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Abstract

Trevisan and Vadhan (FOCS 2000) introduced the notion of (seedless) extractors for samplable dis-
tributions. They showed that under a very strong complexity theoretic hardness assumption, there are
extractors for samplable distributions with large min-entropy of k = (1− γ) · n, for some small constant
γ > 0. Recent work by Ball, Goldin, Dachman-Soled and Mutreja (FOCS 2023) weakened the hardness
assumption. However, since the original paper by Trevisan and Vadhan, there has been no improvement in
the min-entropy threshold k.

In this paper we give a construction of extractors for samplable distributions with low min-entropy
of k = n1−γ for some constant γ > 0, and in particular we achieve k < n

2 (which is a barrier for the
construction of Trevisan and Vadhan).

Our extractors are constructed under a hardness assumption that is weaker than the one used by Tre-
visan and Vadhan, and stronger than that used by Ball, Goldin, Dachman-Soled and Mutreja. Specifically,
that there exists a constant β > 0, and a problem in E = DTIME(2O(n)) that cannot be computed by size
2βn circuits that have an oracle to ΣP

5 .
Our approach builds on the technique of Trevisan and Vadhan, while introducing new objects and ideas.

We introduce and construct two objects: an errorless (seedless) condenser for samplable distributions, and
functions that are hard to compute on every samplable distributions with sufficient min-entropy. We use
techniques by Shaltiel and Silbak (STOC 2024), as well as additional tools and ideas, to construct the two
new objects, under the hardness assumption. We then show how to modify the construction of Trevisan
and Vadhan, using these new objects, so that the barrier of k = n/2 can be bypassed, and we can achieve
an extractor for samplable distributions with low min-entropy.
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1 Introduction

1.1 Extractors for Samplable Distributions

An influential paper by Trevisan and Vadhan [TV00] introduced the notion of (seedless) extractors for sam-
plable distributions.

Definition 1.1 (Seedless extractor). A function Ext : {0, 1}n → {0, 1}m is a (k, ϵ)-extractor for a class D of
distributions, if for every distribution X in D, that is over {0, 1}n, such that H∞(X) ≥ k, Ext(X) is ϵ-close
to Um.1

The goal of Trevisan and Vadhan was to identify a class of distributions that contains sources of random-
ness that are “available to computers”, and allows seedless extractors that run in poly-time.

Definition 1.2 (Sampling procedures and samplable distributions). For a function A : {0, 1}r → {0, 1}n, we
use Z ← A to denote the experiment in which W ← Ur, and Z = A(W ), and say that Z is sampled by A.
We say that the distribution Z is samplable by a class C of functions, if there exists A ∈ C that samples Z.

Trevisan and Vadhan considered extractors for distributions that are samplable by poly-size circuits,
namely distributions samplable by circuits of size nc for some constant parameter c. They showed that such
extractors cannot run in time smaller than nc, and considered extractors that run in time poly(nc). They
showed that such extractors imply circuit lower bounds, and so, motivated by the hardness vs. randomness
paradigm, they gave a conditional construction based on hardness assumptions.

Hardness assumptions against various types of nondeterministic circuits. We say that “E is hard for
exponential size circuits of some type”, if there exists a problem L ∈ E = DTIME(2O(n)) and a constant
β > 0, such that for every sufficiently large n, circuits of size 2β·n (of the specified type) fail to compute the
characteristic function of L on inputs of length n. (See Section 2.4 for a more formal definition).

The assumptions that E is hard for exponential size (deterministic) circuits was used by the celebrated
paper of Impagliazzo and Wigderson [IW97] to imply that BPP = P. The stronger assumption that E is hard
for exponential size nondeterministic circuits2, originated in works on hardness versus randomness for AM,
and is used in many results [AK02, KvM02, MV05, SU05, BOV07, GW02, GST03, SU06, SU09, Dru13,
AASY15, BV17, AIKS16, HNY17, DMOZ22, BDL22, CT22, BGDM23, BSS24, SS24, Sha24]. It can be
viewed as a scaled, nonuniform version of the widely believed assumption that EXP ̸= NP.

In their seminal paper on extractors for samplable distributions, Trevisan and Vadhan [TV00] introduced a
version of the assumption for a stronger circuit class. A Σi-circuit, is a circuit that in addition to the standard
gates, is also allowed to use a special gate (with large fan-in) that solves the canonical complete language
for the class ΣP

i (the i’th level of the polynomial time hierarchy).3 The extractor of Trevisan and Vadhan
[TV00] relies on the strong assumption that E is hard for exponential size Σ6-circuits (which can be viewed
as a scaled, nonuniform version of the widely believed assumption that EXP ̸= ΣP

6 ).4

Previous work on extractors for samplable distributions. The main result of Trevisan and Vadhan [TV00]
is that under a hardness assumption for Σ6-circuits, there is an extractor for distributions samplable by poly-
size circuits with k = (1− γ) · n, for some small constant γ > 0. Below is a precise statement.5

1See Section 2 for the standard definitions of min-entropy and statistical distance.
2A precise definition of nondeterministic circuits appears in Section 2.3.
3A Σi-circuit is a nonuniform analogue of the class PΣP

i that contains ΣP
i , and recall that P = ΣP

0 and NP = ΣP
1 . See Section 2.3

for a formal definition.
4We remark that following [TV00] there is some later work that relies on hardness for Σi-circuits for i > 1 [GW02, AS14,

AASY15, AIKS16, BDL22].
5The statement of Theorem 1.3 given here is taken from the conference version [TV00]. In a later unpublished version, Trevisan

and Vadhan notice that the assumption can be weakened to assume hardness for Σ5-circuits.
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Theorem 1.3 ([TV00]). If E is hard for exponential size Σ6-circuits then for every sufficiently small con-
stant γ > 0, every constant c > 1, and for every sufficiently large n, there is a function Ext : {0, 1}n →
{0, 1}(1−O(γ))·n that is a ((1 − γ) · n, ϵ)-extractor for distributions samplable by circuits of size nc, where
ϵ = n−c. Furthermore, Ext is computable in time poly(nc).

More recent work on extractors for samplable distributions improved Theorem 1.3 in two respects:

• Ball et al. [BGDM23] achieved the conclusion of Theorem 1.3 under the weaker, and more standard
assumption that E is hard for exponential size nondeterministic circuits.

• Applebaum et al. [AASY15] and Shaltiel [Sha24] considered extractors with “multiplicative error”,
meaning that the extractor satisfies the stronger guarantee that for every output string z ∈ {0, 1}m,
Pr[Ext(X) = z] ≤ eϵ · 2−m. See Definition and discussion in Section 2.2.1. Very recently, Shaltiel
[Sha24] constructed an extractor with multiplicative error (for slightly shorter output length) under
the weaker assumption used by Ball et al. [BGDM23]. See [AASY15, Sha24] for a discussion on
multiplicative extractors.

Since the original paper of Trevisan and Vadhan [TV00] there was no improvement in the min-entropy thresh-
old of explicit extractors for samplable distributions. All constructions of explicit extractors work only
when the min-entropy threshold k is very large, and apply only to sources with very high min-entropy of
k = (1− γ) · n for some constant γ > 0. As we will explain in detail in Section 1.3, the technique of [TV00]
and subsequent work, cannot give extractors with k < n

2 .

1.2 Our Results

In this paper, we give the first explicit construction of extractors for samplable distributions with low min-
entropy. We are able to construct extractors with k ≪ n/2, and achieve extractors with k = n1−γ , where
γ > 0 is some small constant.

Theorem 1.4 (Extractor for samplable distributions with low min-entropy). There exists a constant γ > 0
such that if E is hard for exponential size Σ5-circuits, then for every constants c > 1, every constant α > 0,
every sufficiently large n, and every k ≥ n1−γ , there is a (k, ϵ)-extractor Ext : {0, 1}n → {0, 1}(1−α)·k for
distributions samplable by circuits of size nc, where ϵ = n−c. Furthermore, Ext can be computed in time
poly(nc).

We remark that there are barriers preventing current techniques from achieving extractors with ϵ = n−ω(1),
see [AASY15] for precise details.

The assumption used in Theorem 1.4 is weaker than that used in Theorem 1.3, and stronger than that
used in [BGDM23, Sha24]. The past success of [BGDM23] in weakening the original hardness assumption
of [TV00] gives hope that this may be doable also for the low min-entropy case. The reader is referred
to [Sha24] for a discussion regarding the necessity of hardness for nondeterministic circuits for extractors
for samplable distributions. We remark that a less modular argument could have replaced Σ5-circuits with
Σ4-circuits in Theorem 1.4, see Remark 4.11.

While Theorem 1.4 does not achieve multiplicative extractors, our technique can potentially yield multi-
plicative extractors, and the missing component is an explicit construction of a low-error 2-source extractor
for low min-entropy, see Remark 4.9 and Section 5.

We also obtain extractors with m = (1− o(1)) · k. for every k ≥ n1−γ . (This yields an improved output
length over Theorem 1.3 even for large values of k).

Theorem 1.5 (Extractor for samplable distributions with larger output length, and higher error). There exists
a constant γ > 0 such that if E is hard for exponential size Σ5-circuits, then for every constant c > 1,

2



every constant 0 < η < 1, every constant b > 1, every sufficiently large n, and every k ≥ n1−γ , there is

a (k, ϵ)-extractor Ext : {0, 1}n → {0, 1}(1−
1

logb n
)k

for distributions samplable by circuits of size nc, where
ϵ = 1

2log
η n . Furthermore, Ext can be computed in time poly(nc).

In Theorem 1.5, the improved output length comes with a cost of a larger error ϵ. We remark that our
techniques can potentially achieve output length m = (1 − o(1)) · k with error ϵ = n−c (as in Theorem 1.3
and Theorem 1.4) and the missing component is a seeded extractor that achieves m = (1 − o(1)) · k for
ϵ = n−c with seed length O(log n). See Section 5 for more details.

Perspective. Trevisan and Vadhan made the philosophical argument that every weak source of randomness
from nature is necessarily efficiently samplable. If one agrees with this argument, then extractors for sam-
plable distributions capture all natural weak sources of randomness that are available to computers. Previous
extractors for samplable distributions could only handle sources with very large min-entropy. Our extractors
extend the usefulness of extractors for samplable distributions to sources with low min-entropy.

1.3 Technique

In this section, we give a detailed informal overview of the main ideas that we use. The later technical sections
contain full proofs and do not build on the content of this section. The reader can skip to the technical section
if they wish. In Section 1.3.1 we give a high-level overview of the construction and proof of [TV00], and
explain why this construction does not work for low min-entropy. In Section 1.3.2 we explain our construction
(which relies on two new components that we introduce: an errorless condenser for samplable distributions,
and a function that is hard on average on samplable distributions (HOS)). In Section 1.3.3 we explain how we
construct the new components.

1.3.1 An Overview of the Construction of Trevisan and Vadhan

The construction of Trevisan and Vadhan uses average-case hard functions, and 2-source extractors.

Definition 1.6 (average-case hard functions). We say that a function f : {0, 1}n → {0, 1}m is ρ-hard for a
class C, if for every C : {0, 1}n → {0, 1}m in C, PrX←Un [C(X) = f(X)] ≤ ρ.

Definition 1.7 (Two-source extractors). A function TExt : {0, 1}n1 × {0, 1}n2 → {0, 1}m is a (k1, k2, ϵ)-2-
source extractor if for every two independent distributions X1, X2 with H∞(X1) ≥ k1 and H∞(X2) ≥ k2,
TExt(X1, X2) is ϵ-close to Um.

Given parameters n and c, we aim to construct a (k, ϵ)-extractor Ext : {0, 1}n → {0, 1}m for distributions
samplable by size nc circuits, with ϵ = n−c and as large as possible k. For simplicity, we will consider the
case that m = 1. Let n1 = n/2. Trevisan and Vadhan start by showing that the hardness assumption implies
a function f̂ : {0, 1}n1 → {0, 1}n1 such that:

• f̂ is 2−Ω(n)-hard for Σ2-circuits of size nc′ for a constant c′ somewhat larger than c.
• f̂ is computable in time poly(nc′).

This construction is a major contribution of [TV00], which we will not survey in detail here.6 The second
ingredient used by [TV00] is an explicit (k′1, k

′
2, ϵ
′)-2-source extractor TExt : {0, 1}n1 × {0, 1}n → {0, 1},

where ϵ′ = ϵ
16 = n−c

16 , and we will explain how to choose k′1 and k′2 later.
6This result uses the “low-degree extension” a.k.a “Reed-Muller code” that was previously used by Sudan, Trevisan and Vadhan

[STV01] to yield “local list-decoding”. Loosely speaking, the contribution of [TV00] is showing that the local list-decoding algorithm
of [STV01] can be sped up using nondeterminism, and this in turn means that by assuming a strong hardness assumption against Σi-
circuits, one can obtain a ρ-hard function which is computable in time poly(n), with very small ρ = 2−Ω(n). The reader is referred
to [AASY15] for a discussion of the power of nondeterministic reductions.
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Given x ∈ {0, 1}n, let Left(x) denote the first n/2 bits of x, and Right(x) denote the last n/2 bits of x,
so that x = (Left(x),Right(x)). The final extractor Ext : {0, 1}n → {0, 1} is defined by:

Ext(x) = TExt(f̂(Left(x)), x). (1)

We remark that Trevisan and Vadhan use a slightly different construction than the one we state here.7

The role of 2-source extractors. For a samplable distribution X with H∞(X) ≥ k, it is not the case that
Left(X) and X are independent. Therefore, it is not immediately clear why a 2-source extractor should be
helpful. Indeed, the property of 2-source extractors that is used in the analysis is the following:

Proposition 1.8 (List-decoding view of 2-source extractors). If TExt : {0, 1}n1 × {0, 1}n → {0, 1}m is a
(k′1, k

′
2, ϵ
′)-2-source extractor, then for every z ∈ {0, 1}m, and every distribution W over {0, 1}n such that

H∞(W ) ≥ k′2, the set TW,z := {v ∈ {0, 1}n1 : Pr[TExt(v,W ) = z] > 2−m + ϵ′} satisfies |TW,z| ≤ 2k
′
1 .

Proposition 1.8 says that for every distribution W that has min-entropy at least k′2 (the min-entropy re-
quirement of the second source) there is only a small number of strings v ∈ {0, 1}n1 , such that the distribution
TExt(v,W ) is biased. Proposition 1.8 follows by noting that if it does not hold, then taking R to be the uni-
form distribution over TW,z , one obtains two independent distributions R,W , that contradict the guarantee of
2-source extractors. We will now explain how Trevisan and Vadhan use this property in the analysis.

The analysis of Trevisan and Vadhan. We assume that Ext is not a (k, ϵ)-extractor for distributions of size
nc, and will get a contradiction by showing that there is a Σ2-circuit C of size nc′ that breaks the hardness of f̂ .
Our starting point is that there exists a distribution X with H∞(X) ≥ k that is samplable by a size nc circuit,
and Ext(X) is not ϵ-close to uniform. This gives that there exists a z ∈ {0, 1}m such that Pr[Ext(X) = z] >
2−m + ϵ, and we have that:

Pr[TExt(f̂(Left(X)), X) = z] > 2−m + ϵ.

Let Y = Left(X). We will say that a string y ∈ {0, 1}n1 is useful if:

• H∞(X|Y = y) ≥ k′2. (I.e. conditioning on y leaves a lot entropy in X).
• Pr[TExt(f̂(y), X) = z|Y = y] > 2−m + ϵ′. (I.e. conditioning on y biases the extractor).

This definition is made so that for every useful y ∈ {0, 1}n1 , if we denote the distribution X conditioned on
the event {Y = y}, by Wy = (X|Y = y), it follows that:

• f̂(y) ∈ TWy ,z . (This follows directly from the second item, and the definition of TWy ,z).
• |TWy ,z| ≤ 2k

′
1 . (This follows from the first item and Proposition 1.8).

Recall that our goal is to construct a size nc′ Σ2-circuit C that given y ∈ {0, 1}n1 is able to compute f̂(y)
“too well” and contradict the hardness of f̂ . The two items above give that for every useful y ∈ {0, 1}n1 , the
desired output f̂(y) is in the set TWy ,z which is small. This means that on a useful y, a circuit C can output
f̂(y) with probability 2−k

′
1 , if it can sample a uniform element from TWy ,z . Trevisan and Vadhan used classical

results on approximate counting and uniform sampling of NP witnesses [Sto83, Sip83, JVV86, BGP00] in
order to show that a (randomized) Σ2-circuit C of size poly(nc) = nc′ can indeed sample a uniform element
from TWy ,z when given a useful y. We will not present this argument in detail in this overview.8

7Trevisan and Vadhan use the construction Ext(x) = TExt(f̂(Left(x)),Right(x)). However, their analysis also applies to the
construction we state here if one has an approprate 2-source extractor (which they didn’t have at the time). We present the modified
construction, as it will be easier to explain and extend. In the construction of Trevisan and Vadhan [TV00], f̂ is the low-degree
extension, and TExt is the “Hadamard extractor” of Chor and Goldreich [CG88]. With these choices, the construction of Trevisan
and Vadhan is very natural and corresponds to concatenating the Reed-Muller code with the Hadamard code.

8On a high level, this is achieved in two steps. In the first step, Trevisan and Vadhan show that for every useful y, there is a small

4



A barrier at k = n/2. We would like to argue that there are many useful y. Note that the first requirement
in the definition of a useful y requires that H∞(X|Y = y) ≥ k′2. In order to guarantee that there exists
even a single y ∈ {0, 1}n1 , such that H∞(X|Y = y) ≥ 0, Trevisan and Vadhan have to assume that
k = H∞(X) ≥ n/2. Otherwise, it could be that X is uniformly distributed on the first n1 = n/2 bits, so that
Y = Left(X) is uniformly distributed and for every y ∈ {0, 1}n1 , H∞(X|Y = y) = 0.

Choosing the threshold k′2. While this rules out choosing k < n
2 , it turns out that if one chooses k to be

sufficiently larger than n1 = n/2, then a simple averaging argument shows that:

k′2 ≤ k − n1 −O(log n)⇒ Pr[Y is useful] ≥ ϵ

8
. (2)

This means that by choosing k to be sufficiently larger than n1 = n/2, and choosing k′2 = k − n1 −
O(log n), we obtain that the size nc′ Σ2-circuit C satisfies:

Pr[C(Y ) = f̂(Y )] ≥ ϵ

8
· 2−k′1 . (3)

Recall that f̂ is hard on average on the uniform distribution Un1 , whereas the statement in (3) discusses a
distribution Y = Left(X), which is not necessarily uniform. In order to contradict the hardness of f̂ , Trevisan
and Vadhan need to obtain a version of (3) on the uniform distribution. They observe that for every ∆ > 0, if
we assume that H∞(X) ≥ k ≥ n−∆, then we can conclude that H∞(Left(X)) ≥ n1−∆ (as only ∆ bits of
min-entropy can be “missing” from Y = Left(X)) and this allows to convert (3) to the uniform distribution
by paying a penalty of 2−∆ in the success probability. This follows because for every event A ⊆ {0, 1}n1 ,
and for every distribution Y with H∞(Y ) ≥ n1 −∆, it holds that Pr[Un1 ∈ A] ≥ 2−∆ · Pr[Y ∈ A]. More
specifically, we get that if k ≥ n−∆ then:

Pr
V←Un1

[C(V ) = f̂(V )] ≥ ϵ

8
· 2−k′1 · 2−∆. (4)

Choosing the threshold k′1. We can set the parameters so that this gives a contradiction to the hardness
of f̂ . For this purpose we choose ∆ = γ · n for a sufficiently small constant γ > 0 (and this will dictate that
we can only get an extractor for very high min-entropy of k = n−∆ = (1− γ) · n, as in Theorem 1.3). We
also need to set k′1 = η · n for a sufficiently small constant η > 0, so that the probability in (4) is sufficiently
large to contradict the hardness of f̂ . This concludes the argument of Trevisan and Vadhan [TV00].

1.3.2 Our Construction of Extractors for Samplable Distributions with Low Min-Entropy

We aim to use the same proof structure as the one used by Trevisan and Vadhan [TV00]. However, we would
like to bypass the barriers, and achieve an extractor for low min-entropy threshold k = n1−γ for some constant
γ > 0 (as guaranteed in Theorem 1.4). We will need two new components.

Σ1-circuit Cy that on input v ∈ {0, 1}n1 can decide whether v ∈ TWy,z . This circuit works by using “approximate counting of NP
witnesses” (see Section 2.7 for a precise statement) to approximate Pr[TExt(v,Wy) = z|Y = y], and compare it to the threshold
in the definition of TWy,z . In the second step, Trevisan and Vadhan use “uniform sampling of NP witnesses” (see Section 2.7) to
obtain a Σ2-circuit C that given y ∈ {0, 1}n1 samples a uniform element from {v : Cy(v) = 1}. In our formal proof, we repeat this
argument, and the proof appears in Section 4. We remark that in this argument, the circuit C that is obtained has size poly(nc, 1

ϵ
),

and as we aim for a poly(n)-size circuit, this dictates that ϵ ≥ n−Ω(1).
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Errorless condenser for samplable distributions. We will replace the function Left : {0, 1}n → {0, 1}n1

in the construction of Trevisan and Vadhan that is specified in (1) with an “errorless condenser for samplable
distributions”, which we now define.

Definition 1.9 (Errorless condenser). A function Cnd : {0, 1}n → {0, 1}n1 is a (k, k′)-errorless condenser
for a class D of distributions, if for every distribution X in D, that is over {0, 1}n, such that H∞(X) ≥ k,
H∞(Cnd(X)) ≥ k′.

One of the contributions of this paper is showing that the hardness assumption implies the following
errorless condenser.

Theorem 1.10 (Errorless condenser). There exists a constant γ > 0 such that if E is hard for exponential
size Σ3-circuits, then for every constant c > 1, and every sufficiently large n, there is a function Cnd :
{0, 1}n → {0, 1}n0.9

that is an (n1−γ , n0.7)-errorless condenser for distributions samplable by circuits of
size nc. Furthermore, Cnd can be computed in time poly(nc).

Note that this is not a “condenser” as typically construed because the entropy rate may decrease (that is,
the entropy rate k′/n1 of the output distribution is smaller than the entropy rate k/n of the input distribution).
Theorem 1.10 is stated in a more general way in Theorem 3.1. We give a high level overview of the proof of
Theorem 1.10 in Section 1.3.3.

Recall that in the construction of Trevisan and Vadhan, we had to choose k ≥ n/2, because we had to
guarantee that both Y = Left(X), and X conditioned on Y , have high min-entropy. We will modify the
construction of Trevisan and Vadhan, described in (1) as follows: We choose n1 = n0.9 rather than n1 = n/2,
and use Cnd : {0, 1}n → {0, 1}n1 instead of Left. That is, we define:

Ext(x) = TExt(f̂(Cnd(x)), x). (5)

For k = n1−γ , and a samplable distribution X with H∞(X) ≥ k, we now have that Y = Cnd(X) has
H∞(Y ) ≥ n0.7, and furthermore because Y is now shorter than k, it cannot “steal all the entropy of X”, and
therefore we expect X to have roughly k − n1 = Ω(k) bits of min-entropy, even conditioned on Y .

This observation gives that for this modified construction, we can repeat the argument described in Section
1.3.1, exactly as before, and obtain that by choosing k′2 ≤ k− n1 −O(log n) (as instructed in (2), which will
be easy to satisfy) we can obtain a Σ2-circuit C of size nc′ that satisfies (3), and specifically,

Pr[C(Y ) = f̂(Y )] ≥ ϵ

8
· 2−k′1 . (6)

As we explained in Section 1.3.1, at this point, the argument of Trevisan and Vadhan relies on the fact
that they choose k to be extremely large, to convert (3) which discusses success probability on Y , to (4)
which considers success probability on the uniform distribution on {0, 1}n1 , and obtain a contradiction to the
hardness of f̂ . We cannot afford this step, which requires k to be very large.

Functions that are hard on samplable distributions with sufficiently high min-entropy (HOS). We will
replace the function f̂ with a different function Hrd, which we will set up to be “sufficiently hard” so that (6)
is already a contradiction to its hardness, without having to move to the uniform distribution. This leads to
the following notion of functions that are hard on samplable distributions with sufficiently high min-entropy,
which we abbreviate by HOS.

Definition 1.11 (A function that is hard on samplable distributions (HOS)). A function Hrd : {0, 1}n →
{0, 1}m is an (s, k, ρ)-HOS for a class C, if for every distribution Y over {0, 1}n that is samplable by size s
circuits, with H∞(Y ) ≥ k, and every function C : {0, 1}n → {0, 1}m in C, Pr[C(Y ) = Hrd(Y )] ≤ ρ.
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Note that an HOS is a generalization of a hard on average function, in the sense that rather than being hard
on average only on the uniform distribution, an HOS is hard on average on every samplable distribution with
sufficiently high min-entropy. One of the contributions of this paper is showing that the hardness assumption
implies the following HOS.

Theorem 1.12 (HOS for Σ2-circuits). There exists a constant a0 > 1 such that if E is hard for exponential size
Σ4-circuits, then for every constant c > 1, and every sufficiently large n, there is a function Hrd : {0, 1}n0.9 →
{0, 1}na0 that is an (nc, n0.7, 2−Ω(n0.7))-HOS for size nc Σ2-circuits. Furthermore, Hrd is computable in time
poly(nc).

Theorem 1.10 is stated in a more general way in Theorem 3.2. We give a high level overview of the proof
of Theorem 1.12 in Section 1.3.3.

Complexity leveraging against the errorless condenser. Recall that we want that (6) is a contradiction to
the hardness of Hrd. To achieve this, we will need to argue that Y = Cnd(X) is a samplable distribution on
which the guarantee of Hrd applies. We indeed do have that H∞(Y ) ≥ n0.7 which is the required min-entropy
threshold. We will also need that Y is efficiently samplable. This seems problematic as Cnd itself is a type
of “hard function” against circuits of size nc, and we do not have that Y = Cnd(X) is samplable by size nc

circuits.
Fortunately, we can use “complexity leveraging” against Cnd. More specifically, we have that Cnd can

be computed in time poly(nc) = ndCnd for some constant dCnd > c. Recall that X is a distribution that is
samplable by size nc circuits, and has H∞(X) ≥ k. It follows that the distribution Y = Cnd(X) is samplable
by circuits of size ndCnd + nc, and has H∞(Y ) ≥ n0.7.

We will apply Theorem 1.12 with a sufficiently large constant c′ > dCnd, to obtain a function Hrd :
{0, 1}n1=n0.9 → {0, 1}na0 that is an (nc′ , n0.7, 2−Ω(n0.7))-HOS for size nc′ Σ2-circuits, and is computable in
time poly(nc′) = poly(nc). (Loosely speaking, this creates a “hierarchy of hardness” where the size nc circuit
that samples X is at the bottom, Cnd is harder, and Hrd is hard even against Cnd).

We modify the construction of Ext in (5) and replace the function f̂ with Hrd. We can repeat the argument
of Section 1.3.1 to obtain the Σ2-circuit C. (The circuit C will now also run Cnd as a subroutine, and is
therefore of size poly(ndCnd)). We get that (6) holds, and specifically that

Pr[C(Y ) = Hrd(Y )] ≥ ϵ

8
· 2−k′1 (7)

By choosing c′ to be sufficiently large, and choosing k′1 = n0.6, so that ϵ
8 · 2

−k′1 ≥ 2−Ω(n0.7), we get that
C contradicts the hardness of Hrd. More specifically, that on the distribution Y = Cnd(X) that is samplable
by circuits of size nc + ndCnd ≤ nc′ , the size nc′ Σ2-circuit C, satisfies Pr[C(Y ) = Hrd(Y )] ≥ ϵ

8 · 2
−k′1 ≥

2−Ω(n0.7). This gives a contradiction to the HOS guarantee of Hrd and shows the correctness of the constructed
extractor.

The final extractor construction for one bit output. We now combine the two ideas together, choose
parameters, and review the argument. Let γ > 0 be the constant from Theorem 1.10 and let k = n1−γ . We
will construct a (k, ϵ)-extractor, Ext : {0, 1}n → {0, 1} for distributions samplable by size nc circuits, with
ϵ = n−c as follows:

• Let n1 = n0.9, and Let Cnd : {0, 1}n → {0, 1}n1 be the (k, n0.7)-errorless condenser of Theorem 1.10.
• We have that Cnd can be computed in time ndCnd for some constant dCnd > c. Let c′ > dCnd be a

sufficiently large constant. Let Hrd : {0, 1}n0.9 → {0, 1}na0 be an (nc′ , n0.7, 2−Ω(n0.7))-HOS for size
nc′ Σ2-circuits, which we get from Theorem 1.12.
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• Let k′1 = k′2 = n0.6 and let TExt : {0, 1}na0 ×{0, 1}n → {0, 1} be a (k′1, k
′
2, ϵ
′)-2-source extractor for

ϵ′ = ϵ/16. By the breakthrough result of Chattopadhyay and Zuckerman [CZ16], we can obtain such
an explicit 2-source extractor.9

The extractor Ext : {0, 1}n → {0, 1} is given by:

Ext(x) = TExt(Hrd(Cnd(x)), x). (8)

With these choices, we can repeat the argument outlined in Section 1.3.1. A full formal construction and
proof for this argument appear in Section 4.

Constructing extractors with large output length. In Section 4 we extend the argument described above
for larger output length m. However, in order to obtain an extractor with output length m, we need to take
the error of the 2-source extractor TExt to be ϵ′ = ϵ

8·2m . Unfortunately, the recent explicit constructions of
low min-entropy 2-source extractors (specifically, [CZ16] and subsequent work) do not achieve ϵ′ = n−ω(1).
This means that using current 2-source extractors we can only obtain extractors for samplable distributions
with output length m = O(log n). This result is stated in Theorem 4.8. We remark that our approach can give
larger m directly, if low error explicit constructions of 2-source extractors are achieved.

We get extractors for samplable distributions with large output length (as stated in Theorem 1.4 and
Theorem 1.5) using a general transformation by Shaltiel [Sha08]. Shaltiel [Sha08] showed that one can boost
an extractor for samplable distributions that extracts O(log n) bits, into one that extracts almost all the min-
entropy from sources with slightly larger min-entropy. This transformation is described in Section 4.4 and
yields Theorem 1.4 and Theorem 1.5.10.

1.3.3 Constructing an Errorless Condenser and an HOS

In the previous section we explained how to construct an extractor for samplable distributions with low min-
entropy using two components: an errorless condenser, and an HOS. In this section we give an overview to
the proofs of Theorem 1.10 and Theorem 1.12. Both components are similar to extractors for samplable dis-
tributions in the sense that they expect their input distribution X to be a samplable distribution with sufficient
min-entropy, and can be thought of as “hard functions”. (This is clear for an HOS, and note that by definition,
a (k, k′)-errorless condenser for distributions samplable by size s circuits is equivalent to an (s, k, 2−k

′
)-HOS

for the class C of constant functions).
Our construction will rely on recent work by Shaltiel and Silbak [SS24] that show how to construct a

variant of hard function which they termed HTS, for “hard to sample”. We will discuss these functions below.
Our construction works as follows:

• We observe that an HTS with certain parameters implies both errorless condensers and HOS. The
parameters that we aim for, are different, and more challenging than those achieved by the constructions
of [SS24].

• Nevertheless, by using tools and ideas from [SS24] (as well as additional ideas that we will explain
below) we are able to construct a good enough HTS, under the hardness assumptions of Theorem 1.10
and Theorem 1.12.

9A technicality is that because the length of the first source is na0 that is larger than the length of the second source which is n,
we need to pad the second source to length na0 . This is not a problem, as the min-entropy thresholds k′

1 = k′
2 = n0.6, are large when

thought of as a function of the source length na0 , and recall that the 2-source extractor of [CZ16] works even when the min-entropy
is logarithmic in the source length.

10As stated in [Sha08], this transformation comes with the cost of strengthening the hardness assumption from hardness for Σi-
circuits, to hardness for Σi+1-circuits. However, a more careful proof of both our result, and Shaltiel’s transformation can avoid this
cost. See Remark 4.11.
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Functions that are hard to sample (HTS). Functions that are hard to sample (rather than just hard to
compute) have been studied in several contexts in recent years (see e.g., [AST+98, Vio12, Vio14, Vio20]).
Inspired by the work of Viola [Vio12], Shaltiel and Silbak [SS24] considered the following variant of functions
that are hard to sample: Let f : {0, 1}n → {0, 1}m, and fix some class A of “sampling procedures” (as in
Definition 1.2) that sample a distribution (X,Y ) ∈ {0, 1}n × {0, 1}m (for concreteness, let us focus on the
case that A is the class of circuits of size nc).

• We say that f is a (k, ρ)-min-entropy HTS for A, if for every A ∈ A, if H∞(X) ≥ k, then Pr[Y =
f(X)] ≤ ρ.

• We say that f is a (k, ρ)-min-entropy cHTS, if the requirement above holds for A ∈ A, for which the
distribution Y is fixed to some constant value y (rather than being a random variable).

The definition of min-entropy HTS that we give here is different than the definition used by Shaltiel and Silbak
[SS24]. Shaltiel and Silbak [SS24] used a different definition, that we refer to as a “small-set HTS” in this
paper. A precise definition of the two notions can be found in Section 3.1.11

Errorless condensers and HOS follow from HTS/cHTS. It immediately follows that a min-entropy HTS/cHTS
implies the components that we want to construct.

Proposition 1.13 (HTS implies errorless condenser and HOS).

• A (k, 2−k
′
)-min-entropy cHTS for circuits of size s is in particular an (s, k, 2−k

′
)-HOS for the class of

constant functions, and therefore (as explained above) is also a (k, k′)-errorless condenser for distri-
butions samplable by size s circuits.

• A (k, ρ)-min-entropy HTS for Σ2-circuits of size 2s is an (s, k, ρ)-HOS for Σ2-circuits of size s.

Both implications above trivially follow because if some procedure C computes f too well on some
samplable distribution X with H∞(X) ≥ k, then f is not an HTS/cHTS, by considering the sampling circuit
A that samples X , and computes Y = C(X). See Section 3.1.2 for a more formal proof.

Constructing the errorless condenser of Theorem 1.10. By Proposition 1.13, in order to prove Theorem
1.10, it is sufficient to explicitly construct a (k = n1−γ , 2−n

0.7
)-min-entropy cHTS f : {0, 1}n → {0, 1}n0.9

for circuits of size nc, under the hardness assumption.
We will construct f in two steps. In the first step, we will obtain a min-entropy cHTS f1 (that will based

on multiplicative extractors for samplable distributions) and will only work for very high min-entropy. In the
second, we will show how to reduce the min-entropy threshold of f1 using an approach of Shaltiel and Silbak
[SS24] that is based on strong seeded dispersers.

A min-entropy cHTS for large min-entropy. For some constant α > 0, we set n1 = n0.99, m1 = n0.8,
and will construct a (k1 = (1 − α) · n1, ρ1 = 2−(m1−1))-min-entropy cHTS f1 : {0, 1}n1 → {0, 1}m1 .
Note that here, the min-entropy threshold is very high, namely k1 = (1 − α) · n1. This is the range of
parameters for which we already have extractors for samplable distributions. We will take the function f1 to
be the multiplicative extractor for samplable distribution of Shaltiel [Sha24]. As explained in Section 1, the
guarantee of this multiplicative extractor is that for every samplable distribution X with H∞(X) ≥ k1, and
every z ∈ {0, 1}m1 , Pr[f1(X) = z] ≤ eϵ · 2−m1 ≤ 2−(m1−1), if we take ϵ = 1

2 . By definition, we obtain
that f1 is indeed a (k1, ρ1)-min-entropy cHTS. (Note that here, it is crucial to have multiplicative error, as
otherwise, we only get that ρ1 = n

−Θ(1)
1 which is not good enough for our purposes).

11Shaltiel and Silbak [SS24] used an HTS as a tool to construct error-correcting codes for computationally bounded channels. In
this setting, the computationally bounded adversary A is not necessarily required to act in a way that leads to a distribution X that
has large min-entropy. For that reason, Shaltiel and Silbak considered a stronger notion that applies to every adversary A, and asks
that for every A there exists a small set H of inputs, such that it is unlikely that A samples (X,Y ) such that Y = f(X) and X ̸∈ H .
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Reducing the min-entropy threshold of a cHTS. Shaltiel and Silbak [SS24] showed how to reduce the
min-entropy threshold of an HTS. The technique of Shaltiel and Silbak is designed to start with a different
variant of HTS (which is the one defined in [SS24]) which we call “small-set HTS”. We will not define this
variant in this high level overview, and a formal definition is given in Section 3.1.

The notion of small-set HTS is stronger than a min-entropy HTS. More specifically, while it is obvious
that a small-set HTS is a min-entropy HTS (with a slight loss in parameters), we do not know whether
this applies in the other direction. Nevertheless, we show that if a function is a min-entropy HTS (resp.
cHTS) for Σ2-circuits (and not just for deterministic circuits) then it is a small-set HTS (resp. cHTS) for
deterministic circuits (of slightly smaller size, and with a slight loss in parameters). See Lemma 3.7 for a
precise formulation.

This means that in order to use the min-entropy reduction of Shaltiel and Silbak, we need to set f1 to be
a min-entropy HTS, not just against deterministic circuits, but rather for the stronger class of Σ2-circuits. We
can achieve this by replacing the hardness assumption assumed in [Sha24] (that is against Σ1-circuits) with
an assumption against Σ1+2-circuits. Indeed, this is why Theorem 1.10 uses a hardness assumption against
Σ3-circuits. Summing up, under the hardness assumption of Theorem 1.10 we can make sure that f1 is an
HTS of the type for which the min-entropy reduction of Shaltiel and Silbak applies.

We now describe the construction of Shaltiel and Silbak. In this high level overview, we will cheat and
ignore the difference between a min-entropy HTS and a small-set HTS, and simply call a function an HTS or
cHTS, without mentioning the precise variant. This will make things easier to explain, and a precise formal
argument appears in Section 3.

The construction of Shaltiel and Silbak [SS24] relies on strong seeded dispersers.12 A strong seeded
(k, ϵ)-disperser is a function E : {0, 1}n×{0, 1}d → {0, 1}m such that for every distribution X over {0, 1}n
with H∞(X) ≥ k, if we take Y ← Ud, then the support of the distribution (Y,E(X,Y )) is of size at least
(1− ϵ) · 2m+d.

Shaltiel and Silbak [SS24], suggested the following construction: Let f1 : {0, 1}n1 → {0, 1}m1 be a
(k1, ρ1)-cHTS, and let E : {0, 1}n × {0, 1}d → {0, 1}m be a strong seeded (k, ϵ)-disperser, where m = n1,
so that the output length of E and the input length of f1 coincide. It is also required that ϵ ≤ 1− 2k1−m (and
note that this is an unusual, and weak requirement, as ϵ is allowed to be close to 1 rather than close to 0). Let
D = 2d be the “degree” of the disperser, and think of E as a function E : {0, 1}n × [D]→ {0, 1}m. Shaltiel
and Silbak [SS24] show that under these conditions, the function f : {0, 1}n → {0, 1}D·m1 defined by

f(x) = f1(E(x, 1)), . . . , f1(E(x,D)),

is a (k, ρ1 ·D)-HTS.
Loosely speaking, this means that one can start from a function f1, where the min-entropy threshold k1 is

very large compared to the input length n1 (in our case k1 = (1 − α)n1) and obtain a function f on n > n1

bits, where the min-entropy threshold k, is small compared to n.
Loosely speaking, this is where it is more beneficial to work with an HTS than with extractors for sam-

plable distributions. More specifically, while we do not have a good technique to reduce the min-entropy
threshold of an extractor for samplable distributions, the construction above is able to reduce the min-entropy
threshold of an HTS/cHTS, and this enables us to construct HTS/cHTS for distributions with low min-entropy,
which in turn translate into an errorless condenser, and an HOS, and can be used to construct extractors for
samplable distributions with low min-entropy by the approach explained in Section 1.3.2.

12We remark that in [SS24], and also in our formal proof in Section 3, the construction is described in terms of list-recoverable
codes, rather than strong seeded dispersers, and then the required list-recoverable codes are constructed using strong seeded dispersers.
In this high level overview we will describe the construction in the terminology of strong dispersers, which will be more natural in
terms of parameters, and easier to explain.
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We now use this approach to prove Theorem 1.10. More specifically, we have already explained how to
get a ((1 − α) · n1, 2

−(m1−1))-cHTS f1 : {0, 1}n1=n0.99 → {0, 1}m1=n0.8
. In order to obtain our desired

(k = n1−γ , 2−n
0.7
)-cHTS f : {0, 1}n → {0, 1}n0.9

, by the explanation above, we need a strong (k, ϵ)-seeded
disperser E : {0, 1}n×{0, 1}d → {0, 1}m with k = n1−γ , ϵ ≤ 1− 2k1−m = 1− 2−α·m and D = 2d ≤ n0.1.

The requirement that D ≤ n0.1 seems like a problem. This is because Radhakrishnan and Ta-Shma
[RTS00] showed that if ϵ < 1

2 , then seeded dispersers must have degree D ≥ n− k = (1− o(1)) · n. (Note
that with D ≥ n we cannot hope to use this transformation to obtain a function f where the output length
D ·m1 is shorter than the input length n, making this approach unsuitable to construct an errorless condenser).

Fortunately, for the case of high-error dispersers with ϵ = 1− o(1), Zuckerman [Zuc07] gave an explicit
construction of strong seeded (k, ϵ)-dispersers which for a sufficiently small constant γ > 0 and k = n1−γ ,
obtains the required ϵ ≤ 1 − 2k1−m = 1 − 2−α·m with degree D ≤ n0.1. (See Theorem 2.10 for a precise
statement). Using this strong seeded disperser (and accounting correctly for the difference between a min-
entropy cHTS and a small-set cHTS) we obtain that f is a (k = n1−γ , 2−n

0.7
)-cHTS as required. The precise

argument appears in Section 3.

Constructing the HOS of Theorem 1.12. We have already observed in Proposition 3.5 that the desired
HOS of Theorem 1.12 follows if we can construct an HTS with certain parameters.

We will construct such an HTS using the same approach used to prove Theorem 1.10. Namely, we will
start from an intial HTS f1 for high min-entropy, and reduce the min-entropy threshold using strong seeded
dispersers. Note however that the setting here is somewhat different than that of Theorem 1.10.

• Here we aim to construct an HTS rather than a cHTS. It is harder to construct an HTS than a cHTS,
and in particular, we cannot use the same approach that was used to get the starting function f1 in the
proof of Theorem 1.10. Instead, we will use an HTS f1 that is based on the function f̂ of Trevisan and
Vadhan that was described in Section 1.3.1. We will not go into details in this high level overview.

• On the other hand, in Theorem 1.12 we aim to construct a function f with output length that is longer
than the input length. This makes our life significantly easier, as we do not have to use strong seeded
dispersers with small degree D, and are allowed to use strong seeded dispersers with seed length d =
O(log n) which translates to degree D = nO(1). This means that we can use strong seeded dispersers
(or in fact seeded extractors) with error ϵ = 1

2 , and such explicit constructions are known for every
choice of k, [LRVW03, GUV07]. The fact that we are allowed to construct a function f with a large
output length, is also fortunate as the function f1 that we use in this argument has large output length,
and this would have prevented us from obtaining a final function f where the output length if shorter
than the input length, even if we used strong seeded dispersers with small D.

The precise details appear in Section 3.

2 Preliminaries

In this section, we present notation, definitions, and past work that we use. For completeness, we will also
repeat definitions from the introduction.

Probabilistic notation: For a distribution D, we use the notation X ← D to denote the experiment in
which X is chosen according to D. For a set A, we use X ← A to denote the experiment in which X is
chosen uniformly from the set A. We often also identify a distribution X , with the random variable X chosen
from this distributions. For a random variable X and an event A we use (X|A) to denote the distribution
which chooses an element according to X , conditioned on A. We use Un to be the uniform distribution on n
elements.
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Two distributions X,Y over the same finite domain S are ϵ-close if for every A ⊆ S, |Pr[X ∈ A] −
Pr[Y ∈ A] ≤ ϵ.

The min-entropy of a distribution X over a finite set S, is defined by H∞(X) := minx log
1

Pr[X=x] , where
the minimum is taken over all strings x in the support of X .

We use the following standard lemma.

Lemma 2.1. Let X,Y be random variables, such that H∞(X) ≥ k and Y is over {0, 1}m. For every η > 0,
with probability at least 1− η over choosing y ← Y , we have that H∞(X|Y = y) ≥ k −m− log 1

η .

2.1 Samplable Distributions

We repeat the standard definition of samplable distributions, that appeared in Section 1 as Definition 1.2.

Definition 2.2 (Sampling procedures and samplable distributions). For a function A : {0, 1}r → {0, 1}n, we
use Z ← A to denote the experiment in which W ← Ur, and Z = A(W ), and say that Z is sampled by A.
We say that the distribution Z is samplable by a class C of functions, if there exists A ∈ C that samples Z.

2.2 Extractors

We will be interested in several flavors of extractors and related objects.

2.2.1 Seedless Extractors

We repeat the standard definition of seedless extractors, that appeared in Section 1 as Definition 1.1.

Definition 2.3 (Seedless extractor). A function Ext : {0, 1}n → {0, 1}m is a (k, ϵ)-extractor for a class D of
distributions, if for every distribution X in D, that is over {0, 1}n, such that H∞(X) ≥ k, Ext(X) is ϵ-close
to Um.

The following “multiplicative variant” was defined in [AASY15, Sha24].

Definition 2.4 (Multiplicative seedless extractor). A function Ext : {0, 1}n → {0, 1}m is a (k, ϵ)-multiplicative
extractor for a class D of distributions, if for every distribution X in D, that is over {0, 1}n, such that
H∞(X) ≥ k, and for every z ∈ {0, 1}m,

Pr[Ext(X) = z] ≤ eϵ · 2−m.

Using the fact that for 0 < ϵ ≤ 1, eϵ ≤ 1 + 2ϵ, the following proposition immediately follows:

Proposition 2.5 (Multiplicative extractors imply standard extractors). For every class D and 0 < ϵ ≤ 1, a
(k, ϵ)-multiplicative-extractor for D is a (k, 2ϵ)-extractor for D.

The motivation behind the definition of multiplicative extractors, is that even with large error of say
ϵ = 1

2 , multiplicative extractors guarantee that an event A ⊆ {0, 1}m that occurs with probability at most
n−ω(1) under the uniform distribution, occurs with probability n−ω(1) under the distribution Ext(X). This is
beneficial because (as discussed in detail in [AASY15, Sha24] there are barriers for obtaining extractors for
samplable distributions with ϵ = n−ω(1) [AASY15].
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2.2.2 Errorless Condensers

In Definition 1.9, which appears in Section 1.3.2 we introduced a notion of an errorless condenser, and we
repeat it here.

Definition 2.6 (Errorless condenser). A function Cnd : {0, 1}n → {0, 1}n1 is a (k, k′)-errorless condenser
for a class D of distributions, if for every distribution X in D, that is over {0, 1}n, such that H∞(X) ≥ k,
H∞(Cnd(X)) ≥ k′.

2.2.3 Seeded Extractors and Dispersers

We need the following standard definition of strong seeded extractors and dispersers.

Definition 2.7 (Strong extractors and dispersers). A function E : {0, 1}n × {0, 1}d → {0, 1}m is a strong
(k, ϵ)-extractor if for every distribution X over {0, 1}n with H∞(X) ≥ k, the distribution Z = (Y,E(X,Y ))
where Y ← Ud is ϵ close to Um+d. E is a strong (k, ϵ)-disperser if the support size of Z is at least (1 − ϵ) ·
2m+d.

We now state several explicit constructions of extractors and dispersers.

Theorem 2.8 (Strong extractors with logarithmic seed and low error [GUV07]). There exists a constant
c1 > 1 such that for every constant α > 0, every sufficiently large n, and every k > c1 log n, there is a
strong (k, ϵ)-extractor E : {0, 1}n × {0, 1}O(log n

ϵ
) → {0, 1}(1−α)·k. Furthermore, E can be computed in

time poly(n).

Theorem 2.9 (Strong extractors with logarithmic seed and larger output length [TU12]). For every constants
0 < η < 1 and b ≥ 1, there exists a constant c1 such that for every sufficiently large n, and every k ≥
2c1·log

η n, there is a strong (k, 2− logη n)-extractor E : {0, 1}n × {0, 1}O(logn) → {0, 1}k−O( k

logb n
+logn)

.
Furthermore, E can be computed in time poly(n).

Theorem 2.10 (Strong high-error seeded dispersers with very short seed length [Zuc07]). There exist constant
c1, c2 such that for every functions δ(n), s(n) and every sufficiently large n, there is a strong (δ(n) · n, 1 −
s(n))-disperser E : {0, 1}n × {0, 1}logD × {0, 1}m for D = O( n

δ(n)c1 ·log 1
s(n)

) and m = O(δ(n)c2n).

Furthermore, E can be computed in time poly(n).

2.2.4 Two-Source Extractors

We repeat the standard definition of 2-source extractors, that appeared in Section 1 as Definition 1.7.

Definition 2.11 (Two-source extractors). A function TExt : {0, 1}n1 ×{0, 1}n2 → {0, 1}m is a (k1, k2, ϵ)-2-
source extractor if for every two independent distributions X1, X2 with H∞(X1) ≥ k1 and H∞(X2) ≥ k2,
TExt(X1, X2) is ϵ-close to Um.

We use the following explicit construction of 2-source extractors, due to Chattopadhyay and Zuckerman
[CZ16], with a later improvement by Li [Li16].

Theorem 2.12 ([CZ16, Li16]). There exists constant c0 such that for every constant c1, every sufficiently large
n, and every k > log(c0+c1) n there is a (k, k, 1

nc1 )-2-source extractor TExt : {0, 1}n×{0, 1}n → {0, 1}Ω(k).
Furthermore, TExt can be computed in time poly(nc1).
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Theorem 2.12 was proven by Chattopadhyay and Zuckerman [CZ16] for the case m = 1. This proof
was extended by Li [Li16] to handle larger m. The statement in Li’s paper is weaker than the one we state
here, and only applies for some fixed constant c2 (rather than any constant c2). Nevertheless, Li’s proof can
be extended to yield the statement here by choosing the parameters in the way done by Chattopadhyay and
Zuckerman [CZ16].

2.3 Definition of Circuits of Various Types

We formally define the circuit types that will be used in this paper.

Definition 2.13 (randomized circuits, nondeterministic circuits, oracle circuits and Σi-circuits). A randomized
circuit C has additional wires that are instantiated with uniform and independent bits.

A nondeterministic circuit C has additional “nondeterministic input wires”. We say that the circuit C
evaluates to 1 on x iff there exists an assignment to the nondeterministic input wires that makes C output 1
on x.

Given a boolean function A(x), an A-circuit is a circuit that is allowed to use A gates (in addition to the
standard gates).

An NP-circuit is a SAT-circuit (where SAT is the satisfiability function) a Σi-circuit is an A-circuit where
A is the canonical ΣP

i -complete language. The size of all circuits is the total number of wires and gates.13

2.4 Impagliazzo-Wigderson Style Hardness Assumptions

We will rely on assumptions of the following form, introduced by Impagliazzo and Wigderson [IW97]

Definition 2.14 (E is hard for exponential size circuits). We say that “E is hard for exponential size circuits
of type X” if there exist constants 0 < β < B, and a language L in E = DTIME(2B·n), such that for every
sufficiently large n, the characteristic function of L on inputs of length n is hard for circuits of size 2βn of
type X.

Remark 2.15 (Ladder Climbing). The assumption that E is hard for exponential size Σi circuits is typically
used to construct functions that are secure (in some sense) against circuits of size nc, and are computable in
larger time poly(nc).

Typically, these proofs allow “ladder climbing”, meaning that they immediately extend to show that for
every j ≥ 0, if E is hard for exponential size Σi+j circuits then the construction gives functions that are secure
against Σj-circuits of size nc, and are computable in time poly(nc).

This immediately follows because the proofs typically use the hardness of the problem in the hardness
assumption to argue that the function is secure (in a relativizing argument) and so prove the statement relative
to a ΣP

j -oracle. On the other hand, the fact that the function is easy to compute, and is computable in time
poly(nc) follows by a separate and independent argument that only relies on the easiness of the problem in
the hardness assumption.

This observation is used in many of the past works, starting with [TV00], and we will use it extensively in
this paper.

13An alternative approach to defining these circuit classes is using the Karp-Lipton notation for Turing machines with advice. For
s ≥ n, a size sΘ(1) deterministic circuit is equivalent to DTIME(sΘ(1))/sΘ(1), a size sΘ(1) nondeterministic circuit is equivalent to
NTIME(sΘ(1))/sΘ(1), a size sΘ(1) NP-circuit is equivalent to DTIMENP(sΘ(1))/sΘ(1), and a size sΘ(1) Σi-circuit is equivalent to
DTIMEΣP

i (sΘ(1))/sΘ(1).
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2.5 Functions that are Hard on Average

We repeat the definition of functions that are hard on average, that appeared in Section 1 as Definition 1.6.

Definition 2.16 (Average-case hard functions). We say that a function f : {0, 1}n → {0, 1}m is ρ-hard for a
class C, if for every C : {0, 1}n → {0, 1}m in C,

Pr
X←Un

[C(X) = f(X)] ≤ ρ.

2.6 Functions that are Hard on Samplable Distributions with Sufficient Min-Entropy (HOS)

In Definition 1.11 in Section 1.3.2, we introduced the notion of functions that are hard on samplable distribu-
tions. We repeat this definition below.

Definition 2.17 (A function that is hard on samplable distributions (HOS)). A function Hrd : {0, 1}n →
{0, 1}m is an (s, k, ρ)-HOS for a class C, if for every distribution Y over {0, 1}n that is samplable by size s
circuits, with H∞(Y ) ≥ k, and every function C : {0, 1}n → {0, 1}m in C,

Pr[C(Y ) = Hrd(Y )] ≤ ρ.

2.7 Approximate Counting and Uniform Sampling of NP Witnesses

We use the classical result on approximate counting and uniform sampling of NP-witnesses [Sto83, Sip83,
JVV86, BGP00], which we state below in a way that is convenient for our application.

Definition 2.18 (Relative approximation). We say that a number p is an ϵ-relative approximation to q if
(1− ϵ) · p ≤ q ≤ (1 + ϵ) · p, and an ϵ-additive approximation to q if |p− q| ≤ ϵ.

It is useful to note that if 0 ≤ p ≤ 1 is an ϵ-relative approximation to q, then it is also an additive
approximation to q. For ϵ ≤ 1

2 , we also have the following: If p is an ϵ-relative approximation to q, then q is an
O(ϵ)-relative approximation to p. If p is an ϵ-relative approximation to q and q is an ϵ-relative approximation
to w, then p is an O(ϵ)-relative approximation to w. If p′ is an ϵ-relative approximation to p and q′ is an
ϵ-relative approximation to q, then a p′/q′ is an O(ϵ)-relative approximation to p/q. (The last property does
not hold if we replace relative approximations with additive approximations).

Theorem 2.19 (Approximate counting [Sto83, Sip83, JVV86]). For every i, every sufficiently large s, and
every ϵ > 0, there is a size poly(s/ϵ) Σi+1-circuit that given a size s Σi-circuit C, outputs an ϵ-relative
approximation of | {x : C(x) = 1} |.

Theorem 2.20 (Uniform sampling [JVV86, BGP00]). For every i, every sufficiently large s, and every δ > 0,
there is a size poly(s, log(1/δ)) randomized Σi+1-circuit A that given a size s Σi-circuit C : {0, 1}n →
{0, 1}, outputs a value in {0, 1}n ∪ ⊥ such that Pr[A(C) = ⊥] ≤ δ and the distribution (A(C)|A(C) ̸= ⊥)
is uniform over {x : C(x) = 1}.

Regarding the formulation of Theorems 2.19 and 2.20. We state Theorems 2.19 and Theorem 2.20 for
general i, whereas typically they are only stated for i = 0.

The formulation in the two theorems only requires that the tasks be achieved by (nonuniform) circuits.
The classical results in this area, are in fact stronger. For i = 0, Theorem 2.20 holds for A that is a randomized
uniform algorithm with an NP oracle (which is stronger than the statement we give here). Similarly, for i = 0,
Theorem 2.19 holds for a counting procedure that is a randomized uniform algorithm with an NP oracle. Here,
we state it for a circuit (which is nonuniform, and non-randomized). This immediately follows by Adleman’s
proof that BPP ⊆ P/poly which extends to BPPNP ⊆ PNP/poly.
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2.8 List-Recoverable Codes

We will use the following less standard definition of list-recoverable codes.

Definition 2.21 (List-recoverable codes). A function LR : {0, 1}n → ({0, 1}m)D is (ℓ, L)-list-recoverable if
for every S1, . . . , SD ⊆ {0, 1}m, such that for every i ∈ [D], |Sj | ≤ ℓ, the set

ListLR(S1, . . . , SD) = {x ∈ {0, 1}n : ∀i ∈ [D] : LR(x)i ∈ Si} ,

is of size at most L.

We remark that the definition above is for an “errorless version” of list-recoverable codes. In the more gen-
eral setting, the definition of the set ListLR(S1, . . . , SD) has an additional “agreement parameter”, measuring
the fraction of i, for which LR(x)i ∈ Si.

Ta-Shma and Zuckerman [TZ04] observed that there is a tight connection between extractors and (the
more general version) of list-recoverable codes. In the proposition below, we state a version of this connection
for errorless list-recoverable codes and strong dispersers.

Proposition 2.22 (Strong dispersers give list-recoverable codes [TZ04]). For a function E : {0, 1}n ×
{0, 1}d → {0, 1}m, we define D = 2d, and LR : {0, 1}n → ({0, 1}m)D by LR(x)i = E(x, i). If E is a
strong (k, ϵ)-disperser, then LR is (ℓ, 2k)-list-recoverable for every ℓ < (1− ϵ) · 2m.

Proof. If LR is not (ℓ, 2k)-list-recoverable, then there exist S1, . . . , SD ⊆ {0, 1}m, such that each of the
sets is of size ≤ ℓ, and the set A = ListLR(S1, . . . , SD) is of size at larger than 2k. Let X be the uniform
distribution over A, and note that H∞(X) ≥ k. Let Z = (Y,E(X,Y )) where Y ← Ud. By definition the
support of Z is contained in the set T =

{
(i, w) : i ∈ {0, 1}d, w ∈ Si

}
which is a set of size ℓ · 2d, and we

get a contradiction if ℓ < (1− ϵ) · 2m.

This means that the strong dispersers of Theorem 2.10 and Theorem 2.8 can be stated as list-recoverable
codes. Specifically, using Theorem 2.10 we get the following Corollary.

Corollary 2.23 (List-Recoverable code with small block-length). There exists a constant γ > 0 such that
for every sufficiently large n, there is an (ℓ, 2n

1−γ
)-list recoverable code LR : {0, 1}n → ({0, 1}m)D with

n0.99 ≤ m ≤ n, ℓ = 2(1−
2
nγ )·m, and D ≤ n0.1. Furthermore, LR can be computed in time poly(n).

Proof. Let γ > 0 be a constant that we will choose later. We apply Theorem 2.10 choosing δ(n) = n−γ

(so that δ(n) · n = n1−γ). Note that m = O(δ(n)c2 · n) = O(n1−c2·γ) is determined, and we can choose
s(n) = 2−

m
nγ . We obtain a strong (n1−γ , 1− 2−

m
nγ )-disperser E : {0, 1}n × [D]→ {0, 1}m for

D = O(
n

δ(n)c1 · log 1
s(n)

) = O(
n · nc1·γ · nγ

n1−c2·γ ) = O(n(c1+c2+1)·γ).

We can choose the constant γ > 0 to be sufficiently small so that for sufficiently large n, we have that
D ≤ n0.1 and m ≥ n0.99. Applying Proposition 2.22 we get that E can be viewed as a function LR :

{0, 1}n → ({0, 1}m)D that is (ℓ, 2n
1−γ

)-list recoverable for every ℓ < s(n)·2m = 2(1−
1
nγ )·m and in particular

for ℓ = 2(1−
2
nγ )·m.

Using Theorem 2.8 we get the following corollary.

Corollary 2.24 (List-Recoverable code with small L). There exist constant c0, c1 such that for every suffi-
ciently large n, every k ≥ logc1 n, and m ≤ k

2 there is a (2m−1, 2k)-list recoverable code LR : {0, 1}n →
({0, 1}m)D with D = nc0 . Furthermore, LR can be computed in time poly(n).

Proof. We use Theorem 2.8 to obtain a strong (k, 14)-disperser E : {0, 1}n×{0, 1}c0·logn → {0, 1}m, where
c0 is a universal constant. This translates into the required list-recoverable code, using Proposition 2.22.
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3 A Construction of Errorless Condensers and HOS

As explained in Section 1.3, our construction of extractor for samplable distributions will rely on two new
components: an errorless condenser, and an HOS. In this section we construct these two objects.

The next theorem states the constructions of errorless condensers, and generalizes Theorem 1.10 from
Section 1.3.2.

Theorem 3.1 (Errorless condenser). There exists a constant γ > 0 such that if E is hard for exponential size
Σ3-circuits, then for every constant c > 1, every sufficiently large n, and every m ≤ n, there is a function
Cnd : {0, 1}n → {0, 1}m that is an (n1−γ , m

n0.1 − 0.1 · log n − 3)-errorless condenser for distributions
samplable by circuits of size nc. Furthermore, Cnd can be computed in time poly(nc).

Theorem 1.10 follows by setting m = n0.8 in Theorem 3.1.
The next theorem states the constructions of HOS, and generalizes Theorem 1.12 from Section 1.3.2.

Theorem 3.2 (HOS for Σ2-circuits). There exists a constant a0 > 1 such that if E is hard for exponential
size Σ4-circuits, then for every constant c > 1, every constant ν > 0, every sufficiently large n, and every
k ≥ 4nν there is a function Hrd : {0, 1}n → {0, 1}na0 that is an (nc, k, 2−Ω(k))-HOS for size nc Σ2-circuits.
Furthermore, f is computable in time poly(nc).

Theorem 1.12 guarantees a function Hrd : {0, 1}n0.9 → {0, 1}na0 with k = n0.7 and ρ = 2−Ω(k) and
easily follows from Theorem 3.2.

Outline for this section. As explained in Section 1.3.3, the proofs of Theorem 3.1 and Theorem 3.2 will
use techniques developed by Shaltiel and Silbak [SS24] that discuss functions that are hard to sample on
distribution with sufficient min-entropy (HTS). In Section 3.1 we give a formal definition of (several variants)
of HTS. We also show several connections between these variants, errorless condensers and HOS. These
connections will be used to prove Theorem 3.1 (which is proven in Section 3.2) and Theorem 3.2 (which is
proven in Section 3.3).

3.1 Functions That Are Hard to Sample (HTS)

We describe the work of Shaltiel and Silbak on [SS24], that will be used in our constructions.

3.1.1 Definition of Functions That Are Hard to Sample (HTS)

Complexity theory is mostly concerned with understanding functions that are hard to compute. In recent
years, there has also been work on functions that are also hard to sample. Loosely speaking, a function
f : {0, 1}m → {0, 1}m′

is hard to sample for a class of functions A, if for every A ∈ A that samples a
distribution Z = (X,Y ) over {0, 1}m × {0, 1}m′

, the distribution (X,Y ) ← A is far in statistical distance
from (W, f(W )) where W ← Um.

Early examples are Ambainis et al. [AST+98] (in the context of quantum communication complexity)
and Viola [Vio12] (in the context of constant depth circuits).

Shaltiel and Silbak [SS24] were interested in defining a variant where one does not measure success on the
uniform distribution Um, and instead asks that for every A ∈ A, Pr(X,Y )←A[Y = f(X)] is small. This does
not make sense as stated, as A is typically a nonuniform complexity class, and therefore A can be hardwired
with a pair (x, y) such that y = f(x). This problem can be bypassed in two ways:

• One can require that X has min-entropy larger than some threshold k. We will call this notion a min-
entropy HTS.
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• One can require that for every A ∈ A, there exists a small set H ⊆ {0, 1}m such that the success of A
in coming up with pairs (X,Y ) such that Y = f(X) is only measured for X ̸∈ H . We call this notion
a small-set HTS, and this is the notion that was defined under the term HTS in [SS24].

Shaltiel and Silbak [SS24] used the second approach, as it was more suitable for their coding theoretic appli-
cation. In Definition 3.3 below, we give a formal definition of both notions. In both cases we also consider
a weakened variant called cHTS, in which the guarantee holds only for A ∈ A that samples a distribution Y
where Y is fixed to some constant y.

Definition 3.3 (Hard To Sample functions (HTS)). Let f : {0, 1}m → {0, 1}m′
be a function, and A be a

class of functions.

• f is a (k, ρ)-min-entropy HTS for A, if for every A ∈ A that samples a distribution Z = (X,Y ) over
{0, 1}m × {0, 1}m′

, with H∞(X) ≥ k,

Pr
(X,Y )←A

[Y = f(X)] ≤ ρ.

• f is a (k, ρ)-min-entropy cHTS for A, if the requirement above holds for every A ∈ A that samples a
distribution Z = (X,Y ) where Y is a fixed value y ∈ {0, 1}m′

.

• f is an (h, ρ)-small-set HTS for A, if for every A ∈ A that samples a distribution Z = (X,Y ) over
{0, 1}m × {0, 1}m′

, there exists a set H ⊆ {0, 1}m of size at most h, such that:

Pr
(X,Y )←A

[X ̸∈ H and Y = f(X)] ≤ ρ.

• f is an (h, ρ)-small-set cHTS for C, if the requirement above holds for every A ∈ A that samples a
distribution Z = (X,Y ) where Y is a fixed value y ∈ {0, 1}m′

.

It should be noted that when comparing a small-set HTS to a min-entropy HTS, the parameters are scaled
differently. While in a min-entropy HTS the parameter k measures min-entropy, in a small-set HTS the
parameter h measures set size, and a good intuition is that the two notions are comparable the same under the
translation h = 2k. This intuition is made more precise in Section 3.1.3.

3.1.2 HTS implies Errorless Condensers and HOS

We now observe that the components that we want to construct (errorless condensers and HOS) follow from
min-entropy HTS/cHTS with certain parameters.

The two propositions below are a formal statement of Proposition 1.13 from Section 1.3.3.

Proposition 3.4 (A min-entropy cHTS is an errorless condenser). If f : {0, 1}n → {0, 1}m is a (k, 2−k
′
)-

min-entropy cHTS for size s +m circuits, then f is a (k, k′)-errorless condenser for distribution samplable
by size s circuits.

Proof. Let f : {0, 1}n → {0, 1}m be a (k, 2−k
′
)-min-entropy cHTS for size s circuits, and let X be a

distribution over {0, 1}n that is samplable by a size s circuit A, and has H∞(X) ≥ k. For every y ∈ {0, 1}m
we can consider the size s+m sampling circuit Ay that samples X ← A, and outputs (X, y). By the guarantee
of a min-entropy cHTS, we have that for every y ∈ {0, 1}m,

Pr
X←A

[f(X) = y] = Pr
(X,y)←Ay

[f(X) = y] ≤ 2−k
′
.

and we can conclude that H∞(f(X ′)) ≥ k′.

18



Proposition 3.5 (A min-entropy HTS is an HOS). For every i, if f is a (k, ρ)-min-entropy HTS for size 2s
Σi-circuits, then f is an (s, k, ρ)-HOS for Σi-circuits of size s.

Proof. Let f : {0, 1}n → {0, 1}m be a (k, ρ)-min-entropy HTS for size 2sΣi-circuits. Let X be a distribution
over {0, 1}n that is samplable by a size s circuit A, and has H∞(X) ≥ k. Let C : {0, 1}n → {0, 1}m be a
size s, Σi circuit. We consider the Σi sampling circuit B, that samples X ← A and outputs (X,C(X)). Note
that B is of size 2s. By the guarantee of a min-entropy HTS we have that:

Pr
X←A

[C(X) = f(X)] = Pr
(X,Y )←B

[Y = f(X)] ≤ ρ.

3.1.3 Converting Between a Small-Set HTS and a Min-Entropy HTS

In this section we discuss relations between the two variants of HTS. It is immediately clear that a small-set
HTS for a class A is a min-entropy HTS for the same class, with a slight loss in parameters.

Proposition 3.6 (A small-set HTS is a min-entropy HTS). If f is an (h, ρ)-small-set HTS (resp. cHTS) for A
then f is a (log h+ log(1/ρ), 2ρ)-min-entropy HTS (resp. cHTS) for A.

Proof. Let f : {0, 1}m → {0, 1}m′
be an (h, ρ)-small-set HTS. For every A← A that samples a distribution

(X,Y ) such that H∞(X) ≥ log h+ log(1/ρ), it follows that for every set H ⊆ {0, 1}m of size 2h,

Pr[X ∈ H] ≤ |H|

2
h+log 1

ρ

≤ ρ.

By the definition of small-set HTS, A has a set H of such 2h, such that:

Pr[Y = f(X) and X ̸∈ H] ≤ ρ.

It follows that:

Pr[Y = f(X)] = Pr[Y = f(X) and X ̸∈ H] + Pr[Y = f(X) and X ∈ H] ≤ 2ρ.

Note that the same proof applies for the case of cHTS.

It is not clear whether the converse is true, and a min-entropy HTS is a small-set HTS. What we can show
that is that a min-entropy HTS against Σi+2 circuits, is a small-set HTS against Σi-circuits, with a slight loss
in parameters.

Lemma 3.7 (From min-entropy HTS to small-set HTS). For every i, if f is a (k, ρ)-min-entropy HTS (resp.
cHTS) for Σi+2 circuits of size s, then f is an (h = 2k+3

ρ , 2ρ)-small-set HTS (resp. cHTS) for Σi-circuits of
size s′ = sΩ(1).

Proof. Let A : {0, 1}r → {0, 1}m × {0, 1}m′
be a size s′ ≥ r Σi-circuit that samples a distribution (X,Y )

over {0, 1}m × {0, 1}m′
. By Theorem 2.19 there is a Σi+1-circuit B of size poly(s′) that given x ∈ {0, 1}m,

computes a 1
8 -relative approximation B(x) of Pr[A(Ur) = x].

Let h = 2k+3

ρ and let H =
{
x : B(x) ≥ 2

h

}
. For every x ∈ H , Pr[A(Ur) = x] > 1

2 · B(x) ≥ 1
h , and it

follows that |H| ≤ h. We will show that H is a suitable small set for the sampling circuit A.
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If Pr[X ̸∈ H] ≤ ρ then we are done, as Pr[Y = f(X) and X ̸∈ H] ≤ ρ ≤ 2ρ. Otherwise, we consider
the distribution

(X ′, Y ′) = ((X,Y )|X ̸∈ H).

We have that for every x ̸∈ H , Pr[X = x] ≤ 4
h and therefore,

Pr[X ′ = x] = Pr[X = x|X ̸∈ H] ≤ Pr[X = x]

Pr[X ̸∈ H]
≤ 4

h · ρ
.

This gives that H∞(X ′) ≥ log h− log 1
ρ−2. We will now argue that there is a Σi+2 circuit A′ of size poly(s′)

that samples a distribution that is very close to (X ′, Y ′).
For this purpose we observe that there is a Σi+1-circuit C : {0, 1}r → {0, 1} of size poly(s′) that answers

one on w ∈ {0, 1}r iff A(w) ̸∈ H . The circuit C simply answers one iff B(A(w)) < 2
h .

We now consider the following Σi+1-circuit C : {0, 1}r → {0, 1}. When given input w ∈ {0, 1}r, C
outputs one iff B(A(w)) < 2

h . This is a Σi+1-circuit of size poly(s′) and this definition is made so that
(X ′, Y ′) is exactly the distribution obtained by sampling W ← Ur and considering (A(W )|C(W ) = 1).

By Theorem 2.20 choosing δ = 1
2·2s′ , there is a randomized Σi+2-circuit Â of size poly(s′, log(1/δ)) =

poly(s′) that samples a distribution that is δ-close to (W |C(W ) = 1) for W ← Ur. By taking A′(w) =
A(Â(w)) we obtain that A′ is a randomized Σi+2-circuit of size poly(s′) that samples a distribution (X ′′, Y ′′)
that is δ-close to (X ′, Y ′). We have that for every x ∈ {0, 1}m, Pr[X ′′ = x] ≤ Pr[X ′ = x] + δ, and we have
chosen δ to be so small, that we can conclude that

H∞(X ′′) ≥ H∞(X ′)− 1 ≥ log h− log
1

ρ
− 3 ≥ k

Therefore, A′ is a Σi+2 circuit of size poly(s′) ≤ s that is a potential adversary for f . We note that in the
case that Y is fixed (that corresponds to the case that f is a cHTS) we have that Y ′′ is fixed, so that A′ is an
adversary for a cHTS.
Overall, we conclude that:

Pr[Y ′′ = f(X ′′)] ≤ ρ,

which implies (using the statistical distance between (X ′′, Y ′′) and (X ′, Y ′) that:

Pr[Y ′ = f(X ′)] ≤ 2ρ.

Finally, we conclude that:

Pr[X ̸∈ H and Y = f(X)] = Pr[Y = f(X)|X ̸∈ H] · Pr[X ̸∈ H]

≤ Pr[Y = f(X)|X ̸∈ H]

= Pr[Y ′ = f(X ′)]

≤ 2ρ.

3.1.4 Reducing the Min-Entropy Threshold of a Small-Set HTS

Shaltiel and Silbak [SS24] showed how to take a given small-set HTS on m bits, with set size h that is large
compared to 2m, and convert it into a small-set HTS on n > m bits with set size h that is small compared to
2n. Lemma 3.8 below, is a generalization of a similar Lemma of [SS24] that is proven by the same argument,
and also considers Σi-circuit, and notes that the transformation applies also to cHTS.
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Lemma 3.8 (Improving a small-set HTS using list-recoverable codes).

• Let f : {0, 1}m → {0, 1}m′
be an (h, ρ)-small-set HTS (resp. cHTS) for size s Σj-circuits.

• Let LR : {0, 1}n → ({0, 1}m)D be an (h, L)-list-recoverable code, such that LR has a size sLR circuit.

Then the function f ′ : {0, 1}n → {0, 1}Dm′
defined by

f ′(x) = f(LR(x)1), . . . , f(LR(x)D)

is a (L, ρ ·D)-small-set HTS (resp. cHTS) for Σj-circuits of size s′ = s− sLR − logD.

Proof. Let A be a sampling Σj-circuit of size s′ that samples a pair (X,Y ) ∈ {0, 1}n ×{0, 1}Dm′
. We think

of y as a sequence Y = (Y1, . . . Yd) where for every i ∈ [D], Yi ∈ {0, 1}m
′
. For every i ∈ [D], we can define

a sampling Σj circuit Ai, as follows:

• Ai applies A to sample X,Y .

• Ai computes Xi = LR(X)i.

• Ai outputs the pair (Xi, Yi) ∈ {0, 1}m × {0, 1}m
′
.

Note that by definition, for every i ∈ [D], Ai is a Σj-circuit of size s′+ sLR + logD ≤ s. Furthermore, in the
case that A samples (X,Y ) such that Y is fixed (namely, A is an adversary for a cHTS rather than an HTS)
then for every i ∈ [D], Ai samples (Xi, Yi) such that Yi is fixed.

By the definition of small-set HTS/cHTS, for every i ∈ [D], the sampling circuit Ai has a set Hi ⊆
{0, 1}m of size at most h such that:

Pr
(Xi,Yi)←Ai

[Xi ̸∈ Hi and Yi = f(Xi)] ≤ ρ.

By the list-recoverability of LR, we have that the set H = ListLR(H1, . . . ,HD) is of size at most L. It follows
that if x ̸∈ H , then there exists i ∈ [D] such that LR(x)i ̸∈ Hi.

We will show that H satisfies the definition of an HTS/cHTS for A. In the computation below, probabili-
ties are in the experiment (X,Y )← A. We have that:

Pr[X ̸∈ H and Y = f(X)] = Pr[X ̸∈ H and ∀i ∈ [D] : (Xi = LR(X)i and Yi = f(Xi))]

≤ Pr[∃i ∈ [D] : LR(X)i ̸∈ Hi and ∀i ∈ [D] : (Xi = LR(X)i and Yi = f(Xi))]

≤ Pr[∃i ∈ [D] : (LR(X)i ̸∈ Hi and Xi = LR(X)i and Yi = f(Xi))]

≤ Pr[∃i ∈ [D] : (Xi ̸∈ Hi and Yi = f(Xi))]

≤
∑
i∈[D]

Pr[Xi ̸∈ Hi and Yi = f(Xi)]

≤ D · ρ.

Here, the last inequality follows because the distribution of (Xi, Yi) in our probability space is identical to
(Xi, Yi)← Ai.

3.2 Proof of Theorem 3.1

We will start from a min-entropy cHTS that follows from the recent construction of multiplicative extractors
for samplable distributions by Shaltiel [Sha24].
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Theorem 3.9 (A min-entropy cHTS with short output length [Sha24]). For every i, if E is hard for exponential
size Σi+1-circuits, then there exists a constant α > 0, such that for every constant c > 1, every sufficiently
large n, and for every m ≤ α · n, there is a function E : {0, 1}n → {0, 1}m that is a ((1− α) · n, 2−(m−1))-
min-entropy cHTS for Σi-circuits of size nc. Furthermore, E can be computed in time poly(nc).

We state Theorem 3.9 in our terminology using the notion of a min-entropy cHTS. In [Sha24] it is stated
for i = 0, as a ((1 − α) · n, 12)-multiplicative extractor for distributions samplable by size nc circuits. The
definition of a multiplicative extractor (see Definition 2.4) says for every distribution X over {0, 1}n with
H∞(X) ≥ (1 − α) · n that is samplable by size nc circuits, and for every z ∈ {0, 1}m, Pr[E(X) = z] ≤
2 · 2−m = 2−(m−1), which indeed translates into a min-entropy cHTS for size nc circuits. The extension to
i > 0 is by standard “ladder climbing”, see Remark 2.15.

By applying Lemma 3.7 we can transform the min-entropy cHTS into a small-set cHTS, of roughly the
same parameters, at the cost of assuming an assumption for Σi+3-circuits rather than Σi+1-circuits. More
specifically, we obtain the following:

Claim 3.10. For every i, if E is hard for exponential size Σi+3-circuits, then there exists a constant α > 0,
such that for every constant c > 1, every sufficiently large n, and for every m ≤ α · n, there is a function
E : {0, 1}n → {0, 1}m that is a (2(1−α)·n, 2−(m−2))-small-set cHTS for Σi-circuits of size nc. Furthermore,
E can be computed in time poly(nc).

Proof. Given i ≥ 0, we apply Theorem 3.9 for i + 2. We obtain a constant α′ > 0. When shooting to get a
small-set HTS for Σi-circuits of size nc, we apply Theorem 3.9 using a constant c′ larger than c (to account for
the loss in size in Lemma 3.7). We obtain a function E : {0, 1}n → {0, 1}m that is a ((1 − α′)n, 2−(m−1))-

min-entropy cHTS for Σi+2-circuits of size nc′ . By Lemma 3.7, E is also a (2
(1−α′)n+3

2−(m−1) , 2−(m−2))-small-set
cHTS for Σi-circuits of size nΩ(c′) = nc. We will choose the constant α that we aim for in Claim 3.10 to be
α = α′

3 , so that for sufficiently large n, using the requirement that m ≤ α · n we have that

2(1−α
′)n+3

2−(m−1)
≤ 2(1−α)·n.

In the small-set cHTS above we have that h = 2(1−α)·n. We would like to obtain a min-entropy cHTS
for k = o(n) which corresponds to h = 2k = 2o(n). For this purpose, we will apply Lemma 3.8 using the
list-recoverable code of Corollary 2.23. This gives the following:

Claim 3.11. There exists a constant γ > 0 such that if E is hard for exponential size Σ3-circuits, then for
every constant c > 1, every sufficiently large n, and every m′ ≤ n0.98, there is a function f : {0, 1}n →
{0, 1}n0.1·m′

that is a (2n
1−γ

, 4n0.1 · 2−m′
)-small-set cHTS for circuits of size nc. Furthermore, f can be

computed in time poly(nc).

Proof. Let γ > 0 be the constant from Corollary 2.23. Given an integer n, let LR : {0, 1}n → ({0, 1}m)D be
the (ℓ, 2n

1−γ
)-list recoverable code from Corollary 2.23. We have that n0.99 ≤ m ≤ n, ℓ = 2(1−

2
nγ )·m. and

D ≤ n0.1. Furthermore, LR can be computed in time poly(m) = poly(n).
We apply Claim 3.10 to obtain a function E : {0, 1}m → {0, 1}m′

. More specifically, when shooting
for a constant c, we will apply Claim 3.10 using i = 0, constant c′ > c that we will choose later, input
length m and any output length m′ ≤ n0.98 ≤ αn. We obtain a function E : {0, 1}m → {0, 1}m′

that is a
(2(1−α)·m, 2−(m

′−2))-small-set cHTS for circuits of size mc′ .
We now apply Lemma 3.8 using LR and the function E. Note that:
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• ℓ = 2(1−
2
nγ )·m ≤ 2(1−α)m.

• LR can be computed by a circuit of size ncLR for some universal constant cLR.

This means that we can indeed apply Lemma 3.8 to obtain a function f : {0, 1}n → {0, 1}Dm′
that is a

(2n
1−γ

, D · 2−(m′−2))-small-set cHTS for circuits of size mc′ − ncLR − logD ≥ nc (where for the inequality
to hold we choose c′ to be sufficiently large and recall that m ≥ n0.99). Note that we indeed have that
D · 2−(m′−2) ≤ 4n0.1 · 2−m′

.

Theorem 3.1 immediately follows from Claim 3.11 by applying Proposition 3.6 to convert the small-set
cHTS into a min-entropy cHTS, and Proposition 3.4 to argue that the latter is an errorless condenser. There
are slight losses in the parameters in these conversions, and these are overcome by halving the constant γ.

3.3 Proof of Theorem 3.2

Our starting point is the following Theorem of Trevisan and Vadhan [TV00].

Theorem 3.12 ([TV00]14). For every i, if E is hard for exponential size Σi+1-circuits, then there exists a
constant α > 0, such that for every constant c > 1, and every sufficiently large n, there is a function
f : {0, 1}n → {0, 1}m that is ϵ-hard by size nc Σi-circuits for m = αn and ϵ = 2−(m/3) = 2−Ω(n).
Furthermore, f is computable in time poly(nc).

We use the following Lemma by Shaltiel and Silbak [SS24] that shows that an ϵ-hard function for Σi+1-
circuits is a small-set HTS with h ≈ ϵ · 2m for Σi-circuits.

Lemma 3.13 (HTS from functions that are average-case hard for Σ1-circuits). For every i, if f : {0, 1}m →
{0, 1}m′

is ϵ-hard for size s Σi+1-circuits, then f is an (h, ρ)-small-set HTS for Σi-circuits of size s′ =
sΩ(1)

log(1/ρ) , where h = ϵ
1
2 · 2m, and ρ = 32 · ϵ

1
4 .

An immediate corollary of Theorem 3.12 and Lemma 3.13 is the following.

Claim 3.14. If E is hard for exponential size Σ4-circuits, then there exist constants α > α′ > 0, such that for
every constant c > 1, and for every sufficiently large n, there is a function f : {0, 1}n → {0, 1}αn that is a
(2(1−α

′)·n, 2−Ω(n))-small-set HTS for size nc Σ2-circuits. Furthermore, f is computable in time poly(nc).

In the small-set HTS above we have that h = 2(1−α
′)·n. We would like to obtain a min-entropy cHTS

for smaller k which corresponds to h = 2k = 2o(n). For this purpose, we will apply Lemma 3.8 using the
list-recoverable code of Corollary 2.23. This gives the following:

Claim 3.15. There exists a constant a0 > 1 such that if E is hard for exponential size Σ4-circuits, then for
every constants c > 1, ν > 0, every sufficiently large n, and every k ≥ 2nν there is a function f : {0, 1}n →
{0, 1}na0 that is a (2k, 2−Ω(k))-small-set HTS for size nc Σ2-circuits. Furthermore, f is computable in time
poly(nc).

Proof. Let a0 = c0 + 1 where c0 is the constant from Corollary 2.24. Given c, ν, a sufficiently large n and
k ≥ 2nν , we choose m = k/2, and let LR : {0, 1}n → ({0, 1}m)D be the (2m−1, 2k)-list recoverable code
of Corollary 2.24, and we have that D = nc0 , and that LR can be computed by a circuit of size ncLR .

We apply Claim 3.14 to obtain a function f : {0, 1}m → {0, 1}m′=αm that is a (2(1−α
′)·m, 2−Ω(m)) for

circuits of size nc + ncLR + nc0 and note that as m = k/2 ≥ nν , we can handle circuits of this size, as this
size is smaller mc′ for a constant c′ that depends on c, cLR, c0 and ν.

14Theorem 3.12 is not stated in this form in [TV00]. Nevertheless, it directly follows from [TV00]. See [AIKS16] (Section 7) for
an explanation. The statement that we give here also uses “ladder climbing”. See remark 2.15.
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We apply Lemma 3.8 using the list-recoverable code LR. Note that we indeed have that h = 2(1−α
′)·m ≤

2m−1.15 We obtain a function f ′ : {0, 1}n → {0, 1}Dm′
that is a (2k, D · 2−Ω(m))-small-set HTS for circuits

of size nc. We note that Dm′ ≤ nc0+1 = na0 and D · 2−Ω(m) = nc0 · 2−Ω(k) = 2−Ω(k), by the requirement
that k ≥ 2 ·mν , for sufficiently large n.

Using Proposition 3.6 we can get a min-entropy HTS with essentially the same parameters. Specifically,
we obtain:

Claim 3.16. There exists a constant a0 > 1 such that if E is hard for exponential size Σ4-circuits, then for
every constants c > 1, ν > 0, every sufficiently large n, and every k ≥ 4nν there is a function f : {0, 1}n →
{0, 1}na0 that is a (k, 2−Ω(k))-min-entropy HTS for size nc Σ2-circuits. Furthermore, f is computable in time
poly(nc).

By Proposition 3.5 such an HTS is an HOS with the required parameters.

4 Extractors for Samplable Distributions with Low Min-Entropy

In this section we present our construction of extractors for samplable distributions with low entropy and
prove Theorem 1.4 and Theorem 1.5. In Section 4.1 we present our construction (that was described infor-
mally in Section 1.3) assuming certain ingredients are provided. In Section 4.2 we prove a general theorem
showing that our construction gives an extractor for samplable distributions. In Section 4.3 we plug in the
errorless condenser and HOS that we constructed in Section 3 into the extractor construction, and derive an
extractor with small output length. Finally, in Section 4.4 we describe a general transformation by Shaltiel
[Sha08] that transforms extractors with small output length into extractors with large output length, and use
this transformation to prove Theorem 1.4 and Theorem 1.5.

4.1 The Construction

We now present our construction. The construction is specified in Figure 1. Unlike the presentation of
Section 1.3.2 we state the constructions for ingredients with general parameters (and only choose the precise
parameters later on in Section 4.3). This more general presentation will be used later to argue that future
improvements in the parameters of the ingredients, will result in an improved construction. See Remark 4.9
for a discussion.
The correctness of the construction is established in the next theorem.

Theorem 4.1. For every n, k, c and c1, if the ingredients Cnd,Hrd,TExt specified in Figure 1 satisfy the
specified requirements, then the function Ext : {0, 1}n → {0, 1}m defined in Figure 1, is a (k, 1

nc1 )-extractor
for distributions samplable by circuits of size nc.

The proof of Theorem 4.1 is given in Section 4.2.

4.2 Proof of Theorem 4.1

Let us denote ϵ = 1
nc1 and assume for contradiction that Ext is not a (k, ϵ)-extractor for distributions samplable

by size nc circuits. That is, that there exists r ≤ nc and a circuit A : {0, 1}r → {0, 1}n of size nc that samples
a distribution X = A(Ur) such that H∞(X) ≥ k, and yet, the distribution Ext(X) is not ϵ-close to uniform.

15In fact, h is much smaller, and there is plenty of slack in this argument. We could have used a list-recoverable code with much
smaller ℓ = 2(1−α′)·m for this argument.
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Figure 1: Construction of extractor for samplable distributions

Goal: Given parameters n, k, c, c1, construct a (k, 1
nc1

)-extractor Ext : {0, 1}n → {0, 1}m for distributions samplable
by size nc circuits.

Ingredients: We will require the following ingredients, which introduce additional internal parameters:
nCnd, kCnd, cCnd, dCnd, cHrd, ρHrd, n1, k

′
1, k

′
2, d

′. The precise requirements on these parameters are specified be-
low.

• Errorless condenser: A function Cnd : {0, 1}n → {0, 1}nCnd that is a (k, kCnd)-errorless condenser for
distributions samplable by size nc circuits. Furthermore, we require Cnd can be computed by a size ndCnd

circuit.
• HOS: A function Hrd : {0, 1}nCnd → {0, 1}n1 that is a (ncHrd , kCnd, ρHrd)-HOS for Σ2-circuits of size ncHrd .

Namely, for every distribution Y over {0, 1}nCnd that is samplable by a circuit of size ncHrd circuit, and has
H∞(Y ) ≥ kCnd, and for every Σ2-circuit C of size ncHrd ,

Pr[C(Y ) = Hrd(Y )] ≤ ρHrd.

• 2-source extractor: A (k′1, k
′
2, ϵ

′)-2-source extractor TExt : {0, 1}n1 × {0, 1}n → {0, 1}m, where ϵ′ =
1

8·nc1 ·2m . We require that TExt can be computed cy a size nd′
circuit.

Requirements: We make the following requirements:

• k′2 ≤ k − nCnd −m− c1 log n− 2.
• ρHrd <

1

8nc1 ·2m·2k
′
1

.

• cHrd ≥ max(c, c1, dCnd, d
′) + c0, where c0 is a universal constant chosen in the proof.

Construction: We define Ext : {0, 1}n → {0, 1}m by:

Ext(x) = TExt(Hrd(Cnd(x)), x).

Note that Ext can be computed in polynomial time if Cnd,Hrd,TExt can be computed in time polynomial in n.

In particular, there exists an S ⊆ {0, 1}m such that Pr[Ext(X) ∈ S] > |S|
2m + ϵ > (1 + ϵ) · |S|2m , which implies

that there exists a z ∈ {0, 1}m such that:

Pr[Ext(X) = z] > (1 + ϵ) · 2−m. (9)

Let Y = Cnd(X), and note that by the properties of Cnd we have that H∞(Y ) ≥ kCnd. Our approach
will be to obtain a contradiction by constructing a Σ2-circuit C of size ncHrd which contradicts the hardness
requirement of Hrd on the source Y (which is samplable by the size nc + ndCnd circuit Cnd ◦A).

At this point we have that:

Pr[TExt(Hrd(Y ), X) = z] > (1 + ϵ) · 2−m.

We say that y ∈ {0, 1}nCnd is useful if:

• Pr[TExt(Hrd(y), X) = z|Y = y] > (1 + ϵ
2) · 2

−m.

• H∞(X|Y = y) ≥ k − nCnd −m− c1 log n− 2.
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We are planning to construct a randomized circuit C(y) that will succeed in computing Hrd(y) (with not too
small probability) when y is useful. For this purpose, we claim that the probability that Y is useful is not too
small.

Claim 4.2. Pr[Y is useful] ≥ ϵ
4·2m .

Proof. Let η = ϵ
4·2m . By applying Lemma 2.1 on X and Y , we have that with probability at least 1− η over

choosing y ← Y ,

H∞(X|Y = y) ≥ k − nCnd − log
1

η
= k − nCnd − c1 · log n−m− 2.

We have that
Pr[TExt(Hrd(Y ), X) = z] > (1 + ϵ) · 2−m = 2−m +

ϵ

2m
.

By applying an averaging argument, we get that with probability at least ϵ
2·2m over choosing y ← Y , we have

that:
Pr[TExt(Hrd(Y ), X) = z|Y = y] > 2−m +

ϵ

2 · 2m
= (1 +

ϵ

2
) · 2−m.

By a union bound, we get that with probability at least ϵ
4·2m over choosing y ← Y , we obtain a y that satisfies

the two properties and is useful.

For every y ∈ {0, 1}nCnd and every 0 ≤ α ≤ 1, we define:

Ty,α =
{
v ∈ {0, 1}n1 : Pr[TExt(v,X) = z|Y = y] > (1 + α) · 2−m

}
.

We now claim that whenever y is useful, Hrd(y) is in a set that is not very large.

Claim 4.3. For every useful y ∈ {0, 1}nCnd ,

• Hrd(y) ∈ Ty, ϵ
2
.

• |Ty, ϵ
8
| ≤ 2k

′
1 .

Proof. The first item follows immediately from the definition of a useful y. The second item follows from
the list-decoding view of extractors in Proposition 1.8. More specifically, we assume for contradiction that
|Ty, ϵ

8
| > 2k

′
1 , and consider the following two independent distributions:

• V ← Ty, ϵ
8
, and note that H∞(V ) ≥ k′1.

• W = (X|Y = y) and note that as y is useful, H∞(W ) ≥ k − nCnd −m − c1 log n − 2 ≥ k′2, where
the last inequality is by the requirement in Figure 1.

By definition, we have that for every v ∈ Ty, ϵ
8
,

Pr[TExt(v,W ) = z] = Pr[TExt(v,X) = z|Y = y] > (1 +
ϵ

8
) · 2−m.

Therefore, we have that:

Pr[TExt(V,W ) = z] > (1 +
ϵ

8
) · 2−m = 2−m +

ϵ

8 · 2m
.

However, this is a contradiction as V and W are independent distributions that meet the entropy thresholds
k′1, k

′
2 of the 2-source extractor TExt, and recall that TExt has error ϵ′ = 1

8·nc1 ·2m = ϵ
8·2m .
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We now proceed with our plan of constructing the circuit C. Our first step will be to show that for every
y, and α, the set Ty,α can be recognized by a small Σ1-circuit. For this purpose, we make the following
definition:

Definition 4.4. For every y ∈ {0, 1}nCnd , and v ∈ {0, 1}n1 we define two deterministic circuits C1
y,v :

{0, 1}r → {0, 1} and C2
y : {0, 1}r → {0, 1} as follows:

• C1
y,v(w) answers one iff TExt(v,A(w)) = z ∧ Cnd(A(w)) = y.

• C2
y (w) answers one iff Cnd(A(w)) = y.

We also define:

• p1y,v = Pr[C1
y,v(Ur) = 1].

• p2y = Pr[C2
y (Ur) = 1].

This definition is made so that for every y ∈ {0, 1}nCnd and v ∈ {0, 1}n1 , if p2y ̸= 0 then

p1y,v
p2y

=
Pr[TExt(v,A(Ur)) = z ∧ Cnd(A(Ur)) = y]

Pr[Cnd(A(Ur) = y]

=
Pr[TExt(v,X) = z ∧ Cnd(X) = y]

Pr[Cnd(X) = y]

= Pr[TExt(v,X) = z|Y = y].

This means that for every y ∈ {0, 1}nCnd and 0 ≤ α ≤ 1, we can decide whether a given v ∈ Ty,α if we can
check whether p2y = 0 and compute p1y,v and p2y. By Theorem 2.7 a small Σ1-circuit, can compute relative
approximations to p1y,v and p2y. We will now use this idea to prove the following.

Claim 4.5. For every y ∈ {0, 1}nCnd , there is a Σ1-circuit Cy : {0, 1}n1 → {0, 1} of size poly(nc, nc1 , ndCnd , nd′)
such that:

• For every v ∈ {0, 1}n1 such that Cy(v) = 1, we have that v ∈ Ty, ϵ
8
.

• If y is useful, then Cy(Hrd(y)) = 1.

Proof. When given v ∈ {0, 1}nCnd , the circuit Cy works as follows:

• Cy checks whether there exists w ∈ {0, 1}r, such that Cnd(A(w)) = y. If there does not exist such a
w, it answers zero (as this means that p2y = 0)

• Let λ = ϵ/a for a universal constant a > 1 to be chosen later. Cy applies Theorem 2.19 to compute
a λ-relative approximations p̂1y,v and p̂2y, of p1y,v and p2y respectively. It can do this by computing
approximations of the number of accepting inputs of the circuits C1

y,v and C2
y , respectively.

• Cy computes p̂y,v =
p̂1y,v
p̂2y

and note that as this is an O(λ)-relative approximation to py,v =
p1y,v
p2y

=

Pr[TExt(v,X) = z|Y = y].

• Cy outputs one if p̂y,v > (1 + ϵ
4) · 2

−m and zero otherwise.

By choosing the constant a to be sufficiently large, we can make λ = ϵ/a = 1
a·nc1 sufficiently small, to

guarantee that checking whether the O(λ) approximation p̂y,v is larger than (1 + ϵ
4) · 2

−m distinguishes
between the case that py,v > (1 + ϵ

2) · 2
−m and the case that py,v ≤ (1 + ϵ

8) · 2
−m.16

16Note that in order to distinguish between (1 + ϵ
2
) · 2−m and (1 + ϵ

8
) · 2−m, it is sufficient to have an additive λ-approximation

rather than a relative λ-approximation. However, as we approximate py,v by approximating the enumerator p1y,v and denominator p2y ,
we need to use a relative approximation to these two quantities in order to derive an additive approximation to py,v .
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This gives that if Cy(v) = 1 then py,v > (1 + ϵ
8) · 2

−m which gives that v ∈ Ty, ϵ
8
. By Claim 4.3

we have that for every useful y, Hrd(y) ∈ Ty, ϵ
2
, which means that py,Hrd(y) > (1 + ϵ

2) · 2
−m, and indeed,

Cy(Hrd(y)) = 1.
Finally, by definition Cy is a circuit of size poly(nc, nc1 , ndCnd , nd′).

We are finally ready to complete the proof, with the next claim.

Claim 4.6. There is a Σ2-circuit C of size poly(nc, nc1 , ndCnd , nd′) such that:

Pr[C(Y ) = Hrd(Y )] ≥ 2−k
′ · ϵ

4 · 2m

Proof. We will first construct a randomized Σ2-circuit C ′, and then use a standard averaging argument to
convert it to a non-randomized Σ2-circuit. The randomized circuit C ′ is defined as follows: On input y ∈
{0, 1}nCnd :

• C ′ constructs the Σ1-circuit Cy. Note that the circuit Cy is specified precisely in the proof of Claim
4.5, and so, the circuit C ′ (that can be hardwired with A, z, and the circuit from Theorem 2.19) can
construct the circuit Cy.

• C ′ uses the Σ2 circuit from Theorem 2.20 (choosing δ = 1
2 ) to output a uniform element in {v : Cy(v) = 1}.

By definition, the circuit C ′ is a randomized Σ2-circuit of size poly(nc, nc1 , ndCnd , nd′). We conclude that:

Pr[C ′(Y ) = Hrd(Y )] ≥ Pr[C ′(Y ) = Hrd(Y )|Y is useful] · Pr[Y is useful]

≥ Pr[C ′(Y ) = Hrd(Y )|Y is useful] · ϵ

4 · 2m

≥ 1

2
· 2−k′1 · ϵ

4 · 2m

= 2−k
′
1 · ϵ

8 · 2m

where the first inequality follows by Claim 4.2, and the last inequality follows because by Claim 4.5, for every
useful y, Hrd(y) ∈ {v : Cy(v) = 1} which by Claim 4.3, is of size at most 2k

′
1 , and each element in the set is

obtained with probability (1− δ)2−k
′
1 = 1

2 · 2
−k′1 .

Finally, by a standard averaging argument, there exists a (non-randomized) Σ2-circuit of size poly(nc, nc1 , ndCnd , nd′)
with the same success probability.

We have obtained a Σ2-circuit C of size poly(nc, nc1 , ndCnd , nd′) = nmax(c,c1,dCnd,d
′)+c0 for some universal

constant c0. By the requirements in Figure 1, we can get that C is of size ncHrd . We also have that there is a
distribution Y over {0, 1}nCnd with H∞(Y ) ≥ kCnd, that is samplable by the size nc + ndCnd ≤ ncHrd circuit
Cnd ◦A, such that

Pr[C(Y ) = Hrd(Y )] ≥ 2−k
′
1 · ϵ

8 · 2m
=

1

nc1 · 8 · 2m
> ρHrd,

where the inequality follows from the requirements in Figure 1, and this is a contradiction to the guarantee on
Hrd.

Remark 4.7 (Theorem 4.1 yields multiplicative extractors). Theorem 4.1 states that the construction of Figure
1 yields an extractor for samplable distributions. We remark that the extractor that is achieved is multiplicative
in the sense of Definition 2.4. More specifically, in the proof of Theorem 4.1, when we assume that Ext is not
an extractor, we use it to derive (9) that states that there exists a z ∈ {0, 1}m such that

Pr[Ext(X) = z] > (1 + ϵ) · 2−m.
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We proceed from there to get a contradiction to this assumption, and this means that the same proof shows
that Ext is a multiplicative extractor.

Unfortunately, as explained in Remark 4.9, current constructions of 2-source extractors do not achieve
sufficiently low error to provide multiplicative extractors for samplable distributions with large output length.
More specifically, as explained in Remark 4.9 using current constructions of 2-source extractors, we only ob-
tain extractors for samplable distributions with output length m = O(log n), and ϵ = n−O(1). The difference
between standard extractors and multiplicative extractors becomes interesting when m≫ log 1

ϵ , which is not
the case here.

4.3 An Extractor With Small Output Length

We now show how to choose specific ingredients to the construction of Section 4.1 and obtain an extractor
for samplable distributions with low min-entropy. Using the best currently known 2-source extractors [CZ16,
Li16] the resulting extractor for samplable distributions will only have short output length of m = O(log n).
This result is stated below.

Theorem 4.8 (extractor for with small output lenghth). There exists a constant γ > 0 such that if E is hard
for exponential size Σ4-circuits, then for every constants c, c1 > 1, and every sufficiently large n, there is
an (n1−γ , 1

nc1 )-extractor Ext : {0, 1}n → {0, 1}c1·logn for distributions samplable by circuits of size nc.
Furthermore, Ext can be computed in time poly(nc, nc1).

The reason that Theorem 4.8 only obtains m = O(log n) is because the best currently known 2-source
explicit extractors for k = o(n) [CZ16, Li16] cannot achieve ϵ = n−ω(1). In the construction described in
Figure 1, when shooting for output length m, we require that the error ϵ′ of the 2-source extractor TExt is
ϵ′ < 1

2m , and this means that with current 2-source extractors, we can at best get m = O(log n) (and this is
indeed what we obtain in Theorem 4.8).

Proof. (of Theorem 4.8) Theorem 4.8 will follow directly from Theorem 4.1 by choosing specific ingredients
for the construction in Figure 1. More specifically:

• We choose γ > 0 to be the constant guaranteed in Theorem 3.1.

• We are assuming that E is hard for exponential size Σ4-circuits.

Given constants c, c1, and a sufficiently large n, we will instantiate the parameters and ingredients for the
construction of Figure 1, as follows:

• We choose k = n1−γ , and use the given parameters c, c1 and n as given for the parameters of Figure 1.

• We choose m = c1 · log n to be required output length.

• We choose ϵ′ = 1
8·nc1 ·2m , as is done in Figure 1, and note that for c′ = 3c1, for sufficiently large n, we

have that that ϵ′ ≥ n−c
′
.

• We choose nCnd = n0.9 and kCnd = n0.7. We use the hardness assumption to apply Theorem 3.1,
choosing m = nCnd = n0.9 to obtain a (k, n0.8 − O(log n))-errorless condenser Cnd : {0, 1}n →
{0, 1}nCnd for distributions samplable by circuits of size nc. Note that for sufficiently large n, we indeed
have that Cnd : {0, 1}n → {0, 1}nCnd is a (k, kCnd)-errorless condenser for distributions samplable by
circuits of size nc, as required in Figure 1. Furthermore, we have that Cnd is computable in time
poly(nc), and more specificaly that there exists a constant dCnd such that Cnd can be computed by a
circuit of size ndCnd .
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• Let a0 > 1 be the universal constant from Theorem 3.2. Theorem 2.12 specifies a running time for a
2-source extractor with error ϵ′ ≥ n−c

′
, and source length n1 = na0 . This running time is polynomial

is na0 and nc′ , which is polynomial in nc1 . Let d′ be a constant such that such a 2-source extractor can
be computed by a circuit of size nd′ .

• At this point, the constants c, c1, dCnd and d′ are determined. We choose a constant cHrd so that cHrd

meets the requirements in Figure 1. More specifically, we choose cHrd = max(c, c1, dCnd, d
′) + c0,

where c0 is the universal constant chosen by the proof of Theorem 4.1.

• We use the hardness assumption to apply Theorem 3.2. We are shooting for a function Hrd on input
length nCnd = n0.9, entropy threshold kCnd = n0.7, and constant cHrd/0.9. We indeed meet the require-
ment of Theorem 3.2 that kCnd ≥ 4nν

Cnd, and therefore, we can obtain a function Hrd : {0, 1}nCnd →
{0, 1}na0 that is a (ncHrd , kCnd, ρHrd)-HOS for size ncHrd Σ2-circuits, for ρHrd = 2−Ω(kCnd). Furthermore,
Hrd is computable in time poly(ncHrd) = poly(nc, nc1).

• Finally, we apply Theorem 2.12 to obtain a 2-source extractor. We have already chosen the error pa-
rameter ϵ′ = 1

8·nc1 ·2m > n−c
′
, and the source length to be na0 . Indeed, Figure 1, calls for a (k′1, k

′
2, ϵ
′),

TExt : {0, 1}n1 × {0, 1}n → {0, 1}m. We note that we have already chosen n1 = na0 > n, and so
we can use a 2-source extractor TExt : {0, 1}n1 ×{0, 1}n1 → {0, 1}m (by padding the second source).
Using Theorem 2.12 we can get such a (k′, k′, ϵ′)-2-source extractor for k′ = n0.6 = n

0.6/a0
1 = n

Ω(1)
1 .

• It remains to check that we meet the three requirements of Figure 1.

– We have already made sure to meet the requirement on the constant cHrd.
– Our choices meet the requirement that ρHrd < 1

8nc1 ·2m·2k
′
1

. This is because m = c1 · log n,

k′1 = k′ = n0.6 and ρHrd = 2−Ω(kCnd) = 2−Ω(n0.7), and so the requirements hold for sufficiently
large n.

– We meet the requirement that k′2 ≤ k− nCnd −m− c1 log n− 2 for sufficiently large n, because
k = n1−γ , nCnd = n0.7 and k′2 = k′ = n0.6.

We have chosen all the parameters and ingredients in Figure 1 in a way that satisfies the requirements. Using
Theorem 4.1 we conclude that the constructed function Ext : {0, 1}n → {0, 1}c1·logn is an (n1−γ , 1

nc1 )-
extractor for distributions samplable by circuits of size nc. Furthermore, by construction the running time of
Ext is poly(nc, nc1).

Remark 4.9 (Potential improvements if the ingredients are improved). We now discuss potential improve-
ments to Theorem 4.8 that can be achieved if the ingredients are improved.

Toward obtaining large output length directly. When using Theorem 4.1 to obtain an extractor for sam-
plable distributions with output length m, we need to choose the error ϵ′ of the 2-source extractor TExt to be
ϵ′ ≤ 2−m. We need 2-source extractors with min-entropy threshold nΩ(1) and while the recent breakthrough
2-source extractors of Chattopadhyay and Zuckerman [CZ16, Li16] achieve such a min-entropy threshold,
they run in time poly( 1

ϵ′ ) and so, cannot achieve error ϵ′ = n−ω(1). Consequently, when using Theorem 4.1
directly, we can only hope for extractors for samplable distributions with m = O(log n).

Fortunately, we can achieve extractors with large output length by using a transformation of Shaltiel
[Sha08] that is discussed in Section 4.4. This transformation comes with a cost of a stronger hardness as-
sumption (although as explained in Remark 4.11, this cost can be avoided). Future improvements in the error
of 2-source extractors will translate to a direct construction using Theorem 4.1. Such improvements will also
have additional consequences as we explain next.
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Toward multiplicative extractors. As observed in Remark 4.7, Theorem 4.1 yields multiplicative extrac-
tors. However, with the current 2-source extractors this does not yield interesting results. This is because
multiplicative extractors are superior to (standard) additive extractors, only when m ≫ log 1

ϵ and as ob-
served above, current 2-source extractors are not sufficient to achieve extractors for samplable distributions
with such parameters. Future improvements in 2-source extractors will immediately yield multiplicative ex-
tractors. The reader is referred to [Sha24] for a discussion on the benefits of multiplicative extractors.

We also remark that the construction of Theorem 4.1 cannot achieve error of ϵ = n−Ω(1). Moreover, Ap-
plebaum et al. [AASY15] showed that black-box techniques cannot be used to obtain extractors for samplable
distributions with ϵ = n−ω(1) that run in time poly(n) from the type of hardness assumptions that we use.

4.4 Increasing the Output Length of Extractors for Samplable Distributions

Shaltiel [Sha08] showed how to take an extractor for samplable distributions with small output length, and
transform it into one that has large output length. This transformation (specified in Figure 2) works by first
extracting t bits (using the initial extractor Ext : {0, 1}n → {0, 1}t for samplable distributions) and then
using the output as a seed to a seeded strong extractor SExt : {0, 1}n × {0, 1}t → {0, 1}m. Note that the
original source X , and the seed Ext(X) (that is used for the seeded extractor) are correlated, and so, it is not
clear that such a transformation should work. Nevertheless, Shaltiel [Sha08] showed that if the error of the
initial extractor Ext is smaller than 2−t, then this transformation does work, assuming Ext can extract from
distributions samplable by Σ1-circuits. The exact details are given in Figure 2 and Theorem 4.10.

Figure 2: Increasing the output length of extractors for samplable distributions

Parameters:

• n : The length of the input sources.
• k : The entropy threshold of the input sources.
• ϵ : The required error.
• s : The size bound on the sampling circuit.

Goal: Construct a (k, ϵ)-extractor Ext′ : {0, 1}n → {0, 1}m for distributions samplable by size s circuits.
Ingredients: (note that the ingredients below involve additional parameters t, ℓ,m1, s

′).

• A (t+ ℓ, ϵ/2t+10)-extractor Ext : {0, 1}n → {0, 1}t for distributions samplable by size s′ Σ1-circuits.
• An explicit strong (k, ϵ/2)-extractor SExt : {0, 1}n1 × {0, 1}t → {0, 1}m1 .

Requirements:

• 0 ≤ m1 ≤ k − (2t+ ℓ+ log(1/ϵ) + 5).
• s′ ≥ q(s+ n) where q is some fixed polynomial.

Description of Ext′: Ext′(x) = SExt(x,Ext(x)),Ext(x).
Output length of Ext′: Note that this gives that the output length of Ext′ is m = m1 + t.

Theorem 4.10. Given parameters and ingredients as in Figure 2, the function Ext′ is a (k, ϵ)-extractor for
distributions samplable by size s circuits.
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Theorem 1.4 and Theorem 1.5 will follow by using this transformation, and the difference will be in the
choice of seeded extractors.

4.4.1 Proof of Theorem 1.4

We are assuming that E is hard for exponential size Σ5-circuits. We have taken i = 5, rather than i = 4, so
that by “ladder climbing” (see Remark 2.15) when applying Theorem 4.8, under this stronger assumption for
Σ5-circuits, we obtain that Ext is an extractor for distributions samplable by Σ1-circuits.

More specifically, let γ > 0 be the constant guaranteed by Theorem 4.8. We will use the constant
γ′ = γ/2 as the constant that we should guarantee in Theorem 1.4. Given a constants c > 1, a constant
α > 0, a sufficiently large n, and k ≥ n1−γ′

, we set ϵ = n−c and apply Theorem 2.8 to obtain a strong
(k, ϵ

2)-extractor SExt : {0, 1}n × {0, 1}t → {0, 1}m1 , for m1 = (1 − α)k. By Theorem 2.8 we have that
t = c0 · c · log n for some constant c0 (hidden in the O-notation in Theorem 2.8). We set c1 to be sufficiently
large so that c · c0 ≤ c1, and ϵ

2t+10 = 2−10 · n−c0·c−c ≥ n−c1 . This will hold for c1 = O(c). These choices
are made so that t ≤ c1 · log n and n−c1 ≤ ϵ

2t+10 .
We will use the hardness assumption to apply Theorem 4.8 to obtain an (n1−γ , n−c1)-extractor for distri-

butions samplable by size q(nc + n), where q is the polynomial from Figure 2. The output will be c1 · log n,
and we can cut it to length t ≤ c1 · log n. We obtain that Ext : {0, 1}n → {0, 1}t can be computed in time
poly(nc, nc1) = poly(nc). Let ℓ = n1−γ − t so that Ext : {0, 1}n → {0, 1}t is a (t + ℓ, ϵ

2t+10 )-extractor for
distributions samplable by size q(nc + n) Σ1-circuit (as required in Figure 2).

In order to meet the requirement made in Figure 2 that

m1 = (1− α) · k ≤ k − (2t+ ℓ+ log(1/ϵ) + 5),

we note that k ≥ n1−γ′
= n1−γ/2 is significantly larger than ℓ ≤ n1−γ . More specifically, for sufficiently

large n,

k − (2t+ ℓ+ log(1/ϵ) + 5) ≥ k −O(ℓ) ≥ n1−γ/2 −O(nγ) ≥ (1− α) · n1−γ/2 ≥ (1− α)k,

and so the requirement is met. Using Theorem 4.10 we obtain a function Ext′ : {0, 1}n → {0, 1}(1−α)·k that
is a (k, ϵ)-extractor for distributions samplable by circuits of size nc as required. By construction, Ext′ runs
in time poly(nc).

Remark 4.11. As stated in Theorem 4.10 and Figure 2, the approach of Shaltiel [Sha08] requires the initial
extractor Ext to be an extractor for distributions samplable by Σ1-circuits. However, a closer inspection of
the Proof of Theorem 4.10 reveals that the same result follows under a weaker condition. It is sufficient that
Ext is an extractor for distributions that are samplable with postselection by (deterministic) circuits of size s′.

The notion of distributions samplable with postselection was introduced by Ball et al. [BGDM23]. A
distribution X is samplable with postselection by circuits of size s, if there exists two size s circuits, A :
{0, 1}r → {0, 1}n and P : {0, 1}r → {0, 1}, such that X is obtained as the distribution (A(W )|P (W ) = 1)
for W ← Ur.

Ball et al. [BGDM23] and later work by Shaltiel [Sha24] achieved extractors for samplable distributions
with postselection (rather than just samplable distributions). We remark that Theorem 4.8 can be extended
to yield extractors for distributions samplable with postselection by size nc circuits (under the same hardness
assumption).

This can be done by a more careful argument (that replaces samplable distributions, with distributions
samplable with postselection in both the extractor construction of Section 4, and the components in Section 3.

Together, these two improvements can avoid the loss in the transformation of Theorem 4.10, resulting in
an improved assumption that replaces Σ5-circuits with Σ4-circuits in Theorems 1.4 and Theorem 1.5. We
defer the details to a later version.
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4.4.2 Proof of Theorem 1.5

The proof of Theorem 1.5 is identical to the proof of Theorem 1.4 except that we use the seeded extractor of
Theorem 2.9 instead of Theorem 2.8.

5 Conclusion and Open Problems

In this paper we construct extractors for samplable distributions with low min-entropy. There are several
natural open problems.

Improving the min-entropy threshold. Our extractors achieve k = n1−γ for some constant γ > 0. It is
natural to try an obtain extractors for lower values of k. We remark that the specific approach of this paper
cannot give k <

√
n.

Let us now technically explain this statement. As explained in Section 1.3.2, for min-entropy k, our
construction requires an errorless condenser for min-entropy threshold k with output length mCnd < k. Our
technique for constructing an errorless condenser for min-entropy threshold k, relies in turn on a strong seeded
(k, ϵ)-disperser E : {0, 1}n × [D = 2d] → {0, 1}m (as well as other components). Even ignoring the other
components, when using our approach, the output length mCnd of the obtained errorless condenser satisfies
mCnd > D (it is in fact, somewhat larger). It is easy to show that in every nontrivial strong seeded disperser
(namely, one in which (1− ϵ) · 2m+d ≥ 2d+1 which is equivalent to ϵ ≤ 1− 2−(m−1)) it holds that D > n−k

m .
We use strong seeded dispersers with m ≤ k, and therefore must have that

mCnd > D >
n− k

m
>

n− k

k
,

which implies that if we want mCnd < k, then k cannot be significantly smaller than
√
n. This means that

even when using optimal strong seeded dispersers, as long as m ≤ k, this technique does not yield an errorless
condenser with mCnd < k for k = o(

√
n).17

Nevertheless, it may be possible to construct the required errorless condenser by other means, or alterna-
tively maybe one can hope to use errorless condensers with mCnd > k, and somehow avoid the requirement
that mCnd < k.

Weakening the assumption. The assumption used in Theorem 1.4 and Theorem 1.5 is that E is hard for
exponential size Σ5-circuits. This assumption can be weakened to replace Σ5-circuits by Σ4-circuits, as
explained in Remark 4.11. While this assumption is weaker than that used by Trevisan and Vadhan [TV00].
It was recently shown by Ball et. al. [BGDM23] how to achieve the extractor of [TV00] under the weaker
assumption that E is hard for exponential size nondeterministic circuits. (See [Sha24] for a discussion on the

17This begs the question of whether this limitation applies to strong seeded dipsersers where m is much larger than k. We first
remark that it is obvious that strong seeded dispersers with ϵ < 1

2
(which is the more standard setting of parameters) must have m ≤ k.

However, in this paper we are allowing ϵ to approach one. This allows m to be much larger than k, and in this setting dispersers are
often referred to as “unbalanced bipartite expanders”. Indeed, in this setting it is more natural to set k′ so that k′ = (1 − ϵ) · 2m,
so that for every set S ⊆ {0, 1}n on the “left hand side”, the set Γ(S) = ∪i∈[D] {(E(S, i), i)} ⊆ {0, 1}m+d of neighbors of S,
expands to size D · 2k

′
. With this parametrization, using the same argument as above, we can observe that if we aim for low k = nα

for some constant α > 0, the disperser must have m = Ω(n1−α) and k′ ≤ k.
The way in which we use such a disperser to construct an errorless condenser, can be viewed as reducing the task of constructing

an errorless condenser on {0, 1}n for min-entropy threshold k, to the task of constructing an errorless condenser on {0, 1}m for
min-entropy threshold k′. This means that for the parameters that we now consider (where m = Ω(n1−α) and k′ ≤ k) the task that
we are reducing to is at best, only slightly easier than what we want to achieve. It is not clear to us whether there is hope of iteratively
applying this reduction in order to make progress, and in any case, current explicit constructions of unbalanced expanders for this
regime are very far from optimal (ruining any potential gain).
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necessity of assuming hardness for nondeterministic circuits). The improvement of Ball et al. [BGDM23]
gives hope that maybe similar ideas can achieve our low min-entropy extractor under a weaker assumption.

Multiplicative extractors with large output length. As explained in Remark 4.7, and Remark 4.9, our
technique can give multiplicative extractors in Theorem 4.8. This is not impressive as Theorem 4.8 only
achieves an output length of m = Θ(log n), for ϵ = 1

poly(n) , and multiplicative extractors are not interesting
unless m = ω(log(1/ϵ)). The short output length is a result of the parameters of the current best explicit
constructions of 2-source extractor for min-entropy k = o(n), and our approach will give multiplicative
extractors for samplable distributions with output length m, and multiplicative error ϵ = n−c, if there are
explicit constructions of 2-source extractors for min-entropy threshold k′ = nΩ(1), output length m and error
ϵ′ = o(ϵ/2m).

Achieving extractors with m = (1− o(1)) · k and ϵ = n−c. It is natural to ask whether one can obtain an
extractor that combines the advantages of Theorems 1.4 and Theorem 1.5, and achieves both m = (1−o(1))·k
and ϵ = n−c. Our approach will immediately give such an extractor if there are explicit constructions of strong
seeded extractors which for k = n1−γ achieve seed length O(log n) for m = (1−o(1)) ·k, and ϵ = n−c ·2−d.
This immediately follows from the composition of Section 4.4. Current construcctions of seeded extractors
with m = (1 − o(1)) · k [DKSS09, TU12] do not achieve small error (and indeed Theorem 1.5 inherits its
error ϵ from the strong seeded extractors of Ta-Shma and Umans [TU12]).
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