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Abstract

We present a simple method based on a variant of Hölder’s inequality to lower-bound the trace norm
of Boolean matrices. As the main result, we obtain an exponential separation between the randomized
decision tree depth and the spectral norm (i.e. the Fourier L1-norm) of a Boolean function. This answers
an open question of Cheung, Hatami, Hosseini and Shirley (CCC 2023). As immediate consequences, we
obtain the following results.

• We give an exponential separation between the logarithm of the randomized and the deterministic
parity decision tree size. This is in sharp contrast with the standard binary decision tree setting
where the logarithms of randomized and deterministic decision tree size are essentially polynomially
related, as shown recently by Chattopadhyay, Dahiya, Mande, Radhakrishnan, and Sanyal (STOC
2023).

• We give an exponential separation between the approximate and the exact spectral norm for Boolean
functions.

• We give an exponential separation for XOR functions between the deterministic communication
complexity with oracle access to Equality function (DEQ) and randomized communication complexity.
Previously, such a separation was known for general Boolean matrices by Chattopadhyay, Lovett,
and Vinyals (CCC 2019) using the Integer Inner Product (IIP) function.

• Finally, our method gives an elementary and short proof for the mentioned exponential DEQ lower
bound of Chattopadhyay, Lovett, and Vinyals for Integer Inner Product (IIP).

1 Introduction
We start by recalling two fundamental notions related to the complexities of Boolean functions: the randomized
parity decision tree complexity and the spectral norms.

A parity decision tree (PDT) for a Boolean function f : Fn
2 → {0, 1} is similar to a standard decision tree

with the following strengthened query power. Instead of a single variable, each internal node can query the
parity (sum over F2) of any subset of variables, e.g., x1 ⊕ x5 ⊕ x6. The parity decision tree complexity of
f , denoted by PDTdepth(f), is the smallest depth of a PDT that outputs the correct value of f(x) on every
input x. A randomized parity decision tree (RPDT) of depth at most d is a probability distribution over
PDTs of depth at most d. It computes f with error ϵ if, for every input x, the RPDT outputs f(x) with
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probability at least 1− ϵ. The randomized parity decision tree complexity, denoted by RPDTdepth(f), is the
smallest depth of an RPDT computing f with error ϵ = 1/3.

Parity decision trees are closely related to the Fourier expansions of Boolean functions. The spectral norm
(also known as algebra norm) of a function f : Fn

2 → R, denoted by ∥f̂∥1, is the sum of the absolute values of
the Fourier coefficients.

It is easy to see from the Fourier expansion of a PDT that every Boolean function f : Fn
2 → {0, 1} satisfies

log ∥f̂∥1 ≤ PDTdepth(f). The randomized counterpart of this inequality does not hold as illustrated by h, the
indicator function of the standard basis vectors {e1, . . . , en}: as observed in [HHH23], RPDTdepth(h) = O(1),
but log ∥ĥ∥1 = Θ(log n). Nonetheless, this still leaves the possibility of log ∥f̂∥1 = Õ(RPDTdepth(f)) open,
where Õ(·) hides polylogarithmic dependencies on n. Cheung et al. [CHHS23] specifically asked whether such
a relation could hold, which if confirmed, would have established the stronger lower bound on RPDTdepth.

The main result of this work gives an example in which log ∥f̂∥1 is exponential in RPDTdepth(f), answering
the question by [CHHS23] in the negative.

Theorem 1 (Main theorem). There exists a function f : Fn
2 → {0, 1} with

RPDTdepth(f) = O(log n) and log ∥f̂∥1 = Ω(n).

In the converse direction, the quadratic gap RPDTdepth(f) = O(∥f̂∥21) holds for every Boolean function
(see e.g. [HHH23, Lemma 2.7]). Chattopadhyay, Mande, and Sherif [CMS20] proved that the sink function
SINK satisfies RPDTdepth(SINK) = Ω(∥ŜINK∥1). This result and Theorem 1 together demonstrate that the
measures log ∥f̂∥1 and RPDTdepth(f) are not polynomially related in both ways.

The proof technique used in the main theorem involves an application of Hölder’s inequality with carefully-
chosen parameters (see Section 3) that allow for a combinatorial interpretation of the problem. This framework
is useful not only for the question considered above but also in communication complexity, where we will use
the Hölder’s inequality technique to simplify the proofs of existing lower bounds. For the rest of this section,
we will discuss applications of both the proof technique and of the main theorem itself.

1.1 Communication Complexity: The Power of Oracle Access to Equality
Arguably the most well-known communication problem is the Equality function eq, in which the two parties
compare if their inputs are identical. In the model of public-coin randomized communication, two parties are
given a publicly accessible random string and are allowed to make errors with probability bounded away from
1/2. It is an elementary result that eq : {0, 1}n × {0, 1}n → {0, 1} has a randomized protocol requiring only
O(1) bits of communication, while any deterministic protocol of eq requires n+ 1 bits of communication.

A natural question would be whether Equality fully captures the power of randomness in communication. A
formal formulation of the question is to compare the relative power of randomized protocols and deterministic
protocols with oracle access to Equality or, in short, DEQ protocols. A DEQ protocol performs communications
as usual; in addition, the parties are given access to an oracle that computes Equality function, and each
oracle call is charged at a cost of one bit. The seminal work by Chattopadhyay, Lovett and Vinyals [CLV19]
considered this question and proved an exponential separation between the DEQ complexity and randomized
communication complexity (denoted R) of the Integer Inner Product function (IIP) in dimension at least 6.

For a chosen dimension k and parameter n, the Boolean matrix IIP(n)k : {−2n, . . . , 2n}k×{−2n, . . . , 2n}k →
{0, 1} is defined by

IIPk[(x1, . . . , xk), (y1, . . . , yk)] =

{
1 if

∑k
i=1 xiyi = 0

0 otherwise
.

For this communication problem, each player holds a Θ(kn)-bit input. As we only consider the case when
k = O(1), we treat IIP(n)k as a Θ(n)-bit communication problem.

Chattopadhyay, Lovett, and Vinyals presented a (one-way) randomized protocol for IIP(n)k of cost
O(k log n). For the lower bound, they introduced a lower bound technique which we call relative area method
(see Theorem 13), and showed that no DEQ protocol could compute the function with fewer than Ω(n) bits of
communication.

2



Theorem 2 ([CLV19]). For constant k ≥ 6, R
(
IIP(n)k

)
= O(log n) and DEQ

(
IIP(n)k

)
= Ω(n).

In a subsequent work, Cheung et al. [CHHS23] obtained a strengthening of Theorem 2 via a different
approach of spectral methods. It was shown in [HHH23] that

DEQ(A) ≥ 1

2
log ∥A∥ntr (1)

for any boolean matrix A ∈ {0, 1}m×n, where ∥A∥ntr is the normalized trace norm of A with the normalization
factor from the matrix dimensions (see Definition 10 for the precise definition).

Cheung et al. [CHHS23] observed that for k ≥ 3, the Θ(2kn)×Θ(2kn) matrix IIP(n)k contains a 24n/3×24n/3

point-line incidence matrix PL(4n/3) as a submatrix. The matrix PL(n) is defined on the domains P = L =
[2n/4]× [23n/4] ⊆ Z2, and the entries of PL(n) : P × L → {0, 1} are given by

PL[(x, x′), (y, y′)] =

{
1 if xy + x′ = y′

0 otherwise
.

They proved that the normalized trace norm of PL(n) is exponential in n, which shows that DEQ (PL(n)) = Ω(n).
Since communication complexity does not increase under restriction, this subsequently implies Theorem 2.

Theorem 3 ([CHHS23]). The 2m × 2m Boolean matrix PL(m) satisfies ∥PL(m)∥ntr = Ω(2m/32). Consequently,
for k ≥ 3,

DEQ
(
IIP(n)k

)
≥ n

48
+O(1).

A common shortcoming of both proofs of Theorem 2 in [CLV19; CHHS23] is their highly technical nature.
In Section 4, we give a considerably simplified proof – with improved linear factor on DEQ

(
IIP(n)k

)
– based

on the Hölder’s inequality technique. Here, we consider a different submatrix of IIPk, which is the point-line
incidence system PL∗ that proves the optimality of Szemerédi–Trotter theorem. We will provide the precise
definition of PL(m)

∗ in Section 4.

Theorem 4 (Improved version of Theorem 3). The 2m+1 × 2m Boolean matrix PL(m)
∗ satisfies ∥PL(m)

∗ ∥ntr =
Ω(2m/6). Consequently, for k ≥ 3,

DEQ
(
IIP(n)k

)
≥ n

8
+O(1).

Nondeterministic communication When analyzing the power of Equality in communication, another
model of interest is nondeterministic protocols with oracle access to Equality, or NEQ for short. For the precise
definition of the NEQ model, we refer readers to [PSS23]. NEQ and its relationships with related models have
been studied previously, both implicitly in [GPW18] and explicitly in [PSS23]. In the latter work, Pitassi,
Shirley and Shraibman analyzed the relative area method used by [CLV19] to lower bound DEQ(IIP6) and
showed that the same technique is applicable to NEQ complexity as well. It is not clear that the lower bound
technique of [CHHS23] on the DEQ complexity of IIP3 works for NEQ, so prior to this work it was open
whether IIP3 is hard for NEQ. We observe that the analysis in Theorem 4 can be adapted to the relative area
method, and therefore yields an almost linear lower bound on NEQ(IIPk) for every k ≥ 3.

Theorem 5. For constant k ≥ 3,

NEQ
(
IIP(n)k

)
= Ω

(
n

log n

)
.

As far as we know, this method cannot be improved to give a linear lower bound on NEQ(IIP3). We leave
resolving this logarithmic gap as an open question.
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xor-lifts A related open problem posed in [CHHS23] is whether an exponential separation of DEQ and R
holds for an xor-lift. For a Boolean function f : Fn

2 → {0, 1}, the xor-lift f⊕ : Fn
2 × Fn

2 → {0, 1} is defined
by f⊕(x, y) = f(x⊕ y) for each x, y ∈ Fn

2 . It can be verified that IIPk is not an xor-lift, so the DEQ-vs-R
separation for the xor-lift case was open.

The matrix class of xor-lifts is interesting in complexity theory since many complexity measures of the
matrix f⊕ can be related (or even equated) to complexity measures of the Boolean function f . Indeed, the
query-to-communication connections allow us to translate the separation question to a purely query-complexity
setting. For any Boolean function f : Fn

2 → {0, 1}, the inequality

R(f⊕) ≤ 2RPDTdepth(f) (2)

is evident from the standard simulation of a randomized parity decision tree by a communication protocol. A
result of [DD07] shows that

∥f⊕∥ntr = ∥f̂∥1. (3)

Immediate from Equations (1) to (3), we obtain the exponential DEQ-vs-R separation for xor-lifts from
Theorem 1.

Corollary 6. There exists a Boolean function f : Fn
2 → {0, 1} such that its xor-lift f⊕ satisfies R(f⊕) =

O(log n) and DEQ(f⊕) = Ω(n).

1.2 Query Complexity: The Power of Randomness
Understanding the power of randomized versus deterministic algorithms is a fundamental problem in complexity
theory. Depending on the computational model, this problem varies from fully resolved to forbiddingly out of
reach. In the standard decision tree model, it is well known that randomness does not significantly reduce
the number of queries. One early result in complexity theory by Nisan [Nis89] showed that a randomized
decision tree of depth d computing a Boolean function can be simulated by a deterministic decision tree
of depth at most O(d3). On the other end of the spectrum, the randomized-versus-deterministic problem
remains overwhelmingly difficult for Turing Machines.

A generic framework to study the relative powers of two computation models is to study the relations
of the complexity classes defined by suitable complexity measures. For the sake of comparisons between
measures, we consider the complexity measures normalized to the range [0, n]. Given a complexity measure
C(·) for a deterministic computation model, P is defined to be the class of functions f : Fn

2 → {0, 1} (more
accurately, sequences of functions fn) such that C(f) ≤ polylog(n). We define the class BPP similarly
for the randomized counterpart of C(·). The inclusion P ⊆ BPP for every measure is obvious, so the
randomized-versus-deterministic problem amounts to whether the classes P and BPP are equal.

We consider the two natural measures for trees, namely depth and logarithmic size (for normalization
purposes) and four types of decision trees: (standard) decision tree (DT), parity decision tree (PDT),
randomized decision tree (RDT), and randomized parity decision tree (RPDT). This branches into eight com-
plexity measures in concern, and we define the other six measures DTdepth, logDTsize, RDTdepth, logRDTsize,
PDTdepth and logPDTsize in an analogous manner to RPDTdepth and logRPDTsize. Based on the type of
queries equipped and the complexity measure, the P-vs-BPP question branches into four pairs for comparison.

Standard decision trees Nisan [Nis89] showed that DTdepth(f) ≤ O(RDTdepth(f)
3) in 1988 and settled

that P = BPP in the depth setting. The question in the size setting remained unsettled for decades until
recently Chattopadhyay, Dahiya, Mande, Radhakrishnan, and Sanyal [CDM+23] showed that

logDTsize(f) = O
(
log4(RDTsize(f)) log

3 n
)
,

concluding that P = BPP in this setting as well.

Parity decision trees In the depth setting, the two classes P and BPP are strongly separated by the
simple function of OR. It is well-known that the OR function on n bits satisfies RPDTdepth(OR) = O(1) but
PDTdepth(OR) = n, which provides the optimal separation and hence P ̸= BPP in this setting.
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Note that however PDTsize(OR) = O(n), so OR does not attest a separation between P and BPP in the size
setting. Indeed, previous to this work the P-vs-BPP question was unknown in the size setting. As mentioned
that log ∥f̂∥1 ≤ PDTdepth(f) for every function f , an immediate corollary of Theorem 1 implies that P ̸= BPP
in the size setting for parity decision trees.

Corollary 7. There is a function f : Fn
2 → {0, 1} such that logRPDTsize(f) = O(log n), but logPDTsize(f) =

Ω(n).

In fact, the randomized parity decision tree in our construction is non-adaptive and has a one-sided
error, hence we obtain the stronger separation P ̸= RP1 in the size setting parity decision tree size model. It
remains an interesting open problem to determine whether a separation of O(1)-vs-Ω(n) for logRPDTsize and
logPDTsize is possible, as in the case of depth illustrated by the OR function.

Question 8. Is there a boolean function f : Fn
2 → {0, 1} such that logRPDTsize(f) = O(1), but with

logPDTsize(f) = Ω(n), or even logPDTsize(f) = ω(log n)?

1.3 Fourier Analysis: Approximate versus Exact Spectral Norms
The notion of approximate norms is customary in complexity theory as complexity measures for models
with error tolerance. The approximate spectral norm of a function f with error ϵ, denoted as L̂1,ϵ(f)

2, is the
minimum ∥ĝ∥1 for some function g such that ∥f − g∥∞ ≤ ϵ. As in the case of other complexity measures, we
adopt the canonical choice ϵ = 1/3 when referring to constant error. Spectral norm and approximate spectral
norm of a Boolean function are fundamental parameters that find applications in many areas such as learning
theory [KM91], complexity theory [STV17; Tal17; TWXZ13; BS21], communication complexity [TWXZ13;
HHH23; CHHS23], Fourier analysis [TWXZ13; GTW21] and additive combinatorics [GS08; San19; CHZZ22].

It is natural to ask whether the spectral norm of a Boolean function is upper bounded by its approximate
spectral norm. Towards answering this question, Cheung et al. [CHZZ22] observed that if f is the indicator
function of n-bit strings of Hamming-weight 1, then L̂1,1/3(f) = O(1) but ∥f̂∥1 = Ω(

√
n). Nevertheless,

this separation does not rule out the possibility of polynomial relations with dependency on n such as
L̂1,1/3(f) = poly

(
∥f̂∥1, n

)
. Using the result by [HHH23] that log ∥f̂∥1 ≤ RPDTdepth(f) for any Boolean

function f , Theorem 1 immediately rules out the possibility of polynomial dependency.

Corollary 9. There exists a function f : Fn
2 → {0, 1} such that L̂1,1/3(f) = nO(1) but ∥f̂∥1 = 2Ω(n).

2 Preliminaries
For a positive integer k, we denote [k] := {1, . . . , k}. All logarithms in this paper are base 2.

We denote the indicator function of a predicate P as 1[P ] and the indicator function of a set S as 1S . For
a random variable r and a set S, we write r ∼ S to indicate that r is uniformly sampled from S. Throughout
this work, we adopt the standard big-O notations in computer science.

2.1 Schatten norms
For a vector v ∈ Rk and p ∈ [1,∞], we denote the ℓp-norm of v as ∥v∥p. For a matrix A ∈ Rm×n, the singular
values of A are the square roots of the eigenvalues of AA⊤, which we denote by σ1(A) ≥ σ2(A) ≥ . . . ≥
σmin{m,n}(A) ≥ 0. The central matrix norms in this paper are Schatten p-norm, which is defined as

∥A∥Sp =

(∑
i

σi(A)p

)1/p

1RP denotes the class of functions computable by RPDT with constant one-sided error and poly-logarithmic costs
2We adopt this function-like notation to emphasize that approximate spectral norm is not a norm despite what the name

suggests
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for p ∈ [1,∞), and ∥A∥S∞ = σ1(A). Put differently, Schatten p-norm of a matrix is the ℓp norm of the
vector

[
σ1(A), σ2(A), . . . , σmin{m,n}(A)

]
. One property of Schatten norms inherited from ℓp norms is the

monotonicity of Schatten p-norm in p: ∥A∥Sp
≥ ∥A∥Sq

for 1 ≤ p < q ≤ ∞.
The Schatten 1-norm, 2-norm and ∞-norm are frequently used and are commonly known as trace norm,

Frobenius norm, and spectral norm respectively:

∥A∥tr = ∥A∥S1 =
∑
i

σi(A);

∥A∥F = ∥A∥S2
=

√∑
i

σi(A)2 =

√∑
ij

A2
ij ;

∥A∥ = ∥A∥S∞ = σ1(A) = max
x∈Rn\{0}

∥Ax∥2
∥x∥

.

For applications in theoretical computer science, it is more convenient to work with the normalized trace
norm as a complexity measure.

Definition 10 (Normalized trace norm). For A ∈ Rm×n, the normalized trace norm of A is

∥A∥ntr :=
∥A∥tr√
mn

=
1√
mn

∑
i

σi(A).

We remind readers that unlike essentially all other complexity measures and matrix norms used in this
work, the normalized trace norm may increase upon restriction to a submatrix.

2.2 Fourier analysis of Boolean functions
This section gives a basic overview of Fourier analysis on the Boolean cube. For every η ∈ Fn

2 , define the
Fourier character χη : Fn

2 → {±1} as χη(x) = (−1)⟨x,η⟩, where ⟨x, η⟩ is the standard inner product over Fn
2 .

For a function f : Fn
2 → R, its Fourier expansion is given by

f =
∑
η∈Fn

2

f̂(η)χη, (4)

where the Fourier coefficient f̂(η) is defined as f̂(η) := Ex∼Fn
2
[f(x)χη(x)].

For a function f : Fn
2 → R and p ∈ [1,∞), the Fourier p-norm is defined as

∥f̂∥p =

∑
x∈Fn

2

|f̂(η)|p
1/p

,

and ∥f̂∥∞ = maxη |f̂(η)|. In other words, the Fourier p-norm is the ℓp norm of the vector of Fourier coefficients.
Fourier 1-norm is better known as the spectral norm of f , i.e. ∥f̂∥1 :=

∑
η∈Fn

2
|f̂(η)|.

For an Abelian group, the convolution of two real-valued functions f, g : G → R is a function defined to be

f ∗ g(x) := E
y∼G

[f(y)g(x− y)].

It is a standard fact in Fourier analysis that the Fourier transformation of convolution of two functions is the
pointwise product of their respective Fourier transforms: f̂ ∗ g = f̂ · ĝ.

Lastly, Parseval’s identity states that the squared Fourier 2-norm of a function f is equal to its second
moment (under uniform probability measure):

∥f̂∥22 =
∑
η∈Fn

2

f̂(η)2 = E
x∼Fn

2

[f(x)2].
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3 The Proof Framework
The key proof technique throughout this work is Hölder’s inequality with a nuanced choice of p-norms.
Hölder’s inequality states that for any p, q ∈ [1,∞] satisfying 1

p + 1
q = 1,

|⟨u, v⟩| ≤ ∥u∥p∥v∥q (5)

for any real vectors u, v ∈ Rn. A generalization of Hölder’s inequality known as Littlewood’s inequality
[HLP88], which can be deduced from the standard Hölder’s inequality, relates the p-norms of a function for
some “interpolated” tuples of p. The inequality states that for 1 ≤ p0 < p∗ < p1 ≤ ∞,

∥v∥p∗ ≤ ∥v∥θp0
∥v∥1−θ

p1
(6)

for any vector v ∈ Rn, where θ ∈ (0, 1) satisfies 1
p∗

= θ
p0

+ 1−θ
p1

. As Schatten norms and Fourier norms are
defined based on ℓp norms, the above inequality also holds with replacing the ℓp norms with these families of
norms.

Setting the parameters (p∗, p0, p1) = (2, 1, 4) (so that θ = 1/3) for Equation (6) yields the following lower
bound for 1-norm (after some algebraic manipulations):

∥f∥1 ≥ ∥f∥32
∥f∥24

. (7)

As this is the sole parametrization of Hölder’s inequality that we employ, we colloquially refer to Equation (7)
as “the Hölder’s inequality” in the rest of this work.

Among all the possible parametrizations for Littlewood’s inequality, the choice made in Equation (7)
of (p∗, p0, p1) = (2, 1, 4) is appealing because of the nice physical interpretations of 2-norm and 4-norm for
Boolean matrices (the Schatten norms) and Boolean functions (the Fourier norms). One main inspiration
of Equation (7) as a practical bound is the work of Chazelle and Lvov on hereditary discrepancy [CL00].
Chazelle and Lvov proved a hereditary discrepancy lower bound of a matrix in terms of its Schatten 2-norm
and 4-norm, highlighting the combinatorial interpretations of these norms for Boolean matrices. In the next
section, we illustrate the combinatorial perspective of Equation (7) with a simpler proof of Theorem 3.

4 Simplified Proof of Communication Complexity Lower Bounds
It is customary to associate a Boolean matrix A with the biadjacency matrix of a bipartite graph G = (U∪V,E).
In view of this, the square of Schatten 2-norm i.e. Frobenius norm of A is simply the number of edges of G.
The Schatten 4-norm of A also admits a graph-theoretic interpretation:

∥A∥4S4
= Tr((A⊤A)2) =

∑
i,j∈U

∑
k,ℓ∈V

AikAiℓAjkAjℓ =
∑
i,j∈U

∑
k,ℓ∈V

1[{ik, iℓ, jk, jℓ} ⊆ E].

In other words, ∥A∥4S4
is precisely the count of possibly degenerate 4-cycles in G. This quantity becomes

especially easy to evaluate when the underlying graph G does not contain non-degenerate 4-cycles (C4-free),
or equivalently, A does not contain a 2× 2 all-one submatrix.

For a C4-free bipartite graph, all contributions to ∥A∥4S4
come from the counts of edges and paths of

length 2. Furthermore, if G is almost balanced in the sense that the average degree of G is close to the
maximum degree, Equation (7) indeed yields a non-trivial lower bound for ∥A∥ntr:

Proposition 11. Let G = (U ∪V,E) be a C4-free bipartite graph with maximum degree ∆(G). For x ∈ U ∪V ,
let dx be the degree of x. If A ∈ {0, 1}U×V is the biadjacency matrix of G, Then

∥A∥tr ≥
|E|3/2√∑
x∈U∪V d2x

≥ |E|√
2∆(G)

.
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Proof. By Hölder’s inequality (Equation (7)),

∥A∥tr ≥
∥A∥3F
∥A∥2S4

=
|E|3/2√

Tr((A⊤A)2)
.

Since G is C4-free, the expression of Tr((A⊤A)2) is simplified to

Tr((A⊤A)2) =
∑
i∈U

∑
k∈V

Aik +
∑
i∈U

∑
k,ℓ∈V
k ̸=ℓ

AikAiℓ +
∑
i,j∈U
i ̸=j

∑
k∈V

AikAjk

= |E|+
∑
i∈U

di(di − 1) +
∑
k∈V

dk(dk − 1)

=

( ∑
x∈U∪V

d2x

)
− |E|

and the required bounds follow.

Since every two distinct points define a unique line, the bipartite graph G associated with any point-line
incidence system (with no duplicated lines) is C4-free. From Proposition 11, one can readily derive an
improved exponential normalized trace norm lower bound for PL using the same point-incidence submatrix in
[CHHS23].

We prove a better bound by considering a point-line incidence system PL∗ attributed to Paul Erdős
(see [Cha01, Lemma 6.25]). This point-line incidence system is constructed to show the tightness of the
Szemerédi–Trotter incidence bound. Concretely, the 2n+1 × 2n matrix PL(n)∗ : P ′ × L ′ → {0, 1} is defined as
follows: the input domains are P ′ = [2n/3]× [22n/3+1] and L ′ = [2n/3]× [22n/3], and the entries are given by

PL(n)∗ [(x, x′), (y, y′)] =

{
1 if xy + y′ = x′

0 otherwise
.

We first show that IIP3 contains PL∗ as a submatrix.

Claim 12. The matrix IIP(n)3 contains the matrix PL(3n/2−3/2)
∗ as a submatrix.

Proof. The condition of incidence of PL∗ can be rewritten as xy + (1)y′ + x′(−1) = 0, which is an instance
of integer inner product. For PL(3n/2−3/2)

∗ , the magnitude of each entry is bounded by 2
2
3 (

3
2n−

3
2 )+1 = 2n,

therefore PL(3n/2−3/2)
∗ is a submatrix of IIP(n)3 .

Proof of Theorem 4. As noted above, PL(m)
∗ is C4-free because no two distinct lines intersect at the same pair

of points. For the matrix PL(m)
∗ , each line is incident to exactly one point of the form (i, x′) ∈ P for each

i ∈ [2m/3]. Therefore the bipartite graph defined by PL∗ contains |L | · 2m/3 = 24m/3 edges. Also, each point
is incident to at most one line of the form (j, y′) ∈ L for each j ∈ [2m/3], hence the maximum degree of the
graph is 2m/3. By Proposition 11,∥∥∥PL(m)

∗

∥∥∥
ntr

≥ Ω

(
1

2m
· 24m/3

√
2 · 2m/3

)
= Ω

(
2m/6

)
.

By Claim 12 and Equation (1), we obtain

DEQ
(
IIP(n)k

)
≥ DEQ

(
IIP(n)3

)
≥ DEQ

(
PL(3n/2−3/2)

∗

)
≥ 1

2

(
1

6
· 3n
2

)
+O(1) =

n

8
+O(1).

As mentioned earlier, Chattopadhyay, Lovett, and Vinyals [CLV19] proved a linear lower bound on
DEQ(IIPk) for k ≥ 6 by a method different from the approach in [CHHS23] and this work. The method used
in [CLV19], the relative area method, considered a parametrized weighted sum of monochromatic rectangle
partition of a Boolean matrix. The following DEQ lower bound is deduced from the communication complexity
lower bound with more general oracle access.
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Theorem 13 ([CLV19, Lemmas 3.5 and 3.7]). Suppose M is a Boolean matrix with α 1-entries, and the
maximum area of any 1-monochromatic rectangle in M is β. For any constant η ∈ (1/2, 1),

DEQ(M) = Ω

(
log

(
α

β1−η|M |η

))
.

For the matrix PL(m)
∗ , as observed in the proof of Theorem 4, α = |E(G)| = 24m/3 and β = ∆(G) = 2m/3

since PL(m)
∗ is C4-free. Applying Theorem 13 with η = 1/2+ ϵ′ for some very small constant ϵ′ > 0, we obtain

a linear DEQ lower bound with a slightly inferior constant due to the slackness in η. We can also use this
technique to lower bound NEQ, which proves Theorem 5.

Theorem 14 ([PSS23]). Let M be a 2m × 2m Boolean matrix, α be the number of 1-entries in M and let β
be the size of the largest 1-monochromatic rectangle in M . Then

NEQ(M) = Ω

(
log

(
α√
β2m

)
· 1

logm

)
.

Proof of Theorem 5. As noted before, α = |E(G)| = 24m/3 and β = ∆(G) = 2m/3. For m = 3n/2 − 3/2,
applying Theorem 14 gives

NEQ
(
PL(m)

∗

)
= Ω

(
n

log n

)
and therefore the same lower bound holds for NEQ

(
IIP(n)k

)
for k ≥ 3.

5 Proof of the Main Theorem
The Hölder’s inequality supplies a large lower bound on 1-norm in the scenario of large 2-norm and small
4-norm. The proof of Theorem 3 utilizes the C4-free property and sufficient edge density of PL to show the
desired trace norm lower bound. We adopt the same strategy in exhibiting a function that the separation of
randomized parity decision tree depth and spectral norm.

As in the matrix case, we begin by examining the physical interpretations of p-norms in the Hölder’s
inequality. A fundamental quantity in additive combinatorics known as the additive energy, coincides with
the fourth power of Fourier 4-norm in Boolean function setting.

Definition 15 (Additive energy). For f : G → {0, 1} over an Abelian group G, the additive energy of f is
defined as

E(f) := E
x,y,z∼G

[f(x)f(y)f(z)f(x+ y − z)].

For a Boolean function f : Fn
2 → {0, 1}, tt is straightforward to show that E(f) = ∥f̂∥44:

E(f) = E
t∼Fn

2

[
E

x∼Fn
2

[f(x)f(t− x)] · E
z∼Fn

2

[f(z)f(t− z)]

]
= E

t∼Fn
2

[(f ∗ f(t))2]

=
∑
η∈Fn

2

f̂ ∗ f(η)2 =
∑
η∈G

f̂(η)4 = ∥f̂∥44.

It is also direct from Parseval’s identity that ∥f̂∥22 = Ex[f(x)]. Therefore in the Boolean function setting,
Equation (7) states that

∥f̂∥1 ≥ ∥f̂∥32
∥f̂∥24

=

√
Ex[f(x)]3

E(f)
. (8)

Emulating the approach in Section 4 to guarantee a small 4-norm, we consider a Boolean function
f : Fn

2 → {0, 1} that satisfies f(x)f(y)f(z)f(x+ y + z) = 0 for any distinct x, y, z ∈ Fn
2 as an analogue of

C4-free bipartite graphs. For such a function, the additive energy of f is lower than typical as only O(|Fn
2 |2)

tuples of (x, y, z) ∈ (Fn
2 )

3 could contribute to E(f). A function with this property is precisely the indicator
function of a Sidon set.
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Definition 16 (Sidon set). For an Abelian group G, a set S ⊆ G is called a Sidon set if for every a, b, c, d ∈ S
such that a+ b = c+ d, then {a, b} = {c, d}.

The indicator of a Sidon set emerges as a natural candidate function that attains the exponential spectral
norm lower bound stated in Theorem 1. Indeed, one can show that the spectral norm of an indicator of a
sufficiently big Sidon set is large.

Proposition 17. Every Sidon set S of a finite Abelian group G satisfies ∥1̂S∥1 ≥
√

|S|/2.

Proof. Since S is a Sidon set, 1S(x)1S(y)1S(z)1S(x+ y − z) = 1 implies that z = x or z = y. Thus

E(1S) ≤
2

|G|
E

x,y∼G
[1S(x)1S(y)] =

2

|G|
×
(
|S|
|G|

)2

=
2|S|2

|G|3
.

Applying Hölder’s inequality (Equation (8)) gives

∥1̂S∥1 ≥

√
Ex[1S(x)]3

E(1S)
=

√
|S|3/|G|3
2|S|2/|G|3

=

√
|S|
2
.

By Cauchy-Schwarz inequality and Parseval identity, it is direct to check that for any set T ⊆ G, the
spectral norm of 1T is at most

√
|T |. The above proposition shows that this upper bound is tight up to

constant factor for a Sidon set.
By considering the possible sums of a pair of elements, it is easy to see that for a Sidon set S, we have(|S|

2

)
≤ |G| and hence |S| = O(

√
|G|). In the case of G = Zn

2
3, a well-known construction of a Sidon set

matching the size upper bound is the Bose–Chaudhuri–Hocquenghem (BCH) code [BR60; Hoc59]. This code
is constructed from polynomials over a finite field of characteristic 2.

Denote F2m the characteristic-2 finite field of size 2m. The elements of F2m can be isomorphically
identified with univariate F2-polynomials of degree at most m− 1, where multiplication is defined modulus a
fixed irreducible polynomial P (x) ∈ F2[x] of degree m. Viewing as additive groups, F2m

∼= F2[x]/⟨P (x)⟩ is
isomorphic to Zm

2 .
For Fp where p is a prime, the Sidon set construction in [BR60] is given by the tuples (a, ak) over all a in

a suitable subfield and a suitable exponent k. For p = 2, the construction takes the form of BCH(S), where for
a set S we define

BCH(S) := {(a, a3) : a ∈ S}.

For the sake of completeness, we include the proof for this specific construction.

Theorem 18 ([BR60]). For every even number m, the set BCH(F2m/2) ⊆ F2m/2 × F2m/2 ≡ Zm
2 is a Sidon set.

Proof. Let (a, a3) and (b, b3) be two pairs with a prescribed sum (u, v) ∈ F2m/2 ×F2m/2 . This means a+ b = u
and a3 + b3 = v, which implies that

u3 = (a+ b)3 = a3 + b3 + (a+ b)ab = v + uab.

Suppose a ̸= b i.e. u ̸= 0, then a(u+ a) = ab = u2 + vu−1. The same calculation concludes that a and b are
the roots of the quadratic equation x(x+ u) = u2 + vu−1. Since a quadratic equation has at most two roots,
{a, b} is uniquely determined by u and v.

Theorem 18 allows us to construct a large Sidon set in Zn
2 . Since a subset of a Sidon set remains a Sidon

set, it remains to select a suitably structured subset whose indicator function is computable with a short
randomized parity decision tree. As mentioned earlier, every element in F2n can be uniquely identified with a
polynomial in F2[x] of degree at most n − 1. For d ∈ N, denote Pd the set of F2-polynomials of degree at
most d− 1. We show that BCH(Pn/4) is the desired Sidon set.

Theorem 19. Let n = 4d for some d ∈ N, and S = BCH(Pd) ⊆ Pd × P3d ⊆ F2d × F23d
∼= Zn

2 . The Boolean
function 1S : Fn

2 → {0, 1} satisfies that RPDTdepth(1S) = O(log n) and ∥1̂S∥1 = Ω(2n/8).
3For clarity, in the rest of this section, we use the notation Z2 to refer to the additive group of size 2.
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Proof. Note that S is a Sidon set of size |Pd| = 2d = 2n/4. The spectral norm lower bound follows from
Proposition 17. It remains to upper-bound the randomized parity decision tree complexity.

We first describe a randomized algorithm that computes 1S . Suppose a pair (u, v) ∈ F2[x] × F2[x]
with deg(u) < d and deg(v) < 3d is a given. To determine whether (u, v) ∈ S, we interpret v − u3 as a
polynomial in F2m [x], where m = ⌈log(3d)⌉+ 2, and check whether v − u3 ≡ 0. This can be accomplished
using the standard randomized polynomial identity testing algorithm: pick a random t ∈ F2m and evaluate
v(t) − u(t)3 ∈ F2m . The algorithm declares that “v ̸= u3” if any of the evaluated values is non-zero, and
declares “v = u3” otherwise.

Notice that this randomized algorithm has a one-sided error, as it always makes the correct declaration
when v = u3 (i.e. 1S(u, v) = 1). In the case of v ≠ u3, since the polynomial v − u3 has at most 3d roots, the
probability of error is at most 3d/2m ≤ 1/4.

Next, we convert the randomized algorithm into a randomized parity decision tree. For every t ∈ F2m ,
the set

Ht := {u ∈ Pd : u(t) = 0} ⊆ Pd
∼= Zd

2

is a linear subspace of co-dimension m in Zd
2, and each coset of Ht takes a fixed value when evaluated at

t. Therefore, the value of u(t) is determined by m deterministic linear queries to u. Similarly, the value
of v(t) is determined by m deterministic linear queries to v. Hence, we construct the randomized parity
decision tree as follows: pick a random t ∈ F2m and make the 2m parity queries that determine the values of
u(t), v(t) ∈ F2m , and the decision tree outputs whether v(t) and u(t)3 are equal.

5.1 Payley-Zygmud inequality and typical Fourier coefficients
Here instead of Hölder’s inequality, we use the Payley-Zygmund inequality to deduce a stronger conclusion
than Proposition 17 which could be of independent interest. We show that for the indicator of a Sidon set, a
constant fraction of the Fourier coefficients is large. We have shown that for a Sidon set S in an Abelian
group G, ∑

χ∈Ĝ

|1̂S(χ)|2 =
|S|
|G|

and
∑
χ∈Ĝ

|1̂S(χ)|4 ≤ 2|S|2

|G|3
.

Consider the random variable X = |1̂S(χ)|2 where χ is a character picked uniformly at random. The above
bounds translate to E[X] = |S|/|G|2 and E[X2] = 2|S|2/|G|4 = 2E[X]2. By Paley-Zygmund inequality, we
have for any δ ∈ (0, 1),

Pr[X > δ E[X]] ≥ (1− δ)2
(E[X])2

E[X2]
≥ (1− δ)2

2
.

Taking δ = 1/2 for example, this gives

Pr
χ

[
|1̂S(χ)| >

√
|S|√
2|G|

]
≥ 1

8
.
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