f , rather than just polynomial.
This situation also occurs for ordinary decision trees, though there the class of gadgets for which we do

not know if linear lifting is possible is relatively small. By the results of [AFS24, DM23], we know that for any
g satisfying DRank

dt(g) ≥ 2, we have DRank
dt(R ◦ g) ≥ D

dt(R). The condition DRank
dt(g) ≥ 2 is equivalent

to there being some subfunction h of g with Cmin(h) ≥ 2. In this sense, minimum certificate complexity gives
an explanation for linear lifting for all gadgets where this is known for ordinary decision trees.

For parity decision trees, it is less immediate if the analogous quantity minimum parity certificate com-
plexity being at least 2 is sufficient for lifting. (Since our focus in this section is only on understanding when
linear lifting is possible, we drop the word linear from here on.) However, we note that the observations in
Section 4.3, actually show that being parity stifled is equivalent to not having a parity certificate of codimen-
sion 1. Indeed, Observation 4.12 uses the fact that a parity stifled function cannot have a parity certificate
of size 1 and this is the only implication of being parity stifled which is used there. By combining with
Observation 4.13, we get the following claim.

Claim 6.1. Let g : {0, 1}m → {0, 1, *} be a partial function. The function g is parity stifled if and only if
C
⊕
min

(g) ≥ 2.

In particular, C⊕
min

(g) ≥ 2 is indeed a sufficient condition for lifting to PDT rank, since parity stifling is
sufficient for lifting (Proposition 4.5). Moreover, using the above claim and Proposition 4.14, for any total
function f : {0, 1}m → {0, 1}, we get that f satisfies C⊕

min
(f) ≥ 2 if and only if f is stifled in some basis.

Similar to the case of ordinary decision trees, we can further relax the condition C
⊕
min

(g) ≥ 2 to

DRank
⊕-dt(g) ≥ 2. If DRank⊕-dt(g) ≥ 2, then there is some affine subspace of Fm

2 on which the restricted
function h satisfies C⊕

min
(h) ≥ 2 and g must therefore allow lifting to PDT rank.

So the only remaining case is when DRank
⊕-dt(g) = 1, i.e. when g can be computed by a decision list of

parities. We show that for any total g satisfying DRank
⊕-dt(g) = 1 which is not a parity, there is some function

g′ : {0, 1}m
′

→ {0, 1, *} such that for every relation R, DRank⊕-dt(R ◦ g) = DRank
dt(R ◦ g′). Therefore, to

understand which gadgets allow lifting to deterministic PDT rank, it is enough to understand which gadgets
allow lifting to DT rank. We start by showing this statement for the OddMaxBit gadget and then show how
every gadget is essentially equivalent to OddMaxBit for some input length.

To simplify notation and avoid confusion about the definition, we work with a variant of OddMaxBit
obtained by reversing the order of the bits. The function EvenMinBit EMBm : {0, 1}m → {0, 1, *} is defined
in the following way. For x ∈ {0, 1}m, EMBm(x) = 1 if the index of the first 1 in x is even. More formally, if

25

i ∈ [n+ 1] is the unique number such that xi = 1 and xj = 0 for all 1 ≤ j < i, then EMB(x) is 1 if and only
if i is even. By convention, we always have xn+1 = 1, so that EMBm(0m) is 1 if m+ 1 is even.

Lemma 6.2. For all relations R ⊆ {0, 1}n×O and m ≥ 2, the following hold:

• DRank
⊕-dt(R ◦ EMBm) = DRank

dt(R ◦ EMBm).

• There exists a marked decision tree T computing R ◦ g of rank DRank
⊕-dt(R ◦ g) with the following

properties. Within each block i ∈ [n], for all j ∈ [m], if xi,j is queried, then xi,j′ , j
′ < j must have been

queried earlier. The marked edge at a query xi,j is xi,j = 1 if j < m and is xi,j = 0 if j = m.

Proof. For the first point, we will prove the following chain of inequalities

DRank
dt(R ◦ EMBm) ≥ DRank

⊕-dt(R ◦ EMBm) ≥ D
∗-dt(R ◦ (EMBm)∗) ≥ DRank

dt(R ◦ EMBm).

The inequality DRank
dt(R◦EMBm) ≥ DRank

⊕-dt(R◦EMBm) is clear since a decision tree is also a parity
decision tree. The inequality DRank

⊕-dt(R ◦ EMBm) ≥ D
∗-dt(R ◦ (EMBm)∗) follows from Lemma 4.1.

So we only need to show D
∗-dt(R ◦ (EMBm)∗) ≥ DRank

dt(R ◦ EMBm). For brevity, let hm = (EMBm)∗.
Suppose we have a decision tree T solving R◦ hm. We will give a decision tree for R◦EMBm whose rank is
at most the ∗-depth of T . We will use zij to denote the inputs of R ◦ hm (queried in T) and xij to denote
the inputs of R ◦ EMBm.

With each possible input x ∈ {0, 1}m to a block (except 0m−11), we will associate two certificates z1 and
z2 of EMBm such that hm(z1) = hm(z2) = EMBm(x). The certificates associated with x will depend only on
the index of the first 1 in x. For now, consider only the case where the first index j is at most m− 1. (The
case of the input being 0m will be handled in the same way as any input where j = m− 1.) Additionally, we
will ensure that the certificates z1, z2 have 0s in all positions before j and for each k ≥ j at least one of z1, z2
will have ∗ at index j. The latter condition will be used to go down a ∗-edge while remaining consistent with
some certificate which gives the same input for that block.

We now define the associated certificates. For j ∈ [m−1], let Cj,1 = 0j−11∗m−j and Cj,2 = 0j−1∗01m−1−j .
These are the certificates associated with any x whose first 1 is at index j ∈ [m−1]. The string 0m (in which
the first 1 occurs at index m+ 1) is associated with the certificates Cm−1,1 and Cm−1,2. The indices m− 1
and m+1 are always treated in the same way. The properties described above can be easily verified for these
certificates. The string 0m−11 is associated with the certificate 0m−11.

During the simulation, we will maintain the following invariants. For any block i ∈ [n], we will always
make queries in order, i.e. if xi,j is queried at some point, then xi,j′ for j′ < j must have been queried at
some point earlier. After seeing a 1 in the block xi, we fix zi completely to one of the associated certificates.
For j ≤ m− 2, if the first j bits of xi are 0, then the first j bits of zi are also 0 (note that this property holds
for the associated certificates).

We now describe the simulation. Suppose we are at a node querying zi,j in the tree T . If the block zi
has already been fixed, we move to the appropriate child in T without making any queries in T ′. Otherwise
suppose xi,j′ is the last queried bit in xi (if xi has not been queried at all, then j′ = 0). Starting from xi,j′+1,
query bits of xi one by one until we see a 1 or we have queried xi,j−1 which is 0. Here we mark the outgoing
edge where a 1 is seen for all xi,j1 (j′ + 1 ≤ j1 < j). Note that we only see at most one marked edge when
making these queries.

Suppose we see a 1 when making these queries. Let j′′ be the index of the 1. Then we set zi = Cj′′,1

which ensures that zij = ∗. So we may move to the ∗-child in T and continue the simulation from that node.
Note that we crossed one marked edge in T ′ when simulating the query in T in this case.

Now suppose xi,j1 = 0 for all j1 < j. There are there are two cases depending on whether j ≤ m− 2.

• If j ≤ m − 2, query xi,j in T ′ where the edge xi,j = 1 is marked. If xi,j = 1, set zi = Cj,2 so that
zi,j = ∗. We now move to the ∗-child in T . If xi,j = 0, then set zi,j = 0 and move accordingly in T .
Note that in each case, the number of marked edges crossed in T ′ is equal to the number of ∗’s seen in
T .

26

• If j ≥ m− 1, we query the remaining bits of xi until we either see a 1 or both xi,m−1 = xi,m = 0. The
marked edges here are xi,m−1 = 1 (this query has not been made previously only if j = m − 1) and
xi,m = 0. Since the first m − 2 bits of xi were fixed to 0 earlier, focus on the last two bits of xi. If
they are 00 or 1·, set zi to one of Cm−1,1 or Cm−1,2 to ensure that zi,j = ∗. Note that in this case, we
have crossed exactly one marked edge in T ′ and moved to the ∗-child in T . If the last bits are 01, set
zi = 0m−11. In this case, we do not incur any cost in either tree.

Once we reach a leaf of T , we give the same output in T ′.
We now need to verify that T ′ is correct. Let x be an input to R◦EMBm. Consider the partially fixed z

created when performing the simulation on input x. Any input which is consistent with this partially fixed
z reaches the same leaf in T . So we need to just find some z′ ∈ ({0, 1, *}m)n which is consistent with the
partially fixed z and EMBn

m(x) = hn
m(z). Any block zi of z which is completely fixed satisfies hm(zi) = g(xi)

by the properties of the defined certificates. For any block zi which is not fixed, note that the only fixed
positions are among the first m− 2 which are set to 0. So the remaining can be set according to one of the
certificates associated with xi to get z′i. This gives z

′
i as desired.

For the cost of T ′, we have argued above that we only go to the ∗-child in T iff we cross a marked edge
in T ′ in each of the possible cases that could arise during the simulation. This shows that the rank of T ′ is
at most the ∗-depth of T .

For the second point, note that the tree T ′ obtained in the simulation above has the desired properties.

We will say that two functions g and h are equivalent if for all relations R, we have DRank
⊕-dt(R ◦ g) =

DRank
⊕-dt(R ◦ h).

Lemma 6.3. For every total function g : {0, 1}m → {0, 1} which is not a parity and satisfies DRank⊕-dt(g) =
1, there exists some function h ∈ {EMBk,¬EMBk | k ≥ 2} such that for all relations R,

DRank
⊕-dt(R ◦ g) = DRank

⊕-dt(R ◦ h).

Proof. Let T be a PDT of rank 1 computing g. We will assume that the last two leaves (the two leaves with
the same parent) have different labels. Since T is a decision list of parities, we may list the parities in T in
the order in which they are queried, v1, v2, . . . , vd. We may assume that all these linear forms are linearly
independent. If this is not the case, we can simplify the tree by removing a linear form vi which can be
written as a linear combination of the linear forms queried earlier vj , j < i, since the value of the query vi
is already determined by the previous queries. Extend this set of linear forms to get a basis v1, v2, . . . , vm
of Fm

2 . Let A be the invertible matrix in F
m×m
2 whose rows are v1, v2, . . . , vm. Define g′ : {0, 1}m → {0, 1}

by g′(x) = g(A−1x). Since PDT rank does not change under a change of basis, we have for all relations
DRank

⊕-dt(R ◦ g) = DRank
⊕-dt(R ◦ g′). Also note that d ≥ 2 since g is not a parity.

Now g′ can be computed by the decision list T ′ obtained by replacing each linear form vi in T by the bit
query xi for i ∈ [d], while leaving the leaves unchanged. Since g′ is total, we may identify T ′ and g′ from
now on.

By negating the inputs to g′, we can assume that in T ′, at each query node xi (i < d), the leaf corresponds
to xi = 1. Additionally, by negating xd if needed, we can assume that the label of the leaf at xd−1 = 1 is
not equal to the leaf label at xd = 1. Note that negating the input bits does not change DRank

⊕-dt(R ◦ g′).
Finally, we will assume that the first leaf label (at x1 = 1) is 0. Under these assumptions, we will show that
g′ is equivalent to EMBk for some k.

To make g′ satisfy this assumption about the first leaf label, we may need to negate g. In general, it can
be the case that DRank

⊕-dt(R ◦ g) 6= DRank
⊕-dt(R ◦ ¬g). However, in the case that the first leaf label is 1

instead of 0, we get that ¬g is equivalent to EMBk for some k which implies that g is equivalent to ¬EMBk.
We will now show that g′ is equivalent to EMBk for some k under the above assumptions on T ′. Under

these assumptions, we can succinctly represent T ′ by an ordered partition of d, [s1, s2, . . . , sk−1, sk], where
∑

i∈[k] si = d and sk = 1. We interpret such an ordered partition in the following way. The number s1
indicates that the first s1 leaves are all labeled 0, the next s2 leaves are all labeled 1, and so on. Since sk = 1
and d ≥ 2, we have k ≥ 2. Let t0 = 0 and for i ∈ [k], ti =

∑i
j=1 sj . Observe that such a function can be

27

expressed as g′(x) = EMBk(z1, z2, . . . , zk) where for each i ∈ [k], zi =
∨ti

j=ti−1+1 xj . Note that zk is simply

xd. This implies that g′ contains EMBk as a subfunction by restricting some of the inputs to 0 so that each
zi becomes just one input. So for every relation R, DRank⊕-dt(R◦g′) ≥ DRank

⊕-dt(R◦EMBk). For the other
direction, we will give a simulation argument.

By Lemma 6.2, there is a marked decision tree T computing R ◦ g whose rank is DRank
⊕-dt(R ◦ g) and

for which the marked edge at a query yi,j is yi,j = 1 when j < m. For each query yi,j , we will compute zi,j
(as defined above), the corresponding OR of inputs in the block xi. The OR function has a simple marked
decision tree where at each node, we mark the edge where the query evaluates to 1. Note that for this tree,
we see exactly one marked edge if the output is 1 and no marked edges if the output is 0. So we can simply
use this marked tree (for suitable input lengths) to compute zi,j for j < m since the query yi,j has cost 1
when yi,j = 1 and cost 0 otherwise. At a node yi,m in T , we only need to query xi,d and mark the edge
xi,m = 0 since yi,m = 0 is marked in T . Clearly this simulation correctly computes R ◦ g′ since we have
essentially substituted each yi,j in T by the appropriate OR of variables in xi. The cost is also preserved by
construction.

We can now combine the above lemmas and the discussion following Claim 6.1 to get the following.

Proposition 6.4. Let g : {0, 1}m → {0, 1} be a total function which is not a parity. Then one of the
following holds:

• DRank
⊕-dt(g) ≥ 2 and for any relation R, DRank⊕-dt(R ◦ g) ≥ D

dt(R).

• DRank
⊕-dt(g) = 1 and there exists h ∈ {EMBk,¬EMBk | k ≥ 2} such that for all relations R,

DRank
⊕-dt(R ◦ g) = DRank

dt(R ◦ h).

Remark 6.5. The simulation in Lemma 6.2 can be modified to show that D∗-dt(R ◦ (EMBm)∗) ≥ D
1-dt(R ◦

EMBm−1). To see this, it will be useful to note that

EMBm(x1, x2, . . . , xm) = EMBm−1(x1, x2, . . . , xm−2, xm−1 ∨ ¬xm).

The only change in the simulation occurs when j ≥ m− 1 in which case the corresponding query in xi is just
xi,m−1. If xi,m−1 = 1, we set zi,j = ∗ and ensure that zi,m−1 ∨ ¬zi,m = 1 by setting the other input in zi
appropriately.

It is also easy to show that D
1-dt(R ◦ EMBm−1) ≥ DRank

dt(R ◦ EMBm) by using the above relation
between EMBm and EMBm−1. Given a decision tree for R ◦ EMBm−1 where the 1-edges are marked, we
only need to replace a query to xi,m−1 by a rank 1 decision tree computing xm−1 ∨ ¬xm. Together these

show that we also have DRank
dt(R ◦ EMBm) = D

1-dt(R ◦ EMBm−1).
A corollary of this observation is that DT rank for the composition with OR2 corresponds exactly to

1-depth : for any relation R, we have DRank
dt(R ◦OR2) = D

1-dt(R). The fact that OR2 lifts 1-depth to DT
rank was implicitly used in [BIW04] to give a separation between tree-like Resolution size and Resolution
size. Since Lemma 6.2 implies DRank⊕-dt(R ◦OR2) = DRank

dt(R ◦OR2), we also get that OR2 lifts 1-depth
to PDT rank. We discuss implications of this for tree-like Res(⊕) in Appendix A.3.

So far our discussion in this section has only been about deterministic PDTs, but the proofs above can
be modified using ideas from earlier sections to give analogous statements for randomized PDTs. Since the
ideas stay mostly they some, we only sketch the proofs of these, focusing on the differences.

Proposition 6.6. Suppose g : {0, 1}m → {0, 1, *} satisfies C
⊕
min

(g) ≥ 2. Then for all relations R ⊆
{0, 1}n×O,

RRank
⊕-dt

ǫ (R ◦ g) ≥ 1

2m
R
dt

ǫ (R).

Proof sketch. By Observations 4.12 and 4.13, there exist bases B0 and B1 such that g is parity stifled w.r.t
b in basis Bb for b ∈ {0, 1}. As in Observation 3.8, for b ∈ {0, 1}, we create a distribution µb by picking a

28

random i ∈ [m], setting the parity vi ∈ Bb uniformly and fixing the other parities to give a domain parity
b-certificate of g.

The simulation is essentially the same as the one in the proof of Proposition 3.9. The main change is that
when simulating a parity w involving some zi,j , after querying xi which is revealed to be, say, b, we express
w|i in the basis Bb to get, say, w|i =

∑

j∈S vj for some S ⊆ [m] where vj ’s are parities from B . Now sample
block zi according to µb in the following way. Pick a random i ∈ [m] and fix all parities in Bb other than vi
according to the domain certificate. If i ∈ S, then we move to a random child. Otherwise we also sample a
random bit c ∈ F2 which we assign to vi.

After doing this, we simplify the PDT as before. Since we have now fixed parities instead of individual
bits, at each parity query in the PDT, we first express the projection onto block i as a linear combination
of the parities in Bb and then substitute accordingly. (Alternatively we could have kept track of the fixed
parities and substituted them when required as in [CMSS23] and other proofs in earlier sections.)

The analysis of the expected cost stays the same since we still move to each child with probability at least
1/(2m) when making a query. The proof of correctness also stays the same.

Lemma 6.7. For m ≥ 2, the following hold:

• For all relations R ⊆ {0, 1}n×O, real β > 0, RRank⊕-dt

ǫ (R ◦ EMBm) = Ω(βRRankdtǫ+β(R ◦ EMBm)).

• For all functions, f : {0, 1}n → O, there exists a marked randomized decision tree T computing f ◦ g
to constant error of rank O(RRank⊕-dt(f ◦ g)) with the following properties. Within each block i ∈ [n],
for all j ∈ [m], if xi,j is queried, then xi,j′ , j

′ < j must have been queried earlier. The marked edge at
a query xi,j is xi,j = 1 if j < m and is xi,j = 0 if j = m.

Proof sketch. As usual, we will prove relations between the expected cost measures and the worst-case ana-
logues will follow from standard arguments.

RRank
dt

ǫ (R ◦ EMBm) ≥ RRank
⊕-dt

ǫ (R ◦ EMBm) ≥ 1

2
R
∗-dt
ǫ (R ◦ (EMBm)∗),

R
∗-dt
ǫ (R ◦ (EMBm)∗) ≥

1

2
R
1-dt
ǫ (R ◦ EMBm−1) ≥

1

2
RRank

dt

ǫ

′
(R ◦ EMBm)

In the last inequality, RRankdtǫ
′
(R) is minT maxx cost(T , x) = minT maxx ET∼T [cost(T, x)], where T varies

over marked randomized decision trees computing R to error ǫ, x varies over the domain of R and cost(T, x)
is the number of marked edges seen when running T on input x. This could be smaller than the usual

definition of expected rank. By truncating the tree after RRank
dt

ǫ

′
(R)/β marked edges have been seen, we

get a decision tree whose worst case rank is bigger by a factor 1/β and the error incurred increases by an
additive β by using Markov’s inequality.

If we are composing with a function f and ǫ, β are constants, then by repeating a constant number of
times we can bring the error back down to any constant. This will be used to go from a decision tree with
constant error probability whose expected cost on each input is at most O(RRank⊕-dt(f ◦g)) to a randomized
decision tree whose worst case rank is O(RRank⊕-dt(f ◦ g)).

We now prove the inequalities stated above. The first inequality is obvious and the second follows from
Lemma 5.1.

The first inequality in the next line follows by a simulation similar to the one in Lemma 6.2 modified in
Remark 6.5. The main change now is that with each input to EMBm−1, we associate some distribution on
the certificates defined in the proof of Lemma 6.2. In all cases, except when the input is 0m−1, the associated
distribution will be uniform over the two associated certificates. The simulation stays the same except that
when we see a 1 in xi, instead of picking zi to be an associated certificate greedily, we sample it according
to the distribution. Since the distribution is uniform, with probability 1/2, we still go down the ∗-edge in
the tree T . So we cross a marked edge in T after seeing two 1’s in x in expectation. This gives the desired
bound. This will also imply the second statement in the lemma by combining with the last inequality.

For the last inequality, we do the same thing as described in Remark 6.5, replacing a query xi,m−1 by a
marked decision tree computing xi,m−1 ∨ ¬xi,m.

29

Lemma 6.8. For every total function g : {0, 1}m → {0, 1} which is not a parity and satisfies DRank⊕-dt(g) =
1, there exists some function h ∈ {EMBk,¬EMBk | k ≥ 2} such that for all functions f : {0, 1}n → O,

RRank
⊕-dt(f ◦ g) = Θ(RRank⊕-dt(f ◦ h)).

Proof sketch. Note that our assumption is still that g can be computed by a deterministic parity decision
list. This lemma essentially follows from the same arguments used in proving Lemma 6.3. For an h ∈
{EMBk,¬EMBk | k ≥ 2} which is equivalent to g with respect to deterministic PDTs as in Lemma 6.3, it is
clear that RRank⊕-dt(f ◦ g) = Ω(RRank⊕-dt(f ◦ h)) since h is a subfunction of g after a change of basis.

For the other direction, we use the second point of Lemma 6.7 and apply the modifications described
in the proof of Lemma 6.3 to each deterministic tree in the support of a randomized decision tree. This
works since all our modifications were based on operations like applying an invertible linear transformation,
negating inputs and computing OR with a rank 1 deterministic decision tree which do not incur any error.

Combining Proposition 6.6 and Lemmas 6.7 and 6.8 gives the following.

Proposition 6.9. Let g : {0, 1}m → {0, 1} be a total function which is not a parity. Then one of the
following holds:

• DRank
⊕-dt(g) ≥ 2 and for any relation R, RRank⊕-dt(R ◦ g) ≥ Ωm(Rdt

4/9(R)).

• DRank
⊕-dt(g) = 1 and there exists h ∈ {EMBk,¬EMBk | k ≥ 2} such that

– for all relations R, RRank⊕-dt(R ◦ g) = Ω(RRankdt4/9(R ◦ h)).
– for all functions f , RRank⊕-dt(f ◦ g) = Θ(RRankdt(f ◦ h)).

Remark 6.10. In the proof of Lemma 6.7, we saw that RRank⊕-dt(R◦EMB2) ≥ Ω(R1-dt(R◦EMB1)). Since

EMB2(x, y) = ¬x ∧ y and EMB1(x) = ¬x, this is equivalent to RRank
⊕-dt(R ◦ AND2) ≥ Ω(R0-dt(R)). Using

this we can give another proof of RRank⊕-dt(R ◦UDISJ2m) ≥ Ω(Rdt(R)m) for all relations R and m ≥ 2.
We view UDISJ2m as the composed partial function PrORm◦AND2 where the promise OR function PrOR

computes the OR function under the promise that the input has Hamming weight at most 1. It is known that

R
0-dt(R ◦ PrORm) ≥ Ω(Rdt(R)m) [ABK16, Theorem 5]. Theorem 5 in [ABK16] deals with ordinary depth

instead of 0-depth and is stated only for the total function OR, but the proof there can be readily modified
to work for 0-depth and only relies on inputs to OR of Hamming weight at most 1. We now combine this
with the observation above that AND2 lifts 0-depth to PDT rank to get

RRank
⊕-dt(R ◦UDISJ2m) = RRank

⊕-dt(R ◦ PrORm ◦AND2) ≥ Ω(R0-dt(R ◦ PrORm)) ≥ Ω(Rdt(R)m).

We now consider the question of when EMBk allows lifting to PDTs since this is essentially the only
remaining case. For k ≤ 2, Alekseev, Filmus and Smal [AFS24] observed that EMBk does not lift DT depth
to DT size since for these k, EMBk is just a conjunction of literals and thus the ANDn function shows that
EMBk does not allow depth to size lifting. As discussed in the beginning of this section, for k ≥ 3, they
showed that EMBk lifts certificate complexity to DT size. They conjectured that EMBk should also lift DT
depth to DT size (perhaps with an exponent less than 1) even for relations when k ≥ 3.

While we are not able to prove or disprove this, we observe that the following stronger version of the
conjecture is false. Specifically, we may ask if these gadgets allow lifting from DT depth to DT rank. This
may seem plausible considering that all proofs discussed above also work for rank. Since logDSizedt(R) ≥
DRank

dt(R), this would have implied the above conjecture.
We observe that for all k ≥ 3, EMBk fails to lift DT depth to DT rank for some partial function. By

Lemma 6.3, this shows that all gadgets g with DRank
dt(g) = 1 fail to lift DT depth to DT rank. The partial

30

function f : {0, 1}n → {0, 1, *} we consider is a promise version of the EvenMinBit function where there is a
unique occurrence of the pattern 01.

f(x) =

1, if x = 0i−11n−i+1 and i ≡ 0 (mod 2)

0, if x = 0i−11n−i+1 and i ≡ 1 (mod 2)

∗ otherwise.

Proposition 6.11. Let k ≥ 3. For the function f : {0, 1}n → {0, 1, *} defined above, we have D
dt(f) =

⌈log(n+ 1)⌉ (and even R
dt(f) = Ω(log n)) but DRankdt(f ◦ EMBk) ≤ k − 1.

This does not give a counterexample to the original conjecture since DSize
dt(f ◦ EMBk) ≥ DSize

dt(f) ≥
n+1. But a stronger separation between D

dt(f) and DRank
dt(f◦EMBk), say of the form DRank

dt(f◦EMBk) ≤
Ok(1) and D

dt(f) ≥ ω(log n), would be enough to refute it, since logDSizedt(f ◦ EMBk) ≤ DRank
dt(f ◦

EMBk)Ok(log n). We also do not know of a total function f which provides a separation between D
dt(f) and

DRank
dt(f ◦ EMBk), but such a separation can at best be quadratic because of the relation between C(f)

and D
dt(f).

Proof of Proposition 6.11. It is well known that Ddt(f) = ⌈log(n+ 1)⌉ and R
dt(f) = Ω(log n). We provide a

sketch of the lower bounds for completeness. Suppose T is a deterministic decision tree computing f . For any
i ∈ [n], xi must be queried somewhere in the tree, since otherwise T cannot distinguish between 0i1n−i and
0i−11n−i+1. This implies that DSizedt(f) ≥ n + 1, using which we get Ddt(f) ≥ logDSizedt(f) ≥ log(n + 1).
A similar argument works in the randomized case. In any randomized tree T for f , each xi must be queried
with probability at least 1/3 if T computes f to error 1/3. So the expected size of T is at least Ω(n) which
implies Rdt(f) = Ω(log n) as desired.

We now prove the upper bound DRank
dt(f ◦ EMBk) ≤ k − 1. By Remark 6.5, it suffices to show

that D
1-dt(f ◦ EMBl) ≤ l for l ≥ 2. Our upper bound will hold for the more general induction principle

R ⊆ {0, 1}n×[n + 1] defined as follows. For any x ∈ {0, 1}n, i ∈ [n + 1], we have (x, i) ∈ R if and only if
xi−1 = 0 and xi = 1, where by convention, we always have x0 = 0 and xn+1 = 1. Since f is the same as R
restricted to its critical inputs, it suffices to show that D1-dt(R ◦ EMBl) ≤ l.

Our goal is to find an i ∈ [n + 1] such that EMBl(xi−1) = 0 and EMBl(xi) = 1. We will use s and t
to indicate the ends of the current search space. We will always have g(xs−1) = 0 and g(xt) = 1. In the
beginning, s = 1 and t = n+1. Starting from j = t− 1 down to j = s, query xj,1 one by one until we see a 1
or all xj,1 were revealed to be 0. In the former case, suppose xj,1 = 1 and xj′,1 = 0 for all j < j′ ≤ n. Then
g(xj) = 0 and so we may set s = j + 1. Otherwise if no 1 was seen, the interval stays [1, n + 1] as before.
Note that in either case at most one 1 was seen.

If s = t, then output s (at this point, this can only happen if j = n above). If the interval [s, t] has size
at least 2, we now query xj,2 starting from j = s up to j = t− 1. Again we stop as soon as we see a 1. If a
1 was seen, then g(xj) = 1 and we set t = j. We continue in this manner going back and forth until s = t
at which point we can output s because of our invariant. Additionally, if we are in the last iteration making
queries to xi,l for i ∈ [s, t− 1] (in some order) as soon as we see a 1 or if all xi,l = 0 for i ∈ [s, t− 1], we can
give an output. Note that in each iteration, we see at most one 1. Since there are at most l iterations, this
shows D1-dt(R ◦ EMBl) ≤ l.

Acknowledgements. FB thanks Sreejata Kishor Bhattacharya, Eric Blais, Zachary Chase, Arkadev Chat-
topadhyay, Jyun-Jie Liao, Shachar Lovett, Jackson Morris and Anthony Ostuni for discussions and feedback
at various stages of this work.

References

[ABK16] Scott Aaronson, Shalev Ben-David, and Robin Kothari. “Separations in query complexity
using cheat sheets”. In: Proceedings of the forty-eighth annual ACM symposium on Theory of
Computing. 2016, pp. 863–876.

31

[AFS24] Yaroslav Alekseev, Yuval Filmus, and Alexander Smal. “Lifting Dichotomies”. In: Proceedings
of the 39th Computational Complexity Conference (CCC 2024), to appear. 2024.

[AGJK+18] Anurag Anshu, Dmitry Gavinsky, Rahul Jain, Srijita Kundu, Troy Lee, Priyanka Mukhopad-
hyay, Miklos Santha, and Swagato Sanyal. “A Composition Theorem for Randomized Query
Complexity”. In: 37th IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik. 2018.

[AI24] Yaroslav Alekseev and Dmitry Itsykson. Lifting to bounded-depth and regular resolutions over
parities via games. Tech. rep. TR24-128. Electronic Colloquium on Computational Complexity
(ECCC), 2024. url: https://eccc.weizmann.ac.il/report/2024/128/.

[BB20] Shalev Ben-David and Eric Blais. “A New Minimax Theorem for Randomized Algorithms”.
In: 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS). IEEE.
2020, pp. 403–411.

[BBGM22] Shalev Ben-David, Eric Blais, Mika Göös, and Gilbert Maystre. “Randomised composition and
small-bias minimax”. In: 2022 IEEE 63rd Annual Symposium on Foundations of Computer
Science (FOCS). IEEE. 2022, pp. 624–635.

[BCD24] Sreejata Kishor Bhattacharya, Arkadev Chattopadhyay, and Pavel Dvořák. “Exponential Sep-
aration Between Powers of Regular and General Resolution over Parities”. In: 39th Computa-
tional Complexity Conference (CCC 2024). Ed. by Rahul Santhanam. Vol. 300. Leibniz Inter-
national Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2024, 23:1–23:32. isbn: 978-3-95977-331-7. doi: 10.4230/LIPIcs.CCC.2024.23.
url: https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.23.

[BDGH+20] Andrew Bassilakis, Andrew Drucker, Mika Göös, Lunjia Hu, Weiyun Ma, and Li-Yang Tan.
“The Power of Many Samples in Query Complexity”. In: 47th International Colloquium on
Automata, Languages, and Programming (ICALP 2020). Schloss Dagstuhl-Leibniz-Zentrum
für Informatik. 2020.

[BdW02] Harry Buhrman and Ronald de Wolf. “Complexity measures and decision tree complexity: a
survey”. In: Theoretical Computer Science 288.1 (2002), pp. 21–43.

[BIW04] Eli Ben-Sasson, Russell Impagliazzo, and Avi Wigderson. “Near optimal separation of tree-like
and general resolution”. In: Combinatorica 24.4 (2004), pp. 585–603.

[BK18] Shalev Ben-David and Robin Kothari. “Randomized Query Complexity of Sabotaged and
Composed Functions”. In: Theory of Computing 14.5 (2018), pp. 1–27. doi: 10.4086/toc.2018.v014a005.
url: https://theoryofcomputing.org/articles/v014a005.

[BK23] Paul Beame and Sajin Koroth. “On Disperser/Lifting Properties of the Index and Inner-
Product Functions”. In: 14th Innovations in Theoretical Computer Science Conference (ITCS
2023). Ed. by Yael Tauman Kalai. Vol. 251. Leibniz International Proceedings in Informatics
(LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023, 14:1–
14:17. isbn: 978-3-95977-263-1. doi: 10.4230/LIPIcs.ITCS.2023.14. url: https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.202

[CD24] Arkadev Chattopadhyay and Pavel Dvořák. Super-critical Trade-offs in Resolution over Par-
ities Via Lifting. Tech. rep. TR24-132. Electronic Colloquium on Computational Complexity
(ECCC), 2024. url: https://eccc.weizmann.ac.il/report/2024/132/.

[CFKMP21] Arkadev Chattopadhyay, Yuval Filmus, Sajin Koroth, Or Meir, and Toniann Pitassi. “Query-
to-communication lifting using low-discrepancy gadgets”. In: SIAM Journal on Computing
50.1 (2021), pp. 171–210.

[CKLM19] Arkadev Chattopadhyay, Michal Kouckỳ, Bruno Loff, and Sagnik Mukhopadhyay. “Simulation
theorems via pseudo-random properties”. In: computational complexity 28 (2019), pp. 617–659.

32

https://eccc.weizmann.ac.il/report/2024/128/
https://doi.org/10.4230/LIPIcs.CCC.2024.23
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.23
https://doi.org/10.4086/toc.2018.v014a005
https://theoryofcomputing.org/articles/v014a005
https://doi.org/10.4230/LIPIcs.ITCS.2023.14
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.14
https://eccc.weizmann.ac.il/report/2024/132/

[CKMP+23] Sourav Chakraborty, Chandrima Kayal, Rajat Mittal, Manaswi Paraashar, Swagato Sanyal,
and Nitin Saurabh. “On the Composition of Randomized Query Complexity and Approximate
Degree”. In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques (APPROX/RANDOM 2023). Schloss Dagstuhl-Leibniz-Zentrum für Informatik.
2023.

[CMP22] Arjan Cornelissen, Nikhil S Mande, and Subhasree Patro. “Improved Quantum Query Upper
Bounds Based on Classical Decision Trees”. In: 42nd IARCS Annual Conference on Foun-
dations of Software Technology and Theoretical Computer Science (FSTTCS 2022). Schloss-
Dagstuhl-Leibniz Zentrum für Informatik. 2022.

[CMSS23] Arkadev Chattopadhyay, Nikhil S Mande, Swagato Sanyal, and Suhail Sherif. “Lifting to Parity
Decision Trees via Stifling”. In: 14th Innovations in Theoretical Computer Science Conference
(ITCS 2023). Schloss-Dagstuhl-Leibniz Zentrum für Informatik. 2023.

[Dah24] Yogesh Dahiya. “Exploring Size Complexity and Randomness in the Query Model”. HBNI,
2024. url: https://www.imsc.res.in/xmlui/handle/123456789/881.

[DM23] Yogesh Dahiya and Meena Mahajan. “On (simple) decision tree rank”. In: Theoretical Com-
puter Science 978 (2023), p. 114177.

[EGI24] Klim Efremenko, Michal Garlik, and Dmitry Itsykson. “Lower Bounds for Regular Resolution
over Parities”. In: Proceedings of the 56th Annual ACM Symposium on Theory of Computing.
2024, pp. 640–651.

[EH89] Andrzej Ehrenfeucht and David Haussler. “Learning decision trees from random examples”.
In: Information and Computation 82.3 (1989), pp. 231–246.

[GGKS18] Ankit Garg, Mika Göös, Pritish Kamath, and Dmitry Sokolov. “Monotone circuit lower bounds
from resolution”. In: Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of
Computing. 2018, pp. 902–911.

[GJPW18] Mika Göös, TS Jayram, Toniann Pitassi, and Thomas Watson. “Randomized communication
versus partition number”. In: ACM Transactions on Computation Theory (TOCT) 10.1 (2018),
pp. 1–20.

[GKPW19] Mika Göös, Pritish Kamath, Toniann Pitassi, and Thomas Watson. “Query-to-communication
lifting for P NP”. In: computational complexity 28 (2019), pp. 113–144.

[GLSS23] Dmytro Gavinsky, Troy Lee, Miklos Santha, and Swagato Sanyal. “Optimal Composition
Theorem for Randomized Query Complexity”. In: Theory of Computing 19.1 (2023), pp. 1–
35.

[GOR24] Svyatoslav Gryaznov, Sergei Ovcharov, and Artur Riazanov. “Resolution Over Linear Equa-
tions: Combinatorial Games for Tree-like Size and Space”. In: ACM Transactions on Compu-
tation Theory 16.3 (2024), pp. 1–15.

[GP14] Mika Göös and Toniann Pitassi. “Communication lower bounds via critical block sensitivity”.
In: Proceedings of the forty-sixth annual ACM symposium on Theory of computing. 2014,
pp. 847–856.

[GP18] Mika Göös and Toniann Pitassi. “Communication Lower Bounds via Critical Block Sensitiv-
ity”. In: SIAM Journal on Computing 47.5 (2018), pp. 1778–1806. doi: 10.1137/16M1082007.
url: https://doi.org/10.1137/16M1082007.

[GPW18] Mika Goos, Toniann Pitassi, and Thomas Watson. “Deterministic communication vs. partition
number”. In: SIAM Journal on Computing 47.6 (2018), pp. 2435–2450.

[GPW20] Mika Göös, Toniann Pitassi, and Thomas Watson. “Query-to-communication lifting for BPP”.
In: SIAM Journal on Computing 49.4 (2020), FOCS17–441.

33

https://www.imsc.res.in/xmlui/handle/123456789/881
https://doi.org/10.1137/16M1082007
https://doi.org/10.1137/16M1082007

[IS20] Dmitry Itsykson and Dmitry Sokolov. “Resolution over linear equations modulo two”. In:
Annals of Pure and Applied Logic 171.1 (2020), p. 102722.

[LMMPZ22] Shachar Lovett, Raghu Meka, Ian Mertz, Toniann Pitassi, and Jiapeng Zhang. “Lifting with
Sunflowers”. In: 13th Innovations in Theoretical Computer Science Conference (ITCS 2022).
Ed. by Mark Braverman. Vol. 215. Leibniz International Proceedings in Informatics (LIPIcs).
Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022, 104:1–104:24.
isbn: 978-3-95977-217-4. doi: 10.4230/LIPIcs.ITCS.2022.104. url: https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.202

[Mon14] Ashley Montanaro. “A composition theorem for decision tree complexity”. In: Chicago Journal
of Theoretical Computer Science 2014.6 (2014). doi: 10.4086/cjtcs.2014.006.

[PI00] Pavel Pudlák and Russell Impagliazzo. “A lower bound for DLL algorithms for k-SAT (pre-
liminary version)”. In: Proceedings of the eleventh annual ACM-SIAM symposium on Discrete
algorithms. 2000, pp. 128–136.

[PR18] Toniann Pitassi and Robert Robere. “Lifting nullstellensatz to monotone span programs over
any field”. In: Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Com-
puting. 2018, pp. 1207–1219.

[RM97] Ran Raz and Pierre McKenzie. “Separation of the monotone NC hierarchy”. In: Proceedings
38th Annual Symposium on Foundations of Computer Science. IEEE. 1997, pp. 234–243.

[San24] Swagato Sanyal. “Randomized Query Composition and Product Distributions”. In: 41st In-
ternational Symposium on Theoretical Aspects of Computer Science (STACS 2024). Schloss
Dagstuhl–Leibniz-Zentrum für Informatik. 2024.

[Sav02] Petr Savický. On determinism versus unambiquous nondeterminism for decision trees. Tech.
rep. TR02-009. Electronic Colloquium on Computational Complexity (ECCC), 2002. url:
http://eccc.hpi-web.de/report/2002/009/.

[She23a] Suhail Sherif. Lifting to Parity Decision Trees via Stifling. 14th Innovations in Theoretical
Computer Science Conference (ITCS 2023). Jan. 5, 2023. url: https://www.youtube.com/watch?v=xcnn6jVNY0o
(visited on 11/13/2024).

[She23b] Suhail Sherif. Lifting to Parity Decision Trees via Stifling (with applications to proof complex-
ity). Proof Complexity and Meta-Mathematics Workshop, Simons Institute. Mar. 20, 2023.
url: https://www.youtube.com/watch?v=PeZVs6WUf-4 (visited on 11/13/2024).

[Tal13] Avishay Tal. “Properties and Applications of Boolean Function Composition”. In: Proceedings
of the 4th Conference on Innovations in Theoretical Computer Science (ITCS). 2013, pp. 441–
454. doi: 10.1145/2422436.2422485.

[Urq11] Alasdair Urquhart. “The depth of resolution proofs”. In: Studia Logica 99 (2011), pp. 349–364.

A Proof complexity applications

In this section, we give simple proofs of some known lower bounds for tree-like Res(⊕), and slight improve-
ments to prior results on regular Res(⊕). We assume some familiarity with the proof system Resolution over
parities and its subsystems. The subsections are independent of each other, though each of them requires
familiarity with the relevant papers to varying degrees. The subsections dealing with tree-like Res(⊕) are
fairly self-contained (in the sense that the arguments presented only depend on results in this paper). On
the other hand, in the subsections dealing with regular Res(⊕), we mainly sketch the changes required to the
original proofs to get improvements.

A.1 Pigeonhole principle in tree-like Res(⊕)
Itsykson and Sokolov [IS20] showed that the pigeonhole principle PHPm

n with m pigeons and n holes (m > n)
requires 2Ω(n) size tree-like Res(⊕) proofs. For this, they gave a parity Delayer strategy for the corresponding

34

https://doi.org/10.4230/LIPIcs.ITCS.2022.104
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.104
https://doi.org/10.4086/cjtcs.2014.006
http://eccc.hpi-web.de/report/2002/009/
https://www.youtube.com/watch?v=xcnn6jVNY0o
https://www.youtube.com/watch?v=PeZVs6WUf-4
https://doi.org/10.1145/2422436.2422485

false clause search problem which scored n/2 points. A parity Delayer strategy scoring n−1 points is described
in [GOR24, Lemma 3.3] where it is attributed to M. Garĺık.

Here we give a simple Certifier strategy in the Blocker-Certifier game for PHPm
n scoring n points. By

Lemma 4.1, this implies that the rank of any PDT solving the false clause search problem associated with
PHPm

n is at least n (and this is tight since the usual decision tree solving PHPn+1
n has rank n). We will use

xi,j , i ∈ [m], j ∈ [n] to denote the variables of PHPm
n where xi,j being 1 indicates that the pigeon i is sent to

hole j.
In the beginning, Certifier fixes no variables. Suppose Blocker sets xi,j = ∗. Then Certifier sets xk,j = 0

for all k ∈ [m] \ {j}. Certifier uses the same strategy in each round to ensure that for every hole j, if there is
some i ∈ [m] such that xi,j = ∗, then all the other pigeons do not fly to hole j (xk,j = 0 for k 6= i). At any
point, for any hole j, either all the variables corresponding to hole j are set or all of them are unset. The
number of holes whose variables have been fixed is precisely the number of rounds.

We claim that the game cannot end before n rounds. Indeed at any point, for any hole clause ¬xi,j∨¬xk,j

either both xi,j and xk,j are unset or at least one of them is set to 0. Also, if fewer than n rounds have been
played, for any pigeon clause ∨j∈[m]xi,j , there must be some j ∈ [m] such that xi,j is unset. So Certifier can
always score n points.

For the bit pigeonhole principle BPHPm
n where n = 2k for some positive integer k and m > n, Efremenko,

Garĺık and Itsykson [EGI24] gave a parity Delayer strategy scoring n/4 points. Underlying their Delayer
strategy is a Certifier strategy, though their proof uses this Certifier strategy in a more delayed manner, com-
pared to the Delayer strategy that would be obtained by directly combining the Certifier strategy described
next and the proof of Lemma 4.1.

The formula is on the variables xi,j (i ∈ [m], j ∈ [k]). For each i ∈ [m], xi (viewed as a k-bit integer)
encodes which hole in [n] pigeon i flies to. We now explain the Certifier strategy used in their proof. Suppose
Blocker sets xi,j = ∗. Then Certifier fixes all bits in xi (other than xi,j) so that the pigeon i can only go to
one of two holes. Certifier will ensure that these two holes are different from any holes that have previously
been assigned to some pigeon. This can be done as long as the number of rounds (excluding the current
round), say t, satisfies 2t < n/2. This is because in each round we use up 2 new holes and there are n/2
pairs of holes where a pair contains two holes differing only on the jth bit. So this property can be fulfilled
at least for the first n/4 rounds. The game cannot end earlier as we explain now. Any clause which involves
some pigeon that has not been queried at all cannot be falsified. Additionally, a clause involving two pigeons
who have been assigned holes is already satisfied because of the Certifier strategy. So Certifier scores at least
n/4 points.

A.2 Ordering principle in tree-like Res(⊕)
A Delayer strategy scoring n−2 points for the ordering principle Ordn was shown in [GOR24]. The ordering
principle encodes the fact that every finite total order has a least element. We have variables xi,j (i, j ∈
[n], i 6= j) where xi,j = 1 encodes that i ≺ j in the linear order. The clauses of Ordn encode the conditions
of being a total order and for each i ∈ [n], that i is not the least element.

We cannot directly use the Blocker-Certifier game to prove a lower bound for Ordn since Blocker has a
simple strategy to end the game in 2 rounds. Blocker picks any unset variable xi,j and sets it to ∗. In the
next round, if xj,i is unset, then Blocker sets xj,i = ∗. Otherwise, Certifier must have fixed xj,i in one of the
two rounds. In either case, the game has ended since one of the clauses xi,j ∨ xj,i or ¬xi,j ∨ ¬xj,i can be
falsified by Blocker. So any Blocker strategy can only ensure at most 2 points.

However, we can give a better Certifier strategy if we first move to an affine restriction such that Blocker
can no longer use this trivial strategy which falsifies one of the totality or anti-symmetry conditions. Specifi-
cally, for all i 6= j, we set xi,j+xj,i = 1. Under this restriction, we may think of the game as being played only
over the variables xi,j (1 ≤ i < j ≤ n). (We could view this as a special case of the parity Blocker-Certifier
game where we have a block for each pair i 6= j containing only the variables xi,j and xj,i.)

We can now give a Certifier strategy scoring n/2 points which recovers the lower bound from [GOR24] up
to a constant factor. At a high level, Certifier ensures that whenever Blocker sets xi,j = ∗, in the underlying

35

order, i and j must be the largest among the elements which have not been touched by Blocker so far. Since
Blocker can affect only two elements in a round, the game must last at least n/2 rounds. We now explain the
strategy in more detail. We will use S ⊆ [n] to denote the current set of possible least elements. Effectively
the game at any stage has been reduced to the game on just the elements in S. Certifier will always ensure
that the only unset variables xi,j satisfy i, j ∈ S and any transitivity constraint involving some element
outside S is satisfied.

Initially S = [n] and Certifier does not fix any variables in the first round. Suppose in the (i− 1)th round
(where i < ⌈n/2⌉) Blocker sets xi,j = ∗ where both i, j ∈ S. Then update S := S \ {i, j}. For each k ∈ S,
Certifier sets variables so that k ≺ i and k ≺ j. This ensures that any transitivity constraints involving i
or j and some element(s) from S are satisfied. By our invariant, this implies that all transitivity constraints
involving i or j are satisfied. Additionally, the clauses expressing that i and j are not the least element are
also satisfied. Moreover, since i < ⌈n/2⌉, S still contains at least 3 elements. So no matter which pair i′, j′

in S Blocker picks in the ith round, the game cannot end since every clause which can potentially still be
falsified also contains some k′ ∈ S \ {i′, j′}. Thus, the game must last at least ⌈n/2⌉ rounds. (In the ⌈n/2⌉th
round, to avoid falsifying a clause, Certifier simply skips his move.)

A.3 Separations between tree-like Res(⊕) and (regular) resolution

Itsykson and Sokolov [IS20] used the lifting theorem for versatile gadgets [GP14] to give a formula which
has a regular resolution proof of size O(n) but requires tree-like Res(⊕) proofs of 2Ω(

√
n). Using the lifting

theorem for deterministic PDTs [CMSS23, BK23], one can lift the nearly optimal separation between tree-like
resolution and regular resolution [BIW04] to get a nearly optimal separation between tree-like Res(⊕) and
regular resolution.

We observe that the formula of Ben-Sasson, Impagliazzo and Wigderson [BIW04] already provides the
desired separation. Their formula is an OR-lift of a pebbling formula. Their proof can be understood as
implicitly combining the fact that OR lifts 1-depth to DT rank and that the 1-depth of the search problem
associated with a pebbling formula is at least the pebbling number of the underlying graph up to an additive

constant. Finally, to get their 2Ω(
n

log n) lower bound they use a graph whose pebbling number is Ω
(

n
logn

)

.

It follows from Remark 6.5 that DRank
⊕-dt(R ◦ ∨2) = DRank

dt(R ◦ ∨2) = D
1-dt(R) for any relation R. In

particular, taking R to be the search problem associated with the pebbling formula on a graph with pebbling

number Ω(n/ log n), the same formula also requires 2Ω(
n

log n) size tree-like Res(⊕) proofs.

A.4 Separation between regular Res(⊕) and ordinary resolution

Bhattacharya, Chattopadhyay and Dvořák [BCD24] gave an exponential separation between regular Res(⊕)
and general Resolution. Specifically they gave a family of formulas on M variables, which has Resolution
proofs of size poly(M) but requires bottom-regular proofs of size exp(Ω(M1/12/ log13/12 M)). Later Alekseev
and Itsykson [AI24] gave a different family of formulas on M variables which have poly(M) size Resolution
proofs but require regular Res(⊕) proofs of size exp(Ω(M1/2)). These lower bounds are very strong, but the
upper bounds are fairly large polynomials.

The upper bound in [BCD24] is a large polynomial since they use an existing randomized query-to-
communication lifting theorem which requires a large gadget. By using Theorem 1.1 instead, we can replace
the large gadget with a constant size gadget like IP4. This improves the upper bound to O(M4) which is
linear in the total number of clauses. The lower bound slightly improves to exp(Ω(M1/12)).

We briefly sketch the changes needed for the lower bound. The lower bound uses a distributional version
of Theorem 1.1. This is standard and easy to obtain using the simulation in the proof, but we sketch it
for completeness. Let g be a constant size stifling gadget and (µ0, µ1) be distributions showing that g is
p-affine balanced (uniform distributions would suffice for constant size g) for some constant p > 0. Suppose
a deterministic parity decision tree T of worst-case depth d computes a relation R ◦ g on a distribution
η ◦ (µ0, µ1) to some error ǫ, where η is some distribution on the inputs of R. Then the simulation applied to

36

T gives a randomized decision tree whose expected depth on any input is O(d) and computes R to error ǫ with
respect to the distribution η and the randomness of the tree. By terminating this randomized decision tree we
can ensure that its worst case depth is O(d) and the error on η is at most, say, ǫ+1/10. By averaging, there
must be a deterministic decision tree whose depth is O(d) and computes R to error ǫ+ 1/10 on distribution
η.

Also note that though the distributions above are not necessarily uniform on g−1(0) and g−1(0), Lemma
20 in [BCD24] continues to hold for these distributions since the only property needed in the proof is that
these distributions are balanced.

A.5 Bit pigeonhole principle in regular Res(⊕)

Efremenko, Garĺık and Itsykson [EGI24] showed that the bit pigeonhole principle BPHPn+1
n requires 2

Ω
(

3√n

log n

)

size regular Res(⊕) proofs. Their analysis can be further sharpened to get a 2
Ω
(√

n

log n

)

lower bound. This
improvement comes from analyzing the random walk in Lemmas 6.1 and 6.2 [EGI24] (full version) slightly
differently.

Informally, at the tth step of the random walk, the size of the closure can increase by t which they use
to give a bound of O(t2/n) on the probability that the assignment is no longer injective on the new closure,
conditioned on being injective on the previous closure. Then by the union bound, they conclude that the
probability that a random assignment is not injective on the closure of the clause reached after taking t steps
is at most O(t3/n). The slack in the inequality seems to come from the fact that even though the size of the
closure can increase by more than 1 at a step, this cannot be true at all steps since the size of the closure
is bounded by the total number of steps taken so far. So one may hope that a more careful analysis should
give an upper bound of O(t2/n) on the probability of not being injective on the closure instead of O(t3/n).

While we do not know how to directly work with closure to prove the better bound, we can give the
desired O(t2/n) upper bound on the probability of the random walk not being ‘good’, for a notion of good
which is different from the assignment being injective on the closure. Even though our definition of being
good is different from the one in [EGI24], we do rely on arguments used in proving their Lemma 6.2. The
slight catch is that since we work with a different notion, for the rest of the argument of [EGI24] to go
through, at the end of the random walk, we need to switch back from this notion of good to being locally
consistent. This can be done as long as the number of steps t is not too large by using some other ideas in
[EGI24].

The analysis below uses ideas similar to those for the randomized PDT simulation, Proposition 3.9 where
at a parity query, we reveal all bits of a block other than one which appears in that parity. For BPHPn+1

n ,
each block xi indicates the hole pigeon i flies to. For such a block where all but one of the bits have been
fixed, we think of the pigeon as being sent to both possible holes. Let ρ be a partial assignment of the
variables xi,j such that for each i ∈ [n], either ρi = ∗k or exactly one position in ρi is ∗ and the rest are fixed

to 0/1. Let ρ̃ : [n+ 1]→
(

[n]
2

)

∪ {∗} be the partial function expressing which holes a pigeon flies to under ρ.
Each pigeon i such that ρi = ∗k is not in the domain of ρ̃ while every other pigeon is mapped to the set of
the two holes it has been assigned. Say that ρ̃ is 2-injective if there is no hole in [n] such that two pigeons
are mapped to it under ρ̃.

The notion of goodness will rely on a simulation of a PDT on the uniform distribution. To describe it,
we view all the variables xi,j (i ∈ [n+ 1], j ∈ [k] where n = 2k) as being ordered lexicographically according
to the indices. This is to allow picking the first variable occurring in a parity. Let T be a deterministic PDT
on the variables xi,j . Let σ ∈ ({0, 1}k)n+1 be a total assignment. For any r ≥ 0, we associate a partial
assignment ρr, a set of marked pigeons Mr ⊆ [n+1] and a (marked) system Φr of linear equations with σ in
the following way. Informally, ρr, Mr and Φr capture the information we will reveal in the first r steps of the
random walk to analyze the desired probability. We will always have |Mr| ≤ r and for each pigeon i ∈ [n+1],
if i ∈ M , ρi is fixed according to σ except for one bit remaining ∗, and otherwise ρi = ∗k. Additionally, the
variables which are free in ρ but belong to the marked pigeons form pivots of the system Φr. We say that
these variables are marked. The assignment σ satisfies Φi.

37

ρr, Mr and Φr are defined inductively in the following way. For i = 0, ρ0 = ∗k(n+1),Mi and Φ0 are
empty. Now suppose i > 0. If the leaf reached by σ has depth at most i − 1 (the root is at depth 0), set
Mi = Mi−1, ρi = ρi−1,Φi = Φi−1.

Otherwise consider the node in T at depth i − 1 which is reached by σ. Let
∑

(p,j)∈S xp,j (for some

S ⊆ [n+1]×[k]) be the parity at that node. We simplify this parity so that it only depends on pigeons outside
Mi−1 by substituting according to Φi−1 and ρi−1. Suppose the cleaned-up parity is b+

∑

(p,j)∈S′ xp,j for some

b ∈ F2, S
′ ⊆ [n+1]× [k]. If S′ = ∅, set Mi = Mi−1, ρi = ρi−1,Φi = Φi−1. Suppose S′ 6= ∅. Let (p′, j′) be the

first variable appearing in S′. Then Mi = Mi−1 ∪ {p′} and Φi = Φi−1 ∪ {
∑

(p,j)∈S′ xp,j =
∑

(p,j)∈S′ σp,j}.
Let ρi be the same as ρi−1, except that for j ∈ [k] \ {j′}, ρi′,j = σi′,j . Note that all the properties of Mi, ρi
and Φi stated above are satisfied.

We can now describe when an assignment is good. Say that a total assignment σ is r-good for r ≥ 0 if
the partial assignment ρr is 2-injective. Note that since ρr+1 extends ρr, if ρr+1 is 2-injective, then ρr must
also be 2-injective. We will show the following.

Lemma A.1. Let t ≥ 0 be an integer. For a total assignment σ in ({0, 1}k)n+1 picked uniformly at random,

Pr
σ
[σ is not t-good] ≤ 2t2

n
.

Our proof will follow the same high level structure of the proofs of Lemmas 6.1 and 6.2 in [EGI24].

Proof. We will show that for any r ≥ 1,

Pr
σ
[σ is not r-good|σ is (r − 1)-good] ≤ 4(r − 1)

n
.

This immediately implies the statement of the lemma as shown below.

Pr
σ
[σ is not t-good] =

t
∑

r=1

Pr[σ is not r-good, but σ is (r − 1)-good]

=

t
∑

r=1

Pr[σ is not r-good|σ is (r − 1)-good] · Pr[σ is (r − 1)-good]

≤
t
∑

r=1

Pr[σ is not r-good|σ is (r − 1)-good]

≤
t
∑

r=1

4(r − 1)

n
≤ 2t2

n
.

So we only need to show Prσ[σ is not r-good|σ is (r − 1)-good] ≤ 4(r−1)
n . For this, we will condition on

any possible ρ′r−1,M
′
r−1,Φ

′
r−1 such that ρ′r−1 is 2-injective. (We use ′ to distinguish these fixed objects from

the random variables ρr−1,Mr−1,Φr−1 associated with σ.) By the definitions of these objects, note that
ρ′r−1,M

′
r−1,Φ

′
r−1 uniquely determine the node at depth r − 1 (or possibly a leaf at depth at most r − 1)

reached by any assignment σ which is consistent with ρ′r−1 and satisfies Φ′
r−1.

We wish to show that Pr[σ is not r-good|ρr−1 = ρ′r−1,Mr−1 = M ′
r−1,Φr−1 = Φ′

r−1] ≤ 4(r−1)
n . If

ρ′r−1,Φ
′
r−1 are such that any assignment consistent with them reaches a leaf at depth r − 1 or less, then

this probability is 0 since in this case ρr = ρr−1 = ρ′r−1 which is 2-injective. So suppose the node in T at
depth r − 1 reached by assignments consistent with ρ′r−1 and satisfying Φ′

r−1 is an internal node. Clean up
this parity according to ρ′r−1 and Φ′

r−1 to get a parity b +
∑

(i,j)∈S xi,j which does not contain variables

involving pigeons from M ′
r−1. If S = ∅, then again the probability is 0 since ρr = ρr−1.

So the only non-trivial case is when S 6= ∅. Let (i, j) be the first variable in S. Note that the distribution
of σ on all blocks except those in M ′

r−1, after conditioning on σ being consistent with ρ′r−1 and satisfying

38

Φ′
r−1, is still uniform. This follows from the fact that we started with the uniform distribution, the marked

variables form pivots of Φ′
r−1 and the only fixed variables in ρ′r−1 are the other variables in the marked blocks.

So we only need to estimate the probability that a uniform assignment to the variables {xi,j′ |j′ ∈ [k], j′ 6= j}
sends pigeon i to a hole already containing some pigeon according to ρ′i−1. Since |M ′

r−1| ≤ r − 1, at most
2(r−1) holes are occupied already. So the probability that ρr is not 2-injective is the probability that pigeon

i gets mapped to a pair containing one of these at most 2(r − 1) holes. This probability is at most 2(r−1)
n/2

since the distribution is uniform.
This proves Pr[σ is not r-good|ρr−1 = ρ′r−1,Mr−1 = M ′

r−1,Φr−1 = Φ′
r−1] ≤ 4(r−1)

n for all ρ′r−1,M
′
r−1,Φ

′
r−1

where ρ′r−1 is 2-injective. In particular,

Pr
σ
[σ is not r-good|σ is (r − 1)-good] ≤ maxPr[σ is not r-good|ρr−1 = ρ′r−1,Mr−1 = M ′

r−1,Φr−1 = Φ′
r−1]

≤ 4(r − 1)

n

where the maximum is over all ρ′r−1,M
′
r−1,Φ

′
r−1 such that ρ′r−1 is 2-injective. This finishes the proof.

Next, we need to show that being good is sufficient for local consistency.

Lemma A.2. Let ρ be a 2-injective partial assignment, M the set of marked pigeons in ρ and Φ a marked
linear system whose pivots are precisely the variables in the blocks lying in M which are not fixed in ρ. Let
Φ′ be a linear system which is implied by ρ∪Φ where we view ρ as a collection of |M |(k−1) linear equations
each fixing a variable of a marked pigeon (which is not a pivot of Φ). Suppose the rank of Φ′ is at most n/2.
Then Φ′ is locally consistent.

This lemma uses ideas from Lemma 7.1 in [EGI24].

Proof. Since the system ρ ∪ Φ implies Φ′, it is sufficient to find a solution of ρ ∪ Φ which is injective on
Cl(Φ′). Any such solution σ must agree with ρ and, in particular, is already determined for the pigeons in
M ∩ Cl(Φ′) except for the pivots of Φ. Since ρ is 2-injective, no matter what values these pivots take, if we
can find distinct holes for the pigeons in Cl(Φ′) \M which also differ from any of the possible holes assigned
to pigeons in M ∩ Cl(Φ′), we will be done.

We can find such holes if |Cl(Φ′) \M | ≤ n− 2|Cl(Φ′) ∩M |. This holds since
|Cl(Φ′) \M |+ 2|Cl(Φ′) ∩M | ≤ 2(|Cl(Φ′) \M |+ |Cl(Φ′) ∩M |)

≤ 2|Cl(Φ′)|
≤ 2 rank(Φ′) ≤ n.

We assign any distinct holes to the pigeons in Cl(Φ′) \M different from the holes assigned to pigeons in
M ∩ Cl(Φ′). To get a total assignment, we set all bits that have not already been set (except for the pivots
of Φ) arbitrarily and extend this to a solution of Φ by setting the pivots appropriately.

We now sketch the remaining changes needed to get a 2
Ω
(√

n

log n

)

lower bound on the size of regular Res(⊕)
proofs of BPHPn+1

n . Let t := ⌊√n/2⌋. Consider a regular Res(⊕) refutation graph and the associated linear
branching program solving the search problem on BPHPn+1

n . Let σ be a random assignment and take t steps
on the branching program according to σ. If we expand this initial depth t segment of the branching program
to a PDT, Lemma A.1 tells us that σ is t-good except with probability at most 2t2/n ≤ 1/2. Let Φ′ be the
linear clause in the refutation graph after taking t steps. If σ is t-good, then by Lemma A.2, Φ′ must be
locally consistent since we always ensure that ρt and Φt (as used in the definition of t-good) together imply
the t equations along the edges of the branching program (starting from the source), which in turn imply
the system Φ′. So with probability at least 1/2, the linear clause reached by a random assignment is locally
consistent.

The rest of the argument stays the same. The rank of Φ′ is at least Ω
(√

n
logn

)

by Lemma 7.2 in [EGI24].

This implies that the size of such a proof must be at least 2
Ω
(√

n

log n

)

.

39

B Composition for block decision trees

In this section, we adapt known composition theorems which work for ordinary decision trees to get compo-
sition theorems for more general decision trees when the queries come from a set of allowed queries and each
query must be contained in a block.

Let M be a finite set. A query on M is described by a tuple (S, (Si, ci)i∈[k]) where S ⊆ M , Si’s form a
partition of S and each ci ∈ {0, 1}. Here S is the collection of possible inputs after having made some queries
and each Si is a possible response to the query. The integer ci is the cost on getting response Si. We call S
the head of the query. We will only allow non-trivial queries where the partition has at least two parts and
each part is non-empty. A query set Q on M is a collection of queries. A query set may contain multiple
queries with the same underlying partition but with different costs associated to the parts.

A Q-decision tree on M with outputs in O is a decision tree whose internal nodes are labeled by queries
from Q and leaves are labeled by pairs (S, o) where S ⊆ M and o ∈ O. The labels of the nodes must be
consistent in the following natural sense. An internal node v labeled by a query (S, (Si, ci)i∈[k]) has exactly
k children wi (i ∈ [k]), where wi is labeled with a query with head Si. We think of the edge between v and
wi as being marked if ci = 1. In this case, we say that wi is a marked node. The head of the query at the
root node must be M as all inputs are possible at the root.

We will call a Q-decision tree a Q-tree for short. We will assume below that Q has the following properties:

1. Q is complete in the following sense: any subset Si, which appears as a response in Q and has |Si| ≥ 2,
must also appear as the head of some query in Q. This would guarantee that any function on M can
be computed by some Q-tree.

2. Q is closed under restrictions. Let S′ ⊆ M which can appear as the response of some query in Q and
|S′| ≥ 2. Let q = (S, (Si, ci)i∈[k]) be a query in Q where S′ ⊆ S. Then one of the following holds:

• S′ ⊆ Si for some i ∈ [k], or,

• Q contains a query q′ = (S′, (Uj , dj)j∈[l]) such that for each j ∈ [l], there exists i ∈ [k] with
Uj ⊆ Si and dj ≤ ci.

The first condition above ensures that no matter what queries have been made previously there is a sequence
of future queries which will allow us to uniquely identify the input. The second condition ensures that for
every query q with head S and every subset S′ ⊆ S which could occur, there is a query q′ on S′ which at
least gives as much information as q and is not more expensive.

The cost of a Q-tree T for M on input x ∈ M , denoted cost(T, x), is defined as the number of marked
edges on the unique root-to-leaf path in T which is consistent with x. The deterministic Q-query complexity
of a relation R ⊆M ×O, denoted D

Q(R), is the minimum cost of a Q-tree computing R. For a randomized
Q-tree T , cost is defined in the following manner. For an input x, cost(T , x) = ET∼T [cost(T, x)]. We define

expected randomized Q-query complexity of R by R
Q
ǫ (R) = minT maxx cost(T , x) where T varies over all

randomized Q-trees solving R with error at most ǫ.
The next claim will be useful in later sections. Informally, it says that a search problem can only become

easier when restricted to a subset of inputs.

Lemma B.1. Let S ⊆ S′ ⊆M where both S and S′ can be obtained by some sequence of queries. Let T be
a Q-tree on the set S′ which computes a relation R ⊆ S′ × O. Then there exists a Q-tree T ′ computing R
restricted to S such that for all x ∈ S, cost(T ′, x) ≤ cost(T, x).

Proof. We will show this by induction on |S|. If |S| = 1, this is clear since we can take T ′ to be a leaf.
Suppose |S| ≥ 2. As long as S is completely contained in a response to the current query in T , move to

that child. If we reach a leaf while doing this, we can let T ′ be a leaf with the same output. Otherwise we
reach a query q such that S is split non-trivially by q. Suppose the subtrees at this node are T1, T2, . . . , Tl.
Since Q is closed under restrictions, there is some query q′ which refines q on S. The tree T ′ will have q′ at
the root. For each response A to q′, we can use a tree T ′

i obtained by using the induction hypothesis on the

40

tree Tj (whose head is, say, Sj) with the sets Sj ∩ S and Sj ∩ S′, where Tj corresponds to the response of q
containing A.

Let x ∈ S. Suppose x goes to the subtree Tj of T after the first query. Suppose the subtree in T ′ reached
by x is T ′

i . By induction, cost(T ′
i , x) ≤ cost(Tj , x). Additionally by the choice of the query at the root, the cost

of the response in T ′ at the root on x is at most the cost of the response in T . So cost(T ′, x) ≤ cost(T, x).

We now extend the above definitions to relations R ⊆Mn×O. In a Q-decision tree for Mn, each internal
node v is labeled by a tuple (S, i, q) where S ⊆ Mn, i ∈ [n] and q = (Si, (S

′
j , cj)j∈[k]) ∈ Q. Here S is the

set of inputs reaching v and q is the query made at that node into block i. Such a node v has exactly k
children, wj , j ∈ [k], where wi is labeled with the set S1 × S2 . . . Si−1 × S′

j × Si+1 × . . . Sn. Informally, the

tuple (S, i, q) corresponds to making the query q in the ith block when the current set of possible inputs is S.
We define marked edges and marked nodes as before. D

Q(R) and R
Q(R) are defined similarly for relations

R ⊆Mn ×O. For an input x ∈Mn, we will continue to say the ith block of x to refer to xi.
Before stating the composition theorems, let us state how the above definition captures the query models

considered in this work.

• Ordinary decision trees: Here each node corresponds to a subcube of {0, 1}n and each query partitions
the current subcube into two subcubes based on a coordinate. Depending on how the costs are defined,
we can get ordinary depth, 0-depth, 1-depth or rank.

• ∗-depth: Similar to ordinary decision trees, here each node corresponds to a subcube in {0, 1, *}n and
the cost is 1 only when the coordinate is fixed to ∗

• (⊕, ∗)-decision trees: The definition of (⊕, ∗)-decision trees explicitly works with a partial subspace as
the current set of inputs and the partition is induced by how a parity interacts with the current partial
subspace.

B.1 Composition for deterministic block decision trees

The following proposition has the same proof as the usual composition theorem for deterministic decision
trees, so we only provide a sketch.

Proposition B.2 (essentially [Sav02, Tal13, Mon14]). For any relation R ⊆ {0, 1}n ⊆ O, any function
g : M → {0, 1, *},

D
Q(R ◦ g) ≥ D

dt(R)(DQ(g)− 1).

Proof sketch. Consider an (ordinary) Adversary strategy for R and a Q-Adversary strategy for g. The
strategy for g ensures that the value of g is undetermined as long as the cost so far is less than D

Q(g). We
now combine these to give a Q-Adversary strategy for R ◦ g. We have n separate Q-adversaries, one for
each block. On a query to the ith block, if the block has already been fixed earlier, respond accordingly.
Otherwise, respond according to the Adversary strategy for g on that block. If at this point, the total cost
in the block has reached D

Q(g)−1, fix xi so that g(xi) is set according to the Adversary strategy for R. The
number of fixed blocks at the end must be at least Ddt(R) and each such block contributes DQ(g)− 1 to the
total cost.

We next show an equivalence between the Querier-Adversary game and a generalization of the Blocker-
Certifier game. Let Q be a query set such that for every query (S, (Si, ci)i∈[k]) in Q, there is a unique i ∈ [k]
such that ci = 1 (and for all j 6= i, cj = 0). From now on we will assume that in all queries (S, (Si, ci)i∈[k]),
c1 = 1 and cj = 0 for j ≥ 2. For lack of a better name, we also call this game the Blocker-Certifier game.
The Blocker-Certifier game for the relation R ⊆ M ×O with query set Q is played in rounds. The game is
played on a set S ⊆M which changes with each move. In the beginning S = M . In a round,

1. Certifier updates S to be some subset S′ ⊆ S such that there is a sequence of queries q1, q2, . . . , qk and
responses S ⊃ S′

1 ⊃ S′
2 · · · ⊃ S′

k = S′ such that S is the head of q1 and for each i ∈ [k], S′
i is a response

for the query qi with cost 0. We also allow Certifier to leave S unchanged.

41

2. Blocker picks a query (S, (Si, ci)i∈[k]) and updates S to be S1.

The game ends when there is some o ∈ O, such that (x, o) ∈ R for each x ∈ S. Certifier’s score is the number
of rounds played.

Lemma B.3. Suppose Q satisfies the above property that every query has unique response of cost 1. Let
R ⊆M ×O. The following are equivalent:

• Adversary has a strategy to score k points in the Querier-Adversary game on R with query set Q.

• Certifier has a strategy to score k points in the Blocker-Certifier game on R with query set Q.

Proof. Suppose we have an Adversary strategy scoring k points. Certifier copies Adversary’s strategy in the
following way. Suppose the current set is S in the Blocker-Certifier game (in the beginning S = M). Consider
all the queries q1, q2, . . . , qk whose head is S. If there exists a query qi such that Adversary responds to it
with a cost 0 set S′, then Certifier’s sequence would start with qi and S′. Certifier repeats this with S′ to
(possibly) get another query q′ (with head S′) such that Adversary responds to q′ with S′′ which has cost 0.
Certifier adds q′ and S′′ to his current sequence. He continues in this way until he reaches a set such that for
all queries on it, Adversary responds with the cost 1 response. When this happens, Certifier ends his turn.

Here Certifier can be thought of as playing the role of Querier but only making queries to which the
responses have cost 0. Therefore the score that Adversary can score on the obtained set remains unchanged.
Since Certifier makes sure that no matter what query Blocker makes, the corresponding response of Adversary
would score 1, Certifier achieves the same score as Adversary.

For the other direction, we will show that if Querier has a strategy which allows Adversary to score at
most k points, then Blocker also has a strategy to force Certifier to score at most k points. Querier’s strategy
can be described as a Q-tree T for R of cost k. Blocker will essentially simulate this decision tree. To do
this, we will need to use Lemma B.1 which follows from the assumption that Q is closed under restrictions.

We now explain Blocker’s strategy. Suppose after Certifier makes his first move, the current set is S. By
Lemma B.1, there is a tree T ′ on S computing R whose cost is no more than the cost of T . Blocker picks
the query at the root of T ′ as his move in the game. This updates S to some S′ ⊂ S. We may now move
to the subtree T ′′ of T ′ corresponding to S′. In doing so, the cost of the tree has decreased by 1. By using
this strategy, in each round, the cost of the tree decreases by at least 1. So in at most k rounds, the tree is
reduced to a leaf at which point the game ends.

For simplicity, we only gave the proof for relations R ⊆M ×O, but it can easily be modified to show the
equivalence for relations on Mn instead of just M .

B.2 Composition for randomized block decision trees

In this subsection, we prove a randomized composition theorem for Q-decision trees using linearized complex-

ity by adapting the proof of Ben-David, Blais, Göös and Maystre [BBGM22]. Then we prove R
Q
ǫ (R ◦ g) ≥

Ω

(

R
dt

ǫ (R)
√

R
Q
g

)

− n by considering a variant of conflict complexity [GLSS23].

B.2.1 Linearized Q-complexity

For a partial function g : M → {0, 1, *}, the linearized Q-complexity of g is defined as

LR
Q(g) = inf

T
max

x

cost(T , x)
bias(T , x)

where T varies over randomized Q-decision trees and x varies over inputs in the domain of g.

42

Theorem B.4. For any relation R ⊆ {0, 1}n×O, partial function g : M → {0, 1, *}, query set Q on M ,

R
Q
ǫ (R ◦ g) ≥ R

dt

ǫ (R)
LR

Q(g)− 4

6
.

To prove this, we wish to use a minimax theorem for ratios [BB20, Theorem 2.18] to get that LRQ(g) =

supµ minT
cost(T ,µ)
bias(T,µ) where µ varies over distributions on M and T varies over deterministic Q-trees. However

some conditions required to directly use the minimax theorem may not hold for the query set Q. Specifically,
one of the required conditions is that for any tree, the cost should either be positive for all distributions or
0 for all distributions. This condition fails, for instance, when the query set corresponds to 1-depth or rank.

So we will instead work with an approximate version of LRQ which is always positive. For any query set

Q and real α > 0, define costα(T , x) = α + cost(T , x). Now define LR
Q
α (g) = infT maxx

costα(T ,x)
bias(T ,x) . Note

that we always have costα(T , x) ≥ α > 0. In addition, since Q is closed, there is some decision tree which
computes g exactly and has finite cost. So we may use the minimax theorem [BB20, Theorem 2.18] to show
that

LR
Q
α (g) = sup

µ
min
T

costα(T, µ)

bias(T, µ)
.

We rewrite the right hand side above in terms of the underlying distributions µ0 and µ1 over 0-inputs
and 1-inputs of g respectively. The distribution µ must place equal weight on µ0 and µ1 for otherwise some
decision tree which makes no queries solves g on this distribution with positive bias. Using this, we get

LR
Q
α (g) = sup

µ0,µ1

min
T

costα(T, µ0) + costα(T, µ1)

2TV(tran(T, µ0), tran(T, µ1))

by reasoning exactly as in [BBGM22] (note that this does not depend at all on the query set). Here µ0 and
µ1 vary over distributions on 0-inputs and 1-inputs of g respectively and T varies over Q-trees whose leaves
are not labeled.

The next lemma will be used to write the above expression with min{costα(T, µ0), costα(T, µ1)} in the
numerator instead of the sum costα(T, µ0) + costα(T, µ1). Compared to the corresponding statement in
[BBGM22, Lemma 7], we lose an additional additive constant because some query responses may have cost
0.

Lemma B.5 (essentially Lemma 7 in [BBGM22]). Let µ0, µ1 be distributions on M . Then

min
T

max{costα(T, µ0), costα(T, µ1)}
TV(tran(T, µ0), tran(T, µ1))

≤ 6min
T

min{costα(T, µ0), costα(T, µ1)}
TV(tran(T, µ0), tran(T, µ1))

+ 4.

Proof. Let T be a Q-tree achieving the minimum on the right hand side. Without loss of generality, assume
that costα(T, µ0) ≤ costα(T, µ1). We will modify T to get a Q-tree T ′ whose cost is not much more than
cost(T, µ0) and for which the total variation distance does not grow by much. T ′ is obtained by converting
each marked node v in T ′ satisfying Prµ1

[v] > 3Prµ0
[v] into a leaf. Here Prµ[v] denotes the probability that

an input drawn from µ reaches the node v. Note that cost(T ′, µ0) ≤ cost(T, µ0) since we have only truncated
the tree.

To estimate cost(T ′, µ1), consider the following indicator random variables. For each marked node v in
T ′, let Xv denote the indicator variable for reaching node v. Then cost(T ′, µ1) = E[

∑

v Xv] where the sum is
over only marked nodes in T ′. We now group the nodes according to whether they were converted to leaves
or not. Let V denote the leaves of T ′ and let C denote the set of nodes where a cutoff occurs. Then

cost(T ′, µ1) =
∑

v/∈C

Pr
µ1

[v] +
∑

v∈C

Pr
µ1

[v] ≤ 3
∑

v/∈C

Pr
µ0

[v] + Pr
µ1

[C] ≤ 3 cost(T, µ0) + Pr
µ1

[C].

The first inequality follows from the fact that a cutoff does not occur only when Prµ1
[v] ≤ 3Prµ0

[v] and that
since the nodes where a cutoff occurs are leaves in T ′, they form a partition of the event C. This implies

costα(T
′, µ1) ≤ α+ 3 cost(T, µ0) + Pr

µ1

[C] ≤ 3(α+ cost(T, µ0)) + Pr
µ1

[C] ≤ 3 costα(T, µ0) + Pr
µ1

[C].

43

The calculation for the total variation distance stays the same as in [BBGM22].

TV(tran(T, µ0), tran(T, µ1)) ≤
1

2

∑

v∈V \C
|Pr
µ0

[v]− Pr
µ1

[v]|+ 1

2

∑

v∈C

(Pr
µ0

[v] + Pr
µ1

[v])

≤ 1

2

∑

v∈V \C
|Pr
µ0

[v]− Pr
µ1

[v]|+ Prµ0
[C] + Prµ1

[C]

2

TV(tran(T ′, µ0), tran(T
′, µ1)) ≥

1

2

∑

v∈V \C
|Pr
µ0

[v]− Pr
µ1

[v]|+ 1

4

∑

v∈C

(Pr
µ0

[v] + Pr
µ1

[v])

≥ 1

2

∑

v∈V \C
|Pr
µ0

[v]− Pr
µ1

[v]|+ Prµ0
[C] + Prµ1

[C]

4
≥ Prµ1

[C]

4

These imply the stated bound.

Lemma B.5 implies that

sup
µ0,µ1

min
T

min{costα(T, µ0), costα(T, µ1)}
TV(tran(T, µ0), tran(T, µ1))

≤ LR
Q
α (g) ≤ 6 sup

µ0,µ1

min
T

min{costα(T, µ0), costα(T, µ1)}
TV(tran(T, µ0), tran(T, µ1))

+ 4.

Let dLR
Q
α (g) denote supµ0,µ1

minT
min{costα(T,µ0),costα(T,µ1)}
TV(tran(T,µ0),tran(T,µ1))

. The following lemma captures the main

simulation underlying Theorem B.4.

Lemma B.6. For any relation R ⊆ {0, 1}n×O, partial function g : M → {0, 1, *} and real α > 0,

R
Q
ǫ (R ◦ g) ≥ R

dt

ǫ (R) dLRQ
α (g)− αn.

To prove this, we will need the analogue of the decision tree simulator from [BBGM22]. A decision tree
simulator is a randomized algorithm which is given two input distributions µ0 and µ1 on M , an unknown bit
b ∈ {0, 1} and a stream of queries coming from some Q-tree. The goal of the algorithm is to respond to these
Q-queries according to the distribution µb while querying b with low probability. [BBGM22] show that when
the inputs come from some set Σm and each query reveals a coordinate, this can be done while querying b
with only probability TV(tran(T, µ0), tran(T, µ1)) which is optimal.

Proposition B.7 ([BBGM22]). There exists a decision tree simulator that simulates the queries of a Q-tree
T on µb while querying b with only probability TV(tran(T, µ0), tran(T, µ1)).

Their simulator can be straightforwardly modified to get a simulator for Q-trees. We still describe it in
detail since it will also be useful later.

Proof. The simulator is described in Algorithm 1.
We now verify that for any node v in a Q-tree T , on running the simulator on T ,

1. v is reached with probability µb(v), where we identify v with the subset of M reaching v (which is the
same as the head of the query at v if v is an internal node)

2. v is reached without querying b with probability µmin(v).

We prove this by induction on the actual depth of v in T . The statements clearly hold at the root.
Suppose v has parent w. Let (S, (Si)i∈[k]) be the query at w and suppose Sj is the response corresponding

to node v.
By induction, we know that w is reached without querying b with probability µmin(w) = µmin(S). Con-

ditioned on reaching w without querying b, the probability that b is queried when processing query q is
1− u/µmin(S) where u =

∑

i∈[k] µmin(Si). Conditioned on not having queried b when processing the query,

44

Algorithm 1: Q-tree simulator

1 for all S ⊆M do

2 µmin(x)← min{µ0(S), µ1(S)};
3 S ←M ;
4 b← ∗;
5 while more queries remain do

6 Let (S, (Si)i∈[k]) be the next query ; // Costs can be ignored for the simulation.

7 u←∑

i∈[k] µmin(Si);

8 if b = ∗ then
9 With probability 1− u/µmin(S), query the value of b;

10 if b = ∗ then
11 S ← Si for a random i ∈ [k], where each i is picked with probability µmin(Si)/u ;

12 else

13 S ← Si for a random i ∈ [k], where each i is picked with probability µb(Si)−µmin(Si)
µb(S)−u ;

the probability that the simulator picks Sj is µmin(Sj)/u. So the probability that we reach v without querying
b is

µmin(S) ·
u

µmin(S)
· µmin(Sj)

u
= µmin(Sj).

The probability that we reach v after querying b (either before reaching w or when processing the query
at w) is

(µb(S)− µmin(S)) ·
µb(Sj)− µmin(Sj)

µb(S)− u
+ µmin(S) ·

µmin(S)− u

µmin(S)
· µb(Sj)− µmin(Sj)

µb(S)− u
= µb(Sj)− µmin(Sj).

So the total probability of reaching node v is µmin(Sj) + (µb(Sj)− µmin(Sj)) = µb(Sj) as desired.
The final step is to note that the probability that we query b during the simulation is 1−∑v∈L µmin(v) =

TV(tran(T, µ0), tran(T, µ1)) where L is the set of leaves of T .

We now prove Lemma B.6.

Proof of Lemma B.6. Let β be a real satisfying 0 < β < α. Let µ0, µ1 be the distributions such that for all

trees T , min{costα(T,µ0),costα(T,µ1)}
TV(tran(T,µ0),tran(T,µ1))

≥ dLR
Q
α (g)− β > 0. Let T be a randomized Q-tree for R ◦ g with error ǫ.

We will construct a randomized decision tree T ′ of expected cost at most R
Q
ǫ (R◦g)+αn

dLR
Q
α (g)−β

. On input x ∈ {0, 1}n,
T ′ will essentially simulate T on the distribution µx obtained by sampling for each i ∈ [n], block zi according
to µxi

. This will ensure correctness since for each input y in Mn, T ′ is incorrect on y with probability at most
ǫ and therefore simulating T on any distribution which is supported only on inputs y such that gn(y) = x
will only make an error with probability at most ǫ.

We now describe the simulation. It suffices to show how to simulate a deterministic Q-tree T . For each
i ∈ [n], we will run a separate instance of the decision tree simulator from Proposition B.7 corresponding to
bit xi. At a query (S, i, q) in T , we run the ith simulator with query q. If the simulator queries its unknown
bit b, we query xi and use this to continue the simulation. Based on the response of the simulator, we move
to the corresponding child in T . We continue doing this until we reach a leaf of T and give the same output.

We now estimate the cost on input x. Let pi denote the probability that the ith bit xi is queried by T ′.
Let ci denote the expected cost of queries made in the ith block when running T on x ◦ (µ0, µ1). To relate ci
and pi, consider the randomized tree Ti which on input z ∈M runs T on the following distribution. The ith

45

block is fixed to z and for all j 6= i, the jth block is sampled according to the distribution µxj
. Note that the

only actual queries made by this tree to z correspond to queries in T made to the ith block. Running the
decision tree simulator on Ti with distributions µ0 and µ1 and the hidden bit being xi corresponds exactly to
the simulation above of T when restricted to the ith block. Therefore pi is the same as the probability that
the decision tree simulator queries xi. Also ci is the expected cost of running Ti on µxi

.
We need to show that ci + α ≥ pi(dLR

Q
α (g) − β). This would imply the desired bound since

∑n
i=1 ci ≤

R
Q
ǫ (R ◦ g) and

∑n
i=1 pi is the expected cost of T ′ on x. Now pi = ES∼Ti

[TV(tran(S, µ0), tran(S, µ1))] by
Proposition B.7 and ci = ES∼Ti

[cost(S, µxi
)]. Since pi and ci come from the same probability distribution

on Q-trees, it suffices to show for any S in the support of Ti, cost(S, µxi
)+α ≥ TV(tran(S, µ0), tran(S, µ1)) ·

(dLRQ
α (g)− β). For this, observe that the left hand side is just costα(S, µxi

) which we can bound from below

by min{costα(S, µ0), costα(S, µ1)} ≥ TV(tran(S, µ0), tran(S, µ1)) · (dLRQ
α (g) − β). This gives R

Q
ǫ (R ◦ g) ≥

R
dt

ǫ (R)(dLRQ
α (g)− β)− αn.

Since this holds for all β > 0, we have R
Q
ǫ (R ◦ g) ≥ R

dt

ǫ (R) dLRQ
α (g)− αn.

We now finish the proof of Theorem B.4.

Proof of Theorem B.4. By Lemma B.6, we have for every α > 0,

R
Q
ǫ (R ◦ g) ≥ R

dt

ǫ (R) dLRQ
α (g)− αn.

By combining with Lemma B.5, we get

R
Q
ǫ (R ◦ g) ≥

1

6
R
dt

ǫ (R)(LRQ
α (g)− 4)− αn.

We will now take the limit of the right hand side as α→ 0+. We will show that limα→0+ LR
Q
α (g) = LR

Q(g).
First, note that we always have LR

Q(g) ≤ LR
Q
α (g). We now show that LRQ

α (g) can be made arbitrarily close
to LR

Q(g) by picking α to be small enough. Let T be a randomized Q-tree achieving the minimum in LR
Q(g).

LR
Q
α (g) ≤ max

x

cost(T , x) + α

bias(T , x) ≤ max
x

cost(T , x)
bias(T , x) + max

x

α

bias(T , x)

The second term in the sum can be made arbitrarily small by choosing α appropriately.

We next show that LRQ gives an essentially inner-optimal composition theorem for randomized Q-trees.

Theorem B.8. Let P be a complexity measure for partial functions g : M → {0, 1, *} satisfying R
Q(f ◦g) ≥

Ω(Rdt(f)P (g)) for all partial functions f : {0, 1}n → {0, 1, *}, g : M → {0, 1, *}. Then for all g : M →
{0, 1, *}, LRQ(g) = Ω(P (g)).

Note that even though the above statement gives LR
Q(g) = Ω(P (g)), the composition theorem for LR

Q

Theorem B.4 may fail to be meaningful for some g for which P (g) > 0 because of the additive constant loss.
It would be interesting to know if this is necessary.

To prove Theorem B.8, again we will need to work with LR
Q
α (α > 0). The following lemma shows that

LR
Q
α (g) can be used to upper bound the randomized Q-complexity of ApproxINDk ◦g when k is large enough

in terms of m := |M | and α. Recall that since our query set is complete, there is always a deterministic
Q-tree of cost at most m solving any g.

Lemma B.9 (Lemma 15 in [BBGM22]). For all α > 0, all partial functions g : M → {0, 1, *}, all k ∈ N

such that k
log k ≥

(

36(m+α)
α + 1

)2

,

R
Q(ApproxINDk ◦ g) = O(

√

k log k · LRQ
α (g))

where the implicit constant does not depend on α.

46

Proof. Let β be a real such that 0 < β < 1. Let T be a randomized Q-tree for which on all inputs x,
costα(T ,x)
bias(T ,x) ≤ LR

Q
α (g) + β. We will give a randomized decision tree for ApproxINDk ◦ g which has worst-case

cost O(
√
k log k · (LRQ

α (g) + β)) on every input.
The tree T ′ for ApproxINDk ◦ g is obtained in the following way. For each i ∈ [n], run T on xi, the

ith block of the address part of the input (independently of the previous runs) and let Xi be the random
variable for the α-cost (cost+α) for block xi. If

∑

j≤i Xj has exceeded 36
√
k log k(LRQ

α (g) + β), stop. Since

costα(T, x) ≥ α for all T and x and LR
Q
α (g) ≤ m+α, we necessarily have

∑

j≤k Xj > 36
√
k log k(LRQ

α (g)+β).
Let l be the index of the last block queried. For i ∈ [l], let ui denote the output given by (the current run
of) T ′ on xi. Let z = u1u2 . . . ulvl+1vl+2 . . . vk where each vi is a bit chosen uniformly and independently at
random. The algorithm’s output is obtained by solving the instance of g at index z.

We now estimate the cost of the algorithm. The total cost of all iterations except for the last is at most
36
√
k log k(LRQ

α (g) + β). The cost in the last iteration while computing the address is at most m. Solving
the instance of g at index z also costs at most m. By the choice of k, we have m = O(

√
k log k · LRQ

α (g)) and
so the overall cost is also at most O(

√
k log k · (LRQ

α (g) + β)).
Let us argue correctness now. Let Yi be a Bernoulli random variable indicating whether ui = g(xi).

Here Yi is correlated with Xi according to the decision tree T . By the definition of LRQ
α , we have E[Yi] ≥

1
2 + E[costα(T,xi)]

2(LRQ
α (g)+β)

. Note that the number of correct output bits is exactly S :=
∑

1≤i≤l Yi +
∑

l<i≤k Zi where

Zi is a uniform random bit.
We will show that Pr[S ≥ k

2 + 2
√
k log k] ≥ 2

3 . Let l0 be the smallest integer such that
∑l0

i=1 E[Xi] >

6
√
k log k(LRQ

α (g) + β). Consider the random variable S′ =
∑

1≤i≤max{l,l0} Yi +
∑

max{l,l0}<i≤k Zi. Since

S 6= S′ implies l < l0, we have by Markov’s inequality

Pr[S 6= S′] ≤ Pr[

l0−1
∑

i=1

Xi > 36
√

k log k (LRQ
α (g) + β)] ≤

∑l0−1
i=1 E[Xi]

36
√
k log k(LRQ

α (g) + β)
≤ 1

6
.

Also note that we can couple Zi and Yi for each i so that Yi ≥ Zi since E[Yi] ≥ 1/2. This implies that

S′ ≥∑l0
i=1 Yi +

∑k
i=l0+1 Zi. So it suffices to show that

∑l0
i=1 Yi +

∑k
i=l0+1 Zi ≥ k

2 +2
√
log k with probability

at least 1− 1
9 . By the choice of l0, we have

l0
∑

i=0

E[Yi] ≥
l0
∑

i=0

(
1

2
+

E[costα(T, xi)]

2(LRQ
α (g) + β)

) >
l0
2
+ 3
√

k log k.

So by the Chernoff bound, we have
∑l0

i=1 Yi+
∑k

i=l0+1 Zi ≥ k
2 +2

√
log k except with probability at most 1/9.

So with probability at least 2/3, z agrees with gk(x) on at least k/2+2
√
k log k bits. The last step of the

algorithm incurs no error.

Proof of Theorem B.8. By the assumption on P , we have for any k, RQ(ApproxINDk ◦g) ≥ Ω(
√
k log kP (g)).

By Lemma B.9, for any α > 0, if k is large enough, we have R
Q(ApproxINDk ◦ g) ≤ O(

√
k log kLRQ

α (g)).
Combining these gives LRQ

α (g) = Ω(P (g)). Since this holds for all α > 0, we get LRQ(g) = limα→0+ LR
Q
α (g) =

Ω(P (g)).

One basic fact about LR which we have not been able to adapt directly to our general setting is the
relation R

dt(g) ≤ O(LR(g)2).

B.2.2 χ̂Q, a variant of conflict complexity

We will now prove RQ
ǫ (R◦ g) ≥ Ω(Rdt

ǫ

√

R
dt(g))−n. To do this, we consider a complexity measure χ̂Q, which

is a variant of conflict complexity [GLSS23]. The proofs of the composition theorem using χ̂Q and the bound
R
Q(g) ≤ O(χ̂Q(g)2) closely follow the proofs involving conflict complexity but we will prove them in some

47

detail below for completeness. For readers familiar with conflict complexity, we start by explaining the key
differences.

The natural Q-analogue of conflict complexity would use the following generalization of the simula-
tion in [GLSS23]. Suppose we have a deterministic Q-tree T on M and wish to simulate the action of
some distribution µb where µ0 and µ1 are some distributions on M and b is some unknown bit. We
wish to simulate T without querying b before having seen many marked edges in T during the simula-
tion (in expectation). At a node v in T with children v1, v2, . . . , vk, we move to the child vi with probability
min{Prx∼µ0

[x ∈ vi|x ∈ v],Prx∼µ1
[x ∈ vi|x ∈ v]}. With the remaining probability, 1−∑i∈[k] min{Prx∼µ0

[x ∈
vi|x ∈ v],Prx∼µ1

[x ∈ vi|x ∈ v]}, we query b and move to vi with probability Prx∼µb
[x ∈ vi|x ∈ v]. Note that

1 −∑i∈[k] min{Prx∼µ0
[x ∈ vi|x ∈ v],Prx∼µ1

[x ∈ vi|x ∈ v]} is just the total variation distance between the

distributions induced on the children of v by the distributions µ0|v and µ1|v. We may now define Q-conflict
complexity of two distributions µ0, µ1 to be the minimum number of marked edges seen by the above simu-
lation before stopping to query b for some tree T separating µ0 and µ1. Using this simulation, one can prove

a composition theorem for this measure, say Q-conflict complexity χQ, RQ
ǫ (R ◦ g) ≥ R

dt

ǫ χ
Q(g).

It is not very clear, however, how to modify the proof in [GLSS23] to show that Rdt(g) ≤ O(χQ(g)2 + 1).
As a first attempt, since we only include marked edges in the cost, it seems natural to only keep track of
marked nodes instead of all nodes as in [GLSS23, Claim 6.2]. Informally, we may think of compressing any
unmarked edges which don’t end at leaves. We may now try to lower bound for any marked node v, the
mutual information between g(x) and the next marked node reached after reaching v. This can be shown
to be related to the total variation distance between the distributions induced on the children of v in the
compressed tree by µ0|v and µ1|v. We would now like to show that this quantity is lower bounded by
the probability that the random process queries b after it reaches v and before crossing any more marked
edges. The issue now is that this probability can be larger than the total variation distance described above
since the [GLSS23] simulation is only locally optimal rather than over the whole tree. We get around this
by using the optimal decision tree simulator [BBGM22] to simulate the moves from one marked node to
another. Since the probability that the simulator queries b is exactly equal to the TV distance of the involved
distributions, this lets us finish the proof. Of course, since we changed the simulation, we also need to

modify the composition theorem. Here we are only able to show R
Q
ǫ (R ◦ g) ≥ R

dt

ǫ (R)χ̂Q(g) − n instead of

R
Q
ǫ (R ◦ g) ≥ R

dt

ǫ (R)χ̂Q(g)−O(Rdt

ǫ (R)).
We now define χ̂Q formally. We will use notation similar to [GLSS23]. Let T be a Q-tree. For a marked

node v in T , we use π(v) to denote the unique closest marked node on the path from the root to v. (Note
that π(v) is often not the actual parent of v.) By convention, we think of the root as being marked. For a
node v, we use dT (v) to indicate the number of marked edges on the path from the root to v.

Let g : M → {0, 1, *} be a partial function. Fix probability distributions µ0, µ1 over 0-inputs and 1-inputs
of g respectively. We use µ0|v to denote the distribution µ0 after conditioning on reaching the vertex v and
similarly use µ1|v. Let v be a marked node. We use Tv to denote the subtree of T rooted at v where every v
to leaf path in T is truncated at the first marked node after v. Tv includes any leaf l of T such that the path
from v to l does not include any marked edges. For b ∈ {0, 1}, we use σb(T, v) to denote the distribution
on the leaves of Tv induced by the distribution µb|v. Note that σb depends on µb but we suppress this
dependence for ease of notation.

Let T be a Q-tree computing g. Define for each marked node v in T ,

R(v) =

{

1 if v is the root,

R(π(v)) ·min{Prµ0|π(v)[x ∈ v],Prµ1|π(v)[x ∈ v]} otherwise.

Also define ∆(v) = TV(σ0(T, v), σ1(T, v)). Similar to the simulation in [GLSS23], these quantities are related
to a random walk done on the tree T . The difference here is that we always stay at marked nodes. (Strictly
speaking, this means that the random walk is not really a walk on the tree, but we will continue calling it
so for simplicity.) At a marked node v, we move to an immediate marked descendant w with probability
min{Prµ0|v[x ∈ w],Prµ1|v[x ∈ w]}. With the remaining probability ∆(v) = TV(σ0(T, v), σ1(T, v)), we stop
the random walk at v.

48

Define χ̂Q(T, (µ0, µ1)) = (
∑

v dT (v)∆(v)R(v)) + 1 where the sum is only over marked nodes in T . (The

+1 term is not necessary but will be convenient later for the upper bound R
Q(g) ≤ O(χ̂Q(g)2).) Define

χ̂Q(g) = max
µ0,µ1

min
T

χ̂Q(T, (µ0, µ1)).

where µ0 and µ1 vary over distributions on the 0-inputs and the 1-inputs of g respectively, T varies over
deterministic Q-trees solving g.

Before we describe the modified query process, we explain how to convert the above random walk which
jumps from marked node to marked node into an actual random walk on the tree. To do this, we will use the
online decision tree simulator of [BBGM22] (Algorithm 1) to simulate one big step of the above random walk.
In more detail, at any marked node v, we will initialize the simulator with the distributions µ0|v and µ1|v.
We simulate the following queries using the simulator until we reach a marked node or the simulator queries
the bit b. In the latter case, we stop the random walk and in the former case, we reset the distributions in
the simulator according to the new marked node. Note that this does indeed give the right distribution.

The simulation using χ̂Q(g) is described in Algorithm 2. We now informally describe what it is doing. In
lines 1-7, we set up for each block some variables required for the simulation. These variables roughly are the
ones required by the decision tree simulator of Proposition B.7. Here (µi

0, µ
i
1) indicate the distributions being

currently simulated in block i. The counter cnti indicates the number of marked edges in block i crossed
before making a query to xi. S = S1 × S2 × · · · × Sn indicates the set of inputs reaching the current node.

Lines 11 to 24 are essentially the steps from the decision tree simulator (Algorithm 1) applied to block
j. If the cost of the current response is 1 (line 25), then we end the current run of the simulator. If xj was
queried during the current run (indicated by querycurrj = 1) , we set queryprev ← 1 (line 27) so that in the
future we can naively simulate the query. Otherwise, we reset the distributions of the simulator for block i
to the conditional distributions at the new vertex (line 30). Lines 32-34 perform the naive simulation where
we directly move to the appropriate child according to the conditional distribution at the current node.

We next verify that the simulation reaches each node v of T with the correct probability.

Lemma B.10. Let v be a node of T . Let x ∈ {0, 1}n. Let A(v) denote the event that Algorithm 2 reaches
v during the simulation on input x and distributions (µ0, µ1). Let B(v) denote the event that we reach v
when running T on a random input from the distribution µx. Then Pr[A(v)] = Pr[B(v)].

Proof. Let S = S1 × S2 × · · · × Sn be the set of inputs reaching v. Since µx =
∏

i∈[n] µxi
is a product

distribution, Pr[B(v)] =
∏

i∈[n] Prz∼µxi
[z ∈ Si].

Let v0, v1, . . . , vk = v be the nodes on the root to v path in T . We may write Pr[A(v)] =
∏

i∈[k] Pr[A(vi)|A(vi−1)].

In any iteration, the probabilities used by the simulation only depend on the block being queried (and is
independent of the rest) and the set of consistent inputs also changes only in that block. This means that we
can group terms in the product

∏

i∈[k] Pr[A(vi)|A(vi−1)] according to which block is being queried. For each

block i ∈ [n], if we can show that the corresponding product of terms is Prz∼µxi
[z ∈ Si], we will be done.

So fix any i ∈ [n]. Suppose the queries into block i (ignoring the costs) to reach the node v are

(M, (U1
l)l∈[m1]), (U

1
1 , (U

2
l)l∈[m2]), . . . , (U

s−1
1 , (Us

l)l∈[ms])

where s is the total number of queries into block i before reaching node v, and we assume, without loss
of generality, that the response to query (U j−1

1 , (U j
l)l∈mj

) which is consistent with Si is U j
1 . In particular,

Us
1 = Si.
We will show by induction on the number of cost-1 responses in block i, that the probability of getting

to the set Si is exactly Prz∼µxi
[z ∈ Si]. This is clearly true if v is the root.

Now suppose Us′

1 is the last cost-1 response among M,U1
1 , U

2
1 , . . . , U

s−1
1 . Conditioned on having queried

xi before reaching Us′

1 , the probability that we reach Us
1 = Si during the simulation is

s
∏

j=s′+1

Pr
z∼µxi

[z ∈ U j
1 |z ∈ U j−1

1] = Pr
z∼µxi

[z ∈ Us
1 |z ∈ Us′

1].

49

Algorithm 2: χ̂Q simulator for a Q-tree T on Mn

1 for i ∈ [n] do
2 queryprevi ← 0 ; // Indicates if xi was queried before the last cost 1 query response

in block i
3 querycurri ← 0 ; // Indicates if xi was queried after the last cost 1 query response

in block i
4 xi ← ∗;
5 (µi

0, µ
i
1)← (µ0, µ1) ; // Current distributions to be simulated

6 cnti ← 0 ; // Counts cost 1 responses in block i
7 Si ←M ; // Current set of inputs in block i

// S denotes S1 × S2 × · · · × Sn

8 v ← root of T ; // Current node in T
9 while v is not a leaf of T do

10 Let (S, j, q) be the query at v where q = (Sj , (Ui, ci)i∈[k]) ;
11 if queryprevj = 0 then

12 u←∑

i∈[k] min{µj
0(Ui), µ

j
1(Ui)};

13 pmin ← min{µj
0(Sj), µ

j
1(Sj)};

14 if querycurrj = 0 then

15 b← Bernoulli(1− u/pmin);
16 if b = 1 then

17 Query xi;
18 querycurrj = 1;

19 if querycurrj = 0 then

20 Pick i ∈ [k] at random where i has probability min{µj
0(Ui), µ

j
1(Ui)}/u;

21 else

22 Pick i ∈ [k] at random where i has probability
µj
xi

(Ui)−min{µj
0(Ui),µ

j
1(Ui)}

pmin−u ;

23 Sj ← Ui;
24 v ← vi where vi is the child of v corresponding to response Ui;
25 if ci = 1 then

26 if querycurrj = 1 then

27 queryprevj ← 1;

28 else

29 cntj ← cntj + 1;

30 (µj
0, µ

j
1)← (µ0|Sj , µ1|Sj) ; // Update distributions to current conditional

distributions

31 else

32 Pick i ∈ [k] randomly, where i is picked with probability Prz∼µxi
[z ∈ Ui|z ∈ Sj] ;

33 Sj ← Ui;
34 v ← vi where vi is the child of v corresponding to response Ui;

50

On the other hand, if we reach Us′

1 without having queried xi earlier, we run the decision tree simulator with
distributions (µ0|Us′

1 , µ1|Us′

1). This implies that conditioned on reaching Us′

1 without having queried xi, the
probability that we reach Us

1 is Prz∼µxi
|Us′

1
[z ∈ Us

1] = Prz∼µxi
[z ∈ Us

1 |z ∈ Us′

1].

By induction, we know that the total probability with which we reach Us′

1 during the simulation is
Prz∼µxi

[z ∈ Us′

!]. So we have

Pr[Us
1 reached during simulation]

= Pr[Us
1 reached during simulation|Us′

1 reached without querying xi] · Pr[Us′

1 reached without querying xi]

+ Pr[Us
1 reached during simulation|Us′

1 reached after querying xi] · Pr[Us′

1 reached after querying xi]

= Pr
z∼µxi

[z ∈ Us
1 |z ∈ Us′

1](Pr[Us′

1 reached without querying xi] + Pr[Us′

1 reached after querying xi])

= Pr
z∼µxi

[z ∈ Us
1 |z ∈ Us′

1] · Pr[Us′

1 reached]

= Pr
z∼µxi

[z ∈ Us
1 |z ∈ Us′

1] · Pr
z∼µxi

[z ∈ Us′

1] = Pr
z∼µxi

[z ∈ Us
1].

For i ∈ [n], define Dx,i(T, (µ0, µ1)) = E[cnti], the expected number of marked queries made into block
i before the simulator (Algorithm 2) queries xi when run on input x with distributions (µ0, µ1). De-
fine Dx(T, (µ0, µ1)) =

∑

i∈[n] Dx(T, (µ0, µ1)). Note that if n = 1, for any x ∈ {0, 1}, Dx(T, (µ0, µ1)) =

χ̂Q(T, (µ0, µ1))− 1.
An analogue of the direct sum theorem, [GLSS23, Theorem 5.2] can be proved in the same way.

Proposition B.11. Let µ0 and µ1 be distributions on M with disjoint supports. Let T be a Q-tree on Mn

which solves g on each block. Then for any x ∈ {0, 1}n,

Dx(T, (µ0, µ1)) ≥ n(min
S

χ̂Q(S, (µ0, µ1))− 1).

where S varies over Q-trees on M solving g.

The −1 in the lower bound accounts for the +1 added separately in the definition of χ̂Q.
Using the above direct sum result, we get a composition theorem with χ̂Q by following the proof of

[GLSS23, Theorem 5.1].

Theorem B.12. For any relation R ⊆Mn ×O and partial function g : M → {0, 1, *},

R
Q
ǫ (R ◦ g) ≥ R

dt

ǫ (R)χ̂Q(g)− n.

Proof. Let µ0, µ1 be the distributions on 0-inputs and 1-inputs of g achieving the maximum in the definition
of χ̂Q(g), so that for all deterministic Q-trees T solving g, χ̂Q(g) ≤ χ̂Q(T, (µ0, µ1)). Let T be a randomized
Q-tree computing R◦ g to error ǫ. We will give a randomized decision tree T ′ computing R to error ǫ. T ′ is
defined by picking sampling a Q-tree T according to T and then running Algorithm 2 on T . Finally, when a
leaf is reached in the simulation, the same output is given in T ′.

By Lemma B.10, during the simulation each leaf is reached with the same probability as an input z ∼ µx,
where x is the input to T ′. This implies that Pr[T ′(x) /∈ R(x)] = Prz∼µx [T (z) /∈ (R ◦ g)(z)] = Ez[Pr[T (z) /∈
(R ◦ g)(z)]] ≤ ǫ. This shows correctness of T ′.

We now bound the number of queries made by T ′ on any input. We will modify T to get a randomized
Q-tree W which always computes g correctly (no error) and for which we can relate the total number of
marked queries inW with the expected cost of T and T ′. The treeW is described in the Algorithm 3. Inside
the while loop on lines 4-5, we keep making queries until we get a cost 1 response. (Possibly the last response
on the last query into block i made by T already had cost 1, in which case this while loop is skipped.) In
line 6, since µ0(Si) > 0 and µ1(Si) > 0, the distributions µ0|Si and µ1|Si are well-defined and so there exists

51

Algorithm 3: W
1 Run T on z ∈Mn.
2 Suppose T terminates at leaf with inputs S = S1 × S2 × . . . Sn.
// Si always refers to the current set of possible inputs in block i

3 for i ∈ [n] do
4 while the last response obtained in block i had cost 0 and g is not constant on Si do

// If the last query made by T into block i has cost 1, this loop is not

entered

5 Make any query q into block i.

6 if µ0(Si) > 0 and µ1(Si) > 0 then

7 Run H on zi where H is a Q-tree on M satisfying χ̂Q(H, (µ0|Si, µ1|Si)) ≤ χ̂Q(g).

8 else

// The queries made in this case do not affect the cost of the simulation

9 Run any Q-tree on zi which solves g restricted to the set Si.
// Possibly g is constant on Si in which case no new queries are made.

a tree H satisfying χ̂Q(H, (µ0|Si, µ1|Si)) ≤ χ̂Q(g) by the definition of χ̂Q(g). Lines 8-9 are not crucial to
the argument, but are only included because the definition of χ̂Q requires g to be computed correctly on all
inputs (even those not in the support of either distribution). In lines 7 and 9, we use Lemma B.1 to find a
Q-tree whose root has inputs Si.

We now bound Dx(W, (µ0, µ1)) := EW∼W [Dx(W, (µ0, µ1))] in terms of χ̂Q(g), cost(T ′, x) and the max-
imum cost of running T on any input. For i ∈ [n], let Ei denote the event that xi was queried during the
simulation. By averaging, there is a deterministic Q-tree W in the support ofW for which Dx(W, (µ0, µ1)) ≤
Dx(W, (µ0, µ1)). By Proposition B.11, Dx(W, (µ0, µ1)) ≥ n(χ̂Q(g)− 1) where we used that µ0, µ1 are distri-
butions achieving the maximum in the definition of χ̂Q(g).

We will now show thatDx(W, (µ0, µ1)) ≤ d+(n−cost(T ′, x))χ̂Q(g) where d = maxz cost(T , z). For i ∈ [n],
let Ei denote the event that xi is queried when running T ′ on x. Let Xi be the random variable counting
the number of cost 1 responses seen in block i when running Algorithm 2 on T . (So Dx,i(T , (µ0, µ1)) =
ET∼T [Dx,i(T, (µ0, µ1))] = E[Xi].) This corresponds to the contribution to Dx(W, (µ0, µ1)) coming from line
1 of Algorithm 3. Let Yi be the random variable counting the number of cost 1 responses seen when running
line 7 of Algorithm 3 in the iteration for block i before xi is queried. (So if xi had already been queried
before reaching line 7, then Yi = 0.) Let Ii be the indicator random variable for seeing a cost 1 response in
line 5 of Algorithm 3 during the iteration for block i before having queried xi.

We may now write

Dx(W, (µ0, µ1)) = E[
∑

i∈[n]

(Xi + Ii + Yi)] = E[
∑

i∈n

Xi] +
∑

i∈[n]

E[Ii] +
∑

i∈[n]

E[Yi].

We will bound each of these terms separately. To see E[
∑

i∈n Xi] ≤ d, we will use that
∑

i∈[n] Xi is at most
the total number of marked edges seen on the path from the root to leaf of T . By Lemma B.10, we know
that each leaf of T is reached with the same probability as a random z ∼ µx would reach it. This implies
that E[

∑

i∈[n] Xi] ≤ Ez∼µx [cost(T , z)] ≤ d.

Note that Ii = 1 implies that xi has not been queried in T ′ (Ei does not occur) and similarly Yi > 0
implies Ei does not occur. So E[Ii] ≤ Pr[¬Ei] = 1 − Pr[Ei]. To bound E[Yi], we first condition on reaching
a node v in W corresponding to line 7 in the iteration for block i, and not having queried xi earlier. Let us
denote this event by Fv. By the choice of H in line 7, we know that E[Yi|Fv] ≤ χ̂Q(g)− 1. This gives

E[Yi] =
∑

v

Pr[Fv] · E[Yi|Fv] ≤
∑

v

Pr[Fv](χ̂
Q(g)− 1) ≤ (1− Pr[Ei])(χ̂

Q(g)− 1),

52

where v varies over the nodes corresponding to line 7 in Algorithm 2 for block i. Combining these, we have
Dx(W, (µ0, µ1)) ≤ d+

∑

i∈[n](1− Pr[Ei])χ̂
Q(g) = d+ (n− cost(T ′, x))χ̂Q(g) as desired.

By using the two bounds on Dx(W, (µ0, µ1)), we get

n(χ̂Q(g)− 1) ≤ d+ (n− cost(T ′, x))χ̂Q(g)

which on rearranging gives d ≥ cost(T ′, x)χ̂Q(g)− n.

We next show that Rdt

ǫ (g) ≤ O(χ̂Q(g)2) for some fixed constant ǫ < 1/2 by adapting the proof of [GLSS23,
Theorem 6.1]. By Lemma B.1, we can still amplify the success probability by repeating a randomized decision
tree a constant number of times. The cost in later iterations does not increase by Lemma B.1.

Theorem B.13. There exists a constant ǫ < 1/2 such that for all g : M → {0, 1, *}, RQ
ǫ (g) ≤ O(χ̂Q(g)2).

Proof. Let d := ⌈χ̂Q(g)⌉. Since χ̂Q(g) ≥ 1, we have d ≤ 2χ̂Q(g). We will show that for each distribution
µ supported only on g−1(0) ∪ g−1(1), there exists a deterministic Q-tree whose worst case cost is bounded
by O(d2) and which makes an error with probability at most ǫ on the distribution µ for some fixed ǫ < 1/2.
Define µ0 = µ|g−1(0) and µ1 = µ|g−1(1). Consider a Q-tree T ′ which achieves the minimum in the definition
of χ̂Q(g) on the distributions µ0, µ1.

Obtain the tree T from T ′ by making any marked node whose marked depth is D := 10d2 a leaf. A leaf
v in T is labeled by b ∈ {0, 1} such that Prx∼µ[x ∈ v and g(x) = b] ≥ Prx∼µ[x ∈ v and g(x) = 1− b].

Since we have already ensured that cost(T, x) on any x ∈ M is at most 10d2, we only need to verify
correctness. Let E be the event that x does not reach a marked node v where Prx∼µ[g(x) = 0|x ∈ v] ≤ 1/3
or Prx∼µ[g(x) = 1|x ∈ v] ≤ 1/3.

The case where E happens with not too large probability (Pr[E] < 3/4) can be handled in exactly
the same way as in [GLSS23]. Once a vertex v is reached such that Pr[g(x) = 0 | x ∈ v] ≤ 1/3 or
Pr[g(x) = 1 | x ∈ v] ≤ 1/3, the contribution to the error of the inputs that reach v cannot be more than 1/3.
This follows from an application of Jensen’s inequality and the triangle inequality.

We now explain the changes required for the other case Pr[E] ≥ 3/4. In this case, we will bound the
mutual information between the transcript of T on x and g(x). Since the transcript of T is determined by
the leaf v reached, we will treat the two interchangeably. Note that since T ′ solves g, if E occurs, a leaf is
not reached. For i ∈ {0} ∪ [10d2], let vi denote the ith marked node reached on an input x ∼ µ. Recall that
the root is considered a marked node and so v0 is always the root of T . It will also be convenient to count all
leaves as marked nodes. So if x reaches a leaf before crossing i marked edges, then vi is the leaf reached by
x. For i ∈ [D], let Si denote the set of all inputs that reach vi (so if vi is an internal node, Si is the head of
the query at vi). We will show that the mutual information I(S1, S2, . . . , SD; g(x)) is at least some positive
constant under the assumption Pr[E] ≥ 3/4.

We first need the following claim which relates the information between Si and g(x) after having reached
v in terms of ∆(v) following [GLSS23, Claim 6.4].

Claim B.14. Let v be a vertex in T which lies in the support of vi−1 and is not a leaf. Then

I(Si; g(x) | x ∈ v) ≥ 8(Pr
x∼µ

[g(x) = 0 | x ∈ v] · Pr
x∼µ

[g(x) = 1 | x ∈ v] ·∆(v))2.

Proof of claim. Let s1, s2, . . . , sk ⊂M be all the sets in the support of Si after conditioning on x ∈ v. Note
that these actually form a partition of the set of inputs reaching v, corresponding to the immediate marked
descendants of v. Since in all quantities being considered, we condition on v, we suppress this conditioning
in the rest of the proof.

For two random variables X and Y , we use X × Y to denote their independent coupling. By Pinsker’s
inequality,

I(Si; g(x)) = DKL((Si, g(x))||Si × g(x)) ≥ 2TV((Si, g(x)), Si × g(x))2.

We now show that the right hand side can be rewritten as the quantity we want. Fix any b ∈ {0, 1}, j ∈ [k].
We have

Pr[(g(x), Si) = (b, sj)] = Pr[g(x) = b] Pr[Si = sj | g(x) = b].

53

Also

Pr[(g(x), Si) = (b, sj)] = Pr[g(x) = b](Pr[g(x) = b] Pr[Si = sj | g(x) = b]+Pr[g(x) = 1−b] Pr[Si = sj | g(x) = 1−b]).

Combining

|Pr[(g(x), Si) = (b, sj)]− Pr[(g(x), Si) = (b, sj)]| = Pr[g(x) = 0] Pr[g(x) = 1]| Pr
x∼µ0

[Si ∈ sj]− Pr
x∼µ1

[Si ∈ sj]|.

Adding over all b ∈ {0, 1} and j ∈ [k], we get

TV((Si, g(x)), Si × g(x)) = 2Pr[g(x) = 0] Pr[g(x) = 1] · TV(σ0(T, v), σ1(T, v))

= 2Pr[g(x) = 0] Pr[g(x) = 1] ·∆(v).

Plugging this into I(Si; g(x)) ≥ 2TV((Si, g(x)), Si × g(x))2 gives the statement of the claim.

The rest of the proof stays the same.

Claim B.15.
10d−1
∑

i=0

E[∆(vi) | E] ≥ 13

20
.

Proof. Consider running Algorithm 2 with distributions µ0, µ1, n = 1 on a bit b which is 1 with probability
Prx∼µ[g(x) = 1] and 0 otherwise. During this simulation, each node in T is reached with the same probability
as an input x ∼ µ by Lemma B.10. The probability that cnt1 < 10d at the end of the simulation is at least
9/10 by Markov’s inequality since d = E[cnt1] + 1. So Pr[cnt1 < 10d|E] ≥ Pr[cnt1 < 10d] − Pr[¬E] ≥
9/10− 1/4 = 13/20.

On the other hand, at any marked node v, the probability of making a query before crossing another
marked node is ∆(v). So we can use a union bound to get an upper bound on the probability that cnt1 < 10d
in terms of ∆(vi).

Pr[cnt1 < 10d | E] ≤
10d−1
∑

i=0

E[∆(vi) | E]

Combining these gives the claim.

We next need a slight generalization of the above claim: for any j ∈ [d],
∑10dj−1

i=10d(j−1) E[∆(vi)|E] ≥ 13/20.

To see this, note that after conditioning on v10d(j−1) being some fixed marked node v (where g is not already
constant), the subtree T ′′ rooted at v must satisfy χ̂Q(T ′′, (µ0|v, µ1|v)) ≤ χ̂Q(g). This lets us use the same

proof as the above claim to get that
∑10dj−1

i=10d(j−1) E[∆(vi)|E, v10d(j−1) = v] ≥ 13/20. By averaging over v, we

get
∑10dj−1

i=10d(j−1) E[∆(vi)|E] ≥ 13/20. Summing over j ∈ [d],

10d2−1
∑

i=0

E[∆(vi)|E] ≥ 13d

20
.

54

We finally lower bound I(S1, S2, . . . , SD; g(x)).

I(S1, S2, . . . , SD; g(x))

≥
D
∑

i=1

I(Si; g(x) | S1, S2, . . . , Si−1)

≥
D
∑

i=1

I(Si; g(x) | vi−1)

≥ 8

D
∑

i=1

E[(Pr[g(x) = 0 | x ∈ vi−1] Pr[g(x) = 1 | x ∈ vi−1] ·∆(vi−1))
2]

≥ 8Pr[E] ·
D
∑

i=1

E[(Pr[g(x) = 0 | x ∈ vi−1] Pr[g(x) = 1 | x ∈ vi−1] ·∆(vi−1))
2 | E]

≥ 8 · 3
4
·
(

1

3

)2

·
D
∑

i=1

E[∆(vi−1)
2 | E]

≥ 2

3

D
∑

i=1

(E[∆(vi−1) | E])2

≥ 2

3
· 1

10d2

(

D
∑

i=1

E[∆(vi−1) | E]

)2

≥ 1

15d2
·
(

13d

20

)2

≥ 1

40
.

55

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

