
Fooling Near-Maximal Decision Trees

William M. Hoza
Department of Computer Science

The University of Chicago
williamhoza@uchicago.edu

Abstract

For any constant α > 0, we construct an explicit pseudorandom generator (PRG) that fools n-variate
decision trees of size m with error ε and seed length (1 + α) · log2 m+O(log(1/ε) + log log n). For context,
one can achieve seed length (2 + o(1)) · log2 m+O(log(1/ε) + log log n) using well-known constructions
and analyses of small-bias distributions, but such a seed length is trivial when m ≥ 2n/2. By combining
our new PRG with work by Chen and Kabanets (TCS 2016), we get an explicit PRG that fools circuits of
size 2.99 · n over the U2 basis with error 2−Ω(n) and seed length (1− Ω(1)) · n.

Our approach for fooling decision trees is to develop a new variant of the classic concept of almost
k-wise independence, which might be of independent interest. We say that a distribution X over {0, 1}n
is k-wise ε-probably uniform if every Boolean function f that depends on only k variables satisfies
E[f(X)] ≥ (1− ε) · E[f]. We show how to sample a k-wise ε-probably uniform distribution using a seed of
length (1 + α) · k +O(log(1/ε) + log log n).

1 Introduction

How many coin flips does it take to sample n bits that appear random from the perspective of an observer
who only looks at 0.9 · n of the bits?

1.1 Almost k-wise uniformity and k-wise probable uniformity

Almost k-wise uniformity is a well-studied concept that provides one possible way of formalizing the question
posed above.

Definition 1.1 (Almost k-wise uniformity). Let X be a distribution over {0, 1}n, let k ∈ [n], and let ε ∈ [0, 1].
We say that X is ε-almost k-wise uniform if, for every size-k set S ⊆ [n], the total variation distance between
XS and Uk is at most ε. Here XS denotes the projection of X to the coordinates in S, and Uk denotes the
uniform distribution over {0, 1}k. If ε = 0, we simply say that X is k-wise uniform. An (ε-almost) k-wise
uniform generator is a function G : {0, 1}s → {0, 1}n such that G(Us) is (ε-almost) k-wise uniform. We refer
to s as the seed length of G.

When k ≥ (12 +Ω(1)) · n and ε = 0, Karloff and Mansour showed that every k-wise uniform generator
has seed length at least n − O(1) [KM97], which might be disappointing. On the bright side, the seed
length can be improved if a small positive error (ε > 0) is permitted. Using a connection with “small-bias
distributions” [NN93], Alon, Goldreich, H̊astad, and Peralta constructed an explicit1 ε-almost k-wise uniform
generator with seed length k +O(log(k/ε) + log log n) [AGHP92]. Notably, their seed length is meaningful
even for large k such as k = 0.9 · n.

In this work, we introduce a new variant of almost k-wise uniformity, called k-wise probable uniformity,
which strengthens Definition 1.1. There are two equivalent definitions, described below.

1We consider a generator G to be explicit if G(x) can be computed in poly(n) time, given the parameters (in this case n, k,
and ε) and the seed x.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 3 (2025)

mailto:williamhoza@uchicago.edu

Definition 1.2 (k-wise probable uniformity). Let X be a distribution over {0, 1}n, let k ∈ [n], and let
ε ∈ [0, 1]. We say that X is k-wise ε-probably uniform if it satisfies either of the following two equivalent
conditions.

1. For every size-k set S ⊆ [n], there exists a distribution E over {0, 1}k such that the distribution XS

can be written as the mixture distribution XS ≡ (1 − ε) · Uk + ε · E. That is, the distribution XS

is identical to the following distribution: With probability 1− ε, sample a k-bit string uniformly at
random, and with probability ε, sample a string according to E.

2. For every k-junta2 f : {0, 1}n → {0, 1}, we have

E[f(X)] ≥ (1− ε) · E[f],

where E[f] is a shorthand for E[f(Un)].

(See Section 3 for a proof that the two conditions above are equivalent.) We say that G : {0, 1}s → {0, 1}n is
a k-wise ε-probably uniform generator if G(Us) is k-wise ε-probably uniform.

We find the first condition above to be more conceptually appealing. It is clearly a strengthening of
ε-almost k-wise uniformity, and it inspires the terminology “k-wise ε-probably uniform.” On the other hand,
we find the second condition above to be easier to work with mathematically.

The concept of k-wise probable uniformity is motivated primarily by an application to fooling decision
trees, which we will discuss momentarily, but we also consider it to be an interesting concept in its own
right. Using a standard nonconstructive argument (see Proposition 4.6), one can show that there exists a
non-explicit k-wise ε-probably uniform generator with seed length3

k + log k + 2 log(1/ε) + log log(n/k) +O(1). (1)

The challenge is to construct an explicit generator.
Classic results regarding small-bias generators [NN93; AGHP92] imply that there is an explicit k-wise

ε-probably uniform generator with seed length 2k+O(log k+ log(1/ε) + log log n). However, this seed length
is unsatisfactory, because it is trivial when k ≥ n/2. Meanwhile, Bshouty used a different approach (the
method of conditional probabilities with pessimistic estimators) to construct a generator G : {0, 1}s → {0, 1}n
such that

(1− ε) · E[f] ≤ E[f(G(Us))] ≤ (1 + ε) · E[f]

for every Boolean k-junta f [Bsh16], which is even stronger than Definition 1.2. Furthermore, his generator’s
seed length matches Eq. (1). However, his generator’s time complexity is more than

(
n
k

)
· 2k [Bsh16]. His

generator can therefore be considered “explicit” only when k = O(1), whereas we are primarily interested in
the case k = Θ(n).

In this work, we present an explicit k-wise ε-probably uniform generator with seed length (1 + α) · k +
O(log(1/ε) + log log n), where α is an arbitrarily small positive constant.

Theorem 1.3 (Explicit k-wise probably uniform generator). For every n, k ∈ N and ε ∈ (0, 1), there exists
an explicit k-wise ε-probably uniform generator G : {0, 1}s → {0, 1}n with seed length

s = k +O
(
k2/3 · log1/3(k/ε) + log(1/ε) + log log n

)
.

The simpler seed length bound (1 + α) · k + O(log(1/ε) + log logn) follows from Theorem 1.3 by the
weighted AM-GM inequality.

2A k-junta is a function f that depends on at most k variables.
3Throughout this paper, log(·) denotes the base-two logarithm.

2

1.2 Fooling decision trees

Instead of modeling the observer as a k-junta, we can consider the more powerful model of depth-k decision
trees. A decision tree T makes queries to the input x and then produces a Boolean output value T (x). The
crucial feature of the decision tree model is that the tree can adaptively decide which variable to query next,
based on the results of previous queries. (See Definition 2.1 for a precise definition.) Consequently, the output
T (x) of a depth-k decision tree T might depend on all n variables even if k ≪ n. The problem of sampling
bits that “appear random” to depth-k decision trees can be formalized using the concept of a pseudorandom
generator.

Definition 1.4 (Pseudorandom generators). Let X be a distribution over {0, 1}n, let f : {0, 1}n → {0, 1},
and let ε ∈ (0, 1). We say that X fools f with error ε if

|E[f(X)]− E[f]| ≤ ε.

We say that G : {0, 1}s → {0, 1}n is a pseudorandom generator (PRG) that fools f with error ε if G(Us)
fools f with error ε. The parameter s is called the seed length of the PRG. If F is a class of functions
f : {0, 1}n → {0, 1}, we say that X (respectively G) fools F with error ε if X (respectively G) fools every
f ∈ F with error ε.

Almost k-wise uniformity is the special case of Definition 1.4 in which we take F to be the class of
all Boolean k-juntas. The aforementioned concept of small-bias distributions is another special case. By
definition, a distribution X is k-wise γ-biased if it fools all functions of the form f(x) =

⊕
i∈S xi, where

S ⊆ [n] and |S| ≤ k, with error γ/2 [NN93].
To fool decision trees, one could try using a generic small-bias generator. This approach works extremely

well in the nonadaptive setting, as mentioned previously. In the adaptive setting, the approach still works fairly
well, but it turns out that the parameters are worse. Specifically, Kushilevitz and Mansour’s analysis [KM93]
implies that if X is k-wise γ-biased, then X fools depth-k size-m decision trees with error γ · m. Every
depth-k decision tree has size at most 2k, so we can choose γ = ε · 2−k. By combining this reduction with
one of Alon, Goldreich, H̊astad, and Peralta’s k-wise γ-biased generators [AGHP92], one can construct an
explicit PRG that fools depth-k decision trees with error ε and seed length 2k+O(log(k/ε) + log logn). This
seed length is sufficient for many purposes, but we emphasize that it gives us nothing nontrivial for trees of
depth k ≥ n/2.

In this paper, we show how to improve the leading constant from 2 to 1 + α for any constant α > 0, as a
consequence of our new k-wise ε-probably uniform generator. More generally, we prove the following.

Theorem 1.5 (Fooling near-maximal decision trees). Let n,m ∈ N and ε ∈ (0, 1). There exists an explicit
PRG G : {0, 1}s → {0, 1}n that fools n-variate decision trees of size m with error ε and seed length

s = logm+O

(
log2/3m · log1/3

(
logm

ε

)
+ log(1/ε) + log log n

)
.

Observe that our PRG is meaningful even for trees of near-maximal size such as m = 20.9·n. Furthermore,
it turns out that Theorem 1.5 extends to the more powerful model of size-m “subcube partitions.” See
Section 5 for further details.

1.3 Application: Fooling U2-circuits of size (3− α) · n

In general, the motivation behind PRGs is that many algorithms and protocols rely on a large number
of random bits, but producing truly random bits can sometimes be difficult or expensive. We think of
randomness as a computational resource, similar to time or space. We try to use as little “true randomness”
as possible to sample bits that are “random enough” to run randomized algorithms and protocols without
distorting their behavior.

3

The specific problem of fooling near-maximal decision trees is motivated by an application in the area of
circuit complexity. Arguably, the central challenge of complexity theory is to understand the power of general
Boolean circuits. Unfortunately, our current understanding of circuits is extremely meager. Indeed, circuit
lower bound proofs are often so weak that they are sensitive to the specific choice of gate basis. In this paper,
we focus on the U2 basis, consisting of all functions ϕ : {0, 1}2 → {0, 1} other than the XOR function and its
complement. A “U2-circuit” is a circuit in which each gate computes a function from the U2 basis. Chen and
Kabanets used “gate elimination” methods to prove that every U2-circuit of size (3− α) · n can be computed
by a decision tree of size 2(1−Ω(α2))·n, among other results [CK16]. They posed the problem of designing
PRGs that fool general Boolean circuits [CK16]. By combining their simulation with our construction, we
are able to solve their PRG problem, at least for the case of U2-circuits of size (3− α) · n:

Corollary 1.6 (Fooling circuits over the U2 basis). For every n ∈ N and α ∈ (0, 3), there exists an explicit
PRG G : {0, 1}s → {0, 1}n that fools n-variate U2-circuits of size (3− α) · n with error n · 2−Ω(α6n) and seed
length s = (1− Ω(α2)) · n.

Proof of Corollary 1.6, given Theorem 1.5 and Chen and Kabanets’ work [CK16]. By Theorem 1.5, we can
fool decision trees of size 2(1−cα2)·n with error 2−c′α6n · n and seed length

(1− cα2) · n+O(n2/3 · (c′α6n)1/3 + c′α6n) = n− cα2n+O(c′α2n).

This is n− Ω(α2n) provided we choose c′ to be a sufficiently small constant based on c.

The PRG of Corollary 1.6 is the first of its kind.4 Note that the challenge of constructing PRGs that fool
Boolean circuits is strictly harder than the challenge of proving circuit lower bounds. In more detail, suppose
that one could construct a poly(n)-time computable PRG G : {0, 1}βn−1 → {0, 1}n that fools U2-circuits of
size cn with error 0.49 for infinitely many n, where β ∈ [0, 1] and c > 1 are constants. Then by truncating
the output of G, one could construct a poly(n)-time computable PRG G′ : {0, 1}n−1 → {0, 1}n that fools U2

circuits of size (c/β) ·n with error 0.49 for infinitely many n. The indicator function for the image of G′ would
be an example of a function in h ∈ NP that cannot be computed by U2-circuits of size (c/β) · n. Currently,
the best lower bound known on the size of U2-circuits computing some function in NP is (5− o(1)) · n [IM02].

1.4 Overview of our new construction

In this section, we present an informal overview of our new k-wise probably uniform generator (Theorem 1.3).
The starting point of the construction is the well-known sampling properties of pairwise uniform hash functions.
Let f : {0, 1}n → {0, 1} be any nonzero k-junta, or more generally any function such that E[f] ≥ 2−k. If
we sample a hash function h : {0, 1}k+O(log(1/ε)) → {0, 1}n from a pairwise uniform family, then with high
probability over the choice of h, we have

E
x
[f(h(x))] ≥ (1− ε) · E[f].

(This follows from Chebyshev’s inequality.)
We can think of h as a PRG with an excellent seed length. The only trouble is that sampling h itself is

expensive. In general, sampling a hash function h : {0, 1}q → {0, 1}ℓ from a pairwise uniform family costs
Θ(q+ ℓ) truly random bits, so in our case, the cost is Θ(n+ log(1/ε)) truly random bits, which is much more
than we can afford.

4To be fair, we should compare Corollary 1.6 to a different and rather trivial approach that one could use to construct
PRGs that fool circuits. In general, if h : {0, 1}n−1 → {0, 1} is average-case hard for circuits of size cn, then the generator
G(x) = (x, h(x)) maps n− 1 bits to n bits and fools circuits of size cn. Similarly, the generator G′(x, y) = (x, y, h(x), h(y)) maps
n′−2 bits to n′ bits and fools circuits of size (c/2) ·n′, where n′ = 2n. One can similarly try G′′(x, y, z) = (x, y, z, h(x), h(y), h(z)),
etc. One can instantiate this approach with known average-case hardness results for circuits over the U2 basis or the full binary
basis [CK16; GKST18]. However, the PRGs that can be constructed using this approach have seed length n−O(1). The seed
length is what makes Corollary 1.6 interesting. If α is constant, then our PRG has linear stretch.

4

We can slightly decrease the cost of sampling h by composing with a γ-almost k-wise uniform generator,
where γ ≈ ε · 2−k, with seed length ℓ = O(k + log(1/ε) + log log n). Such a generator fools f with error γ,
which is negligible. Now the output length of h is decreased from n down to ℓ, hence the cost of sampling h
is “only” O(k + log(1/ε) + log log n). However, this cost is still more than we can afford.

To explain how we bring the cost down to o(k), for simplicity’s sake, let us assume that ε = 1/poly(k) and
let us neglect log log n terms. We can assume without loss of generality that f is simply a conjunction of k
literals, because every k-junta can be written as a sum of such functions. Our approach is to pseudorandomly
partition the n coordinates into r = Θ̃(k1/3) buckets: [n] = B1 ∪ · · · ∪ Br. In expectation, each bucket
contains k/r of the k relevant variables. With high probability, each bucket has at most k0 of the variables,
where k0 = k/r + Õ(

√
k/r) = k/r + Õ(k1/3).

We can write f(x) = f1(x) ∧ · · · ∧ fr(x), where fi(x) only depends on variables in Bi, so fi is a k0-junta.
We sample a hash function h : {0, 1}k0+O(log k) → {0, 1}n such that with high probability over the choice of h,
we have

E
x
[fi(h(x))] ≥

(
1− 1

poly(k)

)
· E[fi].

For each bucket Bi independently, we sample x at random and put h(x) in Bi. Crucially, we reuse the same
hash function h for all of the buckets, which is justified by a simple union bound. The cost of sampling h is
O(k0) = Õ(k2/3) truly random bits, and the cost of sampling the x values is

r · (k0 +O(log k)) = k + Õ(k2/3).

A more careful calculation, also taking into account the cost of sampling the partition [n] = B1 ∪ · · · ∪Br,
leads to the seed length bound that appears in Theorem 1.3.

Observe that in this construction, there are some “bad events” that occur with probability roughly ε,
namely, we might get a “bad” partition of the variables into buckets or we might get a “bad” hash function
h. Let B be the union of these bad events. To analyze the impact of these bad events, let X be the output
distribution of our generator and let f be an arbitrary Boolean k-junta. Then

E[f(X)] = Pr[B] · E[f(X) | B]︸ ︷︷ ︸
(∗)

+Pr[¬B] · E[f(X) | ¬B].

The quantity marked (∗) is certainly nonnegative, which allows us to prove E[f(X)] ≥ (1 − ε) · E[f]. On
the other hand, note that the quantity marked (∗) might be much larger than E[f], and hence we are not
able to prove an upper bound of the form E[f(X)] ≤ (1 + ε) · E[f]. Thankfully, such an upper bound is not
necessary for our applications.

1.5 Limitations of k-wise γ-biased generators

A great deal of effort has been spent trying to optimize the constant factors in the seed lengths of small-bias
generators [NN93; ABNNR92; AGHP92; BT13; Bsh16; Ta-17; BD22]. Researchers have also developed
many sophisticated techniques for proving that small-bias generators fool various models of computation;
see Hatami and Hoza’s survey for a few examples [HH24]. The reader might reasonably wonder whether
one could have proven our results by simply improving known constructions or analyses of k-wise γ-biased
distributions. We prove that the answer is no. In more detail, in Section 6, we present examples showing
that:

• If every k-wise γ-biased distribution is t-wise 0.49-probably uniform, then k ≥ t and γ ≤ O(2−t).

• If every k-wise γ-biased distribution fools decision trees of depth 0.76 ·n with error 0.49, then k ≥ 0.76 ·n
and γ ≤ O(2−n/2).

• If every k-wise γ-biased distribution fools U2-circuits of size 2n with error 0.49, then k ≥ 2
3 · n and

γ ≤ O(2−n/2).

5

Then, we observe that Karloff and Mansour’s work [KM97] can be extended to prove the following lower
bound on the seed length of k-wise γ-biased generators in the regime k ≥ (12 +Ω(1)) · n.

Theorem 1.7 (Seed length lower bound for k-wise γ-biased generators). Let G : {0, 1}s → {0, 1}n be a
k-wise γ-biased generator, where k = ⌊(1/2 + α) · n⌋ for some α ∈ (0, 1/2]. Then

s ≥ min{n, 2 log(1/γ)} − log(1/α)−O(1).

Consequently, if one tries using a generic k-wise γ-biased generator to construct a (0.51 · n)-wise probably
uniform generator, or to fool decision trees of depth 0.76 · n, or to fool U2-circuits of size 2n, then the seed
length will inevitably be at least n−O(1). Thus, the concept of k-wise γ-biased distributions is inherently
too weak to prove Theorems 1.3 and 1.5 and Corollary 1.6.

For context, a sequence of prior works [Rao47; CGHFRS85; ABI86; AGHP92; Alo09; AAKMRX07;
Bsh16] has shown that every k-wise γ-biased generator G : {0, 1}s → {0, 1}n has seed length at least

min

{
log

((
n

≤ k/2

))
, 2 log(1/γ) + log log

((
n

≤ k/2

))
− log log(1/γ)

}
−O(1). (2)

Eq. (2) and Theorem 1.7 are incomparable in general, but our new Theorem 1.7 is superior in the parameter
regime in which we are interested. In particular, if γ = O(2−n/2) and k = cn for a constant 1/2 < c < 1,
then the prior bound Eq. (2) is (1− Ω(1)) · n, whereas our new Theorem 1.7 gives a bound of n−O(1).

1.6 Related work

1.6.1 Approximate forms of k-wise uniformity

Prior researchers have studied several different ways of quantifying what it means for a distribution X over
{0, 1}n to be “approximately” k-wise uniform.

• We could require that the total variation distance between XS and Uk is at most ε for every size-k
set S ⊆ [n]. This is the definition of an ε-almost k-wise uniform distribution (Definition 1.1). See, for
example, work by Naor and Naor [NN93] and work by Alon, Goldreich, H̊astad, and Peralta [AGHP92].

• We could require that |Pr[
⊕

i∈S Xi = 1]− Pr[
⊕

i∈S Xi = 0]| ≤ ε for every nonempty set S ⊆ [n] of size
at most k [NN93]. This is the definition of a k-wise ε-biased distribution. See, for example, the works
mentioned above [NN93; AGHP92].

• We could require that the ℓ∞ distance between XS and Uk is at most ε for every size-k set S ⊆ [n]. See,
for example, work by Alon, Goldreich, H̊astad, and Peralta [AGHP92] and work by Bshouty [Bsh16].

• We could require that X is ε-close in total variation distance to some exactly k-wise uniform distribution
X ′. See, for example, work by Alon, Goldreich, and Mansour [AGM03]; work by Alon, Andoni, Kaufman,
Matulef, Rubinfeld, and Xie [AAKMRX07]; and work by O’Donnell and Zhao [OZ18].

Despite the attention paid to all of the above variations, we seem to be the first to study the concept of
k-wise probable uniformity.

1.6.2 Universal sets

A set H ⊆ {0, 1}n is called k-universal if, for every nonzero k-junta f : {0, 1}n → {0, 1}, there exists x ∈ H
such that f(x) = 1. The concept of k-universal sets has been studied in many prior works going back more
than half a century [KS73; CKMZ83; TW83; Alo86; SB88; BS88; ABNNR92; NN93; NSS95; Bsh14]. The

best explicit construction, due to Naor, Schulman, and Srinivasan [NSS95], has cardinality 2k+O(log2 k) · log n.
Our k-wise probably uniform generator was inspired by Naor, Schulman, and Srinivasan’s universal set
construction [NSS95]. The notion of k-wise probable uniformity can be considered a strengthening of

6

k-universality, because if X is k-wise probably uniform, then the support of X is k-universal. Consequently,

Theorem 1.3 implies the existence of an explicit k-universal set with cardinality 2k+Õ(k2/3) ·polylog n, but this
is inferior to Naor, Schulman, and Srinivasan’s construction [NSS95].5 Our construction also has similarities
with a recent construction of a “biased” variant of universal sets by Harel, Hoza, Vardi, Evron, Srebro, and
Soudry [HHVESS24].

1.6.3 PRGs based on pseudorandom partitions of the variables

The trick of pseudorandomly partitioning the variables into buckets is not new; similar tricks have been used
in many prior PRG constructions. For a few examples that are especially similar to our work, see work by
Meka and Zuckerman [MZ13], work by Lovett, Reingold, Trevisan, and Vadhan [LRTV09], and work by
Gopalan, Kane, and Meka [GKM18].

1.6.4 Correlation bounds and #SAT algorithms for general circuit models

In general, PRGs are intimately related to correlation bounds, aka average-case hardness. Loosely speaking,
correlation bounds are a prerequisite to designing PRGs. See, e.g., Hatami and Hoza’s survey [HH24, Chapter
4] for further discussion. Chen and Kabanets proved the first correlation bounds for general, unbounded-depth
circuit models [CK16], and our PRG for U2-circuits uses their work, as mentioned previously. Golovnev,
Kulikov, Smal, and Tamaki subsequently proved better correlation bounds [GKST18]. Both of these papers
also designed #SAT algorithms, i.e., algorithms that count the number of satisfying assignments to a given
circuit [CK16; GKST18] (see also work by Nurk [Nur09]).

1.7 Organization

After some preliminaries, in Section 3, we record some straightforward characterizations of k-wise probable
uniformity. Then, in Section 4, we present the details of our k-wise probably uniform generator, following
the outline in Section 1.4. In Section 5, we explain why k-wise probable uniformity is sufficient for fooling
decision trees and the more general subcube partition model. In Section 6, we prove that k-wise γ-biased
generators are too weak to prove our main results. Finally, we conclude in Section 7 with some suggested
open problems.

2 Preliminaries

2.1 The decision tree model

Below we record the standard definition of a decision tree.

Definition 2.1 (Decision trees). An n-variate decision tree is a rooted tree T in which each internal node is
labeled with a variable from among x1, . . . , xn; each internal node has two outgoing edges labeled 0 and 1;
and each leaf is labeled either 0 or 1. The tree T computes a Boolean function T : {0, 1}n → {0, 1} defined
inductively as follows. If T consists of a single leaf labeled b ∈ {0, 1}, then we define T (x) ≡ b. Otherwise, let
xi be the variable labeling the root node. Given an input x ∈ {0, 1}n, we start at the root node and traverse
the outgoing edge labeled with the value xi. This leads to a vertex u, which is the root of a subtree T ′. Then
we set T (x) = T ′(x). The depth of the tree is the length of the longest path from the root to a leaf. The size
of the tree is the total number of leaves.

5A k-universal set H is typically considered “explicit” if the entire set can be computed in poly(|H|) time. Our set has stronger
explicitness guarantees, which might possibly be of value, but note that Naor, Schulman, and Srinivasan already constructed a
k-universal set of cardinality 2k+o(k) · logn with similar explicitness guarantees [NSS95].

7

2.2 Pairwise uniform hashing

We rely on the standard notion of a pairwise uniform hashing, aka “strongly universal hashing,” introduced
in Carter and Wegman’s seminal papers [CW79; WC81].

Definition 2.2 (Pairwise uniform families of hash functions). A family H of hash functions h : {0, 1}q →
{0, 1}ℓ is called pairwise uniform if, for every two distinct x, x′ ∈ {0, 1}q, if we sample h ∼ H, then (h(x), h(x′))
is distributed uniformly at random over {0, 1}2ℓ.

Theorem 2.3 (Explicit pairwise uniform families of hash functions). For every q, ℓ ∈ N, there exists an
explicit6 pairwise uniform family H of hash functions h : {0, 1}q → {0, 1}ℓ such that h ∈ H can be sampled
using a seed of length O(q + ℓ).

For example, if we define ha,b(x) = a ∗ x+ b, where ∗ is convolution mod 2 and + is bitwise XOR, then
{ha,b : a ∈ {0, 1}q+ℓ−1 and b ∈ {0, 1}ℓ} is a pairwise uniform family [MNT93].

2.3 Small-bias distributions

We also rely on asymptotically optimal constructions of k-wise γ-biased generators, which were defined in
Section 1.2.

Theorem 2.4 (Explicit k-wise γ-biased generators [NN93]). For every n, k ∈ N and every γ ∈ (0, 1), there
exists an explicit k-wise γ-biased generator G : {0, 1}s → {0, 1}n with seed length O(log(k/γ) + log log n).

The reason k-wise γ-biased generators are useful for us is that they satisfy the following two properties.

Lemma 2.5 (Small-bias generators fool juntas and conjunctions of literals [NN93; AGHP92]). Let X be a
k-wise γ-biased distribution over {0, 1}n. Then X is ε-almost k-wise uniform, where ε = γ ·2k/2. Furthermore,
X fools every conjunction of at most k literals with error γ.

2.4 Parity circuits

To construct examples showing the weakness of k-wise γ-biased generators, we will rely on circuits computing
the parity function.

Proposition 2.6 (Parity circuits). For any integer n ≥ 2, the function f(x1, . . . , xn) = x1 ⊕ x2 ⊕ · · · ⊕ xn
can be computed by a U2-circuit of size 3n− 3.

Proof. When n = 2, we have x1 ⊕ x2 = (x1 ∧ x2) ∨ (x1 ∧ x2). When n > 2, we perform a tree of binary ⊕
operations, each of which can be computed using three gates.

2.5 Fourier analysis of Boolean functions

Our seed length lower bound for fooling decision trees using small-bias distributions uses Fourier analysis.
For a set S ⊆ [n], we use the notation χS : {0, 1}n → R to denote the function χS(x) =

∏
i∈S(−1)xi . For a

function f : {0, 1}n → R, we use the notation f̂(S) to denote the Fourier coefficient of f at S:

f̂(S) = E
x∈{0,1}n

[f(x) · χS(x)].

Parseval’s theorem states that
E

x∈{0,1}n
[f(x)2] =

∑
S⊆[n]

f̂(S)2.

6That is, given a seed x ∈ {0, 1}O(q+ℓ) and an input y ∈ {0, 1}q, the value hx(q) can be computed in poly(q, ℓ) time, where hx

is the hash function corresponding to the seed x.

8

3 Characterizing k-wise probable uniformity

The following proposition shows the equivalence of three ways of defining k-wise probably uniform distributions.

Proposition 3.1 (Equivalence of three definitions of k-wise probable uniformity). Let X be a distribution
over {0, 1}n, let k ∈ [n], and let ε ∈ [0, 1]. Then the following are equivalent.

1. For every k-junta f : {0, 1}n → {0, 1}, we have E[f(X)] ≥ (1− ε) · E[f].

2. For every size-k set S ⊆ [n] and every z ∈ {0, 1}k, we have Pr[XS = z] ≥ (1− ε) · 2−k.

3. For every size-k set S ⊆ [n], there exists a distribution E over {0, 1}k such that one can sample from
XS by sampling from Uk with probability 1− ε and sampling from E with probability ε.

Proof.

• (1 =⇒ 2) Consider the function f(x) = 1 ⇐⇒ xS = z.

• (2 =⇒ 3) If ε = 0, then for every x ∈ {0, 1}k, we have Pr[XS = x] ≥ 2−k, which implies that XS is
exactly uniform over {0, 1}k. If ε > 0, define p : {0, 1}k → R by the formula

p(x) =
Pr[XS = x]− (1− ε) · 2−k

ε
.

Then p(x) is a probability mass function: it is nonnegative because Pr[XS = x] ≥ (1− ε) · 2−k, and it
sums to 1 because XS is a probability distribution. Let E be corresponding probability distribution.

• (3 =⇒ 1) If f is a k-junta, then there is some set S ⊆ [n] of size k and some function g : {0, 1}k → {0, 1}
such that f(x) = g(xS) for all x ∈ {0, 1}n. Therefore,

E[f(X)] = E[g(XS)] = (1− ε) · E[g(Uk)] + ε · E[g(ES)] ≥ (1− ε) · E[f].

By definition, if X satisfies any of the three equivalent conditions in Proposition 3.1, then X is k-wise
ε-probably uniform. The third condition in Proposition 3.1 motivates the name “k-wise probably uniform,”
but we find it more mathematically convenient to work with the first two conditions.

4 Constructing k-wise probably uniform generators

In this section, we present our new k-wise probably uniform generator, thereby proving Theorem 1.3. At the
end of this section, for completeness’ sake, we record the standard nonconstructive proof of the existence of
nonexplicit k-wise probably uniform generators with excellent seed lengths.

4.1 A small family of generators, each with a good seed length

As a first step, we begin by constructing a family of generator G, such that for any k0-junta f , most generators
g ∈ G satisfy Ex[f(g(x))] ≥ (1− ζ) · E[f]. This construction is based on a combination of pairwise uniform
hash functions and k-wise γ-biased generators.

Lemma 4.1 (Family of generators). For every n, k0 ∈ N and ζ ∈ (0, 1), there exists an explicit family G of
PRGs g : {0, 1}q → {0, 1}n satisfying the following.

1. A generator g ∼ G can be sampled using O(k0 + log(1/ζ) + log log n) truly random bits.

2. Each generator g in G has seed length q = k0 +O(log(1/ζ)).

9

3. If f : {0, 1}n → {0, 1} is a k0-junta, then

Pr
g∼G

[
E

x∈{0,1}q
[f(g(x))] ≥ (1− ζ) · E[f]

]
≥ 1− ζ.

Proof. Let Gsb : {0, 1}ℓ → {0, 1}n be a k-wise γ-biased generator where γ = (ζ/2) · 2−3k0/2 and

ℓ = O(k0 + log(1/ζ) + log log n).

Let H be a pairwise uniform family of hash functions h : {0, 1}q → {0, 1}ℓ. For each hash function h in H, we
define a generator g(x) = Gsb(h(x)). By Theorems 2.3 and 2.4, this family is explicit and G can be sampled
using O(k0 + log(1/ζ) + log log n) truly random bits.

For the correctness proof, let µ = Ey∈{0,1}ℓ [f(Gsb(y))]. The generator Gsb fools f with error γ · 2k0/2 (see

Lemma 2.5), and E[f] ≥ 2−k0 unless f ≡ 0, so µ ≥ (1−ζ/2) ·E[f]. Now pick h ∼ H, and let Ex = f(Gsb(h(x))
for every x ∈ {0, 1}q, so Ex is a random variable based on the choice of h. Then for each fixed x, we have
E[Ex] = µ, so E[

∑
xEx] = 2q · µ. Furthermore, Var[Ex] = µ · (1− µ) ≤ µ, and the variables Ex are pairwise

independent, so Var[
∑

xEx] ≤ 2q · µ. Therefore, by Chebyshev’s inequality, we have

Pr

[∣∣∣∣∣∑
x

Ex − 2q · µ

∣∣∣∣∣ ≥ (ζ/2) · 2q · µ

]
≤ 2q · µ

(1/4) · ζ2 · 22q · µ2
=

4

ζ2 · µ · 2q
≤ 8 · 2k0

ζ2 · 2q
≤ ζ,

provided we choose a suitable value q = k0 +O(log(1/ζ)). Now fix an h such that the bad event above does
not occur. Then with respect to the choice of x ∈ {0, 1}q, we have

E
x
[f(Gsb(h(x)))] = E

x
[Ex] = 2−q ·

∑
x

Ex ≥ 2−q · (1− ζ/2) · 2q · µ

≥ (1− ζ/2) · (1− ζ/2) · E[f]
> (1− ζ) · E[f].

4.2 Pseudorandomly partitioning the coordinates into buckets

In this subsection, we explain how to pseudorandomly partition the coordinates into buckets, [n] = B1∪· · ·∪Br,
such that no single bucket gets too many of the k coordinates we care about. To be more precise, we construct
a balanced partition generator, defined as follows.

Definition 4.2 (Balanced partition generator [MZ13]). A (k, k0, δ)-balanced partition generator is a function
Gvars : {0, 1}a → [r]n such that for every set S ⊆ [n] with |S| ≤ k, with probability at least 1 − δ over a
uniform random choice of seed x ∈ {0, 1}a, for every bucket j ∈ [r], we have |{i ∈ S : Gvars(x)i = j}| ≤ k0.

Definition 4.2 is due to Meka and Zuckerman, who used the term “balanced hash family” [MZ13, Definition
4.9]. We use the term “balanced partition generator” to avoid confusion with the hash functions that appear
in the proof of Lemma 4.1. Our balanced partition generator will essentially consist of a d-wise γ-biased
generator for appropriate values d and γ. The analysis will be based on the following bound on the moments
of a sum of independent Bernoulli random variables [SSS95].7

Theorem 4.3 (Moment bound for a sum of independent Bernoulli random variables [SSS95]). Let X1, . . . , Xk

be independent {0, 1}-valued random variables. Let X =
∑k

i=1Xi, let µi = E[Xi], and let µ =
∑k

i=1 µi. Then
for every even positive integer t, we have

E[(X − µ)t] ≤ max{tt, (tµ)t/2}.
7The exact statement of Theorem 4.3 does not appear in Schmidt, Siegel, and Srinivasan’s work [SSS95], but it follows from

the proof of item “(III)” in their “Theorem 4.”

10

Theorem 4.3 can be improved in some parameter regimes [Sko22], but the simple bound in Theorem 4.3
suffices for our purposes. Using Theorem 4.3, we now present a tail bound for sums of random variables
that satisfy a certain “near t-wise independence” condition. Similar bounds were proven in several previous
papers [LRTV09; CRSW13; SVW17], and our proof is almost identical to their proofs.

Corollary 4.4 (Tail bound for sums of nearly t-wise independent random variables). Let X1, . . . , Xk be
{0, 1}-valued random variables and let µ1, . . . , µk ∈ [0, 1]. Let X =

∑k
i=1Xi and µ =

∑k
i=1 µi. Let t be an

even positive integer, let γ ∈ (0, 1), and assume that for every set S ⊆ [k] with |S| ≤ t, we have∣∣∣∣∣E
[∏
i∈S

Xi

]
−
∏
i∈S

µi

∣∣∣∣∣ ≤ γ.

Then for every ∆ > 0, we have

Pr[|X − µ| ≥ ∆] ≤
(

t

∆

)t

+

(√
µt

∆

)t

+ γ ·
(
2k

∆

)t

.

Proof. Sample X ′
1, . . . , X

′
k ∈ {0, 1} independently, where E[X ′

i] = µi, and let X ′ =
∑k

i=1X
′
i. Then

Pr[|X − µ| ≥ ∆] = Pr[(X − µ)t ≥ ∆t]

≤ ∆−t · E[(X − µ)t] (Markov’s inequality)

= ∆−t ·
t∑

i=0

(
t

i

)
(−µ)t−i · E[Xi] (Binomial theorem)

= ∆−t ·
t∑

i=0

(
t

i

)
(−µ)t−i ·

∑
j1,...,ji∈[k]

E[Xj1Xj2 · · ·Xji]

≤ ∆−t ·
t∑

i=0

(
t

i

)
·

(−µ)t−i ·
∑

j1,...,ji∈[k]

µj1 · · ·µji + µt−i · ki · γ

= ∆−t ·

(
E[(X ′ − µ)t] + γ ·

t∑
i=0

(
t

i

)
µt−i · ki

)
= ∆−t ·

(
E[(X ′ − µ)t] + γ · (µ+ k)t

)
(Binomial theorem)

≤
(

t

∆

)t

+

(√
µt

∆

)t

+ γ ·
(
2k

∆

)t

(Theorem 4.3.)

Given Corollary 4.4, we are ready to construct our balanced partition generator.

Lemma 4.5 (Balanced partition generator). Let n, k, r ∈ N and δ ∈ (0, 1). Assume r is a power of two and
r ≤ k ≤ n. There exists an explicit (k, k0, δ)-balanced partition generator Gvars : {0, 1}a → [r]n, where

k0 = k/r +O
(√

k/r · log(r/δ) + log(r/δ)
)
,

with seed length

a = O

(
log(r/δ) · log

(
2 ·
⌈

rk

log(r/δ)

⌉)
+ log log n

)
.

Proof. Identify [r]n with {0, 1}n log r. We let Gvars be a (t log r)-wise γ-biased generator for appropriate values

t = log(3r/δ)

γ =
δ

3r
·
(

t

rk

)t/2

.

11

The seed length bound follows from Theorem 2.4. For the correctness proof, assume without loss of generality
that |S| = k. Sample Z ∈ [r]n using the generator. Fix any bucket j ∈ [r]. For each i ∈ S, let Xi indicate
whether Zi = j. Then for any set T ⊆ S with |T | ≤ t, the value

∏
i∈T Xi can be expressed in terms of

the underlying bits of Z as a conjunction of at most t log r literals. Therefore, by Lemma 2.5, we have
|E[
∏

i∈T Xi]− r−|T || ≤ γ. Therefore, by Corollary 4.4, for every ∆ > 0, we have

Pr

[∑
i∈S

Xi ≥ k/r +∆

]
≤
(

t

∆

)t

+

(√
kt/r

∆

)t

+ γ ·
(
2k

∆

)t

.

We choose ∆ = max
{
2t, 2

√
kt/r

}
. Then we get

Pr

[∑
i∈S

Xi ≥ k/r +∆

]
≤ 2−t + 2−t + γ ·

(√
rk

t

)t

≤ δ

3r
+

δ

3r
+

δ

3r

due to our choices of t and γ. The union bound over r buckets completes the proof.

For comparison, Lovett, Reingold, Trevisan, and Vadhan constructed an explicit (k, k0, δ)-balanced
partition generator for the special case k = Θ(r · log(1/δ)), with k0 = O(k/r) and seed length a =
O(log n + log(r/δ) · log(r · log(1/δ))) [LRTV09]. For any k, one can also use Gopalan, Kane, and Meka’s
PRG for Fourier shapes [GKM18] to construct a (k, k0, δ)-balanced partition generator with the same value
of k0 as in Lemma 4.5 and with seed length a = Õ(log(n/δ)).

4.3 The full k-wise probably uniform generator

Proof of Theorem 1.3. LetGvars : {0, 1}a → [r]n be the (k, k0, δ)-balanced partition generator from Lemma 4.5

with parameters δ = ε/3 and r = (k/ log(k/ε))1/3, or to be more precise, r is the largest power of two that

is at most (k/ log(k/ε))1/3. Let G be the family of generators g : {0, 1}q → {0, 1}n from Lemma 4.1, using
ζ = ε/(3r) and using the value k0 from Gvars. The final generator G is defined as follows.

1. Sample a partition Z = (Z1, . . . , Zn) ∈ [r]n using Gvars.

2. Sample a generator g ∼ G.

3. Sample seeds X(1), . . . , X(r) ∈ {0, 1}q independently and uniformly at random.

4. Output Y ∈ {0, 1}n, where
Yi = g(X(Zi))i

for every i ∈ [n].

To prove that this works, let f : {0, 1}n → {0, 1} be a conjunction of k literals, say

f(x) =
∧
i∈S

(xi ⊕ bi)

where S ⊆ [n], |S| = k, and bi ∈ {0, 1} for every i ∈ S. We will prove that E[f(X)] ≥ (1− ε) · 2−k, which is
sufficient by Proposition 3.1.

For each bucket j ∈ [r], let Bj = Z−1(j). The definition of a balanced partition generator ensures that
except with probability ε/3 over the choice of Z, we have |S ∩ Bj | ≤ k0 for every j ∈ [r]. Let E1 be this
“good” event. Fix any choice of Z such that E1 occurs.

12

For each j ∈ [r], define fj : {0, 1}n → {0, 1} by

fj(x) =
∧

i∈S∩Bj

(xi ⊕ bi),

so f(x) = f1(x)∧ · · · ∧ fr(x). By Lemma 4.1 and the union bound over the r buckets, except with probability
ε/3 over the choice of g ∼ G, we have

E
x∈{0,1}q

[fj(g(x))] ≥
(
1− ε

3r

)
· E[fj]

for every j ∈ [r]. Let E2 be this “good” event. Fix any choice of g such that E2 occurs.
For any such fixing of Z and g, with respect to the choice of X(1), . . . , X(r) alone, we have

E
X(1),...,X(r)

[f(Y)] =
r∏

j=1

E
X(j)

[fj(g(X
(j)))] ≥

r∏
j=1

(
1− ε

3r

)
· E[fj] =

(
1− ε

3r

)r
· 2−k ≥ (1− ε/3) · 2−k

by Bernoulli’s inequality. Therefore, with respect to all the randomness, we have

E[f(Y)] ≥ Pr[f(Y) = 1 and E1 and E2] = Pr[E1] · Pr[E2 | E1] · Pr[f(Y) = 1 | E1, E2]

≥ (1− ε/3) · (1− ε/3) · (1− ε/3) · 2−k

≥ (1− ε) · 2−k

by another application of Bernoulli’s inequality.
Now let us bound the seed length. By Lemma 4.5, the cost of sampling Z is

O

(
log(r/ε) · log

(
2 ·
⌈

rk

log(r/ε)

⌉)
+ log log n

)
≤ O

(
log(k/ε) · log

(
2 ·
⌈

k

log(k/ε)

⌉)
+ log log n

)
≤ O

(
log(k/ε) ·

(
k

log(k/ε)

)2/3

+ log(k/ε) + log log n

)
= O(k2/3 · log1/3(k/ε) + log(k/ε) + log log n).

Furthermore, the parameter k0 is given by

k0 = k/r +O
(√

k/r · log(r/ε) + log(r/ε)
)
≤ k/r +O

(√
k/r · log(k/ε) + log(k/ε)

)
.

Therefore, by Lemma 4.1, the cost of sampling g ∼ G is

O (k0 + log(k/ε) + log log n) = O(k2/3 · log1/3(k/ε) + k1/3 · log2/3(k/ε) + log(k/ε) + log log n)

= O(k2/3 · log1/3(k/ε) + log(k/ε) + log log n).

Finally, the cost of sampling X(1), . . . , X(r) is

r · q = r · k0 +O(r · log(k/ε))
= k +O(k2/3 · log1/3(k/ε) + k1/3 log2/3(k/ε) + log(k/ε))

= k +O(k2/3 · log1/3(k/ε) + log(k/ε)).

4.4 Nonexplicit k-wise probably uniform generators

At this point, we have completed our explicit k-wise uniform generator construction. We now use a standard
probabilistic argument to show the existence of nonexplicit k-wise probably uniform generators with a very
good seed length.

13

Proposition 4.6 (Nonexplicit k-wise probably uniform generator). For every n, k ∈ N and every ε ∈ (0, 1),
there exists a k-wise ε-probably uniform generator G : {0, 1}s → {0, 1}n with seed length

s = k + log k + 2 log(1/ε) + log log(n/k) +O(1).

Proof. Pick G uniformly at random. For every function f that is a conjunction of k literals, let Zf =∑
x∈{0,1}s f(G(x)). Then Zf is a sum of 2s independent {0, 1}-valued random variables with mean µ :=

E[Zf] = 2s−k. Therefore, by the Chernoff bound,

Pr[Zf < (1− ε) · µ] ≤ exp(−ε2µ/2).

By the union bound, it follows that

Pr[there exists f such that Zf < (1− ε) · µ] ≤
(
n

k

)
· 2k · exp(−ε2µ/2) ≤ (2en/k)k · exp(−ε22s−k/2).

This probability is less than 1 if we choose a suitable value s = k+log k+2 log(1/ε)+log log(n/k)+O(1). Now
suppose G is such that Zf ≥ (1− ε) · µ for every f that is a conjunction of k literals. Let g : {0, 1}n → {0, 1}
be a k-junta. Then we can write g =

∑m
i=1 fi where each fi is a conjunction of k literals, hence

E
x
[g(G(x))] =

m∑
i=1

2−s · Zfi ≥
m∑
i=1

2−s · (1− ε) · 2s−k = (1− ε) ·m · 2−k = (1− ε) · E[g].

5 Implications of k-wise probable uniformity

In this section, we will show that every k-wise probably uniform distribution fools decision trees. In fact, we
will show that such distributions fool a more general model, called the subcube partition model.

Definition 5.1 (The subcube partition model). A subcube partition f is a collection of terms f1, . . . , fm
and values b1, . . . , bm ∈ {0, 1}. Each term fi : {0, 1}n → {0, 1} is a conjunction of literals, and the sets
f−1
1 (1), . . . , f−1

m (1) must partition the domain {0, 1}n. That is, for every x ∈ {0, 1}n, we have
∑m

i=1 fi(x) = 1.
The subcube partition computes the function f : {0, 1}n → {0, 1} defined by

f(x) =
m∑
i=1

fi(x) · bi.

The width of a term fi is the number of literals in the term. The width of the subcube partition is the
maximum width of any term. The size of the subcube partition is the number of terms (m).

Every width-k subcube partition has size at most 2k, because 1 =
∑m

i=1 E[fi] ≥ m · 2−k. A decision tree
of depth k and size m can be simulated by a subcube partition of width k and size m: for each leaf u, we
construct a term fu that indicates whether the tree reaches the leaf u on a given input. The converse does
not hold. In fact, there exist subcube partitions of width k that cannot be simulated by decision trees of
depth k2−Ω(1) [Sav02; KRDS15; GPW18; AKK16]. We now explain why k-wise probably uniform generators
fool subcube partitions.

Lemma 5.2 (k-wise probable uniformity fools subcube partitions). Let X be a distribution over {0, 1}n that
is k-wise ε-probably uniform. Then:

• X fools width-k subcube partitions (hence also depth-k decision trees) with error ε.

• X fools size-m subcube partitions (hence also size-m decision trees) with error ε+m · 2−(k+1).

14

Proof. Let f : {0, 1}n → {0, 1} be a function computed by a subcube partition with terms f1, . . . , fm and
values b1, . . . , bm. Let S ⊆ [m] be the set of terms of width at most k. We will show that X fools f with
error ε+

∑
i/∈S E[fi]. To prove it, sample R ∈ {0, 1}n uniformly at random. Then

E[f(X)] =

m∑
i=1

bi · E[fi(X)] ≥
∑
i∈S

bi · E[fi(X)] ≥
∑
i∈S

bi · (1− ε) · E[fi] = (1− ε) · E

[∑
i∈S

bi · fi(R)

]

≥ E

[∑
i∈S

bi · fi(R)

]
− ε

= E

[
f(R)−

∑
i/∈S

bi · fi(R)

]
− ε

≥ E[f]−
∑
i/∈S

E[fi]− ε.

Now we bound the expectation from above. Let f = 1 − f . Since f can also be computed by a subcube
partition with the same terms f1, . . . , fm, we have

E[f(X)] = 1− E
[
f(X)

]
≤ 1− E

[
f
]
+ ε+

∑
i/∈S

E[fi] = E[f] + ε+
∑
i/∈S

E[fi].

The lemma follows, because E[fi] ≤ 2−(k+1) whenever i /∈ S.

By combining Theorem 1.3 (our k-wise probably uniform generator) with Lemma 5.2, we now prove the
following theorem, which generalizes Theorem 1.5.

Theorem 5.3 (Fooling near-maximal subcube partitions). Let n,m ∈ N and ε ∈ (0, 1). There exists an
explicit PRG G : {0, 1}s → {0, 1}n that fools n-variate subcube partitions of size m with error ε and seed
length

s = logm+O

(
log2/3m · log1/3

(
logm

ε

)
+ log(1/ε) + log log n

)
. (3)

Proof. We use our k-wise (ε/2)-probably uniform generator, where k = logm+ log(2/ε). By Lemma 5.2, the
generator fools size-m subcube partitions with error ε/2 +m · 2−k = ε. By Theorem 1.3, the seed length is

k +O(k2/3 · log1/3(k/ε) + log(1/ε) + log log n),

which, after substituting the choice of k, simplifies to Eq. (3).

6 Limitations of k-wise γ-biased generators

In this section, we prove that our main results (Theorems 1.3 and 1.5 and Corollary 1.6) cannot be proven
by simply developing a better construction and/or analysis of k-wise γ-biased generators.

First, in Section 6.1, we present examples showing that if one wishes to use a generic k-wise γ-biased
generator to sample a t-wise probably uniform distribution, or to fool near-maximal decision trees, or to fool
fool U2-circuits of size 2n, then one is forced to use a very large k and a very small γ. Then, in Section 6.2,
we extend Karloff and Mansour’s work [KM97] to show that when k is very large and γ is very small, every
k-wise γ-biased generator has a very large seed length.

6.1 Counterexamples showing that k must be large and γ must be small

We begin by analyzing the parameter k. The argument is fairly trivial.

15

Proposition 6.1. For every n ∈ N and k ∈ [n− 1], there exists a k-wise uniform distribution X over {0, 1}n
such that:

1. X is not 0.49-almost (k + 1)-wise uniform.

2. X does not 0.49-fool U2-circuits of size 3k.

Proof. Let X be the uniform distribution over the set {x ∈ {0, 1}n : x1 ⊕ x2 ⊕ · · · ⊕ xk+1 = 0}. Let
f(x) = x1 ⊕ · · · ⊕ xk+1. Then f can be computed by a circuit of size 3k over the U2 basis (Proposition 2.6),
and f(x) depends on only k + 1 bits of x, and |E[f]− E[f(X)]| = 1/2.

Now we move on to the bias parameter, γ. We begin by showing that a very small bias would be required
to achieve k-wise probable uniformity.

Proposition 6.2. For every n ∈ N, every k ∈ [n], and every ε ∈ (0, 1), there exists a distribution X over
{0, 1}n such that X is n-wise O(ε · 2−k)-biased, but X is not k-wise ε-probably uniform.

Proof. With probability 1 − 2ε, we sample X uniformly at random. With probability 2ε, we sample X
uniformly at random from the set {x ∈ {0, 1}n : (x1, . . . , xk) ̸= 0k}. To show that this distribution is n-wise
(2ε · 2−k)-biased, let S ⊆ [n] be any nonempty set of size at most k. If S ⊈ [k], then E[χS(X)] = 0, because
(Xk+1, . . . , Xn) is uniform over {0, 1}n−k and independent of (X1, . . . , Xk). If S ⊆ [k], then

|E[χS(X)]| =
∣∣∣∣(1− 2ε) · 0 + 2ε · E

x∈{0,1}k\{0k}
[χS(x)]

∣∣∣∣ = 2ε

2k − 1
·

∣∣∣∣∣∣
∑

x∈{0,1}k\{0k}

χS(x)

∣∣∣∣∣∣
=

2ε

2k − 1
·

∣∣∣∣∣∣
 ∑

x∈{0,1}k
χS(x)

− χS(0
k)

∣∣∣∣∣∣
=

2ε

2k − 1

≤ 4ε

2k
.

On the other hand, X is not k-wise ε-probably uniform, because

Pr[(X1, . . . , Xk) = 0k] = (1− 2ε) · 2−k < (1− ε) · 2−k.

Next, we show that a very small bias would be required to fool decision trees of depth 0.76 · n, or to fool
circuits of size 2n over the U2 basis. The proof is based on the “inner product mod 2” function. For each
even positive integer n, we define IPn : {0, 1}n → {0, 1} by the formula

IPn(x, y) =

n/2⊕
i=1

xiyi.

Proposition 6.3. Let n be an even positive integer and let X be the uniform distribution over IP−1
n (0).

Then:

1. The distribution X is n-wise (2−n/2)-biased.8

2. The distribution X does not fool U2-circuits of size 2n− 3 with error 0.49, assuming n is sufficiently
large.

8For context, Bogdanov and Viola previously showed that X is n-wise (2−Ω(n))-biased, and they also showed a generalization
of this statement to larger fields [BV10].

16

3. There is a value k = 3
4 · n+ O(

√
n) such that X does not fool depth-k decision trees with error 0.49,

assuming n is sufficiently large.

Proof. Let f(x, y) = (−1)IPn(x,y). Let χS be any nontrivial character function. Sample R ∈ {0, 1}n uniformly
at random, and sample Y uniformly from IP−1(1). For each b ∈ {0, 1}, let pb = Pr[IP(R) = b]. Note that
p0 > 1/2. Therefore,

|E[χS(X)]| < 2p0 · |E[χS(X)]|
= |p0 · E[χS(X)] + p1 · E[χS(Y)] + p0 · E[χS(X)]− p1 · E[χS(Y)]|
= |E[χS(R)] + E[χS(R) · f(R)]|

= |f̂(S)|.

(The second-to-last equation is an application of the law of total expectation.) It follows that X is n-wise
(2−n/2)-biased, because the inner product mod 2 function is famously “bent,” meaning that |f̂(S)| = 2−n/2

for every S. For completeness, we include the calculation showing that |f̂(S)| = 2−n/2 below:

f̂(S) = E
x,y

[f(x, y) · χS(x, y)]

= E
x,y

n/2∏
i=1

(−1)xiyi

 ·

n/2∏
i=1

(−1)xiui

 ·

n/2∏
i=1

(−1)yivi

 for some u, v ∈ {0, 1}n/2

=

n/2∏
i=1

E
a,b∈{0,1}

[(−1)ab+aui+bvi]

=

n/2∏
i=1

1 + (−1)vi + (−1)ui + (−1)1+ui+vi

4

=

n/2∏
i=1

(
±1

2

)
= ±2−n/2.

The distribution X does not 0.49-fool circuits of size 2n− 3 over the U2 basis, because E[IPn] = 1/2− o(1),
and IPn can be computed by a circuit of size 2n− 3:

• We use n/2 “AND” gates to compute the bits x1y1, . . . , xn/2yn/2.

• Then we use 3(n/2)− 3 gates to compute the parity of those n/2 bits (Proposition 2.6).

Finally, we will show that X does not 0.49-fool decision trees of depth 3
4 · n+O(

√
n). Define

T (x, y) =

{
IP(x, y) if |x| ≤ n/4 + 2

√
n

0 if |x| > n/4 + 2
√
n,

where |x| denotes the Hamming weight of x and c is an appropriate constant. Then T (x, y) can be computed
by a decision tree of depth 3

4 · n+O(
√
n), and T ≤ IPn, so E[T (X)] = 0. On the other hand, if we pick x

and y uniformly at random:

• There is a 2−n/2 chance that x = 0n/2.

• There is at most an exp(−16) chance that x has Hamming weight more than n/4+2
√
n, by Hoeffding’s

inequality.

• For any fixing of x such that neither of the two events above occur, we have Ey[T (x, y)] = 1/2.

Therefore, E[T] ≥ 1
2 − 2−n/2 − exp(−16) ≥ 0.49.

17

6.2 Seed length lower bound for k-wise γ-biased generators

In this section, we prove our seed length lower bound for k-wise γ-biased generators (Theorem 1.7). The
proof is a straightforward extension of Karloff and Mansour’s argument [KM97], which covers the case γ = 0.
The approach is to bound the collision probability of a k-wise γ-biased distribution.

Definition 6.4 (Collision probability). Let X be a probability distribution over the space X . The collision
probability CP(X) is defined by

CP(X) = Pr
x∼X
x′∼X

[x = x′],

where x and x′ are sampled independently from X. Equivalently, CP(X) =
∑

x∈X Pr[X = x]2.

Theorem 6.5 (Collision probability of k-wise γ-biased distributions). Let n ∈ N, let γ ∈ (0, 1), let α ∈ (0, 1/2],
let k = ⌊(12 + α) · n⌋, and let X be a distribution that is k-wise γ-biased. Then

CP(X) ≤
(
1 +

1

2α

)
·
(
2−n + γ2

)
.

Proof. Let p : {0, 1}n → [0, 1] be the probability mass function of X, i.e., p(x) = Pr[X = x]. Since X
is a probability distribution, we have p̂(∅) = 2−n. Furthermore, since X is k-wise γ-biased, we have
|p̂(S)| ≤ γ · 2−n whenever 1 ≤ |S| ≤ k. Therefore, we can bound the collision probability of X as follows.

CP(X) =
∑

x∈{0,1}n
p(x)2 = 2n · E

x∈{0,1}n
[p(x)2]

= 2n ·
∑
S⊆[n]

p̂(S)2 (Parseval’s theorem)

≤ 2n ·

 1

22n
+

(
n

≤ k

)
· γ2

22n
+
∑
S⊆[n]
|S|>k

p̂(S)2

≤ 2−n + γ2 + 2n ·

∑
S⊆[n]
|S|>k

p̂(S)2.

To bound the high-degree Fourier weight, let x⊕i denote x with the i-th bit flipped. Identify a set T ⊆ [n]

18

with its indicator function T : [n] → {0, 1}. Then

0 ≤
n∑

i=1

∑
x∈{0,1}n

p(x) · p(x⊕i) =
∑
S⊆[n]

∑
T⊆[n]

p̂(S) · p̂(T) ·
n∑

i=1

∑
x∈{0,1}n

χS(x) · χT (x
⊕i)

=
∑
S⊆[n]

∑
T⊆[n]

p̂(S) · p̂(T) ·
n∑

i=1

(−1)T (i) ·
∑

x∈{0,1}n
χS(x) · χT (x)

= 2n ·
∑
S⊆[n]

p̂(S)2 ·
n∑

i=1

(−1)S(i)

= 2n ·
n∑

d=0

∑
|S|=d

p̂(S)2 · (n− 2d)

≤ 2n ·

n ·

∑
S⊆[n]
|S|≤k

p̂(S)2

− (2k + 2− n) ·
∑
S⊆[n]
|S|>k

p̂(S)2

≤ n · (2−n + γ2)− 2n · (2k + 2− n) ·

n∑
d=k+1

∑
|S|=d

p̂(S)2.

Consequently,

CP(X) ≤ 2−n + γ2 +
n · (2−n + γ2)

2k + 2− n
=

2k + 2

2k + 2− n
· (2−n + γ2) =

(
1 +

n

2k + 2− n

)
· (2−n + γ2)

≤
(
1 +

n

(1 + 2α)n− n

)
· (2−n + γ2)

=

(
1 +

1

2α

)
· (2−n + γ2).

Proof of Theorem 1.7. The output of G has collision probability at least 2−s, since this is the chance of
getting the same seed twice in a row. Therefore,

2−s ≤
(
1 +

1

2α

)
· (2−n + γ2) ≤ 2

α
·max{2−n, γ2},

and consequently
s ≥ min{n, 2 log(1/γ)} − log(2/α).

By combining the results of this subsection with the counterexamples from the previous subsection, we
get the following conclusion.

Corollary 6.6. Let n, k ∈ N and γ ∈ (0, 1). Suppose that at least one of the following holds.

1. Every k-wise γ-biased distribution over {0, 1}n is (0.51 · n)-wise 0.49-probably uniform.

2. Every k-wise γ-biased distribution over {0, 1}n fools decision trees of depth 0.76 · n with error 0.49.

3. Every k-wise γ-biased distribution over {0, 1}n fools circuits of size 2n over the U2 basis with error 0.49.

Then every k-wise γ-biased generator has seed length n−O(1).

19

Proof. First, we show that k ≥ 1
2+Ω(1). Case (1) implies that every k-wise uniform distribution is 0.49-almost

(0.51 · n)-wise uniform, hence k ≥ ⌊0.51 · n⌋ by Proposition 6.1. Similarly, case (2) implies that every k-wise
uniform distribution is 0.49-almost (0.76 · n)-wise uniform, hence k ≥ ⌊0.76 · n⌋. Finally, case (3) implies
k > 2n/3 by Proposition 6.1.

Next, we show that γ ≤ O(2−n/2). In case (1), this follows immediately from Proposition 6.2. Now
suppose we are in case (2) or (3). Let Z be the distribution over {0, 1}n′

from Proposition 6.3, where
n′ ∈ {n, n− 1} and n′ is even. By appending a uniform random bit to Z if necessary, we get a distribution Z ′

over {0, 1}n such that (a) Z ′ is n-wise (2−(n−1)/2)-biased, but (b) Z ′ does not fool decision trees of depth 0.76n
with error 0.49, nor does it fool circuits of size 2n over the U2 basis with error 0.49. Therefore, γ < 2−(n−1)/2.

Finally, because the parameters k and γ have such extreme values, Theorem 1.7 tells us that every k-wise
γ-biased generator has seed length at least min{n, 2 log(1/γ)} −O(1) = n−O(1).

7 Open problems

• Find more applications of k-wise probably uniform generators.

• Improve the seed lengths of our constructions.

• Design an explicit PRG, with a seed length similar to that of our k-wise probably uniform generator,
that samples a distribution X such that

(1− ε) · E[f] ≤ E[f(X)] ≤ (1 + ε) · E[f]

for every k-junta f . This is equivalent to saying that every k coordinates of X are uniform to within
ℓ∞ error ε · 2−k. Such a PRG could be used to fool near-maximal unambiguous DNF formulas.

• Design PRGs that fool near-maximal parity decision trees. Such PRGs would fool circuits of size 2.49n
over the full binary basis, due to another simulation by Chen and Kabanets [CK16]. Currently, no
nontrivial PRGs are known that fool circuits over the full binary basis.

• Improve the seed length in Lemma 4.5 (the balanced partition generator) to O(log(k/δ) + log logn).
This would not have any effect on our main theorems, but it is a natural problem in its own right.

• Prove tight bounds on the optimal nonexplicit seed length of PRGs fooling depth-k decision trees with
error ε when k and log(1/ε) are both large. For example, does there exist a PRG that fools decision
trees of depth k = 0.9 · n with error ε = 2−0.4n and seed length (1− Ω(1)) · n?

• Prove matching upper and lower bounds on the power of small-bias distributions to fool decision trees.
For example, does there exist a constant c < 1/2 such that every n-wise (2−cn)-biased distribution fools
decision trees of depth n/2 with error 0.1?

8 Acknowledgments

I thank Avishay Tal for valuable comments on a draft of this paper and for a discussion about the Fourier
spectra of decision trees. I thank Alicia Torres Hoza for helpful comments on drafts of this paper.

References

[AAKMRX07] Noga Alon, Alexandr Andoni, Tali Kaufman, Kevin Matulef, Ronitt Rubinfeld, and Ning
Xie. “Testing k-wise and almost k-wise independence”. In: Proceedings of the 39th Annual
Symposium on Theory of Computing (STOC). 2007, pp. 496–505. doi: 10.1145/1250790.
1250863.

20

https://doi.org/10.1145/1250790.1250863
https://doi.org/10.1145/1250790.1250863

[ABI86] Noga Alon, László Babai, and Alon Itai. “A fast and simple randomized parallel algorithm
for the maximal independent set problem”. In: J. Algorithms 7.4 (1986), pp. 567–583. issn:
0196-6774. doi: 10.1016/0196-6774(86)90019-2.

[ABNNR92] Noga Alon, Jehoshua Bruck, Joseph Naor, Moni Naor, and Ron M. Roth. “Construction of
asymptotically good low-rate error-correcting codes through pseudo-random graphs”. In:
IEEE Transactions on Information Theory 38.2 (1992), pp. 509–516. doi: 10.1109/18.
119713.

[AGHP92] Noga Alon, Oded Goldreich, Johan H̊astad, and René Peralta. “Simple constructions of
almost k-wise independent random variables”. In: Random Structures Algorithms 3.3 (1992),
pp. 289–304. issn: 1042-9832. doi: 10.1002/rsa.3240030308.

[AGM03] Noga Alon, Oded Goldreich, and Yishay Mansour. “Almost k-wise independence versus
k-wise independence”. In: Inform. Process. Lett. 88.3 (2003), pp. 107–110. issn: 0020-0190.
doi: 10.1016/S0020-0190(03)00359-4.

[AKK16] Andris Ambainis, Martins Kokainis, and Robin Kothari. “Nearly Optimal Separations
Between Communication (or Query) Complexity and Partitions”. In: Proceedings of the 31st
Conference on Computational Complexity (CCC). 2016, 4:1–4:14. doi: 10.4230/LIPIcs.
CCC.2016.4.

[Alo09] Noga Alon. “Perturbed identity matrices have high rank: proof and applications”. In:
Combin. Probab. Comput. 18.1-2 (2009), pp. 3–15. issn: 0963-5483. doi: 10 . 1017 /

S0963548307008917.

[Alo86] N. Alon. “Explicit construction of exponential sized families of k-independent sets”. In:
Discrete Math. 58.2 (1986), pp. 191–193. issn: 0012-365X. doi: 10.1016/0012-365X(86)
90161-5.

[BD22] Guy Blanc and Dean Doron. “New Near-Linear Time Decodable Codes Closer to the GV
Bound”. In: Proceedings of the 37th Annual Computational Complexity Conference (CCC).
2022, 10:1–10:40. doi: 10.4230/LIPIcs.CCC.2022.10.

[BS88] Bernd Becker and Hans-Ulrich Simon. “How robust is the n-cube?” In: Inform. and Comput.
77.2 (1988), pp. 162–178. issn: 0890-5401. doi: 10.1016/0890-5401(88)90056-9.

[Bsh14] Nader H. Bshouty. “Testers and their applications [extended abstract]”. In: Proceedings of
the 5th Conference on Innovations in Theoretical Computer Science (ITCS). ACM, New
York, 2014, pp. 327–351. doi: 10.1145/2554797.2554828.

[Bsh16] Nader H. Bshouty. Derandomizing Chernoff Bound with Union Bound with an Application
to k-wise Independent Sets. 2016. arXiv: 1608.01568 [cs.DM].

[BT13] Avraham Ben-Aroya and Amnon Ta-Shma. “Constructing small-bias sets from algebraic-
geometric codes”. In: Theory Comput. 9 (2013), pp. 253–272. doi: 10.4086/toc.2013.
v009a005.

[BV10] Andrej Bogdanov and Emanuele Viola. “Pseudorandom bits for polynomials”. In: SIAM J.
Comput. 39.6 (2010), pp. 2464–2486. issn: 0097-5397. doi: 10.1137/070712109.

[CGHFRS85] Benny Chor, Oded Goldreich, Johan H̊astad, Joel Freidmann, Steven Rudich, and Roman
Smolensky. “The bit extraction problem or t-resilient functions”. In: Proceedings of the 26th
Annual Symposium on Foundations of Computer Science (FOCS). 1985, pp. 396–407. doi:
10.1109/SFCS.1985.55.

[CK16] Ruiwen Chen and Valentine Kabanets. “Correlation bounds and #SAT algorithms for small
linear-size circuits”. In: Theoret. Comput. Sci. 654 (2016), pp. 2–10. issn: 0304-3975. doi:
10.1016/j.tcs.2016.05.005.

21

https://doi.org/10.1016/0196-6774(86)90019-2
https://doi.org/10.1109/18.119713
https://doi.org/10.1109/18.119713
https://doi.org/10.1002/rsa.3240030308
https://doi.org/10.1016/S0020-0190(03)00359-4
https://doi.org/10.4230/LIPIcs.CCC.2016.4
https://doi.org/10.4230/LIPIcs.CCC.2016.4
https://doi.org/10.1017/S0963548307008917
https://doi.org/10.1017/S0963548307008917
https://doi.org/10.1016/0012-365X(86)90161-5
https://doi.org/10.1016/0012-365X(86)90161-5
https://doi.org/10.4230/LIPIcs.CCC.2022.10
https://doi.org/10.1016/0890-5401(88)90056-9
https://doi.org/10.1145/2554797.2554828
https://arxiv.org/abs/1608.01568
https://doi.org/10.4086/toc.2013.v009a005
https://doi.org/10.4086/toc.2013.v009a005
https://doi.org/10.1137/070712109
https://doi.org/10.1109/SFCS.1985.55
https://doi.org/10.1016/j.tcs.2016.05.005

[CKMZ83] Ashok K. Chandra, Lawrence T. Kou, George Markowsky, and Shmuel Zaks. “On sets of
Boolean n-vectors with all k-projections surjective”. In: Acta Inform. 20.1 (1983), pp. 103–
111. issn: 0001-5903. doi: 10.1007/BF00264296.

[CRSW13] L. Elisa Celis, Omer Reingold, Gil Segev, and Udi Wieder. “Balls and bins: smaller hash
families and faster evaluation”. In: SIAM J. Comput. 42.3 (2013), pp. 1030–1050. issn:
0097-5397. doi: 10.1137/120871626.

[CW79] J. Lawrence Carter and Mark N. Wegman. “Universal classes of hash functions”. In: J.
Comput. System Sci. 18.2 (1979), pp. 143–154. issn: 0022-0000. doi: 10.1016/0022-
0000(79)90044-8.

[GKM18] Parikshit Gopalan, Daniel M. Kane, and Raghu Meka. “Pseudorandomness via the discrete
Fourier transform”. In: SIAM J. Comput. 47.6 (2018), pp. 2451–2487. issn: 0097-5397. doi:
10.1137/16M1062132.

[GKST18] Alexander Golovnev, Alexander S. Kulikov, Alexander V. Smal, and Suguru Tamaki. “Gate
elimination: circuit size lower bounds and #SAT upper bounds”. In: Theoret. Comput. Sci.
719 (2018), pp. 46–63. issn: 0304-3975. doi: 10.1016/j.tcs.2017.11.008.

[GPW18] Mika Göös, Toniann Pitassi, and Thomas Watson. “Deterministic communication vs. partition
number”. In: SIAM J. Comput. 47.6 (2018), pp. 2435–2450. issn: 0097-5397. doi: 10.1137/
16M1059369.

[HH24] Pooya Hatami and William Hoza. “Paradigms for unconditional pseudorandom generators”.
In: Found. Trends Theor. Comput. Sci. 16.1-2 (2024), pp. 1–210. issn: 1551-305X. doi:
10.1561/0400000109.

[HHVESS24] Itamar Harel, William M. Hoza, Gal Vardi, Itay Evron, Nathan Srebro, and Daniel Soudry.
Provable Tempered Overfitting of Minimal Nets and Typical Nets. 2024. arXiv: 2410.19092
[cs.LG].

[IM02] Kazuo Iwama and Hiroki Morizumi. “An explicit lower bound of 5n − o(n) for Boolean
circuits”. In: Proceedings of the 27th International Symposium on Mathematical Foundations
of Computer Science (MFCS). Vol. 2420. Lecture Notes in Comput. Sci. Springer, Berlin,
2002, pp. 353–364. doi: 10.1007/3-540-45687-2_29.

[KM93] Eyal Kushilevitz and Yishay Mansour. “Learning decision trees using the Fourier spectrum”.
In: SIAM J. Comput. 22.6 (1993), pp. 1331–1348. issn: 0097-5397. doi: 10.1137/0222080.

[KM97] Howard Karloff and Yishay Mansour. “On construction of k-wise independent random
variables”. In: Combinatorica 17.1 (1997), pp. 91–107. issn: 0209-9683. doi: 10.1007/
BF01196134.

[KRDS15] Robin Kothari, David Racicot-Desloges, and Miklos Santha. “Separating decision tree
complexity from subcube partition complexity”. In: Proceedings of the 19th International
Workshop on Randomization and Computation (RANDOM). 2015, pp. 915–930. doi: 10.
4230/LIPIcs.APPROX-RANDOM.2015.915.

[KS73] Daniel J. Kleitman and Joel Spencer. “Families of k-independent sets”. In: Discrete Math. 6
(1973), pp. 255–262. issn: 0012-365X. doi: 10.1016/0012-365X(73)90098-8.

[LRTV09] Shachar Lovett, Omer Reingold, Luca Trevisan, and Salil Vadhan. “Pseudorandom bit
generators that fool modular sums”. In: Proceedings of the 13th International Workshop on
Randomization and Computation (RANDOM). 2009, pp. 615–630. doi: 10.1007/978-3-
642-03685-9_46.

[MNT93] Yishay Mansour, Noam Nisan, and Prasoon Tiwari. “The computational complexity of
universal hashing”. In: Theoretical Computer Science 107.1 (1993), pp. 121–133. doi: 10.
1016/0304-3975(93)90257-T.

22

https://doi.org/10.1007/BF00264296
https://doi.org/10.1137/120871626
https://doi.org/10.1016/0022-0000(79)90044-8
https://doi.org/10.1016/0022-0000(79)90044-8
https://doi.org/10.1137/16M1062132
https://doi.org/10.1016/j.tcs.2017.11.008
https://doi.org/10.1137/16M1059369
https://doi.org/10.1137/16M1059369
https://doi.org/10.1561/0400000109
https://arxiv.org/abs/2410.19092
https://arxiv.org/abs/2410.19092
https://doi.org/10.1007/3-540-45687-2_29
https://doi.org/10.1137/0222080
https://doi.org/10.1007/BF01196134
https://doi.org/10.1007/BF01196134
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.915
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.915
https://doi.org/10.1016/0012-365X(73)90098-8
https://doi.org/10.1007/978-3-642-03685-9_46
https://doi.org/10.1007/978-3-642-03685-9_46
https://doi.org/10.1016/0304-3975(93)90257-T
https://doi.org/10.1016/0304-3975(93)90257-T

[MZ13] Raghu Meka and David Zuckerman. “Pseudorandom generators for polynomial threshold
functions”. In: SIAM J. Comput. 42.3 (2013), pp. 1275–1301. issn: 0097-5397. doi: 10.1137/
100811623.

[NN93] Joseph Naor and Moni Naor. “Small-bias probability spaces: efficient constructions and
applications”. In: SIAM J. Comput. 22.4 (1993), pp. 838–856. issn: 0097-5397. doi: 10.
1137/0222053.

[NSS95] Moni Naor, Leonard J. Schulman, and Aravind Srinivasan. “Splitters and near-optimal
derandomization”. In: Proceedings of 36th Annual Conference on Foundations of Computer
Science (FOCS). 1995, pp. 182–191. doi: 10.1109/SFCS.1995.492475.

[Nur09] Sergey Nurk. An O(20.4058m) upper bound for circuit SAT. PDMI technical report. 2009.
url: http://www.pdmi.ras.ru/preprint/2009/09-10.html.

[OZ18] Ryan O’Donnell and Yu Zhao. “On Closeness to k-Wise Uniformity”. In: Proceedings of
the 22nd International Conference on Randomization and Computation (RANDOM). 2018,
54:1–54:19. doi: 10.4230/LIPIcs.APPROX-RANDOM.2018.54.

[Rao47] C. Radhakrishna Rao. “Factorial experiments derivable from combinatorial arrangements
of arrays”. In: Suppl. J. Roy. Statist. Soc. 9 (1947), pp. 128–139. issn: 1466-6162. doi:
10.2307/2983576.

[Sav02] Petr Savický. On determinism versus unambiquous nondeterminism for decision trees. ECCC
preprint TR02-009. 2002. url: https://eccc.weizmann.ac.il/report/2002/009/.

[SB88] Gadiel Seroussi and Nader H. Bshouty. “Vector sets for exhaustive testing of logic circuits”.
In: IEEE Trans. Inform. Theory 34.3 (1988), pp. 513–522. issn: 0018-9448. doi: 10.1109/
18.6031.

[Sko22] Maciej Skorski. “Tight Chernoff-Like Bounds Under Limited Independence”. In: Proceedings
of the 26th International Conference on Randomization and Computation (RANDOM). 2022,
15:1–15:14. doi: 10.4230/LIPIcs.APPROX/RANDOM.2022.15.

[SSS95] Jeanette P. Schmidt, Alan Siegel, and Aravind Srinivasan. “Chernoff-Hoeffding bounds for
applications with limited independence”. In: SIAM J. Discrete Math. 8.2 (1995), pp. 223–250.
issn: 0895-4801. doi: 10.1137/S089548019223872X.

[SVW17] Thomas Steinke, Salil Vadhan, and Andrew Wan. “Pseudorandomness and Fourier-growth
bounds for width-3 branching programs”. In: Theory Comput. 13 (2017), Paper No. 12, 50.
doi: 10.4086/toc.2017.v013a012.

[Ta-17] Amnon Ta-Shma. “Explicit, almost optimal, epsilon-balanced codes”. In: Proceedings of
the 49th Annual Symposium on Theory of Computing (STOC). 2017, pp. 238–251. doi:
10.1145/3055399.3055408.

[TW83] Donald T. Tang and Lin S. Woo. “Exhaustive Test Pattern Generation with Constant
Weight Vectors”. In: IEEE Transactions on Computers C-32.12 (1983), pp. 1145–1150. doi:
10.1109/TC.1983.1676175.

[WC81] Mark N. Wegman and J. Lawrence Carter. “New hash functions and their use in authentica-
tion and set equality”. In: J. Comput. System Sci. 22.3 (1981). Special issue dedicated to
Michael Machtey, pp. 265–279. issn: 0022-0000. doi: 10.1016/0022-0000(81)90033-7.

23

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

https://doi.org/10.1137/100811623
https://doi.org/10.1137/100811623
https://doi.org/10.1137/0222053
https://doi.org/10.1137/0222053
https://doi.org/10.1109/SFCS.1995.492475
http://www.pdmi.ras.ru/preprint/2009/09-10.html
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.54
https://doi.org/10.2307/2983576
https://eccc.weizmann.ac.il/report/2002/009/
https://doi.org/10.1109/18.6031
https://doi.org/10.1109/18.6031
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.15
https://doi.org/10.1137/S089548019223872X
https://doi.org/10.4086/toc.2017.v013a012
https://doi.org/10.1145/3055399.3055408
https://doi.org/10.1109/TC.1983.1676175
https://doi.org/10.1016/0022-0000(81)90033-7

