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Abstract

Direct sum theorems state that the cost of solving k instances of a problem is at least Ω(k) times
the cost of solving a single instance. We prove the first such results in the randomised parity
decision tree model. We show that a direct sum theorem holds whenever (1) the lower bound for
parity decision trees is proved using the discrepancy method ; or (2) the lower bound is proved
relative to a product distribution.
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1 Introduction

One of the most basic questions that can be asked for any model of computation is:

How does the cost of computing k independent instances scale with k?

A direct sum theorem states that if the cost of solving a single copy is C, then solving k copies
has cost at least Ω(k · C), which matches the trivial algorithm that solves the k copies separately.
Direct sums have been studied exhaustively for randomised query complexity Rdt, randomised com-
munication complexity Rcc, and other concrete models of computation; see Section 1.3 for prior
work. In this work, we initiate the study of direct sum problems for randomised parity decision tree
complexity Rpt, a computational model sandwiched between the widely-studied Rdt and Rcc.

Parity decision trees. Parity decision trees generalise the usual notion of decision trees by
allowing parity queries. To compute a function f : {0, 1}n → {0, 1} on input x ∈ {0, 1}n, a deter-
ministic parity decision tree T performs queries of the form “what is ⟨a, x⟩?” where a ∈ {0, 1}n and
⟨a, x⟩ :=

∑
i aixi mod 2. Once enough queries have been made, T outputs f(x). Parity decision

trees are more powerful than ordinary decision trees: We have Dpt(f) ≤ Ddt(f) where Ddt(f) (resp.
Dpt(f)) denotes the (parity) decision tree complexity of f , defined as the least depth of a determin-
istic (parity) decision tree computing f . On the other hand, the n-bit XOR function is an example
where Ddt(XOR) = n while Dpt(XOR) = 1. We define a randomised parity decision tree T as a
distribution over deterministic parity trees T ∼ T . Then Rpt

ε (f) is defined as the worst-case depth
(over both input and randomness of the tree) of the best randomised parity tree T computing f
with error ε, that is, Pr[T (x) ̸= f(x)] ≤ ε for all x. As usual, we let Rpt := Rpt

1/3. To simplify
notation, we drop the superscript pt and write D = Dpt and R = Rpt for short.

Our main research question is now formulated as follows. Let fk : ({0, 1}n)k → {0, 1}k denote the
direct sum function that takes k instances x := (x1, . . . , xk) and returns the value of f on each of
them, fk(x) := (f(x1), . . . , f(xk)). We study the following question.

Question 1. Do we have R(fk) ≥ Ω(k) · R(f) for every function f?

We show two (incomparable) main results: We answer Question 1 affirmatively when the ran-
domised parity decision tree lower bound is proved using the discrepancy method (Section 1.1), or
when the lower bound is proved relative to a product distribution (Section 1.2).

1.1 First result: Direct sum for discrepancy

Discrepancy is one of the oldest-known methods for proving randomised communication lower
bounds [Yao83, BFS86]. Let us tailor its definition to the setting of randomised parity trees.
Thinking of {0, 1}n as the vector space Zn

2 , consider some affine subspace S ⊆ {0, 1}n and a proba-
bility distribution µ over the inputs {0, 1}n. The discrepancy of S measures how biased f is on S.
Namely, let Cb

S := Prx∼µ[f(x) = b ∧ x ∈ S]. The difference ∆S := |C0
S −C1

S | is called the bias of S
under µ. We define bias(f) as the minimum over µ of the maximum difference ∆S an affine subspace
can attain. Finally, the discrepancy bound disc(f) is defined as log(1/bias(f)). As in communication
complexity, it is not hard to see that R(f) ≥ Ω(disc(f)); see Section 3 for details.

Theorem 1. We have R(fk) ≥ Ω(k) · disc(f) for any function f .
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In particular, if we have a function f whose randomised parity decision tree complexity is equal to
its discrepancy, R(f) = Θ(disc(f)), then Theorem 1 shows R(fk) ≥ Ω(k) ·R(f) answering Question 1
for that function. To prove Theorem 1, we first establish a particularly simple characterisation
of disc(f) that relies on affine spaces defined by a single constraint. We then prove a perfect direct
sum (and even an XOR lemma) for discrepancy using Fourier analysis.

1.2 Second result: Direct sum for product distributions

The standard approach for proving randomised lower bounds is to use Yao’s principle [Yao77], which
states that R(f) = maxµD1/3(f, µ). Here Dε(f, µ) is the distributional ε-error complexity of f
defined as the least depth of a (deterministic) parity tree T such that Prx∼µ[T (x) ̸= f(x)] ≤ ε. We
say that a distribution µ over {0, 1}n is product if it can be written as the product of n independent
Bernoulli distributions. We define the best lower bound provable using a product distribution as

D×
ε (f) := max

µ product
Dε(f, µ) and D× := D×

1/3.

Our second result answers Question 1 affirmatively (modulo logarithmic factors) whenever the
randomised parity decision tree lower bound is proved relative to a product distribution.

Theorem 2. We have R(fk) ≥ Ω(k/ log n) · D×(f) for any n-bit function f .

We show moreover that the O(log n)-factor loss in Theorem 2 can be avoided when µ is the
uniform distribution (or more generally any bounded-bias distribution). One should compare this to
the state-of-the-art in communication complexity, where the quantitatively best distributional direct
sum results are also for product distributions and suffer logarithmic-factor losses [JRS03, BBCR13].

To prove Theorem 2, we introduce a new complexity measure tailored for product distributions,
which we call skew complexity S(f) and which we define precisely in Section 4. We prove that this
new measure admits a perfect direct sum theorem, S(fk) = Ω(k) · S(f), and that it characterises
the measure D× up to an O(log n) factor. (We also show that the logarithmic loss is necessary for
our approach: there is a function f such that S(f) = O(1), even though D×(f) = Θ(log n).) We
give a more in-depth technical overview in Section 2.

Comparison of main results. We also show that our two main results (Theorems 1 and 2) are
incomparable: For some functions f , our first result gives a much stronger lower bound for fk than
the second result—and vice versa. See Section 7 for the proof.

Lemma 3. The complexity measures disc and D× are incomparable:

1. There is an n-bit function f such that disc(f) = O(log n) while D×(f) = Θ(n).
2. There is an n-bit function f such that disc(f) = Θ(n) while D×(f) = O(1).

1.3 Related work

Parity decision trees. Even though the direct sum problem for parity decision trees has not been
studied before, the model has been studied extensively. Parity decision trees were first defined by
Kushilevitz and Mansour [KM93] in the context of learning theory. Several prior works have studied
their basic combinatorial properties [ZS10, OWZ+14] as well as Fourier-analytic properties [GTW21,
GSTW23], often with connections to the log-rank conjecture [TWXZ13, STV17, San19, CHZZ24,
HHLO24, MS24]; see also the survey [KLMY21]. There are various lifting theorems involving
parity decision trees: lifting from Dpt to Dcc [HHL18], from Ddt to Dpt [CMSS23, BK23, AFS24],
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and from Rdt to Rpt [SP25, BI24]. These lifting theorems have played a central role in proving lower
bounds for proof systems that can reason using parities [IS20, EGI24, FHR+24, BCD24, CD24,
AI24].

Decision trees. In the decision tree model with classical queries, a deterministic direct sum
theorem, Ddt(fk) = k · Ddt(f), and even the stronger composition theorem, Ddt(g ◦ fk) = Ddt(g) ·
Ddt(f), are easy to show by combining adversary strategies [Sav02]. In the randomised case, an
optimal direct sum result, Rdt(fk) ≥ Ω(k) · Rdt(f), is known [KvdW07, JKS10, Dru12]. Whether a
composition theorem holds for randomised query complexity, Rdt(g ◦ fk) ≥ Ω(Rdt(g) · Rdt(f)) (for
total g and f), is a major open problem [BK18, BB20, BBGM22, BB23, San24]. In the randomised
setting, it is possible that the direct sum problem fk requires strictly more than Θ(k) · Rdt(f)
queries: if one wants to succeed in computing all k copies with probability ≥ 2/3, then a naive
application of the union bound would require each copy to have error ≪ 1/k. Results stating that
one sometimes has Rdt(fk) ≥ ω(k) ·Rdt(f) are called “strong” direct sum theorems [BB19, BKST24]
and they sometimes hold even for composed functions [BGKW20, BKLS23, GM21].

Communication complexity. The direct sum question for deterministic communication com-
plexity was posed in [FKNN95] and it remains a notoriously difficult open problem [IR24a]. By
contrast, in the randomised setting, the direct sum problem is characterised by information com-
plexity [BR14], which has inspired a line of works too numerous to cite here; see [IR24b, §1.1] for
an up-to-date overview. One of the key findings is that a direct sum for communication protocols
is false in full generality in the distributional setting [GKR16, RS18]. We leave open the intrigu-
ing possibility that the information complexity approach can be adapted to parity decision trees.
Historically, one of the first direct sum theorems proved for randomised communication was for the
discrepancy bound [Sha03, LSv08] (analogously to our Theorem 1). Here, discrepancy is known
to be equivalent to the γ2-norm [LS08]. We also mention that a near-optimal direct sum theorem
holds for product distributions [BBCR13] (analogously to our Theorem 2).

1.4 Open question: Deterministic direct sum

The main question left open by our work is Question 1, namely, whether R = Rpt admits a direct
sum theorem for all functions f . However, we would also like to highlight the analogous question
in the deterministic case D = Dpt. As discussed above, this is a long-standing open problem in the
case of deterministic communication complexity Dcc. The best results so far are:

1. Dcc(fk) ≥ Ω̃(k) · Dcc(f)1/2 as proved in [FKNN95].
2. Dcc(fk) ≥ Ω̃(k) · Dcc(f)/ log rank(f) as proved in [IR24a].

We observe in Appendix A.1 that both approaches have analogues in the parity setting.

Theorem 4. For any function f and k ≥ 1,

1. D(fk) ≥ k · D(f)1/2,
2. D(fk) ≥ k · D(f)/ log spar(f).

We leave it as an open question whether a perfect direct sum theorem holds for deterministic
parity decision trees. We think one should attack this problem before addressing the (presumably
much harder) problem for deterministic communication complexity.
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2 Technical overview

We focus here on our second main result in Theorem 2 stating that R(fk) ≥ Ω(k/ log n) ·D×(f) and
which is technically the much more involved theorem. Our main technical result is the following
direct sum result for distributional complexity. Here µk := µ× · · · × µ (k times).

Theorem 5. There exists a universal constant C such that the following holds. For any f : {0, 1}n →
{0, 1}, product distribution µ over {0, 1}n, and k ≥ 1,

Dε(f
k, µk) ≥ Ω

(
kδ

log(n/δ)

)
· (Dε+δ(f, µ)− C · log(n/δ)) ∀ε, δ ≥ 0.

When D×(f) ≥ 6C · log n, Theorem 2 follows by taking ε = δ = 1/6. Indeed, let µ be the
distribution achieving the maximum for D×. Using the easy direction of the minimax principle:

R(fk) ≥ Ω(1) · D1/6(f
k, µk) ≥ Ω(k/ log n) · D1/3(f, µ) = Ω(k/ log n) · D×(f).

The remaining case D×(f) ≤ 6C · log(n) is handled separately using ad-hoc methods in Lemma 37.
We now give an overview of the proof of Theorem 5.

Warm-up: Uniform distribution. We showcase the basic proof technique by sketching the
proof in the simple case where µ is the uniform distribution. Fix an n-bit function f and let U be
the uniform distribution over {0, 1}n. In the uniform (and more generally in the bounded-bias) case,
we are actually able to avoid the log n additive/factor loss and obtain, for all k ≥ 1,

Dε(f
k,Uk) ≥ Ω(kδ) · Dε+δ(f,U) ∀δ ≥ 0. (1)

Fix a decision tree T of depth d computing k copies of f with error at most ε when x ∼ Uk.
We show how to extract a tree T ∗ that computes a single copy y ∼ U with error at most ε + δ
and depth ≤ O(d/kδ). Leaves of T correspond to affine subspaces of ({0, 1}n)k of codimension
≤ d. More generally, one can associate with any node v of T the set Cv = {w1, . . . , wd(v)} of
linear constraints that led to the node (d(v) is the depth of the node v; the root is at level 0) and
the vector b ∈ {0, 1}k of desired values. The set of inputs Sv that reach node v is then given by
Sv := {x ∈ ({0, 1}n)k : ⟨wj , x⟩ = bj , ∀j ∈ [d(v)]}.

Of relevance here are the pure constraints one can extract from Cv. A pure constraint for copy
i ∈ [k] is some w ∈ ({0, 1}n)k such that wj ̸= 0n if and only if j = i. To be more precise, the
number of pure queries that can be extracted for query i at node v is defined with:

purei(Cv) := dim(span(Cv) ∩Wi) where Wi :=
{
w ∈ ({0, 1}n)k : wj = 0n, ∀j ̸= i

}
.

We describe next two illustrative examples when there are k = 2 copies.

1. Node v corresponds to constraints “x11 + x21 = 0” and “x21 = 1”. Then, pure1(Cv) = 1 as it
is possible to extract the pure parity constraint x11 = 1 by adding the two constraints. In the
same vein, pure2(Cv) = 1.

2. Node v corresponds to constraints “x11 + x21 = 0” and “x21 + x22 = 1”. Then, pure1(Cv) = 0 as
it not possible to extract a pure constraint for the first copy.

Observation 1. For any node v, we have d(v) ≥
∑

i∈[k] purei(Cv).

As the second example highlights, it is possible for the inequality to be strict. This is a notable
difference with classical decision trees: for any subcube C ∈ ({0, 1, ∗}n)k, the sum of fixed bits of
each copy is the total number of fixed bits in C.
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Where to plant y? The overarching idea of our result is that under the uniform distribution,
queries that increase the pure rank for a copy are the only ones that bring usable information. It is
thus enough to find a copy with low expected pure rank in T and plant the real instance y there. To
make this precise, taking the expectation over leaves of T when x ∼ U with Observation 1 implies
the existence of some copy i ∈ [k] with low expected pure rank:

Ex∼Uk [purei(Cℓ(x))] ≤ O(d/k).

Let us fix this advantageous copy to be i = 1. On input y ∈ {0, 1}n we run the tree T with y
planted as x1 and delay actual querying of bits of y as much as possible. Suppose that the process
has reached node v with constraint set Cv and there is a new parity query w to be answered.
If w ∈ span(Cv), the answer to that query can be found (an optimised tree would not do such a
query). If w /∈ span(Cv), we say that w is critical for Cv if it would increase the pure rank for the
first copy pure1(Cv ∪ {w}) > pure1(Cv). If w is critical, there is no way to avoid making a parity
query to the real input y and our algorithm does it. If w is not critical, it is however enough to
answer with a uniform bit (that is, move to a random child of v in T ) without querying y at all.

To see this, further split w = w1w−1, where w1 ∈ {0, 1}n is the constraint for the first copy and
w−1 ∈ ({0, 1}n)k−1 is the constraint for the rest of the copies. If w has pure1(Cv∪{w}) = pure1(Cv)
and w /∈ span(Cv), it must be that 0nw−1 /∈ span(Cv). Since x−1 is drawn from the uniform
distribution we thus have for any fixed y consistent with Sv:

Pr
x−1

[
⟨w, yx−1⟩ = 0 | (y,x−1) ∈ Sv

]
= Pr

x−1

[
⟨w−1,x−1⟩ = ⟨w1, y⟩ | (y,x−1) ∈ Sv

]
=

1

2
. (2)

Correctness and efficiency. Let us call the above randomised tree solving one copy as T .
Correctness can be argued by showing that the distribution of leaves attained in the process for
y ∼ U is the same as the distribution of leaves attained by x ∼ Uk in T . On the other hand, T has
expected depth O(d/k) as a real query to y is only ever made purei(Cℓ) times for each leaf ℓ. In
conclusion, T has the following guarantees:

1. Pry∼U ,T∼T [T (y) ̸= f(y)] ≤ ε.

2. Ey∼U ,T∼T [#queries(T ,y)] ≤ d/k.

Using Markov inequality, it is possible to derandomise T to get a deterministic parity tree T ∗

solving f with a worst-case guarantee instead of an average-case one. This step introduces a
parameter δ controlling a trade-off between cost and error and yields the desired result (1).

2.1 Beyond uniform: The skew measure

Observe that (2) can fail badly for non-uniform µ. As an illustrative example suppose that two
random bits a, b are generated with a ∼ Ber(1/2) and b ∼ Ber(1/8). The constraint a ⊕ b = 1 is
not pure from the point of view of a. However, since b is skewed towards being 0, the realisation
of the constraint gives information about a: Pr[a = 0 |a+ b = 1] = 1/8≪ 1/2. Thus, it seems one
needs to query a to answer the query a + b even though the query is not critical for a!

To circumvent this, we introduce the skew measure. This new measure is built around the
observation that each bit of an input x ∼ µ can be sampled independently in two steps. Indeed,
the following process is equivalent to Ber(1/8):

1. Let ρ ∈ {0, ⋆} be ‘0’ with probability 3/4 and ⋆ with probability 1/4.
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2. If ρ = 0, return ‘0’, else return a sample Ber(1/2).

Note that if we are “lucky” and ρ = ⋆, we are back in the uniform case and (2) holds again. If not,
we have somehow pre-emptively fixed the return bit to value 0. The skew measure explicitly splits
product distributions into a random partial fixing ρ followed by a uniform distribution over unfixed
bits of ρ. A tree computing in this model gets help from ρ because ρ reduces the complexity of the
function. When those bits are unfixed, it is on the other hand easier to analyse the behaviour of
the tree as it is the uniform case again.

In Sections 5 and 6, we show a perfect direct sum for the skew measure and that perhaps
surprisingly, this new measure is only a log n-factor away from D×.

3 Direct sum for disc

The goal of this section is to prove Theorem 1, restated here for convenience.

Theorem 1. We have R(fk) ≥ Ω(k) · disc(f) for any function f .

Let us start by defining discrepancy formally. We denote by Sn the set of all affine subspaces of
{0, 1}n and On ⊆ Sn the set of affine subspaces of codimension 1. Note that all spaces S ∈ On can
be written as S = {x ∈ {0, 1}n : ⟨a, x⟩ = b} for some a ∈ {0, 1}n and b ∈ {0, 1}.

Definition 6. Let f : {0, 1}n → {0, 1} be a boolean function and µ be a distribution over {0, 1}n.
The (parity) discrepancy of f with respect to µ is defined as:

disc(f, µ) := − log max
S∈Sn

bias(f, µ, S) where bias(f, µ, S) :=
∣∣∣∑

x∈S
(−1)f(x)µ(x)

∣∣∣ .
The (parity) discrepancy of f is disc(f) := maxµ disc(f, µ) where µ ranges over all distributions.

Observe that disc(f) ≥ 1 for all non-constant f and by standard arguments, R(f) ≥ disc(f) (see
Lemma 41). Using the latter, the only thing left to get Theorem 1 is to prove a direct sum result
for discrepancy. We do this in a very strong way by actually establishing an XOR lemma for disc.
Let f⊕k denote the function that takes k instance and aggregates their result under f using XOR,
so that f⊕k(x1, . . . , xk) := f(x1)⊕ · · · ⊕ f(xk).

Lemma 7. For any function f , distribution µ and k ≥ 1,

k · disc(f, µ) ≥ disc(f⊕k, µk) ≥ k ·
(
disc(f, µ)− 1

)
.

This result is the strongest possible. Indeed, we cannot omit the “−1” on the right because of the
counterexample f := XOR: we have disc(f⊕k, µk) ≤ 1 for any distribution µ. In Appendix A.3 we
revisit this XOR lemma and show that it also holds in the distribution-free setting, with disc(f⊕k) ≈
k · disc(f). As a final comment, we note that it is easier to work with f⊕k instead of fk in the
discrepancy setting, as it is somewhat tedious to define discrepancy for multi-valued functions.
Before formally proving Lemma 7, we show how it is used to prove the main result Theorem 1.

Proof of Theorem 1. Any decision tree computing fk can be converted to a decision tree computing
f⊕k. This is achieved by replacing the label y ∈ {0, 1}k of each leaf by its parity ⟨y, 1k⟩. This
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operation does not increase the error probability or cost and so, using the easy direction of Yao’s
principle:

R(fk) ≥ max
µ

D(fk, µk, 1/3) (Lemma 40)

≥ max
µ

D(f⊕k, µk, 1/3)

≥ max
µ

disc(f⊕k, µk)− log2(3) (Lemma 41)

≥ k ·max
µ

(disc(f, µ)− 1)− log2(3) (Lemma 7)

≥ k · (disc(f)− 1)− log2(3).

If disc(f) ≥ 10, then the string of inequalities yields k · (disc(f) − 1) − log2(3) ≥ k · disc(f)/10. If
f is constant, the claim is vacuously true. Finally, we show that for any non-constant f , R(fk) ≥
k− log(3/2) which completes the claim. Indeed, if disc(f) ≤ 10, then k− log(3/2) ≥ k · disc(f)/100.

To this end, let f be a non-constant function and µ a distribution over {0, 1}n which is balanced
over 0-inputs and 1-inputs, i.e. µ(f−1(0)) = µ(f−1(1)) = 1/2. Let T be the best deterministic
parity decision tree for D1/3(f, µ) and suppose toward contradiction that it has strictly less than

L := 2k · (2/3) leaves. Let G ⊆ {0, 1}n be the set of solutions which appear as a label on a leaf of
T . We have |G| < L and since µ is balanced, any solution y ∈ {0, 1}k is equally likely so that:

Pr
x∼µk

[T (x) = fk(x)] ≤ Pr
x∼µk

[fk(x) ∈ G] ≤ |G| · 2−k < 2/3.

Thus, T errs with probability > 1/3: a contradiction.

We now proceed to prove Lemma 7 in three steps.

3.1 Step 1: Characterisation of discrepancy

Much like discrepancy for communication protocols can be characterised by the γ2-norm of the
communication matrix [Sha03, LS08], we show that the parity discrepancy of f on µ is characterised
by the L∞-norm of the Fourier transform of a related function Fµ. This characterisation has two
purposes. First, proving an XOR lemma requires exploring all the possible ways for the k copies to
sum to 1. This kind of convolution operation is greatly simplified in the Fourier domain, where it
simply corresponds to standard multiplication. Second, the characterisation is also quite convenient
to prove lower bounds on disc(f, µ) (which we do in Sections 7 and 8): it shows that maximum bias
is (almost) attained for affine spaces of codimension 1 already.

The function Fµ. We relate a real-valued boolean function F : {0, 1}n → R with its Fourier

transform F̂ : {0, 1}n → R using the usual basis:

∀z ∈ {0, 1}n, F̂ (z) :=
∑

x∈{0,1}n
F (x) · (−1)⟨x,z⟩ · 2−n; [Fourier transform]

∀x ∈ {0, 1}n, F (x) :=
∑

z∈{0,1}n
F̂ (z) · (−1)⟨z,x⟩. [Inverse Fourier transform]

See also [O’D14] for more background on Fourier analysis. We use ∥F̂∥∞ to denote the maximum
absolute value of a Fourier coefficient of F . To analyze disc(f, µ), we introduce an associated function
Fµ : {0, 1}n → R defined by Fµ(x) := (−1)f(x) · µ(x) · 2n and prove the following characterisation.
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Lemma 8. For every function f : {0, 1}n → {0, 1} and distribution µ over {0, 1}n:

max
S∈On

bias(f, µ, S) ≤ max
S∈Sn

bias(f, µ, S) ≤ ∥F̂µ∥∞ ≤ 2 · max
S∈On

bias(f, µ, S).

Proof. The first inequality holds immediately because On ⊆ Sn. For the second, fix a maximizing
S ∈ Sn. Suppose that codim(S) = d and fix its constraints aj ∈ {0, 1}n and bj ∈ {0, 1} for j ∈ [d]
so that S = {x ∈ {0, 1}n : ⟨aj , x⟩ = bj ∀j ∈ [d]}. Observe that the vectors {aj}j∈[d] are linearly

independent. Let Φ :=
∑

x∈S(−1)f(x)µ(x) so that bias(f, µ, S) = |Φ| and observe that

Φ = 2−n ·
∑
x∈S

Fµ(x) = 2−n ·
∑
x∈S

∑
z∈{0,1}n

F̂µ(z)(−1)⟨z,x⟩ = 2−n ·
∑

z∈{0,1}n
F̂µ(z)

∑
x∈S

(−1)⟨z,x⟩.

We focus on analysing terms Tz :=
∑

x∈S(−1)⟨z,x⟩. Let V := span{a1, . . . , ad} and observe that
whenever z ∈ V , |Tz| = |S|. Indeed, if β1, . . . , βd ∈ {0, 1} is a linear combination of z in V :

Tz =
∑
x∈S

(−1)⟨z,x⟩ =
∑
x∈S

∏
j∈[d]

(−1)βj⟨aj ,x⟩ =
∑
x∈S

(−1)
∑

j βjbj = |S| · (−1)
∑

j βjbj .

On the other hand, Tz = 0 for all z /∈ V . Indeed, Letting Sb = S ∩ {x ∈ {0, 1}n : ⟨x, z⟩ = b}
we have Tz = |S0| − |S1|. Because z /∈ V , the constraint ⟨x, z⟩ = b splits S in half and thus
|S0| = |S1| = |S|/2. Factoring in those observations, we get:

|Φ| = 2−n ·
∣∣∣∑

z∈{0,1}n
F̂µ(z) · Tz

∣∣∣ ≤ 2−n · |S| ·
∑

z∈V

∣∣∣F̂µ(z)
∣∣∣ ≤ 2−n · |S| · |V | · ∥F̂µ∥∞.

Recall that S has codimension d and as such |S| = 2n−d and |V | = 2d, implying the desired inequality

bias(f, µ, S) ≤ ∥F̂µ∥∞. We now prove the third inequality of the lemma. Fix any maximum Fourier
coefficient y⋆ ∈ {0, 1}n and observe:

∥F̂µ∥∞ = |F̂µ(y⋆)| =
∣∣∣∑

x∈{0,1}n
Fµ(x) · (−1)⟨x,y

⋆⟩ · 2−n
∣∣∣ ≤ 2 · max

b∈{0,1}

∣∣∣∑
x:⟨x,y⟩=b

Fµ(x) · 2−n
∣∣∣.

Fix the maximizing argument to b⋆ and define S⋆ := {x ∈ {0, 1}n : ⟨x, y⋆⟩ = b⋆}. Note that S⋆ ∈ On

and as such:
∥F̂µ∥∞ ≤ 2 ·

∣∣∣∑
x∈S⋆

(−1)f(x)µ(x)
∣∣∣ ≤ 2 · max

S∈On

bias(f, µ, S).

3.2 Step 2: Direct sum for the maximum Fourier coefficient

The outer-product of functions F,G : {0, 1}n → R is defined as the function F ⊗G : {0, 1}2n → R
with (F ⊗G)(x1, x2) := F (x1) ·G(x2). Next is a direct sum result for its max Fourier coefficient.

Claim 9. For any F,G : {0, 1}n → R, ∥F̂ ⊗G∥∞ = ∥F̂∥∞ · ∥Ĝ∥∞.

Proof. Let H = F ⊗G; for any z1, z2 ∈ {0, 1}n, the definition of Fourier transform implies

Ĥ(z1, z2) = 2−2n ·
∑

x1,x2∈{0,1}n
H(x1, x2) · (−1)⟨x

1x2,z1z2⟩

= 2−2n ·
∑

x1,x2∈{0,1}n
F (x1) ·G(x2) · (−1)⟨x

1,z1⟩ · (−1)⟨x
2,z2⟩

= F̂ (z1) · Ĝ(z2).

From this, the equivalence is immediate:

∥Ĥ∥∞ = max
z1,z2
|Ĥ(z1, z2)| = max

z1,z2
|F̂ (z1)| · |Ĝ(z2)| = ∥F̂∥∞ · ∥Ĝ∥∞.
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3.3 Step 3: Conclusion

We tie together Lemma 8 and Claim 9 and prove Lemma 7.

Proof of Lemma 7. Let H : ({0, 1}n)k → R be the function associated with f⊕k and µk in Lemma 8.
It is possible to express H as the k-fold outer-product of Fµ: H = Fµ ⊗ · · · ⊗ Fµ. Indeed, for
x ∈ ({0, 1}n)k, we have:

H(x) = 2−kn · (−1)f
⊕k(x)µk(x) =

∏
i∈[k]

2−n(−1)f(x
i)µ(xi) =

∏
i∈[k]

Fµ(xi).

Thus, using the characterisation of Lemma 8 and Claim 9 k times:

max
S∈Skn

bias(f⊕k, µk, S) ≤ ∥Ĥ∥∞ =
(
∥F̂µ∥∞

)k
≤ 2k ·

(
max
S∈Sn

bias(f, µ, S)

)k

.

The XOR-lemma disc(f⊕k, µk) ≥ k·(disc(f, µ)−1) follows directly. We now show the other direction,
disc(f⊕k, µk) ≤ k ·disc(f, µ). To do so, fix some S ∈ Sn maximizing bias(f, µ, S) and define T ∈ Skn
which is concatenation of k copies of S. Formally:

T =
{
x ∈ ({0, 1}n)k : xi ∈ S ∀i ∈ [k]

}
.

Now, it is easy to check that bias(f⊕k, µk, T ) = bias(f, µ, S)k and the claim follows.

4 Direct sum for D× part I: proof organisation

The goal of this section is to prepare the ground for a proof of our main technical contribution: a
direct sum for parity trees in the distributional setting (restated below).

Theorem 5. There exists a universal constant C such that the following holds. For any f : {0, 1}n →
{0, 1}, product distribution µ over {0, 1}n, and k ≥ 1,

Dε(f
k, µk) ≥ Ω

(
kδ

log(n/δ)

)
· (Dε+δ(f, µ)− C · log(n/δ)) ∀ε, δ ≥ 0.

As stated in Section 2, this is sufficient to prove Theorem 2 whenever D×(f) ≥ 6C · log(n). The
remaining case D×(f) ≤ 6C · log(n) is proved in Lemma 37 in Appendix A.2. We thus focus on
proving Theorem 5 in the next two sections (this section is devoted to introducing the necessary
definitions and technical lemmas).

4.1 Two strengthenings of Theorem 5

For technical convenience, we study distributional complexity for randomised trees. For a deter-
ministic parity tree T we let q(T, x) be the number of queries made by T on input x. If T is a
randomised tree and µ is a distribution, we define q(T , µ) and errf (T , µ) in the natural way with:

q(T , µ) := ET∼T
x∼µ

[q(T ,x)] and errf (T , µ) := PrT∼T
x∼µ

[T (x) ̸= f(x)].

Finally, we define Dε(f, µ) = minT {q(T , µ) : errf (T , µ) ≤ ε}. It is clear that Dε(f, µ) ≤ Dε(f, µ)
but a converse result is more complicated, as the derandomisation can increase both the error and
the depth simultaneously.
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Claim 10. For any f : {0, 1}n → {0, 1}, µ over {0, 1}n and ε, δ ≥ 0, Dε+δ(f, µ) ≤ Dε(f, µ)/δ.

We delay a proof of this folklore fact to Appendix A.4. We also refer readers to [JKS10] which
proves the analogue for ordinary decision trees. With this tool in hand, we can reduce Theorem 5
to the following theorem.

Theorem 11. There exists a universal constant C such that the following holds. For any f : {0, 1}n →
{0, 1}, product distribution µ, and k ≥ 1,

Dε(f
k, µk) ≥ Ω

(
k/ log(n/γ)

)
· (Dε+γ(f, µ)− C · log(n/γ)) ∀γ ∈ (0, 1/n).

Definition 12. We say that a product distribution µ over {0, 1}n is λ-bounded for some λ ∈ (0, 1]
if Prx∼µ[xi = 1] ∈ [λ/2, 1− λ/2] for every i ∈ [n].

In the next sections, we also show the following qualitative improvement over Theorem 11 for
bounded distributions.

Theorem 13. For any f : {0, 1}n → {0, 1}, λ-bounded distribution µ and k ≥ 1,

Dε(f
k, µk) ≥ Ω (kλ) · Dε(f, µ).

Let us highlight the difference between Theorem 11 and Theorem 13: the latter is free from
both the log n factor and the extra error γ. This theorem is especially interesting when the hard
distribution for the function at hand (e.g. MAJ) is close to the uniform one.

4.2 The Skew measure

For the rest of this paper, we let U be the uniform distribution. Let µ be a distribution over
{0, 1}n and S ⊆ {0, 1}n. We use µ(S) :=

∑
s∈S µ(s) to denote the mass of S with respect to µ.

When µ(S) > 0, we let µS be the distribution of µ conditioned on S. Let ρ ∈ {0, ⋆}n be a partial
assignment corresponding to the sub-cube Cρ = {x ∈ {0, 1}n : ρi = 0 =⇒ xi = 0 ∀i ∈ [n]}. We
use µρ to denote µCρ .

4.2.1 Random partial fixings

Let µ be a product distribution over {0, 1}n. We say that µ is 0-biased if Prx∼µ[xi = 0] ≥ 1/2
for every i ∈ [n]. For the rest of the paper, we will assume without loss of generality that any
encountered input distribution is 0-biased. Indeed, should µ not be 0-biased, we can apply the
following iterative transformation. Let f0 := f and µ0 := µ. For every i ∈ [n], if Prx∼µ[xi = 1] ≤ 1/2
– the coordinate is already biased in the right direction – we simply leave fi := fi−1 and µi := µi−1.
Otherwise, let:

fi(x1, . . . , xi−1, xi, xi+1, . . . , xn) := fi−1(x1, . . . , xi−1, 1− xi, xi+1, . . . , xn);

µi(x1, . . . , xi−1, xi, xi+1, . . . , xn) := µi−1(x1, . . . , xi−1, 1− xi, xi+1, . . . , xn).

Observe that µn is 0-biased and Dε(f
k
n , µ

k
n) = Dε(f

k, µk) for every ε ≥ 0 and k ≥ 1. Now that we
are certain that µ is 0-biased, let δi := 2 Prx∼µ[xi = 1] ∈ [0, 1]. We define next the random partial
fixing distribution with respect to µ. The intuition comes from the observation that each bit of µ
can be written as a convex combination of the fixed bit ‘0’ and a uniform bit.
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Definition 14 (Random Partial Fixing). The random partial fixing with respect to µ, denoted Rµ,
is a distribution of partial assignments ρ ∈ {0, ⋆}n sampled as follows: For each i ∈ [n], we set
independently

ρi =

{
0 w.p. 1− δi

⋆ w.p. δi
.

Observe that the following alternative two-step process is equivalent to sampling an input di-
rectly from µ. First, sample ρ ∼ Rµ and then sample and return x ∼ Uρ.

4.2.2 The new measure

Given a parity decision tree T and a partial assignment ρ over the input string, let Tρ denote the
pruned T by

1. fixing all the variables in the support of ρ,
2. removing redundant queries (those can be written as a linear combination of previous queries).

For randomised parity decision tree T , we define Tρ as the distribution of Tρ, where T ∼ T .

Definition 15. For every randomised parity decision tree T and product distribution µ, define the
skew average cost sq(T , µ) := Eρ∼Rµ [q(Tρ,Uρ)]. Let f : {0, 1}n → {0, 1} be a function. For ε ≥ 0,
we define the skew measure Sε(f) with:

Sε(f, µ) := minT {sq(T , µ) | errf (T , µ) ≤ ε} .

Claim 16. For any f : {0, 1}n → {0, 1}, product distribution µ, and ε ≥ 0, Dε(f, µ) ≥ Sε(f, µ).
Furthermore, equality holds if µ = U .

Proof. The claim is immediate as sq(T , µ) ≤ q(T , µ) for every randomised parity tree T and product
distribution µ.

4.3 Proof plan

The proofs of Theorems 11 and 13 are carried out in two steps. First, we prove a perfect direct sum
for the skew measure in Section 5.

Theorem 17. We have Sε(f
k, µk) ≥ k · Sε(f, µ) for any function f , product µ and ε ≥ 0.

As a second step, we demonstrate in Section 6 that Dε(f, µ) ≈ Sε(f, µ). We first prove a lossless
conversion for product distribution which are constant-bounded. We then extend this to general
product distributions for which we lose a log(n)-factor. Let us recall here that the log n loss for
general (unbounded) product distribution is inherent to the skew measure. Indeed, we show in
Section 8 the existence of some f and µ for which D1/3(f, µ) = Θ(log n) but S0(f, µ) = Θ(1).

Theorem 18. For any f : {0, 1}n → {0, 1}, product distribution µ, γ ∈ (0, 1/n), we have

Dε+γ(f, µ) ≤ O
(

log(n/γ)
)
· (Sε(f, µ) + 1) ∀ε ≥ 0.

Theorem 19. For any f : {0, 1}n → {0, 1} and λ-bounded product distribution µ, we have

Dε(f, µ) ≤ O(1/λ) · Sε(f, µ) ∀ε ≥ 0.
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Combining the results above it is now straightforward to conclude and prove Theorems 11 and 13.
For instance, the proof of the former goes as follows.

Proof of Theorem 11.

Dε(f
k, µk) ≥ Sε(f

k, µk) (Claim 16)

≥ k · Sε(f, µ) (Theorem 17)

≥ Ω
(
k/ log(n/γ)

)
· (Dε+γ(f, µ)− C · log(n/γ)). (Theorem 18)

4.4 Some notation

Let us finish this section by defining some notations which will be useful for the rest of the paper.
Let T be a parity decision tree on input {0, 1}n. We define N (T ) as the set of nodes of T and L(T )
as the set of leaves of T . For each node v ∈ N (T ), we define the following: (items marked with ∗
are only defined for non-leaf nodes)

• path(v): the set of nodes on the root-to-v path (including the root, excluding v)
• d(v) := |path(v)|: the depth of v
∗ Qv ∈ {0, 1}n: the query made at node v
∗ child(v, b) the child of v corresponding to the query outcome ⟨x,Qv⟩ = b, where b ∈ {0, 1}
• Q≺v: an n× d(v) boolean matrix with column vectors {Qu}u∈path(v)
∗ Q⪯v := [Q≺v Qv] of dimension n× (d(v) + 1).
• b≺v ∈ {0, 1}d(v): the labels on the root-to-v path

For every boolean matrix A ∈ {0, 1}n×m, we use rank(A) to denote the rank of A (understood
as a matrix over F2) and let col(A) ⊆ {0, 1}n be the column space of A. For every S ⊆ [n],
let AS ∈ {0, 1}|S|×m stand for the sub-matrix of A consisting of row with indices in S. For every
x, y ∈ {0, 1}n and S ⊆ [n], we denote ⟨xS , yS⟩ =

∑
i∈S xiyi by ⟨x, y⟩S .

Let µ and ν be two distributions over S. We use dTV(µ, ν) := supS′⊆S |µ(S′)− ν(S′)| to denote
the total variation distance between µ and ν and write µ ≡ ν if dTV(µ, ν) = 0.

5 Direct sum for D× part II: direct sum for S

In this section, we prove a perfect direct sum for S (restated below). A direct consequence of this fact
is a perfect direct sum for distributional parity query complexity under the uniform distribution.

Theorem 17. We have Sε(f
k, µk) ≥ k · Sε(f, µ) for any function f , product µ and ε ≥ 0.

Corollary 20. We have Dε(f
k,Uk) ≥ k · Dε(f,U) for any function f and ε ≥ 0.

Proof. Combine Claim 16 with Theorem 17.

To prove Theorem 17, our overall strategy is to take a tree achieving Sε(f
k, µk) and extract a tree

computing a single copy of f under µ to within error ε while having cost bounded by Sε(f
k, µk)/k.

To do so, we employ the extraction strategy hinted at in Section 2. The extractor works as long as
the input distributions are uniform, which is the case after the random partial fixing step of S.
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5.1 Extracting a single instance under uniform distributions

Let T be a deterministic parity tree taking inputs x ∈ X := {0, 1}m1 × · · · × {0, 1}mk and returning
labels in {0, 1}k. We assume without loss of generality that the queries along any root-to-leaf path
are linearly independent. Let L(ℓ) ∈ {0, 1}k be the label associated with the leaf ℓ ∈ L(T ). For
i ∈ [k], we define the linear subspace Wi ⊆ X of query vectors that are zero everywhere except for
copy i:

Wi :=
{
w ∈ X : wj = 0mj ⇐⇒ j ̸= i

}
.

We say a node v ∈ N (T ) is critical with respect to i if col(Q≺v) ∩Wi ̸= col(Q⪯v) ∩Wi and de-
note the set of critical indices at node v with Iv := {i ∈ [k] : v is critical w.r.t. i}. Finally, we let
di(v) :=

∑
u∈path(v) 1 [i ∈ Iu] be the relative depth of v with respect to instance i and highlight that

di(v) = dim(col(Q≺v) ∩Wi). The algorithm Exti(T ) which extracts a tree for the i-th instance out
of T is described in Algorithm 1. Observe that it is indeed possible to compute the value of ⟨y,Qv⟩

Algorithm 1 Exti(T )

Input: y ∈ {0, 1}mi

Output: a ∈ {0, 1}
1: Initialize v ← root of T
2: while v is not a leaf do
3: if i ∈ Iv then
4: Let w be any vector in (col(Q⪯v) \ col(Q≺v)) ∩Wi, query ⟨y, w⟩
5: Compute bv := ⟨y,Qv⟩ from b≺v and ⟨y, w⟩
6: Move v ← child(v, bv)
7: else
8: Sample ξ ∼ Ber(1/2)
9: Move v ← child(v, ξ)

10: end if
11: end while
12: return Li(v)

from b≺v and ⟨y, w⟩ on line 5: Since w /∈ col(Q≺v), we have rank([Q≺v w]) = rank(Q≺v) + 1. On
the other hand, as w ∈ col(Q⪯v), we have rank([Q⪯v w]) = rank(Q⪯v) = rank(Q≺v) + 1. Thus
Qv ∈ col([Q≺v w]), which means that Qv can be written as a linear combination of the columns of
[Q≺v w]: Qv = Qu1 + · · ·+ Qut + w where u1, . . . , ut are some ancestors of v. This in turn implies
that ⟨y,Qv⟩ =

∑
i∈[t]⟨y,Qui⟩+ ⟨y, w⟩.

We stress that although T is a deterministic tree, Exti(T ) is a randomized decision tree with
internal randomness inherited from the bits ξ. Our main technical claim is that for any fixed
y ∈ {0, 1}mi , the algorithm Exti(T ) perfectly simulates a run of T when the input is on a random
input x = (x1, . . . ,xi−1, y,xi+1, . . . ,xk) and xj ∼ U({0, 1}mj ). In a nutshell, the randomness of
the other k− 1 instances can be substituted with the internal randomness ξ. To make this precise,
we let Xv = {x ∈ X : xTQ≺v = b≺v} be the set of inputs leading to the node v ∈ N (T ).

Claim 21. For any y ∈ {0, 1}mi, Prξ[Exti(T ) reaches node v in its execution on y] = Prx[x ∈ Xv].

Proof. Let us fix i := 1 and d := d(v) for simplicity. We establish and alternative description of Xv

that puts pure constraints on instance 1 first. Pick t := d1(v) independent vectors Q1, . . . , Qt ∈
col(Q≺v) ∩ W1 and extend them arbitrarily to a basis {Qj}j∈[d] of Q≺v. As each vector of this
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basis can be expressed as a linear combination of {Qu}u∈path(v), it is possible to apply those linear
combinations to b≺v and obtain values {bj}j∈[d] such that Xv = {x ∈ X | ∀j ∈ [d] : ⟨x,Qj⟩ = bj}.
The set Y v ⊆ {0, 1}m1 of inputs that can reach node v in a run of Ext1(T ) thus corresponds to

Y v :=
{
y ∈ {0, 1}m1 | ∀j ∈ [t] : ⟨y,Q1

j ⟩ = bj
}
.

If y /∈ Y v, the statement follows directly as both probabilities are zero. However, if y ∈ Y v,

Prξ[Ext1(T ) reaches node v in its execution] = 2−d+t.

This is so because a node v can only be reached by having the “right” d−t coin tosses of ξ (provided
that y ∈ Y v). Thus, it remains to show that Prx[x ∈ Xv] = 2−d+t if y ∈ Y v.

Let m =
∑

i∈[k]mi and S = {m1 + 1, . . . ,m} be the indices of the bits of every copy but the
first one. Fix the m× (d− t) boolean matrix A = [Qt+1 · · ·Qd] and observe that rank(A) = d− t by
construction. We show that rank(AS) = d− t too. If rank(AS) < rank(A), we can find a non-empty
set J ⊆ {t+ 1, . . . , d} such that

∑
j∈J(Qj)S = 0. This implies that Q′ :=

∑
j∈J Qj ∈Wi∩ col(Q≺v).

But Q′ is linearly independent of {Q1, . . . , Qt} – this contradicts dim(col(Q≺v)∩Wi) = t. Therefore,
if y ∈ Y v, we use this observation to conclude:

Prx[x ∈ Xv] = Prx[∀j ∈ [d] : ⟨x, Qj⟩ = bj ]

= Prx[xTA = (bj)t+1≤j≤d]

= Prz:=(x2,...,xk)

[
zTAS = (bj + ⟨y,Q1

j ⟩)t+1≤j≤d

]
= 2−rank(AS)

= 2−d+t.

5.2 Proof of Theorem 17

We are now ready to show Theorem 17. Let T be a randomised parity decision tree which witnesses
C := Sε(f

k, µk). For each i ∈ [k], define the randomized decision tree Ti : {0, 1}n → {0, 1} with:

1. Sample T ∼ T .
2. Sample ρ1, . . . , ρi−1, ρi+1, . . . ,ρk ∼ Rµ.
3. Let ρ̃ := (ρ1, . . . , ρi−1, ⋆n, ρi+1, . . . ,ρk).
4. Return Exti

(
Tρ̃

)
.

We show in Lemma 22 that errf (Ti, µ) ≤ ε simultaneously for all i ∈ [k]. On the other hand, we
show in Lemma 23 that

∑
i∈[k] sq(Ti, µ) ≤ C. By an averaging argument, this shows the existence

of a copy i⋆ ∈ [k] with cost ≤ C/k and therefore Sε(f, µ) ≤ C/k. The remainder of this section is
devoted to proving both claims.

Lemma 22. For every i ∈ [k], errf (Ti, µ) ≤ errfk(T , µk).

Proof. It is enough to prove the statement assuming T is a deterministic parity tree T and i = 1.
Let R be the distribution of ρ̃ in the step 3 of generating T1. Fix some ρ ∈ supp(R) and note that
ρ1 = ⋆n. We also define U−1 := Uρ2 × · · · × Uρk . Using Claim 21 on a leaf ℓ ∈ L(Tρ) yields:

Pr
y,ξ

[Ext1(Tρ) reaches ℓ on y ∧ L1(ℓ) ̸= f(y)] = E
y

[
Pr
ξ

[Ext1(Tρ) reaches ℓ on y] · 1 [L1(ℓ) ̸= f(y)]

]
= E

y

[
Pr

x−1∼U−1
[(y,x−1) ∈ Xℓ] · 1 [L1(ℓ) ̸= f(y)]

]
= Pr

x∼µ×U−1
[x ∈ Xℓ ∧ L1(ℓ) ̸= f(x1)].
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Thus:

errf (T1, µ) = E
ρ̃∼R

[
Pry∼µ, ξ[Ext1

(
Tρ̃

)
(y) ̸= f(y)]

]
= E

ρ̃

[∑
ℓ∈L(Tρ̃)

Prx∼µ×U−1

[
x ∈ Xℓ ∧ L1(ℓ) ̸= f(x1)

]]
≤ E

ρ̃

[∑
ℓ∈L(Tρ̃)

Prx∼µ×U−1

[
x ∈ Xℓ ∧ L(ℓ) ̸= f(x)

]]
= E

ρ̃

[
errfk(Tρ̃, µ× U−1)

]
.

Observe now that for any x ∈ supp(µ × U−1), we have Tρ̃(x) = T (x). Using the definition of Rµ

thus yields:
errf (T1, µ) ≤ E

ρ̃∼R

[
errfk(Tρ−1 , µ× U−1)

]
= errfk(T, µk).

Lemma 23.
∑

i∈[k] sq(Ti, µ) ≤ sq(T , µk).

Proof. It is sufficient to prove this for the case where T is a deterministic tree T . We have:∑
i∈[k]

sq(Ti, µ) =
∑

i∈[k]
E

ρi∼Rµ

[
q((Ti)ρi ,Uρi)

]
=
∑

i∈[k]
E

ρi∼Rµ

ρ̃∼R

[
q
((

Exti
(
Tρ̃

))
ρi ,Uρi

)]
=
∑

i∈[k]
E

ρ∼Rk
µ

[
q
(
Exti(Tρ) ,Uρi

)]
= E

ρ∼Rk
µ

[∑
i∈[k]

q
(
Exti(Tρ) ,Uρi

)]
.

where the third equality is due to the fact that the operations of applying Ext and fixing variables
are commutable. Let ρ ∈ ({0, ⋆}n)k be a partial fixing and ℓ ∈ L(Tρ). The probability that node
ℓ is visited during the process Exti(Tρ) when the input is xi ∼ Uρi is 2−d(ℓ). Observe that Exti(Tρ)
only makes di(ℓ) queries to x1 to reach ℓ. As such, we have:∑

i∈[k]
q
(
Exti(Tρ) ,Uρi

)
=

∑
i∈[k]

∑
ℓ∈L(T ′)

2−d(ℓ)di(ℓ)

≤
∑

ℓ∈L(T ′)

2−d(ℓ)d(ℓ)

= q(Tρ,Uρ).

The inequality is due to the fact that
∑

i∈[k] di(v) ≤ d(v). This is because dim(Wi ∩Wj) = 0 for
each i ̸= j and so∑

i∈[k]
di(v) =

∑
i∈[k]

dim(col(Q≺v) ∩Wi) ≤ dim(col(Q≺v)) = d(v).

To conclude, we have∑
i∈[k]

sq(Ti, µ) = E
ρ∼Rk

µ

[∑
i∈[k]

q
(
Exti(Tρ) ,Uρi

)]
≤ E

ρ∼Rk
µ

[q(Tρ,Uρ)] = sq(T, µk).
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6 Direct sum for D× part III: from S to D×

In this section, we show how to convert parity tree of the Sε model to the more common Dε model
and prove Theorems 18 and 19. Let us fix for this section a boolean function f : {0, 1}n → {0, 1}
together with some 0-biased product distribution µ over {0, 1}n. Let T be a deterministic parity tree
trying to solve f against µ. We begin by establishing an alternative view of the quantity sq(T, µ).
For any fixed x ∈ {0, 1}n, define the product distribution Rx

µ over {0, ⋆}n with:

Pr
ρ∼Rx

µ

[ρi = ⋆] =

{
δi/(2− δi) if xi = 0

1 if xi = 1
where δi := 2 · Pr

x∼µ
[xi = 1] ∈ [0, 1]. (3)

Sampling ρ ∼ Rµ, x ∼ Uρ and completing xj = 0 for all ρ = 0 is equivalent to first sampling x ∼ µ
and then some ρ ∼ Rx

µ . One can therefore see the process of sq(T, µ) as follows:

1. Sample x ∼ µ, ρ ∼ Rx
µ .

2. Run T on x.

3. Every time T attempts to make a query, check if ρ simplifies the query: ρi = 0 =⇒ xi = 0.

We describe this alternative view in detail in Algorithm 2. With this new interpretation, we can
recast the quantity sq(T, µ) with

sq(T, µ) = Ex∼µ,ρ∼Rx
µ
[Number of times line 4 is executed in Algorithm 2]. (4)

The idea to convert Sε algorithms to Dε ones is to simulate the process of Algorithm 2 by maintaining
an incomplete but consistent view p ∈ {0, ⋆, ?}n of ρ. Initially, p = ?n – i.e. nothing is known about
ρ – and we gradually update p based on the queries we get. For instance, if xi = 1, then (3) asserts
ρi = ⋆. This scheme helps to relate the cost of the converted Dε algorithm with sq(T, µ). The
description of the converted algorithm is given in Algorithm 3.

Definition 24. Let p ∈ {0, ⋆, ?}n be a fixing. The following are subsets of indices:

Sp
⋆ = {j ∈ [n] : pj = ⋆} Sp

0 = {j ∈ [n] : pj = 0} Sp
? = {j ∈ [n] : pj = ?} Sp

̸=0 = Sp
⋆ ∪ Sp

?

We also write S(p, ⋆) to mean Sp
⋆ and likewise for other sets.

Let P v ⊆ {0, ⋆, ?}n be the set of all possible p that could be at the start of an iteration of
Algorithm 3 at node v. We now prove an invariant of Algorithm 3 and then its correctness.

Lemma 25. For any state v ∈ N (T ) and p ∈ P v that Algorithm 3 could be in at the start of a
while iteration (line 3), it holds that:

rank
(
Q≺v

S(p, ̸=0)

)
= rank

(
Q≺v

S(p,⋆)

)
= |S(p, ⋆)|.

Proof. We prove the claim by induction on T . The statement is true when v is the root because
both Q≺v and Sp

⋆ are empty. Let us now assume that the statement is true for some v and p ∈ P v

and prove that the invariant carries over to the next iteration regardless of the query outcomes and
the randomness η of the process. If p′ is the updated value of p at line 19, this amounts to showing
that rank(Q⪯v

S(p′, ̸=0)) = rank(Q⪯v
S(p′,⋆)) = |S(p′, ⋆)|. We consider three cases.
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Algorithm 2 an alternative view of sq(T, µ)

Input: x ∈ {0, 1}n, ρ ∈ {0, ⋆}n
Output: a ∈ {0, 1}
1: v ← root of T
2: while v is not a leaf do
3: if rank(Q⪯v

S(ρ,⋆)) = rank(Q≺v
S(ρ,⋆)) + 1 then

4: Query bv ← ⟨x,Qv⟩
5: else
6: Infer bv ← ⟨x,Qv⟩ from the fact that (Q≺v)Tx = b≺v and xj = 0 for all ρj = 0
7: end if
8: Move v ← child(v, bv).
9: end while

10: return L(v)

Algorithm 3 converts an algorithm T for Sε to Dε

Input: x ∈ {0, 1}n
Output: a ∈ {0, 1}
1: v ← root of T
2: p← ?n

3: while v is not a leaf do
4: Dv,p ← {j ∈ [n] : pj = ? and rank(Q⪯v

S(p,⋆)+j) = rank(Q⪯v
S(p,⋆)) + 1}

5: if Dv,p = ∅ then
6: Infer bv ← ⟨x,Qv⟩ from the fact that (Q≺v)Tx = b≺v and xj = 0 for all pj = 0
7: else
8: for j ∈ Dv,p do
9: Query xj

10: Sample η ∼ Ber(δj/(2− δj))
11: if xj = 1 or η = 1 then
12: pj ← ⋆
13: break
14: end if
15: pj ← 0
16: end for
17: Query bv ← ⟨x,Qv⟩
18: end if
19: Move v ← child(v, bv)
20: end while
21: return L(v)
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Case Dv,p = ∅: Then, there is no update for p and p′ = p. Since rank(Q⪯v
S(p,⋆)) = rank(Q⪯v

S(p,⋆)+j)

for all j ∈ S(p, ̸= 0), we have rank(Q⪯v
S(p, ̸=0)) = rank(Q⪯v

S(p,⋆)) = |S(p, ⋆)|, as desired.

Case Dv,p ̸= ∅ and p′j = 0 for all j ∈ Dv,p: Then, Sp′
⋆ = Sp

⋆ and S(p′, ̸= 0) = S(p, ̸= 0) \ Dv,p.

By definition of Dv,p, we still have rank(Q⪯v
S(p,⋆)) = rank(Q⪯v

S(p,⋆)+j) for all j ∈ S(p′, ̸= 0), so

rank(Q⪯v
S(p′, ̸=0)) = rank(Q⪯v

S(p′,⋆)) = |S(p′, ⋆)|.

Case Dv,p ̸= ∅ and p′j = ⋆ for some j ∈ Dv,p: Then Sp′
⋆ = Sp

⋆ + j and it must hold that

rank(Q⪯v
S(p′,⋆)) = |S(p′, ⋆)|. On the other hand,

rank
(
Q⪯v

S(p′, ̸=0)

)
≤ rank

(
Q≺v

S(p, ̸=0)

)
+ 1 = |S(p, ⋆)|+ 1 = |S(p′, ⋆)|.

Where the inequality follows from the fact that S(p′, ̸= 0) ⊆ S(p, ̸= 0). Finally, this implies
rank(Q⪯v

S(p′, ̸=0)) = rank(Q⪯v
S(p′,⋆)) = |S(p, ⋆)|.

Lemma 26. For any x ∈ {0, 1}n, Prη[Algorithm 3 outputs 1] = 1 [T (x) = 1].

Proof. It is not hard to see that if Algorithm 3 gets the correct value of ⟨x,Qv⟩ at each iteration
of the while loop, it perfectly simulates T . Thus, it suffices to show that whenever Dv,p = ∅, the
algorithm can compute the value of ⟨x,Qv⟩ from the previous query outcomes. Lemma 25 and its
proof implies that if Dv,p = ∅, then rank(Q⪯v

S(p, ̸=0)) = rank(Q≺v
S(p, ̸=0)) = |S(p, ⋆)|. Thus Qv

S(p, ̸=0) can

be written as a linear combination of column vectors of Q≺v
S(p, ̸=0). Namely, Qv

S(p, ̸=0) =
∑

j∈[t]Q
vj
S(p, ̸=0),

where v1, . . . , vt are some ancestors of v. On the other hand, we know that xj = pj = 0 for all
j ∈ Sp

0 . Consequently, we have

⟨x,Qv⟩ = ⟨x,Qv⟩S(p, ̸=0) =
∑

j∈[t]
⟨x,Qvj ⟩S(p, ̸=0) =

∑
j∈[t]

bvj .

Thus, Algorithm 3 follows the same path of vertices as T , irrespective of the randomness η. Con-
sequently, its outputs correspond to the one of T .

We now turn our attention to the efficiency of Algorithm 3. We shall start with the special case
of µ being a constant-bounded distribution. In this particular case, we obtain a lossless conversion.
We then turn our attention to general product distributions, for which Algorithm 3 suffers a log(n)
factor. This loss factor is inherent to reducing Sε to D as Section 8 shows.

6.1 Conversion for constant-bounded distribution

We now prove a strong efficiency result for Algorithm 3 in the special case where µ is λ-bounded
(see Definition 12). A proof of our goal (Theorem 19) then follows easily.

Lemma 27. We have q(Algorithm 3 on T , µ) ≤ (2/λ) · sq(T, µ).

Before proving this, we need an alternative view of the randomness used in the for-loop of
Algorithm 3 (line 8 to 16). At the start of the process, a random partial fixing ρ ∼ Rx

µ is generated.
The algorithm is then deterministic: whenever some xj is queried in the for-loop, this is replaced by
a query to ρj . The algorithm updates pj with ρj and exits the loop if ρj = ⋆. This process is given
in detail in Algorithm 4. Note that as Rx

µ is a product distribution, one can actually implement
Algorithm 4 without querying all of x at the start. Indeed, it is enough to query xj whenever one
needs the value of ρj , similarly to Algorithm 3. This implies that both processes are equivalent.
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Algorithm 4 an alternative view of Algorithm 3 where the randomness is fixed at the start

Input: x ∈ {0, 1}n
Output: a ∈ {0, 1}
1: v ← root of T
2: p← ?n

3: Sample ρ ∼ Rx
µ

4: while v is not a leaf do
5: Dv,p ← {j ∈ [n] : pj = ? ∧ rank(Q⪯v

S(p,⋆)+j) = rank(Q⪯v
S(p,⋆) + 1}

6: if Dv,p = ∅ then
7: Infer bv ← ⟨x,Qv⟩ from the fact that (Q≺v)Tx = b≺v and xj = 0 for all pj = 0
8: else
9: for j ∈ Dv,p do

10: pj ← ρj

11: if pj = ⋆ then
12: break
13: end if
14: end for
15: Query bv ← ⟨x,Qv⟩
16: end if
17: Move v ← child(v, bv).
18: end while
19: return L(v)

Suppose one runs Algorithm 4 on x ∼ µ and ρ ∼ Rx
µ . Fix some state (v, p) the algorithm could

be in at the start of the while loop (line 5). We let X v,p be the distribution of x conditioned on
reaching state (v, p). Furthermore, for a fixed x ∈ {0, 1}n and (v, p) reachable with x we let Rv,p,x

be the marginal distribution of ρ conditioned on reaching state (v, p) and x = x. We now develop
explicit formulations for those distributions.

Explicit definition of X v,p: Let X̂ v,p be the distribution over {0, 1}n defined as follows:
1. For all j ∈ Sp

0 , fix xj = 0.
2. For all j ∈ Sp

? , sample xj ∼ Ber(δj/2).
3. Determine {xj : j ∈ Sp

⋆} by solving
{
⟨x,Qu⟩S(p,⋆) = ⟨x,Qu⟩S(p, ̸=⋆) + bu

}
u∈path(v)

Explicit definition of Rv,p,x: Let R̂p,x be the product distribution over {0, ⋆}n defined as follows:
1. For all j ∈ Sp

? such that xj = 0, let ρj = ∗ with probability δj/(2− δj) and ρj = 0 else.
2. For all j ∈ Sp

? such that xj = 1, fix ρj = ⋆.
3. For all j ∈ S(p, ̸= ?), fix ρj = pj .

Claim 28. For every reachable state (v, p) and x ∈ supp(X v,p) in Algorithm 4, we have

1. Rv,p,x ≡ R̂p,x;
2. X v,p ≡ X̂ v,p.

We delay the proof of this technical lemma to Appendix A.5. We can now prove the efficiency of
our algorithm for λ-bounded distributions.
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Proof of Lemma 27. To relate Algorithm 2 with Algorithm 4, it is helpful to insert the book-keeping
of p in Algorithm 2 (lines 5 to 16, without 10) in between lines 2 and 16 of Algorithm 2. This doesn’t
change the number of queries or guarantees of Algorithm 2 but now both processes share the same
state space over (v, p). For x ∈ {0, 1}n and ρ ∈ {0, ⋆}n, define A(x, ρ) and B(x, ρ) as the number of
queries each process makes:

A(x, ρ) := number of times line 4 is executed in Algorithm 2 on input (x, ρ);

B(x, ρ) := number of times lines 10 and 15 are executed in Algorithm 4 on input (x, ρ).

Using (4), it is thus enough to prove that Ex,ρ [A(x,ρ)] ≥ Ω(λ) · Ex,ρ [B(x,ρ)] when x ∼ µ and
ρ ∼ Rx

µ . We have:

E
x,ρ

[A(x,ρ)] =
∑
(v,p)

Pr
x,ρ

[state (v, p) is reached] · Pr x∼X v,p

ρ∼Rv,p,x

[
rank(Q⪯v

S(ρ, ̸=0)) = rank(Q≺v
S(ρ, ̸=0)) + 1

]
.

As both algorithms follow the same path in the state space, this expectation can be computed with
respect to the code of Algorithm 4. Fix some state (v, p) and observe that if there exists some
j ∈ Dv,p such that ρj = ⋆, then by Lemma 25,

rank(Q⪯v
S(ρ, ̸=)) = rank(Q⪯v

S(p,⋆)+j) = rank(Q≺v
S(p,⋆)) + 1 = rank(Q≺v

S(ρ,̸=0)) + 1.

Therefore, for x ∼ X v,p and ρ ∼ Rv,p,x, we have

Prx,ρ

[
rank(Q⪯v

S(ρ, ̸=0)) = rank(Q≺v
S(ρ, ̸=0)) + 1

]
≥ Prx,ρ [∃j ∈ Dv,p : ρj = ⋆]

= 1− Prx,ρ[∀j ∈ Dv,p : ρj = xj = 0].

The last equality is due to the fact that for all j ∈ Dv,p, if ρj = 0 then xj = 0. Let D := Dv,p. We

can now substitute X̂ v,p for X v,p and R̂p,x for Rv,p,x using Claim 28:

Pr
x,ρ

[∀j ∈ D : ρj = ⋆ ∧ xj = 0] = Pr
x,ρ

[∀j ∈ D : xj = 0] · Pr
x,ρ

[∀j ∈ D : ρj = ⋆ | ∀j ∈ D : xj = 0]

=
∏

j∈D
(1− δj/2) ·

∏
j∈D

2− 2δj
2− δj

=
∏

j∈D
(1− δj)

≤ (1− λ)|D|.

Thus, if x ∼ µ and ρ ∼ Rx
µ , we have

E
x,ρ

[A(x,ρ)] ≥
∑

(v,p)
Prx,ρ[state (v, p) is reached] ·

(
1− (1− λ)|D

v,p|
)
.

We now bound the expected number of queries made by T . When Dv,p = ∅, T skips making a
query at v. On the other hand, when Dv,p ̸= ∅, the algorithm goes over j ∈ Dv,p and stops making
queries as soon as it hits some ρj = ⋆. This probability is independent for each j ∈ Dv,p and can
be computed explicitly using Claim 28. For x ∼ X v,p and ρ ∼ Rv,p,x:

Pr
x,ρ

[ρj = ∗] = Pr
x

[xj = 0] · Pr
x,ρ

[ρj = ⋆ | xj = 0] + Pr
x

[xj = 1] · Pr
x

[ρj = ⋆ | xj = 1] = δj ≥ λ.
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Therefore, if x ∼ µ and ρ ∼ Rx
µ ,

E
x,ρ

[B(x,ρ)] ≤
∑

(v,p)
Pr
x,ρ

[state (v, p) is reached] ·
(
1 [Dv,p ̸= ∅] +

∑|Dv,p|−1

j=0
(1− λ)j

)
≤

∑
(v,p)

Pr
x,ρ

[state (v, p) is reached] ·
(
1 [Dv,p ̸= ∅] +

(
1− (1− λ)|D

v,p|
)
/λ

)
≤

∑
(v,p)

Pr
x,ρ

[state (v, p) is reached] · (2/λ) ·
(

1− (1− λ)|D
v,p|

)
.

With this in hand, we can now prove Theorem 19, which we restate below for convenience.

Theorem 19. For any f : {0, 1}n → {0, 1} and λ-bounded product distribution µ, we have

Dε(f, µ) ≤ O(1/λ) · Sε(f, µ) ∀ε ≥ 0.

Proof. Let T be a randomised parity tree such that sq(T , µ) = Sε(f, µ) and errf (T , µ) ≤ ε. Define
T ′ to be the randomised algorithm obtained by sampling T ∼ T and returning Algorithm 3 applied
to T . Using Lemma 26, we immediately obtain that err(T ′, µ) ≤ ε. On the other hand:

q(T ′, µ) = E
T

[
q(Algorithm 3 on T , µ)

]
≤ (2/λ) · E

T
[sq(T , µ)] = (2/λ) · Sε(f, µ).

Thus, Dε(f, µ) ≤ O(1/λ) · Sε(f, µ), as desired.

6.2 Conversion for general product distribution

Algorithm 3 is not efficient for arbitrary product distribution since queries can be very biased so
that

∏
j∈Dv,p(1 − δj) = 1 − o(1). In such cases, we cannot even afford to pay one query as the

corresponding expected increment for sq is o(1).
To overcome this obstacle, we introduce the following idea. Run the algorithm as if every query

xj returned 0, i.e. assuming xj = ρj = 0 for all j ∈ S(p, ?) (this is likely to happen for very biased
distributions). This generates a list of indices for which we assume xj = 0. Upon reaching a leaf,
we check efficiently whether one of those xj is actually 1. If no such j exists, we’re done – at the
cost of no real queries! On the other hand, if a 1 is found, we backtrack to this state and restart
the procedure. Since we’ve found xj = 1, it must be that ρj = ⋆ and the Sε algorithm has to pay
one query there.

The process BuildList that “runs assuming xj = 0” and produces a list of indices to check is
described in Section 6.2. Then, the updated algorithm for converting an Sε algorithm to a Dε one
is formulated in Algorithm 5.

How to run line 4? This problem can be formulated as follows. Let FFOn : {0, 1}n → [n] ∪ ⊥
be the search problem that asks for the index of the first (running from left to right) ’1’ in x or
⊥ if x = 0n. Even though a simple adversary argument shows that one cannot perfectly compute
FFOn by making < n parity queries, a folklore result [FPRU90, Nis93, HR24], proves that there is
a randomised protocol making O(log n) queries that computes FFOn with some small error.

Lemma 29. For any α > 0, Rα(FFOn) ≤ O
(

log n + log(1/α)
)
.

Proof. This folklore fact is discussed for the parity context in Appendix A.4.
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Algorithm 5 converts an algorithm for Sε to Dε for general product distributions

Input: x ∈ {0, 1}n
Output: a ∈ {0, 1}
1: Initialize v ← root of T , p← ?n

2: while v is not a leaf do
3: (J, ℓ)← BuildList(v, p)
4: Find the first element i∗ ∈ J with xi∗ = 1 or set i∗ = ⊥ if none exists
5: found← 0
6: for j ∈ J do
7: Sample η ∼ Ber(δj/(2− δj))
8: if j = i∗ or η = 1 then
9: pj ← ⋆

10: u← wj

11: found← 1
12: break
13: end if
14: pj ← 0
15: end for
16: if found = 1 then
17: Query ⟨x,Qu⟩ and set bu as the outcome
18: Move v ← child(u, bu)
19: else
20: Update v ← ℓ
21: end if
22: end while
23: return L(v)

Algorithm 6 the subroutine BuildList

Input: v ∈ N (T ), p ∈ {0, ⋆, ?}n
Output: a list of indices J and a leaf ℓ
1: Initialize J ← [], u← v, p′ ← p
2: while u is not a leaf do
3: Dv,p′ ← {j ∈ [n] : p′j = ? ∧ rank(Q⪯u

S(p′,⋆)+j) = rank(Q⪯u
S(p′,⋆)) + 1}

4: for j ∈ Dv,p do ▷ in arbitrary order
5: p′j ← 0
6: wj ← u
7: J ← [J, j]
8: end for
9: Infer bu ← ⟨x,Qu⟩ assuming (Q≺v)Tx = b≺v and xj = 0 for all j ∈ S(p′, 0)

10: Move u← child(u, bu)
11: end while
12: return (J, u)
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We let T ′
γ be the parity tree obtained by running Algorithm 5 with error parameter α := γ/n

on line 4. Given two indices i, j ∈ J , we say i ≺J j if i appears strictly earlier than j in J , and
i ⪯J j if i ≺J j or i = j. Fix any x ∈ supp(X v,p). Let i∗ denote the first index i in J such that
xi = 1 and suppose that i∗ is added to J when u = u∗. Observe that if such i∗ exists, xj = 0 for
all j ≺J i∗. As a consequence, we know that u∗ must be reached. Moreover, we can immediately
get the values of ρj by flipping biased coins for all j ⪯J i∗. Therefore, given i∗, one can perfectly
simulate Algorithm 3 by going over J and updating p, until finding the first index j∗ ⪯J i∗ such
that ρj∗ = ⋆. We are now ready to prove the correctness and efficiency of T ′

γ .

Lemma 30. For any fixed x ∈ {0, 1}n, Pr[T ′
γ(x) = 1] ∈ 1 [T (x) = 1]± γ.

Proof. The randomness of T ′
γ stems from η and the randomness involved in running the FFO

algorithm at line 4. To analyse the latter, observe that line 4 is called at most n times and each
call fails with probability at most α = γ/n, hence:

dTV(T ′
0 (x), T ′

γ(x)) ≤ Pr[at least one oracle call at line 4 gives a wrong index] ≤ n · (γ/n) = γ.

If no call fails the discussion above implies that Algorithm 5 behaves identically to the earlier
Algorithm 3. Hence, correctness of the former (Lemma 26) implies Pr[T ′

0 (x) = 1] = 1 [T (x) = 1].

Lemma 31. We have q(T ′
γ , µ) ≤ O(log(n/γ)) · (sq(T, µ) + 1) + γ · n.

Proof. We first prove that the expected number of iterations of the outer while-loop is low assuming
that the algorithm always gets the correct index i∗ at line 4. Similar to what we did in Section 6.1,
we view the randomness used in the for-loop (line 6 to 15) in Algorithm 5 as a pre-generated partial
assignment ρ ∼ Rx

µ. Note that the bits of ρ are independent. If i∗ is the first index in J with
xi∗ = 1, we know that xi∗ = 1 and xj = 0 for all j ≺J i∗. At the same time, ρj for all j ⪯J i are
revealed to the algorithm one by one. As soon as some ρj = ⋆ is found, the algorithm quits the
loop.

For each x ∈ {0, 1}n and ρ ∈ supp(Rx
µ), consider running T ′

γ on input x using randomness ρ.
Define K(x, ρ) as the number of iterations of the outer while loop when T ′

γ always gets the correct
i∗ on line 4. Let p∗ denote the final state of p. Since in each iteration except for the last one, we
update some pj as ⋆, we have K(x, ρ) ≤ |S(p∗, ⋆)|+ 1. By Lemma 25, we further have

K(x, ρ) ≤ rank
(
Q

≺ℓ(x)
S(p∗,⋆)

)
+ 1 = rank

(
Q

≺ℓ(x)
S(p∗,̸=0)

)
+ 1,

where ℓ(x) ∈ L(T ) is the unique leaf at which T terminates given x. Since for all pj ̸=?, pj = ρj , we

have Sp∗
⋆ ⊆ Sρ

⋆ ⊆ Sp∗

̸=0, hence K(x, ρ) ≤ rank(Q
≺ℓ(x)
S(ρ,⋆)) + 1. On the other hand, by definition we have

sq(T, µ) = E
x∼µ
ρ∼Rx

µ

[
rank

(
Q

≺ℓ(x)
S(ρ,⋆)

)]
=⇒ E

x∼µ
ρ∼Rx

µ

[K(x,ρ)] ≤ sq(T, µ) + 1.

Lemma 29 asserts that line line 4 can be implemented to error γ/n using O(log(n/γ)) parity queries.
Since all those calls are completed successfully with probability ≥ γ, we finally have:

q(T ′
γ , µ) ≤ (1− γ) · E x∼µ

ρ∼Rx
µ

[K(x,ρ)] ·O(log(n/γ)) + γ · n ≤ O(log(n/γ)) · (sq(T, µ) + 1) + γ · n.

Theorem 18. For any f : {0, 1}n → {0, 1}, product distribution µ, γ ∈ (0, 1/n), we have

Dε+γ(f, µ) ≤ O
(

log(n/γ)
)
· (Sε(f, µ) + 1) ∀ε ≥ 0.
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Proof. Let T be a randomised parity decision tree such that sq(T , µ) = Sε(f, µ) and errf (T , µ) ≤
ε. Define T ∗ to be the randomised algorithm obtained by sampling T ∼ T and returning the
corresponding T ′

γ . Using Lemma 30, we immediately obtain that err(T ∗, µ) ≤ ε+ γ. By Lemma 31
and the range of parameters allowed for γ, we get

q(T ∗, µ) = ET

[
q(T ′

γ , µ)
]
≤ O(log(n/γ)) · ET [sq(T, µ) + 1] = O(log(n)/γ) · (sq(T , µ) + 1).

7 Separations I: disc vs. D×

In this section we prove Lemma 3, restated here for convenience.

Lemma 3. The complexity measures disc and D× are incomparable:

1. There is an n-bit function f such that disc(f) = O(log n) while D×(f) = Θ(n).
2. There is an n-bit function f such that disc(f) = Θ(n) while D×(f) = O(1).

Proof. For the first item, we can consider the n-bit majority function f := MAJn. It follows
from [BGPW15, Theorem 1.2] that D×(MAJn) ≥ Ω(n) where the hard distribution is uniform. By
contrast, it is not hard to see that disc(MAJn) ≤ O(log n) (if we query xi for a random i ∈ [n], it will
have bias ≥ Ω(1/

√
n) toward predicting MAJn(x)). We prove the second item by a probabilistic

argument. Consider a random function f , which is set with f(x) ∼ Ber(2−0.9n) independently for
each x ∈ {0, 1}n. In Claim 32, we show that disc(f) = Θ(n) and in Claim 33 that D×(f) = O(1)
with high probability.

Claim 32. With probability 1− 2−2Ω(n)
, disc(f) ≥ 0.01n.

Proof. For each non-constant function f : {0, 1}n → {0, 1}, we define the “hard” distribution µf as

µf (x) :=

{
1/(2|f−1(0)|) if f(x) = 0

1/(2|f−1(1)|) if f(x) = 1
.

To prove the claim, it suffices to show Prf [disc(f , µf ) ≥ 0.01n] ≥ 1− 2−2Ω(n)
. Using Lemma 8, this

can be further simplified to prove:

Pr
f

[
maxS∈On bias(f , µf , S) ≤ 2−0.01n−1

]
≥ 1− 2−2Ω(n)

.

To that end, fix any S ∈ On, note that |S| = |{0, 1} \ S| = 2n−1 and observe that by a Chernoff
bound,

Prf
[
|µ(f−1(1) ∩ S)− 1/4| ≥ 2−0.02n]

]
≤ Prf

[
|f−1(1)| < 20.1n−1

]
+ Prf

[
||f−1(1) ∩ S| − 20.1n−1| > 20.07n

]
+ Prf

[
||f−1(1) \ S| − 20.1n−1| > 20.07n

]
≤ 3e−20.03n .

Using a similar argument, we can also show Prf [|µ(f−1(0) ∩ S) − 1/4| ≥ 2−0.02n] ≤ 3e−20.03n .
By definition, bias(f , µf , S) = |µ(f−1(0) ∩ S) − |µ(f−1(1) ∩ S)|, we thus have Pr[bias(f , µf , S) ≥
2−0.01n−1] ≤ 6e−20.03n . Finally, observe that |On| ≤ 2n and so using a union bound,

Pr
f

[disc(f) ≥ 0.01n] ≥ Pr
f

[max
S∈On

bias(f , µf , S) ≤ 2−0.01n−1]

≥ 1− 2n Pr[bias(f , µf , S) ≥ 2−0.01n−1]

≥ 1− 2−2Ω(n)
.
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Claim 33. With probability 1− 2−Ω(n), D×(f) ≤ 20000.

Proof. Let D× := {Ber(p1, . . . , pn) | p1 . . . , pn ∈ [0, 1/2]} denote the set of 0-biased product distri-
butions, where Ber(p1, . . . , pn) := Ber(p1) × · · · × Ber(pn). As observed in Section 4, it suffices to
show Prf [maxµ∈D× D1/3(f , µ) ≤ 20000] ≥ 1− 2−Ω(n).

As a first attempt, one might want to prove that D1/3(f, µ) = O(1) with sufficiently high
probability for any fixed µ and then apply union bound over all µ ∈ D×. However, this cannot be
done directly since D× is infinite. Luckily, we can circumvent this barrier by discretizing D×. Let us
define D×

Z := {Ber(a1/10n, . . . , an/10n) | a1, . . . , an ∈ {0, . . . , 5n}}. For every µ = Ber(p1, . . . , pn) ∈
D×

Z and f : {0, 1}→{0, 1}, consider the following two cases:

• If
∑

i pi ≥ 10, then M := maxx∈{0,1}n µ(x) ≤ e−
∑

i pi ≤ 1000
∑

i pi. Observe that

Pr
f

[∑
x∈{0,1}

f(x)µ(x) ≥ 1/5

]
≤ 2M · (2−0.9n)M/5 ≤ 2−150

∑
i pin,

thus Prf [D1/4(f , µ) = 0] ≥ 1− 2−150
∑

i pin.

• Otherwise, we devise the following protocol: Sort µ(x1) ≥ · · · ≥ µ(x2n). Pick the top 1000
inputs X = {x1, . . . , x1000}, then we check if our input x is in X. If yes, we output f(x),
otherwise we output 0. Formally, we define the function g : {0, 1}n → {0, 1} where

g(x) :=

{
f(x) if x ∈ X

0 if x /∈ X
.

Since testing whether x = xi can be done with m queries with success probability 1−2−m, by
choosing m = 20 and running the testing for every i ∈ [1000], one can show R0.01(g) ≤ 20000.
It remains to prove that Prf [f(x) = g(x)] ≥ 4/5 with high probability. Observe that for each
x /∈ X, µ(x) ≤ 1/1000. Therefore:

Pr
f

[∑
x/∈X

[µ(x)f(x)] ≤ 1/5
]
≥ 1− 21000 · (2−0.9n)200 ≥ 1− 2−150n.

For those f , we have Prf [f(x) = g(x)] ≥ 4/5, which implies that D0.22(f , µ) ≤ 20000.

By union bound over µ ∈ D×
Z , we can deduce that

Pr
f

[
max
µ∈D×

Z

D0.22(f , µ) > 20000

]
≤

∑
µ∈D×

Z
Prf [D0.22(f , µ) > 20000]

≤
∑5n

a1=0
· · ·

∑5n

an=0
1

[∑
i
ai ≥ 100n

]
· e−150

∑
i ai

+
∑5n

a1=0
· · ·

∑5n

an=0
1

[∑
i
ai < 100n

]
· 2−150n

≤
∑5n

a1=0
· · ·

∑5n

an=0
e−100(a1+5) · · · e−100(an+5) + 2101n · 2−150n

≤
(∑5n

a1=0
e−100(a1+5)

)n

+ 2−49n

≤ 2−Ω(n).

Consider now any product distribution µ = Ber(p1, . . . , pn) ∈ D×, define its rounded version ⌈µ⌉:

⌈µ⌉ :=

(
Ber

(
⌈10n · p1⌉

10n

)
, . . . , Ber

(
⌈10n · pn⌉

10n

))
∈ D×

Z .
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Observe that dTV(µ, ⌈µ⌉) ≤ 1 − (1 − 1/10n)n ≤ 1 − 1/e−1/10 < 0.1, thus we have errf (T, ⌈µ⌉) ≤
errf (T, µ)+0.1 for any parity tree T and f : {0, 1}n → {0, 1}. Together with the string of inequalities
developed above, we conclude that with probability at least 1− 2−Ω(n),

maxµ∈D× D1/3(f , µ) ≤ maxµ∈D×
Z
D1/3−0.1(f , µ) ≤ maxµ∈D×

Z
D0.22(f , µ) ≤ 20000.

8 Separations II: S vs. D×

The goal of this section is to provide the following example of a function.

Theorem 34. There exists a function f : {0, 1}n → {0, 1} and a product distribution µ such that
D×(f) = Θ(disc(f, µ)) = Θ(log n) and S0(f, µ) = Θ(1).

Recall that by Theorem 18, this is the largest possible gap between S and D×. To prove the
separation, we use the function FPE : {0, 1}2n → {0, 1} which takes two inputs x, y ∈ {0, 1}n and
returns the value yi associated with the location i of the first ‘1’ in x. More precisely, we let
FO(x) ∈ [n] be the location (from left to right) of the first ‘1’ in x and FO(x) = 1 if x = 0n and let
FPE(x, y) = yFO(x). We choose as hard distribution the product distribution µ := X ×Y where for
each i ∈ [n]:

Xi ∼ Ber(1/
√
n) and Yi ∼ Ber(1/2).

Let us note that the choice of 1/
√
n in the distribution X is arbitrary: any p = na for constant

a ∈ (−1, 0) is enough to guarantee that x ̸= 0n with high probability and get the Ω(log n) lower
bound.

Proof of Theorem 34. We first prove that S0(FPE, µ) = Θ(1). Consider the following simple brute-
force query algorithm T that computes f : Query the bits of x one by one from left to right, until
finding the first index i such that xi = 1. Then query yi and return yi if such i exists. Otherwise
(x = 0n), simply return 1.

Observe that errFPE(T, µ) = 0. Thus we only need to show sq(f, µ) = Θ(1). Let Xi :=
{x | xi = 1, xj = 0, ∀j < i} denote the set of x ∈ {0, 1}n for which FO(x) = i. Note that
{0, 1}n = X1 ⊔ · · · ⊔ Xn ⊔ {0n} forms a partition of {0, 1}n. By the definition of µ, we have
µ(Xi) = (1−1/

√
n)i−1/

√
n. For all x ∈ Xi, T queries the same set of variables {x1, . . . , xi−1, xi, yi}

on x. Moreover, sample ρ ∼ Rx
µ and for each 1 ≤ j < i, since xj = 0, we have that Pr[ρj = ⋆] =

1/(
√
n− 1). Therefore,

h(x) := Eρ∼Rx
µ
[q(Tρ, x)] ≤ i− 1√

n− 1
+ 2.

We conclude that

sq(T, µ) = E
x∼µ

[h(x)]

≤
∑n

i=1
µ(Xi) · Ex∼µXi

[h(x)] + (n + 1) · µ(0n)

≤ 1

n−
√
n
·
∑n

i=1
(i− 1)(1− 1/

√
n)i−1 + n · (1− 1/

√
n)n + 2

<
2

n
·
∑∞

i=0
i(1− 1/

√
n)i + 3

= Θ(1).

Let us now turn our attention to disc(FPE, µ). The lower-bound disc(FPE, µ) ≥ Ω(log n) is covered
in Claim 35. The upper bound disc(FPE, µ) ≤ O(log n) is a direct consequence of bias(FPE, µ, S) ≥
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n−1/2 for S = {(x, y) ∈ {0, 1}n : y1 = 1}. More interestingly, one can actually show the stronger
statement D1/3(f, µ) ≤ O(log n). Indeed, x ∼ X has exactly one ‘1’ in the first ⌈

√
n⌉ bits with

probability ≥ e−1.01 ≥ 1/3 for n large enough. In that case, a simple binary search amongst the
first ⌈

√
n⌉ bits of x using parity queries is enough to find that location and return the corresponding

bit of y.

Claim 35. disc(FPE, µ) ≥ Ω(log n)

Proof. Using the characterisation of the bias with codimension-1 subspace Lemma 8, it is enough
to show:

maxS∈On bias(FPE, µ, S) ≤ n−1/3.

Fix an affine space S⋆ of codimension 1 that maximize the above expression, i.e. some α, β ∈ {0, 1}n
and γ ∈ {0, 1} such that S⋆ = {(x, y) ∈ {0, 1}2n : α ·x+β ·y = γ}. To simplify notation, we assume
in what follows that γ = 0 but the proof is similar for the case γ = 1. Let us partition S in two
sets:

S0 := {(x, y) ∈ {0, 1}2n : α · x = 0 and β · y = 0};
S1 := {(x, y) ∈ {0, 1}2n : α · x = 1 and β · y = 1}.

We have:

maxS∈On bias(FPE, µ, S) = bias(FPE, µ, S⋆) ≤ bias(FPE, µ, S0) + bias(FPE, µ, S1).

Let us suppose without loss of generality that bias(FPE, µ, S0) ≥ bias(FPE, µ, S1) so that it is
enough to show bias(FPE, µ, S0) ≤ 2n−1/2. Note that if Prx,y∼µ[(x,y) ∈ S0] = 0, we’re done. If
not, we can re-express the bias in the language of probability:

bias(FPE, µ, S0) =

∣∣∣∣∑(x,y)∈S0
(−1)FPE(x)µ(x)

∣∣∣∣
=

∣∣∣∣∑b∈{0,1}
(−1)b · Pr

x,y

[
FPE(x) = b ∧ (x,y) ∈ S0

]∣∣∣∣
= Pr

x,y

[
(x,y) ∈ S0

]
·
∣∣∣∣∑b∈{0,1}

(−1)b · Pr
x,y

[
FPE(x) = b | (x,y) ∈ S0

]∣∣∣∣ .
Let us denote the quantity within the absolute value by Φ. Observe that S0 can be conveniently
decomposed as S0 = SX ×SY where SX := {x ∈ {0, 1}n : α ·x = 0} and SY := {y ∈ {0, 1}n : β ·y =
0}. With this, we have:

Φ =
∑

b∈{0,1}
(−1)b · Pr

x,y

[
FPE(x,y) = b | (x,y) ∈ S0

]
=

∑
i∈[n]

∑
b∈{0,1}

(−1)b · Pr
x,y

[
FO(x) = i | (x,y) ∈ S0

]
Pr
x,y

[
FPE(x,y) = b | (x,y) ∈ S0 ∧ FO(x) = i

]
=

∑
i∈[n]

Pr
x∼X

[
FO(x) = i |x ∈ SX

]
·

∑
b∈{0,1}

(−1)b · Pr
y∼Y

[
yi = b |y ∈ SY

]
︸ ︷︷ ︸

:=pbi

.

Recall that SY is a codimension-1 space and Y is the uniform distribution over {0, 1}n. Thus, if
|α| (the number of non-zero entries in α) is zero or ≥ 2, it must be that pbi = 1/2 for all i ∈ [n]
and b ∈ {0, 1}. In that case, the claim is proven because Φ = 0 and so bias(FPE, µ, S0) = 0. We
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can thus assume that |α| = 1 and fix i∗ ∈ [n] to be the unique coordinate such that αi∗ = 1. Now,
observe that pbi = 1/2 for all i ̸= i∗ and b ∈ {0, 1}n, p0i∗ = 1 and p1i∗ = 0 so that:

Φ =
∑
i∈[n]

Pr
x∼X

[
FO(x) = i |x ∈ SX

]
· (p0i − p1i ) = Pr

x∼X

[
FO(x) = i∗ |x ∈ SX

]
.

Finally, we use the fact that the event FO(x) = i∗ with x ∼ X is unlikely to happen if SX has large
mass under X . In any case, the probability is maximized for i∗ = 1 and hence:

bias(FPE, µ, S0) = Prx∼X
[
x ∈ SX

]
· Pry∼Y

[
y ∈ SY

]
· |Φ|

≤ Prx
[
FO(x) = i∗ ∧ x ∈ SX

]
≤ Prx [FO(x) = 1] .

The event FO(x) = 1 can happen because x1 = 1 or x = 0n, thus we bound the bias with

Pr
x∼X

[FO(x) = 1] ≤ Pr
x

[x1 = 1] + Pr
x

[x = 0n] ≤ n−1/2 + e−
√
n ≤ 2n−1/2.

A Appendix

A.1 Direct sums for D

In this appendix, we prove that the best-known direct sum results in the context of deterministic
communication complexity can be obtained in the parity decision tree setting. We restate our
theorem for convenience below.

Theorem 4. For any function f and k ≥ 1,

1. D(fk) ≥ k · D(f)1/2,
2. D(fk) ≥ k · D(f)/ log spar(f).

Let us first introduce a couple of definitions. Fix a function f : {0, 1}n → {0, 1}. A parity
certificate for f(x) is an affine space S ⊆ {0, 1}n such that x ∈ S and for any x′ ∈ S, f(x) = f(x′).
Similarly to the classical case, the parity certificate complexity C(f) is the smallest codimension
of a space that certifies the value f(x) – where the hardest possible x ∈ {0, 1}n is taken. We also
define spar(f) := ∥f̂∥0 = |{z | f̂(z) ̸= 0}| for the number of non-zero Fourier coefficients of f . To
prove Theorem 4, it is enough to prove a direct sum for parity certificate complexity and employ
the following two results:

1. C(f) ≥ D(f)1/2 [ZS10]
2. C(f) ≥ D(f)/ log spar(f) [TWXZ13]

Lemma 36. For any f : {0, 1}n → {0, 1} and k ≥ 1, C(fk) ≥ k · C(f).

Proof of Lemma 36. Fix an input x ∈ {0, 1}n attaining d := C(f) and suppose towards contradiction
that C(fk) < dk. This implies in particular that there exists an affine space S ⊆ ({0, 1}n)k described
by m < dk equations QTx = b (where Q ∈ {0, 1}n×m, b ∈ {0, 1}m) that certifies the value of the
input y ∈ ({0, 1}n)k which is composed of k copies of x. Define di for i ∈ [k] with:

di := dim(col(Q) ∩Wi) Wi := {w ∈ ({0, 1}n)k : wj = 0n ⇐⇒ j ̸= i}.

Observe that
∑

i∈[k] di ≤ m < dk and as such there must be some i∗ with di∗ < k. Fix for simplicity
i∗ = 1. Using Gaussian elimination, one can re-express S = S1 ∩ S2 where
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1. the constraints in S1 are exclusively on bits of the first copy and

2. any constraint in S2 has at least one bit of a copy other than the first.

Since S1 is about the first copy only, it can be identified with a single-copy affine space S∗ ⊆ {0, 1}n
where codim(S∗) = d1 < k in a natural way. Observe that x ∈ S∗ as y ∈ S. Because the codimension
of S∗ is strictly less than k, there must be some x′ ∈ S∗ with f(x) ̸= f(x′). Note that fixing x1 := x′

leaves the system of linear constraints S2 feasible and as such there exists x2, . . . , xk ∈ {0, 1}n such
that y′ := (x′, x2, . . . , xk) ∈ S: a contradiction since f(y) ̸= f(y′).

A.2 Omitted case of Theorem 2

Lemma 37. If D×(f) ≤ 6C · log(n), we have R(fk) ≥ Ω(k/ log n) · D×(f).

Proof. Fix a hard product distribution µ for D×(f). If D1/3(f, µ) = 0, the claim follows trivially.
Else, we have D1/3(f, µ) > 0 and using Claim 38 with ε := 1/6, it must be that S1/6(f) ≥ 1/6.
Using Claim 16 and Theorem 17, we thus have:

R(fk) ≥ D1/6(f
k, µk) ≥ S1/6(f

k, µk) ≥ k · S1/6(f, µ) ≥ k/6 ≥ Ω(k/ log n) · D×(f)

Claim 38. For any f , product distribution µ and ε ≥ 0, we have Dε+Sε(f,µ)(f, µ) = 0.

Proof. Fix a deterministic decision tree T and consider the zero-query decision tree T ′ that comes
out of applying Algorithm 7 to T . To relate T and T ′, we go through Algorithm 5. Again, let T0
be the tree obtained by applying Algorithm 5 to T with error zero on line 4. We stress that T0 is
a randomised decision tree depending on η. On the other hand, T ′ can be seen as T0 with fewer
instructions executed. Using Lemma 30, we have:

Prx∼µ[T (x) ̸= T ′(x)] = Prx,η[T0(x) ̸= T ′(x)]

≤ Prx,η[Line 9 is executed while running T0(x)]

= Prx,ρ∼Rx
µ
[Tρ(x) makes a query]

≤ Ex,ρ[q(Tρ,x)]

= sq(T, µ)

Now, let T be a randomised parity tree such that sq(T , µ) = Sε(f, µ) and errf (T , µ) ≤ ε. Let T ′

be the randomised parity tree obtained as follows:

1. Sample T ∼ T

2. Return T ′ obtained by applying T to Algorithm 7.

With the analysis above, we obtain Prx,T [T ′(x) ̸= T (x)] ≤ ET∼T [sq(T , µ)] = sq(T , µ). We remark
that T ′ makes no queries and has the following error probability:

errf (T ′, µ) ≤ errf (T , µ) + Prx,T [T ′(x) ̸= T (x)] ≤ ε + sq(T , µ) = ε + Sε(f, µ).
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Algorithm 7 converts an algorithm for Sε < 1 to a zero-query algorithm

Input: x ∈ {0, 1}n
Output: a ∈ {0, 1}
1: Initialize v ← root of T , p← ?n

2: (J, ℓ)← BuildList(v, p)
3: return L(ℓ)

A.3 Direct sum for distribution-free discrepancy

Theorem 39. For every function f : {0, 1}n → {0, 1} and k ≥ 1,

k · disc(f) + 1 ≥ disc(f⊕k) ≥ k ·
(
disc(f)− 1

)
.

Proof. The lower bound is a simple consequence of Lemma 7 by fixing µ to be a distribution such
that disc(f) = disc(f, µ) and observing that disc(f⊕k) ≥ disc(f⊕k, µk). The other direction is more
interesting as it says that the hardest distribution for f⊕k is basically k products of the hardest
distribution for a single copy f . Let ∥f̂∥∗∞ := minµ ∥F̂µ∥∞ where µ ranges over all distributions.

Using Lemma 8, we obtain the following relation between disc(f) and ∥f̂∥∗∞:

− log ∥f̂∥∗∞ + 1 ≥ disc(f) ≥ − log ∥f̂∥∗∞.

Therefore, to prove the upper bound, it is enough to show a perfect direct product for ∥f̂∥∗∞ and
apply it k time. To this end, fix some other function g : {0, 1}n → {0, 1} and let us show that

∥f̂ ⊕ g∥∗∞ ≥ ∥f̂∥∗∞ · ∥ĝ∥∗∞.

Where we recall that f ⊕ g : {0, 1}2n → {0, 1}. We can write ∥f̂∥∗∞ as the value of the following
linear program where the variables describe a distribution µ:

min. c

s.t.
∣∣∣∑

x∈{0,1}n
(−1)f(x) · µx · (−1)⟨x,z⟩

∣∣∣ ≤ c ∀z ∈ {0, 1}n∑
x∈{0,1}n

µx = 1

µx ≥ 0 ∀x ∈ {0, 1}n

(5)

The dual of (5) is:

max. d

s.t.
∑

z∈{0,1}n
(−1)f(x) · βz · (−1)⟨x,z⟩ ≥ d ∀x ∈ {0, 1}n∑

z∈{0,1}n
|βz| = 1

(6)

Let (βf , df ) and (βg, dg) be the optimal feasible solutions to (6) with respect to f and g. By the
strong duality theorem, it holds that ∥f̂∥∗∞ = df and ∥ĝ∥∗∞ = dg. We now extract a feasible solution

for (6) with respect to the function f ⊕ g. Let β ∈ {0, 1}2n be defined with β(z1,z2) = βf
z1 · β

g
z2 and

observe that (β, df · dg) is a feasible solution for the dual of ∥f̂ ⊕ g∥∗∞. By applying the strong

duality theorem again, we have ∥f̂ ⊕ g∥∗∞ ≥ df · dg = ∥f̂∥∗∞ · ∥ĝ∥∗∞, as desired.
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A.4 Some facts about parity decision trees

Yao’s minimax principle is a powerful technique to analyse randomised algorithms – we adapt here
the statement to parity trees, but the proof is exactly the same as the original one [Yao77].

Lemma 40. For any f : {0, 1}n → {0, 1} and distribution µ over {0, 1}n, Rε(f) ≥ Dε(f, µ).

The following is a folklore fact relating randomised parity tree complexity and discrepancy
[Yao83, BFS86] which we re-prove in the parity context.

Lemma 41. Dε(f, µ) ≥ disc(f, µ) + log(1− 2ε) for any ε ∈ [0, 1/2).

Proof. Fix a parity decision tree T of depth d := Dε(f, µ) which makes error errf (T, µ) ≤ ε, note
that

1− 2ε ≤ Pr
x∼µ

[T (x) = f(x)]− Pr
x∼µ

[T (x) ̸= f(x)]

=
∑

S∈L
Pr
x∼µ

[T (x) = f(x) ∧ x ∈ S]− Pr
x∼µ

[T (x) ̸= f(x) ∧ x ∈ S].

As |L(T )| ≤ 2d, there exists some S ∈ L(T ) – an affine subspace – with large correlation:

bias(f, µ, S) =

∣∣∣∣ Pr
x∼µ

[T (x) = f(x) ∧ x ∈ S]− Pr
x∼µ

[T (x) ̸= f(x) ∧ x ∈ S]

∣∣∣∣ ≥ 1− 2ε

2d
.

Lemma 29. For any α > 0, Rα(FFOn) ≤ O
(

log n + log(1/α)
)
.

Proof. Let NORn : {0, 1}n → {0, 1} be the function that checks whether the input is 0n and rejects
otherwise. Observe that one iteration of the sumcheck protocol can be performed in one parity
query. More precisely for any x ∈ {0, 1}n, if s ∼ U ({0, 1}n) then:

Pr
s

[⟨x, s⟩ = 1] =

{
1/2 if x ̸= 0n

0 if x = 0n
.

Performing two random checks independently shows that R(NORn, 1/4) ≤ O(1). It is a folklore
result that a (classical) randomised decision tree can solve FFOn with probability ε using O(log n+
log(1/ε)) oracle NOR-queries even if the oracle fails with probability 1/3 [FPRU90, Nis93]. We
highlight that this is an improvement over the naive method that boosts the noisy NOR queries
and yields complexity O(log(n)2 log(1/ε)). Recent work [HR24, §3] revisits this trick in depth for
communication complexity and their result can be re-interpreted in the context of parity decision
trees as follows:

∀f : R(f, ε) ≤ O
(
DNOR(f) + log(1/ε)

)
.

Thus, plugging in f = FFO and noting that DNOR(FFOn) ≤ log n (with binary search), we get the
desired result.

Claim 10. For any f : {0, 1}n → {0, 1}, µ over {0, 1}n and ε, δ ≥ 0, Dε+δ(f, µ) ≤ Dε(f, µ)/δ.

Proof. Let T be a randomised PDT satisfying that d := q(T , µ) = Dε(f, µ) and errf (T , µ) ≤ ε.
To prove the lemma, it suffices to construct a deterministic parity tree T of depth T ≤ d/γ with
errf (T, µ) ≤ ε+γ. Sample T ∼ T . We construct a new tree T ′ by pruning T as follows: We remove
all the nodes of T of depth greater than d/δ. If any node of depth d/δ becomes a leaf, we label it
with an arbitrary bit. Note that T ′ has depth ≤ d/δ. Finally, let T ′ denote the distribution over
T ′ inherited from T .
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We observe that for each x ∈ {0, 1}n, both T (x) = f(x) and T ′(x) ̸= f(x) happen only if
q(T , x) > d/γ. Moreover, by Markov’s inequality,

PrT∼T
x∼µ

[q(T ,x) > d/γ] ≤ q(T , µ)

d/γ
= γ.

Therefore, errf (T ′, µ) ≤ errf (T , µ) + γ ≤ ε + γ. By an averaging argument, there exists some
T ∈ supp(T ′) of depth ≤ d/δ that computes f with error errf (T, µ) ≤ ε + γ, as desired.

A.5 Omitted proofs of Section 6

In this appendix, we prove Claim 28, an alternative description for the distributions of Section 6.1.
Let p1, p2 ∈ {0, ⋆, ?}n. We write p1 ∼ p2 if p1 and p2 are consistent over their non−? entries. That
is, p1 ∼ p2 if for all j ∈ [n], if p1j ̸= ? and p2j ̸= ?, then p1j = p2j . Claim 28 follows from Claims 42
and 43.

Claim 42. For every reachable state (v, p), consistent x ∈ {0, 1}n and ρ ∈ {0, ⋆}n, Rv,p,x ≡ R̂p,x.

Proof. Upon inspection of R̂v,p, it is enough to prove that for all x ∈ {0, 1}n:

Pr
ρ∼Rv,p,x

[ρ = ρ] =
∏

j∈Sp
̸=?

1 [ρj = pj ]×
∏

j∈Sp
?

xj=1

1 [ρj = ⋆]×
∏

j∈Sp
?

xj=0

{
δj/(2− δj) if ρj = ⋆

1− δj/(2− δj) if ρj = 0
.

Fix x ∈ {0, 1}n. We prove this by induction on the state space (v, p) consistent with x. The entry-
point of the state space is (root(T ), ?n). In this case, the statement holds by definition. Suppose
now that the statement is true for state (v, p). Depending on the value of ρ, there are several next
state (v′, p′) possible. Observe however that the next vertex of T to be visited does not depend on
ρ, as it is fixed to be v′ := child(v, ⟨x,Qv⟩). For any fixed ρ ∈ {0, ⋆}n, we have:

Prρ∼Rv′,p′,x [ρ = ρ] = Prx∼µ,ρ∼Rx
µ
[ρ = ρ | (v′, p′) is reached and x = x]

=
Prx,ρ[ρ = ρ and (v′, p′) is reached and x = x]

Prx,ρ[(v′, p′) is reached and x = x]
.

Note that there can be only one state from which (v′, p′) can be reached, namely (v, p). Indeed,
suppose that there is another state (v, p⋆) from which (v′, p′) can be reached. Then (v, p) and (v, p∗)
have a common ancestor (u, q). Since the paths diverged after (u, q), it must be that p ≁ p∗ and
thus p∗ ≁ p′: a contradiction. Thus, we have the following equivalence:

(v′, p′) is reached ⇐⇒ (v, p) is reached and ρ ∼ p′.

Therefore, we have:

Prρ∼Rv′,p′,x [ρ = ρ] =
Prρ∼Rv,p,x [ρ = ρ] · 1 [ρ ∼ p′]

Prρ∼Rv,p,x [ρ ∼ p′]
. (7)

We can now use the inductive hypothesis on (v, p). Since ρ ∼ p′ implies ρ ∼ p, the numerator of (7)
simplifies to:∏

j∈Sp′
̸=?

1 [ρj = pj ]×
∏

j∈Sp
?

xj=1

1 [ρj = ⋆]×
∏

j∈Sp
?

xj=0

{
δj/(2− δj) if ρj = ⋆

1− δj/(2− δj) if ρj = 0
.

Let ∆ = Sp
? \ S

p′

? and observe that the denominator of (7) is equal to:∏
j∈∆
xj=1

1 [ρj = ⋆]×
∏

j∈∆
xj=0

{
δj/(2− δj) if ρj = ⋆

1− δj/(2− δj) if ρj = 0
.
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Claim 43. For every reachable state (v, p) and x ∈ {0, 1}n, X v,p ≡ X̂ v,p.

Proof. Fix some (v, p) and x ∈ {0, 1}n. Upon inspection of X̂v,p, it is enough to prove that

Prx∼X v,p [x = x] = M(x, v, p) ·
∏

j∈Sp
?

1− δj/2− xj · (1− δj),

where M(x, v, p) is an indicator set to 1 if and only if for all j ∈ [n], pj = 0 implies xj = 0 and
⟨x,Qu⟩ = bu for all u ∈ path(v). By Baye’s rule we have:

Pr
x∼X v,p

[x = x] = Pr x∼µ
ρ∼Rx

µ

[x = x | (v, p) is reached on (x,ρ)]

=
p(x)∑

x′∈{0,1}n p(x′)
where p(x) := Pr

x,ρ
[x = x] · Pr

x,ρ
[(v, p) is reached on (x,ρ) | x = x].

To analyse p(x), we have:

Pr x∼µ
ρ∼Rx

µ

[x = x] = Prx∼µ[x = x] =
∏

j∈[n]
Pr
x∼µ

[xj = xj ] =
∏

j∈[n]
1− (δj/2)− xj · (1− δj)

On the other hand, the second component of p(x) is clearly zero if M(x, v, p) = 0. For instance, v
cannot be reached if x does not satisfy all equations on the path to v. Thus, we have:

Pr x∼µ
ρ∼Rx

µ

[(v, p) is reached on (x,ρ) | x = x] = Prρ∼Rx
µ
[(v, p) is reached on (x,ρ)]

= M(x, v, p) · Prρ∼Rx
µ
[ρ ∼ p]

= M(x, v, p) ·
∏

j∈Sp
0

2− 2δj
2− δj

·
∏

j∈Sp
⋆

(
δj

2− δj

)1−xj

.

Combining those two observations, we get:

p(x) = M(v, p, x) ·
∏

j∈Sp
?

(
1− δj/2− xj · (1− δj)

)
·
∏

j∈Sp
0

(1− δj) ·
∏

j∈Sp
⋆

δj/2.

Observe that the last two products do not involve x at all and can thus be cancelled in the initial
expression:

Pr
x∼X v,p

[x = x] =
p′(x)∑
x′ p′(x)

where p′(x) = M(x, v, p) ·
∏

j∈Sp
?

(
1− δj/2− xj · (1− δj)

)
.

Finally, observe that M(x, v, p) fixes the value of all the bits of x except for Sp
? . Thus, the summation

in the denominator equals 1 and the claim follows.
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position and Small-Bias Minimax . In 2022 IEEE 63rd Annual Symposium on Foun-
dations of Computer Science (FOCS), pages 624–635. IEEE Computer Society, 2022.
doi:10.1109/FOCS54457.2022.00065.

[BCD24] Sreejata Kishor Bhattacharya, Arkadev Chattopadhyay, and Pavel Dvořák. Exponen-
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