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Abstract

We establish new correlation bounds and pseudorandom generators for a collection of com-
putation models. These models are all natural generalizations of structured low-degree F2-
polynomials that we did not have correlation bounds for before. In particular:

• We construct a PRG for width-2 poly(n)-length branching programs which read d bits
at a time with seed length 2O(

√
logn) · d2 log2(1/ε). This comes quadratically close to

optimal dependence in d and log(1/ε). Improving the dependence on n would imply
nontrivial PRGs for log n-degree F2-polynomials. The previous PRG by Bogdanov, Dvir,
Verbin, and Yehudayoff had an exponentially worse dependence on d with seed length of
O(d log n+ d2d log(1/ε)).

• We provide the first nontrivial (and nearly optimal) correlation bounds and PRGs against
size-nΩ(logn) AC0 circuits with either n.99 SYM gates (computing an arbitrary symmetric
function) or n.49 THR gates (computing an arbitrary linear threshold function). This is a
generalization of sparse F2-polynomials, which can be simulated by an AC0 circuit with one
parity gate at the top. Previous work of Servedio and Tan only handled n.49 SYM gates or
n.24 THR gates, and previous work of Lovett and Srinivasan only handled polynomial-size
circuits.

• We give exponentially small correlation bounds against degree-nO(1) F2-polynomials which
are set-multilinear over some arbitrary partition of the input into n.99 parts (noting that at
n parts, we recover all low-degree polynomials). This vastly generalizes correlation bounds
against degree-(d − 1) polynomials which are set-multilinear over a fixed partition into d
blocks, which were established by Bhrushundi, Harsha, Hatami, Kopparty and Kumar.

The common technique behind all of these results is to fortify a hard function with the right
type of extractor to obtain stronger correlation bounds for more general models of computation.
Although this technique has been used in previous work, it relies on the model shrinking to a
very small computational class under random restrictions. We view our results as a proof of
concept that such fortification can be done even for classes that do not enjoy such behavior.
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NSF Grant CCF-2008076, CCF-2312573, and a Simons Investigator Award (#409864, David Zuckerman).
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1 Introduction/Outline of Results

Many central questions in complexity theory revolve around proving limitations of various computa-
tional models. For example, there are research programs which seek lower bounds against constant
depth circuits, low-degree polynomials over F2, and perhaps most famously the complexity class P.

Usually, lower bounds against a simple class of n-bit Boolean functions C are established by
demonstrating an explicit function f such that no g ∈ C can compute f on every input. This is
referred to as worst-case hardness. However, we may not be satisfied with this in practice and stipu-
late that no g ∈ C can even approximate f . After all, if there exists a g that agrees with f on all but
one point, the difference may be impossible to detect in practice. Furthermore, establishing average
case hardness against C can allow us to create PRGs against C via the “hardness to randomness”
framework introduced by Nisan and Wigderson [NW94], as well as show hardness results against
related function classes, like the majority of functions in C. This average-case hardness statement
is exactly what the study of correlation bounds capture.

To formally define this, let D be a distribution over {0, 1}n. Define the correlation of two
Boolean functions f, g : {0, 1}n → {0, 1} over D to be

corrD(f, g) = |Ex∼D[(−1)f(x)+g(x)]|.

We will usually be concerned with D = Un, the uniform distribution, and should be assumed so if
no distribution D is specified. Notice that this quantity is a real number in [0, 1]. For intuition,
note that if f = g or f = 1−g, the correlation is 1, whereas if f and g only match on about half the
inputs, the correlation becomes small. This fact allows us to observe that correlation is the right
notion, as corr(f, g) being small implies that g cannot predict f much better than a coin flip. For
a function f and a function class C, we can define corr(f, C) = maxg∈C corr(f, g). Hence, the notion
of f being average-case hard for C is captured by corr(f, C) being small.

In this paper, we are most interested in the case where C is the class of low-degree F2[x1, . . . , xn]
polynomials. Establishing correlation bounds against low-degree F2 polynomials is an extremely
interesting and central question in complexity theory, as it is either necessary or sufficient to un-
derstand a plethora of other problems, some of which concern communication protocols, matrix
rigidity, and PRGs for circuits. See Viola’s survey [Vio22] for a detailed exposition on this rich
program.

Unfortunately, there is a “log n-degree barrier” for PRGs and correlation bounds against low-
degree polynomials. Current PRGs and correlation bounds are asymptotically tight for constant
degree polynomials, but become trivial at degree log n [Vio08]. Getting nontrivial PRGs (or even
correlation bounds) against log n-degree polynomials has been a longstanding open problem.

Towards breaking this barrier, researchers have shown strong correlation bounds for structured
subsets of low-degree F2-polynomials (such as sparse polynomials [LS11, ST18], tensors [BHH+20],
small-read polynomials, and symmetric polynomials [BIJ+21]) with the hope of being able to gen-
eralize them. In this work, we establish new correlation bounds and PRGs for computation models
generalizing some of these polynomials, namely width-2 branching programs reading d bits at a time,
AC0 containing a small number of arbitrary symmetric or linear threshold gates, and set-multilinear
polynomials.

Interestingly, all of these correlation bounds are obtained by taking a function hard for a more
specific class of polynomials and then fortifying it with a well-suited extractor. Although such
a strategy is not new and has been used to establish stronger lower bounds for formulas [KRT13,
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CKK+14], they usually rely on the fact that upon randomly fixing a subset of variables of a formula,
there are extremely few possibilities for the resulting function. Our work shows that extractor
fortification is a much broader technique that can strengthen lower bounds against function classes
even if they do not simplify to a tiny collection of functions under a random restriction. In particular,
our correlation bounds demonstrate that extractor fortification can work as long as the function
class, after a random restriction, has low communication complexity or good algebraic structure.

Inspired by this, we would like to understand when extractors will strengthen correlation bounds.
Due to technical reasons, this seems nontrivial to establish. We explain this technical nuance in
Section 2.5.

The remainder of this section is devoted to introducing and motivating each computational
model studied, surveying prior work in the topic, and stating all key results proven.

1.1 Better Bounds and PRGs Against AC0 with More {SYM,THR} Gates

Our knowledge of hardness and PRG results for AC0 is much more developed than that of TC0.
Our state of the art PRGs for AC0 is Lyu’s construction [Lyu22], which ε-fools polysize AC0 circuits
with seed length Õ(logd−1(n) log(n/ε)), whereas the current best PRG of Hatami, Hoza, Tal, and
Tell which (2−n

δ
)-fools size- O(n1+δ) TC0 circuits have seed length O(n1−δ) [HHTT22]. Due to

this stark contrast in parameters, it is natural to gradually work upward from AC0 by allotting a
budget of SYM (calculates an arbitrary symmetric function) or THR (calculates an arbitrary linear
threshold function) gates in the circuit. This approach has been investigated for over a decade
[Vio07, LS11, ST18], beginning with Viola’s work, which generalized and simplified pioneering
work on PRGs for low-degree F2-polynomials by Luby, Velicković, and Wigderson [LVW93]. This
context explains why this circuit class a compelling generalization of sparse polynomials (which
can be written as a small-size parity of ands). All the mentioned works use the following function
introduced by Razborov and Wigderson in 1993 [RW93] (all arithmetic is over F2).

RWm,k,r(x) =
m∑
i=1

k∏
j=1

r∑
ℓ=1

xijℓ (1)

Most recently, Servedio and Tan [ST18] use RWm,k,r to uncorrelate against constant-depth size-
nO(logn) AC0 circuits whose top gate is {SYM,THR} (denoted {SYM,THR} ◦ AC0). Their explicit
bound is

corr

(
RW√

n
logn

,logn,
√

n
logn

, {SYM,THR} ◦ AC0

)
≤ 2−Ω(n.499).

By the techniques used in [LS11], this can be translated into correlation bounds against AC0 circuits
with up to n.499 SYM gates or n.249 THR gates. As can be seen by the repeated occurrences of n.499,
the strength of the correlation bound dictates how many {SYM,THR} gates we can afford in our
budget.

We show that RW is just one of many functions from a general class of hard functions with
small correlation against {SYM,THR} ◦ AC0 circuits. For functions f : ({0, 1}r)k → {0, 1} and
g : {0, 1}m → {0, 1}r, denote f ◦ gk(x1 . . . , xk) := f(g(x1), . . . g(xk)).

Theorem 1.1 (informal). Let g be computable by a size nO(logn) {SYM,THR} ◦ AC0 circuit. Let f
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be average-case hard against multiparty protocols1, and let Ext be a suitable extractor. Then

corr(f ◦ Ext.01 logn, g) ≤ 2−Ω(n.999).

To our knowledge, this theorem gives the first context in which generically precomposing with
an extractor boosts correlation bounds whose proof does not rely on simplification under random
restriction (indeed, parity does not simplify under restriction and is contained in {SYM,THR} ◦
AC0}). Previously, extractors have only been used to boost correlation bounds for classes that
heavily simplify under random restriction [KRT13, CKK+14, CSS16, KKL17], whether it be a small
depth decision tree or a function very close to a constant.2 Our theorem states that extractors can
still boost correlation bounds, even if they were proven using communication complexity or algebraic
methods (rather than only random restrictions).

Furthermore, our theorem distills the reason why RW was so effective as a hard function. Quan-
titatively, we can instantiate the template with a suitable extractor to obtain a new hard function
with nearly-optimal correlation bounds.

Due to our strengthened correlation bounds, we can now obtain correlation bounds and PRGs
against size-nO(logn) AC0 circuits with up to n.999 SYM gates or n.499 THR gates. Prior to this,
no nontrivial correlation bound or PRG was known to handle such large size and number of
{SYM,THR} gates ([LS11] could handle the same number of {SYM,THR} gates but only for
nO(log logn)-size circuits, and [ST18] could handle the same size circuits, but only n.499 SYM or
n.249 THR gates).

Even for {SYM,THR}◦AC0 circuits that have only one {SYM,THR} gate, our correlation bounds
yield improved PRGs whose seed length is 2O(

√
logS)+(log(1/ε))2.01, which has a better dependence

on ε than in previous work (see Table 1). In fact, since the best correlation bound that one can
hope for is 2−Ω(n), this dependence is almost optimal under the Nisan-Wigderson framework, and an
alternative approach is needed to reach the optimal dependence of log(1/ε). Since any log n-degree
F2 polynomial can be expressed as a SYM ◦ ANDlogn circuit of size nlogn, any improvement in the
dependence of the seed length on S would give nontrivial PRGs for log n-degree polynomials, a
breakthrough result.

1.2 Much Better PRGs Against Width-2 Branching Programs Reading d Bits
at a Time

Usually, one constructs PRGs for natural computational models, with the idea that we can drasti-
cally reduce the randomness we use if the randomized algorithm we are running can be simulated
by such a model. low-degree polynomials is an extremely natural mathematical model with ap-
plications to circuit complexity, but some may not believe it is well grounded as a computational
one and thus not worth finding a PRG for. However, the work of Bogdanov, Dvir, Verbin, and
Yehudayoff [BDVY13] showed the beautiful connection that PRGs for degree d polynomials are also
PRGs against a particular model described as width-2 length-poly(n) branching programs which read
d bits at a time.

1the formal condition is any function with small “k-party norm” or “cube norm”, but this is currently the only
technique we know that establishes average case hardness against multiparty protocols.

2There have been uses of extractors as a hard function against classes that do not simplify under restriction,
like DNFs of Parities [CS16] and strongly read-once linear branching programs [GPT22, LZ24, CL23]. However,
they directly establish a correlation bound against the extractor rather than amplify a weaker hard function by
precomposing with an extractor.
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Circuit type Circuit size S Correlation bound PRG seed length

[Vio07] {SYM,THR} ◦ AC0 nc logn n−cd logn 2O(
√

log(S/ε))

[LS11] SYM ◦ AC0 nc log logn exp(−n0.999) 2
O
(

log S
log log S

)
+ (log(1/ε))2.01

[LS11] THR ◦ AC0 nc log logn exp(−n0.499) 2
O
(

log S
log log S

)
+ (log(1/ε))4.01

[ST18] {SYM,THR} ◦ AC0
d nc logn exp(−Ω(n0.499)) 2O(

√
logS) + (log(1/ε))4.01

This work {SYM,THR} ◦ AC0 nc logn exp(−Ω(n0.999)) 2O(
√
logS) + (log(1/ε))2.01

Table 1: Correlation bounds against {SYM,THR} ◦ AC0
d circuits and the PRGs that follow via the

[NW94] framework. In all previous work, the “hard” function used was the RW function, which was
first considered by Razborov and Wigderson [RW93]. Our work uses a better suited function.

Definition 1.2 ((d, ℓ, n)-2BP ([BDVY13], adapted)). A (d, ℓ, n)-2BP (or more colloquially a width-
2 length-ℓ branching program over n bits which reads d bits at a time) is a layered directed acyclic
graph, where there are ℓ layers and each layer contains two nodes, which we label by 0 and 1. Each
vertex in each layer j is associated with an arbitrary d-bit substring x|v of the input x. Each node in
layer j has 2d outgoing edges to layer j+1 that are labeled by all possible values in {0, 1}d. On input
x, the computation starts with the first node vstart in the first layer, then follows the edge labeled by
x|vstart onto the second layer, and so on until a node in the last layer is reached. The identity of
this last node is the outcome of the computation.

Such branching programs are a well-motivated computation model, which covers computation
with only one bit of usable memory, low-degree polynomials, and small width DNFs. The survey of
unconditional PRGs by Hatami and Hoza refers to this model as a compelling computational model
that places low-degree polynomials in the computational landscape [HH23].

Unfortunately, there is a “log n-degree barrier” for PRGs and correlation bounds against low-
degree polynomials. Current PRGs and correlation bounds are asymptotically tight for constant
degree polynomials, but become trivial at degree log n, as can be seen by the current best known
PRG for degree-d polynomials by Viola which has seed length O(d log n + d2d log(n/ε)) [Vio08].
Obtaining nontrivial PRGs (or even correlation bounds) against log n-degree polynomials has been
a tantalizing open problem, and thus PRGs for (d, poly(n), n)-2BPs also seemingly appeared to
inherit this “d = log n barrier” due to the reduction result of [BDVY13].

In this work, we construct PRGs against (d, poly(n), n)-2BPs with exponentially better seed
length, thereby giving nontrivial PRGs even in the regime d = n1−o(1). Define a d-junta to be a
function ϕ : {0, 1}n → {0, 1} which is solely dependent on d input bits (i.e. can be written as
ϕ′(xi)i∈S for some subset S ⊂ [n] of size d). To get our shortened seed length, we evade the log n-
degree barrier by instead showing the equivalence between PRGs for (d, poly(n), n)-2BPs and PRGs
for the XOR of poly(n) many d-juntas (denoted as JUNTA⊕poly(n)n,d ). This class is already interesting
in its own right, as it can be seen as a generalization of sparse F2-polynomials and combinatorial
checkerboards (defined by Watson [Wat11] and also studied by Gopalan, Meka, Reingold and Zuck-
erman [GMRZ13]), as well as a specific class bounded collusion protocols studied by Chattopadhyay
et al. [CGG+20]. However, we are not aware of any literature that studies JUNTA⊕mn,d specifically.
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Our main technical contribution is strong correlation bounds for JUNTA
⊕poly(n)
n,d . In particular,

we show the following.

Theorem 1.3. There exists an explicit function f such that

corr(f, JUNTA
⊕poly(n)
n,d ) ≤ exp

(
− n

d2O(
√
logn)

)
By combining this with the “hardness-to-randomness” framework of Nisan and Wigderson [NW94],

we construct a PRG of seed length 2O(
√
logn)d2 log2(1/ε). This is only a quadratic factor away from

optimal dependence on d and ε. Improving the dependence on n would be a breakthrough, since if
we set n′ = 2

√
logn, a (d, n, poly(n))-2BP can simulate any log n′-degree polynomial over x1, . . . xn′ ,

and so having seed length o(n′) would effectively break the log n-degree barrier for F2-polynomial
PRGs.

Interestingly enough, by combining a “simplification under restriction” approach pioneered by
Ajtai and Wigderson [AW85] with a PRG for sparse F2-polynomials by Servedio and Tan [ST22],
we can construct a PRG against JUNTA

⊕poly(n)
n,d , and thus (d, poly(n), n)-2BPs, with seed length

d2O(
√

log(n/ε)). This gives us an optimal dependence on d, but an exponentially worse dependence
on ε. This suggests perhaps that with a combination of these two approaches, one might be able to
achieve a seed length of 2O(

√
logn)d log(1/ε).

1.3 Near-Optimal Bounds Against High Degree Set-Multilinear Polynomials

As explained earlier, a central open question in complexity theory is to establish better-than-
O(1/

√
n) nontrivial correlation bounds against Ω(log n)-degree polynomials. In order to make

progress on this question, it is natural to consider structured low-degree F2-polynomials. This is
what the work of Bhrushundi et al. does [BHH+20].

Define a polynomial p : {0, 1}n → {0, 1} as set-multilinear over a partition X = (X1, . . . , Xd)
of the input bits if every monomial contains at most one variable from each Xi (this is slightly
more general than the usual definition of exactly one). The work of Bhrushundi et al. [BHH+20]
shows that a random degree d set-multilinear tensor has exponentially small correlation against
generic degree d/2 F2-polynomials for d = Ω(n). Toward making this correlation bound explicit,
they defined FFM(X1, . . . , Xd) = lsb(X1 ·X2 · · ·Xd), where multiplication is done by treating Xi as
field elements, and lsb outputs the least significant bit of the string. Bhrushundi et al. were able
to give exponentially small correlation bounds against polynomials up to degree o(n/ log n) which
are set-multilinear over the fixed partition (X1, . . . , Xd). However, this leaves much to be desired.
The partition with respect to which the polynomial is set-multilinear over needing to be fixed and
dependent on FFMd feels like an extremely strong and asymmetric condition. Can we uncorrelate
against degree < d polynomials set-multilinear over any equipartition of X into d parts? Can the
parts be unequal? Can we have more than d of them?

We show affirmative answers to all the above questions. If we take δ > 0 to be an arbitrarily
small constant, we can obtain exponentially small correlation against degree < nδ polynomial for
which there exists some partition of X into up to n1−δ (not necessarily equal) parts such that p is
set-multilinear over it. Notice that improving n1−δ parts to n would be a breakthrough, since all
polynomials are set-multilinear over the n-partition of X = (x1, . . . , xn).

To do so, we fortify the hard function FFM with an extractor. Let Ext(X,W ) be a strong
linear seeded extractor (for each fixing of W , Ext(·,W ) is linear). For some parameter d, define the
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function

ExtFFMd(X1, . . . , Xd,W ) := lsb(Ext(X1,W ) · Ext(X2,W ) · . . . · Ext(Xd,W )),

where multiplication is done over a finite field, and lsb outputs the least significant bit of the string.
First note that ExtFFMd(X1, . . . , Xd,W ), for a fixed W , is set-multilinear over X1, . . . , Xd. Hence,
our intuition that set-multilinear polynomials might correlate the most with the hard function is
preserved in ExtFFM as well. Using ExtFFM, we are able to obtain correlation bounds against the
more intuitive notion of set-multilinear polynomials, where the structure of the partition does not
matter. This gives more leeway since now if we want to implement this approach towards correlation
bounds against low-degree polynomials, there is a larger class of set-multilinear polynomials to which
we can reduce generic polynomials.

2 Technical Overview Of the Results

In this section, we give the overview of the proofs of the main results we covered above.

2.1 Stronger Correlation Bounds Against {SYM,THR} ◦ AC0

We focus on showing stronger correlation bounds against {SYM,THR} ◦ AC0, since the subsequent
arguments turning this into PRGs against AC0 with a few {SYM,THR} gates are standard. The
blueprint behind this argument follows the “simplification under restrictions” approach of previous
works, but most similarly of Tan and Servedio [ST18]. A random restriction is a random partial
assignment where for each variable, it is left unfixed (or “alive”) with probability p, and is otherwise
set to a uniform bit. [ST18] shows that under a random restriction, the hard function RWm,k,r

maintains integrity and uncorrelates with multiparty protocols, while {SYM,THR} ◦ AC0 simplifies
to a short multiparty protocol. However, the roadblock met in [ST18] that prevents a correlation
bound of 2−Ω(n) and only gives one of size 2−Ω(n.499) is due to the parameters in RWm,k,r being in
contention with each other. To elucidate, if n is the input size, then we must have mkr = n. Via
the analysis done in [ST18], the correlation bound ends up being in the form of 2−Ω(m) + 2−Ω̃(r),
which forces any established correlation bound to be at best 2−Ω(

√
n).

To understand why both conflicting terms appear, we give a quick overview of the argument of
[ST18]. First, RWm,k,r (as defined in Equation (1)) can be thought of as a fortified version of the
generalized inner product, GIPm,k(x1, . . . , xk) :=

∑m
i=1

∏k
j=1 xij , where each variable is now replaced

by the parity of r new variables. This is effective against random restrictions, since as long as one
of the r copies xij1, . . . , xijr survive the restriction, the corresponding term xij in GIP will survive.
They argue that after applying a random restriction ρ, the {SYM,THR} ◦ AC0 circuit simplifies
to a short multiparty protocol, while RWm,k,r|ρ is still capable of computing GIPm/2,k with high
probability. Conditioning on this, previous results of Babai, Nisan, and Szegedy [BNS89] show that
GIPm/2,k has 2−Ω(m/2k) correlation against these multiparty protocols, which explains the emergence
of the 2−Ω(m) term in the correlation. Conditioning on RWm,k,r|ρ being able to compute GIPm/2,k

introduces an additive error to the correlation corresponding to the probability RWm,k,r|ρ fails to
simplify. [ST18] bounds this by the chance that all r copies of some variable xij becomes fixed by a
restriction, which will be (1− p)r ≈ exp(−pr), explaining the occurrence of the 2−Ω(r) term in the
correlation.
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In summary, the argument of [ST18] requires that r be large to strongly fortify the hard function
against random restrictions, while m needs to be large to have a stronger correlation bound against
multiparty protocols. However, with the constraint mr ≤ n, we are forced to compromise and reach
the setting m = r ≈

√
n.

We now propose an abstraction of the hard function, which naturally yields a stronger correlation
bound. If we define ⊕m,r : ({0, 1}r)m → {0, 1}m to be

⊕m,r(x1, . . . , xm) =

(
r∑

i=1

x1i, . . . ,
r∑

i=1

xmi

)
,

we observe RWm,k,r = GIPm,k◦⊕k
m,r(x1, . . . , xk) := GIPm,k(⊕m,r(x1), . . . ,⊕m,r(xk)). The key insight

is that our argument can be generalized to not just RW, but any function

f ◦ Extk := f(Ext(x1), . . . ,Ext(xk))

where f is average-case hard for multiparty protocols, and Ext is an oblivious bit-fixing source
extractor (OBF extractor). Informally, an oblivious bit-fixing source extractor for min-entropy k is
a function Ext such that if X is uniform over {0, 1}n and ρ is a restriction which leaves ≥ k bits
alive, the output Ext(X|ρ) is close to uniform. Recall our approach first applies a random restriction
to simplify our circuit to a small multiparty protocol, which we then deal with using GIP. If the
random restriction leaves sufficiently many variables alive with high probability, then f ◦Extk should
still behave like f due to Ext being an OBF extractor. Since the circuit is now a multiparty protocol,
the average-case hardness of f gives us a correlation bound (the argument is actually not as simple
as this: see Section 2.5 for an explanation).

Notice in the RW construction and the setting of parameters m = r ≈
√
n, ⊕m,r is an OBF

extractor which maps n bits to
√
n bits. But this means that the input to the outer GIP function

will only have ≈
√
n bits, so the best correlation bound we can hope to achieve is exp(−Ω(

√
n)).

The restrictions used in the proof leave n.99 variables alive with high probability, so intuitively we
could hope that all these n.99 “bits of randomness” could be preserved for GIP (or in general any f)
rather than only

√
n, potetially resulting in a exp(−Ω(n.99)) correlation bound alive. We do just this

by using a much better OBF extractor of Kamp and Zuckerman [KZ07]. By making this intuition
more formal using techniques developed by Viola and Wigderson [VW07], we obtain 2−Ω(n1−O(1))

correlation bound. The idea of replacing parities with better suited extractors has also appeared
in previous work [KRT13, CKK+14, CSS16, KKL17]. However, as discussed earlier, they have only
been used to boost lower bound arguments that solely use random restrictions. In this result, we
are boosting a lower bound argument incorporating a communication complexity argument, which
requires more care (see Section 2.5).

2.2 PRGs for JUNTA⊕tn,d and (d, t, n)-2BPs

Our PRG construction blueprint can be briefly described as follows. We first establish correlation
bounds against JUNTA⊕tn,d. We then put this through the Nisan-Wigderson “hardness vs. random-
ness” framework to create a PRG against JUNTA⊕tn,d. We then show that PRGs that fool JUNTA⊕tn,d

actually fool (d, t, n)-2BPs, making the JUNTA⊕tn,d PRG our final construction. We first discuss why
PRGs for JUNTA⊕tn,d imply PRGs for (d, t, n)-2BPs, and then discuss the techniques needed to show
strong correlation bounds against JUNTA⊕tn,d.
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2.2.1 PRGs for JUNTA⊕tn,d =⇒ PRGs for (d, t, n)-2BPs

Adopting the exposition in [HH23], the previous work of [BDVY13] can be outlined as follows.
Consider a (d, t, n)-2BP B. Observing that all transition functions in B are d-juntas, one can derive
that B(x) = B′(ϕ1, . . . , ϕ2t(x)), where B′ is a (1, t, 2t) branching program. By Fourier expanding
B′, this can be decomposed as

B(x) =
∑

S⊂[2t]

B̂(S)(−1)
∑

i∈S ϕi(x).

[BDVY13] shows that
∑

S⊂[t] |B̂(S)| is bounded, so by linearity of expectation and the Trian-
gle Inequality, it suffices to fool the terms (−1)

∑
i∈S ϕi(x). The approach in [BDVY13] makes

the observation that each ϕi, by virtue of being a d-junta, can be written as a degree d poly-
nomial. Consequently, a PRG for degree d polynomials will fool (d, t, n)-2BPs with seed length
O(d log n+ d2d log(n/ε)). The issue here is that at d = log n, the seed length becomes trivial.

However, we can notice that the F2-polynomial p(x) :=
∑

i∈S ϕi(x) has some additional struc-
ture. If t = poly(n), p is the sum of only a polynomial number of d-juntas. If there was a way
to leverage this, and get a better PRG that fools JUNTA⊕tn,d, then we might hope to get nontrivial
PRGs even in the regime d = Ω(log n).

This observation already yields nontrivial PRGs for d = ω(log n). Servedio and Tan [ST18]
provide a PRG fooling F2-polynomials with S terms with seed length 2O(

√
logS) log(1/ε). Since each

junta can be written as a polynomial with up to 2d terms, each g ∈ JUNTA
poly(n)
n,d can be written as a

polynomial with S = 2dpoly(n) terms, yielding a PRG with seed length (2O(
√
d)+O(log n)) log(1/ε).

Hence we get nontrivial seed length for d = o(log2 n) 3. However, we proceed alternatively to get
an exponentially better seed length.

2.3 The Nisan-Wigderson Framework and Correlation Bounds for JUNTA
⊕poly(n)
n,d

We will once again use f ◦ Extk 4 as our hard function to establish exponentially small correlation
bounds against the class, and then apply the Nisan-Wigderson [NW94] framework to construct the
PRG. The latter portion is straightforward, so we focus on establishing the correlation bounds.

Let g ∈ JUNTA
⊕poly(n)
n,d . We first show that there exists a subset of variables, S, such that when

arbitrarily fixing bits outside of this set, g can be expressed as a sparse F2 polynomial, while each
input block of f ◦ Extk heavily intersects S. Hence if we fix XS̄ and take the correlation over S,
each input block still maintains high min-entropy while g becomes a sparse polynomial, which is a
small SYM ◦AC0 circuit. Since the hard function is also the same, we can then apply techniques in
the previous section to conclude.

2.4 Correlation Bounds against Set-Multilinear Polynomials

Recall that [BHH+20] has shown FFMd uncorrelates against any lower degree polynomial which
is set-multilinear over (X1, . . . , Xd). The key ingredient behind proving strong correlation bounds
against set-multilinear polynomials over arbitrary parititons is to first fortify each input block with

3it is actually the case that a PRG from [LVW93] already gets nontrivial seed length in the same regime, albeit
with exponentially worse dependence in ε

4we also precompose with parities in the formal argument
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extractors, and instead consider ExtFFMd. This allows us to establish the following structural
lemma, which intuitively states that even if you do not start out with a polynomial that is set-
multilinear over (X1, . . . , Xd), if not too many bits in each input block can be restricted to 1s such
that the resulting function is set-multilinear over (X1, . . . , Xd) induced by the live variables in each
block, exponential correlation bounds can still be obtained.

Theorem 2.1. Let g be a polynomial of degree < d. Let S1, . . . , Sd ⊂ [n/d] be subsets, and let ρ
denote the restriction created by fixing the bits in Xi whose index is outside Si to 1 for each i ∈ [d].
If the restricted function g|ρ(X1, . . . , Xd) becomes set-multilinear in (X1, . . . , Xd), then have

corr(ExtFFMd, g) ≤ 2−Ω( n
cd

).

To explain the proof at a high level, if the sets Si we leave alive aren’t too small, then our strong
extractor (conditioned on a good seed) will keep each block Ext(Xi,W ) approximately uniform,
and since the restricted function g|ρ is now set-multilinear over (X1, . . . , Xd) we may use a similar
approach as [BHH+20] to prove the theorem.

It turns out that through a combinatorial argument, one can show that polynomials which are
set-multilinear over a large number of blocks can be turned into polynomials set-multilinear over
(X1, . . . , Xd) by fixing not too many bits per input block Xi. The correlation bounds then follow
from the structural lemma.

2.5 A Technical Nuance Regarding Extractor Fortification

Say we are given a class C that simplifies under restrictions proportionally to how aggressive the
restriction is. For example, say with high probability under a mild random restriction ρ1, C|ρ1
simplifies to a class C1 ⊂ C, and with high probability under a more aggressive random restriction
ρ1 ◦ ρ2, C|ρ1◦ρ2 simplifies to a much smaller class C2 ⊂ C1. A common technique to prove correlation
bounds is to take a hard function f : {0, 1}n → {0, 1} that remains hard after a random restriction.
For example, if we know Eρ1corr(f |ρ1 , C1) = ε1, we can bound

corr(f, C) ≤ Eρ1corr(f |ρ1 , C|ρ1) ≈ Eρ1corr(f |ρ1 , C1) = ε1,

where ≈ hides the probability C does not simplify. With this, one might hypothesize that if we
precompose with an OBF extractor Ext : {0, 1}m → {0, 1}n, one must have corr(f ◦ Ext, C)≪ ε1.

In particular, if C2 is much simpler than C1, we would expect ε2 := corr(f |ρ1 , C2)≪ corr(f |ρ1 , C2) =
ε1. Then, by the extractor property, we would have f ◦ Ext|ρ2(U) ≈ f(U ′), where U and U ′ are
uniform strings (but could be correlated depending on the live variables of ρ2). Hence,

corr(f ◦ Ext|ρ2 , C|ρ2) = |E(−1)f◦Ext|ρ2 (U)+g|ρ2 (U)| ≈ |E(−1)f(U ′)+g|ρ2 (U)|. (2)

If U ′ was almost always a copy of U (over the randomness of ρ2), the above would let us deduce
corr(f ◦ Ext|ρ2 , Cρ2) ≈ corr(f, Cρ2). This allows us to deduce a much stronger correlation bound as
follows.

corr(f ◦ Ext, C) ≤ Eρ2corr(f ◦ Ext|ρ2 , C|ρ2) ≈ Eρ2corr(f, C|ρ2)
≤ Eρ1,ρ2corr(f |ρ1 , C|ρ1◦ρ2)
≈ corr(f |ρ1 , C2) = ε2.
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Of course, we cannot assume something so strong. It is possible that (U ′, U) are adversarially
correlated such that the expression in Equation (2) is extremely large. In this paper, we find two
ways to circumvent this obstacle, resulting in three new correlation bounds.

Since the correlation between U and U ′ is the issue, we might hope to bypass this obstacle by
bounding the RHS of Equation (2) by an expression independent of g|ρ(U). This is indeed possible
for multiparty protocols, as Viola and Wigderson [VW07] showed the correlation of a function
f against k-party protocols is bounded by the “k-party” norm of f . Our correlation bounds for
{SYM,THR} ◦ AC0 crucially rely on this to make the extractor fortification argument work.

Another way one might imagine a fortification lemma might hold is if Ext|ρ was “easy to invert”.
To see what we mean, lets say for simplicity that Ext|ρ was a bijection and had inverse Ext−1. Then
we could see by a change of variables

|E(−1)f◦Ext|ρ(U)+g|ρ(U)| ≈ |E(−1)f(U)+g|ρ(Ext−1(U))|.

Hence if Ext−1 was computationally simple, we might be able to reason that g|ρ ◦Ext−1 is also very
simple, and thus has very small correlation against f . This intuition is what drives the analysis in
the correlation bounds against set-multilinear polynomials. We use a linear seeded extractor, which
makes the maps linear and thus “easy to invert”. Furthermore, this inversion reasoning explains
why for our correlation bounds involving multiparty protocols, we need to apply an independent
extractor to each party’s input rather than one extractor for the whole input. If we did the latter,
then the inverse Ext−1 would add correlation among the k input strings in g|ρ ◦ Ext−1, thereby
increasing the communication complexity of this function.

For correlation bounds against width-2 branching programs, we use both phenomena, as we
precompose with an OBF extractor, and then again with a simple parity extractor.

It is an interesting question to further explore the connection between extractors and correlation
bounds.

3 Preliminaries

For positive integer n, [n] := {1, . . . , n} and
(
[n]
s

)
is the set of all subsets of [n] with |S| = s. We

denote e(x) := (−1)x.

3.1 Convention About Input Blocks

We will canonically fix a partition of bit strings into d contiguous blocks, each with n/d bits. In
particular, any X ∈ {0, 1}n can be written as X = (X1, . . . , Xd) where each Xi is the n/d-bit
substring. If a string Y ∈ {0, 1} is defined, Yi will be assumed to mean the length n/d substring of
Y contained in the ith input block, defined with respect to the canonical partition. Also, we will
denote X−i := (X1, . . . , Xi−1, Xi+1, . . . , Xd) to be the input with the ith block removed.

For a string X ∈ {0, 1}, we may sometimes identify the n/d bit string Xi as an n-bit string in
the following way: the ith block is filled with X, and all other blocks are filled with 0s. Hence, if
we interpret bit strings as elements of Fn

2 , and we have X,Y ∈ Fn
2 , the expression X + Yi is well

defined.
For parameters k, d ≤ n and two functions f : ({0, 1}m)k → {0, 1} and g : {0, 1}n/k → {0, 1}d,

we will define
f ◦ gk = f(g(X1), . . . , g(Xd))

12



3.2 Finite Fields

We will be working with finite fields of characteristic 2. For the finite field over 2n elements, F2n , we
can naturally identify each element with an n-bit string. It is well known F2n can be constructed
by taking a degree n polynomial E(x) which is irreducible over F2[x], and considering the quotient
F2[x]/E(x).

Consequently, via polynomial division by E(x), each element a ∈ F2n can be uniquely identified
with a degree n − 1 F2[x] polynomial, say

∑n−1
i=0 cix

i. We can then define the corresponding n-
bit string representation of x to be (cn−1, cn−2, . . . , c0) (noting that the least significant bit is the
constant term). Furthermore, if we explicitly write out a string in F2n with less than n bits, simply
pad all the leading digits with 0s to turn it into an n-bit string. (e.g. 11 is interpreted the same as
0n−211).

With this polynomial-to-string interpretation, addition and multiplication become well-defined.
We note that for x, y ∈ F2n , x+ y behaves exactly like adding two Fn

2 vectors. We can now define
the multiplication x · y by converting them to polynomials, taking the product, modding out by
E(x), and then writing the coefficients as a bit string. We will also define ⟨x, y⟩ =

∑n
i=1 xiyi where

the RHS arithmetic is over F2.

Definition 3.1 (character). A map χ : F2n → F2 is called an additive character if for all x, y ∈ F2n,
χ(x+ y) = χ(x) + χ(y). It is nontrivial if it is not the zero function.

Since F2n is an n-dimensional vector space, we see the valuations on n basis vectors uniquely
define the character. Consequently there are 2n such characters. Notice we can conveniently char-
acterize all characters either by χc(x) = ⟨x, c⟩, or by fixing some character χ, and then defining
χc(x) := χ(c · x). This can be seen by verifying these maps are characters, are distinct, and that
there are 2n of them (the latter is obvious since there are 2n values of c).

3.3 Models of Computation

Definition 3.2 (F2-polynomials). An F2-polynomial (or polynomial for short) is a function of the
form p(x) :=

∑
S⊂[n] cS

∏
i∈S xi for some ci ∈ F2 (all arithmetic here are over F2).

Definition 3.3 (set-multilinearity). An F2-polynomial p is set-multilinear over a partition (X1, . . . , Xd)
of variables if every monomial of p contains at most one variable from each Xi. Notice that all poly-
nomials are trivially set-multililinear over (x1, . . . , xn).

Definition 3.4 (junta). Define the class JUNTAn,k to be a function ϕ : {0, 1}n → {0, 1} which is
solely dependent on k input bits (i.e. can be written as ϕ′(xi)i∈S for some subset S ⊂ [n] of size k).
Define JUNTA⊕tn,k to be the class of functions which is the parity of t k-juntas.

Definition 3.5 (k-party NOF protocol). A boolean function f : ({0, 1}n/d)d can be computed by a
k-party NOF protocol with c bits of communication if on input X = (X1, . . . , Xd), d players, can
take turns writing a bit on the board, where player i’s bit can only depend on X−d and the other bits
on the board, and the cth bit written is f(X). We denote this class of functions to be Πc

k

Circuits

We measure the size of a circuit by the total number of wires (including input wires) in it. AC0
d are

depth d circuits with unbounded fan-in whose gate set is {AND,OR,NOT}. SYM is a gate which
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computes an arbitrary symmetric function, and THR is a gate which computes an arbitrary linear
threshold function. In general, if we have a gate G, a subscript Gk will refer to its fan-in (in this
case, G is fixed to have fan-in k).

Definition 3.6 ((d, C)-tree). Let d be an integer and C a computational model (e.g. a circuit class).
A function is computable by a (d, C)-tree if it is computable by a depth t decision tree with C functions
as its leaves. That is, there exists a depth d decision tree T such that for every path π in T , F |π ∈ C.

3.4 Probability

We will denote Um to be the uniform distribution over the finite set {0, 1}m. We will also denote
S ⊂p T to be a random subset of T where each t ∈ T is added to S independently with probability
p.

Definition 3.7 (k-wise uniform). Consider a distribution D over ({0, 1}n/d)d. We say that D is
k-wise uniform if for all subsets S = {i1, . . . , ik} ⊂ [d] and all strings y1, . . . , yk ∈ {0, 1}n/d,

Pr
X∼D

[∀j,Xij = yj ] = 2−kn/d.

Definition 3.8 (ε-close in distribution). Let D1 and D2 be distributions over {0, 1}n. We say
D1 ≈ε D2, or equivalently D1 is ε-close to D2, if for all S ⊂ {0, 1}n,

| Pr
x∼D1

[x ∈ S]− Pr
x∼D2

[x ∈ S]| ≤ ε.

3.5 Random Restrictions and Partial Assignments

A partial assignment or restriction is a string ρ ∈ {0, 1, ⋆}n. Intuitively, a ⋆ represents an index
that is still "alive" and hasn’t been fixed to a value yet.

We also define a composition operation on partial assignments. For two restrictions ρ1, ρ2, define
ρ1 ◦ ρ2 so that

(ρ1 ◦ ρ2)i =

{
ρ1i ρ1i ̸= ⋆

ρ2i ρ1i = ⋆.

Intuitively, one can see this as fixing bits determined by ρ1 first, and then out of the remaining alive
positions, fix them according to ρ2.

A random restriction is simply a distribution over restrictions. A common random restriction
we will use is Rp, the distribution where each index will be assigned ⋆ with probability p, and 0, 1
each with probability 1−p

2 .
The main reason for defining restrictions is to observe their action on functions. Given a re-

striction ρ and function f : {0, 1}n → {0, 1}, we define f |ρ : {0, 1}n → {0, 1} to be the restricted
function mapping f |ρ(x) := f(ρ ◦ x).

3.6 Pseudorandomness

Our work will involve working with pseudorandomness primitives, like pseudorandom generators
(PRGs) and randomness extractors (or simply extractors).
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Definition 3.9 (ε-PRG). A polytime computable function G : {0, 1}s → {0, 1} is an ε-PRG for a
subset F of functions {0, 1}n → {0, 1} if for all f ∈ F ,

|Ex∼Un [(−1)f(x)]− Es∼Us [(−1)f(G(s))]| ≤ ε.

We also say that G ε-fools F . The parameter s is the seed length. In this paper, we will use a PRG
of [ST22] which ε-fools F2 polynomials with ≤ S terms with seed length 2O(

√
logS) log(1/eps).

Definition 3.10 (min-entropy). Let D be a distribution over {0, 1}n, and define supp(D) = {y ∈
{0, 1}n : Prx∼D[x = y] > 0}. Define the min-entropy of D to be the quantity

− log

(
max

x∈{0,1}n
Pr
y∼D

[y = x]

)
.

It is helpful to note that if for a particular k and all y ∈ {0, 1}n, all probabilities Prx∼D[x = y] ≤ 2−k,
then we know D has min-entropy ≥ k.

Definition 3.11 (Strong/Linear/Seeded Extractors). A (k, ε)-seeded extractor is a function Ext :
{0, 1}n × {0, 1}d → {0, 1}m such that for any D with min-entropy ≥ k, we have for X ∼ D and
W ∼ Ud the following

Ext(X,W) ≈ε Um.

Ext is a strong seeded extractor if we also have

Pr
w∼Ud

[Ext(X, w) ≈ε Um] ≥ 1− ε

Ext is a linear seeded extractor if for every fixed W , Ext(·,W ) is linear over F2. The Leftover
Hash Lemma [ILL89] allows us to construct a strong seeded (k, ε) extractor with seed length 2n,
Ext : {0, 1}n · {0, 1}2n → {0, 1}k−2 log(1/ε).

Definition 3.12 (Oblivious Bit-Fixing Source Extractors). An (n, k) oblivious bit-fixing source (or
OBF) is a distribution D over {0, 1}n created by fixing some n − k of the bits, and then filling
in the remaining k indices with uniform and independent bits. An (k, ε) oblivious bit-fixing source
extractor (or OBF extractor) is a function Ext : {0, 1}n → {0, 1}m such that for every (n, k) OBF
D, we have that for X ∼ D,

Ext(X) ≈ε Um.

For any k >
√
n, Kamp and Zuckerman [KZ07] allows us to construct (k, 2−Ω(k2/n)) OBF extractors

Ext : {0, 1}n → {0, 1}Ω(k2/n).

3.7 Correlation Bounds

We will need some tools and definitions from the literature of correlation bounds. We first give a
formal definition of correlation.

Definition 3.13 (correlation). For two Boolean functions f, g : {0, 1}n → {0, 1}, and a distribution
D over {0, 1}n, define the correlation of f and g over D to be

corrD(f, g) = |Ex∼D(−1)f(x)+g(x)|.

If no distribution is mentioned, we always assume D = Un. Furthermore, for a subset of functions
C, we define

corrD(f, C) = max
g∈C

corrD(f, g).
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Viola and Wigderson defined a convenient quantity Rk, which is very useful in bounding corre-
lations against NOF protocols.

Definition 3.14 (k-party Norm). For a function f : ({0, 1}n/k)k → {0, 1}, define the k-party norm
of f to be

Rk(f) := E
X

(0)
1 ,...,X

(0)
k ,X

(1)
1 ,...,X

(1)
k ∼Un/k

e

 ∑
δ∈{0,1}k

f(X
(δ1)
1 , . . . , X

(δk)
k )

 .

This norm is useful due to the following theorem.

Theorem 3.15 ([VW07]). Let f : {0, 1}n → {0, 1} be arbitrary, and let g be computable by a
d-party NOF protocol exchanging c bits. Then

Rd(f) ≤ corr(f, g) ≤ 2cRd(f)
1/2d .

We will also use the following theorem of Nisan and Wigderson, which allow us to translate
correlation bounds into PRGs.This version is seen in the survey of Hatami and Hoza [HH23]

Theorem 3.16 ([NW94], [HH23] Theorem 4.2.2). Let f : {0, 1}n → {0, 1}. Suppose h : {0, 1}r →
{0, 1} is ε-hard for f ◦ JUNTAr,k with respect to the uniform distribution. Then there exists a PRG
for f with seed length s = O(n

1
k+1 · r2/k) and error εn.

4 Nearly Optimal Correlation Bounds against {SYM,THR} ◦ AC0

We strictly improve upon the result [ST18] by proving a stronger correlation bound against {SYM,THR}◦
AC0 circuits. This immediately gives PRGs against this class with improved seed length via the
“hardness vs. randomness” framework [NW94] All previous work [Vio07, LS11, ST18] looked at
the function introduced in [RW93] created by taking the generalized inner product of parities. We
present a new function comprised of field multiplication of extractors in order to prove stronger
correlation bounds. Let m,n be parameters, and define k := n/d. We now prove the following
result:

Theorem 4.1. Let Ext : {0, 1}k → {0, 1}.2k.996 be a (k.998.2−.4k
.996

) OBF-source extractor (explicit
ones exist due to [KZ07]). Let f : ({0, 1}.2k.996)d → {0, 1} be any function such that corr(f,Πd

d) ≤
2−Ω(k.996/2d). Define f ◦ Extd : ({0, 1}k)d → {0, 1} to be the function

f ◦ Extd(X) := f(Ext(X1), . . . ,Ext(Xd)).

Let g be any function implementable by a nO(logn)-size {SYM,THR} ◦ AC0 circuit, and let m =
.0005 log n. Then

corr(f ◦ Extm+1, g) ≤ 2−Ω(n.995).

In particular, by instantiating this template, say, with Ext being the extractor of [KZ07] and
f being either GIP [BNS89] or FFM [FG13], we get explicit f ◦ Extm+1. We also note by simple
adjusting of constants, we can get any 2−Ω(n1−ε) for constant ε > 0. This gives an improvement of
the correlation bound given in [ST18] of 2−Ω(n.499).
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Proof. We follow the same approach as done in [ST18]. The uniform distribution can be expressed
as applying a random restriction, and then filling in the remaining bits uniformly. For good random
restrictions, we argue that g simplifies to a {SYM,THR} ◦ ANDm circuit. We then argue that even
after the random restriction, f ◦ Extm+1 maintains its structural integrity due to the extractor. We
then finish the argument by using Hastad and Goldmann’s connection between {SYM,THR}◦ANDm

and NOF protocols, and the fact that f has small correlation with (m+ 1)-party protocols.

The proof for the simplification of g is the same as seen in [ST18] so we merely cite it here. The
only change is the tuning of parameters. Here is the lemma restated for our use.

Lemma 4.2. Let g ∈ {SYM,THR}◦AC0
d with circuit size s = nτ logn. Then for p = 1

48(48 log s)
−(d−1)

Pr
ρ←Rp

[g|ρ is not computed by (.001pk, {SYMs2 ,THRs2} ◦ ANDlog s})-tree]

≤ s · 2−.001pk/2d

= 2−Ωd(pk)

Notice that for constant d this gives a bound of 2−Ω(n/polylog(n)), versus its use in [ST18] in
which a 2−Ω(

√
n/ logn) error was gained. We will see later that we can liberally set parameters here

because our hard function maintains integrity even after traversing down a path of size n/polylog(n)
(equivalent to randomly fixing n/polylog(n) bits), whereas the previous GIP function could only
withstand

√
n bits. This is result of using an OBF extractor with much better parameters than

simply taking the XOR of many copies.

The leaves of our tree is now much simpler class of circuits, but it is not simple enough. Our
correlation bounds can only handle circuits with fan in m = O(log n), but we currently have fan
in log s = O(log2 n). Fix a leaf ℓ of the tree, and let {C1, . . . , Cs2} be a collection of subsets of [n]
where Ci contains the ≤ log s indices of the variables that feed into the ith ANDlog s gate in the
bottom layer. We now use the following basic fact, as in [LS11] and [ST18], that there is a large
subset of variables that minimally intersect with each Ci.

Claim 4.3. A random L ⊂q [n] (add each element to L with probability q) satisfies

Pr[∃i ∈ [s2] such that |Ci ∩ L| > m] ≤ s2
(
w

m

)
qm.

Instantiating this claim with our parameter setting of m and s, and setting q = Θ(n−.001) tells
us

Pr[∃i ∈ [s2] such that |Ci ∩ L| > m] ≤ 1

s
.

Hence there exists such an L = L(ℓ) such that restricting all bits outside L makes only ≤ m vari-
ables feed into each AND gate as desired.

To summarize, our restriction ρ is sampled by a distribution D specified by these three steps.

1. We first perform restriction Rp,

2. and then randomly restrict ≤ .001pk while walking down the depth-.001pk tree to a leaf ℓ,
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3. and then randomly restrict all the variables alive in this leaf that is not in the L(ℓ) set that
we showed existed

At the end of this process, we have by the union bound that with all but 2−Ω(−pk) probability,
g|ρ becomes a {SYMs2 ,THRs2} ◦ ANDm circuit.

We now observe what happens to f ◦ Extm+1 under this restriction ρ. We claim f ◦ Extm+1

retains its structure. Our wish is for at least k.998 bits in each block to survive. That way, we will
have a high entropy oblivious bit-fixing source fed into each extractor, and the function will be able
to continue to strongly uncorrelate with m-party protocols. In Step 1, we draw a restriction from
Rp. Notice the live variables are distributed like a set S ⊂p [n]. We see that by a simple Chernoff
and union bound,

Pr
S←Rp

[
∃i ∈ [m+ 1] such that |Xi ∩ S| < pk

2

]
≤ (m+ 1)2−Ω(pk)

Hence except for probability m2−Ω(pk) = 2−Ω(n1−o(1)), each block Xi will have ≥ pk/2 live
variables. Conditioned on this, when we follow Step 2 and perform a random walk down the
decision tree to a leaf, we will assign at most .001pk bits, so we are guaranteed that each block
Xi will contain at least .499pk live variables. Step 3 is to take set L(ℓ) and arbitrarily restrict
variables outside of it. We showed there exists an L(ℓ) which minimally overlaps with the input
variables to the ANDlog s gates, but we want it to simultaneously overlap heavily with each block.
That way most of the Xi will stay alive after restricting the bits outside of L(ℓ) The existence of
such an L(ℓ) can be established by “completing the probabilistic method” started a few paragraphs
above. Conditioning on good restrictions so far, let Yi denote the variables that survived in Xi

(hence |Yi| ≥ .499pk). We see that

Pr
L⊂q [n]

[
∃i ∈ [m+ 1] such that |Yi ∩ L| < .499pqk

2

]
≤ (m+ 1)2−Ω(pqk).

Hence, the probability that L either intersects some Ci too much or some Yi too little will hap-
pen with probability ≤ 1

s + (m + 1)2−Ω(pqk) ≪ 1. Thus there exists an L(ℓ) such that restricting
all variables outside of it will simultaneously simplify g to a {SYMs2 ,THRs2} ◦ ANDm and also
leave at least .499pqk

2 ≥ .249k.999/polylog(n) ≫ k.998 variables alive. Stringing all three steps to-
gether, we know that except with probability 2−Ω(−pk), our random restriction ρ reduces g to
{SYMs2 ,THRs2} ◦ ANDm, while simultaneously keeping ≥ k.998 variables in each Xi block alive.

We are now in the final phase of the argument where we now directly bound the correlation
against the simplified circuit. We first state the results that will convert our circuits to NOF
protocols.

Theorem 4.4 ([HG90]). Let f : {0, 1}n → {0, 1} be a Boolean function computed by a size-s
SYM ◦ ANDm circuit. Then for any partition of the n inputs of f into m + 1 blocks, there is a
deterministic NOF (m+ 1)-party communication protocol that computes f using O(m log s) bits of
communication.

Theorem 4.5 ([Nis93]). Let f : {0, 1}n → {0, 1} be a Boolean function computed by a THR◦ANDm

circuit. Then for any partition of the n inputs of f into m + 1 blocks, there is a randomized NOF
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(m+1)-party communication protocol that computes f with error γerr using O(m3 log n log(n/γerr))
bits of communication.

We now need to show an average-case hardness result for f ◦ Extm+1|ρ against NOF protocols.
To do so, we will first calculate the k-party norm of f ◦ Extm+1|ρ.

Lemma 4.6. Let ρ be a restriction which keeps ≥ k.998 variables in each Xi alive. Then Rm+1(f ◦
Extm+1|ρ) ≤ Rm+1(f) + 4(m+ 1) · 2−4k.996

Proof. Now notice that

Rm+1(f ◦ Extm+1|ρ) = EX(0),X(1)e

 ∑
δ∈{0,1}m+1

f(Ext(X
(δ1)
1 |ρ), . . . ,Ext(X(δm+1)

m+1 |ρ))

 (3)

By assumption of ρ, each X
(δi)
i |ρ over uniform Xi is an OBF source with min-entropy k.998, and so

each Ext|ρ(Xi) ≈2−4k.996 U.2k.996 . Since all X(b)
i for i ∈ [m+ 1], b ∈ {0, 1} are mutually independent,

it follows by a hybrid argument that

(Ext|ρ(X(b)
i |ρ)i∈[m+1],b∈{0,1} ≈2(m+1)2−4k.996 (U.2k.996)i∈[m+1],b∈{0,1}.

Therefore, we can upper bound Equation 3 by

E
(Y

(b)
i )i∈[m],b∈{0,1}

e

 ∑
δ∈{0,1}m+1

f(Y
(δ1)
1 ), . . . , Y

(δm+1)
m+1 )

+4(m+1)2−4k
.996 ≤ Rm+1(f)+4(m+1)2−4k

.996

as desired.

With this, we can show that f ◦Extm+1|ρ uncorrelates against randomized multiparty protocols.

Theorem 4.7. Let g : {0, 1}n → {0, 1} be a Boolean function, and let ρ be a restriction such
that Xi|ρ has ≥ k.998 live variables for each i, and g|ρ can be computed by an (m + 1)-party NOF
randomized protocol with with ≤ c bits and with error γ. Then

corr(f ◦ Extm+1|ρ, g|ρ) ≤ 2γ + 2c−Ω(k.996/2m).

Proof. Notice that a randomized NOF protocol is simply a distribution over deterministic NOF
protocols. Let π be some distribution over protocols such that for each x, PrP∼π[P (X) ̸= g|ρ(X)] ≤
γ. We now manipulate the correlation as

corr(f ◦ Extm+1|ρ, g|ρ) = |EX(−1)f◦Ext
m+1|ρ(X)+g|ρ(X)|

≤ |EX,P [(−1)f◦Ext
m+1|ρ(X)+P (X)]|+ 2γ

= 2cEP [Rm+1(f ◦ Extm+1|ρ)1/2
m+1

] + 2γ

≤ 2γ + 2c(Rm+1(f) + 4(m+ 1) · 2−.4k.996)1/2m+1

≤ 2γ + 2c(corr(f,Πm+1
m+1) + 2−Ω(k.996))1/2

m+1

≤ 2γ + 2c−Ω(k.996/2m)
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We now have all the ingredients to finish. Say ρ is good if ρ keeps ≥ k.998 variables alive in each
block Xi and g|ρ is computable by {SYM,THR} ◦ ANDm. We have shown for ρ ∼ D, this doesn’t
happen only with probability 2−Ω(pk). If g|ρ has a SYM gate at the top, then Theorem 4.4 says the
SYM ◦ ANDm circuit can be computed by a deterministic NOF protocol over X1, . . . , Xm+1 using
O(m log s) bits. Plugging this in to Theorem 4.7 tells us

corr(f ◦ Extm+1|ρ, g|ρ) ≤ 2m log s−Ω(k.996/2m) ≤ 2−Ω(n.995).

If the top gate is a THR, use Theorem 4.5 with γerr = 2−n
.997 to get that the circuit is a randomized

NOF protocol over X1, . . . , Xm+1 using O(m3 log n log(n/γerr)) = O(n.995) bits. Plugging this into
Theorem 4.7 gives us a correlation bound of

corr(f ◦ Extm+1|ρ, g|ρ) ≤ 2n
.995−Ω(k.996/2m) ≤ 2−Ω(n.996).

In either case we get the same bound, so we can bound

corr(f ◦ Extm+1, g) = |Eρ∼DEX(−1)f◦Ext
m+1|ρ(X)+g|ρ(X)|

≤ 2−Ω(pk) + Eρ∼D[|EX(−1)f◦Ext
m+1|ρ(X)+g|ρ(X)||ρ is good]

≤ 2−Ω(pk) + 2−Ω(n.995)

= 2−Ω(n.995).

The theorem is proved.

Remark. We note that the original RW function instantiated with different parameters can also
get the same strengthened correlation bound. This requires a more nuanced analysis than present in
[ST18], and does not extend to general functions of the form f ◦ Extm+1 as it relies on the specific
structure of GIP and

⊕
.

To recap the argument for a size s circuit, we first use the multi-switching lemma to reduce to a
depth-2 circuit of fan-in log s. We then restrict more variables so that the fan-in reduces to

√
log s.

We then apply correlation bounds for
√
log s-party protocols to get an error of exp(−n/2

√
log s). If

one trusts that this error is the bottleneck in the argument, one can imagine running through the
above argument again with s = nΘ(1) to get a better error.

Corollary 4.8. Let g(X) be a function implementable by a size s = nO(1)-size {SYM,THR} ◦ AC0

circuit, and let m = 2
√
logn. Define k := n/(m + 1), and let Ext : {0, 1}k → {0, 1}k/2O(

√
logn) be a

(k/2O(
√
logn), 2−k/2

O(
√

logn)
)-extractor constructed from [KZ07]. Then

corr(f ◦ Extm+1, g) ≤ 2−(n/2
O(

√
log s)).

This refinement will be useful for our correlation bounds against branching programs in the next
section. As the proof is extremely similar to the above, we defer the sketch to the appendix.

From Theorem 4.1, we derive the following two theorems as well.

Theorem 4.9. There exists an ε-PRG against size-S {SYM,THR} ◦ AC0 circuits with seed length
s = 2O(

√
logS) + (log(1/ε))2.01
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Proof. First notice that it is trivial to adjust the constants in our argument of Theorem 4.1 so that
our correlation is 2−Ω(n1−δ) for arbitrarily small constant δ Set r = 2O(

√
log(nS2)) +(log(1/ε))1/(1−δ)

Theorem 4.1 then gives us a function f : {0, 1}r → {0, 1} which obtains correlation

exp(−Ω(r1−δ)) = exp(−Ω(log(1/δ))) ≤ ε

for {SYM,THR} ◦ AC0 of size
≤ rO(log r) = 2O(log2 r) ≤ nS2.

Since a {SYM,THR}◦AC0◦JUNTAlogn-circuit of size S can be trivially expressed by a {SYM,THR}◦
AC0 of size nS2, it follows that by Theorem 3.16, we can construct an εn-PRG against size-S
{SYM,THR} ◦ AC0 circuits with seed length

O(r2/ log n) = 2O(
√

log(nS2)) + (log(1/ε))2/(1−δ) = 2O(
√
logS) + (log(1/ε))2.01

for δ small enough and S ≥ n. Substituting ε← ε/n gives the desired result.

Lemma 4.10. If g is computable by a JUNTAn.997 ◦SYM◦AC0 circuit where each depth-2 SYM◦AC0

subcircuit is of size s = nO(logn), then

corr(f ◦ Extm+1, g) ≤ 2−Ω(n.997).

Similarly, if g is computable by a JUNTAu ◦ SYM ◦ AC0 circuit where each depth-2 THR ◦ AC0

subcircuit is of size s = nO(logn), then

corr(f ◦ Extm+1, g) ≤ 2−Ω(n.997/u).

Proof. We essentially prove a variant of 4.1 where the circuit class is now JUNTAu ◦ {SYM,THR} ◦
AC0, an arbitrary JUNTAu with size s = nO(logn) {SYM,THR} ◦ AC0 circuits hanging from each of
the u input wires. u will end up representing the number of {SYM,THR} gates we use. As this
circuit is now of size us, we see a variant of Lemma 4.2 will be shown (since this was inherited from
[ST18], see Appendix B in the paper for details)

Lemma 4.11. Let g ∈ JUNTAu ◦ {SYM,THR} ◦ AC0
d with circuit size s = unτ logn. Then for

p = 1
48(48 log s)

−(d−1)

Pr
ρ←Rp

[g|ρ is not computed by (.001pk, JUNTAu ◦ {SYMs2 ,THRs2} ◦ ANDlog s})-tree]

≤ s · 2−.001pk/2d

= 2−Ωd(pk)

The remainder of the proof is exactly identical as in Theorem 4.1 until the ending regarding mul-
tiparty protocols. At this stage, with 2−Ω(n.999), g|ρ has been simplified to a JUNTAu◦{SYM,THR}◦
ANDm circuit, and has left ≥ k.998 variables per input block alive.

Case 1 - SYM Gate: By a trivial extension of Theorem 4.4, this circuit can be calculated by an
(m+1)-party protocol using u ·O(m log s) bits (explicitly stated as Fact B.3 in [ST18]). Therefore,
by Theorem 4.7,

corr(f ◦ Extm+1|ρ, g|ρ) ≤ 2−Ω(um log s−k.998/2m).
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Setting u = n.997 gets the desired result.
Case 2 - THR Gate: By a trivial extension of Theorem 4.5, this circuit can be calculated by an

(m+1)-party protocol with error γ using u ·O(m3 log n log(n/γ)) bits (explicitly stated as Theorem
13 in [ST18]). Setting γ = 2−Ω(k.998/u), it follows by Theorem 4.7,

corr(f ◦ Extm+1|ρ, g|ρ) ≤ 2γ + 2−Ω(um3 logn log(n/γ)−k.998/2m) = 2−Ω(k.998/u),

yielding the desired result.

Theorem 4.12. Let AC0[G, t, s] be the class of size-s AC0 where ≤ t gates are allowed to be of type
G. We then have

corr(f ◦ Extm+1,AC0[SYM, n.996, nO(logn)] ≤ 2−Ω(n.996)

and
corr(f ◦ Extm+1,AC0[THR, n.49, nO(logn)] ≤ 2−Ω(n.49).

Proof. We replicate the proof given in [LS11]. Let g ∈ AC0[G, t, s]. Let G1, . . . , Gt be the gates
which occur in g, sorted such that it respects the topological order (if gate Gi is contained in the
subcircuit with top gate Gj , then we must have i < j). WLOG, assume the top gate is Gt. Consider
the decision tree T computing g which sequentially queries the value of the circuit Ci defined by
the subcircuit with top gate Gi for i = 1, 2, . . . , t with the following caveat: if Ci contains some
gate Gj , we must have already queried that subcircuit, and so replace it with the queried bit. With
this caveat, all Ci are G ◦ AC0 circuits of size at most st. Hence, T is a depth-t decision tree which
queries G ◦ AC0 circuits at each step. Note for a path P of T , notice the predicate hP (x), which
indicates whether an input caused a traversal down path P in T , is a JUNTAt ◦ G ◦ AC0 function,
as it simply checks that all the t circuits queried down that path has the desired output. Using the
fact that an input x cannot simultaneously indicate multiple accepting paths, it follows that

(−1)g(x) =
∑

accepting P

(−1)hP (x) − (N − 1)

where N is the number of accepting paths. Therefore,

corr(f ◦ Extm+1, g) ≤
∑

accepting P

corr(f ◦ Extm+1, hP ) +Ncorr(f ◦ Extm+1, 0)

Noting that N ≤ 2t, and each hP along with 0 can be computed by G ◦ AC0 of size ≤ st, it follows
from Lemma 4.10 that for G = SYM,

corr(f ◦ Extm+1,AC0[SYM, n.99, nO(logn)] ≤ 2 · 2n.996 · 2−Ω(n.997) = 2−Ω(n.997)

and if G = THR,

corr(f ◦ Extm+1,AC0[THR, n.49, nO(logn)] ≤ 2 · 2n.498 · 2−Ω(n.997/n.498) ≤ 2−Ω(n.499).

Via a straightforward proof, almost exactly the same as that of Theorem 4.9, we can use the
Nisan-Wigderson framework to turn the above theorem into new PRGs against AC0 with a limited
number of {SYM,THR} gates.

Theorem 4.13. There is an efficient ε-PRG which fools AC0[SYM, n.999, S] with seed length 2O(
√
logS)+

(log(1/ε))2.01 and an ε-PRG which fools AC0[THR, n.499, S] with seed length 2O(
√
logS)+(log(1/ε))4.01.
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5 PRGs against (d, poly(n), n)-2BPs

In this section, we use fortified hard functions to establish strong correlation bounds against the
XOR of juntas, JUNTA⊕poly(n)n,d . These are then pushed through the Nisan-Wigderson “hardness vs.
randomness” framework to create PRGs which can fool (d, poly(n), n)-2BPs. We first establish the
correlation bounds, and then we show that this implies our desired PRG.

5.1 Correlation Bounds Against JUNTA
⊕poly(n)
n,d

This subsection is devoted to proving the following result.

Theorem 5.1. Let m = d log n, let h be the hard function in Corollary 4.8 instantiated on k := n/m
bits, and let ⊕m : {0, 1}m → {0, 1} be the parity function on m bits. We then have

corr(h ◦ ⊕k
m, JUNTA⊕n

c

n,d ) ≤ exp

(
− n

d2O(
√
logn)

)
Proof. Consider arbitrary g ∈ JUNTA⊕n

c

n,d . We will show that there exists a subset T ⊂ [n] of
variables such that upon fixing all variables outside T , g simplifies to a sparse polynomial, while at
least one input variable in each ⊕m stays alive. Write f =

∑nc

i=1 ϕi, where each ϕi is a d-junta. Let
Si ⊂ [n] be the indices of the variables that ϕi depends on. Pick T ⊂1/d [n]. For a fixed i, we can
bound

Pr
T
[|T ∩ Si| ≥ ℓ] ≤

∑
S⊂Si
|S|=ℓ

Pr
T
[S ⊂ T ]

=

(
d

ℓ

)(
1

d

)ℓ

≤ exp(−Ω(ℓ log ℓ))
≤ 0.1n−c.

for ℓ = Θ(log n). Union bounding over all i, it follows that

Pr
ρ∼R1/d

[∃i, |T ∩ Si| ≥ ℓ] < 0.1. (4)

Let X1, . . . , Xk be the input blocks of size m feeding into h. We can easily calculate

Pr
T
[∃i,Xi ∩ T = ∅] ≤ k(1− 1/d)m ≤ k exp(−m/d) = 1/m = o(1). (5)

Union bounding Equation (4) and Equation (5), it follows that there exists a subset T ⊂ [n] that
simultaneously intersects at most ℓ variables alive in each junta ϕi, and intersects at least one
variable in each Xi. By pruning out elements, we can assume WLOG that there is exactly one
variable in each Xi.

Since a function over b bits can be written as an F2-polynomial with up to 2b terms, it follows
for any restriction ρ with ρ−1(⋆) = T , ϕi|ρ is a polynomial with 2ℓ = nΘ(1) terms. Therefore, f |ρ
is a polynomial with nΘ(1) terms as well, which can be written as a nΘ(1)-sized PAR ◦ AND circuit.
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Furthermore, we know that h◦⊕k
m|ρ is equivalent to h up to negations of the inputs. As SYM◦AC0

is invariant under shifts of the input, we can appeal to Corollary 4.8 and observe

corr(h ◦ ⊕k
m, g) = |EX(−1)h◦⊕k

m(X)+g(X)|

≤ EXT
|EXT

(−1)h◦⊕k
m(XT ,XT̄ )+g(XT ,XT̄ )|

≤ exp
(
−(n/d)/2O(

√
logn)

)

5.2 Constructing and Analyzing the PRG

With this correlation bound in hand, we can construct good PRGs against the XOR of juntas using
the Nisan-Wigderson framework.

Corollary 5.2. There is an ε-PRG for JUNTA⊕n
Θ(1)

n,d with seed length s = 2O(
√
logn)d2 log2(1/ε))

Proof. By Theorem 5.1 we have an explicit function f : {0, 1}r → {0, 1} such that

corr(f, JUNTAn100

r,d logn) ≤ exp

(
− r

2O(
√
logn)d log n

)
.

We can set r := d2Θ(
√
logn) log(1/ε) so that the above correlation is below ε. Therefore, f is ε-hard

for
JUNTA⊕n

100

r,d logn ⊃
(
JUNTA⊕n

100

n,d

)
◦ JUNTAr,logn,

since the composition of an a-junta with a b-juntas is an ab-junta. By Theorem 3.16 with k ← log n

and r as defined earlier, it follows there exists an ε-PRG for JUNTA⊕n
Θ(1)

n,d with seed length

O

(
d22Θ(

√
logn) log2(1/ε)

log n

)
= 2O(

√
logn) · d2 log2(1/ε)

as desired.

We now show that fooling the parity of juntas actually allow us to fool arbitrary functions of
juntas as long as the function has low Fourier L1 norm.

Theorem 5.3. Let G be an ε-PRG for JUNTA⊕mn,d , and let f : {0, 1}m → {0, 1}. Then G is an
ε · L1(f)-PRG for f ◦ JUNTAn,d.

Proof. Let g ∈ f ◦ JUNTAn,d, implying that g(x) = f(ϕ1(x), . . . , ϕm(x)) for some ϕi ∈ JUNTAn,d.
By Fourier expanding f , it follows that

g(x) =
∑

S⊂[m]

f̂(S)(−1)
∑

i∈S ϕi(x)
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Notice that for each S, (−1)
∑

i∈S ϕi(x) ∈ JUNTA⊕mn,d . Therefore if we let D be the pseudorandom
distribution over {0, 1}n induced by the image of G, it follows

|Ex∼D[g(x)]− Ex∼Un [g(x)]| ≤
∑

S⊂[m]

|f̂(S)||Ex∼D[(−1)
∑

i∈S ϕi(x)]− Ex∼U [(−1)
∑

i∈S ϕi(x)]|

≤ ε
∑

S⊂[m]

|f̂(S)|

= ε · L1(f)

Finally, as an application, we show PRGs against (d, t, n)-2BPs, branching programs over n bits
with width 2, length t, and reads d bits at a time. We will use the fact that width-2 branching
programs which read one bit at a time have low Fourier L1 norm (a proof can be found in [HH23]).

Lemma 5.4. If f is a (1, t, n)-2BP, then L1(f) ≤ (t+ 1)/2.

We now use the fact that a (d, t, n)-2BP can be represented by a normal width-2 branching
program acting on juntas to prove that the PRG from Corollary 5.2 fools (d, t, n)-2BPs.

Theorem 5.5. There exists an ε-PRG for (d, nc, n)-2BPs with seed length s = 2O(
√
logn)·d2 log2(n/ε).

Proof. Given a (d, nc, n)-2BP B, we note that at each vertex v ∈ [2nc] of B, the transition function
is some d-junta ϕv which will map the d bits read at that vertex to the next vertex to move to. Now
consider the (1, nc, 2nc)-2BP B′ defined with the same vertex set as B, and define the transition
function for v ∈ [2nc] in B′ to read the vth bit of the input, and then map to the node in the
next layer labeled by that bit. It is easy to see by construction that B(x) = B′(ϕ1(x), . . . , ϕ2nc(x)),
which is a function in B′ ◦ JUNTAn,d. By Theorem 5.3, this can be ε-fooled by an (ε/L1(B

′))-PRG
for JUNTA⊕2n

c

n,d . Using the L1 bound from Lemma 5.4 and the construction from Corollary 5.2, we
see that such a PRG has seed length 2O(

√
logn)d2 log2(1/ε).

Remark. There is an alternative PRG construction using the Ajtai-Wigderson framework [AW85]
which gives optimal dependence on d, but exponentially worse dependence on ε. This is presented
in Appendix B

6 Correlation Bounds Against Set-Multilinear Polynomials

Our correlation bound for set-multilinear polynomials follows from an instantiation of the following
theorem.

Theorem 6.1. Let d ≤ n be an integer. Let Ext : {0, 1}n/d×{0, 1}2n/d → {0, 1}k−2 log(1/ε) be a strong
linear seeded (k, ε)-extractor with seed length 2n/d created from the Leftover Hash Lemma [ILL89],
and let χ some nontrivial additive character of F2n/d . Define ExtFFMd : {0, 1}n+2n/d → {0, 1} to be

ExtFFMd(X,W ) = χ

(
d∏

i=1

Ext(Xi,W )

)
.
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Let g : {0, 1} → {0, 1}n be a function, and let S1, . . . , Sd ⊂ [n/d] be subsets of size ≥ k such that
for any restriction ρ created by arbitrarily fixing all bits in W and outside Si in Xi for each i, g|ρ
always becomes set multilinear in X1, . . . , Xd. We then have

corr(ExtFFMd, g) ≤ dε+ (d− 1)

(
1

2kε2
+ ε

)
.

Proof. For brevity, we let f := ExtFFMd in this proof. We will first split the correlation expectation
into first randomizing over all restrictions ρ of the bits in X outside of S1, . . . , Sd, then over the seed
W , and then over the remaining live variables denoted by the Si, which we denote X1|ρ, . . . , Xd|ρ.
Now let Wρ be the set of seeds w such that Ext(Xi|ρ, w) ≈ε Uk for all i. As Ext is strong-seeded, it
follows by a union bound that Wρ cover all but a dε fraction of seeds. Thus one can write

corr(f, g) = |EX(−1)f ′(X)+g(X)|

≤ EW,ρ

∣∣∣EX(−1)f |ρ(X,W )+g|ρ(X,W )
∣∣∣

≤ dε+ EρEw∈Wρ |EX(−1)f |ρ(X,w)+g|ρ(X,w)| (6)

Now fix a partial assignment ρ and seed w ∈ Wρ. For brevity, let f(·) := f |ρ(·, w), and similarly
for g′. By assumption, g′ is set-multilinear over X We now apply a similar argument showing up
in [BHH+20]. Let α be a map taking linear forms

∑
i∈[n/d] ciXd,i in Xd to its vector of coefficients

(ci) ∈ Fn/d
2 . Note that by this definition, for any linear form ℓ(Xd), ⟨ℓ(Xd), Xd⟩ = ℓ(Xd). Letting

e(x) = (−1)x. We then see∣∣∣EX(−1)f ′(X)+g′(X)
∣∣∣ = ∣∣∣∣EXe

(
f(Xi) +

∑
i∈[d−1]

gi(X−i) + gd(Xd)

)∣∣∣∣
≤ EX[d−1]

∣∣∣∣EXd
e

(
⟨α(f(Xi) +

∑
i∈[d−1]

gi(X−i)), Xd⟩+ gd(X−d)

)∣∣∣∣
≤ Pr

X[d−1]

α(f ′(X) +
∑

i∈[d−1]

gi(X−i)) = 0

 (7)

where we used the facts that f ′ is linear in Xd (as Ext here is a linear seeded extractor), gd(X−d)
is independent of Xd, and linear forms are perfectly unbiased if their coefficient vector is nonzero.
We now repeatedly use the simple inequality that for a linear map h : Fm

2 → Fk
2 and a ∈ Fk

2,
Prx[h(x) = a] ≤ Prx[h(x) = 0] as follows.
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Pr
X[d−1]

α(f ′(X) +
∑

i∈[d−1]

gi(X−i)) = 0

 = EX[d−2]
Pr

Xd−1

[
α(f ′(X) +

d−2∑
i=1

gi(X−i))) = α(gd−1(X−(d−1)))

]

≤ Pr
X[d−1]

[
α

(
f ′(X) +

d−2∑
i=1

gi(X−i))

)
= 0

]

≤ Pr
X[d−1]

[
α

(
f ′(X) +

d−3∑
i=1

gi(X−i))

)
= 0

]
≤ · · ·
≤ Pr

X[d−1]

[
α(f ′(X)) = 0

]
(8)

To analyze this probability, we show a quick lemma.

Lemma 6.2. For a linear form ℓ(Xd), α(ℓ(Xd)) = 0 if and only if ℓ(Xd) = 0 for all Xd.

Proof. For the forward implication, we simply note that if α(ℓ(Xd)) = 0, then α(ℓ(Xd))i = 0 for
every i. Consequently, for arbitrary Xd,

ℓ(Xd) =

n/d∑
i=1

α(ℓ(Xd))jXd,j

For the reverse implication, say there exists index i such that α(ℓ(Xd))i ̸= 0. Then notice that if ei
is the unit vector with 1 in the ith index and zero everywhere else,

ℓ(ei) =

n/d∑
j=1

α(ℓ(Xd))j(ei)j = (ℓ(X)d)i ̸= 0.

Therefore, by Lemma 6.2,

Pr
X[d−1]

[α(f ′(X)) = 0] = Pr
X[d−1]

[
∀Xd, χ

(
d∏

i=1

Ext(Xi|ρ, w)

)
= 0

]
.

Clearly if
∏d−1

i=1 Ext(Xi|ρ,W ) = 0, f ′ becomes identically zero. When this doesn’t happen, the
function becomes of the form χ(c · Ext(Xd|ρ, w)) for some nonzero c ∈ F2n/d . We now claim that
there must exist some Xd|ρ such that χ(c ·Ext(Xd|ρ, w)). Notice that for exactly 2n/d−1 values of Y ,
χ(cY ) = 0. As w ∈Wρ, the probability that a random Xd|ρ has Ext(Xd|ρ, w) hit one of these values
must be ≥ 1/2− ε > 0, proving the claim. Therefore, in order for α(f ′(X)) = 0, it is necessary that
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∏d−1
i=1 Ext(Xi|ρ,W ) = 0. Therefore,

Pr
X[d−1]

[α(f ′(X)) = 0] ≤ Pr
X[d−1]

[
d−1∏
i=1

Ext(Xi|ρ, w) = 0

]

≤
d−1∑
i=1

Pr
Xi

[Ext(Xi|ρ, w) = 0]

≤ (d− 1)

(
1

2k−2 log(1/ε)
+ ε

)
Stringing the above with inequalities (6), (7), and (8), we find

corr(ExtFFMd, g) ≤ dε+ (d− 1)

(
1

2kε2
+ ε

)

As a very nice application of this structural theorem, we show that we can achieve exponentially
small correlation against nO(1)-degree polynomials which are set-multilinear over some partition of
the input into up to n1−O(1) parts.

Corollary 6.3. Let g be a degree < d polynomial which is set-multilinear over an arbitrary partition
(A1, . . . , Ac) of X into c parts. Then

corr(ExtFFMd, g) ≤ 2−Ω(n/cd).

Proof. For each i ∈ [n/d], define Si to be the largest set among {Xi ∩ A1, . . . , Xi ∩ Ac} (arbitrar-
ily pick one if there are ties). Notice that the sets {Xi ∩ Aj}j∈[c] partition Xi, and |Xi| = n/d.
Therefore, we know that each |Si| ≥ n/d

c = n
cd . We now claim that any restriction ρ formed by

arbitrarily fixing all the bits in Xi which are outside Si, for each i, will make g|ρ set-multilinear over
(X1, . . . , Xd). Assume for the sake of contradiction there existed some monomial in g|ρ(X) that
contained 2 variables from some Xi. Since Si ⊂ Xi and Sj∩Xi = ∅ for j ̸= i, both of these variables
had to have come from Si. But note that Si = Xi ∩Aℓ ⊂ Aℓ for some ℓ, and we know no monomial
has 2 terms from the same Ai by our assumption of g. This yields our desired contradiction.

Therefore, we can apply Theorem 6.1 on the sets (Si) with k = n/cd and ε = 2−.1n/cd to deduce
that

corr(f, g) ≤ d2−.1n/cd + (d− 1)(2−.8n/cd + 2−.1n/cd) = 2−Ω(n/cd).

We can set c = n1−2δ and d = nδ to get 2−Ω(nδ) correlation against degree nδ polynomials
which are set-multilinear over some partition of the input into n1−2δ blocks, which is interesting
as these are exponential correlation bounds over the high degree regime. From the expressions,
we note that there is a tradeoff between the strength of the correlation bounds, the maximum
degree polynomials we fool, and the number of parts in our set-multilinear partition we can handle.
Unfortunately plugging in c = n, which would allow g to be any low-degree polynomial, doesn’t
yield any nontrivial correlation bound.
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A Addenum to {THR, SYM} ◦ AC0 Correlation Bounds

We give a proof sketch of Corollary 4.8 here.

Corollary A.1. Let g(X) be a function implementable by a nO(1)-size {SYM,THR} ◦ AC0 cir-
cuit, and let m = 2

√
logn. Define k := n/(m + 1), and let Ext : {0, 1}k → {0, 1}k/2O(

√
n) be a

(k/2O(
√
logn), 2−k/2

O(
√

logn)
)-extractor constructed from [KZ07]. Then

corr(f ◦ Extm+1, g) ≤ 2−n/2
√

O(logn)

.

Proof. We proceed exactly as in Section 4 all the way until Claim 4.3. Here we note that upon
setting s = nΘ(1), we only need to set q = 2−Ω(

√
logn) to make the desired probability at most some

constant. We then continue with the rest of the argument exactly as normal to get the desired
correlation bound.

B PRGs for Branching Programs via Ajtai-Wigderson

Here, we use the Ajtai-Wigderson framework to get a PRG whose is optimal in d, but has an
exponentially worse dependence on ε than in Theorem 5.5. This may serve as proof of concept that
we should be able to construct a PRG that is optimal in both parameters.

For strings x, y ∈ {0, 1}n, define the restriction x⃝⋆ y ∈ {0, 1, ⋆}n to be

(x⃝⋆ y)i =

{
xi yi = 0

1 yi = 1
.

We now recall the Ajtai-Wigderson framework.

Theorem B.1 ([AW85], as stated in [HH23], Theorem 5.3.3). Let F and Fsimp be classes of
functions f : {0, 1}n → {0, 1}. Assume that F is closed under restrictions. Let Z be a random
variable over {0, 1}n that can be explicitly sampled using s truly random bits such that

∀f ∈ F ,Pr[f |U⃝⋆Z ∈ Fsimp] ≥ 1− δ

where U ∈ {0, 1}n is uniform random and independent of Z. If E[Zi] ≥ p and there is an explicit δ-
PRG for Fsimp with seed length s′, then there is a PRG against F with seed length O(p−1 log(n/δ)(s+
s′)) and error O(p−1δ log(n/δ)).
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We first show the following pseudorandom simplification lemma.

Lemma B.2. For sufficiently large n, δ ∈ (0, 1), and some setting of ℓ = Θ(log(n/δ)), the following
holds. Let U ∼ {0, 1}n be uniformly random and let Z be ( δ

2nc )-almost ℓ-wise close to Ber(1/d)⊗n.
Then it follows for any f ∈ JUNTAnc

n,d,

Pr[f |U⃝⋆Z ∈ JUNTAnc

n,ℓ)] ≥ 1− δ.

Furthermore, Z can be sampled using O(log d log(n/δ)) random bits.

Proof. Write f =
∑nc

i=1 ϕi, where each ϕi is a d-junta. Let Si ⊂ [n] be the indices of the variables
that ϕi depends on. We will show that with high probability, only log(n/δ) variables in each Si will
stay alive after applying U ⃝⋆ Z. Letting Z̃ ∼ Ber(1/d)⊗n

Pr
Z
[wt(ZSi) ≥ ℓ] ≤

∑
S⊂Si
|S|=ℓ

Pr
Z
[ZS = 1S ]

≤ δ

2nc
+
∑
S⊂Si
|S|=ℓ

Pr
Z̃
[Z̃S = 1S ]

=
δ

nc
+

(
d

ℓ

)(
1

d

)ℓ

≤ δ

2nc
+ 2−Ω(ℓ log ℓ)

≤ δ

nc

upon setting ℓ = Θ(log(n/δ)). Union bounding over all i yields that Pr[∀i,wt(ZSi) < ℓ] ≥ 1 − δ.
Let E be the aforementioned event. Since wt(ZSi) is exactly the number of variables that stay alive
in ϕi|U⃝⋆Z (regardless of U), E implies that each ϕi|U⃝⋆Z becomes an ℓ-junta, which consequently
implies f |U⃝⋆Z ∈ JUNTAnc

n,ℓ. Hence

Pr
U,Z

[f |U⃝⋆Z ∈ JUNTAnc

n,ℓ] ≥ Pr
Z
[∀i,wt(ZSi) < ℓ] ≥ 1− δ.

as desired.
To construct Z, we can let (Z(i))1≤i≤log d be independently sampled δ

2nc log d -almost ℓ-wise uni-
form strings, and set Z =

∧
1≤i≤log d Z

(i). By a simple hybrid argument, it follows Z has the desired
distribution. Each Z(i) constructed using O(log ℓ+ log(2nc log d/δ) + log log n) = O(log(n/δ)), and
thus Z is constructed using O(log d log(n/δ)) bits.

Next, we show how we can fool JUNTA⊕n
c

n,Θ(log(n/ε)).

Claim B.3. There exists a δ-PRG against JUNTAnc

n,Θ(log(n/δ)) with seed length 2
O
(√

log(n/δ)
)
.

Proof. First notice that we can write out a j-junta as an F2-polynomial with 2j terms. Hence, we
can write any f ∈ JUNTAnc

n,Θ(log(n/δ)) as an F2-polynomial with nc · 2Θ(log(n/δ)) = poly(n/δ)) terms.
Using the sparse polynomial PRG of Servedio and Tan [ST22] yields a PRG against this sparse
polynomial with seed length 2

√
log(n/δ) as desired.

33



We now use the Ajtai-Wigderson approach to combine Lemma B.2 and Claim B.3 into a PRG
construction.

Theorem B.4. There exists an explicit ε-PRG against JUNTA⊕n
c

n,d with seed length 2O(
√

log(n/ε))d

Proof. Applying Lemma B.2 and Claim B.3 to Theorem B.1, we get a PRG for JUNTA⊕n
c

n,d with
error O(δd log(n/δ)) and seed length

O(d log(n/δ)(2O(
√

log(n/δ)) + log d log(n/δ))) = 2O(
√

log(n/ε))d,

where we used d ≤ n. Setting δ = Θ
(

ε
2d log(n/ε)

)
gives us error ε and seed length 2O(

√
log(n/ε))d.
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