
Lifting to Randomized Parity Decision Trees

Farzan Byramji ∗ Russell Impagliazzo †

Abstract

We prove a lifting theorem from randomized decision tree depth to randomized parity deci-
sion tree (PDT) size. We use the same property of the gadget, stifling, which was introduced by
Chattopadhyay, Mande, Sanyal and Sherif [ITCS 23] to prove a lifting theorem for deterministic
PDTs. Moreover, even the milder condition that the gadget has minimum parity certificate
complexity at least 2 suffices for lifting to randomized PDT size.

To improve the dependence on the gadget g in the lower bounds for composed functions,
we consider a related problem g∗ whose inputs are certificates of g. It is implicit in the work
of Chattopadhyay et al. that for any function f , lower bounds for the ∗-depth of f∗ give lower
bounds for the PDT size of f . We make this connection explicit in the deterministic case
and show that it also holds for randomized PDTs. We then combine this with composition
theorems for ∗-depth, which follow by adapting known composition theorems for decision trees.
As a corollary, we get tight lifting theorems when the gadget is Indexing, Inner Product or
Disjointness.

1 Introduction

Lifting theorems provide a way to convert lower bounds for a function f in a weak model of
computation to lower bounds in a stronger model of computation by composing with a function
g, typically called a gadget. Given functions f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1}, their
composition f ◦ g : ({0, 1}m)n → {0, 1} is defined by

(f ◦ g)(x1, x2, . . . , xn) = f(g(x1), g(x2), . . . , g(xn)).

Typically such lifting theorems show that for certain choices of the gadget g, the two-party com-
munication complexity of f ◦ g in some model is lower bounded by the complexity of f in a related
query model [RM97, GPW18, GKPW19, GPW20, CFKMP21, LMMPZ22]. These have several ap-
plications and have led to the resolution of some long-standing problems [RM97, GP18, GGKS18,
CKLM19, PR18]. An important challenge in the area is to decrease the gadget size to a constant.
Current proofs require the gadget size to be logarithmic in the input length of the outer function.

As a stepping stone towards query-to-communication lifting theorems with improved gadget
size, we may consider the problem of lifting to models which lie between communication protocols
and decision trees. One such natural model is that of parity decision trees (PDTs). A parity
decision tree is a decision tree where each node queries a parity

∑

i∈S xi for some S ⊆ [n] and the
sum is over F2. While being interesting on its own, another motivation for proving PDT lower
bounds comes from proof complexity. The minimum size of a refutation of an unsatisfiable CNF
formula φ in the proof system tree-like Resolution over parities (Res(⊕)) is (essentially) equal to the
minimum size of a deterministic parity decision tree solving the related false clause search problem
for φ [IS20]. Lifting theorems for deterministic parity decision trees using constant size gadgets

∗University of California, San Diego. fbyramji@ucsd.edu. Supported by NSF Award AF: Medium 2212136.
†University of California, San Diego. rimpagliazzo@ucsd.edu. Supported by NSF Award AF: Medium 2212136.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 202 (2024)

mailto:fbyramji@ucsd.edu
mailto:rimpagliazzo@ucsd.edu

were recently proved by Chattopadhyay, Mande, Sanyal and Sherif [CMSS23] and independently by
Beame and Koroth [BK23] which gave a direct way to transform tree-like Resolution lower bounds
to tree-like Res(⊕) lower bounds.

As a next step, we may ask for lifting theorems for randomized parity decision trees. While
lower bounds for randomized PDTs do not seem to directly imply lower bounds for stronger proof
systems, lower bound techniques against randomized PDTs (along with several other ideas) have
been recently used to prove lower bounds against certain subsystems of (dag-like) Res(⊕) [EGI24,
BCD24, AI25]. (More precisely, they use distributional lower bounds against deterministic PDTs.)

In this work, we prove a lifting theorem from randomized decision tree (DT) depth to randomized
parity decision tree (PDT) size with constant size gadgets. For a function f , we use Ddt(f) to denote
the deterministic DT depth of f and R

dt(f) to denote the 1/3-error randomized DT depth of f .
Similarly, we use DSize

dt(f) and RSize
dt(f) to denote the corresponding size measures. We use ⊕

in the superscript to denote the analogous PDT measures. For example, RSize⊕-dt(f) denotes the
minimum size of any randomized PDT computing f to error 1/3.

To prove the lifting theorem for randomized PDTs, we use the same property of the gadget,
stifling, which was introduced by [CMSS23] to prove their lifting theorem for deterministic PDTs.
A function g : {0, 1}m → {0, 1} is said to be k-stifled if for all S ⊆ [m] of size k and b ∈ {0, 1}, there
is some way to fix all bits other than those in S to force the function g to output b. A function
g which is 1-stifled is also simply called stifled. Some examples of stifled functions include Inner
Product, Indexing and Majority.

Theorem 1.1. For any function f : {0, 1}n → {0, 1}, any stifled function g : {0, 1}m → {0, 1},

logRSize⊕-dt(f ◦ g) ≥ Ωm(Rdt(f))

where the implicit constant depends on the gadget size m.

Our results also hold for relations f (like most other lifting theorems) and partial g, but we mostly
focus on total functions in this section for simplicity.

Let us mention two applications of the above lifting theorem and its underlying ideas to regular
Res(⊕) (see Appendix A for details). In their proof of an exponential separation between regular
Res(⊕) and general Resolution, Bhattacharya, Chattopadhyay and Dvořák [BCD24] required a
randomized PDT lifting theorem and so they used a lifting theorem for randomized communication
complexity [CFKMP21]. This lifting theorem requires a logarithmic size gadget with a fairly large
multiplicative constant which implies that the number of clauses in the resulting formula (and
thereby the upper bound) is a large polynomial. By instead using the above lifting theorem for
randomized PDTs with a constant size gadget, the lifted formula has the same number of clauses
as the base formula (up to a constant factor) thereby improving the separation. We also show that
ideas similar to those in the simulation can be used to improve the known lower bound for the bit
pigeonhole principle in regular Res(⊕) from exp(Ω̃(3

√
n)) [EGI24] to exp(Ω̃(

√
n)).

As warm-up to proving the lifting theorem for randomized PDTs, we also consider the simpler
question of which gadgets allow lifting from randomized DT depth to randomized DT size, that
also does not seem to have been considered before. In the deterministic case, Alekseev, Filmus and
Smal [AFS24] (also [DM23]) showed that a resistant gadget allows lifting DT depth to DT size,
where a gadget is resistant if fixing a single bit of the input cannot fix the value of the function. We
observe that their ideas can also be used to prove the analogous statement for randomized decision
trees.

Theorem 1.2. For any function f : {0, 1}n → {0, 1}, any resistant function g : {0, 1}m → {0, 1},
logRSizedt(f ◦ g) ≥ Ωm(Rdt(f)).

2

Theorems 1.1 and 1.2 are in fact slightly stronger than stated since they lift to rank, a measure
which lower bounds log size. This is also true of the deterministic PDT lifting theorem [CMSS23,
BK23] and the simulation-based proof of the deterministic DT size lifting theorem [AFS24], though
they do not explicitly mention it. PDT rank also lower bounds depth in subspace decision trees.
A subspace decision tree is a decision tree where each internal node can query the indicator of an
affine subspace.

Let us recall the definition of rank, introduced by Ehrenfeucht and Haussler [EH89]. It will
be convenient to work with the following alternative way of looking at rank. Consider decision
trees where at each node, one of the two outgoing edges is marked, and define the cost of such a
marked decision tree to be the maximum number of marked edges along any root-to-leaf path. The
rank of a function g, DRankdt(g), is the minimum cost of such a marked decision tree computing
g. Compared to size, rank is closer in spirit to depth, which better motivates some of the ideas
discussed later.

The general question of whether randomized DT size satisfies a composition theorem ‘Does
logRSizedt(f ◦g) = Ω(Rdt(f) logRSizedt(g)) hold for all f and g up to polylog factors?’ was recently
asked by Dahiya [Dah24]. The corresponding question in the deterministic case has a positive
answer, as shown by Dahiya and Mahajan [DM23].1 They actually show that deterministic DT
rank satisfies a composition theorem which implies the composition theorem for size.

The composition question is interesting even in the most basic setting of decision tree depth.
While a composition theorem for deterministic depth has been known for long [Sav02, Tal13,
Mon14], the case of randomized depth is more subtle. It is still unknown whether we have R

dt(f ◦
g) = Ω(Rdt(f)Rdt(g)) for all total functions f and g. In fact, it is known that the statement is
false in its most general form for the composition of a relation and a partial function [GLSS23]
and even for the composition of partial functions [BB20]. There is a long line of work [ABK16,
BK18, AGJK+18, GJPW18, GLSS23, BDGH+20, BB20, BBGM22, CKMP+23, San24] studying
this question and proving lower bounds on R

dt(f ◦ g) of the form Ω(Rdt(f)M(g)) or Ω(M(f)Rdt(g))
where M(·) is some complexity measure.

Theorem 1.2 can be used to show that a composition theorem for rank implies one for depth, or,
taking the contrapositive, counterexamples for depth also provide counterexamples for rank. Still,
some of these composition theorems [BK18, GLSS23, BBGM22] can be adapted to give analogous
composition theorems for randomized DT rank (see Appendix B).

Motivated by the work on the composition question for ordinary decision trees, we try to better
understand the dependence on the inner function in the lower bounds on PDT rank for composed
functions. [CMSS23] proved that for any k-stifled g, DRank⊕-dt(f ◦g) ≥ kDdt(f) and the dependence
on stifling in this lower bound cannot be improved since for some functions g such as Indexing, g
is k-stifled and DRank

⊕-dt(g) = k + 1.
We observe that the ideas in [CMSS23] also work with an adaptive version of stifling. To state

this notion precisely, we consider the following task. Let g : {0, 1}m → {0, 1} be a Boolean function.
Given query access to a certificate z ∈ {0, 1, *}m of g, recognize whether z is a 0-certificate or a 1-
certificate. Let g∗ denote this problem. Now instead of counting all queries in the cost, only include
the queries which evaluate to ∗. The minimum number of ∗’s required to solve g∗ is denoted by
D
∗-dt(g∗). Using this notion, we show the following.

Theorem 1.3. For all functions f : {0, 1}n → {0, 1}, g : {0, 1}m → {0, 1},

DRank
⊕-dt(f ◦ g) ≥ D

dt(f)(D∗-dt(g∗)− 1).
1Here we require DSize

dt(g) > m+ 1, where m is the input length for g. Considering f = ANDn and g = ANDm

shows that some such condition is necessary [AFS24]. But this still leaves open the possibility that there are other
functions with DSize

dt(g) ≤ m+ 1 which allow lifting. We discuss this in more detail in Section 6.

3

This is inspired by discussion at the end of the talk [She23], where it is shown that for the Inner
Product gadget we can get linear dependence on the gadget size even though Inner Product is
not 2-stifled. Observe that if g is k-stifled, then D

∗-dt(g∗) > k since the first k queries made by an
algorithm could all be ∗ and it has still not determined whether z is a 0-certificate or a 1-certificate.
Thus, the above lower bound is always at least as good as the one obtained from stifling. When g
is Inner Product or Disjointness on 2m bits, g is not 2-stifled but D

∗-dt(g∗) = m, which shows that
this bound can sometimes be better.

We also prove a randomized analogue of Theorem 1.3.

Theorem 1.4. For all functions f : {0, 1}n → {0, 1}, g : {0, 1}m → {0, 1},

RRank
⊕-dt(f ◦ g) ≥ Ω(Rdt(f)(LR∗(g∗)−O(1))).

Here LR
∗ is the natural ∗ analogue of the linearized complexity measure introduced in [BBGM22]

where an inner composition theorem R
dt(f ◦ g) = Ω(Rdt(f)LR(g)) was proved. For a function

h : {0, 1, *}m → {0, 1, *},
LR

∗(h) = inf
T

max
x

cost*(T , x)

bias(T , x)
,

where T varies over randomized decision trees on {0, 1, *}n, x varies over inputs in the domain
of h, cost*(T , x) denotes the expected number of ∗’s seen when running T on x and bias(T , x) =
max{0, 2 Pr[T (x) = h(x)]− 1}.

Using this, we can show that when the inner function is Inner Product, Disjointness or Indexing,
the upper bound RRank

⊕-dt(f ◦ g) ≤ O(Rdt(f)RRank⊕-dt

ǫ (g)) for ǫ ≪ 1/Rdt(f) is the best one can
do. For these inner functions, the deterministic PDT rank is equal to the randomized PDT rank
(up to constants) so the upper bound is simply O(Rdt(f)RRank⊕-dt(g)).

Corollary 1.5. For m ≥ 2, for all functions f : {0, 1}n → {0, 1},

RRank
⊕-dt(f ◦DISJ2m) = Θ(Rdt(f)RRank⊕-dt(DISJ2m)),

RRank
⊕-dt(f ◦ IP2m) = Θ(Rdt(f)RRank⊕-dt(IP2m)),

RRank
⊕-dt(f ◦ INDm+2m) = Θ(Rdt(f)RRank⊕-dt(INDm+2m)).

While Theorems 1.3 and 1.4 do imply the lifting theorems mentioned earlier2, they still work
in the standard basis. It is natural to consider analogues of the above measures which work with
parity certificates instead of ordinary certificates, and indeed we can prove analogues of the above
results using such measures. However, the description of the query model for affine subspaces
requires some setup, so we defer the precise definitions and statements to Section 5.

Theorems 1.3 and 1.4 can be viewed as improving the quantitative dependence on the gadget in
the lifting theorems obtained via stifling. We can also consider the qualitative question of whether
a more general property than stifling allows lifting to parity decision trees. In this direction,
Alekseev, Filmus and Smal [AFS24] completely classified gadgets based on what gadgets allow
polynomial lifting, logDSize⊕-dt(f ◦ g) = Ωg(Ddt(f)ǫ) (for some ǫ > 0). However, this does not
answer the question of which gadgets allow linear lifting, logDSize⊕-dt(f ◦ g) = Ωg(Ddt(f)). We
observe by considering a mild generalization of stifling that for any gadget g whose minimum parity
certificate complexity is at least 2, DRank

⊕-dt(f ◦ g) ≥ D
dt(f). This can be seen as the natural

2Strictly speaking, Theorem 1.4 does not seem to directly imply Theorem 1.1 because of the additive constant loss
in LR

∗. However, one can use other measures for which an inner composition theorem holds, like sabotage complexity,
in place of LR∗ to recover Theorem 1.1 (see Remark 4.10).

4

parity analogue of the statement that if g has minimum certificate complexity at least 2, then for
all f , DRankdt(f ◦ g) ≥ D

dt(f) [AFS24, DM23].
The similarities go further. The class of gadgets g which are not already captured by the above

condition (possibly after first moving to a subfunction) are the ones which satisfy DRank
⊕-dt(g) =

1. If g is a total function which cannot be computed by a single parity query and satisfies
DRank

⊕-dt(g) = 1, we show that there is some gadget h such that understanding whether g al-
lows lifting to PDT rank is equivalent to understanding whether h allows lifting to DT rank. More
precisely, we have the following.

Proposition 1.6. Let g : {0, 1}m → {0, 1} be a total function which is not a parity. Then one of
the following holds:

• DRank
⊕-dt(g) ≥ 2 and for all functions f , we have DRank

⊕-dt(f ◦ g) ≥ D
dt(f) and

RRank
⊕-dt(f ◦ g) ≥ Ωm(Rdt(f)).

• DRank
⊕-dt(g) = 1 and there exists some h : {0, 1}k → {0, 1} such that for all functions f , we

have DRank
⊕-dt(f ◦ g) = DRank

dt(f ◦ h) and RRank
⊕-dt(f ◦ g) = Θ(RRankdt(f ◦ h)).

1.1 Techniques

The simulation for proving the lifting theorem for randomized PDTs with stifled gadgets builds
on the ideas of [CMSS23]. Let us start by recalling their main idea for simulating a parity query
efficiently. On an input x for f , we will simulate a parity decision tree T for f ◦g. For concreteness,
suppose the parity at the root of T is z11 + z21 + z22 + z32. While this parity depends on multiple
blocks, we would like to simulate it while making just one query to x. To do this, we localize the
parity query to a single bit, say z11, which is informally thought of as being responsible for the
value of the whole parity. Specifically, we view z11 + z21 + z22 + z32 = b for some b ∈ F2 as fixing
z11 = z21 + z22 + z32 + b where we think of z21, z22, z32 as still being free. At this point, we no
longer have control of z11 but since g is stifled, we can fix the remaining bits in block z1 to force
g(z1) = x1. So we only need to make one actual query to simulate a parity query.

Now suppose we wish to simulate a randomized PDT. To ensure correctness, following the
usual simulation framework for randomized communication protocols and decision trees, we now
require suitable hard distributions µ0 and µ1 on the 0-inputs and 1-inputs respectively of the
gadget g. On an input x for f , we simulate a parity decision tree T for f ◦ g on the distribution
µx := µx1 × µx2 × · · · × µxn . Continuing with the above example, suppose we wish to simulate the
parity z11 + z21 + z22 + z32 on the distribution µx where x is unknown. In general, simulating this
parity by only querying one bit of x seems hard but consider the following very special case. On
querying x1, suppose we find that the corresponding distribution µ of block z1 is such that z11 is a
uniform random bit which is independent of all the other bits, i.e. µ = U1×µ′ for some distribution
µ′ on {0, 1}m−1. Then irrespective of the distributions of z2 and z3, we know that this parity is
equally likely to be 0 or 1 and so we can just move to a uniform random child. The remaining bits
in z1 are set according to µ′. So at least in this special case, we could simulate the parity with just
one query.

To actually use the above observation in our simulation, we rely on the following idea of Bhat-
tacharya, Chattopadhyay and Dvořák [BCD24]. If g is a stifling gadget of constant size m, the
uniform distributions on g−1(0) and g−1(1) have the following useful property. For any i ∈ [m],
with constant probability, the bits other than i form a certificate of g in which case the ith bit is
uniformly distributed. Using this property, we can now simulate a parity query across multiple
blocks by a constant number of queries in expectation since each time we make an actual query,

5

with good probability, we will be able to simulate the current parity without making any more
queries.

Next we briefly describe the ideas behind the PDT simulation theorems with improved de-
pendence on the gadget. We focus here on the deterministic case; the randomized case follows a
similar proof outline. For the deterministic PDT lifting theorem, we proceed in two steps. First,
we observe that the proof in [CMSS23] implicitly uses a general reduction showing that for all
functions, DRank⊕-dt(f) ≥ D

∗-dt(f∗). In particular, f does not need to be of composed form. This
lower bound even works for relations R, once we suitably define R∗. In Appendix A, we use this
lemma and other ideas in this work to give simple proofs of some known lower bounds for tree-like
Res(⊕).

With the lower bound DRank
⊕-dt(f ◦g) ≥ D

∗-dt((f ◦g)∗) in hand, the next step is to simply note
that D

∗-dt satisfies a composition theorem D
∗-dt(f ◦ g∗) ≥ D

dt(f)(D∗-dt(g∗)− 1) analogous to usual
decision tree complexity. Combining these gives Theorem 1.3. The simulation in [CMSS23] can be
understood as instead using the relation D

∗-dt(f ◦ g∗) ≥ kDdt(f) whenever g is k-stifled, which can
be seen as some analogue of Ddt(f ◦ g) ≥ D

dt(f)C(g).

1.2 Related work

In independent work, Podolskii and Shekhovtsov [PS25] have also proved a lifting theorem for ran-
domized PDTs. In fact, they lift to the stronger model of semistructured communication protocols
where one party is restricted to sending parities and the other can send arbitrary messages. The
gadgets they allow are certain generalizations of Indexing where each index points to a distinct
parity and their lifting theorem has the right dependence on the gadget size for such gadgets.
This class naturally captures gadgets like Indexing and Inner Product, and by considering suitable
reductions, their lifting theorem also applies to other gadgets. Some of the underlying ideas for
simulating parities in their work are similar to ours, though it seems that our techniques do not
directly imply their result for PDTs with the correct dependence on the gadget size and vice-versa.

Since we focus on the simpler model of PDTs, our proof of the lifting theorem using stifling
gadgets is quite short, and we also provide a refined classification of gadgets for when lifting to PDTs
is possible. It would be interesting to give a simulation unifying the lower bounds from [PS25] and
our lower bounds for composed problems via ∗-depth. We suspect that by combining techniques
useful for composition in ordinary decision trees, with techniques used in query-to-communication
lifting, it may be possible to find broader classes of gadgets which allow lifting to semi-structured
protocols.

Besselman et al. [BGGMY25] have recently obtained direct sum theorems for randomized
PDT depth. They show that a direct sum theorem holds when the lower bound is proved via
discrepancy or against product distributions. The direct sum question can be seen as the special
case of composition where the outer function is the identity function. Our results using ∗-depth
(and its parity generalization) also give direct sum results for PDTs, where direct sum theorems
hold for ∗-depth by adapting the proofs for ordinary decision trees [JKS10].

These direct sum results are incomparable to those of [BGGMY25]. In one direction, for the
Majority function, we have R

∗-dt(MAJ∗) = O(
√
n) while any PDT solving MAJ on the uniform

distribution requires depth Ω(n). On the other hand, there are functions for which randomized
∗-depth is polynomially larger than the PDT depth on product distributions. Such functions can be
obtained by lifting such a separation for ordinary decision trees using a stifled gadget. The NAND
tree provides such a separation for ordinary decision trees [San24]. Similarly, in the deterministic
case, the NAND tree also shows that deterministic ∗-depth can sometimes be quadratically larger
than (parity) certificate complexity.

6

Organization. In Section 2, we state definitions for the query complexity measures used. In
Section 3, we prove Theorems 1.1 and 1.2. In Section 4, we prove Theorems 1.3 and 1.4. In Section
5, we prove strengthenings of results in Section 4 by considering decision trees for affine subspaces
and some observations comparing stifling-related measures. In Section 6, we prove Proposition
1.6 and give a counterexample to a stronger version of a conjecture of Alekseev, Filmus and Smal
[AFS24]. In Appendix A, we discuss applications to subsystems of Res(⊕). In Appendix B, we adapt
known composition theorems to block decision trees, which generalize all query models considered
here, other than PDTs. These composition theorems are used in Sections 4 and 5.

2 Preliminaries

For a positive integer n, we use [n] to denote the set {1, 2, . . . , n}. All logs are to the base 2. We
use |x| to denote the Hamming weight of a string x ∈ {0, 1}n. Let R ⊆ {0, 1}n×O be a relation.
Let g : M → {0, 1, *} be a partial function on some domain M (typically M = {0, 1}m). Then
the composed relation R ◦ g ⊆ Mn × O is defined as follows. If for x ∈ Mn, there is some i ∈ [n]
such that g(xi) = ∗, then (x, o) ∈ R ◦ g for all o ∈ O (in this case, we think of x as lying outside
the domain). Otherwise (x, o) ∈ R ◦ g if and only if (gn(x), o) ∈ R. For a relation R and input
x ∈ {0, 1}n, we sometimes use R(x) := {o ∈ O|(x, o) ∈ O} to denote the legal outputs on x. A
partial function g : {0, 1}m → {0, 1, *} is also sometimes interpreted as the relation where x is
related to g(x) if x is in the domain of g and otherwise x is related to all possible outputs {0, 1}.

We use standard Ω(·), O(·) notation in most places to only represent universal constants and
when required, we will explicitly note which parameters need to be large for the inequalities to
hold. Additionally, if the constant depends on some parameter or function, this will be indicated
by a subscript. We now define the query complexity measures used in this work. Refer to [BdW02]
for a survey about some of these measures.

Decision trees. A deterministic decision tree T on {0, 1}n is a binary rooted tree with leaves being
labeled from some set O and internal nodes labeled by i ∈ [n] each with two outgoing edges labeled
0 and 1. On an input x ∈ {0, 1}n, starting at the root, we repeatedly follow the edge according to
the value of xi where i is the label of the current node, until we reach a leaf. The label of the leaf
is the output of T on x, which we denote by T (x).

The cost of T on x, depth(T, x) (or sometimes cost(T, x)), is the number of queries made by T
on x. The depth of T is defined by depth(T) = maxx∈{0,1}n depth(T, x). The size of T , denoted
size(T), is the number of leaves of T .

The rank of T is defined in the following way. Consider markings of the edges of T such that
one of the outgoing edges from each internal node is marked. For such a marked tree, the cost
associated with this marking is the maximum number of marked edges on any root-to-leaf path.
The rank of a tree T is the minimum cost of any marking of T . This definition of rank is equivalent
to the more common bottom-up definition and the equivalence is proved in [CMP22] but the idea
also appears implicitly in prior work. For such a marked tree T , we will use cost(T, x) to denote
the number of marked edges on the root-to-leaf path taken by x.

For a relation R ⊆ {0, 1}n×O, a decision tree T is said to compute R if for all x ∈ {0, 1}n,
(x, T (x)) ∈ R. Define D

dt(R) to be the minimum depth of a deterministic decision tree computing
R. Define DSize

dt(R) and DRank
dt(R) to be the minimum size and rank respectively of a decision

tree computing R.
A randomized decision tree T is a probability distribution over deterministic decision trees. We

will use the same notation as in the deterministic case to denote the worst-case depth, size or rank
of a randomized decision tree. We also use the corresponding expected measures described next.

7

On input x ∈ {0, 1}m, we define cost(T , x) = ET∼T [cost(T, x)]. Define cost(T) = maxx cost(T , x).
Similarly rank(T) = ET∼T [rank(T)] and size(T) = ET∼T [size(T)].

For a relation R, a randomized decision tree T is said to compute R to error ǫ if for all
x ∈ {0, 1}n, PrT∼T [(x, T (x)) ∈ R] ≥ 1 − ǫ. We use R

dt

ǫ (R),RSizedtǫ (R),RRankdtǫ (R) to denote the
worst case analogues of Ddt(R),DSizedt(R),DRankdt(R) for randomized decision trees that compute

R to error ǫ. The corresponding expected measures are denoted by R
dt

ǫ (R),RSizedtǫ (R),RRankdtǫ (R).
We omit the subscript when dealing with error ǫ = 1/3.

For any decision tree T , rank(T) ≤ log size(T). This directly implies for a randomized decision
tree T , rank(T) ≤ log size(T) by applying the above relation to each tree in the support of T . To
get the corresponding relation for the expected complexity measures, we use Jensen’s inequality to
get ET∼T [rank(T)] ≤ ET∼T [log size(T)] ≤ logET∼T [size(T)], which in our notation is rank(T) ≤
log size(T). This inequality does not depend on what queries are allowed and also holds for other
kinds of decision trees (like parity decision trees).

A parity decision tree (PDT) T is like a decision tree but the internal nodes can now query
parities. We will denote a parity in different ways, 〈α, x〉 for some α ∈ F

n
2 or as

∑

i∈S xi where α
is the indicator vector for S. The notation for parity decision trees is similar to that for (ordinary)
decision trees. We will use ⊕ in the superscript to denote the parity analogue of an ordinary query

complexity measure. For example, RRank⊕-dt(R) denotes the minimum expected rank of a parity
decision tree computing R to error 1/3. When dealing with a parity v on inputs with an underlying
block structure ({0, 1}m)n, for i ∈ [n], we use v|i to denote the projection of v onto the ith block.

We now define 0-depth and 1-depth. The 0-depth of an ordinary decision tree T is the maximum
number of edges labeled 0 on any root-to-leaf path in T . We use D

0-dt(R) to denote the minimum
0-depth of a deterministic decision tree for R, and similar notation with 0 in the superscript for
other 0-query complexity measures. The measures related to 1-depth are defined similarly.

We next mention two standard techniques for proving lower bounds on deterministic decision
tree depth and rank. To prove lower bounds on D

dt(R) for a relation R, it suffices to give an
Adversary strategy in the Querier-Adversary game for the relation R. In this game, Adversary has
a hidden string x and Querier’s goal is to find some o related to x according to R while making as
few queries as possible. This technique is complete in the sense that if Ddt(R) = d, then there is an
Adversary strategy scoring d points. This game also works for other deterministic query complexity
measures by changing the kinds of queries Querier is allowed to make.

A similar game can be used to characterize the rank of a relation. In the Prover-Delayer game
[PI00] for relation R, similar to the Querier-Adversary game, Prover makes queries to a hidden
string x and Delayer responds by revealing the corresponding bits of x, except for the following
change. Delayer may instead choose to respond with ∗, which is interpreted as Prover getting
to decide how to fix the queried bit. Delayer gets to know what bit Prover picks in this case.
The game continues in this manner until Prover can correctly output an o which is related to x.
Delayer’s score is the number of ∗’s announced during the game. The maximum score guaranteed
by a Delayer strategy for R is equal to the rank of R (see [DM23] for a proof).

The Prover-Delayer game can be equivalently described in a way closer to the Querier-Adversary
game in the following way. Now instead of just picking some xi to query, Querier also picks a bit
b ∈ {0, 1} and Adversary gets a point only if the announced value is equal to b. The best score
achievable by an Adversary strategy in this game is equal to the best score of a Delayer strategy.
This equivalent view can be seen as the natural game corresponding to the description of rank using
marked decision trees.

By changing the allowed queries, the Prover-Delayer game can capture rank in other query
models. For instance, rank in PDTs is captured by the parity Prover-Delayer game [IS20].

8

Certificate complexity. A partial assignment C is a string in {0, 1, *}n. Say that C is consistent
with x ∈ {0, 1}n if for all i ∈ [n], Ci = xi or Ci = ∗. Abusing notation, we will sometimes interpret
a partial assignment as the subcube it defines, {x ∈ {0, 1}n |x is consistent with C}. So we write
x ∈ C to express that x is consistent with C.

C is said to be a certificate for a relation R ⊆ {0, 1}n×O if there exists some o ∈ O, such
that for all x ∈ C, (x, o) ∈ R. For a partial function g : {0, 1}m → {0, 1, *} and b ∈ B, a partial
assignment C is said to be a b-certificate if for all x ∈ C, (x, b) ∈ g (interpreting g as a relation). In
other words, we require that for all x ∈ C, g(x) ∈ {b, ∗}. The size of a certificate C is the number of
non-∗’s in it. The certificate complexity of a relation R at x ∈ {0, 1}n, denoted C(R, x), is defined
as the minimum size of a certificate which is consistent with x. The certificate complexity of R,
C(R) is the maximum certificate complexity of any input. The minimum certificate complexity of
R, Cmin(R), is the minimum size of a certificate for R.

When working with a partial function g, we will sometimes only be interested in certificates
whose corresponding subcubes are completely contained in the domain of g. We will call these
domain certificates. We will drop the word domain when it is clear from context or when working
with total functions.

A parity certificate for R ⊆ {0, 1}n×O is given by a collection of F2 linear equations on {0, 1}n,
S = {〈α1, x〉 = b1, 〈α2, x〉 = b2, . . . , 〈αk, x〉 = bk} such that there exists o ∈ O for which for
all x ∈ F

n
2 satisfying the equations in S, we have (x, o) ∈ R. The size of a parity certificate is

the number of equations in it. We may always assume that the linear forms involved in a parity
certificate are linearly independent, since we can remove redundant equations without changing the
defined affine subspace. The minimum parity certificate complexity of R, C⊕

min
(R), is the minimum

size of a parity certificate for R. A domain parity certificate of a partial function g is a parity
certificate for g whose corresponding affine subspace is completely contained in the domain of g.

3 Lifting theorems for randomized rank

In this section, we describe simple simulation theorems which lift randomized decision tree depth
to rank in randomized decision trees and randomized parity decision trees.

3.1 Lifting to randomized ordinary decision tree rank

Alekseev, Filmus and Smal [AFS24] showed that resistant gadgets suffice for lifting decision tree
depth to size by generalizing Urquhart’s argument for the XOR gadget [Urq11]. A function g is
said to be k-resistant if Cmin(f) ≥ k + 1.

Theorem 3.1 ([AFS24, DM23]). For any k-resistant function g and any relation R,

logDSizedt(R ◦ g) ≥ DRank
dt(R ◦ g) ≥ kDdt(R).

This also follows from results of Dahiya and Mahajan [DM23] who show more generally that
DRank

dt(R ◦ g) ≥ (DRankdt(g)− 1)Ddt(R) and DRank
dt(g) ≥ Cmin(g).

We prove the following for randomized decision trees.

Theorem 3.2. Suppose g : {0, 1}m → {0, 1, *} is k-resistant. For any relation R ⊆ {0, 1}n×O,

logRSizedtǫ (R ◦ g) ≥ RRank
dt

ǫ (R ◦ g) ≥ k

2m
R
dt

ǫ (R).

9

By standard arguments, we get lifting in the worst case if we incur an additive loss in the error.
This additive loss can be removed by standard amplification when the outer relation is a function
and the error is a constant to get Theorem 1.2.

For the simulation, it will be convenient to work with an equivalent distributional description
of resistant functions.

Definition 3.3 (balanced function). A function g : {0, 1}m → {0, 1, *} is p-balanced for p ∈ (0, 1/2]
if for every b ∈ {0, 1}, there is a distribution µb supported on g−1(b) such that for each i ∈ [m], for
each c ∈ {0, 1}, Prx∼µb

[xi = c] ≥ p. A function is balanced if it is p-balanced for some p ∈ (0, 1/2].

Note that a balanced function is necessarily resistant. It is also easy to see that being resistant
is a sufficient condition for being balanced, as shown below.

Observation 3.4. If g : {0, 1}m → {0, 1} is k-resistant, then it is k/(2m)-balanced.

Proof. For b ∈ {0, 1}, the distribution µb witnessing that g is k/(2m)-balanced is defined in the
following way. Select a subset S of [m] of size k uniformly at random. For each i ∈ S, pick
xi uniformly at random (independently of other bits). Finally set all remaining bits so that the
resulting string is a b-input for g. This last step can be performed by the assumption that g is
k-resistant. Each i ∈ [m] is included in S with probability k/m and conditioned on being included
in the first step, it is fixed to c ∈ {0, 1} with probability 1/2.

We now show that any balanced gadget can be used for lifting to randomized decision tree rank.
Using the distributions coming from the above observation, the simulation below is equivalent to
applying a suitable random projection as in the second proof of the depth to size lifting theorem
in [AFS24]. However, it is analyzed differently for which presenting it as a simulation is more
convenient.

Proposition 3.5. Let g : {0, 1}m → {0, 1, *} be p-balanced for some p ∈ (0, 1/2]. Then for all
relations R ⊆ {0, 1}n×O,

RRank
dt

ǫ (R ◦ g) ≥ pRdt

ǫ (R).

Proof. We will show how to simulate a randomized decision tree T computing R ◦ g with error
probability ǫ by a randomized decision tree T ′ to compute R with the same error probability. The
expected depth of T ′ on any input will be at most rank(T)/p.

Let µ0 and µ1 be the distributions on g−1(0) and g−1(1) respectively showing that g is p-
balanced. For each x ∈ {0, 1}n, let µx be the distribution on ({0, 1}m)n defined by independently
sampling for each i ∈ [n], the block zi from µxi

. The simulation essentially samples z ∼ µx, where
x is the input on which we wish to compute R, and executes T on z. Since x is unknown, the
individual blocks of z are sampled as they are queried by the decision tree T . Since T computes
R◦g correctly for each z with probability 1−ǫ, the probability that T ′ outputs incorrectly on input
x is at most Ez∼µx [Pr[(z, T (z)) /∈ R◦ g]] ≤ ǫ where the inner probability is over the randomness of
T . So T ′ computes R to error ǫ.

We now describe T ′ in more detail. Since a randomized decision tree T is a distribution over
deterministic decision trees T , it is enough to show how to simulate a deterministic decision tree T
while making at most rank(T)/p queries in expectation. Suppose T queries zi,j at the root. Then
we query xi and sample zi ∼ µxi

. Now that zi is known, we move to the appropriate child. In
the future, if T makes any queries to bits of zi, we move according to the already sampled zi. We
repeat this process until we reach a leaf at which point we output the label of the leaf reached.
Note that this procedure also generates T (z) where z ∼ µx since µx =

∏

i∈[n] µxi
.

10

To estimate the number of queries made to x, we will show next that starting at any node in
T during the simulation, the number of queries made until we cross a marked edge is at most 1/p
in expectation. At any node, one of the outgoing edges is marked. By the assumption on µ0, µ1,
whenever a query is made, we follow the marked edge with probability at least p. Thus, it takes
at most 1/p queries in expectation to cross a marked edge. (During the simulation, we may reach
a node where we directly move to the unmarked child with probability 1 because the bit there had
already been sampled earlier, but in this case no new query is made at that node.)

To get the total number of queries made in expectation when simulating T , define for each
i ∈ [rank(T)], the random variable Xi counting the number of queries made between crossing the
(i− 1)th marked edge and crossing the ith marked edge during the simulation. If we have reached
a leaf of T without crossing i edges, then Xi = 0. Then we have E[Xi] ≤ 1/p for all i ∈ [rank(T)]
by what was argued above.

Now the total number of queries made is
∑rank(T)

i=1 Xi since we must reach a leaf in T af-

ter crossing at most rank(T) many marked edges. By linearity of expectation E[
∑rank(T)

i=1 Xi] =
∑rank(T)

i=1 E[Xi] ≤ rank(T)/p. The total number of queries made when simulating T is at most
ET∼T [rank(T)/p] = rank(T)/p.

Theorem 3.2 now follows from combining Observation 3.4 and Proposition 3.5.

3.2 Lifting to randomized parity decision tree rank

We now prove that stifled gadgets allow lifting to randomized parity decision tree rank.

Definition 3.6 (stifled functions). A function g : {0, 1}m → {0, 1, *} is k-stifled if for every subset
S of [n] of size k and each b ∈ {0, 1}, there is a domain b-certificate C ∈ {0, 1, *}n of g which leaves
S free, i.e. Ci = ∗ for all i ∈ S.

Similar to the case of ordinary decision trees in the previous subsection, it will be convenient to
work with an equivalent property arising from certain distributions on the 0-inputs and 1-inputs of
the gadget. The following definition is a slight generalization of balanced functions considered in
[BCD24].

Definition 3.7 (affine balanced functions). A function g : {0, 1}m → {0, 1, *} is p-affine balanced
if for each b ∈ {0, 1}, there is a distribution µb supported on g−1(b) such that for each i ∈ [m], there
exist distributions Ai

b on {0, 1}m and Bi
b on {0, 1}m−1 such that µb can be written as the mixture

µb = (1− 2p)Ai
b + (2p)Bi

b × U1. Here U1 is a uniform random bit independent of Bi and we think
of U1 as the bit zi and Bi

b as assigning bits in z[m]\{i}.

The above definition says we can sample z from µb in the following way:

• With probability 1− 2p, sample z ∼ Ai
b.

• With probability 2p, set zi uniformly at random, and independently z[m]\{i} ∼ Bi
b.

Observation 3.8. If g : {0, 1}m → {0, 1, *} is k-stifled, then it is k/2m-affine balanced.

Proof. The distribution µb witnessing that g is k/(2m)-affine balanced is defined in the following
way. Select a subset S of [m] of size k uniformly at random. Fix the bits outside S to a domain
b-certificate for g (which can be done by the assumption that g is k-stifled). Finally for each i ∈ S,
pick xi independently and uniformly at random. Each i ∈ [m] is included in S with probability k/m
and conditioned on being included in the first step, it is fixed to each c ∈ {0, 1} with probability
1/2 independent of the other bits.

11

We now prove the lifting theorem for randomized PDTs. In the proof below, we do not give
a truly online simulation but after each query, we simplify the PDT being simulated. This is
primarily done to make it easy to verify correctness and analyze the number of queries made. We
could alternatively have given a simulation closer to [CMSS23, BK23] by keeping a list of parity
queries made during the simulation.

Proposition 3.9. Let g : {0, 1}m → {0, 1, *} be a p-affine balanced function. For any relation
R ⊆ {0, 1}n×O,

RRank
⊕-dt

ǫ (R ◦ g) ≥ pRdt

ǫ (R).

Proof. Let T be a randomized parity decision tree computing R ◦ g. For the induction below,
it will be convenient to allow each parity query to also involve a constant term. Let µ0 and µ1

be distributions on g−1(0) and g−1(1) respectively showing that g is p-affine balanced. For each
x ∈ {0, 1}n, define µx to be the distribution on ({0, 1}m)n defined by independently sampling for
each i ∈ [n], the block zi from µxi

. We will define a randomized decision tree T ′ computing R by
simulating T on the distribution µx. The correctness of T ′ follows from the correctness of T .
T ′ is defined in the following way. First sample a deterministic parity decision tree T from T . We

simulate it by a randomized decision tree in the following way. Suppose the query
∑

(i′,j′)∈S zi′,j′ +c
at the root of T involves a variable zi,j . Query the variable xi and suppose it was b ∈ {0, 1}. We
will now set the variables in the block zi according to the distribution µb in the following way.
Recall that µb can be written as a mixture (1 − 2p)Aj

b + 2pBj
b × U1 where Aj

b is a distribution on

strings in g−1(b) and Bj
b is a distribution on domain b-certificates that leave the jth bit free. We

set zi as follows:

1. With probability 1− 2p, set zi according to Aj
b

2. With the remaining probability 2p, set bits zi,j′(j
′ 6= j) according to the distribution Bj and

independently ‘set’
∑

(i′,j′)∈S zi′,j′ = c for a uniform random bit c.

In the second case, even though the parity may depend on variables from blocks other than i,
we may informally think of it equivalently as fixing zi,j =

∑

(i′,j′)∈S\{(i,j)} zi′,j′ + c. Note that
irrespective of the distribution of blocks other than i, it is indeed true that the above parity is
equally likely to be 0 or 1 if we are the second case since zi,j is a uniform random bit (even after
conditioning on all the other blocks) which appears in the parity. Additionally, note that after
conditioning on zi,j =

∑

(i′,j′)∈S\{(i,j)} zi′,j′ + c and the other zi,j′ , the distribution on all blocks
other than i is still

∏

j∈[n]\{i} µxj
since block i is independent of the rest.

Once we have set zi as above (where possibly zi,j is a linear form depending on other blocks) we
substitute them in the tree T and simplify appropriately. Specifically if any query node becomes
a constant we remove it and directly attach the appropriate child to its parent. In particular, if
we are in the second case, then the query at the root is set to a random c and we move to that
child. Note that this simplification preserves the action of the tree T on the distribution µx when
conditioned on the revealed zi.

Since the distribution on the other blocks stays
∏

j∈[n]\{i} µxj
, we can now repeat this process

with the query at the new root (which may be the same as the previous one if we were in case one,
with all variables from block zi removed). This is done until T has become just a leaf and we give
the same output in T ′.

We now analyze the expected number of queries made by T ′ in simulating T and show that it
is at most rank(T)/p on any input x. We will show by induction that a PDT of rank at most r
which only depends on variables from at most l blocks is simulated using at most Q(r, l) := r/p
queries in expectation.

12

Since a PDT with rank 0 or which does not depend on any blocks is just a leaf, the statement
holds whenever r = 0 or l = 0. Suppose the statement holds for all pairs (r′, l′) with l′ < l. Let T
be a PDT of rank at most r and depending on at most l blocks. Suppose xi is the first variable
queried by the above simulation because of some zi,j appearing in the query at the root.

Consider what happens after we simplify the tree T based on the sampled zi. In all cases, the
rank of the resulting tree, say T1 is at most r since the rank cannot increase by removing parts
of the tree, and the number of blocks on which the tree depends has decreased by 1. Since case 2
while sampling zi happens with probability 2p, with probability at least p we go down the marked
edge and the rank of T1 is at most r− 1. Thus, the expected number of queries made in simulating
T is at most

1 + (1− p)Q(r, l − 1) + pQ(r − 1, l − 1)

≤ 1 + (1− p)
r

p
+ p

r − 1

p
=

r

p
(by induction)

Since the simulation of a randomized PDT T corresponds to a distribution over trees simulating
the deterministic PDTs T , we get that on any input x, the expected number of queries made is at

most ET∼T [rank(T)/p] which is RRank
⊕-dt

ǫ (R ◦ g)/p if we take an optimal RPDT T for R ◦ g.

Remark 3.10. As pointed out by a reviewer, we can alternatively get a bound on the number of
queries made during the simulation in Proposition 3.9 in the following way. Each time an actual
query is made, with probability at least p, we go down the marked edge in the PDT being simulated,
thereby contributing to the number of marked edges crossed. This implies that the expected number
of marked edges crossed in the PDT when simulating it on the distribution µx is at least p times
the expected number of queries made which gives what we wanted. Moreover, this argument also
shows that instead of considering expected rank of the PDT we could have considered the expected
cost on the worst-case input.

Combining Observation 3.8 and Proposition 3.9, we get the following lifting theorem for ran-
domized PDTs.

Theorem 3.11. Suppose g : {0, 1}m → {0, 1, *} is k-stifled. For any relation R ⊆ {0, 1}n×O,

logRSize⊕-dt

ǫ (R ◦ g) ≥ RRank
⊕-dt

ǫ (R ◦ g) ≥ k

2m
R
dt

ǫ (R).

Remark 3.12. The factor m loss in the lower bound in Theorem 3.11 is necessary at least when we
allow g to be a partial function as the following example shows. We will take the outer function to
be parity ⊕n and the inner function to be approximate majority ApproxMAJm,k which is defined
as follows: ApproxMAJ(y) is 0 if |y| ≤ k, 1 if |y| ≥ m−k and ∗ otherwise. Note that k here denotes
the ends rather than the gap.

When kn ≤ m/4 and ǫ = 1/4, the lower bound from Theorem 3.11 is just a constant. For
this regime of parameters, there is a PDT computing ⊕n ◦ ApproxMAJm,k which makes 1 parity
query. For each block i ∈ [n], pick ji ∈ [m] uniformly. For each i ∈ [n], except with proba-
bility at most k/m, we have xi,ji = ApproxMAJm,k(xi). The PDT simply outputs the parity of
(x1,j1 , x2,j2 , . . . , xn,jn). The error probability is at most nk/m ≤ 1/4 by the union bound.

4 Parity decision tree lower bounds via ∗-depth
In this section, we prove the lifting theorems using ∗-depth, Theorems 1.3 and 1.4.

13

4.1 Reduction to deterministic ∗-depth and the Blocker-Certifier game

The proof of the lifting theorem for deterministic PDT size [CMSS23] implicitly contains a claim
which reduces the task of proving lower bounds on PDT rank to the simpler task of proving lower
bounds in a certain query model where one can only query one coordinate at a time but the input
is a partial assignment instead of a binary string. This reduction works for all relations and, in
particular, does not need the problem to be of composed form.

To describe the reduction, we need some definitions. Let R ⊆ {0, 1}n×O be a relation. Define
the relation R∗ ⊆ {0, 1, *}n×O as follows. For every y ∈ {0, 1, *}n,

R∗(y) =
⋃

x∈{0,1}n: x∈y
R(x).

In words, o ∈ O is a correct output on y if there is some x consistent with y for which o is a correct
output according to relation R.

For a Boolean function f : {0, 1}n → {0, 1, *}, f∗ has the following simple description. The
input to the partial function f∗ : {0, 1, *}n → {0, 1, *} is promised to be a domain certificate of f
and the goal is to output whether it is a 0-certificate or a 1-certificate. Recall that for a partial
function f , for ρ ∈ {0, 1, *}n to be a domain certificate, we require that the subcube corresponding
to ρ is completely contained in the domain of f .

Similar to 0-depth and 1-depth for ordinary decision trees, we may define ∗-depth for decision
trees on {0, 1, *}n. For a relation R ⊆ {0, 1, *}n×O, let D

∗-dt(R) be the smallest number of ∗’s
any deterministic decision tree (which is only allowed to query an index at a time) computing R
must see in the worst case. Similarly let R∗-dt

ǫ (R) and R
∗-dt
ǫ (R) be the analogous randomized query

complexity measures when computing R to error ǫ.
Since we mainly care about the ∗-depth of relations of the form R∗, we now introduce a game

capturing D
∗-dt(R∗), called the Blocker-Certifier game. This is essentially obtained by specializing

the usual Querier-Adversary game corresponding to decision tree depth to our setting. However,
since the score only depends on the number of ∗’s, we may allow the Adversary to fix positions to
0 or 1 before they are queried (similar to some Delayer strategies in the Prover-Delayer game) and
then Querier only picks a coordinate to be fixed to ∗. In the game below, Blocker’s role is similar
to that of Querier (or Prover) and Certifier corresponds to an Adversary (or Delayer).

Let R denote ({0, 1}n×O) \ R, the complement of R. The Blocker-Certifier game for R is
played on a string s ∈ {0, 1, ∗, †}n which is initially †n. The game is played in rounds. In a round,

1. Certifier picks a subset S ⊆ {i ∈ [n] | si = †} (possibly empty) and for each i ∈ S, sets si = bi
for some bi ∈ {0, 1}.

2. Blocker picks an i ∈ [n] such that si = † and sets si = ∗.
The game ends when we have the following situation. There is some o ∈ O, such that for every
way of fixing the remaining †’s in s to bits {0, 1}, there is a way to fix ∗’s in s to bits such that the
resulting string x satisfies (x, o) ∈ R. In other words, the game has not ended if for every o ∈ O,
Certifier can fix the remaining †’s to bits to get an o-certificate for R. Certifier’s score is the number
of ∗’s in s at the end of the game. The Blocker-Certifier value BCval(R) is the maximum score
guaranteed by a Certifier strategy for the Blocker-Certifier game on R. The equivalence between
the Blocker-Certifier game and the usual Querier-Adversary game in this setting (or equivalently
the definition of ∗-depth) is proved in Lemma B.3.

We can now relate PDT rank for a relation R and the ∗-depth of R∗. In the proof below, we
use a Certifier strategy in the Blocker-Certifier game to give a parity Delayer strategy, but the
argument can also be expressed as a simulation.

14

Lemma 4.1 (implicit in [CMSS23]). For any relation R,

DRank
⊕-dt(R) ≥ BCval(R) = D

∗-dt(R∗).

Proof. Suppose we have a Certifier strategy for the Blocker-Certifier game on R scoring r points.
We will use this to give a Delayer strategy for the parity Prover-Delayer game on R achieving the
same score.

Delayer essentially imitates the Certifier strategy by localizing the parity queries of Prover to
the input z so that they may be treated as positions that have been touched by Blocker in the
Blocker-Certifier game. Delayer will have fixed some bits in z to 0 or 1 while some positions would
have been marked (denoted ∗) based on the queries made by Prover. Each such marked position
corresponds to a linear equation zi =

∑

i′∈S zi′ coming from a parity query, where zi is marked and
none of the positions in S were marked at the time of the query.

We now explain this in detail. We will use x to denote the string in the Blocker-Certifier game.
L will denote a collection of linear equations as explained above, which starts off empty. In the
beginning, Delayer fixes bits in z exactly according to the move made by Certifier at the start of
the Blocker-Certifier game. On a parity query

∑

i′∈S zi′ , Delayer first simplifies this parity query
according to previously fixed bits to get a parity b +

∑

i′∈S′ zi′ where b ∈ F2 and all variables
in S′ are still free. If S′ = ∅, then Delayer simply responds with b. Otherwise arbitrarily mark
some i ∈ S′ and respond with ∗. Suppose Prover responds with c ∈ F2. Then the equation
zi = b + c +

∑

i′∈S′:i′ 6=i zi′ is added to L.
Next in the Blocker-Certifier game, Blocker sets xi to ∗ to which Certifier responds by (possibly)

fixing some other bits of x. As before, Delayer fixes the variables in z in the same way as x. Later
queries of the Prover are handled in essentially the same way as before, but the simplification now
also has to remove any marked variables appearing the query by substituting suitable parities using
the appropriate equations in L.

We claim the Prover-Delayer game cannot end unless the corresponding Blocker-Certifier game
is over. Suppose less than r variables have been marked so far. For every o ∈ O, we will create
an input z consistent with all the parity queries made so far such that (z, o) /∈ R. Since fewer
than r variables are set to ∗ in the Blocker-Certifier game, there is a way to fix the remaining
free variables in x such that for all inputs y consistent with the obtained partial assignment x,
(y, o) /∈ R. Now consider the string z obtained by fixing all the marked bits according to the
equations in L. Since the marked variables are the pivots of these equations, such an extension
indeed exists. By construction, this satisfies all the parity queries made so far and is consistent
with the partial assignment x. Thus Delayer can always score at least r points.

To get a lifting theorem for PDT rank, the above lemma can now be combined with a lower
bound on the Blocker-Certifier value for composed problems. First, note that D

∗-dt((R ◦ g)∗) ≥
D
∗-dt(R ◦ g∗) since in the problem R ◦ g∗, we are only required to be correct when each block lies

in the domain of g∗, i.e. is a domain certificate of g. To get the lifting theorem for any k-stifled
gadget g, [CMSS23] use that D

∗-dt(R ◦ g∗) ≥ kDdt(R). This inequality is in the same spirit as
D
dt(R ◦ g) ≥ D

dt(R)C(g) or DRank
dt(R ◦ g) ≥ D

dt(R)(Cmin(g)− 1). Similar to the case of decision
tree depth or rank for composed problems, we can get an essentially tight lower bound on the
∗-depth of composed problems.

Lemma 4.2. For any relation R ⊆ {0, 1}n×O and any function g : {0, 1, *}m → {0, 1, *},

D
∗-dt(R ◦ g) ≥ D

dt(R)(D∗-dt(g)− 1).

15

This is proved in the same way as the usual composition theorem for deterministic (ordinary)
decision tree depth [Sav02, Tal13, Mon14]. For completeness, we sketch a proof of a more general
composition theorem, Proposition B.2, in Appendix B which implies Lemma 4.2.

Combining Lemmas 4.1 and 4.2, we obtain the following.

Theorem 4.3. For any relation R ⊆ {0, 1}n×O and any function g : {0, 1}m → {0, 1, *},

DRank
⊕-dt(R ◦ g) ≥ D

dt(R)(D∗-dt(g∗)− 1).

The unique disjointness function UDISJ2m is an example of a function for which the Blocker-
Certifier value is much larger than how stifled it is. Recall that UDISJ2m : ({0, 1}2)m → {0, 1, *}
is the partial function such that UDISJ(x1, x2, . . . , xm) = ∨i∈[m](xi1 ∧ xi2) where we are promised
that there is at most one i ∈ [m] such that xi1 ∧ xi2 = 1. This is a subfunction of both inner
product and disjointness. It is easy to see that UDISJ is not 2-stifled, since there is no 0-certificate
which leaves both x11 and x12 free.

On the other hand, there is a simple Certifier strategy in the Blocker-Certifier game3 for
UDISJ2m which achieves score m. Initially Certifier does not fix any bits. Suppose Blocker sets
xi1 = ∗ (the case xi2 = ∗ is analogous). Then Certifier responds by setting xi2 = 0 to ensure that
xi1 ∧ xi2 = 0. Certifier follows this strategy until the end of the game ensuring that for each i,
either both xi1, xi2 are unset or at least one of them is fixed to 0. We claim that the game cannot
end before m rounds. Indeed if fewer than m rounds have taken place, then there is some i ∈ [m]
such that xi1 = xi2 = †. Moreover Certifier’s strategy ensures that wherever this is not the case,
we have xi1 = 0 or xi2 = 0. Therefore, for any b ∈ {0, 1}, by setting xi1 = xi2 = b and all other
unset bits to 0, we obtain a domain b-certificate for UDISJ which is consistent with all the moves
made so far.

4.2 Reduction to randomized ∗-depth
The following lemma is the randomized analogue of Lemma 4.1.

Lemma 4.4. For any relation R ⊆ {0, 1}n×O,

RRank
⊕-dt

ǫ (R) ≥ 1

2
R
∗-dt
ǫ (R∗).

Proof. Let T be a randomized PDT computing R to error ǫ. We will give a randomized decision
tree T ′ for computing R∗ with expected ∗-depth at most 2 rank(T). To do this, on any input
z ∈ {0, 1, *}n, we will simulate T on the distribution µz which is the uniform distribution over all
strings in the subcube defined by z.

By the definition of R∗, T ′ makes an error only when T makes an error on the input in µz

being simulated. Therefore,

Pr[T ′ makes an error on input z] = Ex∼µz [Pr
T∼T

[T makes an error on x]] ≤ ǫ.

We now describe how T ′ simulates T . First sample a deterministic PDT T ∼ T . The tree will
keep track of a list L of linear equations xi = 〈αi, x〉, one for each xi that has already been queried.
The linear form on the right hand side of any such linear equation does not depend on any of the
variables that have previously been queried. From this description, it is clear that these equations

3This strategy is essentially from discussion after the talk [She23], but we have been unable to recognize who
suggested it.

16

are linearly independent. Moreover, for each such i, if zi ∈ {0, 1}, the corresponding equation in
L is exactly xi = zi. We will additionally maintain the invariant that the system L is equivalent
to the system defined by all the parities from the root to the current node when combined with
equations xi = zi for all zi which have already been queried and are not ∗.

Starting at the root of T , the tree performs the following steps until a leaf is reached in T .

1. Let
∑

i∈S′ xi (for some S′ ⊆ [n]) be the query at the current node v of T . Iteratively perform
substitutions using the equations in L until the query has been simplified to c+

∑

i∈S xi which
does not contain any variables that have already been queried and c ∈ F2. Set U = ∅ which
will later store which i ∈ S have already been queried.

2. Repeat the following

• Pick any i ∈ S \ U and query zi. If zi = ∗, go to step 3(a). Otherwise add i to U , and
xi = zi to L.

until all xi, i ∈ S have been queried. When this happens, go to step 3(b).

3. (a) (zi = ∗) Pick b ∈ {0, 1} uniformly at random. Move to the child of v corresponding to
c +

∑

j∈S xj = b. Add to L the equation xi = c + b +
∑

j∈U zj +
∑

j∈S\(U∪{i}) xj .

(b) (none of zi, i ∈ S is ∗) Since all zi’s in the parity have been determined, move to the
appropriate child c +

∑

j∈S xi = c +
∑

j∈S zi.

The output is the same as the label of the leaf reached in T .
Lemma 4.5 (proved later) shows that each leaf of T is reached with the correct probability

according to the distribution µz. As argued earlier, this implies the correctness of the tree.
We now analyze the expected ∗-depth of the above randomized decision tree simulating T . Note

that in each round, the tree sees one ∗ if we reach step 3(a) and otherwise no ∗’s. We will keep
track of the number of marked edges seen as a measure of progress. In step 3(b), the number of
∗’s seen has not changed this round. On the other hand, in step 3(a), since we move to a random
child, with probability at least 1/2 we move down the marked edge in T . Thus, in expectation,
after 2 ∗’s, we move down a marked edge in T . By linearity of expectation, after at most 2 rank(T)
∗-queries in expectation, a leaf is reached since the maximum number of marked edges on any root
to leaf path is rank(T).

Lemma 4.5. Let T be a deterministic PDT on {0, 1}n. Let z ∈ {0, 1, *}n. Let Wz(v) be the event
that node v of T is visited by the randomized procedure described in the proof of Lemma 4.4 when
run on input z. Let Vz(v) be the event that for a random x ∈ µz, running T on x reaches v. Then
for every z ∈ {0, 1, *}n, v ∈ T , we have Pr[Wz(v)] = Pr[Vz(v)].

Proof. Fix z ∈ {0, 1, *}n. The proof is by induction on the depth of v. The statement holds when
v is the root since in this case, Pr[Wz(v)] = Pr[Vz(v)] = 1.

Now suppose v has depth at least 1. Let w be its parent. If Pr[Wz(w)] = 0, then by in-
duction Pr[Vz(w)] = 0 and, therefore, Pr[Vz(v)] = Pr[Wz(v)]. Hence, we may assume that
Pr[Wz(w)] = Pr[Vz(w)] > 0. We can write Pr[Vz(v)] = Pr[Vz(w)] Pr[Vz(v) | Vz(w)] and Pr[Wz(v)] =
Pr[Wz(w)] Pr[Wz(v) |Wz(w)]. So it suffices to prove that Pr[Vz(v) | Vz(w)] = Pr[Wz(v) |Wz(w)].

Let Lw be the list L of equations at the begin of the round where the current node is w during
the execution of the decision tree simulation with z as the input string. Let Qw be the set of all zi
that were queried before reaching w and which are not ∗. Let 〈α, x〉 =

∑

j∈S′ xj be the parity query
at w and let b be such that v is the child corresponding to

∑

j∈S xj = b. So Pr[Vz(v) | Vz(w)] is the

17

probability that for a random x ∼ µz,
∑

j∈S′ xj = b conditioned on all the equations from the root
to w being satisfied. Note that since xi = zi whenever zi ∈ {0, 1}, we may additionally condition
on any subset of these fixed xi’s being the corresponding zi’s. By the invariants, the system of
equations Lw is equivalent to the system containing equations describing the parities from the root
to w as well as the queries made to zi so far. Therefore, by abuse of notation, we may express
Pr[Vz(v) | Vz(w)] as Pr[

∑

j∈S′ xj = b | Lw] where we view Lw as the event that all equations in Lw

hold. Moreover under Lw, the parity
∑

j∈S′ xj is equal to c +
∑

j∈S xj for some S as in step 1 of
the round. So we have Pr[Vz(v) | Vz(w)] = Prx∼µz [c +

∑

j∈S xj = b | Lw].
Now we only need to verify that when simulating the query at node w we go to v with the

correct probability Prx∼µz [c +
∑

j∈S xj = b | Lw]. There are two cases to consider:

1. For all i ∈ S, we have zi ∈ {0, 1}. In this case, all zi are queried and step 3(b) is executed
in the round starting at w. So we move to the correct child with probability 1 = Prx∼µz [c +
∑

j∈S xj = c +
∑

j∈S zj | Lw].

2. Step 3(a) is executed in the round starting at w. In this case, there is some i ∈ S such that
zi = ∗. Since c +

∑

j∈S xj is independent of Lw by construction, Prx∼µz [c +
∑

j∈S xj = b |
Lw] = 1/2.

This finishes the proof.

We now combine Lemma 4.4 with a composition theorem for randomized ∗-depth. Recall that
a tight composition theorem does not hold in general for ordinary decision trees when composing
a relation with a partial function and so we cannot have such a statement for ∗-depth (by lifting
with, say, (MAJ3)∗). However, we can still adapt known randomized composition theorems to the
setting of ∗-depth. In Appendix B, we adapt the composition theorem of [BBGM22] to prove a
composition theorem for a general class of decision trees, Theorem B.4. This composition theorem
provides the best dependence on the inner function (see Theorem B.8) up to some loss by a constant
multiplicative factor and an additive constant.

Lemma 4.6 (following [BBGM22]). For any relation R ⊆ {0, 1}n×O, any function
g : {0, 1, *}m → {0, 1, *},

R
∗-dt
ǫ (R ◦ g) ≥ Ω(Rdt

ǫ (R)(LR∗(g)−O(1))).

Combining Lemmas 4.4 and 4.6, we get the following.

Theorem 4.7. For any relation R ⊆ {0, 1}n×O, any function g : {0, 1}n → {0, 1, *},

RRank
⊕-dt

ǫ (R ◦ g) ≥ Ω(Rdt

ǫ (R)(LR∗(g∗)−O(1))).

Using Theorem 4.7 or some other related composition theorem, we can show that, for instance,
when the inner function is UDISJ or IND, then the obvious upper bound on PDT rank of R ◦ g is
optimal. Note that both IP2m and DISJ2m are total functions extending UDISJ2m. So the lower
bound for UDISJ also implies the lower bounds for inner product and disjointness in Corollary 1.5.

Corollary 4.8. For any relation R ⊆ {0, 1}n×O, for any m ≥ 2,

RRank
⊕-dt(R ◦UDISJ2m) = Θ(Rdt(R)m),

RRank
⊕-dt(R ◦ INDm+2m) = Θ(Rdt(R)m).

18

Proving the lower bound for UDISJ will suffice to prove it also for IND since IND2m+22m contains
UDISJ2m as a subfunction. By Theorem 4.7, it is sufficient to show that LR

∗(UDISJ∗) ≥ Ω(m).
Instead of showing this directly, we will show that the simpler quantity sabotage ∗-complexity of
(UDISJ2m)∗ is Ω(m).

Sabotage complexity was first defined by Ben-David and Kothari [BK18] for ordinary decision
trees and here we consider its natural ∗-analogue. Sabotage complexity R

∗
sab(g) is the expected zero-

error query complexity of the following task. Let g : {0, 1, *}m → {0, 1, *} be a partial function.
Given a string z ∈ {0, 1, ∗, †}m, where we interpret † as representing that the coordinate is free,
find a † in z under the promise that z is consistent with some 0-input x and some 1-input y. It can
alternatively be characterized as R∗

sab(g) = maxµ minT E(x,y)∈µ[sep∗
T (x, y)] [GLSS23, Theorem B.1],

where µ varies over distributions on pairs in g−1(0) × g−1(1), T varies over deterministic decision
trees solving g and sep∗

T (x, y) denotes the number of marked edges (∗-queries) on the path from
the root to the node v where x and y separate. More precisely, v is the unique node in T such that
both x and y reach v but they disagree on the query made at node v.

The composition theorem using sabotage complexity [BK18] is straightforward to adapt to

∗-decision trees, R∗-dt
ǫ (R ◦ g) ≥ R

dt

ǫ (R)R∗
sab(g), so we omit it.

Lemma 4.9. R
∗
sab((UDISJ2m)∗) ≥ m−1

4 .

Proof. For brevity, let hm denote (UDISJ2m)∗. The hard distribution µm is generated as follows.
First sample z ∈ ({0, 1, ∗, †}2)m in the following way. Pick i ∈ [m] uniformly. Set zi to (1, †) or
(†, 1) uniformly. For each j 6= i, independently set zi to (0, ∗) or (∗, 0) uniformly. Finally, obtain
x by replacing the † in z by 0 and y by replacing the † by 1. Observe that after conditioning on
i 6= m, the distribution on z1 . . . zm−1 is exactly what we would get if we performed the above
procedure for m− 1. This will let us use induction.

Let l(m) = minT Eµm [sep∗
T (x, y)]. We will show that l(m) ≥ m−1

4 by induction. The base case
m = 1 is clear. For the induction step, we start by making some simplifying assumptions about
T since we only care about the cost of T on the distribution µ. Since our distribution is invariant
under permuting blocks and permuting bits within a block, we may assume that the query at the
root in T is wm1 (we use w to denote the queries in T to avoid confusion with x, y, z). In the
subtree where wm1 = 0, for any query to wm2, we remove it and directly attach its parent to the
subtree where wm2 = ∗. We do the same with the roles of 0 and ∗ interchanged. Note that this
does not affect correctness of T on µ since in any pair (x, y) in the support of µ, if xm1 = ym1 = 0,
then also xm2 = ym2 = ∗, and similarly the other way around. Also the cost of T does not increase
by performing this simplification.

By the observation above, since the distribution µ conditioned on i 6= m is identical to µm−1,
the subtrees where xm1 = 0 and xm1 = ∗ give trees solving the separation task on the distribution
µm−1. Therefore, we have the recurrence,

l(m) ≥ m− 1

m

(

1

2
+ l(m− 1)

)

,

which by induction gives l(m) ≥ m−1
4 .

Proof of Corollary 4.8. The upper bounds follow from simulating a randomized decision tree T for
R by using a deterministic tree for the inner function at each node of T .

For the lower bounds, as stated earlier, a lower bound for R ◦ UDISJ2m also implies the same
lower bound for R ◦ IND2m+22m . So we only need to show the lower bound for R ◦ UDISJ2m.

By combining R
∗-dt
ǫ (R ◦ g) ≥ R

dt

ǫ (R)R∗
sab(g) and Lemma 4.9, we get R

∗-dt
ǫ (R ◦ (UDISJ2m)∗) =

Ω(Rdt

ǫ (R)m). Now using this with Lemma 4.4, we get RRank
⊕-dt

ǫ (R ◦ g) = Ω(Rdt

ǫ (R)m).

19

Remark 4.10. The simulation using stifling gadgets, Theorem 3.11, can be understood as using
the fact that for a k-stifled function g, R∗

sab(g∗) ≥ k/m. Indeed, if we couple the distributions of
certificates underlying µ0 and µ1 used in that proof according to the set of coordinates that are
fixed, any decision tree correctly computing g∗ must see a ∗ on the first query with probability
k/m.

5 More on parity decision trees for composed problems

5.1 Parity stifling and the parity Blocker-Certifier game

In this subsection, we start by giving a different way in which the lifting theorem of [CMSS23] can
be slightly improved. In the original description of the simulation [CMSS23], a parity query is only
localized to a block i ∈ [n] instead of a single variable. Such a block is said to be marked by this
parity query. It is only when a block has been marked k times that we consider which variables
in this block can be chosen as pivots for the queries marking the block, and set the remaining
according to a certificate using the k-stifled property of the gadget.

We observe that it is not necessary to only consider certificates which fix bits. Instead it suffices
to have any parity certificate which is completely independent of the linear forms coming from these
marked queries obtained by projecting onto the block i. We say that two linear subspaces A and
B of Fm

2 are independent if A ∩ B = {0m}. For two collections C and D of linearly independent
linear forms, we say that C and D are independent if their respective spans are independent. In
other words, there is no non-zero linear form which can be expressed both as a linear combination
of forms from C and a linear combination of forms from D.

Definition 5.1. A function g : {0, 1}m → {0, 1, *} is k-parity stifled if for every k-dimensional
subspace V ⊆ F

n
2 (viewed as part of the dual space, i.e. a collection of parities) and every b ∈ {0, 1},

there is a domain b-parity certificate C such that C and V are independent. Here by C and V
being independent, we actually mean that the linear forms involved in the constraints of C are
independent of V .

If g is 1-parity stifled, then we sometimes drop the 1 and simply say that g is parity stifled.
Note that a k-stifled function is also k-parity stifled by using the idea of localizing a basis for any
k-dimensional subspace V to a set of k indices in [n] and considering a certificate which only fixes
the remaining n − k bits. On the other hand, there exist 1-parity stifled functions which do not
contain any subfunctions (when only restricting bits) which are 1-stifled. An example of such a
function is g(x1, x2, x3) = x1 ⊕ (x2 ∧ x3).

We now argue that being parity stifled is also sufficient for lifting to PDTs by making a small
change to the original proof of [CMSS23] for stifled gadgets. Since we will prove something stronger
later, we only sketch the changes to the proof of [CMSS23] required for the following proposition.

Proposition 5.2. Let g : {0, 1}m → {0, 1, *} be k-parity stifled. Then for all relations R,

DRank
⊕-dt(R ◦ g) ≥ kDdt(R).

Proof sketch. After a block zi has been marked k-times, a query is made to xi. Since g is k-parity
stifled, there exists a domain parity certificate which only fixes parities that do not lie in the span
of the projections of the parities which marked zi. The linear equations coming from this parity
certificate are now added to the list of equations and used for simplifying any future parity queries.
Since the added parities only depend on a particular block and are independent of the projections
onto that block of the corresponding marked parities, the final matrix of coefficients corresponding

20

to the collection of equations can be written as a block-triangular matrix where each block on the
diagonal has linearly independent rows. This implies that there exists a solution to this system of
equations.

We now combine ideas of parity stifling and the Blocker-Certifier game to unify the lower
bounds on PDT rank of composed functions discussed so far. Let Vm denote the collection of all
affine subspaces of Fm

2 . We will define a model of decision trees for computing functions of affine
subspaces of Fm

2 . Such a decision tree makes parity queries to learn whether these parities are free
(∗) or fixed to some b ∈ {0, 1}. To properly define such a decision tree, we need the notion of a
partial subspace.

Definition 5.3. A partial subspace V of Fm
2 is defined by a pair (C,B) where C is a collection of

linear equations (or constraints), B is a collection of linear forms and B and C are independent.
We interpret V as being the collection of affine subspaces U such that U is consistent with C (every
input in U satisfies C) and every v ∈ span(B) is free in U . We do not distinguish between different
representations of the same partial subspace obtained by performing some invertible transformation
on C or B.

We will assume that C and B do not contain any redundant constraints or linear forms, so the
involved linear forms are always linearly independent.

Definition 5.4. A (⊕, ∗)-decision tree is a decision tree for affine subspaces on F
m
2 where each query

is a parity and the set of inputs reaching a node is defined by some partial subspace (C,B). We will
require that the parity query v at a node with the partial subspace (C,B) must be independent of
the linear forms appearing in C and B, i.e. it cannot be expressed as a linear combination of the
linear forms (defining the constraints) in C and the forms in B. Such a node has exactly 2 · 2|B| + 1
children. One child corresponds to v being free, i.e. the partial subspace (C,B ∪ {v}). The edge
between the nodes (C,B) and (C,B ∪ {v}) is labeled by ∗. For every S ⊆ B and b ∈ {0, 1}, we
have the partial subspace (C ∪ {v +

∑

w∈S w = b}, B). The corresponding edge is labeled by the
new constraint v +

∑

w∈S w = b.

Observe that these 2|B|+1 + 1 partial subspaces indeed form a partition of (C,B). Also note
that since each query increases the dimension of C ∪B, m queries always suffice to fully determine
any affine subspace.

To prove a relation similar to Lemma 4.1, we first generalize the notion of a (⊕, ∗)-decision tree
to also apply to inputs in Vnm. Such a decision tree makes queries like an (⊕, ∗)-decision tree on Vm
but each query is contained in a single block. So each node now corresponds to an n-fold product
of partial subspaces of Vm and each query only affects one of these n partial subspaces.

The ∗-depth of an (⊕, ∗)-decision tree T is the maximum number of ∗’s on any root-to-leaf path
in T . The ∗-depth of a relation R ⊆ Vnm × O, denoted D

⊕,∗-dt(R) is the minimum ∗-depth of a
(⊕, ∗)-decision tree computing R.

We now define for any relation R with a natural block structure on the input bits, a related
problem whose ∗-depth will give a lower bound on the PDT rank of R. For simplicity, we will
assume below that these blocks have the same size m, but this is not required for the proof.
Different partitions into blocks will lead to different relations but we will suppress the dependence
on the partition, since the statements hold for all partitions (unless noted otherwise). Let R ⊆
({0, 1}m)n × O. Define R⊕,∗ ⊆ Vnm × O as follows. For any input U = (U1, U2, . . . , Un) ∈ Vnm,
we have (U, o) ∈ R⊕,∗ iff there is some y ∈ ({0, 1}m)n such that (y, o) ∈ R and y is consistent
with U in the sense that for each i ∈ [n], yi is in Ui. Again D

⊕,∗-dt(R⊕,∗) may be captured by a
game, which is the parity analogue of the Blocker-Certifier game. In this game, Certifier picks some

21

parities which are to be fixed to 0 or 1 and Blocker picks a parity contained in a block (independent
from previously picked parities) to be left free in each round. The game ends when Blocker can
announce an o ∈ O such that every z ∈ Vnm consistent with the current partial subspace contains
some x ∈ ({0, 1}m)n such that (x, o) ∈ R. Define BCval

⊕(R) to be the maximum score a parity
Certifier strategy can guarantee in the parity Blocker-Certifier game for relation R. We again have
BCval

⊕(R) = D
⊕,∗-dt(R⊕,∗) (see Lemma B.3 for a proof).

Proposition 5.5. Let R ⊆ ({0, 1}m)n ×O. Then

DRank
⊕-dt(R) ≥ BCval

⊕(R) = D
⊕,∗-dt(R⊕,∗).

This can be proved by lifting a Certifier strategy in the parity Blocker-Certifier game to a parity
Delayer strategy for R, but we phrase it as a simulation below.

Proof. Let T be a parity decision tree computing R. We will give a (⊕, ∗)-decision tree T ′ for R⊕,∗
of ∗-depth at most rank(T).

To perform the simulation, for each i ∈ [n], we will keep a set Pi of linear equations which
correspond to the free parities Bi in the ith partial subspace of the current node in the (⊕, ∗)-
decision tree. For each v ∈ Bi, there will be some equation v = w+ b in Pi where b ∈ F2 and w is a
parity on (Fm

2)n which only depends on variables from blocks j > i. Each such equation in Pi will
be equivalent to a constraint coming from parity queries made in T combined with the constraints
in Ci (i ∈ [n]), where Ci is the collection of fixed parities of the ith partial subspace.

In the beginning, each Pi is empty. Suppose we are at a node in T with the parity query
v = 〈α, z〉+ b. Clean it up in the following manner. For each i ∈ [n],

• If v|i lies in the span of the linear forms in Bi and Ci, let T1 ⊆ Bi and T2 ⊆ Ci such that
v|i =

∑

w∈T1
w +

∑

w∈T2
w. Let T ′

1 ⊆ Pi be the collection of equations corresponding to the
forms in T1. Update v by substituting v|i using the equations in T ′

1 and T2. (Note that now
v|i = 0 and for j < i, v|j continue to be 0.)

• Otherwise, exit the loop.

At this point, if v ∈ F2, we simply move to the child corresponding to v without making any queries.
Otherwise, consider the smallest i such that some variable of zi still appears in v. We make a

query v|i in T ′. If the response is ∗ (so that in the updated partial subspace, we have v|i ∈ Bi),
then in T , we move to the marked child, corresponding to say c ∈ F2 and add the equation
v|i = (v − v|i) + c to Pi.

Now suppose the response is v|i + v′ = b where v′ lies in the span of Bi. Then we apply the
clean-up procedure again (with the updated Ci) and continue as above. Note that this process
must terminate since with each clean-up phase at the same query, we are clearing away one block.

Once we are at a leaf of T , we give the same output in T ′. It is easy to see that the cost of
T ′ is at most rank(T) since each time we see a ∗ in T ′, we move to the marked child in T . Let
us verify that T ′ correctly solves R⊕,∗. Suppose the input to T ′ is U = U1U2 . . . Un. We claim
that there is a string y ∈ ({0, 1}m)n consistent with U which is also present in the leaf of T which
is reached by performing the above simulation with input U . To see this, we fix each block yi in
reverse order (i = n, n−1, . . . , 1) according to the equations in Pi and Ci. Some such yi exists since
Bi and Ci are independent, the projections of Pi onto block i give exactly Bi and each equation in
Pi only depends on blocks j ≥ i. Since Ui belongs to the partial subspace (Ci, Bi), we see that yi
is indeed consistent with Ui. Also note that y reaches the leaf reached during the simulation since
we always ensure that every parity constraint on the root-to-leaf path is implied by the equations
in

⋃n
i=1 Pi ∪ Ci.

22

We may now combine this with a composition statement for (⊕, ∗)-decision trees which follows
from the general composition theorem for block decision trees, Proposition B.2, to get the following
theorem.

Theorem 5.6. For any relation R ⊆ {0, 1}n×O, any function g : {0, 1}m → {0, 1, *},
DRank

⊕-dt(R ◦ g) ≥ D
dt(R)(BCval⊕(g)− 1).

By BCval
⊕(g), we refer to the game when considering the trivial partition where all variables

are contained in just one block.
It is easy to see that if g is k-parity stifled, then BCval

⊕(g) ≥ k + 1 since any (⊕, ∗)-decision
tree for g⊕,∗ must make see at least k + 1 ∗’s on the input which corresponds to the whole space
F
m
2 . We now verify that the parity Blocker-Certifier game (on the partition into one block) is at

least as hard as the Blocker-Certifier game (which can be thought of as the parity Blocker-Certifier
game on the partition into singletons). This shows that Theorem 5.6 also implies Theorem 4.3.

Lemma 5.7. For any relation R ⊆ {0, 1}n×O,

BCval
⊕(R) ≥ BCval(R).

Proof. Suppose T is a (⊕, ∗)-decision tree solving R⊕,∗. We will give a decision tree T ′ for R∗
whose ∗-depth is at most that of T . The simulation is similar to the one in Lemma 4.1. We will
use M ⊆ [n] to denote the set of all coordinates in z which have been revealed to be ∗. During
the simulation, we will follow the root-to-leaf path in T which is taken by the subcube provided
as input to T ′. So we will ensure that in the current partial subspace (C,B), all constraints in C
are implied by the fixed coordinates in the input z ∈ {0, 1, *}n and that M gives a collection of
pivots for the linear forms in B. This would imply correctness of our simulation. To see why each
non-zero linear form in the span of B is free, simply note that every v ∈ span(B) must contain
some variable in M since M is a collection of pivots. Since M gives pivots for B, we also have
|M | = |B|.

Suppose the current query in T is v =
∑

i∈S zi. We first clean up v by adding a suitable linear
combination of linear forms from B so that v does not depend on any of the coordinates in M . This
can be done because of our invariant that M gives pivots for B. Now if v is already determined
because of the previous queries, we move to the appropriate child in T without making any queries
in T ′. If there is some variable zi appearing in v which hasn’t already been queried, query it. If it
is ∗, we add i to M and move to the ∗-child in T and repeat this process. Note that we still have
that M is a collection of pivots for B. If zi is revealed to be some b ∈ B, we continue querying
any other unfixed variables in v. If all variables in v have been fixed in z, then we move to the
appropriate child in T .

Once we are at a leaf of T , we give the same output in T ′. The bound on the ∗-depth follows
by our invariant |M | = |B|.

5.2 Relations and separations between measures related to stifling

In this subsection, we try to understand whether the stifling-related measures considered in the
previous subsection can be separated or if they coincide in some cases.

We first give a contrived example showing that parity stifling does not imply stifling, even if we
are allowed to restrict some of the bits.

Proposition 5.8. For n = 2m + 1, consider the function g : {0, 1}n → {0, 1} defined by g(x) =
MAJ(y) where y ∈ {0, 1}n is defined by yi = ⊕i

j=1xi. The function g is m-parity stifled, but no
subfunction of g is stifled (which is equivalent to saying that BCval(g) ≤ 1).

23

Proof. The function g is m-parity stifled since it is essentially MAJ after a change of basis and MAJ
is m-stifled. In more detail, for a set of m linearly independent forms, we consider their coordinate
representation in the basis defined by y. Now find a set of pivots and fix the m + 1 non-pivot yi’s
appropriately to get a parity certificate for g(x) = MAJ(y).

We now argue that no restriction of g is stifled. Observe that any subfunction h of g is a
threshold function, on say l bits with threshold k, of the form Thl,k(b1 ⊕ z1, b2 ⊕ z2, . . . , bl ⊕ zl)
where each bi ∈ {0, 1} and zi = ⊕i

j=1xmj
for some free indices 1 ≤ m1 < m2 < . . .ml ≤ n.

Without loss of generality, suppose k ≤ l/2. We will show that there is no 0-certificate of h
which leaves xm1 free. Consider any fixing of the other free bits xmi

, i ≥ 2. For 1 ≤ i ≤ l, define
ci = ⊕i

j=2xmi
. Now set xm1 = 1⊕MAJ(b1 ⊕ c1, b2 ⊕ c2, . . . , bl ⊕ cl). For this x, we get b⊕ z such

that at least l/2 positions are 1. So this input is a 1-input for h.

As discussed in the proof, even though the function is not stifled, it is stifled after performing
a change of basis. Formally, there is a stifled function g and an invertible n × n matrix A over
F2 such that f(x) = g(Ax). Let us call such a function ∃-stifled. In other words, f is ∃-stifled if
there is a basis v1, v2, . . . , vn of Fn

2 such that for every i ∈ [n], b ∈ {0, 1}, there is a domain parity
certificate only setting vi(i 6= j) which fixes the function value to b.

We now note that for total functions, the notions of parity stifling and ∃-stifling (qualitatively)
coincide. Before proving it, it will be useful to make some observations about parity stifled functions.
For b ∈ {0, 1}, say that function f is parity stifled with respect to b if for every v ∈ F

n
2 , there is a

domain parity certificate 〈v1, x〉 = b1, 〈v2, x〉 = b2, . . . , 〈vn−1, x〉 = bn−1 fixing the value of f to b,
where v, v1, v2, . . . , vn−1 form a basis of Fn

2 .

Observation 5.9. If f : {0, 1}n → {0, 1, *} is a partial function which is parity stifled with respect
to b, then there exist n + 1 b-inputs x0, x1, . . . , xn such that x0 + x1, x0 + x2, . . . , x0 + xn is a basis
for F

n
2 .

Proof. Since f is parity stifled with respect to b, there is no affine subspace of codimension 1 fixing
the output to 1− b. This implies that the affine span of the b-inputs has dimension n and so there
must be n + 1 inputs satisfying the conditions in the statement of the observation.

Observation 5.10. Suppose x0, x1, . . . , xn are b-inputs of f and x0 + x1, x0 + x2, . . . , x0 + xn are
linearly independent. Then f is stifled w.r.t b in some basis.

Proof. Let vi = x0 + xi for all i ∈ [n]. Define wi(i ∈ [n]) such that they satisfy

〈wi, vj〉 =

{

1, if i = j

0, otherwise.

In other words, wi’s are the rows of the inverse of the matrix which has vi’s as the columns.
Then f is stifled w.r.t b in the basis w1, w2, . . . , wn. Indeed for any i ∈ [n], the affine subspace

defined by the equations 〈wj , x〉 = 〈wj , x0〉 (j 6= i) only contains the inputs x0 and xi which are
b-inputs.

Call a matrix M ∈ {0, 1}n×m good, if for every i ∈ [n], there exist columns j1 and j2 which differ
only on the ith coordinate. Now for a function f , let the matrix Mb be the matrix with all b-inputs
as columns (their order is irrelevant). Then f is stifled w.r.t b if Mb is good. More generally, f is
stifled w.r.t b in some basis if there is some invertible n×n matrix A such that AMb is good. Also,
f is ∃-stifled if there is some invertible A such that both AM0 and AM1 are good.

24

Proposition 5.11. Let f : {0, 1}n → {0, 1} be a total function. Then f is parity stifled if and
only if f is ∃-stifled.

Proof. One direction is clear: if f is stifled in some basis, it is also parity stifled.
For the other direction, we consider two cases depending on |f−1(0)|.

• |f−1(0)| = |f−1(1)| = 2n−1

We will show that for every basis A, if f is not stifled w.r.t. 0 in the basis A, it is not stifled
w.r.t. 1 in the same basis A. Using this, we get that if AM1 is good (such an A exists since
f is parity stifled), then so is AM0.

Suppose f is not stifled w.r.t. 0 in the basis A. This means that for some i ∈ [n], all columns
in AM0|−i (the matrix AM0 with row i removed) are distinct. Since there are exactly 2n−1

columns, this means that AM0 contains exactly one input from each pair {x, x⊕i}, where x⊕i

denotes x with the ith bit flipped. All other inputs must appear as columns of AM1. So AM1

also contains exactly one input from each pair {x, x⊕i} and thus all columns in AM1|−i are
distinct.

• |f−1(0)| 6= |f−1(1)|
Without loss of generality, assume |f−1(0)| < |f−1(1)|.
Observe that any matrix n ×m matrix M with m > 2n−1 is good since | {0, 1}n−1 | = 2n−1.
This implies that since M1 has more than 2n−1 columns, for every n×n matrix A, the matrix
AM1 is good.

Now, we only need to show that f is stifled w.r.t 0 in some basis. This follows from combining
Observations 5.9 and 5.10.

We will show next that the above proposition fails for partial functions. The following lemmas
will be useful.

Lemma 5.12. Let M be a good n × (n + 1) matrix whose first column is 0n. In the hypercube
{0, 1}n, consider the subgraph G induced by the vertices given by the columns of M . Then G is a
tree containing an edge in each direction i ∈ [n].

Proof. We first argue that G is connected which follows from the following claim.

Claim 5.13. For any good matrix N of dimensions n×m, we must have m ≥ n + 1. Moreover if
m = n + 1, then the subgraph contains a spanning tree in which edges in all n directions appear.

Proof of claim. Consider the subgraph H corresponding to N . By removing edges, we will remove
all cycles in H while ensuring that for each i ∈ [n], there is an edge in direction i. This can be
done since any cycle must contain, for each i ∈ [n], an even number of edges in direction i.

So now we have a forest F which is a subgraph of H and which contains an edge in direction
i for each i ∈ [n]. Thus the number of vertices in F (and so in H) is at least n + 1. Moreover if
m = n + 1, F is a tree.

By the above claim, G is connected. Consider a spanning tree T of G containing edges in all
directions. We need to show that G = T . Towards a contradiction, suppose there is an edge e in
G but not in T . The graph T ∪ e contains a cycle. This cycle must contain, for each i ∈ [n], an
even number of edges in direction i but this is not possible since T only contains one edge in each
direction.

25

Lemma 5.14. The number of n × (n + 1) good matrices whose first column is 0n is exactly
(n + 1)n−1n!.

Proof. By the previous lemma, every n × (n + 1) good matrix corresponds to a tree with n + 1
vertices in the hypercube (along with an ordering on the vertices). Such a tree can be described by
a labelled tree T on vertices {0, 1, 2, . . . , n}, along with a distinct edge label i ∈ [n] for each edge of
T . The corresponding tree in {0, 1}n is given by mapping vertex 0 of T to 0n and then using the
edge labels of T to find the other vertices.

Thus the number of trees which send vertex 0 to 0n is exactly the number of labelled trees on
{0, 1, . . . , n} multiplied by the number of ways of giving edge labels. By Cayley’s formula, this is
(n + 1)n−1n!.

We are now in a position to prove the existence of partial functions which are parity stifled but
not ∃-stifled.

Proposition 5.15. For n ≥ 8, there exists a partial function f : {0, 1}n → {0, 1, *} which is parity
stifled but not ∃-stifled.

Proof. The function f is defined randomly in the following way. Let w1, w2, . . . , wn be linearly
independent vectors in F

n
2 picked uniformly at random.

f(x) =











0, if |x| ≤ 1

1, if x ∈ {1n, 1n + w1, 1
n + w2, . . . , 1

n + wn}
∗, otherwise

For the above function to be well-defined, we need that none of 1n + w1, 1
n + w2, . . . , 1

n + wn

have weight at most 1. The probability that there is some i such that |1n + wi| ≤ 1 is at most
n(n+1)
2n−1 by the union bound.

Any function f defined as above is parity stifled by Observation 5.10. We will show that f is
∃-stifled with low probability. For any fixed basis A such that f is stifled w.r.t. 0 in the basis A,
we will estimate the probability that f is also stifled w.r.t. 1 in the basis A, and then use the union
bound over all good bases for 0.

Let A be an invertible matrix such that f is stifled w.r.t 0 in the basis corresponding to A.
This means that AM0 is good where M0 consists of 0n followed by the identity matrix. But this
is the same as [0n|A] being good. To estimate the probability that AM1 is good, we first consider
the shifted matrix M ′

1 = [0|w1|w2| . . . |wn] obtained by adding 1n to each column of M1. Note that
AM1 is good iff AM ′

1 is good. By Lemma 5.14, AM ′
1 is good if it is one of (n + 1)n−1n! matrices.

So the probability that AM1 is good is at most (n+1)n−1n!
(2n−1)(2n−2)...(2n−2n−1)

.

We will now use the union bound over all possible A. Note that since changing the order of the
basis vectors does not affect whether AM1 is good, it suffices to consider such A up to permuting
the vectors. By Lemma 5.14, there are (n + 1)n−1 such good bases (disregarding order).

Pr[f is stifled in some basis]

= Pr[∃ good basis A such that f is stifled w.r.t.1 in basis A]

≤
∑

good A

Pr[f is stifled w.r.t.1 in basis A]

≤ (n + 1)n−1 · (n + 1)n−1n!

(2n − 1)(2n − 2) . . . (2n − 2n−1)
.

26

Combining this with the probability that the function f is not well-defined, we get that except

with probability (n+1)n
2n−1 + (n+1)2(n−1)n!

(2n−1)(2n−2)...(2n−2n−1)
, f satisfies the properties we want. This quantity

is strictly less than 1 for n ≥ 8.

5.3 Reduction to randomized (⊕, ∗)-decision trees

We now prove the randomized analogue of Proposition 5.5. We only need to combine the ideas
used in that proof with the ideas used in the reduction to randomized ∗-depth.

Proposition 5.16. For any relation R ⊆ ({0, 1}m)n ×O,

RRank
⊕-dt

ǫ (R) ≥ 1

2
R
⊕,∗-dt
ǫ (R⊕,∗).

Proof. Let T be a randomized parity decision tree computing R to error ǫ. We will give a random-
ized (⊕, ∗)-decision tree T ′ for R⊕,∗ of expected ∗-depth at most 2 rank(T).

As before, we will run T on the distribution obtained by picking a uniformly random vector
in each of the n subspaces of the input to T ′. This will imply correctness since for each string
z ∈ ({0, 1}m)n, T is correct with probability at least 1− ǫ.

Let T be a deterministic PDT in the support of T . Our invariants will be the same as in the
deterministic (⊕, ∗)-decision tree simulation. Let us recall them. For each i ∈ [n], there is a set
Pi of linear equations which correspond to the free parities Bi in the ith partial subspace of the
current node in the (⊕, ∗)-decision tree. For each v ∈ Bi, there will be some equation v = w + b
in Pi where b ∈ F2 and w is a parity on (Fm

2)n which only depends on variables from blocks j > i.
Each such equation in Pi will be equivalent to a constraint coming from parity queries made in T
combined with the constraints in Ci (i ∈ [n]), where Ci is the collection of fixed parities of the ith

partial subspace.
In the beginning, each Pi is empty. Suppose we are at a node in T with the parity query

v = 〈α, z〉 + b. We clean up the parity query v as in the deterministic case. Now, if v is fixed to
some b ∈ F2, we simply move to the child corresponding to b without making any queries.

Otherwise, consider the smallest i such that some variable of zi still appears in v. We make a
query v|i in T ′. If the response is ∗ (so that in the updated partial subspace, we have v|i ∈ Bi),
then in T , we move to a child uniformly at random. Suppose this child corresponds to setting the
parity to c ∈ F2. Then we add the equation v|i = (v − v|i) + c to Pi.

Now suppose the response is v|i + v′ = b where v′ lies in the span of Bi. Then we apply the
clean-up procedure again (with the updated Ci) and continue as above.

Once we are at a leaf of T , we give the same output in T ′. The expected cost of T ′ is at most
2 rank(T) since each time we see a ∗ in T ′, we move to the marked child in T with probability
1/2. By an argument similar to the one for Lemma 4.5, it can be shown that the above simulation
reaches each node of T with the same probability as an input obtained by picking a vector in each of
the n affine subspaces uniformly at random. This implies correctness as explained in the beginning
of the proof.

By combining this with the randomized composition theorem for block decision trees, Theorem
B.4, we get the following.

Theorem 5.17. For all relations R ⊆ {0, 1}n×O, all functions g : {0, 1}m → {0, 1, *},

RRank
⊕-dt

ǫ (R ◦ g) ≥ Ω(Rdt

ǫ (R)(LR⊕,∗(g⊕,∗)−O(1))).

27

6 Classification of gadgets which allow lifting

In this section, we try to better understand which gadgets allow lifting to parity decision trees.
This question was studied by Alekseev, Filmus and Smal [AFS24] in the deterministic case who
gave a classification of gadgets which allow lifting from DT depth to depth and size in PDTs when
composing with a total function. They show that gadgets which affine project to AND and OR
allow lifting. However, this lifting theorem for PDTs actually lifts from certificate complexity and
to get lifting from DT depth, they use the known relation D

dt(f) ≤ C(f)2 because of which the
exponent in the lower bound is only 1/2 instead of 1. It is unclear if these gadgets allow linear
lifting, logDSize⊕-dt(f ◦ g) ≥ Ωg(Ddt(f)) for all f , rather than just polynomial.

This situation also occurs for ordinary decision trees, though there the class of gadgets for which
we do not know if linear lifting is possible is relatively small. By the results of [AFS24, DM23], we
know that for any g satisfying DRank

dt(g) ≥ 2, we have DRank
dt(R ◦ g) ≥ D

dt(R). The condition
DRank

dt(g) ≥ 2 is equivalent to there being some subfunction h of g with Cmin(h) ≥ 2. In this
sense, minimum certificate complexity gives an explanation for linear lifting for all gadgets where
this is known for ordinary decision trees.

For parity decision trees, it is perhaps less immediate if the analogous quantity minimum parity
certificate complexity being at least 2 is sufficient for lifting. (Since our focus in this section is
only on understanding when linear lifting is possible, we will mostly drop the word linear from
here on.) However, we note that the observations in Section 5.2, actually show that being parity
stifled is equivalent to not having a parity certificate of codimension 1. Indeed, Observation 5.9
uses the fact that a parity stifled function cannot have a parity certificate of size 1 and this is the
only implication of being parity stifled which is used there. By combining with Observation 5.10,
we get the following claim.

Claim 6.1. Let g : {0, 1}m → {0, 1, *} be a partial function. The function g is parity stifled if and
only if C⊕

min
(g) ≥ 2.

In particular, C⊕
min

(g) ≥ 2 is indeed a sufficient condition for lifting to PDT rank, since parity
stifling is sufficient for lifting (Proposition 5.2). Moreover, using the above claim and Proposition
5.11, for any total function f : {0, 1}m → {0, 1}, we get that f satisfies C

⊕
min

(f) ≥ 2 if and only if
f is stifled in some basis.

Similar to the case of ordinary decision trees, we can further relax the condition C
⊕
min

(g) ≥ 2
to DRank

⊕-dt(g) ≥ 2. If DRank⊕-dt(g) ≥ 2, then there is some affine subspace of Fm
2 on which the

restricted function h satisfies C
⊕
min

(h) ≥ 2 and g must therefore allow lifting to PDT rank.
So the only remaining case is when DRank

⊕-dt(g) = 1, i.e. when g can be computed by a decision
list of parities. We show that for any total g satisfying DRank

⊕-dt(g) = 1 which is not a parity,

there is some function g′ : {0, 1}m′ → {0, 1} such that for every relation R, DRank⊕-dt(R ◦ g) =
DRank

dt(R ◦ g′). Therefore, to understand which gadgets allow lifting to deterministic PDT rank,
it is enough to understand which gadgets allow lifting to DT rank. We start by showing this
statement for the OddMaxBit gadget and then show how every gadget is essentially equivalent to
OddMaxBit for some input length.

To simplify notation and avoid confusion about the definition, we work with a variant of Odd-
MaxBit obtained by reversing the order of the bits. The function EvenMinBit EMBm : {0, 1}m →
{0, 1} is defined in the following way. For x ∈ {0, 1}m, EMBm(x) = 1 if the index of the first 1 in
x is even. More formally, if i ∈ [n + 1] is the unique number such that xi = 1 and xj = 0 for all
1 ≤ j < i, then EMB(x) is 1 if and only if i is even. By convention, we always have xn+1 = 1, so
that EMBm(0m) is 1 if m + 1 is even.

28

Lemma 6.2. For all relations R ⊆ {0, 1}n×O and m ≥ 2, the following hold:

• DRank
⊕-dt(R ◦ EMBm) = DRank

dt(R ◦ EMBm).

• There exists a marked decision tree T computing R ◦ EMBm of rank DRank
⊕-dt(R ◦ EMBm)

with the following properties. Within each block i ∈ [n], for all j ∈ [m], if xi,j is queried,
then xi,j′ , j

′ < j must have been queried earlier. The marked edge at a query xi,j is xi,j = 1
if j < m and is xi,j = 0 if j = m.

Proof. For the first point, we will prove the following chain of inequalities

DRank
dt(R ◦ EMBm) ≥ DRank

⊕-dt(R ◦ EMBm) ≥ D
∗-dt(R ◦ (EMBm)∗) ≥ DRank

dt(R ◦ EMBm).

The inequality DRank
dt(R ◦ EMBm) ≥ DRank

⊕-dt(R ◦ EMBm) is obvious. The inequality
DRank

⊕-dt(R ◦ EMBm) ≥ D
∗-dt(R ◦ (EMBm)∗) follows from Lemma 4.1.

So we only need to show D
∗-dt(R ◦ (EMBm)∗) ≥ DRank

dt(R ◦ EMBm). For brevity, let hm =
(EMBm)∗. Suppose we have a decision tree T solving R ◦ hm. We will give a decision tree for
R◦EMBm whose rank is at most the ∗-depth of T . We will use zij to denote the inputs of R◦ hm
(queried in T) and xij to denote the inputs of R ◦ EMBm.

With each possible input x ∈ {0, 1}m to a block (except 0m−11), we will associate two certificates
z1 and z2 of EMBm such that hm(z1) = hm(z2) = EMBm(x). The certificates associated with x will
depend only on the index of the first 1 in x. For now, consider only the case where the first index
j is at most m− 1. (The case of the input being 0m will be handled in the same way as any input
where j = m − 1.) Additionally, we will ensure that the certificates z1, z2 have 0s in all positions
before j and for each k ≥ j at least one of z1, z2 will have ∗ at index j. The latter condition will
be used to go down a ∗-edge while remaining consistent with some certificate which gives the same
input for that block.

We now define the associated certificates. For j ∈ [m − 1], let Cj,1 = 0j−11∗m−j and Cj,2 =
0j−1∗01m−1−j . These are the certificates associated with any x whose first 1 is at index j ∈ [m−1].
The string 0m (in which the first 1 occurs at index m+ 1) is associated with the certificates Cm−1,1

and Cm−1,2. The indices m − 1 and m + 1 are always treated in the same way. The properties
described above can be easily verified for these certificates. The string 0m−11 is associated with
the certificate 0m−11.

During the simulation, we will maintain the following invariants. For any block i ∈ [n], we will
always make queries in order, i.e. if xi,j is queried at some point, then xi,j′ for j′ < j must have
been queried at some point earlier. After seeing a 1 in the block xi, we fix zi completely to one of
the associated certificates. For j ≤ m − 2, if the first j bits of xi are 0, then the first j bits of zi
are also 0 (note that this property holds for the associated certificates).

We now describe the simulation. Suppose we are at a node querying zi,j in the tree T . If the
block zi has already been fixed, we move to the appropriate child in T without making any queries
in T ′. Otherwise suppose xi,j′ is the last queried bit in xi (if xi has not been queried at all, then
j′ = 0). Starting from xi,j′+1, query bits of xi one by one until we see a 1 or we have queried xi,j−1

which is 0. Here we mark the outgoing edge where a 1 is seen for all xi,j1 (j′ + 1 ≤ j1 < j). Note
that we only see at most one marked edge when making these queries.

Suppose we see a 1 when making these queries. Let j′′ be the index of the 1. Then we set
zi = Cj′′,1 which ensures that zij = ∗. So we may move to the ∗-child in T and continue the
simulation from that node. Note that we crossed one marked edge in T ′ when simulating the query
in T in this case.

Now suppose xi,j1 = 0 for all j1 < j. There are there are two cases depending on whether
j ≤ m− 2.

29

• If j ≤ m − 2, query xi,j in T ′ where the edge xi,j = 1 is marked. If xi,j = 1, set zi = Cj,2

so that zi,j = ∗. We now move to the ∗-child in T . If xi,j = 0, then set zi,j = 0 and move
accordingly in T . Note that in each case, the number of marked edges crossed in T ′ is equal
to the number of ∗’s seen in T .

• If j ≥ m−1, we query the remaining bits of xi until we either see a 1 or both xi,m−1 = xi,m = 0.
The marked edges here are xi,m−1 = 1 (this query has not been made previously only if
j = m − 1) and xi,m = 0. Since the first m − 2 bits of xi were fixed to 0 earlier, focus on
the last two bits of xi. If they are 00 or 1·, set zi to one of Cm−1,1 or Cm−1,2 to ensure that
zi,j = ∗. Note that in this case, we have crossed exactly one marked edge in T ′ and moved
to the ∗-child in T . If the last bits are 01, set zi = 0m−11. In this case, we do not incur any
cost in either tree.

Once we reach a leaf of T , we give the same output in T ′.
We now need to verify that T ′ is correct. Let x be an input to R◦EMBm. Consider the partially

fixed z created when performing the simulation on input x. Any input which is consistent with this
partially fixed z reaches the same leaf in T . So we need to just find some z′ ∈ ({0, 1, *}m)n which is
consistent with the partially fixed z and EMBn

m(x) = hnm(z). Any block zi of z which is completely
fixed satisfies hm(zi) = g(xi) by the properties of the defined certificates. For any block zi which is
not fixed, note that the only fixed positions are among the first m − 2 which are set to 0. So the
remaining can be set according to one of the certificates associated with xi to get z′i. This gives z′i
as desired.

For the cost of T ′, we have argued above that we only go to the ∗-child in T iff we cross a
marked edge in T ′ in each of the possible cases that could arise during the simulation. This shows
that the rank of T ′ is at most the ∗-depth of T .

For the second point, note that the tree T ′ obtained in the simulation above has the desired
properties.

We will say that two functions g and h are equivalent if for all relationsR, we have DRank⊕-dt(R◦
g) = DRank

⊕-dt(R ◦ h).

Lemma 6.3. For every total function g : {0, 1}m → {0, 1} which is not a parity and satisfies
DRank

⊕-dt(g) = 1, there exists some function h ∈ {EMBk,¬EMBk | k ≥ 2} such that for all
relations R,

DRank
⊕-dt(R ◦ g) = DRank

⊕-dt(R ◦ h).

Proof. Let T be a PDT of rank 1 computing g. We will assume that the last two leaves (the two
leaves with the same parent) have different labels. Since T is a decision list of parities, we may list
the parities in T in the order in which they are queried, v1, v2, . . . , vd. We may assume that all these
linear forms are linearly independent. If this is not the case, we can simplify the tree by removing
a linear form vi which can be written as a linear combination of the linear forms queried earlier
vj , j < i, since the value of the query vi is already determined by the previous queries. Extend this
set of linear forms to get a basis v1, v2, . . . , vm of Fm

2 . Let A be the invertible matrix in F
m×m
2 whose

rows are v1, v2, . . . , vm. Define g′ : {0, 1}m → {0, 1} by g′(x) = g(A−1x). Since PDT rank does not
change under a change of basis, we have for all relations DRank

⊕-dt(R ◦ g) = DRank
⊕-dt(R ◦ g′).

Also note that d ≥ 2 since g is not a parity.
Now g′ can be computed by the decision list T ′ obtained by replacing each linear form vi in T

by the bit query xi for i ∈ [d], while leaving the leaves unchanged. Since g′ is total, we may identify
T ′ and g′ from now on.

30

By negating the inputs to g′, we can assume that in T ′, at each query node xi (i < d), the leaf
corresponds to xi = 1. Additionally, by negating xd if needed, we can assume that the label of the
leaf at xd−1 = 1 is not equal to the leaf label at xd = 1. Note that negating the input bits does not
change DRank

⊕-dt(R ◦ g′). Finally, we will assume that the first leaf label (at x1 = 1) is 0. Under
these assumptions, we will show that g′ is equivalent to EMBk for some k.

To make g′ satisfy this assumption about the first leaf label, we may need to negate g. In
general, it can be the case that DRank

⊕-dt(R ◦ g) 6= DRank
⊕-dt(R ◦ ¬g). However, in the case that

the first leaf label is 1 instead of 0, we get that ¬g is equivalent to EMBk for some k which implies
that g is equivalent to ¬EMBk.

We will now show that g′ is equivalent to EMBk for some k under the above assumptions
on T ′. Under these assumptions, we can succinctly represent T ′ by an ordered partition of d,
[s1, s2, . . . , sk−1, sk], where

∑

i∈[k] si = d and sk = 1. We interpret such an ordered partition in the
following way. The number s1 indicates that the first s1 leaves are all labeled 0, the next s2 leaves
are all labeled 1, and so on. Since sk = 1 and d ≥ 2, we have k ≥ 2. Let t0 = 0 and for i ∈ [k],
ti =

∑i
j=1 sj . Observe that such a function can be expressed as g′(x) = EMBk(z1, z2, . . . , zk) where

for each i ∈ [k], zi =
∨ti

j=ti−1+1 xj . Note that zk is simply xd. This implies that g′ contains EMBk

as a subfunction by restricting some of the inputs to 0 so that each zi becomes just one input. So
for every relation R, DRank⊕-dt(R ◦ g′) ≥ DRank

⊕-dt(R ◦ EMBk). For the other direction, we will
give a simulation argument.

By Lemma 6.2, there is a decision tree T for R ◦ EMBk whose rank is DRank
⊕-dt(R ◦ EMBk)

and for which the marked edge at a query yi,j is yi,j = 1 when j < k. For each query yi,j , we will
compute zi,j (as defined above), the corresponding OR of inputs in the block xi. The OR function
has a simple marked decision tree where at each node, we mark the edge where the query evaluates
to 1. Note that for this tree, we see exactly one marked edge if the output is 1 and no marked edges
if the output is 0. So we can simply use this marked tree (for suitable input lengths) to compute
zi,j for j < k since the query yi,j has cost 1 when yi,j = 1 and cost 0 otherwise. At a node yi,k in
T , we only need to query xi,d and mark the edge xi,d = 0 since yi,k = 0 is marked in T . Clearly
this simulation correctly computes R◦ g′ since we have essentially substituted each yi,j in T by the
appropriate OR of variables in xi. The cost is also preserved by construction.

We can now combine the above lemmas and the discussion following Claim 6.1 to get the
following.

Proposition 6.4. Let g : {0, 1}m → {0, 1} be a total function which is not a parity. Then one of
the following holds:

• DRank
⊕-dt(g) ≥ 2 and for any relation R, DRank⊕-dt(R ◦ g) ≥ D

dt(R).

• DRank
⊕-dt(g) = 1 and there exists h ∈ {EMBk,¬EMBk | k ≥ 2} such that for all relations R,

DRank
⊕-dt(R ◦ g) = DRank

dt(R ◦ h).

Remark 6.5. The simulation in Lemma 6.2 can be modified to show that D
∗-dt(R ◦ (EMBm)∗) ≥

D
1-dt(R ◦ EMBm−1). To see this, it will be useful to note that

EMBm(x1, x2, . . . , xm) = EMBm−1(x1, x2, . . . , xm−2, xm−1 ∨ ¬xm).

The only change in the simulation occurs when j ≥ m − 1 in which case the corresponding query
in xi is just xi,m−1. If xi,m−1 = 1, we set zi,j = ∗ and ensure that zi,m−1 ∨¬zi,m = 1 by setting the
other input in zi appropriately.

31

It is also easy to show that D
1-dt(R ◦ EMBm−1) ≥ DRank

dt(R ◦ EMBm) by using the above
relation between EMBm and EMBm−1. Given a decision tree for R◦EMBm−1 where the 1-edges are
marked, we only need to replace a query to xi,m−1 by a rank 1 decision tree computing xm−1∨¬xm.
Together these show that we also have DRank

dt(R ◦ EMBm) = D
1-dt(R ◦ EMBm−1).

A corollary of this observation is that DT rank for the composition with OR2 corresponds exactly
to 1-depth : for any relation R, we have DRank

dt(R ◦ OR2) = D
1-dt(R). The fact that OR2 lifts

1-depth to DT rank was implicitly used in [BIW04] to give a separation between tree-like Resolution
size and Resolution size. Since Lemma 6.2 implies DRank

⊕-dt(R ◦ OR2) = DRank
dt(R ◦ OR2), we

also get that OR2 lifts 1-depth to PDT rank. We discuss implications of this for tree-like Res(⊕)
in Appendix A.3.

So far our discussion in this section has only been about deterministic PDTs, but the proofs
above can be modified using ideas from earlier sections to give analogous statements for randomized
PDTs. Since the ideas stay mostly they some, we only sketch the proofs of these, focusing on the
differences.

Proposition 6.6. Suppose g : {0, 1}m → {0, 1, *} satisfies C
⊕
min

(g) ≥ 2. Then for all relations
R ⊆ {0, 1}n×O,

RRank
⊕-dt

ǫ (R ◦ g) ≥ 1

2m
R
dt

ǫ (R).

Proof sketch. By Observations 5.9 and 5.10, there exist bases B0 and B1 such that g is parity stifled
w.r.t b in basis Bb for b ∈ {0, 1}. As in Observation 3.8, for b ∈ {0, 1}, we create a distribution µb

by picking a random i ∈ [m], setting the parity vi ∈ Bb uniformly and fixing the other parities to
give a domain parity b-certificate of g.

The simulation is essentially the same as the one in the proof of Proposition 3.9. The main
change is that when simulating a parity w involving some zi,j , after querying xi which is revealed
to be, say, b, we express w|i in the basis Bb to get, say, w|i =

∑

j∈S vj for some S ⊆ [m] where vj ’s
are parities from B . Now sample block zi according to µb in the following way. Pick a random
i ∈ [m] and fix all parities in Bb other than vi according to the domain certificate. If i ∈ S, then
we move to a random child. Otherwise we also sample a random bit c ∈ F2 which we assign to vi.

After doing this, we simplify the PDT as before. Since we have now fixed parities instead of
individual bits, at each parity query in the PDT, we first express the projection onto block i as a
linear combination of the parities in Bb and then substitute accordingly. (Alternatively we could
have kept track of the fixed parities and substituted them when required as in [CMSS23] and other
proofs in earlier sections.)

The analysis of the expected cost stays the same since we still move to each child with probability
at least 1/(2m) when making a query.

Lemma 6.7. For m ≥ 2, the following hold:

• For all relations R ⊆ {0, 1}n×O, real β > 0, RRank
⊕-dt

ǫ (R ◦ EMBm) = Ω(βRRankdtǫ+β(R ◦
EMBm)).

• For all functions, f : {0, 1}n → O, there exists a marked randomized decision tree T comput-
ing f ◦ g to constant error of rank O(RRank⊕-dt(f ◦ g)) with the following properties. Within
each block i ∈ [n], for all j ∈ [m], if xi,j is queried, then xi,j′ , j

′ < j must have been queried
earlier. The marked edge at a query xi,j is xi,j = 1 if j < m and is xi,j = 0 if j = m.

32

Proof sketch. As usual, we will prove relations between the expected cost measures and the worst-
case analogues will follow from standard arguments.

RRank
dt

ǫ (R ◦ EMBm) ≥ RRank
⊕-dt

ǫ (R ◦ EMBm) ≥ 1

2
R
∗-dt
ǫ (R ◦ (EMBm)∗),

R
∗-dt
ǫ (R ◦ (EMBm)∗) ≥

1

2
R
1-dt
ǫ (R ◦ EMBm−1) ≥

1

2
RRank

dt

ǫ

′
(R ◦ EMBm)

In the last inequality, RRankdtǫ
′
(R) is minT maxx cost(T , x) = minT maxx ET∼T [cost(T, x)], where

T varies over marked randomized decision trees computing R to error ǫ, x varies over the domain
of R and cost(T, x) is the number of marked edges seen when running T on input x. This could

be smaller than the usual definition of expected rank. By truncating the tree after RRank
dt

ǫ

′
(R)/β

marked edges have been seen, we get a decision tree whose worst case rank is bigger by a factor
1/β and the error incurred increases by an additive β by using Markov’s inequality.

If we are composing with a function f and ǫ, β are constants, then by repeating a constant
number of times we can bring the error back down to any constant. This will be used to go
from a decision tree with constant error probability whose expected cost on each input is at most
O(RRank⊕-dt(f ◦ g)) to a randomized decision tree whose worst case rank is O(RRank⊕-dt(f ◦ g)).

We now prove the inequalities stated above. The first inequality is obvious and the second
follows from Lemma 4.4.

The first inequality in the next line follows by a simulation similar to the one in Lemma 6.2
modified in Remark 6.5. The main change now is that with each input to EMBm−1, we associate
some distribution on the certificates defined in the proof of Lemma 6.2. In all cases, except when
the input is 0m−1, the associated distribution will be uniform over the two associated certificates.
The simulation stays the same except that when we see a 1 in xi, instead of picking zi to be an
associated certificate greedily, we sample it according to the distribution. Since the distribution is
uniform, with probability 1/2, we still go down the ∗-edge in the tree T . So we cross a marked edge
in T after seeing two 1’s in x in expectation. This gives the desired bound. This will also imply
the second statement in the lemma by combining with the last inequality.

For the last inequality, we do the same thing as described in Remark 6.5, replacing a query
xi,m−1 by a marked decision tree computing xi,m−1 ∨ ¬xi,m.

Remark 6.8. Similar to the deterministic case, the above simulation shows that RRank
⊕-dt

ǫ (R ◦
∨2) ≥ Ω(R1-dt

ǫ (R)). Let f : {0, 1}n → {0, 1} be a total function. Fractional monotone block

sensitivity of f is a lower bound on R
0-dt(f) (see, for instance, [CDMRS23]) and therefore also a

lower bound on RRank
⊕-dt(f ◦ ∧2).

Now consider the 3-bit gadget g(x, y, z) = x∨(y∧z) which embeds both ∨ and ∧. By considering
the above fractional monotone block sensitivity lower bound for all 2n possible shifts of f , we get

that RRank
⊕-dt(f ◦ g) ≥ Ω(fbs(f)) where fbs(f) denotes the fractional block sensitivity of f . Using

the relation R
dt(f) ≤ O(fbs(f)3) for total functions, we get RRank

⊕-dt(f ◦ g) ≥ Ω(Rdt(f)1/3). This
shows that in the randomized setting also all gadgets other than indicators of subcubes allow
polynomial lifting to ordinary decision tree rank.

Lemma 6.9. For every total function g : {0, 1}m → {0, 1} which is not a parity and satisfies
DRank

⊕-dt(g) = 1, there exists some function h ∈ {EMBk,¬EMBk | k ≥ 2} such that for all
functions f : {0, 1}n → O,

RRank
⊕-dt(f ◦ g) = Θ(RRank⊕-dt(f ◦ h)).

33

Proof sketch. Note that our assumption is still that g can be computed by a deterministic parity
decision list. This lemma essentially follows from the same arguments used in proving Lemma 6.3.
For an h ∈ {EMBk,¬EMBk | k ≥ 2} which is equivalent to g with respect to deterministic PDTs
as in Lemma 6.3, it is clear that RRank

⊕-dt(f ◦ g) = Ω(RRank⊕-dt(f ◦h)) since h is a subfunction of
g after a change of basis.

For the other direction, we use the second point of Lemma 6.7 and apply the modifications
described in the proof of Lemma 6.3 to each deterministic tree in the support of a randomized
decision tree. This works since all our modifications were based on operations which do not incur
any error, like applying an invertible linear transformation, negating inputs and computing OR
with a rank 1 deterministic decision tree .

Combining Proposition 6.6 and Lemmas 6.7 and 6.9 gives the following.

Proposition 6.10. Let g : {0, 1}m → {0, 1} be a total function which is not a parity. Then one of
the following holds:

• DRank
⊕-dt(g) ≥ 2 and for any relation R, RRank⊕-dt(R ◦ g) ≥ Ωm(Rdt

4/9(R)).

• DRank
⊕-dt(g) = 1 and there exists h ∈ {EMBk,¬EMBk | k ≥ 2} such that

– for all relations R, RRank⊕-dt(R ◦ g) = Ω(RRankdt4/9(R ◦ h)).

– for all functions f , RRank⊕-dt(f ◦ g) = Θ(RRankdt(f ◦ h)).

Remark 6.11. In the proof of Lemma 6.7, we saw that RRank
⊕-dt(R ◦ EMB2) ≥ Ω(R1-dt(R ◦

EMB1)). Since EMB2(x, y) = ¬x ∧ y and EMB1(x) = ¬x, this is equivalent to RRank
⊕-dt(R ◦

AND2) ≥ Ω(R0-dt(R)). Using this we can give another proof of RRank
⊕-dt(R ◦ UDISJ2m) ≥

Ω(Rdt(R)m) for all relations R and m ≥ 2.
We view UDISJ2m as the composed partial function PrORm ◦ AND2 where the promise OR

function PrOR computes the OR function under the promise that the input has Hamming weight

at most 1. It is known that R
0-dt(R ◦ PrORm) ≥ Ω(Rdt(R)m) [ABK16, Theorem 5]. Theorem 5

in [ABK16] deals with ordinary depth instead of 0-depth and is stated only for the total function
OR, but the proof there can be readily modified to work for 0-depth and only relies on inputs to
OR of Hamming weight at most 1. We now combine this with the observation above that AND2

lifts 0-depth to PDT rank to get

RRank
⊕-dt(R◦UDISJ2m) = RRank

⊕-dt(R◦PrORm◦AND2) ≥ Ω(R0-dt(R◦PrORm)) ≥ Ω(Rdt(R)m).

We now consider the question of when EMBk allows lifting to PDTs since this is essentially the
only remaining case. For k ≤ 2, Alekseev, Filmus and Smal [AFS24] observed that EMBk does
not lift DT depth to DT size since for these k, EMBk is just a conjunction of literals and thus
the ANDn function shows that EMBk does not allow depth to size lifting. As discussed in the
beginning of this section, for k ≥ 3, they showed that EMBk lifts certificate complexity to DT size.
They conjectured that EMBk should also lift DT depth to DT size (perhaps with an exponent less
than 1) even for relations when k ≥ 3.

While we are not able to prove or disprove this, we observe that the following stronger version
of the conjecture is false. Specifically, we may ask if these gadgets allow lifting from DT depth to
DT rank. This may seem plausible considering that all proofs discussed above also work for rank.
Since logDSizedt(R) ≥ DRank

dt(R), this would have implied the above conjecture.

34

We observe that for all k ≥ 3, EMBk fails to lift DT depth to DT rank for some partial function.
By Lemma 6.3, this shows that all gadgets g with DRank

dt(g) = 1 fail to lift DT depth to DT rank.
The partial function f : {0, 1}n → {0, 1, *} we consider is a promise version of the EvenMinBit
function where there is a unique occurrence of the pattern 01.

f(x) =











1, if x = 0i−11n−i+1 and i ≡ 0 (mod 2)

0, if x = 0i−11n−i+1 and i ≡ 1 (mod 2)

∗ otherwise.

Proposition 6.12. Let k ≥ 3. For the function f : {0, 1}n → {0, 1, *} defined above, we have
D
dt(f) = ⌈log(n + 1)⌉ (and even R

dt(f) = Ω(log n)) but DRank
dt(f ◦ EMBk) ≤ k − 1.

This does not give a counterexample to the original conjecture since DSize
dt(f ◦ EMBk) ≥

DSize
dt(f) ≥ n + 1. But a stronger separation between D

dt(f) and DRank
dt(f ◦ EMBk), say of

the form DRank
dt(f ◦ EMBk) ≤ Ok(1) and D

dt(f) ≥ ω(log n), would be enough to refute it, since
logDSizedt(f ◦ EMBk) ≤ DRank

dt(f ◦ EMBk)Ok(log n). We also do not know of a total function f
which provides a separation between D

dt(f) and DRank
dt(f ◦EMBk), but such a separation can at

best be quadratic because of the relation between C(f) and D
dt(f).

Proof of Proposition 6.12. It is well known that D
dt(f) = ⌈log(n + 1)⌉ and R

dt(f) = Ω(log n). We
prove the lower bounds for completeness. Suppose T is a deterministic decision tree computing f .
For any i ∈ [n], xi must be queried somewhere in the tree, since otherwise T cannot distinguish
between 0i1n−i and 0i−11n−i+1. This implies that DSizedt(f) ≥ n+ 1, using which we get Ddt(f) ≥
logDSizedt(f) ≥ log(n + 1). A similar argument works in the randomized case. In any randomized
tree T for f , each xi must be queried with probability at least 1/3 if T computes f to error 1/3.
So the expected size of T is at least Ω(n) which implies R

dt(f) = Ω(log n) as desired.
We now prove the upper bound DRank

dt(f ◦ EMBk) ≤ k − 1. By Remark 6.5, it suffices to
show that D1-dt(f ◦EMBl) ≤ l for l ≥ 2. Our upper bound will hold for the more general induction
principle R ⊆ {0, 1}n×[n+1] defined as follows. For any x ∈ {0, 1}n, i ∈ [n+1], we have (x, i) ∈ R
if and only if xi−1 = 0 and xi = 1, where by convention, we always have x0 = 0 and xn+1 = 1. Since
f is the same as R restricted to its critical inputs, it suffices to show that D

1-dt(R ◦ EMBl) ≤ l.
Our goal is to find an i ∈ [n + 1] such that EMBl(xi−1) = 0 and EMBl(xi) = 1. We will use

s and t to indicate the ends of the current search space. We will always have g(xs−1) = 0 and
g(xt) = 1. In the beginning, s = 1 and t = n+ 1. Starting from j = t− 1 down to j = s, query xj,1
one by one until we see a 1 or all xj,1 were revealed to be 0. In the former case, suppose xj,1 = 1
and xj′,1 = 0 for all j < j′ ≤ n. Then g(xj) = 0 and so we may set s = j + 1. Otherwise if no 1
was seen, the interval stays [1, n + 1] as before. Note that in either case at most one 1 was seen.

If s = t, then output s (at this point, this can only happen if j = n above). If the interval [s, t]
has size at least 2, we now query xj,2 starting from j = s up to j = t − 1. Again we stop as soon
as we see a 1. If a 1 was seen, then g(xj) = 1 and we set t = j. We continue in this manner going
back and forth until s = t at which point we can output s because of our invariant. Additionally,
if we are in the last iteration making queries to xi,l for i ∈ [s, t− 1] (in some order) as soon as we
see a 1 or if all xi,l = 0 for i ∈ [s, t− 1], we can give an output. Note that in each iteration, we see
at most one 1. Since there are at most l iterations, this shows D

1-dt(R ◦ EMBl) ≤ l.

Acknowledgements. FB thanks Sreejata Kishor Bhattacharya, Eric Blais, Zachary Chase, Arkadev
Chattopadhyay, Jyun-Jie Liao, Shachar Lovett, Jackson Morris and Anthony Ostuni for discussions
and feedback at various stages of this work. The authors would like to thank the anonymous re-
viewers for helpful comments.

35

References

[ABK16] Scott Aaronson, Shalev Ben-David, and Robin Kothari. “Separations in query com-
plexity using cheat sheets”. In: Proceedings of the forty-eighth annual ACM sympo-
sium on Theory of Computing. 2016, pp. 863–876.

[AFS24] Yaroslav Alekseev, Yuval Filmus, and Alexander Smal. “Lifting Dichotomies”. In:
39th Computational Complexity Conference (CCC 2024). Ed. by Rahul Santhanam.
Vol. 300. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Ger-
many: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2024, 9:1–9:18. isbn: 978-
3-95977-331-7. doi: 10.4230/LIPIcs.CCC.2024.9. url: https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024

[AGJK+18] Anurag Anshu, Dmitry Gavinsky, Rahul Jain, Srijita Kundu, Troy Lee, Priyanka
Mukhopadhyay, Miklos Santha, and Swagato Sanyal. “A Composition Theorem for
Randomized Query Complexity”. In: 37th IARCS Annual Conference on Founda-
tions of Software Technology and Theoretical Computer Science (FSTTCS 2017).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. 2018.

[AI25] Yaroslav Alekseev and Dmitry Itsykson. “Lifting to Bounded-Depth and Regular
Resolutions over Parities via Games”. In: Proceedings of the 57th Annual ACM Sym-
posium on Theory of Computing. STOC ’25. Prague, Czechia: Association for Com-
puting Machinery, 2025, pp. 584–595. isbn: 9798400715105. doi: 10.1145/3717823.3718150.
url: https://doi.org/10.1145/3717823.3718150.

[BB20] Shalev Ben-David and Eric Blais. “A New Minimax Theorem for Randomized Al-
gorithms”. In: 2020 IEEE 61st Annual Symposium on Foundations of Computer
Science (FOCS). IEEE. 2020, pp. 403–411.

[BBGM22] Shalev Ben-David, Eric Blais, Mika Göös, and Gilbert Maystre. “Randomised com-
position and small-bias minimax”. In: 2022 IEEE 63rd Annual Symposium on Foun-
dations of Computer Science (FOCS). IEEE. 2022, pp. 624–635.

[BCD24] Sreejata Kishor Bhattacharya, Arkadev Chattopadhyay, and Pavel Dvořák. “Expo-
nential Separation Between Powers of Regular and General Resolution over Pari-
ties”. In: 39th Computational Complexity Conference (CCC 2024). Ed. by Rahul
Santhanam. Vol. 300. Leibniz International Proceedings in Informatics (LIPIcs).
Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2024, 23:1–
23:32. isbn: 978-3-95977-331-7. doi: 10.4230/LIPIcs.CCC.2024.23. url: https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024

[BDGH+20] Andrew Bassilakis, Andrew Drucker, Mika Göös, Lunjia Hu, Weiyun Ma, and Li-
Yang Tan. “The Power of Many Samples in Query Complexity”. In: 47th Inter-
national Colloquium on Automata, Languages, and Programming (ICALP 2020).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik. 2020.

[BdW02] Harry Buhrman and Ronald de Wolf. “Complexity measures and decision tree com-
plexity: a survey”. In: Theoretical Computer Science 288.1 (2002), pp. 21–43.

[BGGMY25] Tyler Besselman, Mika Göös, Siyao Guo, Gilbert Maystre, and Weiqiang Yuan. “Di-
rect Sums for Parity Decision Trees”. In: 40th Computational Complexity Conference
(CCC 2025). Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl,
Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2025.

[BIW04] Eli Ben-Sasson, Russell Impagliazzo, and Avi Wigderson. “Near optimal separation
of tree-like and general resolution”. In: Combinatorica 24.4 (2004), pp. 585–603.

36

https://doi.org/10.4230/LIPIcs.CCC.2024.9
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.9
https://doi.org/10.1145/3717823.3718150
https://doi.org/10.1145/3717823.3718150
https://doi.org/10.4230/LIPIcs.CCC.2024.23
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.23

[BK18] Shalev Ben-David and Robin Kothari. “Randomized Query Complexity of Sabotaged
and Composed Functions”. In: Theory of Computing 14.5 (2018), pp. 1–27. doi:
10.4086/toc.2018.v014a005. url: https://theoryofcomputing.org/articles/v014a005.

[BK23] Paul Beame and Sajin Koroth. “On Disperser/Lifting Properties of the Index and
Inner-Product Functions”. In: 14th Innovations in Theoretical Computer Science
Conference (ITCS 2023). Ed. by Yael Tauman Kalai. Vol. 251. Leibniz Interna-
tional Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2023, 14:1–14:17. isbn: 978-3-95977-263-1. doi:
10.4230/LIPIcs.ITCS.2023.14. url: https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.202

[CDMRS23] Arkadev Chattopadhyay, Yogesh Dahiya, Nikhil S Mande, Jaikumar Radhakrish-
nan, and Swagato Sanyal. “Randomized versus deterministic decision tree size”. In:
Proceedings of the 55th Annual ACM Symposium on Theory of Computing. 2023,
pp. 867–880.

[CFKMP21] Arkadev Chattopadhyay, Yuval Filmus, Sajin Koroth, Or Meir, and Toniann Pitassi.
“Query-to-communication lifting using low-discrepancy gadgets”. In: SIAM Journal
on Computing 50.1 (2021), pp. 171–210.

[CKLM19] Arkadev Chattopadhyay, Michal Kouckỳ, Bruno Loff, and Sagnik Mukhopadhyay.
“Simulation theorems via pseudo-random properties”. In: computational complexity
28 (2019), pp. 617–659.

[CKMP+23] Sourav Chakraborty, Chandrima Kayal, Rajat Mittal, Manaswi Paraashar, Swagato
Sanyal, and Nitin Saurabh. “On the Composition of Randomized Query Complex-
ity and Approximate Degree”. In: Approximation, Randomization, and Combinato-
rial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik. 2023.

[CMP22] Arjan Cornelissen, Nikhil S Mande, and Subhasree Patro. “Improved Quantum
Query Upper Bounds Based on Classical Decision Trees”. In: 42nd IARCS An-
nual Conference on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS 2022). Schloss-Dagstuhl-Leibniz Zentrum für Informatik. 2022.

[CMSS23] Arkadev Chattopadhyay, Nikhil S Mande, Swagato Sanyal, and Suhail Sherif. “Lift-
ing to Parity Decision Trees via Stifling”. In: 14th Innovations in Theoretical Com-
puter Science Conference (ITCS 2023). Schloss-Dagstuhl-Leibniz Zentrum für In-
formatik. 2023.

[Dah24] Yogesh Dahiya. “Exploring Size Complexity and Randomness in the Query Model”.
HBNI, 2024. url: https://www.imsc.res.in/xmlui/handle/123456789/881.

[DM23] Yogesh Dahiya and Meena Mahajan. “On (simple) decision tree rank”. In: Theoret-
ical Computer Science 978 (2023), p. 114177.

[EGI24] Klim Efremenko, Michal Garlik, and Dmitry Itsykson. “Lower Bounds for Regular
Resolution over Parities”. In: Proceedings of the 56th Annual ACM Symposium on
Theory of Computing. 2024, pp. 640–651.

[EH89] Andrzej Ehrenfeucht and David Haussler. “Learning decision trees from random
examples”. In: Information and Computation 82.3 (1989), pp. 231–246.

[GGKS18] Ankit Garg, Mika Göös, Pritish Kamath, and Dmitry Sokolov. “Monotone circuit
lower bounds from resolution”. In: Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing. 2018, pp. 902–911.

37

https://doi.org/10.4086/toc.2018.v014a005
https://theoryofcomputing.org/articles/v014a005
https://doi.org/10.4230/LIPIcs.ITCS.2023.14
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.14
https://www.imsc.res.in/xmlui/handle/123456789/881

[GJPW18] Mika Göös, TS Jayram, Toniann Pitassi, and Thomas Watson. “Randomized com-
munication versus partition number”. In: ACM Transactions on Computation The-
ory (TOCT) 10.1 (2018), pp. 1–20.

[GKPW19] Mika Göös, Pritish Kamath, Toniann Pitassi, and Thomas Watson. “Query-to-
communication lifting for P NP”. In: computational complexity 28 (2019), pp. 113–
144.

[GLSS23] Dmytro Gavinsky, Troy Lee, Miklos Santha, and Swagato Sanyal. “Optimal Compo-
sition Theorem for Randomized Query Complexity”. In: Theory of Computing 19.1
(2023), pp. 1–35.

[GOR24] Svyatoslav Gryaznov, Sergei Ovcharov, and Artur Riazanov. “Resolution Over Lin-
ear Equations: Combinatorial Games for Tree-like Size and Space”. In: ACM Trans-
actions on Computation Theory 16.3 (2024), pp. 1–15.

[GP14] Mika Göös and Toniann Pitassi. “Communication lower bounds via critical block
sensitivity”. In: Proceedings of the forty-sixth annual ACM symposium on Theory of
computing. 2014, pp. 847–856.

[GP18] Mika Göös and Toniann Pitassi. “Communication Lower Bounds via Critical Block
Sensitivity”. In: SIAM Journal on Computing 47.5 (2018), pp. 1778–1806. doi:
10.1137/16M1082007. url: https://doi.org/10.1137/16M1082007.

[GPW18] Mika Göös, Toniann Pitassi, and Thomas Watson. “Deterministic communication
vs. partition number”. In: SIAM Journal on Computing 47.6 (2018), pp. 2435–2450.

[GPW20] Mika Göös, Toniann Pitassi, and Thomas Watson. “Query-to-communication lifting
for BPP”. In: SIAM Journal on Computing 49.4 (2020), FOCS17–441.

[IS20] Dmitry Itsykson and Dmitry Sokolov. “Resolution over linear equations modulo
two”. In: Annals of Pure and Applied Logic 171.1 (2020), p. 102722.

[JKS10] Rahul Jain, Hartmut Klauck, and Miklos Santha. “Optimal direct sum results for
deterministic and randomized decision tree complexity”. In: Information Processing
Letters 110.20 (2010), pp. 893–897.

[LMMPZ22] Shachar Lovett, Raghu Meka, Ian Mertz, Toniann Pitassi, and Jiapeng Zhang. “Lift-
ing with Sunflowers”. In: 13th Innovations in Theoretical Computer Science Con-
ference (ITCS 2022). Ed. by Mark Braverman. Vol. 215. Leibniz International Pro-
ceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2022, 104:1–104:24. isbn: 978-3-95977-217-4. doi: 10.4230/LIPIcs.ITCS.2022.104
url: https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.104.

[Mon14] Ashley Montanaro. “A composition theorem for decision tree complexity”. In: Chicago
Journal of Theoretical Computer Science 2014.6 (2014). doi: 10.4086/cjtcs.2014.006.

[PI00] Pavel Pudlák and Russell Impagliazzo. “A lower bound for DLL algorithms for
k-SAT (preliminary version)”. In: Proceedings of the eleventh annual ACM-SIAM
symposium on Discrete algorithms. 2000, pp. 128–136.

[PR18] Toniann Pitassi and Robert Robere. “Lifting nullstellensatz to monotone span pro-
grams over any field”. In: Proceedings of the 50th Annual ACM SIGACT Symposium
on Theory of Computing. 2018, pp. 1207–1219.

[PS25] Vladimir Podolskii and Alexander Shekhovtsov. “Randomized Lifting to Semi-Structured
Communication Complexity via Linear Diversity”. In: 16th Innovations in Theoret-
ical Computer Science Conference (ITCS). LIPIcs. Schloss Dagstuhl, 2025.

38

https://doi.org/10.1137/16M1082007
https://doi.org/10.1137/16M1082007
https://doi.org/10.4230/LIPIcs.ITCS.2022.104
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.104
https://doi.org/10.4086/cjtcs.2014.006

[RM97] Ran Raz and Pierre McKenzie. “Separation of the monotone NC hierarchy”. In:
Proceedings 38th Annual Symposium on Foundations of Computer Science. IEEE.
1997, pp. 234–243.

[San24] Swagato Sanyal. “Randomized Query Composition and Product Distributions”. In:
41st International Symposium on Theoretical Aspects of Computer Science (STACS
2024). Schloss Dagstuhl–Leibniz-Zentrum für Informatik. 2024.

[Sav02] Petr Savický. On determinism versus unambiquous nondeterminism for decision
trees. Tech. rep. TR02-009. Electronic Colloquium on Computational Complexity
(ECCC), 2002. url: https://eccc.weizmann.ac.il//report/2002/009/.

[She23] Suhail Sherif. Lifting to Parity Decision Trees via Stifling (with applications to proof
complexity). Proof Complexity and Meta-Mathematics Workshop, Simons Institute.
Mar. 20, 2023. url: https://www.youtube.com/watch?v=PeZVs6WUf-4 (visited on
11/13/2024).

[Tal13] Avishay Tal. “Properties and Applications of Boolean Function Composition”. In:
Proceedings of the 4th Conference on Innovations in Theoretical Computer Science
(ITCS). 2013, pp. 441–454. doi: 10.1145/2422436.2422485.

[Urq11] Alasdair Urquhart. “The depth of resolution proofs”. In: Studia Logica 99 (2011),
pp. 349–364.

A Proof complexity applications

In this section, we give simple proofs of some known lower bounds for tree-like Res(⊕), and some
improvements to prior results on regular Res(⊕). We assume some familiarity with the proof system
Resolution over parities and its subsystems. The reader may refer to the introduction of [AI25] and
references therein.

For the lower bounds on tree-like Res(⊕) below, let us note what Rφ
∗ looks like for a false clause

search problem Rφ ⊆ {0, 1}n×[m] coming from a CNF formula φ on n variables and m clauses.

The goal in solving Rφ
∗ is to output an index i ∈ [m] such that each literal appearing in the ith

clause is set to 0 or ∗ by the partial assignment (where we think of ¬x as being ∗ if x is ∗).

A.1 Pigeonhole principle in tree-like Res(⊕)
Pigeonhole principle Itsykson and Sokolov [IS20] showed that the pigeonhole principle PHPm

n

with m pigeons and n holes (m > n) requires 2Ω(n) size tree-like Res(⊕) proofs. For this, they
gave a parity Delayer strategy for the corresponding false clause search problem which scored n/2
points. A parity Delayer strategy scoring n− 1 points is described in [GOR24, Lemma 3.3] where
it is attributed to M. Garĺık.

Here we give a simple Certifier strategy in the Blocker-Certifier game for PHPm
n scoring n

points. By Lemma 4.1, this implies that the rank of any PDT solving the false clause search
problem associated with PHPm

n is at least n (and this is tight since the usual decision tree solving
PHPn+1

n has rank n). We will use xi,j , i ∈ [m], j ∈ [n] to denote the variables of PHPm
n where xi,j

being 1 indicates that the pigeon i is sent to hole j.
In the beginning, Certifier fixes no variables. Suppose Blocker sets xi,j = ∗. Then Certifier sets

xk,j = 0 for all k ∈ [m]\{i}. Certifier uses the same strategy in each round to ensure that for every
hole j, if there is some i ∈ [m] such that xi,j = ∗, then all the other pigeons do not fly to hole j
(xk,j = 0 for k 6= i). At any point, for any hole j, either all the variables corresponding to hole j

39

https://eccc.weizmann.ac.il//report/2002/009/
https://www.youtube.com/watch?v=PeZVs6WUf-4
https://doi.org/10.1145/2422436.2422485

are set or all of them are unset. The number of holes whose variables have been fixed is precisely
the number of rounds.

We claim that the game cannot end before n rounds. Indeed at any point, for any hole clause
¬xi,j ∨ ¬xk,j either both xi,j and xk,j are unset or at least one of them is set to 0. Also, if fewer
than n rounds have been played, for any pigeon clause ∨j∈[m]xi,j , there must be some j ∈ [m] such
that xi,j is unset. So Certifier can always score n points.

Onto pigeonhole principle By considering the parity Blocker-Certifier game, we can show that
the above lower bound also holds for the onto pigeonhole principle onto-PHPm

n . In addition to the
clauses of PHPm

n , the onto pigeonhole principle contains clauses expressing that each hole receives
at least one pigeon ∨i∈[m]xi,j for all j ∈ [n].

For the parity Blocker-Certifier game on onto-PHPm
n , the variables are split into blocks according

to the holes; for each j ∈ [n], the variables xi,j , i ∈ [m] form a block. Certifier’s strategy tries to
ensure that exactly one pigeon flies into each hole. In the beginning, Certifier sets

∑

i∈[m] xi,j = 1
for all j ∈ [n]. Now suppose Blocker picks the parity

∑

i∈S xi,j for some S ⊆ [m], j ∈ [n]. Note that
since this parity must be linearly independent of any previously assigned parities, we must have
S 6= [m]. So there exist i1 ∈ S and i2 ∈ [m] \ S. Certifier now sets xi,j = 0 for all i ∈ [m] \ {i1, i2}.
Note that these parities are indeed linearly independent of the parities {∑i∈[m] xi,j ,

∑

i∈S xi,j} and
thus together with them form a basis. So in the future, Blocker’s moves must be on other blocks.
The only solutions to these parity constraints are where exactly one of xi1,j or xi2,j is set to 1 and
all other xi,j are 0. This ensures that none of the hole clauses or onto clauses are falsified.

As in the Certifier strategy for the (basic) pigeonhole principle, as long as Blocker has made
fewer than n moves, no pigeon clause, say for pigeon i, is falsified, since there is at least one hole,
say j ∈ [n], where Blocker has not made a move and so Certifier may set xi,j = 1. So the game
cannot end before n rounds.

Functional pigeonhole principle Garĺık and Ko lodziejczyk showed that lower bounds for tree-
like Res(⊕) can be obtained from polynomial calculus degree lower bounds, which implies that the
functional pigeonhole principle requires 2Ω(n) size tree-like Res(⊕) proofs.

We will show that the rank of any PDT solving the false clause search problem associated with
FPHPm

n (m > n) is at least ⌈n+1
2 ⌉. The blocks in the parity Blocker-Certifier game will now be

defined according to the pigeons. Similar to the strategy for onto-PHP, Certifier will try to ensure
that whenever Blocker makes a move, the corresponding pigeon flies to exactly one hole. In doing
so, we will also need to take care that no hole receives more than one pigeon. This latter step is
where we lose a factor of 2.

We will show the bound by induction on n. For n = 1, the statement is clear. For n = 2,
Certifier starts by setting for each pigeon i,

∑

j∈[n] xi,j = 1. Since n = 2, this ensures that each
pigeon flies into exactly one hole. So the only clauses which could be falsified are the hole clauses.
Observe that the game cannot end after the first round since Blocker’s move only affects one pigeon
and a hole clause involves two pigeons. So Certifier scores at least 2 points.

Now consider n ≥ 3. As before, Certifier starts by setting for each pigeon i,
∑

j∈[n] xi,j = 1.
Suppose Blocker picks a parity

∑

j∈S xi,j for some i ∈ [m], S ⊆ [n]. Again since this parity must
be linearly independent of previous parities, S cannot be the empty set or [n]. So there exist
j1 ∈ S, j2 /∈ S. Certifier sets xi,j = 0 for j ∈ [n] \ {j1, j2}. Additionally he sets xi′,j1 = xi′,j2 = 0
for all i′ ∈ [m] \ {i}. Note that this effectively reduces the problem to FPHP on pigeons [m] \ {i}
and holes [n] \ {j1, j2}. Indeed pigeon i is effectively forced to go to exactly one of two holes and

no other pigeon flies to these two holes. Now by induction, the game goes on for at least ⌈ (n−2)+1
2 ⌉

40

additional rounds. So Certifier scores at least ⌈n+1
2 ⌉ points totally.

Bit pigeonhole principle For the bit pigeonhole principle BPHPm
n where n = 2k for some

positive integer k and m > n, Efremenko, Garĺık and Itsykson [EGI24] gave a parity Delayer
strategy scoring n/4 points. Underlying their Delayer strategy is a Certifier strategy, though their
proof uses this Certifier strategy in a more delayed manner, compared to the Delayer strategy that
would be obtained by directly combining the Certifier strategy described next and the proof of
Lemma 4.1.

The formula is on the variables xi,j (i ∈ [m], j ∈ [k]). For each i ∈ [m], xi (viewed as a k-bit
integer) encodes which hole in [n] pigeon i flies to. We now explain the Certifier strategy used in
their proof. Suppose Blocker sets xi,j = ∗. Then Certifier fixes all bits in xi (other than xi,j) so that
the pigeon i can only go to one of two holes. Certifier will ensure that these two holes are different
from any holes that have previously been assigned to some pigeon. This can be done as long as
the number of rounds (excluding the current round), say t, satisfies 2t < n/2. This is because in
each round we use up 2 new holes and there are n/2 pairs of holes where a pair contains two holes
differing only on the jth bit. So this property can be fulfilled at least for the first n/4 rounds. The
game cannot end earlier as we explain now. Any clause which involves some pigeon that has not
been queried at all cannot be falsified. Additionally, a clause involving two pigeons who have been
assigned holes is already satisfied because of the Certifier strategy. So Certifier scores at least n/4
points.

A.2 Ordering principle in tree-like Res(⊕)
A Delayer strategy scoring n − 2 points for the ordering principle Ordn was shown in [GOR24].
The ordering principle encodes the fact that every finite total order has a least element. We have
variables xi,j (i, j ∈ [n], i 6= j) where xi,j = 1 encodes that i ≺ j in the linear order. The clauses
of Ordn encode the conditions of being a total order and for each i ∈ [n], that i is not the least
element.

We cannot directly use the Blocker-Certifier game to prove a lower bound for Ordn since Blocker
has a simple strategy to end the game in 2 rounds. Blocker picks any unset variable xi,j and sets
it to ∗. In the next round, if xj,i is unset, then Blocker sets xj,i = ∗. Otherwise, Certifier must
have fixed xj,i in one of the two rounds. In either case, the game has ended since one of the clauses
xi,j ∨ xj,i or ¬xi,j ∨ ¬xj,i can be falsified by Blocker. So any Certifier strategy can only ensure at
most 2 points.

However, we can give a better Certifier strategy if we first move to an affine restriction such that
Blocker can no longer use this trivial strategy which falsifies one of the totality or anti-symmetry
conditions. Specifically, for all i 6= j, we set xi,j + xj,i = 1. Under this restriction, we may think
of the game as being played only over the variables xi,j (1 ≤ i < j ≤ n). (We could view this
as a special case of the parity Blocker-Certifier game where we have a block for each pair i 6= j
containing only the variables xi,j and xj,i.)

We can now give a Certifier strategy scoring n/2 points which recovers the lower bound from
[GOR24] up to a constant factor. At a high level, Certifier ensures that whenever Blocker sets
xi,j = ∗, in the underlying order, i and j must be the largest among the elements which have not
been touched by Blocker so far. Since Blocker can affect only two elements in a round, the game
must last at least n/2 rounds. We now explain the strategy in more detail. We will use S ⊆ [n]
to denote the current set of possible least elements. Effectively the game at any stage has been
reduced to the game on just the elements in S. Certifier will always ensure that the only unset

41

variables xi,j satisfy i, j ∈ S and any transitivity constraint involving some element outside S is
satisfied.

Initially S = [n] and Certifier does not fix any variables in the first round. Suppose in the (i−1)th

round (where i < ⌈n/2⌉) Blocker sets xi,j = ∗ where both i, j ∈ S. Then update S := S \ {i, j}.
For each k ∈ S, Certifier sets variables so that k ≺ i and k ≺ j. This ensures that any transitivity
constraints involving i or j and some element(s) from S are satisfied. By our invariant, this implies
that all transitivity constraints involving i or j are satisfied. Additionally, the clauses expressing
that i and j are not the least element are also satisfied. Moreover, since i < ⌈n/2⌉, S still contains at
least 3 elements. So no matter which pair i′, j′ in S Blocker picks in the ith round, the game cannot
end since every clause which can potentially still be falsified also contains some k′ ∈ S \ {i′, j′}.
Thus, the game must last at least ⌈n/2⌉ rounds. (In the ⌈n/2⌉th round, to avoid falsifying a clause,
Certifier simply skips his move.)

A.3 Separations between tree-like Res(⊕) and (regular) resolution

Itsykson and Sokolov [IS20] used the lifting theorem for versatile gadgets [GP14] to give a formula
which has a regular resolution proof of size O(n) but requires tree-like Res(⊕) proofs of 2Ω(

√
n).

Using the lifting theorem for deterministic PDTs [CMSS23, BK23], one can lift the nearly optimal
separation between tree-like resolution and regular resolution [BIW04] to get a nearly optimal
separation between tree-like Res(⊕) and regular resolution.

We observe that the formula of Ben-Sasson, Impagliazzo and Wigderson [BIW04] already pro-
vides the desired separation. Their formula is an OR-lift of a pebbling formula. Their proof
can be understood as implicitly combining the fact that OR lifts 1-depth to DT rank and that
the 1-depth of the search problem associated with a pebbling formula is at least the pebbling

number of the underlying graph up to an additive constant. Finally, to get their 2
Ω
(

n
logn

)

lower

bound they use a graph whose pebbling number is Ω
(

n
logn

)

. It follows from Remark 6.5 that

DRank
⊕-dt(R ◦ ∨2) = DRank

dt(R ◦ ∨2) = D
1-dt(R) for any relation R. In particular, taking R

to be the search problem associated with the pebbling formula on a graph with pebbling number

Ω(n/ log n), the same formula also requires 2
Ω
(

n
logn

)

size tree-like Res(⊕) proofs.

A.4 Separation between regular Res(⊕) and ordinary resolution

Bhattacharya, Chattopadhyay and Dvořák [BCD24] gave an exponential separation between reg-
ular Res(⊕) and general Resolution. Specifically they gave a family of formulas on M vari-
ables, which has Resolution proofs of size poly(M) but requires bottom-regular proofs of size
exp(Ω(M1/12/ log13/12M)). Later Alekseev and Itsykson [AI25] gave a different family of formulas
on M variables which have poly(M) size Resolution proofs but require regular Res(⊕) proofs of
size exp(Ω(M1/2)). These lower bounds are very strong, but the upper bounds are fairly large
polynomials.

The upper bound in [BCD24] is a large polynomial since they use an existing randomized query-
to-communication lifting theorem which requires a large gadget. By using Theorem 1.1 instead, we
can replace the large gadget with a constant size gadget like IP4. This improves the upper bound
to O(M2) which is linear in the total number of clauses. The lower bound slightly improves to
exp(Ω(M1/12)).

We briefly sketch the changes needed for the lower bound. The lower bound uses a distributional
version of Theorem 1.1. This is standard and easy to obtain using the simulation in the proof, but
we sketch it for completeness. Let g be a constant size stifling gadget and (µ0, µ1) be distributions

42

showing that g is p-affine balanced (uniform distributions would suffice for constant size g) for some
constant p > 0. Suppose a deterministic parity decision tree T of worst-case depth d computes a
relation R ◦ g on a distribution η ◦ (µ0, µ1) to some error ǫ, where η is some distribution on the
inputs of R. Then the simulation applied to T gives a randomized decision tree whose expected
depth on any input is O(d) and computes R to error ǫ with respect to the distribution η and the
randomness of the tree. By terminating this randomized decision tree we can ensure that its worst
case depth is O(d) and the error on η is at most, say, ǫ + 1/10. By averaging, there must be a
deterministic decision tree whose depth is O(d) and computes R to error ǫ + 1/10 on distribution
η.

Also note that though the distributions above are not necessarily uniform on g−1(0) and g−1(1),
Lemma 20 in [BCD24] continues to hold for these distributions since the only property needed in
the proof is that these distributions are balanced.

A.5 Bit pigeonhole principle in regular Res(⊕)
Efremenko, Garĺık and Itsykson [EGI24] showed that the bit pigeonhole principle BPHPn+1

n requires

2
Ω
(3√n

logn

)

size regular Res(⊕) proofs. Their analysis can be further sharpened to get a 2
Ω
(√

n

logn

)

lower
bound. This improvement comes from analyzing the random walk in Lemmas 6.1 and 6.2 [EGI24]
(full version) slightly differently.

Informally, at the tth step of the random walk, the size of the closure can increase by t which
they use to give a bound of O(t2/n) on the probability that the assignment is no longer injective on
the new closure, conditioned on being injective on the previous closure. Then by the union bound,
they conclude that the probability that a random assignment is not injective on the closure of the
clause reached after taking t steps is at most O(t3/n). The slack in the inequality seems to come
from the fact that even though the size of the closure can increase by more than 1 at a step, this
cannot be true at all steps since the size of the closure is bounded by the total number of steps
taken so far. So one may hope that a more careful analysis should give an upper bound of O(t2/n)
on the probability of not being injective on the closure instead of O(t3/n).

While we do not know how to directly work with closure to prove the better bound, we can give
the desired O(t2/n) upper bound on the probability of the random walk not being ‘good’, for a
notion of good which is different from the assignment being injective on the closure. Even though
our definition of being good is different from the one in [EGI24], we do rely on arguments used in
proving their Lemma 6.2. For the rest of the argument of [EGI24] to go through, at the end of the
random walk, we need to switch back from this notion of good to being locally consistent. This
can be done as long as the number of steps t is not too large by using some other ideas in [EGI24].

The analysis below uses ideas similar to those for the randomized PDT simulation, Proposition
3.9 where at a parity query, we reveal all bits of a block other than one which appears in that
parity. For BPHPn+1

n , each block xi indicates the hole pigeon i flies to. For such a block where all
but one of the bits have been fixed, we think of the pigeon as being sent to both possible holes. Let
ρ be a partial assignment of the variables xi,j such that for each i ∈ [n], either ρi = ∗k or exactly

one position in ρi is ∗ and the rest are fixed to 0/1. Let ρ̃ : [n + 1] →
(

[n]
2

)

∪ {∗} be the partial
function expressing which holes a pigeon flies to under ρ. Each pigeon i such that ρi = ∗k is not in
the domain of ρ̃ while every other pigeon is mapped to the set of the two holes it has been assigned.
Say that ρ̃ is 2-injective if there is no hole in [n] such that two pigeons are mapped to it under ρ̃.

The notion of goodness will rely on a simulation of a PDT on the uniform distribution. To
describe it, we view all the variables xi,j (i ∈ [n + 1], j ∈ [k] where n = 2k) as being ordered
lexicographically according to the indices. This is to allow picking the first variable occurring

43

in a parity. Let T be a deterministic PDT on the variables xi,j . Let σ ∈ ({0, 1}k)n+1 be a total
assignment. For any r ≥ 0, we associate a partial assignment ρr, a set of marked pigeons Mr ⊆ [n+1]
and a (marked) system Φr of linear equations with σ in the following way. Informally, ρr, Mr and
Φr capture the information we will reveal in the first r steps of the random walk to analyze the
desired probability. We will always have |Mr| ≤ r and for each pigeon i ∈ [n + 1], if i ∈ M , ρi
is fixed according to σ except for one bit remaining ∗, and otherwise ρi = ∗k. Additionally, the
variables which are free in ρ but belong to the marked pigeons form pivots of the system Φr. We
say that these variables are marked. The assignment σ satisfies Φi.

ρr, Mr and Φr are defined inductively in the following way. For i = 0, ρ0 = ∗k(n+1),Mi and Φ0

are empty. Now suppose i > 0. If the leaf reached by σ has depth at most i − 1 (the root is at
depth 0), set Mi = Mi−1, ρi = ρi−1,Φi = Φi−1.

Otherwise consider the node in T at depth i − 1 which is reached by σ. Let
∑

(p,j)∈S xp,j (for
some S ⊆ [n+1]× [k]) be the parity at that node. We simplify this parity so that it only depends on
pigeons outside Mi−1 by substituting according to Φi−1 and ρi−1. Suppose the cleaned-up parity is
b+

∑

(p,j)∈S′ xp,j for some b ∈ F2, S
′ ⊆ [n+ 1]× [k]. If S′ = ∅, set Mi = Mi−1, ρi = ρi−1,Φi = Φi−1.

Suppose S′ 6= ∅. Let (p′, j′) be the first variable appearing in S′. Then Mi = Mi−1 ∪ {p′} and
Φi = Φi−1∪{

∑

(p,j)∈S′ xp,j =
∑

(p,j)∈S′ σp,j}. Let ρi be the same as ρi−1, except that for j ∈ [k]\{j′},
ρi′,j = σi′,j . Note that all the properties of Mi, ρi and Φi stated above are satisfied.

We can now describe when an assignment is good. Say that a total assignment σ is r-good
for r ≥ 0 if the partial assignment ρr is 2-injective. Note that since ρr+1 extends ρr, if ρr+1 is
2-injective, then ρr must also be 2-injective. We will show the following.

Lemma A.1. Let t ≥ 0 be an integer. For a total assignment σ in ({0, 1}k)n+1 picked uniformly
at random,

Pr
σ

[σ is not t-good] ≤ 2t2

n
.

Our proof will follow the same high level structure of the proofs of Lemmas 6.1 and 6.2 in
[EGI24].

Proof. We will show that for any r ≥ 1,

Pr
σ

[σ is not r-good|σ is (r − 1)-good] ≤ 4(r − 1)

n
.

This immediately implies the statement of the lemma as shown below.

Pr
σ

[σ is not t-good] =

t
∑

r=1

Pr[σ is not r-good, but σ is (r − 1)-good]

=
t

∑

r=1

Pr[σ is not r-good|σ is (r − 1)-good] · Pr[σ is (r − 1)-good]

≤
t

∑

r=1

Pr[σ is not r-good|σ is (r − 1)-good]

≤
t

∑

r=1

4(r − 1)

n
≤ 2t2

n
.

So we only need to show Prσ[σ is not r-good|σ is (r − 1)-good] ≤ 4(r−1)
n . For this, we will con-

dition on any possible ρ′r−1,M
′
r−1,Φ

′
r−1 such that ρ′r−1 is 2-injective. (We use ′ to distinguish these

44

fixed objects from the random variables ρr−1,Mr−1,Φr−1 associated with σ.) By the definitions of
these objects, note that ρ′r−1,M

′
r−1,Φ

′
r−1 uniquely determine the node at depth r−1 (or possibly a

leaf at depth at most r−1) reached by any assignment σ which is consistent with ρ′r−1 and satisfies
Φ′
r−1.

We wish to show that Pr[σ is not r-good|ρr−1 = ρ′r−1,Mr−1 = M ′
r−1,Φr−1 = Φ′

r−1] ≤ 4(r−1)
n .

If ρ′r−1,Φ
′
r−1 are such that any assignment consistent with them reaches a leaf at depth r − 1 or

less, then this probability is 0 since in this case ρr = ρr−1 = ρ′r−1 which is 2-injective. So suppose
the node in T at depth r − 1 reached by assignments consistent with ρ′r−1 and satisfying Φ′

r−1 is
an internal node. Clean up this parity according to ρ′r−1 and Φ′

r−1 to get a parity b +
∑

(i,j)∈S xi,j
which does not contain variables involving pigeons from M ′

r−1. If S = ∅, then again the probability
is 0 since ρr = ρr−1.

So the only non-trivial case is when S 6= ∅. Let (i, j) be the first variable in S. Note that
the distribution of σ on all blocks except those in M ′

r−1, after conditioning on σ being consistent
with ρ′r−1 and satisfying Φ′

r−1, is still uniform. This follows from the fact that we started with
the uniform distribution, the marked variables form pivots of Φ′

r−1 and the only fixed variables in
ρ′r−1 are the other variables in the marked blocks. So we only need to estimate the probability
that a uniform assignment to the variables {xi,j′ |j′ ∈ [k], j′ 6= j} sends pigeon i to a hole already
containing some pigeon according to ρ′i−1. Since |M ′

r−1| ≤ r−1, at most 2(r−1) holes are occupied
already. So the probability that ρr is not 2-injective is the probability that pigeon i gets mapped
to a pair containing one of these at most 2(r − 1) holes. This probability is at most 2(r−1)

n/2 since
the distribution is uniform.

This proves Pr[σ is not r-good|ρr−1 = ρ′r−1,Mr−1 = M ′
r−1,Φr−1 = Φ′

r−1] ≤ 4(r−1)
n for all

ρ′r−1,M
′
r−1,Φ

′
r−1 where ρ′r−1 is 2-injective. In particular,

Pr
σ

[σ is not r-good|σ is (r − 1)-good] ≤ max Pr[σ is not r-good|ρr−1 = ρ′r−1,Mr−1 = M ′
r−1,Φr−1 = Φ′

r−1]

≤ 4(r − 1)

n

where the maximum is over all ρ′r−1,M
′
r−1,Φ

′
r−1 such that ρ′r−1 is 2-injective. This finishes the

proof.

Next, we need to show that being good is sufficient for local consistency.

Lemma A.2. Let ρ be a 2-injective partial assignment, M the set of marked pigeons in ρ and Φ
a marked linear system whose pivots are precisely the variables in the blocks lying in M which are
not fixed in ρ. Let Φ′ be a linear system which is implied by ρ∪Φ where we view ρ as a collection
of |M |(k− 1) linear equations each fixing a variable of a marked pigeon (which is not a pivot of Φ).
Suppose the rank of Φ′ is at most n/2. Then Φ′ is locally consistent.

This lemma uses ideas from Lemma 7.1 in [EGI24].

Proof. Since the system ρ∪Φ implies Φ′, it is sufficient to find a solution of ρ∪Φ which is injective
on Cl(Φ′). Any such solution σ must agree with ρ and, in particular, is already determined for the
pigeons in M ∩Cl(Φ′) except for the pivots of Φ. Since ρ is 2-injective, no matter what values these
pivots take, if we can find distinct holes for the pigeons in Cl(Φ′) \M which also differ from any of
the possible holes assigned to pigeons in M ∩ Cl(Φ′), we will be done.

45

We can find such holes if |Cl(Φ′) \M | ≤ n− 2|Cl(Φ′) ∩M |. This holds since

|Cl(Φ′) \M |+ 2|Cl(Φ′) ∩M | ≤ 2(|Cl(Φ′) \M |+ |Cl(Φ′) ∩M |)
≤ 2|Cl(Φ′)|
≤ 2 rank(Φ′) ≤ n.

We assign any distinct holes to the pigeons in Cl(Φ′) \ M different from the holes assigned to
pigeons in M ∩ Cl(Φ′). To get a total assignment, we set all bits that have not already been set
(except for the pivots of Φ) arbitrarily and extend this to a solution of Φ by setting the pivots
appropriately.

We now sketch the remaining changes needed to get a 2
Ω
(√

n

logn

)

lower bound on the size of
regular Res(⊕) proofs of BPHPn+1

n . Let t := ⌊√n/2⌋. Consider a regular Res(⊕) refutation graph
and the associated linear branching program solving the search problem on BPHPn+1

n . Let σ be a
random assignment and take t steps on the branching program according to σ. If we expand this
initial depth t segment of the branching program to a PDT, Lemma A.1 tells us that σ is t-good
except with probability at most 2t2/n ≤ 1/2. Let Φ′ be the linear clause in the refutation graph
after taking t steps. If σ is t-good, then by Lemma A.2, Φ′ must be locally consistent since we
always ensure that ρt and Φt (as used in the definition of t-good) together imply the t equations
along the edges of the branching program (starting from the source), which in turn imply the
system Φ′. So with probability at least 1/2, the linear clause reached by a random assignment is
locally consistent.

The rest of the argument stays the same. The rank of Φ′ is at least Ω
(√

n
logn

)

by Lemma 7.2 in

[EGI24]. This implies that the size of such a proof must be at least 2
Ω
(√

n

logn

)

.

B Composition for block decision trees

In this section, we adapt known composition theorems which work for ordinary decision trees to get
composition theorems for more general decision trees when the queries come from a set of allowed
queries and each query must be contained in a block.

Let M be a finite set. A query on M is described by a tuple (S, (Si, ci)i∈[k]) where S ⊆M , Si’s
form a partition of S and each ci ∈ {0, 1}. Here S is the collection of possible inputs after having
made some queries and each Si is a possible response to the query. The integer ci is the cost on
getting response Si. We call S the head of the query. We will only allow non-trivial queries where
the partition has at least two parts and each part is non-empty. A query set Q on M is a collection
of queries. A query set may contain multiple queries with the same underlying partition but with
different costs associated to the parts.

A Q-decision tree on M with outputs in O is a decision tree whose internal nodes are labeled
by queries from Q and leaves are labeled by pairs (S, o) where S ⊆ M and o ∈ O. The labels of
the nodes must be consistent in the following natural sense. An internal node v labeled by a query
(S, (Si, ci)i∈[k]) has exactly k children wi (i ∈ [k]), where wi is labeled with a query with head Si.
We think of the edge between v and wi as being marked if ci = 1. In this case, we say that wi is a
marked node. The head of the query at the root node must be M as all inputs are possible at the
root.

We will call a Q-decision tree a Q-tree for short. We will assume below that Q has the following
properties:

46

1. Q is complete in the following sense: any subset Si, which appears as a response in Q and
has |Si| ≥ 2, must also appear as the head of some query in Q. This would guarantee that
any function on M can be computed by some Q-tree.

2. Q is closed under restrictions. Let S′ ⊆ M which can appear as the response of some query
in Q and |S′| ≥ 2. Let q = (S, (Si, ci)i∈[k]) be a query in Q where S′ ⊆ S. Then one of the
following holds:

• S′ ⊆ Si for some i ∈ [k], or,

• Q contains a query q′ = (S′, (Uj , dj)j∈[l]) such that for each j ∈ [l], there exists i ∈ [k]
with Uj ⊆ Si and dj ≤ ci.

The first condition above ensures that no matter what queries have been made previously there is a
sequence of future queries which will allow us to uniquely identify the input. The second condition
ensures that for every query q with head S and every subset S′ ⊆ S which could occur, there is a
query q′ on S′ which at least gives as much information as q and is not more expensive.

The cost of a Q-tree T for M on input x ∈M , denoted cost(T, x), is defined as the number of
marked edges on the unique root-to-leaf path in T which is consistent with x. The deterministic
Q-query complexity of a relation R ⊆ M × O, denoted D

Q(R), is the minimum cost of a Q-tree
computing R. For a randomized Q-tree T , cost is defined in the following manner. For an input
x, cost(T , x) = ET∼T [cost(T, x)]. We define expected randomized Q-query complexity of R by

R
Q
ǫ (R) = minT maxx cost(T , x) where T varies over all randomized Q-trees solving R with error

at most ǫ.
The next claim will be useful in later sections. Informally, it says that a search problem can

only become easier when restricted to a subset of inputs.

Lemma B.1. Let S ⊆ S′ ⊆M where both S and S′ can be obtained by some sequence of queries.
Let T be a Q-tree on the set S′ which computes a relation R ⊆ S′×O. Then there exists a Q-tree
T ′ computing R restricted to S such that for all x ∈ S, cost(T ′, x) ≤ cost(T, x).

Proof. We will show this by induction on |S|. If |S| = 1, this is clear since we can take T ′ to be a
leaf.

Suppose |S| ≥ 2. As long as S is completely contained in a response to the current query in
T , move to that child. If we reach a leaf while doing this, we can let T ′ be a leaf with the same
output. Otherwise we reach a query q such that S is split non-trivially by q. Suppose the subtrees
at this node are T1, T2, . . . , Tl. Since Q is closed under restrictions, there is some query q′ which
refines q on S. The tree T ′ will have q′ at the root. For each response A to q′, we can use a tree
T ′
i obtained by using the induction hypothesis on the tree Tj (whose head is, say, Sj) with the sets

Sj ∩ S and Sj ∩ S′, where Tj corresponds to the response of q containing A.
Let x ∈ S. Suppose x goes to the subtree Tj of T after the first query. Suppose the subtree

in T ′ reached by x is T ′
i . By induction, cost(T ′

i , x) ≤ cost(Tj , x). Additionally by the choice of the
query at the root, the cost of the response in T ′ at the root on x is at most the cost of the response
in T . So cost(T ′, x) ≤ cost(T, x).

We now extend the above definitions to relations R ⊆ Mn × O. In a Q-decision tree for Mn,
each internal node v is labeled by a tuple (S, i, q) where S = S1 × S2 × · · · × Sn ⊆Mn, i ∈ [n] and
q = (Si, (S

′
j , cj)j∈[k]) ∈ Q. Here S is the set of inputs reaching v and q is the query made at that

node into block i. Such a node v has exactly k children, wj , j ∈ [k], where wi is labeled with the
set S1 × S2 . . . Si−1 × S′

j × Si+1 × . . . Sn. Informally, the tuple (S, i, q) corresponds to making the

47

query q in the ith block when the current set of possible inputs is S. We define marked edges and
marked nodes as before. D

Q(R) and R
Q(R) are defined similarly for relations R ⊆ Mn × O. For

an input x ∈Mn, we will continue to say the ith block of x to refer to xi.
Before stating the composition theorems, let us state how the above definition captures the

query models considered in this work.

• Ordinary decision trees: Here each node corresponds to a subcube of {0, 1}n and each query
partitions the current subcube into two subcubes based on a coordinate. Depending on how
the costs are defined, we can get ordinary depth, 0-depth, 1-depth or rank.

• ∗-depth: Similar to ordinary decision trees, here each node corresponds to a subcube in
{0, 1, *}n and the cost is 1 only when the coordinate is fixed to ∗

• (⊕, ∗)-decision trees: The definition of (⊕, ∗)-decision trees explicitly works with a partial
subspace as the current set of inputs and the partition is induced by how a parity interacts
with the current partial subspace.

B.1 Composition for deterministic block decision trees

The following proposition has the same proof as the usual composition theorem for deterministic
decision trees, so we only provide a sketch.

Proposition B.2 (essentially [Sav02, Tal13, Mon14]). For any relation R ⊆ {0, 1}n ⊆ O, any
function g : M → {0, 1, *},

D
Q(R ◦ g) ≥ D

dt(R)(DQ(g)− 1).

Proof sketch. Consider an (ordinary) Adversary strategy for R and a Q-Adversary strategy for g.
The strategy for g ensures that the value of g is undetermined as long as the cost so far is less
than D

Q(g). We now combine these to give a Q-Adversary strategy for R ◦ g. We have n separate
Q-adversaries, one for each block. On a query to the ith block, if the block has already been fixed
earlier, respond accordingly. Otherwise, respond according to the Adversary strategy for g on that
block. If at this point, the total cost in the block has reached D

Q(g)− 1, fix xi so that g(xi) is set
according to the Adversary strategy for R. The number of fixed blocks at the end must be at least
D
dt(R) and each such block contributes D

Q(g)− 1 to the total cost.

We next show an equivalence between the Querier-Adversary game and a generalization of the
Blocker-Certifier game. Let Q be a query set such that for every query (S, (Si, ci)i∈[k]) in Q, there
is a unique i ∈ [k] such that ci = 1 (and for all j 6= i, cj = 0). From now on we will assume that
in all queries (S, (Si, ci)i∈[k]), c1 = 1 and cj = 0 for j ≥ 2. For lack of a better name, we also call
this game the Blocker-Certifier game. The Blocker-Certifier game for the relation R ⊆M ×O with
query set Q is played in rounds. The game is played on a set S ⊆ M which changes with each
move. In the beginning S = M . In a round,

1. Certifier updates S to be some subset S′ ⊆ S such that there is a sequence of queries
q1, q2, . . . , qk and responses S ⊃ S′

1 ⊃ S′
2 · · · ⊃ S′

k = S′ such that S is the head of q1 and for
each i ∈ [k], S′

i is a response for the query qi with cost 0. We also allow Certifier to leave S
unchanged.

2. Blocker picks a query (S, (Si, ci)i∈[k]) and updates S to be S1.

The game ends when there is some o ∈ O, such that (x, o) ∈ R for each x ∈ S. Certifier’s score is
the number of rounds played.

48

Lemma B.3. Suppose Q satisfies the above property that every query has unique response of cost
1. Let R ⊆M ×O. The following are equivalent:

• Adversary has a strategy to score k points in the Querier-Adversary game on R with query
set Q.

• Certifier has a strategy to score k points in the Blocker-Certifier game on R with query set
Q.

Proof. Suppose we have an Adversary strategy scoring k points. Certifier copies Adversary’s strat-
egy in the following way. Suppose the current set is S in the Blocker-Certifier game (in the beginning
S = M). Consider all the queries q1, q2, . . . , qk whose head is S. If there exists a query qi such that
Adversary responds to it with a cost 0 set S′, then Certifier’s sequence would start with qi and S′.
Certifier repeats this with S′ to (possibly) get another query q′ (with head S′) such that Adversary
responds to q′ with S′′ which has cost 0. Certifier adds q′ and S′′ to his current sequence. He
continues in this way until he reaches a set such that for all queries on it, Adversary responds with
the cost 1 response. When this happens, Certifier ends his turn.

Here Certifier can be thought of as playing the role of Querier but only making queries to
which the responses have cost 0. Therefore the score that Adversary can score on the obtained
set remains unchanged. Since Certifier makes sure that no matter what query Blocker makes, the
corresponding response of Adversary would score 1, Certifier achieves the same score as Adversary.

For the other direction, we will show that if Querier has a strategy which allows Adversary to
score at most k points, then Blocker also has a strategy to force Certifier to score at most k points.
Querier’s strategy can be described as a Q-tree T for R of cost k. Blocker will essentially simulate
this decision tree. To do this, we will need to use Lemma B.1 which follows from the assumption
that Q is closed under restrictions.

We now explain Blocker’s strategy. Suppose after Certifier makes his first move, the current
set is S. By Lemma B.1, there is a tree T ′ on S computing R whose cost is no more than the cost
of T . Blocker picks the query at the root of T ′ as his move in the game. This updates S to some
S′ ⊂ S. We may now move to the subtree T ′′ of T ′ corresponding to S′. In doing so, the cost of
the tree has decreased by 1. By using this strategy, in each round, the cost of the tree decreases by
at least 1. So in at most k rounds, the tree is reduced to a leaf at which point the game ends.

For simplicity, we only gave the proof for relations R ⊆ M × O, but it can easily be modified
to show the equivalence for relations on Mn instead of just M .

B.2 Composition for randomized block decision trees

In this subsection, we adapt the proof of Ben-David, Blais, Göös and Maystre [BBGM22] to give a
randomized composition theorem for Q-decision trees using linearized complexity. Then we prove

R
Q
ǫ (R ◦ g) ≥ Ω

(

R
dt

ǫ (R)
√

R
Q(g)

)

− n by considering a variant of conflict complexity [GLSS23].

B.2.1 Linearized Q-complexity

For a partial function g : M → {0, 1, *}, the linearized Q-complexity of g is defined as

LR
Q(g) = inf

T
max
x

cost(T , x)

bias(T , x)

where T varies over randomized Q-decision trees and x varies over inputs in the domain of g.

49

Theorem B.4. For any relation R ⊆ {0, 1}n×O, partial function g : M → {0, 1, *}, query set Q
on M ,

R
Q
ǫ (R ◦ g) ≥ R

dt

ǫ (R)
LR

Q(g)− 4

6
.

To prove this, we wish to use a minimax theorem for ratios [BB20, Theorem 2.18] to get that

LR
Q(g) = supµ minT

cost(T ,µ)
bias(T,µ) where µ varies over distributions on M and T varies over deterministic

Q-trees. However some conditions required to directly use the minimax theorem may not hold for
the query set Q. Specifically, one of the required conditions is that for any tree, the cost should
either be positive for all distributions or 0 for all distributions. This condition fails, for instance,
when the query set corresponds to 1-depth or rank.

So we will instead work with an approximate version of LR
Q which is always positive. For

any query set Q and real α > 0, define costα(T , x) = α + cost(T , x). Now define LR
Q
α (g) =

infT maxx
costα(T ,x)
bias(T ,x) . Note that we always have costα(T , x) ≥ α > 0. In addition, since Q is closed,

there is some decision tree which computes g exactly and has finite cost. So we may use the
minimax theorem [BB20, Theorem 2.18] to show that

LR
Q
α (g) = sup

µ
min
T

costα(T, µ)

bias(T, µ)
.

We rewrite the right hand side above in terms of the underlying distributions µ0 and µ1 over
0-inputs and 1-inputs of g respectively. The distribution µ must place equal weight on µ0 and µ1

for otherwise some decision tree which makes no queries solves g on this distribution with positive
bias. Using this, we get

LR
Q
α (g) = sup

µ0,µ1

min
T

costα(T, µ0) + costα(T, µ1)

2TV(tran(T, µ0), tran(T, µ1))

by reasoning exactly as in [BBGM22] (note that this does not depend at all on the query set).
Here µ0 and µ1 vary over distributions on 0-inputs and 1-inputs of g respectively and T varies over
Q-trees whose leaves are not labeled.

The next lemma will be used to write the above expression with min{costα(T, µ0), costα(T, µ1)}
in the numerator instead of the sum costα(T, µ0) + costα(T, µ1). Compared to the corresponding
statement in [BBGM22, Lemma 7], we lose an additional additive constant because some query
responses may have cost 0.

Lemma B.5 (essentially Lemma 7 in [BBGM22]). Let µ0, µ1 be distributions on M . Then

min
T

max{costα(T, µ0), costα(T, µ1)}
TV(tran(T, µ0), tran(T, µ1))

≤ 6 min
T

min{costα(T, µ0), costα(T, µ1)}
TV(tran(T, µ0), tran(T, µ1))

+ 4.

Proof. Let T be a Q-tree achieving the minimum on the right hand side. Without loss of generality,
assume that costα(T, µ0) ≤ costα(T, µ1). We will modify T to get a Q-tree T ′ whose cost is not
much more than cost(T, µ0) and for which the total variation distance does not grow by much.
T ′ is obtained by converting each marked node v in T ′ satisfying Prµ1 [v] > 3 Prµ0 [v] into a leaf.
Here Prµ[v] denotes the probability that an input drawn from µ reaches the node v. Note that
cost(T ′, µ0) ≤ cost(T, µ0) since we have only truncated the tree.

To estimate cost(T ′, µ1), consider the following indicator random variables. For each marked
node v in T ′, let Xv denote the indicator variable for reaching node v. Then cost(T ′, µ1) = E[

∑

v Xv]
where the sum is over only marked nodes in T ′. We now group the nodes according to whether

50

they were converted to leaves or not. Let V denote the leaves of T ′ and let C denote the set of
nodes where a cutoff occurs. Then

cost(T ′, µ1) =
∑

v/∈C
Pr
µ1

[v] +
∑

v∈C
Pr
µ1

[v] ≤ 3
∑

v/∈C
Pr
µ0

[v] + Pr
µ1

[C] ≤ 3 cost(T, µ0) + Pr
µ1

[C].

The first inequality follows from the fact that a cutoff does not occur only when Prµ1 [v] ≤ 3 Prµ0 [v]
and that since the nodes where a cutoff occurs are leaves in T ′, they form a partition of the event
C. This implies

costα(T ′, µ1) ≤ α + 3 cost(T, µ0) + Pr
µ1

[C] ≤ 3(α + cost(T, µ0)) + Pr
µ1

[C] ≤ 3 costα(T, µ0) + Pr
µ1

[C].

The calculation for the total variation distance stays the same as in [BBGM22].

TV(tran(T, µ0), tran(T, µ1)) ≤
1

2

∑

v∈V \C
|Pr
µ0

[v]− Pr
µ1

[v]|+ 1

2

∑

v∈C
(Pr
µ0

[v] + Pr
µ1

[v])

≤ 1

2

∑

v∈V \C
|Pr
µ0

[v]− Pr
µ1

[v]|+ Prµ0 [C] + Prµ1 [C]

2

TV(tran(T ′, µ0), tran(T ′, µ1)) ≥
1

2

∑

v∈V \C
|Pr
µ0

[v]− Pr
µ1

[v]|+ 1

4

∑

v∈C
(Pr
µ0

[v] + Pr
µ1

[v])

≥ 1

2

∑

v∈V \C
|Pr
µ0

[v]− Pr
µ1

[v]|+ Prµ0 [C] + Prµ1 [C]

4
≥ Prµ1 [C]

4

These imply the stated bound.

Lemma B.5 implies that

sup
µ0,µ1

min
T

min{costα(T, µ0), costα(T, µ1)}
TV(tran(T, µ0), tran(T, µ1))

≤ LR
Q
α (g) ≤ 6 sup

µ0,µ1

min
T

min{costα(T, µ0), costα(T, µ1)}
TV(tran(T, µ0), tran(T, µ1))

+4.

Let dLR
Q
α (g) denote supµ0,µ1

minT
min{costα(T,µ0),costα(T,µ1)}
TV(tran(T,µ0),tran(T,µ1))

. The following lemma captures the
main simulation underlying Theorem B.4.

Lemma B.6. For any relation R ⊆ {0, 1}n×O, partial function g : M → {0, 1, *} and real α > 0,

R
Q
ǫ (R ◦ g) ≥ R

dt

ǫ (R) dLRQ
α (g)− αn.

To prove this, we will need the analogue of the decision tree simulator from [BBGM22]. A
decision tree simulator is a randomized algorithm which is given two input distributions µ0 and µ1

on M , an unknown bit b ∈ {0, 1} and a stream of queries coming from some Q-tree T . The goal of the
algorithm is to respond to these Q-queries according to the distribution µb while querying b with low
probability. [BBGM22] show that when the inputs come from some set Σm and each query reveals
a coordinate, this can be done while querying b with only probability TV(tran(T, µ0), tran(T, µ1))
which is optimal.

Proposition B.7 ([BBGM22]). There exists a decision tree simulator that simulates the queries
of a Q-tree T on µb while querying b with only probability TV(tran(T, µ0), tran(T, µ1)).

Their simulator can be straightforwardly modified to get a simulator for Q-trees. We still
describe it in detail since it will also be useful later.

51

Algorithm 1: Q-tree simulator

1 for all S ⊆M do

2 µmin(S)← min{µ0(S), µ1(S)};
3 S ←M ;
4 b← ∗;
5 while more queries remain do

6 Let (S, (Si)i∈[k]) be the next query ; // Costs can be ignored for the

simulation.

7 u←∑

i∈[k] µmin(Si);

8 if b = ∗ then
9 With probability 1− u/µmin(S), query the value of b;

10 if b = ∗ then
11 S ← Si for a random i ∈ [k], where each i is picked with probability µmin(Si)/u ;

12 else

13 S ← Si for a random i ∈ [k], where each i is picked with probability µb(Si)−µmin(Si)
µb(S)−u ;

Proof. The simulator is described in Algorithm 1.
We now verify that for any node v in a Q-tree T , on running the simulator on T ,

1. v is reached with probability µb(v), where we identify v with the subset of M reaching v
(which is the same as the head of the query at v if v is an internal node)

2. v is reached without querying b with probability µmin(v).

We prove this by induction on the actual depth of v in T . The statements clearly hold at the root.
Suppose v has parent w. Let (S, (Si)i∈[k]) be the query at w and suppose Sj is the response

corresponding to node v.
By induction, we know that w is reached without querying b with probability µmin(w) = µmin(S).

Conditioned on reaching w without querying b, the probability that b is queried when processing
query q is 1 − u/µmin(S) where u =

∑

i∈[k] µmin(Si). Conditioned on not having queried b when
processing the query, the probability that the simulator picks Sj is µmin(Sj)/u. So the probability
that we reach v without querying b is

µmin(S) · u

µmin(S)
· µmin(Sj)

u
= µmin(Sj).

The probability that we reach v after querying b (either before reaching w or when processing
the query at w) is

(µb(S)−µmin(S))·µb(Sj)− µmin(Sj)

µb(S)− u
+µmin(S)·µmin(S)− u

µmin(S)
·µb(Sj)− µmin(Sj)

µb(S)− u
= µb(Sj)−µmin(Sj).

So the total probability of reaching node v is µmin(Sj) + (µb(Sj)− µmin(Sj)) = µb(Sj) as desired.
The final step is to note that the probability that we query b during the simulation is 1 −

∑

v∈L µmin(v) = TV(tran(T, µ0), tran(T, µ1)) where L is the set of leaves of T .

We now prove Lemma B.6.

52

Proof of Lemma B.6. Let β be a real satisfying 0 < β < α. Let µ0, µ1 be the distributions such
that for all trees T , min{costα(T,µ0),costα(T,µ1)}

TV(tran(T,µ0),tran(T,µ1))
≥ dLR

Q
α (g) − β > 0. Let T be a randomized Q-tree

for R ◦ g with error ǫ. We will construct a randomized decision tree T ′ of expected cost at most
R
Q
ǫ (R◦g)+αn

dLR
Q
α (g)−β

. On input x ∈ {0, 1}n, T ′ will essentially simulate T on the distribution µx obtained

by sampling for each i ∈ [n], block zi according to µxi
. This will ensure correctness since for each

input y in Mn, T ′ is incorrect on y with probability at most ǫ and therefore simulating T on any
distribution which is supported only on inputs y such that gn(y) = x will only make an error with
probability at most ǫ.

We now describe the simulation. It suffices to show how to simulate a deterministic Q-tree T .
For each i ∈ [n], we will run a separate instance of the decision tree simulator from Proposition
B.7 corresponding to bit xi. At a query (S, i, q) in T , we run the ith simulator with query q. If the
simulator queries its unknown bit b, we query xi and use this to continue the simulation. Based
on the response of the simulator, we move to the corresponding child in T . We continue doing this
until we reach a leaf of T and give the same output.

We now estimate the cost on input x. Let pi denote the probability that the ith bit xi is
queried by T ′. Let ci denote the expected cost of queries made in the ith block when running T
on x ◦ (µ0, µ1). To relate ci and pi, consider the randomized tree Ti which on input z ∈ M runs
T on the following distribution. The ith block is fixed to z and for all j 6= i, the jth block is
sampled according to the distribution µxj

. Note that the only actual queries made by this tree to
z correspond to queries in T made to the ith block. Running the decision tree simulator on Ti with
distributions µ0 and µ1 and the hidden bit being xi corresponds exactly to the simulation above
of T when restricted to the ith block. Therefore pi is the same as the probability that the decision
tree simulator queries xi. Also ci is the expected cost of running Ti on µxi

.
We need to show that ci + α ≥ pi(dLR

Q
α (g) − β). This would imply the desired bound since

∑n
i=1 ci ≤ R

Q
ǫ (R ◦ g) and

∑n
i=1 pi is the expected cost of T ′ on x.

Now pi = ES∼Ti [TV(tran(S, µ0), tran(S, µ1))] by Proposition B.7 and ci = ES∼Ti [cost(S, µxi
)].

Since pi and ci come from the same probability distribution on Q-trees, it suffices to show for
any S in the support of Ti, cost(S, µxi

) + α ≥ TV(tran(S, µ0), tran(S, µ1)) · (dLRQ
α (g) − β). For

this, observe that the left hand side is just costα(S, µxi
) which we can bound from below by

min{costα(S, µ0), costα(S, µ1)} ≥ TV(tran(S, µ0), tran(S, µ1)) · (dLRQ
α (g) − β). This gives R

Q
ǫ (R ◦

g) ≥ R
dt

ǫ (R)(dLRQ
α (g)− β)− αn.

Since this holds for all β > 0, we have R
Q
ǫ (R ◦ g) ≥ R

dt

ǫ (R) dLRQ
α (g)− αn.

We now finish the proof of Theorem B.4.

Proof of Theorem B.4. By Lemma B.6, we have for every α > 0,

R
Q
ǫ (R ◦ g) ≥ R

dt

ǫ (R) dLRQ
α (g)− αn.

By combining with Lemma B.5, we get

R
Q
ǫ (R ◦ g) ≥ 1

6
R
dt

ǫ (R)(LRQ
α (g)− 4)− αn.

We will now take the limit of the right hand side as α→ 0+. We will show that limα→0+ LR
Q
α (g) =

LR
Q(g). First, note that we always have LR

Q(g) ≤ LR
Q
α (g). We now show that LRQ

α (g) can be made
arbitrarily close to LR

Q(g) by picking α to be small enough. Let ǫ > 0. Let T be a randomized

53

Q-tree such that maxx
cost(T ,x)+α
bias(T ,x) ≤ LR

Q(g) + ǫ/2. Then we have

LR
Q
α (g) ≤ max

x

cost(T , x) + α

bias(T , x)
≤ max

x

cost(T , x)

bias(T , x)
+ max

x

α

bias(T , x)

≤ LR
Q(g) +

ǫ

2
+ αmax

x

1

bias(T , x)
.

The last term in the sum can be made smaller than ǫ/2 by choosing α appropriately.

We next show that LRQ gives an essentially inner-optimal composition theorem for randomized
Q-trees.

Theorem B.8. Let P be a complexity measure for partial functions g : M → {0, 1, *} satisfying
R
Q(f ◦ g) ≥ Ω(Rdt(f)P (g)) for all partial functions f : {0, 1}n → {0, 1, *}, g : M → {0, 1, *}. Then

for all g : M → {0, 1, *}, LRQ(g) = Ω(P (g)).

Note that even though the above statement gives LR
Q(g) = Ω(P (g)), the composition theorem

for LR
Q Theorem B.4 may fail to be meaningful for some g for which P (g) > 0 because of the

additive constant loss. It would be interesting to know if this is necessary.
To prove Theorem B.8, again we will need to work with LR

Q
α (α > 0). The following lemma

shows that LR
Q
α (g) can be used to upper bound the randomized Q-complexity of ApproxINDk ◦ g

when k is large enough in terms of m := |M | and α. Recall that since our query set is complete,
there is always a deterministic Q-tree of cost at most m solving any g. The partial function
ApproxINDk : {0, 1}k×{0, 1, 2}2k → {0, 1, *} is defined as follows. On input (x, y), we are promised
that whenever z ∈ {0, 1}k is at Hamming distance at most k/2−2

√
k log k, we have yz = yx ∈ {0, 1}

and for all other z, we have yz = 2. By using 2 bits to represent each of {0, 1, 2}, we obtain a
function with binary alphabet while the complexity stays the same up to a constant factor.

Lemma B.9 (Lemma 15 in [BBGM22]). For all α > 0, all partial functions g : M → {0, 1, *}, all

k ∈ N such that k
log k ≥

(

36(m+α+1)
α

)2
,

R
Q(ApproxINDk ◦ g) = O(

√

k log k · LRQ
α (g))

where the implicit constant does not depend on α.

Proof. Let β be a real such that 0 < β < 1. Let T be a randomized Q-tree for which on all inputs
x, costα(T ,x)

bias(T ,x) ≤ LR
Q
α (g) + β. We will give a randomized decision tree for ApproxINDk ◦ g which has

worst-case cost O(
√
k log k · (LRQ

α (g) + β)) on every input.
The tree T ′ for ApproxINDk ◦ g is obtained in the following way. For each i ∈ [n], run T

on xi, the ith block of the address part of the input (independently of the previous runs) and
let Xi be the random variable for the α-cost (cost +α) for block xi. If

∑

j≤iXj has exceeded

36
√
k log k(LRQ

α (g) + β), stop. Since costα(T, x) ≥ α for all T and x and LR
Q
α (g) ≤ m + α,

we necessarily have
∑

j≤k Xj > 36
√
k log k(LRQ

α (g) + β). Let l be the index of the last block
queried. For i ∈ [l], let ui denote the output given by (the current run of) T ′ on xi. Let z =
u1u2 . . . ulvl+1vl+2 . . . vk where each vi is a bit chosen uniformly and independently at random. The
algorithm’s output is obtained by solving the instance of g at index z.

We now estimate the cost of the algorithm. The total cost of all iterations except for the last
is at most 36

√
k log k(LRQ

α (g) + β). The cost in the last iteration while computing the address is
at most m. Solving the instance of g at index z also costs at most m. By the choice of k, we have
m = O(

√
k log k · LRQ

α (g)) and so the overall cost is also at most O(
√
k log k · (LRQ

α (g) + β)).

54

Let us argue correctness now. Let Yi be a Bernoulli random variable indicating whether ui =
g(xi). Here Yi is correlated with Xi according to the decision tree T . By the definition of LR

Q
α ,

we have E[Yi] ≥ 1
2 + E[costα(T,xi)]

2(LRQ
α (g)+β)

. Note that the number of correct output bits is exactly S :=
∑

1≤i≤l Yi +
∑

l<i≤k Zi where Zi is a uniform random bit.

We will show that Pr[S ≥ k
2 + 2

√
k log k] ≥ 2

3 . Let l0 be the smallest integer such that
∑l0

i=1 E[Xi] > 6
√
k log k(LRQ

α (g) + β). Consider the random variable S′ =
∑

1≤i≤max{l,l0} Yi +
∑

max{l,l0}<i≤k Zi. Since S 6= S′ implies l < l0, we have by Markov’s inequality

Pr[S 6= S′] ≤ Pr[

l0−1
∑

i=1

Xi > 36
√

k log k (LRQ
α (g) + β)] ≤

∑l0−1
i=1 E[Xi]

36
√
k log k(LRQ

α (g) + β)
≤ 1

6
.

Also note that we can couple Zi and Yi for each i so that Yi ≥ Zi since E[Yi] ≥ 1/2. This implies
that S′ ≥ ∑l0

i=1 Yi +
∑k

i=l0+1 Zi. So it suffices to show that
∑l0

i=1 Yi +
∑k

i=l0+1 Zi ≥ k
2 + 2

√
log k

with probability at least 1− 1
9 . By the choice of l0, we have

l0
∑

i=0

E[Yi] ≥
l0
∑

i=0

(

1

2
+

E[costα(T, xi)]

2(LRQ
α (g) + β)

)

>
l0
2

+ 3
√

k log k.

So by the Chernoff bound, we have
∑l0

i=1 Yi +
∑k

i=l0+1 Zi ≥ k
2 + 2

√
k log k except with probability

at most 1/9.
So with probability at least 2/3, z agrees with gk(x) on at least k/2 + 2

√
k log k bits. The last

step of the algorithm incurs no error.

Proof of Theorem B.8. By the assumption on P , we have for any k, R
Q(ApproxINDk ◦ g) ≥

Ω(
√
k log kP (g)). By Lemma B.9, for any α > 0, if k is large enough, we have RQ(ApproxINDk◦g) ≤

O(
√
k log kLRQ

α (g)). Combining these gives LR
Q
α (g) = Ω(P (g)). Since this holds for all α > 0, we

get LR
Q(g) = limα→0+ LR

Q
α (g) = Ω(P (g)).

B.2.2 χ̂Q, a variant of conflict complexity

We will now prove R
Q
ǫ (R ◦ g) ≥ Ω(Rdt

ǫ

√

R
Q(g))− n. To do this, we consider a complexity measure

χ̂Q, which is a variant of conflict complexity [GLSS23]. The proofs of the composition theorem
using χ̂Q and the bound R

Q(g) ≤ O(χ̂Q(g)2) closely follow the proofs involving conflict complexity.
For readers familiar with conflict complexity, we start by explaining the differences.

The natural Q-analogue of conflict complexity would use the following generalization of the
simulation in [GLSS23]. Suppose we have a deterministic Q-tree T on M and wish to simulate
the action of some distribution µb where µ0 and µ1 are some distributions on M and b is some
unknown bit. We wish to simulate T without querying b before having seen many marked edges in
T during the simulation (in expectation). At a node v in T with children v1, v2, . . . , vk, we move to
the child vi with probability min{Prx∼µ0 [x ∈ vi|x ∈ v],Prx∼µ1 [x ∈ vi|x ∈ v]}. With the remaining
probability, 1−∑

i∈[k] min{Prx∼µ0 [x ∈ vi|x ∈ v],Prx∼µ1 [x ∈ vi|x ∈ v]}, we query b and move to vi
with probability Prx∼µb

[x ∈ vi|x ∈ v]. Note that 1 −∑

i∈[k] min{Prx∼µ0 [x ∈ vi|x ∈ v],Prx∼µ1 [x ∈
vi|x ∈ v]} is just the total variation distance between the distributions induced on the children of v
by the distributions µ0|v and µ1|v. We may now define Q-conflict complexity of two distributions
µ0, µ1 to be the minimum number of marked edges seen by the above simulation before stopping to
query b for some tree T separating µ0 and µ1. Using this simulation, one can prove a composition

theorem for this measure, say Q-conflict complexity χQ, RQ
ǫ (R ◦ g) ≥ R

dt

ǫ χQ(g).

55

It is not very clear, however, how to modify the proof in [GLSS23] to show that R
dt(g) ≤

O(χQ(g)2 + 1). As a first attempt, since we only include marked edges in the cost, it seems natural
to only keep track of marked nodes instead of all nodes as in [GLSS23, Claim 6.2]. Informally, we
may think of compressing any unmarked edges which don’t end at leaves. We may now try to lower
bound for any marked node v, the mutual information between g(x) and the next marked node
reached after reaching v. This can be shown to be related to the total variation distance between
the distributions induced on the children of v in the compressed tree by µ0|v and µ1|v. We would
now like to show that this quantity is lower bounded by the probability that the random process
queries b after it reaches v and before crossing any more marked edges. The issue now is that
this probability can be larger than the total variation distance described above since the [GLSS23]
simulation is only locally optimal rather than over the whole tree. We get around this by using the
optimal decision tree simulator [BBGM22] to simulate the moves from one marked node to another.
Since the probability that the simulator queries b is exactly equal to the TV distance of the involved
distributions, this lets us finish the proof. Of course, since we changed the simulation, we also need

to modify the composition theorem. Here we are only able to show R
Q
ǫ (R ◦ g) ≥ R

dt

ǫ (R)χ̂Q(g)− n

instead of RQ
ǫ (R ◦ g) ≥ R

dt

ǫ (R)χ̂Q(g)−O(Rdt

ǫ (R)).
We now define χ̂Q formally. We will use notation similar to [GLSS23]. Let T be a Q-tree. For

a marked node v in T , we use π(v) to denote the unique closest marked node on the path from the
root to v. (Note that π(v) is often not the actual parent of v.) By convention, we think of the root
as being marked. For a node v, we use dT (v) to indicate the number of marked edges on the path
from the root to v.

Let g : M → {0, 1, *} be a partial function. Fix probability distributions µ0, µ1 over 0-inputs
and 1-inputs of g respectively. We use µ0|v to denote the distribution µ0 after conditioning on
reaching the vertex v and similarly use µ1|v. Let v be a marked node. We use Tv to denote the
subtree of T rooted at v where every v to leaf path in T is truncated at the first marked node after
v. Tv includes any leaf l of T such that the path from v to l does not include any marked edges. For
b ∈ {0, 1}, we use σb(T, v) to denote the distribution on the leaves of Tv induced by the distribution
µb|v. Note that σb depends on µb but we suppress this dependence for ease of notation.

Let T be a Q-tree computing g. Define for each marked node v in T ,

R(v) =

{

1 if v is the root,

R(π(v)) ·min{Prµ0|π(v)[x ∈ v],Prµ1|π(v)[x ∈ v]} otherwise.

Also define ∆(v) = TV(σ0(T, v), σ1(T, v)). Similar to the simulation in [GLSS23], these quantities
are related to a random walk done on the tree T . The difference here is that we always stay at
marked nodes. (Strictly speaking, this means that the random walk is not really a walk on the tree,
but we will continue calling it so for simplicity.) At a marked node v, we move to an immediate
marked descendant w with probability min{Prµ0|v[x ∈ w],Prµ1|v[x ∈ w]}. With the remaining
probability ∆(v) = TV(σ0(T, v), σ1(T, v)), we stop the random walk at v.

Define χ̂Q(T, (µ0, µ1)) = (
∑

v dT (v)∆(v)R(v))+1 where the sum is only over marked nodes in T .
(The +1 term is not necessary but will be convenient later for the upper bound R

Q(g) ≤ O(χ̂Q(g)2).)
Define

χ̂Q(g) = max
µ0,µ1

min
T

χ̂Q(T, (µ0, µ1)).

where µ0 and µ1 vary over distributions on the 0-inputs and the 1-inputs of g respectively, T varies
over deterministic Q-trees solving g.

Before we describe the modified query process, we explain how to convert the above random
walk which jumps from marked node to marked node into an actual random walk on the tree.

56

To do this, we will use the online decision tree simulator of [BBGM22] (Algorithm 1) to simulate
one big step of the above random walk. In more detail, at any marked node v, we will initialize
the simulator with the distributions µ0|v and µ1|v. We simulate the following queries using the
simulator until we reach a marked node or the simulator queries the bit b. In the latter case, we
stop the random walk and in the former case, we reset the distributions in the simulator according
to the new marked node. Note that this does indeed give the right distribution.

The simulation using χ̂Q(g) is described in Algorithm 2. We now informally describe what it
is doing. In lines 1-7, we set up for each block some variables required for the simulation. These
variables roughly are the ones required by the decision tree simulator of Proposition B.7. Here
(µi

0, µ
i
1) indicate the distributions being currently simulated in block i. The counter cnti indicates

the number of marked edges in block i crossed before making a query to xi. S = S1×S2× · · ·×Sn

indicates the set of inputs reaching the current node.
Lines 11 to 24 are essentially the steps from the decision tree simulator (Algorithm 1) applied

to block j. If the cost of the current response is 1 (line 25), then we end the current run of
the simulator. If xj was queried during the current run (indicated by querycurr

j = 1) , we set
queryprev ← 1 (line 27) so that in the future we can naively simulate the query. Otherwise, we
reset the distributions of the simulator for block i to the conditional distributions at the new vertex
(line 30). Lines 32-34 perform the naive simulation where we directly move to the appropriate child
according to the conditional distribution at the current node.

We next verify that the simulation reaches each node v of T with the correct probability.

Lemma B.10. Let v be a node of T . Let x ∈ {0, 1}n. Let A(v) denote the event that Algorithm 2
reaches v during the simulation on input x and distributions (µ0, µ1). Let B(v) denote the event that
we reach v when running T on a random input from the distribution µx. Then Pr[A(v)] = Pr[B(v)].

Proof. Let S = S1×S2×· · ·×Sn be the set of inputs reaching v. Since µx =
∏

i∈[n] µxi
is a product

distribution, Pr[B(v)] =
∏

i∈[n] Prz∼µxi
[z ∈ Si].

Let v0, v1, . . . , vk = v be the nodes on the root to v path in T . We may write Pr[A(v)] =
∏

i∈[k] Pr[A(vi)|A(vi−1)]. In any iteration, the probabilities used by the simulation only depend on
the block being queried (and is independent of the rest) and the set of consistent inputs also changes
only in that block. This means that we can group terms in the product

∏

i∈[k] Pr[A(vi)|A(vi−1)]
according to which block is being queried. For each block i ∈ [n], if we can show that the corre-
sponding product of terms is Prz∼µxi

[z ∈ Si], we will be done.
So fix any i ∈ [n]. Suppose the queries into block i (ignoring the costs) to reach the node v are

(M, (U1
l)l∈[m1]), (U

1
1 , (U

2
l)l∈[m2]), . . . , (U

s−1
1 , (U s

l)l∈[ms])

where s is the total number of queries into block i before reaching node v, and we assume, without
loss of generality, that the response to query (U j−1

1 , (U j
l)l∈mj

) which is consistent with Si is U j
1 . In

particular, U s
1 = Si.

We will show by induction on the number of cost-1 responses in block i, that the probability of
getting to the set Si is exactly Prz∼µxi

[z ∈ Si]. This is clearly true if v is the root.

Now suppose U s′
1 is the last cost-1 response among M,U1

1 , U
2
1 , . . . , U

s−1
1 . Conditioned on having

queried xi before reaching U s′
1 , the probability that we reach U s

1 = Si during the simulation is

s
∏

j=s′+1

Pr
z∼µxi

[z ∈ U j
1 |z ∈ U j−1

1] = Pr
z∼µxi

[z ∈ U s
1 |z ∈ U s′

1].

57

Algorithm 2: χ̂Q simulator for a Q-tree T on Mn

1 for i ∈ [n] do
2 queryprev

i ← 0 ; // Indicates if xi was queried before the last cost 1 query

response in block i
3 querycurr

i ← 0 ; // Indicates if xi was queried after the last cost 1 query

response in block i
4 xi ← ∗;
5 (µi

0, µ
i
1)← (µ0, µ1) ; // Current distributions to be simulated

6 cnti ← 0 ; // Counts cost 1 responses in block i
7 Si ←M ; // Current set of inputs in block i

// S denotes S1 × S2 × · · · × Sn

8 v ← root of T ; // Current node in T
9 while v is not a leaf of T do

10 Let (S, j, q) be the query at v where q = (Sj , (Ui, ci)i∈[k]) ;

11 if queryprev
j = 0 then

12 u←∑

i∈[k] min{µj
0(Ui), µ

j
1(Ui)};

13 pmin ← min{µj
0(Sj), µ

j
1(Sj)};

14 if querycurr
j = 0 then

15 b← Bernoulli(1− u/pmin);
16 if b = 1 then

17 Query xi;
18 querycurr

j = 1;

19 if querycurr
j = 0 then

20 Pick i ∈ [k] at random where i has probability min{µj
0(Ui), µ

j
1(Ui)}/u;

21 else

22 Pick i ∈ [k] at random where i has probability
µj
xi
(Ui)−min{µj

0(Ui),µ
j
1(Ui)}

pmin−u ;

23 Sj ← Ui;
24 v ← vi where vi is the child of v corresponding to response Ui;
25 if ci = 1 then

26 if querycurr
j = 1 then

27 queryprev
j ← 1;

28 else

29 cntj ← cntj + 1;

30 (µj
0, µ

j
1)← (µ0|Sj , µ1|Sj) ; // Update distributions to current

conditional distributions

31 else

32 Pick i ∈ [k] randomly, where i is picked with probability Prz∼µxi
[z ∈ Ui|z ∈ Sj] ;

33 Sj ← Ui;
34 v ← vi where vi is the child of v corresponding to response Ui;

58

On the other hand, if we reach U s′
1 without having queried xi earlier, we run the decision tree

simulator with distributions (µ0|U s′
1 , µ1|U s′

1). This implies that conditioned on reaching U s′
1 without

having queried xi, the probability that we reach U s
1 is Pr

z∼µxi
|Us′

1
[z ∈ U s

1] = Prz∼µxi
[z ∈ U s

1 |z ∈ U s′
1].

By induction, we know that the total probability with which we reach U s′
1 during the simulation

is Prz∼µxi
[z ∈ U s′

!]. So we have

Pr[U s
1 reached during simulation]

= Pr[U s
1 reached during simulation|U s′

1 reached without querying xi] · Pr[U s′

1 reached without querying xi]

+ Pr[U s
1 reached during simulation|U s′

1 reached after querying xi] · Pr[U s′

1 reached after querying xi]

= Pr
z∼µxi

[z ∈ U s
1 |z ∈ U s′

1](Pr[U s′

1 reached without querying xi] + Pr[U s′

1 reached after querying xi])

= Pr
z∼µxi

[z ∈ U s
1 |z ∈ U s′

1] · Pr[U s′

1 reached]

= Pr
z∼µxi

[z ∈ U s
1 |z ∈ U s′

1] · Pr
z∼µxi

[z ∈ U s′

1] = Pr
z∼µxi

[z ∈ U s
1].

For i ∈ [n], define Dx,i(T, (µ0, µ1)) = E[cnti], the expected number of marked queries made
into block i before the simulator (Algorithm 2) queries xi when run on input x with distributions
(µ0, µ1). Define Dx(T, (µ0, µ1)) =

∑

i∈[n]Dx(T, (µ0, µ1)). Note that if n = 1, for any x ∈ {0, 1},
Dx(T, (µ0, µ1)) = χ̂Q(T, (µ0, µ1))− 1.

An analogue of the direct sum theorem, [GLSS23, Theorem 5.2] can be proved in the same way.

Proposition B.11. Let µ0 and µ1 be distributions on g−1(0) and g−1(1) respectively. Let T be a
Q-tree on Mn which solves g on each block. Then for any x ∈ {0, 1}n,

Dx(T, (µ0, µ1)) ≥ n(min
S

χ̂Q(S, (µ0, µ1))− 1)

where S varies over Q-trees on M solving g.

The −1 in the lower bound accounts for the +1 added separately in the definition of χ̂Q.
Using the above direct sum result, we get a composition theorem with χ̂Q by following the proof

of [GLSS23, Theorem 5.1].

Theorem B.12. For any relation R ⊆Mn ×O and partial function g : M → {0, 1, *},

R
Q
ǫ (R ◦ g) ≥ R

dt

ǫ (R)χ̂Q(g)− n.

Proof. Let µ0, µ1 be the distributions on 0-inputs and 1-inputs of g achieving the maximum in the
definition of χ̂Q(g), so that for all deterministic Q-trees T solving g, χ̂Q(g) ≤ χ̂Q(T, (µ0, µ1)). Let
T be a randomized Q-tree computing R ◦ g to error ǫ. We will give a randomized decision tree T ′

computing R to error ǫ. T ′ is defined by picking sampling a Q-tree T according to T and then
running Algorithm 2 on T . Finally, when a leaf is reached in the simulation, the same output is
given in T ′.

By Lemma B.10, during the simulation each leaf is reached with the same probability as an
input z ∼ µx, where x is the input to T ′. This implies that Pr[T ′(x) /∈ R(x)] = Prz∼µx [T (z) /∈
(R ◦ g)(z)] = Ez[Pr[T (z) /∈ (R ◦ g)(z)]] ≤ ǫ. This shows correctness of T ′.

We now bound the number of queries made by T ′ on any input. We will modify T to get a
randomized Q-tree W which always computes g correctly (no error) on each block and for which
we can relate the total number of marked queries in W with the expected cost of T and T ′. The

59

Algorithm 3: W
1 Run T on z ∈Mn.
2 Suppose T terminates at leaf with inputs S = S1 × S2 × . . . Sn.
// Si always refers to the current set of possible inputs in block i

3 for i ∈ [n] do
4 while the last response obtained in block i had cost 0 and g is not constant on Si do

// If the last query made by T into block i has cost 1, this loop is

not entered

5 Make any query q into block i.

6 if µ0(Si) > 0 and µ1(Si) > 0 then

7 Run H on zi where H is a Q-tree on M satisfying χ̂Q(H, (µ0|Si, µ1|Si)) ≤ χ̂Q(g).

8 else

// The queries made in this case do not affect the cost of the

simulation

9 Run any Q-tree on zi which solves g restricted to the set Si.
// Possibly g is constant on Si in which case no new queries are made.

tree W is described in the Algorithm 3. Inside the while loop on lines 4-5, we keep making queries
until we get a cost 1 response. (Possibly the response on the last query into block i made by
T already had cost 1, in which case this while loop is skipped.) In line 6, since µ0(Si) > 0 and
µ1(Si) > 0, the distributions µ0|Si and µ1|Si are well-defined and so there exists a tree H satisfying
χ̂Q(H, (µ0|Si, µ1|Si)) ≤ χ̂Q(g) by the definition of χ̂Q(g). Lines 8-9 are not crucial to the argument,
but are only included because the definition of χ̂Q requires g to be computed correctly on all inputs
(even those not in the support of either distribution). In lines 7 and 9, we use Lemma B.1 to find
a Q-tree whose root has inputs Si.

We now bound Dx(W, (µ0, µ1)) := EW∼W [Dx(W, (µ0, µ1))] in terms of χ̂Q(g), cost(T ′, x) and
the maximum cost of running T on any input. By averaging, there is a deterministic Q-tree W in the
support ofW for which Dx(W, (µ0, µ1)) ≤ Dx(W, (µ0, µ1)). By Proposition B.11, Dx(W, (µ0, µ1)) ≥
n(χ̂Q(g)− 1) where we used that µ0, µ1 are distributions achieving the maximum in the definition
of χ̂Q(g).

We will now show that Dx(W, (µ0, µ1)) ≤ d+(n−cost(T ′, x))χ̂Q(g) where d = maxz cost(T , z).
For i ∈ [n], let Ei denote the event that xi is queried when running T ′ on x. Let Xi be the random
variable counting the number of cost 1 responses seen in block i when running Algorithm 2 on T .
(So Dx,i(T , (µ0, µ1)) = ET∼T [Dx,i(T, (µ0, µ1))] = E[Xi].) This corresponds to the contribution to
Dx(W, (µ0, µ1)) coming from line 1 of Algorithm 3. Let Yi be the random variable counting the
number of cost 1 responses seen when running line 7 of Algorithm 3 in the iteration for block i
before xi is queried. (So if xi had already been queried before reaching line 7, then Yi = 0.) Let Ii
be the indicator random variable for seeing a cost 1 response in line 5 of Algorithm 3 during the
iteration for block i before having queried xi.

We may now write

Dx(W, (µ0, µ1)) = E[
∑

i∈[n]
(Xi + Ii + Yi)] = E[

∑

i∈n
Xi] +

∑

i∈[n]
E[Ii] +

∑

i∈[n]
E[Yi].

We will bound each of these terms separately. To see E[
∑

i∈nXi] ≤ d, we will use that
∑

i∈[n]Xi is
at most the total number of marked edges seen on the path from the root to leaf of T . By Lemma

60

B.10, we know that each leaf of T is reached with the same probability as a random z ∼ µx would
reach it. This implies that E[

∑

i∈[n]Xi] ≤ Ez∼µx [cost(T , z)] ≤ d.

Note that Ii = 1 implies that xi has not been queried in T ′ (Ei does not occur) and similarly
Yi > 0 implies Ei does not occur. So E[Ii] ≤ Pr[¬Ei] = 1 − Pr[Ei]. To bound E[Yi], we first
condition on reaching a node v in W corresponding to line 7 in the iteration for block i, and not
having queried xi earlier. Let us denote this event by Fv. By the choice of H in line 7, we know
that E[Yi|Fv] ≤ χ̂Q(g)− 1. This gives

E[Yi] =
∑

v

Pr[Fv] · E[Yi|Fv] ≤
∑

v

Pr[Fv](χ̂Q(g)− 1) ≤ (1− Pr[Ei])(χ̂
Q(g)− 1),

where v varies over the nodes corresponding to line 7 in Algorithm 2 for block i. Combining these,
we have Dx(W, (µ0, µ1)) ≤ d +

∑

i∈[n](1− Pr[Ei])χ̂
Q(g) = d + (n− cost(T ′, x))χ̂Q(g) as desired.

By using the two bounds on Dx(W, (µ0, µ1)), we get

n(χ̂Q(g)− 1) ≤ d + (n− cost(T ′, x))χ̂Q(g)

which on rearranging gives d ≥ cost(T ′, x)χ̂Q(g)− n.

We next show that R
dt

ǫ (g) ≤ O(χ̂Q(g)2) for some fixed constant ǫ < 1/2 by describing the
changes required to the proof of [GLSS23, Theorem 6.1]. By Lemma B.1, we can still amplify the
success probability by repeating a randomized decision tree a constant number of times.

Theorem B.13. There exists a constant ǫ < 1/2 such that for all g : M → {0, 1, *}, R
Q
ǫ (g) ≤

O(χ̂Q(g)2).

Proof sketch. Let d := ⌈χ̂Q(g)⌉. Since χ̂Q(g) ≥ 1, we have d ≤ 2χ̂Q(g). We will show that for
each distribution µ supported only on g−1(0) ∪ g−1(1), there exists a deterministic Q-tree whose
worst case cost is bounded by O(d2) and which makes an error with probability at most ǫ on the
distribution µ for some fixed ǫ < 1/2. Define µ0 = µ|g−1(0) and µ1 = µ|g−1(1). Consider a Q-tree
T ′ which achieves the minimum in the definition of χ̂Q(g) on the distributions µ0, µ1.

Obtain the tree T from T ′ by making any marked node whose marked depth is D := 10d2 a
leaf. A leaf v in T is labeled by b ∈ {0, 1} such that Prx∼µ[x ∈ v and g(x) = b] ≥ Prx∼µ[x ∈
v and g(x) = 1− b].

Since we have already ensured that cost(T, x) on any x ∈ M is at most 10d2, we only need to
verify correctness. Let E be the event that x does not reach a marked node v where Prx∼µ[g(x) =
0|x ∈ v] ≤ 1/3 or Prx∼µ[g(x) = 1|x ∈ v] ≤ 1/3.

The case where E happens with not too large probability (Pr[E] < 3/4) can be handled in
exactly the same way as in [GLSS23]. Once a vertex v is reached such that Pr[g(x) = 0 | x ∈ v] ≤
1/3 or Pr[g(x) = 1 | x ∈ v] ≤ 1/3, the contribution to the error of the inputs that reach v cannot be
more than 1/3. This follows from an application of Jensen’s inequality and the triangle inequality.

We now explain the changes required for the other case Pr[E] ≥ 3/4. In this case, we will
bound the mutual information between the transcript of T on x and g(x). Since the transcript of
T is determined by the leaf v reached, we will treat the two interchangeably. Note that since T ′

solves g, if E occurs, a leaf is not reached. For i ∈ {0} ∪ [10d2], let vi denote the ith marked node
reached on an input x ∼ µ. Recall that the root is considered a marked node and so v0 is always
the root of T . It will also be convenient to count all leaves as marked nodes. So if x reaches a leaf
before crossing i marked edges, then vi is the leaf reached by x. For i ∈ [D], let Si denote the set
of all inputs that reach vi (so if vi is an internal node, Si is the head of the query at vi). We will

61

show that the mutual information I(S1, S2, . . . , SD; g(x)) is at least some positive constant under
the assumption Pr[E] ≥ 3/4.

We need the following claim which relates the information between Si and g(x) after having
reached v in terms of ∆(v) following [GLSS23, Claim 6.4].

Claim B.14. Let v be a vertex in T which lies in the support of vi−1 and is not a leaf. Then

I(Si; g(x) | x ∈ v) ≥ 8(Pr
x∼µ

[g(x) = 0 | x ∈ v] · Pr
x∼µ

[g(x) = 1 | x ∈ v] ·∆(v))2.

Proof of claim. Let s1, s2, . . . , sk ⊂ M be all the sets in the support of Si after conditioning on
x ∈ v. Note that these actually form a partition of the set of inputs reaching v, corresponding to
the immediate marked descendants of v. Since in all quantities being considered, we condition on
v, we suppress this conditioning in the rest of the proof.

For two random variables X and Y , we use X × Y to denote their independent coupling. By
Pinsker’s inequality,

I(Si; g(x)) = DKL((Si, g(x))||Si × g(x)) ≥ 2TV((Si, g(x)), Si × g(x))2.

We now show that the right hand side can be rewritten as the quantity we want. Fix any b ∈ {0, 1},
j ∈ [k]. We have

Pr[(g(x), Si) = (b, sj)] = Pr[g(x) = b] Pr[Si = sj | g(x) = b].

Also

Pr[(g(x), Si) = (b, sj)] = Pr[g(x) = b](Pr[g(x) = b] Pr[Si = sj | g(x) = b]

+ Pr[g(x) = 1− b] Pr[Si = sj | g(x) = 1− b]).

Combining

|Pr[(g(x), Si) = (b, sj)]−Pr[(g(x), Si) = (b, sj)]|
= Pr[g(x) = 0] Pr[g(x) = 1]| Pr

x∼µ0

[Si ∈ sj]− Pr
x∼µ1

[Si ∈ sj]|.

Adding over all b ∈ {0, 1} and j ∈ [k], we get

TV((Si, g(x)), Si × g(x)) = 2 Pr[g(x) = 0] Pr[g(x) = 1] · TV(σ0(T, v), σ1(T, v))

= 2 Pr[g(x) = 0] Pr[g(x) = 1] ·∆(v).

Plugging this into I(Si; g(x)) ≥ 2TV((Si, g(x)), Si×g(x))2 gives the statement of the claim.

The rest of the proof stays exactly the same as in [GLSS23].

62
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

