
Fooling Near-Maximal Decision Trees

William M. Hoza
Department of Computer Science

The University of Chicago
williamhoza@uchicago.edu

Zelin Lv
Department of Computer Science

The University of Chicago
zlv@uchicago.edu

Abstract

For any constant α > 0, we construct an explicit pseudorandom generator (PRG) that fools n-variate
decision trees of size m with error ε and seed length (1 + α) · log2 m+O(log(1/ε) + log log n). For context,
one can achieve seed length (2+ o(1)) · log2 m+O(log(1/ε) + log log n) using well-known constructions and
analyses of small-bias distributions, but such a seed length is trivial when m ≥ 2n/2. Our approach is to
develop a new variant of the classic concept of almost k-wise independence, which might be of independent
interest. We say that a distribution X over {0, 1}n is k-wise ε-probably uniform if every Boolean function
f that depends on only k variables satisfies E[f(X)] ≥ (1 − ε) · E[f]. We show how to sample a k-wise
ε-probably uniform distribution using a seed of length (1 + α) · k +O(log(1/ε) + log log n).

Meanwhile, we also show how to construct a set H ⊆ Fn
2 such that every feasible system of k linear

equations in n variables over F2 has a solution in H. The cardinality of H and the time complexity
of enumerating H are at most 2k+o(k)+polylogn, whereas small-bias distributions would give a bound of
22k+O(log(n/k)).

By combining our new constructions with work by Chen and Kabanets (TCS 2016), we obtain nontrivial
PRGs and hitting sets for linear-size Boolean circuits. Specifically, we get an explicit PRG with seed
length (1−Ω(1)) · n that fools circuits of size 2.99 · n over the U2 basis, and we get a hitting set with time
complexity 2(1−Ω(1))·n for circuits of size 2.49 · n over the B2 basis.

1 Introduction

How many coin flips does it take to sample n bits that appear random from the perspective of an observer
who only looks at 0.9 · n of the bits?

1.1 Almost k-wise uniformity and k-wise probable uniformity

Almost k-wise uniformity is a well-studied concept that provides one possible way of formalizing the question
posed above.

Definition 1.1 (Almost k-wise uniformity). Let X be a distribution over {0, 1}n, let k ∈ [n], and let ε ∈ [0, 1].
We say that X is ε-almost k-wise uniform if, for every size-k set S ⊆ [n], the total variation distance between
XS and Uk is at most ε. Here XS denotes the projection of X to the coordinates in S, and Uk denotes the
uniform distribution over {0, 1}k. If ε = 0, we simply say that X is k-wise uniform. An (ε-almost) k-wise
uniform generator is a function G : {0, 1}s → {0, 1}n such that G(Us) is (ε-almost) k-wise uniform. We refer
to s as the seed length of G.

When k ≥ (12 +Ω(1)) · n and ε = 0, Karloff and Mansour showed that every k-wise uniform generator
has seed length at least n − O(1) [KM97], which might be disappointing. On the bright side, the seed
length can be improved if a small positive error (ε > 0) is permitted. Using a connection with “small-bias
distributions” [NN93], Alon, Goldreich, H̊astad, and Peralta constructed an explicit1 ε-almost k-wise uniform

1We consider a generator G to be explicit if G(x) can be computed in poly(n) time, given the parameters (in this case n, k,
and ε) and the seed x.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 3 (2025)

mailto:williamhoza@uchicago.edu
mailto:zlv@uchicago.edu

generator with seed length k +O(log(k/ε) + log log n) [AGHP92]. Notably, their seed length is meaningful
even for large k such as k = 0.9 · n.

In this work, we introduce a new variant of almost k-wise uniformity, called k-wise probable uniformity,
which strengthens Definition 1.1. There are two equivalent definitions, described below.

Definition 1.2 (k-wise probable uniformity). Let X be a distribution over {0, 1}n, let k ∈ [n], and let
ε ∈ [0, 1]. We say that X is k-wise ε-probably uniform if it satisfies either of the following two equivalent
conditions.

1. For every size-k set S ⊆ [n], there exists a distribution E over {0, 1}k such that the distribution XS

can be written as the mixture distribution XS ≡ (1 − ε) · Uk + ε · E. That is, the distribution XS

is identical to the following distribution: With probability 1− ε, sample a k-bit string uniformly at
random, and with probability ε, sample a string according to E.

2. For every k-junta2 f : {0, 1}n → {0, 1}, we have E[f(X)] ≥ (1− ε) · E[f], where E[f] is a shorthand for
E[f(Un)].

(See Section 3 for a proof that the two conditions above are equivalent.) We say that G : {0, 1}s → {0, 1}n is
a k-wise ε-probably uniform generator if G(Us) is k-wise ε-probably uniform.

We find the first condition above to be more conceptually appealing. It is clearly a strengthening of
ε-almost k-wise uniformity, and it inspires the terminology “k-wise ε-probably uniform.” On the other hand,
we find the second condition above to be easier to work with mathematically.

The concept of k-wise probable uniformity is motivated primarily by an application to fooling decision
trees, which we will discuss momentarily, but we also consider it to be an interesting concept in its own
right. Using a standard nonconstructive argument (see Proposition 4.6), one can show that there exists a
non-explicit k-wise ε-probably uniform generator with seed length3

k + log k + 2 log(1/ε) + log log(n/k) +O(1). (1)

The challenge is to construct an explicit generator.
Classic results regarding small-bias generators [NN93; AGHP92] imply that there is an explicit k-wise

ε-probably uniform generator with seed length 2k+O(log k+log(1/ε)+ log logn).4 However, this seed length
is unsatisfactory, because it is trivial when k ≥ n/2. Meanwhile, Bshouty used a different approach (the
method of conditional probabilities with pessimistic estimators) to construct a generator G : {0, 1}s → {0, 1}n
such that

(1− ε) · E[f] ≤ E[f(G(Us))] ≤ (1 + ε) · E[f]
for every Boolean k-junta f [Bsh16], which is even stronger than Definition 1.2. Furthermore, his generator’s
seed length matches Eq. (1). However, his generator’s time complexity is more than

(
n
k

)
· 2k [Bsh16]. His

generator can therefore be considered “explicit” only when k = O(1), whereas we are primarily interested in
the case k = Θ(n).

In this work, we present an explicit k-wise ε-probably uniform generator with seed length (1 + α) · k +
O(log(1/ε) + log log n), where α is an arbitrarily small positive constant and the constant hiding under the
big-O depends on α.

Theorem 1.3 (Explicit k-wise probably uniform generator). For every n, k ∈ N and ε ∈ (0, 1), there exists
an explicit k-wise ε-probably uniform generator G : {0, 1}s → {0, 1}n with seed length

s = k +O
(
k2/3 · log1/3(k/ε) + log(1/ε) + log log n

)
.

The simpler seed length bound (1 + α) · k + O(log(1/ε) + log logn) follows from Theorem 1.3 by the
weighted AM-GM inequality.

2A k-junta is a function f that depends on at most k variables.
3Throughout this paper, log(·) denotes the base-two logarithm.
4If X is k-wise γ-biased, then X is k-wise (γ · 2k)-probably uniform (see Lemma 2.7 and Proposition 3.1). Alon, Goldreich,

H̊astad, and Peralta construct an explicit k-wise γ-biased generator with seed length 2 log(1/γ) +O(log k + log log n) [AGHP92].
Choose γ = ε · 2−k.

2

1.2 Fooling decision trees

Instead of modeling the observer as a k-junta, we can consider the more powerful model of depth-k decision
trees. A decision tree T makes queries to the input x and then produces a Boolean output value T (x). The
crucial feature of the decision tree model is that the tree can adaptively decide which variable to query next,
based on the results of previous queries. (See Definition 2.1 for a precise definition.) Consequently, the output
T (x) of a depth-k decision tree T might depend on all n variables even if k ≪ n. The problem of sampling
bits that “appear random” to depth-k decision trees can be formalized using the concept of a pseudorandom
generator.

Definition 1.4 (Pseudorandom generators). Let X be a distribution over {0, 1}n, let f : {0, 1}n → {0, 1},
and let ε ∈ (0, 1). We say that X fools f with error ε if

|E[f(X)]− E[f]| ≤ ε.

We say that G : {0, 1}s → {0, 1}n is a pseudorandom generator (PRG) that fools f with error ε if G(Us)
fools f with error ε. The parameter s is called the seed length of the PRG. If F is a class of functions
f : {0, 1}n → {0, 1}, we say that X (respectively G) fools F with error ε if X (respectively G) fools every
f ∈ F with error ε.

Almost k-wise uniformity is the special case of Definition 1.4 in which we take F to be the class of
all Boolean k-juntas. The aforementioned concept of small-bias distributions is another special case. By
definition, a distribution X is k-wise γ-biased if it fools all functions of the form f(x) =

⊕
i∈S xi, where

S ⊆ [n] and |S| ≤ k, with error γ/2 [NN93].
To fool decision trees, one could try using a generic small-bias generator. This approach works extremely

well in the nonadaptive setting, as mentioned previously. In the adaptive setting, the approach still works fairly
well, but it turns out that the parameters are worse. Specifically, Kushilevitz and Mansour’s analysis [KM93]
implies that if X is k-wise γ-biased, then X fools depth-k size-m decision trees with error γ · m. Every
depth-k decision tree has size at most 2k, so we can choose γ = ε · 2−k. By combining this reduction with
one of Alon, Goldreich, H̊astad, and Peralta’s k-wise γ-biased generators [AGHP92], one can construct an
explicit PRG that fools depth-k decision trees with error ε and seed length 2k+O(log(k/ε) + log logn). This
seed length is sufficient for many purposes, but we emphasize that it gives us nothing nontrivial for trees of
depth k ≥ n/2.

In this paper, we show how to improve the leading constant from 2 to 1 + α for any constant α > 0, as a
consequence of our new k-wise ε-probably uniform generator. More generally, we prove the following.

Theorem 1.5 (Fooling near-maximal decision trees). Let n,m ∈ N and ε ∈ (0, 1). There exists an explicit
PRG G : {0, 1}s → {0, 1}n that fools n-variate decision trees of size m with error ε and seed length

s = logm+O

(
log2/3m · log1/3

(
logm

ε

)
+ log(1/ε) + log log n

)
.

Observe that our PRG is meaningful even for trees of near-maximal size such as m = 20.9·n. Furthermore,
it turns out that Theorem 1.5 extends to the more powerful model of size-m “subcube partitions.” See
Section 5 for further details.

1.3 A hitting set for systems of equations over F2

We also study a certain linear-algebraic variant of k-wise uniformity. We prove the following.

Theorem 1.6 (Hitting set for systems of equations over F2). For every n, k ∈ N, there exists H ⊆ Fn
2 such

that:

1. For every A ∈ Fk×n
2 and every b ∈ image(A), there exists x ∈ H such that Ax = b.

3

2. Given the parameters n and k, the set H can be enumerated in time T (and hence |H| ≤ T), where

T = 2k+O((k·log k·logn)2/3+logn).

We should compare Theorem 1.6 to what one can get by using a small-bias distribution. One can show
that if X is n-wise γ-biased, then |Pr[AX = b]− Pr[AUn = b]| ≤ γ [KM93; ABCR99]. If b ∈ image(A), then
Pr[AUn = b] ≥ 2−k by the rank-nullity theorem. Therefore, if we choose γ < 2−k, the set H := Supp(X)
satisfies Item 1 of Theorem 1.6. Plugging in one of Alon, Goldreich, H̊astad, and Peralta’s γ-biased
generators [AGHP92] would give us |H| ≤ 22k+O(log(n/k)). Essentially, Theorem 1.6 improves the coefficient
of k in the exponent from 2− o(1) to 1 + o(1), although our dependence on n is worse.

Andreev, Baskakov, Clementi, and Rolim previously claimed to prove a similar theorem, with a bound
of |H| ≤ 2k+O(

√
n−k·logn) [ABCR99]. This would be incomparable to Theorem 1.6: better when k ≈ n and

worse when k ≪ n. However, there seems to be a mistake in their analysis.5

1.4 Applications: Pseudorandomness for linear-size Boolean circuits

Our results are motivated by applications in the area of circuit complexity. We consider circuits over
the “B2” and “U2” bases. A B2-circuit is a circuit in which each gate computes an arbitrary function
ϕ : {0, 1}2 → {0, 1}. A U2-circuit is the same, except that gates are not permitted to compute the XOR
function or its complement. Chen and Kabanets used “gate elimination” methods to establish, among other
results, close connections between linear-size circuits and near-maximal decision trees [CK16]:

• Every U2-circuit of size (3− α) · n can be simulated by a decision tree of size 2(1−Ω(α2))·n [CK16].

• Every B2-circuit of size (2.5−α) ·n can be simulated by a parity decision tree6 of size 2(1−Ω(α2))·n [CK16].

They posed the problem of designing PRGs that fool general Boolean circuits [CK16]. By combining their
simulations with our constructions, we are able to solve their problem, at least in part. First of all, we get a
PRG that fools U2-circuits of size (3− α) · n:

Corollary 1.7 (Fooling circuits over the U2 basis). For every n ∈ N and α ∈ (0, 3), there exists an explicit
PRG G : {0, 1}s → {0, 1}n that fools n-variate U2-circuits of size (3− α) · n with error n · 2−Ω(α6n) and seed
length s = (1− Ω(α2)) · n.

Proof of Corollary 1.7, given Theorem 1.5 and Chen and Kabanets’ work [CK16]. Every U2-circuit of size
(3 − α) · n can be simulated by a decision tree of size 2(1−cα2)·n for some constant c > 0 [CK16]. By
Theorem 1.5, we can fool such a tree with error 2−c′α6n · n and seed length

(1− cα2) · n+O(n2/3 · (c′α6n)1/3 + c′α6n) = n− cα2n+O(c′α2n).

This is n− Ω(α2n) provided we choose c′ to be a sufficiently small constant based on c.

Second, we consider B2-circuits. We have not managed to construct a genuine PRG that fools B2-circuits,
but we can at least use Theorem 1.6 to construct a hitting set for B2-circuits. A hitting set is a relaxation of
a PRG, defined as follows.

Definition 1.8. Let H ⊆ {0, 1}n, let F be a class of functions f : {0, 1}n → {0, 1}, and let ε ∈ (0, 1). We say
that H is an ε-hitting set for F if, for every f ∈ F such that E[f] > ε, there exists x ∈ H such that f(x) = 1.

Corollary 1.9 (A hitting set for circuits over the B2 basis). For every n ∈ N and α ∈ (0, 2.5), there exists a
value ε = 2−Ω(α2n) and a set H ⊆ {0, 1}n such that:

5Andreev, Baskakov, Clementi, and Rolim partition the variables into blocks, x = (x1, . . . , xs), and they say that the condition
Ax = b can be written as a conjunction of conditions A1x1 = b1, . . . , Asxs = bs [ABCR99, Appendix B, preprint version]. But
this is not true in general.

6A “parity decision tree” is defined like an ordinary decision tree, except that in each step, the tree can query to learn the
parity of any subset of the variables, instead of querying just a single variable.

4

1. H is an ε-hitting set for B2-circuits of size (2.5− α) · n.

2. Given the parameters n and α, the set H can be enumerated in time 2(1−Ω(α2))·n+Õ(n2/3).

(The proof of Corollary 1.9 is in Section 6.)

1.4.1 Discussion

In general, the main motivation behind PRGs is that many algorithms and protocols rely on a large number
of random bits, but producing truly random bits can sometimes be difficult or expensive. We think of
randomness as a computational resource, similar to time or space. We try to use as little “true randomness”
as possible to sample bits that are “random enough” to run randomized algorithms and protocols without
distorting their behavior. With this motivation in mind, we believe that the problem of fooling U2-circuits is
extremely natural.

The PRG of Corollary 1.7 is the first of its kind.7 Note that the challenge of constructing PRGs that
fool Boolean circuits is strictly harder than the notorious challenge of proving circuit lower bounds. In more
detail, suppose that one could construct a poly(m)-time computable PRG G : {0, 1}βm−1 → {0, 1}m that
fools U2-circuits of size cm with error 0.49, where β ∈ (0, 1] and c > 1 are constants. Let n = βm, and define
G′ : {0, 1}n−1 → {0, 1}n by truncating the output of G. The indicator function for the image of G′ would be
an example of a function in NP that cannot be computed by U2-circuits of size (c/β) · n. Currently, the best
lower bound known on the size of U2-circuits computing some function in NP is (5− o(1)) · n [IM02].

Hitting sets are commonly used to solve the so-called “GAP-SAT” problem for F , i.e., the problem
of distinguishing the case f ≡ 0 from the case E[f] > ε, given f ∈ F . Indeed, if H is an ε-hitting set
for F , then we can solve GAP-SAT for F by computing

∨
x∈H f(x). In this context, we should compare

Corollary 1.9 to prior circuit analysis algorithms. Savinov designed a SAT algorithm for B2-circuits of size
m with time complexity O(20.389667·m) [Sav14; Lia20], improving prior work by Nurk [Nur09]. Golovnev,
Kulikov, Smal, and Tamaki designed a #SAT algorithm for B2-circuits of size 2.99 · n with time complexity
2(1−Ω(1))·n [GKST18], improving a result by Chen and Kabanets [CK16]. These prior algorithms solve
problems that are harder than GAP-SAT, and furthermore they can handle circuits that are larger than
what Corollary 1.9 can handle. However, Corollary 1.9 is superior to these prior results in one respect,
namely, we can solve GAP-SAT even if we only have query access to the circuit in question. Note that the
“black box” nature of hitting sets is crucial in some applications. For example, Cheng and Hoza showed that
optimal explicit hitting sets for space-bounded computation would imply L = BPL, whereas it remains an
open problem to prove L = BPL if we merely assume the existence of an optimal GAP-SAT algorithm for
space-bounded computation [CH22; PRZ23].

1.5 Overview of our new constructions

1.5.1 Our k-wise probably uniform generator (Theorem 1.3)

The starting point of our construction is the well-known sampling properties of pairwise uniform hash
functions. Let f : {0, 1}n → {0, 1} be any nonzero k-junta, or more generally any function such that
E[f] ≥ 2−k. If we sample a hash function h : {0, 1}k+O(log(1/ε)) → {0, 1}n from a pairwise uniform family,
then with high probability over the choice of h, we have

E
x
[f(h(x))] ≥ (1− ε) · E[f].

7To be fair, we should compare Corollary 1.7 to a different and rather trivial approach that one could use to construct
PRGs that fool circuits. In general, if h : {0, 1}n−1 → {0, 1} is average-case hard for circuits of size cn, then the generator
G(x) = (x, h(x)) maps n− 1 bits to n bits and fools circuits of size cn. Similarly, the generator G′(x, y) = (x, y, h(x), h(y)) maps
n′−2 bits to n′ bits and fools circuits of size (c/2) ·n′, where n′ = 2n. One can similarly try G′′(x, y, z) = (x, y, z, h(x), h(y), h(z)),
etc. One can instantiate this approach with known average-case hardness results for circuits over the U2 basis or the full binary
basis [CK16; GKST18]. However, the PRGs that can be constructed using this approach have seed length n−O(1). The seed
length is what makes Corollary 1.7 interesting. If α is constant, then our PRG has linear stretch.

5

(This follows from Chebyshev’s inequality.)
We can think of h as a PRG with an excellent seed length. The only trouble is that sampling h itself is

expensive. In general, sampling a hash function h : {0, 1}q → {0, 1}ℓ from a pairwise uniform family costs
Θ(q+ ℓ) truly random bits, so in our case, the cost is Θ(n+ log(1/ε)) truly random bits, which is much more
than we can afford.

We can slightly decrease the cost of sampling h by composing with a γ-almost k-wise uniform generator,
where γ ≈ ε · 2−k, with seed length ℓ = O(k + log(1/ε) + log log n). Such a generator fools f with error γ,
which is negligible. Now the output length of h is decreased from n down to ℓ, hence the cost of sampling h
is “only” O(k + log(1/ε) + log log n). However, this cost is still more than we can afford.

To explain how we bring the cost down to o(k), for simplicity’s sake, let us assume that ε = 1/poly(k) and
let us neglect log log n terms. We can assume without loss of generality that f is simply a conjunction of k
literals, because every k-junta can be written as a sum of such functions. Our approach is to pseudorandomly
partition the n coordinates into r = Θ̃(k1/3) buckets: [n] = B1 ∪ · · · ∪ Br. In expectation, each bucket
contains k/r of the k relevant variables. With high probability, each bucket has at most k0 of the variables,
where k0 = k/r + Õ(

√
k/r) = k/r + Õ(k1/3).

We can write f(x) = f1(x) ∧ · · · ∧ fr(x), where fi(x) only depends on variables in Bi, so fi is a k0-junta.
We sample a hash function h : {0, 1}k0+O(log k) → {0, 1}n such that with high probability over the choice of h,
we have

E
x
[fi(h(x))] ≥

(
1− 1

poly(k)

)
· E[fi].

For each bucket Bi independently, we sample x at random and put h(x) in Bi. Crucially, we reuse the same
hash function h for all of the buckets, which is justified by a simple union bound. The cost of sampling h is
O(k0) = Õ(k2/3) truly random bits, and the cost of sampling the x values is

r · (k0 +O(log k)) = k + Õ(k2/3).

A more careful calculation, also taking into account the cost of sampling the partition [n] = B1 ∪ · · · ∪Br,
leads to the seed length bound that appears in Theorem 1.3.

Observe that in this construction, there are some “bad events” that occur with probability roughly ε,
namely, we might get a “bad” partition of the variables into buckets or we might get a “bad” hash function
h. Let B be the union of these bad events. To analyze the impact of these bad events, let X be the output
distribution of our generator and let f be an arbitrary Boolean k-junta. Then

E[f(X)] = Pr[B] · E[f(X) | B]︸ ︷︷ ︸
(∗)

+Pr[¬B] · E[f(X) | ¬B].

The quantity marked (∗) is certainly nonnegative, which allows us to prove E[f(X)] ≥ (1 − ε) · E[f]. On
the other hand, note that the quantity marked (∗) might be much larger than E[f], and hence we are not
able to prove an upper bound of the form E[f(X)] ≤ (1 + ε) · E[f]. Thankfully, such an upper bound is not
necessary for our applications.

1.5.2 Our hitting set for systems of equations over F2 (Theorem 1.6)

The first step of the proof of Theorem 1.6 is to apply a rank condenser due to Forbes and Guruswami
[FG15]. This allows us to assume without loss of generality that k ≥ Ω(n/ log n). The next step is to
partition the variables into t equal-sized blocks, each containing n/t variables, where t ≈ n2/3. This induces a
partition of the columns of A: A =

[
A1 A2 · · · At

]
. Let ki be the contribution of Ai to the rank of A, so

k1 + · · ·+ kt ≤ k. A lemma by Andreev, Clementi, and Rolim says that if Hℓ is a hitting set for systems of ℓ
equations in n/t variables, then there is some x ∈ Hk1 × · · · ×Hkt such that Ax = b [ACR97]. We construct
Hℓ for every ℓ by a simple brute-force algorithm, which we can afford because the number of variables is
small, and then we output the union of Hk1 × · · · ×Hkt over all possible partitions k = k1 + · · ·+ kt.

6

1.6 Limitations of k-wise γ-biased generators

A great deal of effort has been spent trying to optimize the constant factors in the seed lengths of small-bias
generators [NN93; ABNNR92; AGHP92; BT13; Bsh16; Ta-17; BD22]. Researchers have also developed
many sophisticated techniques for proving that small-bias generators fool various models of computation;
see Hatami and Hoza’s survey for a few examples [HH24]. The reader might reasonably wonder whether
one could have proven our results by simply improving known constructions or analyses of k-wise γ-biased
distributions. We prove that the answer is no. In more detail, in Section 7, we present examples showing that
if the support of every k-wise γ-biased distribution is a 0.49-hitting set for U2-circuits of size 2n, then k ≥ 2

3 ·n
and γ ≤ O(2−n/2). Then, we observe that Karloff and Mansour’s work [KM97] can be extended to prove the
following lower bound on the seed length of k-wise γ-biased generators in the regime k ≥ (12 +Ω(1)) · n.

Theorem 1.10 (Seed length lower bound for k-wise γ-biased generators). Let G : {0, 1}s → {0, 1}n be a
k-wise γ-biased generator, where k = ⌊(1/2 + α) · n⌋ for some α ∈ (0, 1/2]. Then

s ≥ min{n, 2 log(1/γ)} − log(1/α)−O(1).

Consequently, if one tries using a generic k-wise γ-biased generator to hit U2-circuits of size 2n, then
the seed length will inevitably be at least n− O(1). Thus, the concept of k-wise γ-biased distributions is
inherently too weak to prove Corollaries 1.7 and 1.9. In turn, this implies that the concept of k-wise γ-bias is
also too weak to prove our main results (Theorems 1.3, 1.5 and 1.6), of which Corollaries 1.7 and 1.9 are
applications.8

For context, a sequence of prior works [Rao47; CGHFRS85; ABI86; AGHP92; Alo09; AAKMRX07;
Bsh16] has shown that every k-wise γ-biased generator G : {0, 1}s → {0, 1}n has seed length at least

min

{
log

((
n

≤ k/2

))
, 2 log(1/γ) + log log

((
n

≤ k/2

))
− log log(1/γ)

}
−O(1). (2)

Eq. (2) and Theorem 1.10 are incomparable in general, but our new Theorem 1.10 is superior in the parameter
regime in which we are interested. In particular, if γ = O(2−n/2) and k = cn for a constant 1/2 < c < 1,
then the prior bound Eq. (2) is (1− Ω(1)) · n, whereas our new Theorem 1.10 gives a bound of n−O(1).

1.7 Related work

1.7.1 Approximate forms of k-wise uniformity

Prior researchers have studied several different ways of quantifying what it means for a distribution X over
{0, 1}n to be “approximately” k-wise uniform.

• We could require that the total variation distance between XS and Uk is at most ε for every size-k
set S ⊆ [n]. This is the definition of an ε-almost k-wise uniform distribution (Definition 1.1). See, for
example, work by Naor and Naor [NN93] and work by Alon, Goldreich, H̊astad, and Peralta [AGHP92].

• We could require that |Pr[
⊕

i∈S Xi = 1]− Pr[
⊕

i∈S Xi = 0]| ≤ ε for every nonempty set S ⊆ [n] of size
at most k [NN93]. This is the definition of a k-wise ε-biased distribution. See, for example, the works
mentioned above [NN93; AGHP92].

• We could require that the ℓ∞ distance between XS and Uk is at most ε for every size-k set S ⊆ [n]. See,
for example, work by Alon, Goldreich, H̊astad, and Peralta [AGHP92] and work by Bshouty [Bsh16].

• We could require that X is ε-close in total variation distance to some exactly k-wise uniform distribution
X ′. See, for example, work by Alon, Goldreich, and Mansour [AGM03]; work by Alon, Andoni, Kaufman,
Matulef, Rubinfeld, and Xie [AAKMRX07]; and work by O’Donnell and Zhao [OZ18].

Despite the attention paid to all of the above variations, we seem to be the first to study the concept of
k-wise probable uniformity.

8Our results are actually quantitatively stronger in various respects; see Section 7 for details.

7

1.7.2 Huber’s contamination model

Our notion of “probable uniformity” is similar to Huber’s contamination model in the theory of robust
statistics [Hub64]. A key difference is that in Huber’s model, contamination is applied to an unknown
distribution, whereas in a k-wise probably uniform distribution, every k coordinates are distributed according
to a contaminated version of the uniform distribution.

1.7.3 Universal sets

A set H ⊆ {0, 1}n is called k-universal if, for every size-k-set S ⊆ [n] and every z ∈ {0, 1}k, there exists x ∈ H
such that xS = z. The concept of k-universal sets has been studied in many prior works going back more
than half a century [KS73; CKMZ83; TW83; Alo86; SB88; BS88; ABNNR92; NN93; NSS95; Bsh14]. The

best explicit construction, due to Naor, Schulman, and Srinivasan [NSS95], has cardinality 2k+O(log2 k) · log n.
Our constructions were inspired by Naor, Schulman, and Srinivasan’s universal set construction [NSS95].

The notion of k-wise probable uniformity can be considered a strengthening of k-universality, because
if X is k-wise probably uniform, then the support of X is k-universal. Consequently, Theorem 1.3 implies

the existence of an explicit k-universal set with cardinality 2k+Õ(k2/3) · polylog n, but this is inferior to Naor,
Schulman, and Srinivasan’s construction [NSS95].9 Our k-wise uniform generator also has similarities with
a recent construction of a “biased” variant of universal sets by Harel, Hoza, Vardi, Evron, Srebro, and
Soudry [HHVESS24].

Similarly, the set H of Theorem 1.6 is k-universal, because the condition xS = z can be expressed as
a system of k equations. Once again, the cardinality of this set is greater than the cardinality of Naor,
Schulman, and Srinivasan’s universal set [NSS95].

1.7.4 PRGs based on pseudorandom partitions of the variables

The trick of pseudorandomly partitioning the variables into buckets is not new; similar tricks have been used
in many prior PRG constructions. For a few examples that are especially similar to our work, see work by
Meka and Zuckerman [MZ13], work by Lovett, Reingold, Trevisan, and Vadhan [LRTV09], and work by
Gopalan, Kane, and Meka [GKM18].

1.7.5 Correlation bounds for general circuit models

In general, PRGs are intimately related to correlation bounds, aka average-case hardness. Loosely speaking,
correlation bounds are a prerequisite to designing PRGs. See, e.g., Hatami and Hoza’s survey [HH24, Chapter
4] for further discussion. Chen and Kabanets proved the first correlation bounds for general, unbounded-
depth circuit models [CK16], and our results for linear-size circuits use their work, as mentioned previously.
Golovnev, Kulikov, Smal, and Tamaki subsequently proved better correlation bounds [GKST18].

1.8 Organization

After some preliminaries, in Section 3, we record some straightforward characterizations of k-wise probable
uniformity. Then, in Section 4, we present the details of our k-wise probably uniform generator, following
the outline in Section 1.5. In Section 5, we explain why k-wise probable uniformity is sufficient for fooling
decision trees and the more general subcube partition model. In Section 6, we show how to construct our
hitting set for systems of equations over F2 and we explain why it implies a hitting set for B2-circuits. In
Section 7, we prove that k-wise γ-biased generators are too weak to prove our main results. Finally, we
conclude in Section 8 with some suggested open problems.

9A k-universal set H is typically considered “explicit” if the entire set can be computed in poly(|H|) time. Our set has stronger
explicitness guarantees, which might possibly be of value, but note that Naor, Schulman, and Srinivasan already constructed a
k-universal set of cardinality 2k+o(k) · logn with similar explicitness guarantees [NSS95].

8

2 Preliminaries

2.1 Decision tree models

Below we record the standard definitions of a decision tree and parity decision trees.

Definition 2.1 (Decision trees). An n-variate decision tree is a rooted tree T in which each internal node is
labeled with a variable from among x1, . . . , xn; each internal node has two outgoing edges labeled 0 and 1;
and each leaf is labeled either 0 or 1. The tree T computes a Boolean function T : {0, 1}n → {0, 1} defined
inductively as follows. If T consists of a single leaf labeled b ∈ {0, 1}, then we define T (x) ≡ b. Otherwise, let
xi be the variable labeling the root node. Given an input x ∈ {0, 1}n, we start at the root node and traverse
the outgoing edge labeled with the value xi. This leads to a vertex u, which is the root of a subtree T ′. Then
we set T (x) = T ′(x). The depth of the tree is the length of the longest path from the root to a leaf. The size
of the tree is the total number of leaves.

Definition 2.2 (Parity decision trees [KM93]). A parity decision tree on variables x1, . . . , xn is a rooted
tree T defined exactly as in Definition 2.1, except that each internal node is labeled by a non-empty subset
S ⊆ [n]. The internal node queries

⊕
i∈S xi and has two outgoing edges labeled 0 and 1 corresponding to

the value of that parity. Leaves are labeled by output bits in {0, 1}, and evaluation proceeds exactly as for
ordinary decision trees. The depth of a parity decision tree is the length of the longest root-to-leaf path, and
its size is the number of leaves. Equivalently, a parity decision tree computes a Boolean function

f(x1, . . . , xn) = T

⊕
i∈S1

xi, . . . ,
⊕
i∈Sm

xi

 ,

where T is an ordinary decision tree on m inputs and S1, . . . , Sm ⊆ [n]. computation.

2.2 Pairwise uniform hashing

We rely on the standard notion of a pairwise uniform hashing, aka “strongly universal hashing,” introduced
in Carter and Wegman’s seminal papers [CW79; WC81].

Definition 2.3 (Pairwise uniform families of hash functions). A family H of hash functions h : {0, 1}q →
{0, 1}ℓ is called pairwise uniform if, for every two distinct x, x′ ∈ {0, 1}q, if we sample h ∼ H, then (h(x), h(x′))
is distributed uniformly at random over {0, 1}2ℓ.

Theorem 2.4 (Explicit pairwise uniform families of hash functions). For every q, ℓ ∈ N, there exists an
explicit10 pairwise uniform family H of hash functions h : {0, 1}q → {0, 1}ℓ such that h ∈ H can be sampled
using a seed of length O(q + ℓ).

For example, if we define ha,b(x) = a ∗ x+ b, where ∗ is convolution mod 2 and + is bitwise XOR, then
{ha,b : a ∈ {0, 1}q+ℓ−1 and b ∈ {0, 1}ℓ} is a pairwise uniform family [MNT93]. The reason pairwise uniform
hashing is useful for us is given by the following relative-error sampling lemma.

Lemma 2.5 (Pairwise uniformity sampling lemma). Let H be a pairwise uniform family of hash functions
h : {0, 1}q → {0, 1}ℓ. Let f : {0, 1}ℓ → {0, 1} and let µ = E[f]. Then for every ε ∈ (0, 1),

Pr
h∼H

[h fools f with error ε · µ] ≥ 1− 1

2q · ε2 · µ
.

Proof. For each x ∈ {0, 1}q, define Zx = f(h(x)), so Zx is a random variable based on the choice of h ∼ H.
Then E[Zx] = µ and Var[Zx] = µ · (1 − µ) ≤ µ. Furthermore, the variables Zx are pairwise independent.
Therefore, if we let Z =

∑
x Zx, then E[Z] = 2q · µ and Var[Z] ≤ 2q · µ. Therefore, by Chebyshev’s inequality,

we have

Pr[|Z − 2q · µ| ≥ ε · µ · 2q] ≤ Var[Z]

ε2 · µ2 · 22q
≤ 1

2q · ε2 · µ
.

10That is, given a seed x ∈ {0, 1}O(q+ℓ) and an input y ∈ {0, 1}q, the value hx(q) can be computed in poly(q, ℓ) time, where hx

is the hash function corresponding to the seed x.

9

2.3 Small-bias distributions

We also rely on asymptotically optimal constructions of k-wise γ-biased generators, which were defined in
Section 1.2.

Theorem 2.6 (Explicit k-wise γ-biased generators [NN93]). For every n, k ∈ N and every γ ∈ (0, 1), there
exists an explicit k-wise γ-biased generator G : {0, 1}s → {0, 1}n with seed length O(log(k/γ) + log log n).

The reason k-wise γ-biased generators are useful for us is that they satisfy the following two properties.

Lemma 2.7 (Small-bias generators fool juntas and conjunctions of literals [NN93; AGHP92]). Let X be a
k-wise γ-biased distribution over {0, 1}n. Then X is ε-almost k-wise uniform, where ε = γ ·2k/2. Furthermore,
X fools every conjunction of at most k literals with error γ.

2.4 Parity circuits

To construct examples showing the weakness of k-wise γ-biased generators, we will rely on circuits computing
the parity function.

Proposition 2.8 (Parity circuits). For any integer n ≥ 2, the function f(x1, . . . , xn) = x1 ⊕ x2 ⊕ · · · ⊕ xn
can be computed by a U2-circuit of size 3n− 3.

Proof. When n = 2, we have x1 ⊕ x2 = (x1 ∧ x2) ∨ (x1 ∧ x2). When n > 2, we perform a tree of binary ⊕
operations, each of which can be computed using three gates.

2.5 Fourier analysis of Boolean functions

Our seed length lower bound for fooling decision trees using small-bias distributions uses Fourier analysis.
For a set S ⊆ [n], we use the notation χS : {0, 1}n → R to denote the function χS(x) =

∏
i∈S(−1)xi . For a

function f : {0, 1}n → R, we use the notation f̂(S) to denote the Fourier coefficient of f at S:

f̂(S) = E
x∈{0,1}n

[f(x) · χS(x)].

Parseval’s theorem states that
E

x∈{0,1}n
[f(x)2] =

∑
S⊆[n]

f̂(S)2.

3 Characterizing k-wise probable uniformity

The following proposition shows the equivalence of three ways of defining k-wise probably uniform distributions.

Proposition 3.1 (Equivalence of three definitions of k-wise probable uniformity). Let X be a distribution
over {0, 1}n, let k ∈ [n], and let ε ∈ [0, 1]. Then the following are equivalent.

1. For every k-junta f : {0, 1}n → {0, 1}, we have E[f(X)] ≥ (1− ε) · E[f].

2. For every size-k set S ⊆ [n] and every z ∈ {0, 1}k, we have Pr[XS = z] ≥ (1− ε) · 2−k.

3. For every size-k set S ⊆ [n], there exists a distribution E over {0, 1}k such that one can sample from
XS by sampling from Uk with probability 1− ε and sampling from E with probability ε.

Proof.

• (1 =⇒ 2) Consider the function f(x) = 1 ⇐⇒ xS = z.

10

• (2 =⇒ 3) If ε = 0, then for every x ∈ {0, 1}k, we have Pr[XS = x] ≥ 2−k, which implies that XS is
exactly uniform over {0, 1}k. If ε > 0, define p : {0, 1}k → R by the formula

p(x) =
Pr[XS = x]− (1− ε) · 2−k

ε
.

Then p(x) is a probability mass function: it is nonnegative because Pr[XS = x] ≥ (1− ε) · 2−k, and it
sums to 1 because XS is a probability distribution. Let E be corresponding probability distribution.

• (3 =⇒ 1) If f is a k-junta, then there is some set S ⊆ [n] of size k and some function g : {0, 1}k → {0, 1}
such that f(x) = g(xS) for all x ∈ {0, 1}n. Therefore,

E[f(X)] = E[g(XS)] = (1− ε) · E[g(Uk)] + ε · E[g(ES)] ≥ (1− ε) · E[f].

By definition, if X satisfies any of the three equivalent conditions in Proposition 3.1, then X is k-wise
ε-probably uniform. The third condition in Proposition 3.1 motivates the name “k-wise probably uniform,”
but we find it more mathematically convenient to work with the first two conditions.

4 Constructing k-wise probably uniform generators

In this section, we present our new k-wise probably uniform generator, thereby proving Theorem 1.3. At the
end of this section, for completeness’ sake, we record the standard nonconstructive proof of the existence of
nonexplicit k-wise probably uniform generators with excellent seed lengths.

4.1 A small family of generators, each with a good seed length

As a first step, we begin by constructing a family of generator G, such that for any k0-junta f , most generators
g ∈ G satisfy (1 − ζ) · E[f] ≤ Ex[f(g(x))] ≤ (1 + ζ) · E[f]. This construction is based on a combination of
pairwise uniform hash functions and k-wise γ-biased generators.

Lemma 4.1 (Family of generators). For every n, k0 ∈ N and ζ ∈ (0, 1), there exists an explicit family G of
PRGs g : {0, 1}q → {0, 1}n satisfying the following.

1. A generator g ∼ G can be sampled using O(k0 + log(1/ζ) + log log n) truly random bits.

2. Each generator g in G has seed length q = k0 +O(log(1/ζ)).

3. If f : {0, 1}n → {0, 1} is a k0-junta with expectation E[f] = µ, then

Pr
g∼G

[g fools f with error ζ · µ] ≥ 1− ζ.

Proof. Let Gsb : {0, 1}ℓ → {0, 1}n be a k-wise γ-biased generator where γ = (ζ/3) · 2−3k0/2 and

ℓ = O(k0 + log(1/ζ) + log log n).

Let H be a pairwise uniform family of hash functions h : {0, 1}q → {0, 1}ℓ. For each hash function h in H, we
define a generator g(x) = Gsb(h(x)). By Theorems 2.4 and 2.6, this family is explicit and G can be sampled
using O(k0 + log(1/ζ) + log log n) truly random bits.

For the correctness proof, define f ′ : {0, 1}ℓ → {0, 1} by f ′(y) = f(Gsb(y)) and let µ′ = E[f ′]. The
generator Gsb fools f with error γ · 2k0/2 (see Lemma 2.7), so |µ−µ′| ≤ ζ/3 ·µ. Furthermore, µ ≥ 2−k0 unless
f ≡ 0, so µ′ ≥ 2−k0−1. Therefore, by the pairwise uniformity sampling lemma (Lemma 2.5), we have

Pr
h∼H

[h fools f ′ with error (ζ/3) · µ′] ≥ 1− 9

2q · ζ2 · µ′ ≥ 1− 18 · 2k0
2q · ζ2

≥ 1− ζ,

provided we choose a suitable value q = k0 +O(log(1/ζ)). Now fix an h such that the bad event above does
not occur, and let g be the corresponding generator in G, i.e., g(x) = Gsb(h(x)). Then g fools f with error

(ζ/3) · µ′ + |µ− µ′| ≤ µ · (ζ/3) · (2 + ζ/3) ≤ ζ · µ.

11

4.2 Pseudorandomly partitioning the coordinates into buckets

In this subsection, we explain how to pseudorandomly partition the coordinates into buckets, [n] = B1∪· · ·∪Br,
such that no single bucket gets too many of the k coordinates we care about. To be more precise, we construct
a balanced partition generator, defined as follows.

Definition 4.2 (Balanced partition generator [MZ13]). A (k, k0, δ)-balanced partition generator is a function
Gvars : {0, 1}a → [r]n such that for every set S ⊆ [n] with |S| ≤ k, with probability at least 1 − δ over a
uniform random choice of seed x ∈ {0, 1}a, for every bucket j ∈ [r], we have |{i ∈ S : Gvars(x)i = j}| ≤ k0.

Definition 4.2 is due to Meka and Zuckerman, who used the term “balanced hash family” [MZ13, Definition
4.9]. We use the term “balanced partition generator” to avoid confusion with the hash functions that appear
in the proof of Lemma 4.1. Our balanced partition generator will essentially consist of a d-wise γ-biased
generator for appropriate values d and γ. The analysis will be based on the following bound on the moments
of a sum of independent Bernoulli random variables [SSS95].11

Theorem 4.3 (Moment bound for a sum of independent Bernoulli random variables [SSS95]). Let X1, . . . , Xk

be independent {0, 1}-valued random variables. Let X =
∑k

i=1Xi, let µi = E[Xi], and let µ =
∑k

i=1 µi. Then
for every even positive integer t, we have

E[(X − µ)t] ≤ max{tt, (tµ)t/2}.

Theorem 4.3 can be improved in some parameter regimes [Sko22], but the simple bound in Theorem 4.3
suffices for our purposes. Using Theorem 4.3, we now present a tail bound for sums of random variables
that satisfy a certain “near t-wise independence” condition. Similar bounds were proven in several previous
papers [LRTV09; CRSW13; SVW17], and our proof is almost identical to their proofs.

Corollary 4.4 (Tail bound for sums of nearly t-wise independent random variables). Let X1, . . . , Xk be
{0, 1}-valued random variables and let µ1, . . . , µk ∈ [0, 1]. Let X =

∑k
i=1Xi and µ =

∑k
i=1 µi. Let t be an

even positive integer, let γ ∈ (0, 1), and assume that for every set S ⊆ [k] with |S| ≤ t, we have∣∣∣∣∣E
[∏
i∈S

Xi

]
−
∏
i∈S

µi

∣∣∣∣∣ ≤ γ.

Then for every ∆ > 0, we have

Pr[|X − µ| ≥ ∆] ≤
(

t

∆

)t

+

(√
µt

∆

)t

+ γ ·
(
2k

∆

)t

.

11The exact statement of Theorem 4.3 does not appear in Schmidt, Siegel, and Srinivasan’s work [SSS95], but it follows from
the proof of item “(III)” in their “Theorem 4.”

12

Proof. Sample X ′
1, . . . , X

′
k ∈ {0, 1} independently, where E[X ′

i] = µi, and let X ′ =
∑k

i=1X
′
i. Then

Pr[|X − µ| ≥ ∆] = Pr[(X − µ)t ≥ ∆t]

≤ ∆−t · E[(X − µ)t] (Markov’s inequality)

= ∆−t ·
t∑

i=0

(
t

i

)
(−µ)t−i · E[Xi] (Binomial theorem)

= ∆−t ·
t∑

i=0

(
t

i

)
(−µ)t−i ·

∑
j1,...,ji∈[k]

E[Xj1Xj2 · · ·Xji]

≤ ∆−t ·
t∑

i=0

(
t

i

)
·

(−µ)t−i ·
∑

j1,...,ji∈[k]

µj1 · · ·µji + µt−i · ki · γ

= ∆−t ·

(
E[(X ′ − µ)t] + γ ·

t∑
i=0

(
t

i

)
µt−i · ki

)
= ∆−t ·

(
E[(X ′ − µ)t] + γ · (µ+ k)t

)
(Binomial theorem)

≤
(

t

∆

)t

+

(√
µt

∆

)t

+ γ ·
(
2k

∆

)t

(Theorem 4.3.)

Given Corollary 4.4, we are ready to construct our balanced partition generator.

Lemma 4.5 (Balanced partition generator). Let n, k, r ∈ N and δ ∈ (0, 1). Assume r is a power of two and
r ≤ k ≤ n. There exists an explicit (k, k0, δ)-balanced partition generator Gvars : {0, 1}a → [r]n, where

k0 = k/r +O
(√

k/r · log(r/δ) + log(r/δ)
)
,

with seed length

a = O

(
log(r/δ) · log

(
2 ·
⌈

rk

log(r/δ)

⌉)
+ log log n

)
.

Proof. Identify [r]n with {0, 1}n log r. We let Gvars be a (t log r)-wise γ-biased generator for appropriate values

t = log(3r/δ)

γ =
δ

3r
·
(

t

rk

)t/2

.

The seed length bound follows from Theorem 2.6. For the correctness proof, assume without loss of generality
that |S| = k. Sample Z ∈ [r]n using the generator. Fix any bucket j ∈ [r]. For each i ∈ S, let Xi indicate
whether Zi = j. Then for any set T ⊆ S with |T | ≤ t, the value

∏
i∈T Xi can be expressed in terms of

the underlying bits of Z as a conjunction of at most t log r literals. Therefore, by Lemma 2.7, we have
|E[
∏

i∈T Xi]− r−|T || ≤ γ. Therefore, by Corollary 4.4, for every ∆ > 0, we have

Pr

[∑
i∈S

Xi ≥ k/r +∆

]
≤
(

t

∆

)t

+

(√
kt/r

∆

)t

+ γ ·
(
2k

∆

)t

.

We choose ∆ = max
{
2t, 2

√
kt/r

}
. Then we get

Pr

[∑
i∈S

Xi ≥ k/r +∆

]
≤ 2−t + 2−t + γ ·

(√
rk

t

)t

≤ δ

3r
+

δ

3r
+

δ

3r

due to our choices of t and γ. The union bound over r buckets completes the proof.

13

For comparison, Lovett, Reingold, Trevisan, and Vadhan constructed an explicit (k, k0, δ)-balanced
partition generator for the special case k = Θ(r · log(1/δ)), with k0 = O(k/r) and seed length a =
O(log n + log(r/δ) · log(r · log(1/δ))) [LRTV09]. For any k, one can also use Gopalan, Kane, and Meka’s
PRG for Fourier shapes [GKM18] to construct a (k, k0, δ)-balanced partition generator with the same value
of k0 as in Lemma 4.5 and with seed length a = Õ(log(n/δ)).

4.3 The full k-wise probably uniform generator

Proof of Theorem 1.3. LetGvars : {0, 1}a → [r]n be the (k, k0, δ)-balanced partition generator from Lemma 4.5

with parameters δ = ε/3 and r = (k/ log(k/ε))1/3, or to be more precise, r is the largest power of two that

is at most (k/ log(k/ε))1/3. Let G be the family of generators g : {0, 1}q → {0, 1}n from Lemma 4.1, using
ζ = ε/(3r) and using the value k0 from Gvars. The final generator G is defined as follows.

1. Sample a partition Z = (Z1, . . . , Zn) ∈ [r]n using Gvars.

2. Sample a generator g ∼ G.

3. Sample seeds X(1), . . . , X(r) ∈ {0, 1}q independently and uniformly at random.

4. Output Y ∈ {0, 1}n, where
Yi = g(X(Zi))i

for every i ∈ [n].

To prove that this works, let f : {0, 1}n → {0, 1} be a conjunction of k literals, say

f(x) =
∧
i∈S

(xi ⊕ bi)

where S ⊆ [n], |S| = k, and bi ∈ {0, 1} for every i ∈ S. We will prove that E[f(X)] ≥ (1− ε) · 2−k, which is
sufficient by Proposition 3.1.

For each bucket j ∈ [r], let Bj = Z−1(j). The definition of a balanced partition generator ensures that
except with probability ε/3 over the choice of Z, we have |S ∩ Bj | ≤ k0 for every j ∈ [r]. Let E1 be this
“good” event. Fix any choice of Z such that E1 occurs.

For each j ∈ [r], define fj : {0, 1}n → {0, 1} by

fj(x) =
∧

i∈S∩Bj

(xi ⊕ bi),

so f(x) = f1(x)∧ · · · ∧ fr(x). By Lemma 4.1 and the union bound over the r buckets, except with probability
ε/3 over the choice of g ∼ G, we have

E
x∈{0,1}q

[fj(g(x))] ≥
(
1− ε

3r

)
· E[fj]

for every j ∈ [r]. Let E2 be this “good” event. Fix any choice of g such that E2 occurs.
For any such fixing of Z and g, with respect to the choice of X(1), . . . , X(r) alone, we have

E
X(1),...,X(r)

[f(Y)] =
r∏

j=1

E
X(j)

[fj(g(X
(j)))] ≥

r∏
j=1

(
1− ε

3r

)
· E[fj] =

(
1− ε

3r

)r
· 2−k ≥ (1− ε/3) · 2−k

by Bernoulli’s inequality. Therefore, with respect to all the randomness, we have

E[f(Y)] ≥ Pr[f(Y) = 1 and E1 and E2] = Pr[E1] · Pr[E2 | E1] · Pr[f(Y) = 1 | E1, E2]

≥ (1− ε/3) · (1− ε/3) · (1− ε/3) · 2−k

≥ (1− ε) · 2−k

14

by another application of Bernoulli’s inequality.
Now let us bound the seed length. By Lemma 4.5, the cost of sampling Z is

O

(
log(r/ε) · log

(
2 ·
⌈

rk

log(r/ε)

⌉)
+ log log n

)
≤ O

(
log(k/ε) · log

(
2 ·
⌈

k

log(k/ε)

⌉)
+ log log n

)
≤ O

(
log(k/ε) ·

(
k

log(k/ε)

)2/3

+ log(k/ε) + log log n

)
= O(k2/3 · log1/3(k/ε) + log(k/ε) + log log n).

Furthermore, the parameter k0 is given by

k0 = k/r +O
(√

k/r · log(r/ε) + log(r/ε)
)
≤ k/r +O

(√
k/r · log(k/ε) + log(k/ε)

)
.

Therefore, by Lemma 4.1, the cost of sampling g ∼ G is

O (k0 + log(k/ε) + log log n) = O(k2/3 · log1/3(k/ε) + k1/3 · log2/3(k/ε) + log(k/ε) + log log n)

= O(k2/3 · log1/3(k/ε) + log(k/ε) + log log n).

Finally, the cost of sampling X(1), . . . , X(r) is

r · q = r · k0 +O(r · log(k/ε))
= k +O(k2/3 · log1/3(k/ε) + k1/3 log2/3(k/ε) + log(k/ε))

= k +O(k2/3 · log1/3(k/ε) + log(k/ε)).

4.4 Nonexplicit k-wise probably uniform generators

At this point, we have completed our explicit k-wise uniform generator construction. We now use a standard
probabilistic argument to show the existence of nonexplicit k-wise probably uniform generators with a very
good seed length.

Proposition 4.6 (Nonexplicit k-wise probably uniform generator). For every n, k ∈ N and every ε ∈ (0, 1),
there exists a k-wise ε-probably uniform generator G : {0, 1}s → {0, 1}n with seed length

s = k + log k + 2 log(1/ε) + log log(n/k) +O(1).

Proof. Pick G uniformly at random. For every function f that is a conjunction of k literals, let Zf =∑
x∈{0,1}s f(G(x)). Then Zf is a sum of 2s independent {0, 1}-valued random variables with mean µ :=

E[Zf] = 2s−k. Therefore, by the Chernoff bound,

Pr[Zf < (1− ε) · µ] ≤ exp(−ε2µ/2).

By the union bound, it follows that

Pr[there exists f such that Zf < (1− ε) · µ] ≤
(
n

k

)
· 2k · exp(−ε2µ/2) ≤ (2en/k)k · exp(−ε22s−k/2).

This probability is less than 1 if we choose a suitable value s = k+log k+2 log(1/ε)+log log(n/k)+O(1). Now
suppose G is such that Zf ≥ (1− ε) · µ for every f that is a conjunction of k literals. Let g : {0, 1}n → {0, 1}
be a k-junta. Then we can write g =

∑m
i=1 fi where each fi is a conjunction of k literals, hence

E
x
[g(G(x))] =

m∑
i=1

2−s · Zfi ≥
m∑
i=1

2−s · (1− ε) · 2s−k = (1− ε) ·m · 2−k = (1− ε) · E[g].

15

5 Implications of k-wise probable uniformity

In this section, we will show that every k-wise probably uniform distribution fools decision trees. In fact, we
will show that such distributions fool a more general model, called the subcube partition model.

Definition 5.1 (The subcube partition model). A subcube partition f is a collection of terms f1, . . . , fm
and values b1, . . . , bm ∈ {0, 1}. Each term fi : {0, 1}n → {0, 1} is a conjunction of literals, and the sets
f−1
1 (1), . . . , f−1

m (1) must partition the domain {0, 1}n. That is, for every x ∈ {0, 1}n, we have
∑m

i=1 fi(x) = 1.
The subcube partition computes the function f : {0, 1}n → {0, 1} defined by

f(x) =
m∑
i=1

fi(x) · bi.

The width of a term fi is the number of literals in the term. The width of the subcube partition is the
maximum width of any term. The size of the subcube partition is the number of terms (m).

Every width-k subcube partition has size at most 2k, because 1 =
∑m

i=1 E[fi] ≥ m · 2−k. A decision tree
of depth k and size m can be simulated by a subcube partition of width k and size m: for each leaf u, we
construct a term fu that indicates whether the tree reaches the leaf u on a given input. The converse does
not hold. In fact, there exist subcube partitions of width k that cannot be simulated by decision trees of
depth k1.99 [Sav02; KRDS15; GPW18; AKK16]. We now explain why k-wise probably uniform generators
fool subcube partitions.

Lemma 5.2 (k-wise probable uniformity fools subcube partitions). Let X be a distribution over {0, 1}n that
is k-wise ε-probably uniform. Then:

• X fools width-k subcube partitions (hence also depth-k decision trees) with error ε.

• X fools size-m subcube partitions (hence also size-m decision trees) with error ε+m · 2−(k+1).

Proof. Let f : {0, 1}n → {0, 1} be a function computed by a subcube partition with terms f1, . . . , fm and
values b1, . . . , bm. Let S ⊆ [m] be the set of terms of width at most k. We will show that X fools f with
error ε+

∑
i/∈S E[fi]. To prove it, sample R ∈ {0, 1}n uniformly at random. Then

E[f(X)] =
m∑
i=1

bi · E[fi(X)] ≥
∑
i∈S

bi · E[fi(X)] ≥
∑
i∈S

bi · (1− ε) · E[fi] = (1− ε) · E

[∑
i∈S

bi · fi(R)

]

≥ E

[∑
i∈S

bi · fi(R)

]
− ε

= E

[
f(R)−

∑
i/∈S

bi · fi(R)

]
− ε

≥ E[f]−
∑
i/∈S

E[fi]− ε.

Now we bound the expectation from above. Let f = 1 − f . Since f can also be computed by a subcube
partition with the same terms f1, . . . , fm, we have

E[f(X)] = 1− E
[
f(X)

]
≤ 1− E

[
f
]
+ ε+

∑
i/∈S

E[fi] = E[f] + ε+
∑
i/∈S

E[fi].

The lemma follows, because E[fi] ≤ 2−(k+1) whenever i /∈ S.

By combining Theorem 1.3 (our k-wise probably uniform generator) with Lemma 5.2, we now prove the
following theorem, which generalizes Theorem 1.5.

16

Theorem 5.3 (Fooling near-maximal subcube partitions). Let n,m ∈ N and ε ∈ (0, 1). There exists an
explicit PRG G : {0, 1}s → {0, 1}n that fools n-variate subcube partitions of size m with error ε and seed
length

s = logm+O

(
log2/3m · log1/3

(
logm

ε

)
+ log(1/ε) + log log n

)
. (3)

Proof. We use our k-wise (ε/2)-probably uniform generator, where k = logm+ log(2/ε). By Lemma 5.2, the
generator fools size-m subcube partitions with error ε/2 +m · 2−k = ε. By Theorem 1.3, the seed length is

k +O(k2/3 · log1/3(k/ε) + log(1/ε) + log log n),

which, after substituting the choice of k, simplifies to Eq. (3).

6 Hitting sets for systems of equations over F2 and for B2-circuits

In this section, we present our hitting set for systems of equations over F2, thereby proving Theorem 1.6.
Next, we show that such hitting sets can hit circuits over the B2 basis, thus proving Corollary 1.9. Finally,
we present a more explicit construction of hitting set generators for systems of equations over F2, where given
the seed, we can output the corresponding string in time poly(n).

6.1 Rank condenser

First, we use a rank condenser, due to Forbes and Guruswami [FG15] to “condense” the number of variables
from n to O(k · log n).

Definition 6.1 (k-rank condenser). Let F be a field and let n ≥ k ≥ 1. A collection of matrices M ⊆ Fn×n′

is a k-rank condenser if, for every matrix A ∈ Fk×n with rank(A) = k, there exists M ∈ M such that
rank(AM) = k.

We say that M is explicit if, given an index i ∈ [|M|], the i-th matrix of M can be constructed in time
poly(n).

Remark 6.2. Stronger “lossless” variants—which bound how many matrices in M can cause rank loss or
how much total rank loss can occur—have been studied (see, e.g., Forbes and Guruswami [FG15]). The
simpler notion above suffices for our purposes.

The following theorem, due to Forbes and Guruswami, shows that we can construct such condensers
explicitly over F2 while keeping the output dimension only O(k · log n).

Theorem 6.3. Let n ≥ k ≥ 1. There is an explicit k-rank condenser M ⊆ Fn×4k logn
2 with |M| = poly(n).

Proof. This follows from Forbes and Guruswami’s work [FG15, Corollary 8.7, preprint version], by setting
the parameters appropriately.

6.2 Partition the variables

For the sake of brevity, we define the following notation.

Definition 6.4. Let H ⊆ Fn
2 . We say that H hits codimension k if, for every affine subspace of codimension

k, there exists x ∈ H in this affine subspace. Equivalently, for every A ∈ Fk×n
2 and every b ∈ image(A), there

exists x ∈ H such that Ax = b.

Our goal is to construct an H that hits codimension k. We can split the n variables into ℓ consecutive
blocks of arbitrary size. For any A ⊆ Fk×n

2 , this induces a column partition, giving a column partition
A = [A1 A2 . . . At], where A ⊆ Fni

2 and n1 + · · ·+ nt = n. Without loss of generality, we assume that A
has full rank. Write ki for the incremental rank contributed by block Ai, i.e., ki = rank([A1 A2 . . . Ai])−

17

rank([A1 A2 . . . Ai−1]), so k1 + · · ·+ kt = k. Andreev, Clementi and Rolim [ACR97] stated the result that,
if Hi ⊆ Fni

2 hits codimension ki for every i, then there is some x in the Cartesian product H1 ×H2 × · · · ×Ht

such that Ax = b.
However, they skipped the proof, so we complete the proof in this subsection. We began by showing

that after fixing the first i− 1 blocks, the feasible assignments to the i-th block form an affine subspace of
codimension ki. In the following, we focus on the case of partitioning A into two blocks, which will turn out
to be sufficient for analyzing the general case.

Lemma 6.5. Let F be a field. Let A1 ∈ Fk×n1 and A2 ∈ Fk×n2. Let b ∈ image([A1 A2]), and define
V =

{
y ∈ Fn1

2

∣∣ ∃ z ∈ Fn2
2 such that A1y + A2z = b

}
. Then V is an affine space with codimension

rank([A1 A2])− rank(A2).

Proof. Since b ∈ image([A1 A2]), we know there exists (y∗, z∗) such that A1y∗ + A2z∗ = b. Let W =
A−1

1

(
image(A2)

)
. We claim that V = W + y∗. Indeed, if y ∈ W + y∗, then y − y∗ ∈ W , so there is some z

such that A1(y − y∗) = A2z. Hence

A1y +A2(z∗ − z) = A1y∗ +A2z∗ = b,

so y ∈ V . Conversely, if y ∈ V , then there is some z such that A1y +A2z = b, and consequently

A1(y − y∗) = b−A2z −A1y∗ = A2(z∗ − z),

showing that y − y∗ ∈ W , i.e. y ∈ W + y∗.
Now we are going to show that codim(W) = rank([A1 A2]) − rank(A2). Let b1, . . . , bs be a basis of

W . Extend this to a basis b1, . . . , bn1 of Fn1 , and set U = span(bs+1, . . . , bn1), so Fn1 = U +W . Because
ker(A1) ⊆ W , the map A1 is injective on U . Hence dim(A1U) = dim(U) = codim(W). On the other hand,
let us show that dim(A1U) = rank([A1 A2]) − rank(A2). Observe that image(A2) ∩ A1U = {0}, because
otherwise U and W would have nontrivial intersection. Furthermore, clearly,

A1U + image(A2) ⊆ image([A1 A2]) = A1U + image(A2).

Conversely, consider any point A1y + A2z ∈ image(A1) + image(A2). We can decompose y = yU + yW for
some yU ∈ U and yW ∈ W . By the definition of W , there is some z′ such that A1yW = A2z

′. Therefore,
A1y +A2z = A1yU +A2(z + z′) ∈ A1U + image(A2). This shows that A1U + image(A2) = image([A1 A2]).
Therefore,

rank([A1 A2]) = dim(image([A1 A2])) = dim(A1U) + dim(image(A2)) = dim(A1U) + rank(A2).

Corollary 6.6 ([ACR97]). Let A = [A1 A2 · · · At] ∈ Fk×n be a matrix of rank k, where each block Ai ∈ Fk×ni

and n1 + · · ·+ nt = n. For every i ∈ [t], let ki = rank
(
[Ai A2 · · · At]

)
− rank

(
[Ai+1 A2 · · · At]

)
. For each

i ∈ [t], let Hi ⊆ Fni
2 , and assume Hi hits codimension ki. Then for every b ∈ image(A), there exists a vector

x in the Cartesian product
H1 ×H2 × · · · ×Ht ⊆ Fn

2

such that Ax = b.

Proof. We prove it by induction on ℓ. In the base case, when ℓ = 1, the corollary follows immediately from
the definition of hitting rank k1. Now suppose ℓ > 1. Define A>1 = [A2 A3 · · · At], and define

V = {y ∈ Fn1
2 : ∃z ∈ Fn−n1

2 such that A1y +A>1z = b}.

By Lemma 6.5, V is an affine space with codimension k1. Therefore, there exists y ∈ H1 ∩ V . By the
definition of V , b − A1y ∈ image(A>1). Therefore, by induction, there exists z ∈ H2 × · · · ×Ht such that
A>1z = b−A1y. Let x = (y, z). Then x ∈ H1 × · · · ×Ht, and Ax = A1y +A>1z = b.

18

6.3 Brute-force construction

In this subsection, we use a brute-force method to construct a hitting set that hits codimension k. Our
method is similar to the one used in Naor, Schulman, and Srinivasan’s work [NSS95]. On its own, this
brute-force method is too slow to prove Theorem 1.6. However, we will only apply the brute-force method
after reducing the length of binary strings we are searching, so we can afford the exponential time cost. Note
the size of our construction matches that of the hitting set obtained by the standard probabilistic method.

Lemma 6.7 (Brute-force hitting set for systems of equations). For every n, k ∈ N, there exists H ⊆ Fn
2 of

size 2k+O(log(nk)) that hits codimension k, which can be constructed in time O(nk · 2kn+n+2k).

Proof. Let H be the hitting set we are going to construct, and let U be the set of feasible systems of k linear
equations over F2 that have not yet been satisfied by any element in H. Note that hitting codimension k is
equivalent to intersecting every nonempty solution space defined by k linear equations. At the beginning, H
is empty and U consists all the feasible systems of k linear equations over F2. Note that each feasible system
of k linear equations can be written in the form Ax = b where A ∈ Fk×n

2 and b ∈ image(A) ⊆ Fk
2. Thus,

|U| ≤ |Fk×n
2 | · |Fk

2| = 2k(n+1).
The algorithm works as follows: in each round, we find an element x ∈ Fn

2 such that x satisfies 1/2k

fraction of U and add this x to H, so the size of U is shrunk by a factor of (1− 1/2k) in each round. The
existence of such x is guaranteed by the averaging argument. After d rounds, the number of unsatisfied

systems will be at most 2k(n+1)
(
1− 2−k

)d
. Using the inequality 1− 2−k ≤ e−2−k

, this quantity drops below 1

whenever d > k(n+ 1) 2k ln 2. Consequently, after d = 2 k+O(log(nk)) rounds of searching, we obtain a hitting
set H with |H| = d = 2k+O(log(nk)) such that for every matrix A ∈ Fk×n

2 and every vector b ∈ image(A),
there exists an x ∈ H satisfying Ax = b.

In each round, we need to find an element x ∈ Fn
2 and test if this x satisfies at least 1/2k fraction of U .

Testing if a vector satisfies an equation takes at most O(nk) time. So in the i-th round, the time required to
find such a x is at most O(nk · 2n+k(n+1) · (1− 1/2k)i−1). Thus, the total running time is at most

O

(
nk · 2n+k(n+1) ·

∞∑
i=0

(1− 1/2k)i

)
= O(nk · 2n+kn+2k).

6.4 Our final hitting set for systems of equations

Proof of Theorem 1.6. Without loss of generality, we assume that k ≥ log n; otherwise, we can simply use a
small-bias distribution as described in the paragraph following the statement of Theorem 1.6. First we use
Theorem 6.3 to construct a k-rank condenser M ⊆ Fn×4k logn

2 , where |M| = poly(n). Then we partition the
variables into t blocks of equal size, where t ≈ k2/3 (the exact value will be specified later). Without loss of
generality, we assume that n′/t is an integer. For each i ∈ {0, 1, . . . , n′/t}, we use Lemma 6.7 to construct

Hi ⊆ Fn′/t
2 that hits codimension i, as defined in Definition 6.4. Then we combine them by taking a Cartesian

product. Thus, the overall construction is

H =
⋃

k1,...,kt∈N
k1+···+kt=k

{Mx : M ∈ M and x ∈ Hk1 × · · · ×Hkt}.

We first prove the construction is efficient (Item 2) and then prove the construction is correct (Item 1).
(Item 2). By Lemma 6.7, we know the size of each Hi is |Hi| = O(n

′

t · i2i), and the total running time to

construct these hitting sets over n′/t variables is
∑n′/t

i=1 O(2n
′/t+i(n′/t+2) n′

t i) ≤ O(2n
′/t+(n′/t)2+2(n′/t)(n

′

t)
3) =

2O((n′/t)2).

19

For one partition of k, namely k1 + · · ·+ kt = k, we have

|Hk1 × · · · ×Hkt | ≤
t∏

i=1

ki · 2ki+O(log(n
′
t
))

= 2t·O(log(n
′
t
))+

∑t
i=1 ki ·

t∏
i=1

ki

≤ 2t·(O(log n′
t
)+log k)+k

≤ 2O(t·log k)+k.

Since each 0 ≤ ki ≤ k, the total number of partitions k1, . . . , kt is at most (k + 1)t = 2t log(k+1) ≤ 2O(t·log k).
Thus,

|H| ≤ |M| · 2t·O(log k) · 2O(t·log k)+k

≤ 2O(logn)+O(t·log k)+k.

Thus, the time used by our algorithm is at most

2O(logn+t·log k+(k logn)2/t2)+k.

By choosing t = O

(
k2 log2 n

log k

)1/3

, we get the time used by our algorithm to be

2k+O
(
(k logn log k)2/3+logn

)
.

(Item 1). Now consider any A ∈ Fk×n
2 and any b ∈ image(A). Without loss of generality, we assume that

rank(A) = k. By Theorem 6.3, we know there is an M ∈ M such that rankA = rankAM , and we denote
A′ := AM . Since image(AM) ⊆ image(A) and dim(image(AM)) = rank(AM) = rank(A) = dim(image(A)),
we have image(AM) = image(A), thus b ∈ image(AM) as well. By partitioning A′ into t blocks of size k× n′

t ,
we get

A′ =
[
A′

1 A′
2 · · · A′

t

]
.

Let ki = rank([A′
1 A′

2 · · · A′
i])− rank([A′

1 A′
2 · · · A′

i−1]). Thus, by Corollary 6.6, we know that there exists
an x ∈ Hk1 × · · · ×Hkt , such that A′x = b, which means A(Mx) = b and Mx ∈ H.

6.5 Hitting set for B2-circuits

In this subsection, we will show that this hitting set can be used for B2 circuits.

Corollary 6.8 (Restatement of Corollary 1.9). For every n ∈ N and α ∈ (0, 2.5), there exists a value
ε = 2−Ω(α2n) and a set H ⊆ {0, 1}n such that:

1. H is an ε-hitting set for B2-circuits of size (2.5− α) · n.

2. Given the parameters n and α, the set H can be enumerated in time 2(1−Ω(α2))·n+Õ(n2/3).

Proof. Assume without loss of generality that the queries on every root-to-leaf path in f are linearly
independent. First we note that any parity decision tree f can be written as f = f1 + · · ·+ fℓ, where each
fi corresponds to a path from the root to an accepting leaf in f . Note that fi’s are disjoint and each fi is
a conjunction of parities function. The number of parity functions in the conjunction is the depth of this
leaf. If f is a size-m parity decision tree with E[f] > ε, then there is some accepting leaf that is reached
with probability greater than ε/m. The depth of that leaf must be less than log(m/ε), because otherwise the

20

probability of reaching it would be smaller. Consequently, if H ⊆ Fn
2 hits codimension log(m/ε), then H is

an ε-hitting set for size-m parity decision trees.
By Chen and Kabanets’ work [CK16], we know every B2-circuit of size (2.5− α) · n can be simulated

by a parity decision tree of size m = 2(1−c·α2)·n. Let ε = 2−
c
2
·α2n. Then log(m/ε) = (1 − (c/2) · α2)n. By

Lemma 6.7, a set that hits codimension log(m/ε) can be enumerated in time

2log(m/ε)+O((log(m/ε)·log log(m/ε)·logn)2/3+logn) = 2(1−Ω(α2))·n+Õ(n2/3).

Remark 6.9. In this proof, we have used the fact hitting parity decision trees is equivalent to hitting system
of equations. We further note that hitting DNF of parities is also equivalent to these two problems.

6.6 Hitting sets that are more explicit

At this point, we have completed the proofs of Theorem 1.6 and Corollary 1.9. In this subsection, we prove a
variant of Theorem 1.6 in which the hitting set is, in some sense, “more explicit,” although its cardinality
is slightly worse. Specifically, we show how to construct a hitting set generator G : {0, 1}k+o(n) → Fn

2 for
systems of equations of F2, where given the seed x, we can output G(x) in time poly(n). The construction is
similar to the construction in the proof of Theorem 1.6 but we skip the condensing step and choose t to be
larger so we can afford the brute-force construction in Lemma 6.7. Note that most applications of hitting sets
don’t require this level of explicitness; however, we construct the following hitting set generator to match the
level of explicitness of our PRGs.

Theorem 6.10 (More explicit hitting set for systems of equations over F2). For every n, k ∈ N, there exists
G : {0, 1}s → Fn

2 , where s = k + o(n), such that:

1. For every A ∈ Fk×n
2 and every b ∈ image(A), there exists x ∈ {0, 1}s, such that AG(x) = b.

2. Given the parameters n and k and the seed x, G(x) can be computed in time poly(n).

Proof Sketch. Let t = n√
logn

. Without loss of generality, we assume that n′/t is an integer. For each

i ∈ {0, 1, . . . , n/t}, we use Lemma 6.7 to construct Hi ⊆ Fn/t
2 that hits codimension i, as defined in

Definition 6.4, where each Hi is on only n/t variables. Then we define Gi : {0, 1}di → {0, 1}n/t where
di = ⌈log(|Hi|)⌉, and Gi(y) output the y-th element in Hi. The overall construction can be seen as

G(k1, . . . , kt, y1, . . . , yt) = (Gk1(y1), . . . , Gkt(yt)),

where k1 + · · ·+ kt = k.
By Lemma 6.7, we know the size of eachHi is |Hi| = O(nt ·i2

i), and the total running time to construct these

hitting sets over n/t variables is
∑n/t

i=1O(2n/t+i(n/t+2) n
t i) ≤ O(2n/t+(n/t)2+2(n/t)(nt)

3) = 2O((n/t)2) = nO(1).
Thus, when computing G(k1, . . . , kt, y1, . . . , yt), we first construct {Gi} that hits codimension i, i = 0, . . . , n/t,
which takes time poly(n). Then for each Gki(yi), we just output the element indexed by yi in Hki .

For each ki, we denote its binary expansion as BIN(ki). Let | · | denote the length of a string. Then, we
can encode the input (k1, . . . , kt, y1, . . . , yt) as

1|BIN(k1)|0BIN(k1) . . . 1
|BIN(kt)|0BIN(kt)y1 . . . yt.

Note here we know the length for each yi given ki, since Hki has been constructed before.
By the construction above and the AM-GM inequality, the seed length required for (k1, . . . , kt) is at most

t∑
i=1

(2 log(ki + 1) + 3) = 3t+ 2 log

(
t∏

i=1

(ki + 1)

)

≤ 3t+ 2 log

(
(
k + t

t
)t
)

= 3t+ 2t ·O
(
log

(
n
√
log n

n

))
= O(t log log n) = o(n),

21

since when ki = 0, we still need 3 bits to encode it.
The seed length required for (y1, . . . , yt) is at most

⌈log(|Hk1 |)⌉+ ⌈log(|Hk2 |)⌉+ · · ·+ ⌈log(|Hkt |)⌉ ≤ log(|Hk1 |) + log(|Hk2 |) + · · ·+ log(|Hkt |) + t

≤ t+
t∑

i=1

(
ki +O

(
log
(n
t
· ki
)))

≤ t+ k + t ·O(log log n) = k + o(n).

The proof of correctness is essentially same as the proof of Theorem 1.6.

7 Limitations of k-wise γ-biased generators

In this section, we prove that our main results (Theorems 1.3 and 1.5 and Corollary 1.7) cannot be proven
by simply developing a better construction and/or analysis of k-wise γ-biased generators.

First, in Section 7.1, we present examples showing that if one wishes to use a generic k-wise γ-biased
generator to get a universal set, or to hit near-maximal decision trees or B2-circuits of size n or U2-circuits of
size 2n, then one is forced to use a very large k and a very small γ. Then, in Section 7.2, we extend Karloff
and Mansour’s work [KM97] to show that when k is very large and γ is very small, every k-wise γ-biased
generator has a very large seed length.

7.1 Counterexamples showing that k must be large and γ must be small

We begin by analyzing the parameter k. The argument is fairly trivial.

Proposition 7.1. For every n ∈ N and k ∈ [n− 1], there exists a k-wise uniform distribution X over {0, 1}n
such that Supp(X) is not a 0.49-hitting set for (k + 1)-juntas, or for B2-circuits of size k, or for U2-circuits
of size 3k.

Proof. Let X be the uniform distribution over the set {x ∈ {0, 1}n : x1 ⊕ x2 ⊕ · · · ⊕ xk+1 = 0}. Let
f(x) = x1⊕· · ·⊕xk+1. Then f is a (k+1)-junta, and f can be computed by a B2-circuit of size k, and f can
be computed by a U2-circuit of size 3k (Proposition 2.8). Furthermore, E[f] = 1/2, whereas E[f(X)] = 0.

Now we move on to the bias parameter, γ. We begin by showing that a very small bias would be required
to achieve k-universality.

Proposition 7.2. For every n ∈ N and every k ∈ [n], there exists a distribution X over {0, 1}n such that X
is n-wise O(2−k)-biased, but Supp(X) is not k-universal.

Proof. Let X be the uniform distribution over the set {x ∈ {0, 1}n : (x1, . . . , xk) ̸= 0k}. Clearly, Supp(X) is
not k-universal. To show that X is n-wise O(2−k)-biased, let S ⊆ [n] be any nonempty set of size at most
k. If S ⊈ [k], then E[χS(X)] = 0, because (Xk+1, . . . , Xn) is uniform over {0, 1}n−k and independent of
(X1, . . . , Xk). If S ⊆ [k], then

|E[χS(X)]| = 1

2k − 1
·

∣∣∣∣∣∣
∑

x∈{0,1}k\{0k}

χS(x)

∣∣∣∣∣∣ = 1

2k − 1
·

∣∣∣∣∣∣
 ∑

x∈{0,1}k
χS(x)

− χS(0
k)

∣∣∣∣∣∣
=

1

2k − 1

≤ 2

2k
.

22

Next, we show that a very small bias would be required to fool decision trees of depth 0.76 · n, or to hit
B2 circuits of size n or U2-circuits of size 2n. The proof is based on the “inner product mod 2” function. For
each even positive integer n, we define IPn : {0, 1}n → {0, 1} by the formula

IPn(x, y) =

n/2⊕
i=1

xiyi.

Proposition 7.3. Let n be an even positive integer and let X be the uniform distribution over IP−1
n (0).

Then:

1. The distribution X is n-wise (2−n/2)-biased.12

2. The set Supp(X) is not a 0.49-hitting set for B2-circuits of size n− 1 or for U2-circuits of size 2n− 3,
assuming n is sufficiently large.

3. There is a value k = 3
4 · n+ O(

√
n) such that Supp(X) is not a 0.49-hitting set for depth-k decision

trees, assuming n is sufficiently large.

Proof. Let f(x, y) = (−1)IPn(x,y). Let χS be any nontrivial character function. Sample R ∈ {0, 1}n uniformly
at random, and sample Y uniformly from IP−1(1). For each b ∈ {0, 1}, let pb = Pr[IP(R) = b]. Note that
p0 > 1/2. Therefore,

|E[χS(X)]| < 2p0 · |E[χS(X)]|
= |p0 · E[χS(X)] + p1 · E[χS(Y)] + p0 · E[χS(X)]− p1 · E[χS(Y)]|
= |E[χS(R)] + E[χS(R) · f(R)]|

= |f̂(S)|.

(The second-to-last equation is an application of the law of total expectation.) It follows that X is n-wise
(2−n/2)-biased, because the inner product mod 2 function is famously “bent,” meaning that |f̂(S)| = 2−n/2

for every S. For completeness, we include the calculation showing that |f̂(S)| = 2−n/2 below:

f̂(S) = E
x,y

[f(x, y) · χS(x, y)]

= E
x,y

n/2∏
i=1

(−1)xiyi

 ·

n/2∏
i=1

(−1)xiui

 ·

n/2∏
i=1

(−1)yivi

 for some u, v ∈ {0, 1}n/2

=

n/2∏
i=1

E
a,b∈{0,1}

[(−1)ab+aui+bvi]

=

n/2∏
i=1

1 + (−1)vi + (−1)ui + (−1)1+ui+vi

4

=

n/2∏
i=1

(
±1

2

)
= ±2−n/2.

The set Supp(X) is not a 0.49-hitting set for B2-circuits of size n− 1, because E[IPn] = 1/2− o(1), and IPn

can be computed by a B2-circuit of size n− 1. Similarly, Supp(X) is not a 0.49-hitting set for U2-circuits of
size 2n− 3, because IPn can be computed by a U2-circuit of size 2n− 3:

12For context, Bogdanov and Viola previously showed that X is n-wise (2−Ω(n))-biased, and they also showed a generalization
of this statement to larger fields [BV10].

23

• We use n/2 “AND” gates to compute the bits x1y1, . . . , xn/2yn/2.

• Then we use 3(n/2)− 3 gates to compute the parity of those n/2 bits (Proposition 2.8).

Finally, we will show that Supp(X) is not a 0.49-hitting set for decision trees of depth 3
4 · n+O(

√
n). Define

T (x, y) =

{
IP(x, y) if |x| ≤ n/4 + 2

√
n

0 if |x| > n/4 + 2
√
n,

where |x| denotes the Hamming weight of x and c is an appropriate constant. Then T (x, y) can be computed
by a decision tree of depth 3

4 · n+O(
√
n), and T ≤ IPn, so E[T (X)] = 0. On the other hand, if we pick x

and y uniformly at random:

• There is a 2−n/2 chance that x = 0n/2.

• There is at most an exp(−16) chance that x has Hamming weight more than n/4+2
√
n, by Hoeffding’s

inequality.

• For any fixing of x such that neither of the two events above occur, we have Ey[T (x, y)] = 1/2.

Therefore, E[T] ≥ 1
2 − 2−n/2 − exp(−16) ≥ 0.49.

7.2 Seed length lower bound for k-wise γ-biased generators

In this section, we prove our seed length lower bound for k-wise γ-biased generators (Theorem 1.10). The
proof is a straightforward extension of Karloff and Mansour’s argument [KM97], which covers the case γ = 0.
The approach is to bound the collision probability of a k-wise γ-biased distribution.

Definition 7.4 (Collision probability). Let X be a probability distribution over the space X . The collision
probability CP(X) is defined by

CP(X) = Pr
x∼X
x′∼X

[x = x′],

where x and x′ are sampled independently from X. Equivalently, CP(X) =
∑

x∈X Pr[X = x]2.

Theorem 7.5 (Collision probability of k-wise γ-biased distributions). Let n ∈ N, let γ ∈ (0, 1), let α ∈ (0, 1/2],
let k = ⌊(12 + α) · n⌋, and let X be a distribution that is k-wise γ-biased. Then

CP(X) ≤
(
1 +

1

2α

)
·
(
2−n + γ2

)
.

Proof. Let p : {0, 1}n → [0, 1] be the probability mass function of X, i.e., p(x) = Pr[X = x]. Since X
is a probability distribution, we have p̂(∅) = 2−n. Furthermore, since X is k-wise γ-biased, we have
|p̂(S)| ≤ γ · 2−n whenever 1 ≤ |S| ≤ k. Therefore, we can bound the collision probability of X as follows.

CP(X) =
∑

x∈{0,1}n
p(x)2 = 2n · E

x∈{0,1}n
[p(x)2]

= 2n ·
∑
S⊆[n]

p̂(S)2 (Parseval’s theorem)

≤ 2n ·

 1

22n
+

(
n

≤ k

)
· γ2

22n
+
∑
S⊆[n]
|S|>k

p̂(S)2

≤ 2−n + γ2 + 2n ·

∑
S⊆[n]
|S|>k

p̂(S)2.

24

To bound the high-degree Fourier weight, let x⊕i denote x with the i-th bit flipped. Identify a set T ⊆ [n]
with its indicator function T : [n] → {0, 1}. Then

0 ≤
n∑

i=1

∑
x∈{0,1}n

p(x) · p(x⊕i) =
∑
S⊆[n]

∑
T⊆[n]

p̂(S) · p̂(T) ·
n∑

i=1

∑
x∈{0,1}n

χS(x) · χT (x
⊕i)

=
∑
S⊆[n]

∑
T⊆[n]

p̂(S) · p̂(T) ·
n∑

i=1

(−1)T (i) ·
∑

x∈{0,1}n
χS(x) · χT (x)

= 2n ·
∑
S⊆[n]

p̂(S)2 ·
n∑

i=1

(−1)S(i)

= 2n ·
n∑

d=0

∑
|S|=d

p̂(S)2 · (n− 2d)

≤ 2n ·

n ·

∑
S⊆[n]
|S|≤k

p̂(S)2

− (2k + 2− n) ·
∑
S⊆[n]
|S|>k

p̂(S)2

≤ n · (2−n + γ2)− 2n · (2k + 2− n) ·

n∑
d=k+1

∑
|S|=d

p̂(S)2.

Consequently,

CP(X) ≤ 2−n + γ2 +
n · (2−n + γ2)

2k + 2− n
=

2k + 2

2k + 2− n
· (2−n + γ2) =

(
1 +

n

2k + 2− n

)
· (2−n + γ2)

≤
(
1 +

n

(1 + 2α)n− n

)
· (2−n + γ2)

=

(
1 +

1

2α

)
· (2−n + γ2).

Proof of Theorem 1.10. The output of G has collision probability at least 2−s, since this is the chance of
getting the same seed twice in a row. Therefore,

2−s ≤
(
1 +

1

2α

)
· (2−n + γ2) ≤ 2

α
·max{2−n, γ2},

and consequently
s ≥ min{n, 2 log(1/γ)} − log(2/α).

By combining the results of this subsection with the counterexamples from the previous subsection, we
get the following conclusion.

Corollary 7.6. Let n, k ∈ N and γ ∈ (0, 1). Suppose that at least one of the following holds.

1. The support of every k-wise γ-biased distribution over {0, 1}n is (0.51 · n)-universal.

2. The support of every k-wise γ-biased distribution over {0, 1}n is a 0.49-hitting set for decision trees of
depth 0.76 · n, or for B2-circuits of size n, or for U2-circuits of size 2n.

Then every k-wise γ-biased generator has seed length n−O(1).

25

Proof. First, we show that k ≥ 1
2 +Ω(1). Case (1) implies that every k-wise uniform distribution is a 0-hitting

set for (0.51 · n)-juntas, hence k ≥ ⌊0.51 · n⌋ by Proposition 7.1. Similarly, case (2) implies that every k-wise
uniform distribution is a 0.49-hitting set for (0.76 · n)-juntas, or for B2-circuits of size n, or for U2-circuits
of size 2n. By Proposition 7.1, these three possibilities would imply k ≥ ⌊0.76n⌋, k ≥ n, and k ≥ ⌊2n/3⌋
respectively.

Next, we show that γ ≤ O(2−n/2). In case (1), this follows immediately from Proposition 7.2. Now
suppose we are in case (2). Let Z be the distribution over {0, 1}n′

from Proposition 7.3, where n′ ∈ {n, n− 1}
and n′ is even. By appending a uniform random bit to Z if necessary, we get a distribution Z ′ over {0, 1}n
such that (a) Z ′ is n-wise (2−(n−1)/2)-biased, but (b) Supp(Z ′) is not a 0.49-hitting set for B2-circuits of size
n, or for B2-circuits of size 2n, or for decision trees of depth 0.76n. Therefore, γ < 2−(n−1)/2.

Finally, because the parameters k and γ have such extreme values, Theorem 1.10 tells us that every
k-wise γ-biased generator has seed length at least min{n, 2 log(1/γ)} −O(1) = n−O(1).

8 Open problems

• Find more applications of k-wise probably uniform generators.

• Improve the seed lengths of our constructions.

• Design an explicit PRG, with a seed length similar to that of our k-wise probably uniform generator,
that samples a distribution X such that

(1− ε) · E[f] ≤ E[f(X)] ≤ (1 + ε) · E[f]

for every k-junta f . This is equivalent to saying that every k coordinates of X are uniform to within
ℓ∞ error ε · 2−k. Such a PRG could be used to fool near-maximal unambiguous DNF formulas.

• Design an explicit PRG (not just a hitting set) that fools near-maximal parity decision trees and
B2-circuits of size 2.49 · n with seed length (1− Ω(1)) · n.

• Improve the seed length in Lemma 4.5 (the balanced partition generator) to O(log(k/δ) + log logn).
This would not have any effect on our main theorems, but it is a natural problem in its own right.

• Prove tight bounds on the optimal nonexplicit seed length of PRGs fooling depth-k decision trees with
error ε when k and log(1/ε) are both large. For example, does there exist a PRG that fools decision
trees of depth k = 0.9 · n with error ε = 2−0.4n and seed length (1− Ω(1)) · n?

• Prove matching upper and lower bounds on the power of small-bias distributions to fool decision trees.
For example, does there exist a constant c < 1/2 such that every n-wise (2−cn)-biased distribution fools
decision trees of depth n/2 with error 0.1?

9 Acknowledgments

We thank Avishay Tal for valuable comments on a draft of this paper and for a discussion about the
Fourier spectra of decision trees. We thank Frederic Koehler for pointing out the connection with Huber’s
contamination model. We thank Alicia Torres Hoza for helpful comments on drafts of this paper. Zelin Lv
thanks Aaron Potechin for valuable discussions.

References

[AAKMRX07] Noga Alon, Alexandr Andoni, Tali Kaufman, Kevin Matulef, Ronitt Rubinfeld, and Ning
Xie. “Testing k-wise and almost k-wise independence”. In: Proceedings of the 39th Annual
Symposium on Theory of Computing (STOC). 2007, pp. 496–505. doi: 10.1145/1250790.
1250863.

26

https://doi.org/10.1145/1250790.1250863
https://doi.org/10.1145/1250790.1250863

[ABCR99] Alexander E. Andreev, Juri L. Baskakov, Andrea E. F. Clementi, and José D. P. Rolim. “Small
Pseudo-Random Sets Yield Hard Functions: New Tight Explicit Lower Bounds for Branching
Programs”. In: Proceedings of the 26th International Colloquium on Automata, Languages
and Programming (ICALP). preprint: https://eccc.weizmann.ac.il/report/1997/053/. 1999,
179–189. doi: 10.1007/3-540-48523-6_15.

[ABI86] Noga Alon, László Babai, and Alon Itai. “A fast and simple randomized parallel algorithm
for the maximal independent set problem”. In: J. Algorithms 7.4 (1986), pp. 567–583. issn:
0196-6774. doi: 10.1016/0196-6774(86)90019-2.

[ABNNR92] Noga Alon, Jehoshua Bruck, Joseph Naor, Moni Naor, and Ron M. Roth. “Construction of
asymptotically good low-rate error-correcting codes through pseudo-random graphs”. In:
IEEE Transactions on Information Theory 38.2 (1992), pp. 509–516. doi: 10.1109/18.
119713.

[ACR97] Alexander E. Andreev, Andrea E. F. Clementi, and José D. P. Rolim. “Efficient constructions
of Hitting Sets for systems of linear functions”. In: Proceedings of the 14th Annual Symposium
on Theoretical Aspects of Computer Science (STACS). 1997, pp. 387–398. doi: 10.1007/
BFb0023475.

[AGHP92] Noga Alon, Oded Goldreich, Johan H̊astad, and René Peralta. “Simple constructions of
almost k-wise independent random variables”. In: Random Structures Algorithms 3.3 (1992),
pp. 289–304. issn: 1042-9832. doi: 10.1002/rsa.3240030308.

[AGM03] Noga Alon, Oded Goldreich, and Yishay Mansour. “Almost k-wise independence versus
k-wise independence”. In: Inform. Process. Lett. 88.3 (2003), pp. 107–110. issn: 0020-0190.
doi: 10.1016/S0020-0190(03)00359-4.

[AKK16] Andris Ambainis, Martins Kokainis, and Robin Kothari. “Nearly Optimal Separations
Between Communication (or Query) Complexity and Partitions”. In: Proceedings of the 31st
Conference on Computational Complexity (CCC). 2016, 4:1–4:14. doi: 10.4230/LIPIcs.
CCC.2016.4.

[Alo09] Noga Alon. “Perturbed identity matrices have high rank: proof and applications”. In:
Combin. Probab. Comput. 18.1-2 (2009), pp. 3–15. issn: 0963-5483. doi: 10 . 1017 /

S0963548307008917.

[Alo86] N. Alon. “Explicit construction of exponential sized families of k-independent sets”. In:
Discrete Math. 58.2 (1986), pp. 191–193. issn: 0012-365X. doi: 10.1016/0012-365X(86)
90161-5.

[BD22] Guy Blanc and Dean Doron. “New Near-Linear Time Decodable Codes Closer to the GV
Bound”. In: Proceedings of the 37th Annual Computational Complexity Conference (CCC).
2022, 10:1–10:40. doi: 10.4230/LIPIcs.CCC.2022.10.

[BS88] Bernd Becker and Hans-Ulrich Simon. “How robust is the n-cube?” In: Inform. and Comput.
77.2 (1988), pp. 162–178. issn: 0890-5401. doi: 10.1016/0890-5401(88)90056-9.

[Bsh14] Nader H. Bshouty. “Testers and their applications [extended abstract]”. In: Proceedings of
the 5th Conference on Innovations in Theoretical Computer Science (ITCS). ACM, New
York, 2014, pp. 327–351. doi: 10.1145/2554797.2554828.

[Bsh16] Nader H. Bshouty. Derandomizing Chernoff Bound with Union Bound with an Application
to k-wise Independent Sets. 2016. arXiv: 1608.01568 [cs.DM].

[BT13] Avraham Ben-Aroya and Amnon Ta-Shma. “Constructing small-bias sets from algebraic-
geometric codes”. In: Theory Comput. 9 (2013), pp. 253–272. doi: 10.4086/toc.2013.
v009a005.

[BV10] Andrej Bogdanov and Emanuele Viola. “Pseudorandom bits for polynomials”. In: SIAM J.
Comput. 39.6 (2010), pp. 2464–2486. issn: 0097-5397. doi: 10.1137/070712109.

27

https://doi.org/10.1007/3-540-48523-6_15
https://doi.org/10.1016/0196-6774(86)90019-2
https://doi.org/10.1109/18.119713
https://doi.org/10.1109/18.119713
https://doi.org/10.1007/BFb0023475
https://doi.org/10.1007/BFb0023475
https://doi.org/10.1002/rsa.3240030308
https://doi.org/10.1016/S0020-0190(03)00359-4
https://doi.org/10.4230/LIPIcs.CCC.2016.4
https://doi.org/10.4230/LIPIcs.CCC.2016.4
https://doi.org/10.1017/S0963548307008917
https://doi.org/10.1017/S0963548307008917
https://doi.org/10.1016/0012-365X(86)90161-5
https://doi.org/10.1016/0012-365X(86)90161-5
https://doi.org/10.4230/LIPIcs.CCC.2022.10
https://doi.org/10.1016/0890-5401(88)90056-9
https://doi.org/10.1145/2554797.2554828
https://arxiv.org/abs/1608.01568
https://doi.org/10.4086/toc.2013.v009a005
https://doi.org/10.4086/toc.2013.v009a005
https://doi.org/10.1137/070712109

[CGHFRS85] Benny Chor, Oded Goldreich, Johan H̊astad, Joel Freidmann, Steven Rudich, and Roman
Smolensky. “The bit extraction problem or t-resilient functions”. In: Proceedings of the 26th
Annual Symposium on Foundations of Computer Science (FOCS). 1985, pp. 396–407. doi:
10.1109/SFCS.1985.55.

[CH22] Kuan Cheng and William M. Hoza. “Hitting sets give two-sided derandomization of small
space”. In: Theory Comput. 18 (2022), Paper No. 21, 32. doi: 10.4086/toc.2022.v018a021.

[CK16] Ruiwen Chen and Valentine Kabanets. “Correlation bounds and #SAT algorithms for small
linear-size circuits”. In: Theoret. Comput. Sci. 654 (2016), pp. 2–10. issn: 0304-3975. doi:
10.1016/j.tcs.2016.05.005.

[CKMZ83] Ashok K. Chandra, Lawrence T. Kou, George Markowsky, and Shmuel Zaks. “On sets of
Boolean n-vectors with all k-projections surjective”. In: Acta Inform. 20.1 (1983), pp. 103–
111. issn: 0001-5903. doi: 10.1007/BF00264296.

[CRSW13] L. Elisa Celis, Omer Reingold, Gil Segev, and Udi Wieder. “Balls and bins: smaller hash
families and faster evaluation”. In: SIAM J. Comput. 42.3 (2013), pp. 1030–1050. issn:
0097-5397. doi: 10.1137/120871626.

[CW79] J. Lawrence Carter and Mark N. Wegman. “Universal classes of hash functions”. In: J.
Comput. System Sci. 18.2 (1979), pp. 143–154. issn: 0022-0000. doi: 10.1016/0022-
0000(79)90044-8.

[FG15] Michael A. Forbes and Venkatesan Guruswami. “Dimension Expanders via Rank Condensers”.
In: Proceedings of the 19th International Workshop on Randomization and Computation
(RANDOM). preprint: https://arxiv.org/abs/1411.7455. 2015, pp. 800–814. doi: 10.4230/
LIPIcs.APPROX-RANDOM.2015.800.

[GKM18] Parikshit Gopalan, Daniel M. Kane, and Raghu Meka. “Pseudorandomness via the discrete
Fourier transform”. In: SIAM J. Comput. 47.6 (2018), pp. 2451–2487. issn: 0097-5397. doi:
10.1137/16M1062132.

[GKST18] Alexander Golovnev, Alexander S. Kulikov, Alexander V. Smal, and Suguru Tamaki. “Gate
elimination: circuit size lower bounds and #SAT upper bounds”. In: Theoret. Comput. Sci.
719 (2018), pp. 46–63. issn: 0304-3975. doi: 10.1016/j.tcs.2017.11.008.

[GPW18] Mika Göös, Toniann Pitassi, and Thomas Watson. “Deterministic communication vs. partition
number”. In: SIAM J. Comput. 47.6 (2018), pp. 2435–2450. issn: 0097-5397. doi: 10.1137/
16M1059369.

[HH24] Pooya Hatami and William Hoza. “Paradigms for unconditional pseudorandom generators”.
In: Found. Trends Theor. Comput. Sci. 16.1-2 (2024), pp. 1–210. issn: 1551-305X. doi:
10.1561/0400000109.

[HHVESS24] Itamar Harel, William M. Hoza, Gal Vardi, Itay Evron, Nathan Srebro, and Daniel
Soudry. Provable Tempered Overfitting of Minimal Nets and Typical Nets. Ed. by A.
Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang.
2024. url: https : / / proceedings . neurips . cc / paper _ files / paper / 2024 / file /

5fff164c04811174e1836dc3e66c0aba-Paper-Conference.pdf.

[Hub64] Peter J. Huber. “Robust estimation of a location parameter”. In: Ann. Math. Statist. 35
(1964), pp. 73–101. issn: 0003-4851. doi: 10.1214/aoms/1177703732.

[IM02] Kazuo Iwama and Hiroki Morizumi. “An explicit lower bound of 5n − o(n) for Boolean
circuits”. In: Proceedings of the 27th International Symposium on Mathematical Foundations
of Computer Science (MFCS). Vol. 2420. Lecture Notes in Comput. Sci. Springer, Berlin,
2002, pp. 353–364. doi: 10.1007/3-540-45687-2_29.

[KM93] Eyal Kushilevitz and Yishay Mansour. “Learning decision trees using the Fourier spectrum”.
In: SIAM J. Comput. 22.6 (1993), pp. 1331–1348. issn: 0097-5397. doi: 10.1137/0222080.

28

https://doi.org/10.1109/SFCS.1985.55
https://doi.org/10.4086/toc.2022.v018a021
https://doi.org/10.1016/j.tcs.2016.05.005
https://doi.org/10.1007/BF00264296
https://doi.org/10.1137/120871626
https://doi.org/10.1016/0022-0000(79)90044-8
https://doi.org/10.1016/0022-0000(79)90044-8
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.800
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.800
https://doi.org/10.1137/16M1062132
https://doi.org/10.1016/j.tcs.2017.11.008
https://doi.org/10.1137/16M1059369
https://doi.org/10.1137/16M1059369
https://doi.org/10.1561/0400000109
https://proceedings.neurips.cc/paper_files/paper/2024/file/5fff164c04811174e1836dc3e66c0aba-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/5fff164c04811174e1836dc3e66c0aba-Paper-Conference.pdf
https://doi.org/10.1214/aoms/1177703732
https://doi.org/10.1007/3-540-45687-2_29
https://doi.org/10.1137/0222080

[KM97] Howard Karloff and Yishay Mansour. “On construction of k-wise independent random
variables”. In: Combinatorica 17.1 (1997), pp. 91–107. issn: 0209-9683. doi: 10.1007/
BF01196134.

[KRDS15] Robin Kothari, David Racicot-Desloges, and Miklos Santha. “Separating decision tree
complexity from subcube partition complexity”. In: Proceedings of the 19th International
Workshop on Randomization and Computation (RANDOM). 2015, pp. 915–930. doi: 10.
4230/LIPIcs.APPROX-RANDOM.2015.915.

[KS73] Daniel J. Kleitman and Joel Spencer. “Families of k-independent sets”. In: Discrete Math. 6
(1973), pp. 255–262. issn: 0012-365X. doi: 10.1016/0012-365X(73)90098-8.

[Lia20] A. A. Lialina. “On the Complexity of Unique Circuit SAT”. In: J Math Sci 247 (2020),
457–466. doi: 10.1007/s10958-020-04813-1.

[LRTV09] Shachar Lovett, Omer Reingold, Luca Trevisan, and Salil Vadhan. “Pseudorandom bit
generators that fool modular sums”. In: Proceedings of the 13th International Workshop on
Randomization and Computation (RANDOM). 2009, pp. 615–630. doi: 10.1007/978-3-
642-03685-9_46.

[MNT93] Yishay Mansour, Noam Nisan, and Prasoon Tiwari. “The computational complexity of
universal hashing”. In: Theoretical Computer Science 107.1 (1993), pp. 121–133. doi: 10.
1016/0304-3975(93)90257-T.

[MZ13] Raghu Meka and David Zuckerman. “Pseudorandom generators for polynomial threshold
functions”. In: SIAM J. Comput. 42.3 (2013), pp. 1275–1301. issn: 0097-5397. doi: 10.1137/
100811623.

[NN93] Joseph Naor and Moni Naor. “Small-bias probability spaces: efficient constructions and
applications”. In: SIAM J. Comput. 22.4 (1993), pp. 838–856. issn: 0097-5397. doi: 10.
1137/0222053.

[NSS95] Moni Naor, Leonard J. Schulman, and Aravind Srinivasan. “Splitters and near-optimal
derandomization”. In: Proceedings of 36th Annual Conference on Foundations of Computer
Science (FOCS). 1995, pp. 182–191. doi: 10.1109/SFCS.1995.492475.

[Nur09] Sergey Nurk. An O(20.4058m) upper bound for circuit SAT. PDMI technical report. 2009.
url: http://www.pdmi.ras.ru/preprint/2009/09-10.html.

[OZ18] Ryan O’Donnell and Yu Zhao. “On Closeness to k-Wise Uniformity”. In: Proceedings of
the 22nd International Conference on Randomization and Computation (RANDOM). 2018,
54:1–54:19. doi: 10.4230/LIPIcs.APPROX-RANDOM.2018.54.

[PRZ23] Edward Pyne, Ran Raz, and Wei Zhan. “Certified hardness vs. randomness for log-space”.
In: Proceedings of the 64th Annual Symposium on Foundations of Computer Science (FOCS).
2023, pp. 989–1007. doi: 10.1109/FOCS57990.2023.00061.

[Rao47] C. Radhakrishna Rao. “Factorial experiments derivable from combinatorial arrangements
of arrays”. In: Suppl. J. Roy. Statist. Soc. 9 (1947), pp. 128–139. issn: 1466-6162. doi:
10.2307/2983576.

[Sav02] Petr Savický. On determinism versus unambiquous nondeterminism for decision trees. ECCC
preprint TR02-009. 2002. url: https://eccc.weizmann.ac.il/report/2002/009/.

[Sav14] S. V. Savinov. “Upper bound for Circuit SAT”. MA thesis. St. Petersburg Academic
University RAS, 2014.

[SB88] Gadiel Seroussi and Nader H. Bshouty. “Vector sets for exhaustive testing of logic circuits”.
In: IEEE Trans. Inform. Theory 34.3 (1988), pp. 513–522. issn: 0018-9448. doi: 10.1109/
18.6031.

29

https://doi.org/10.1007/BF01196134
https://doi.org/10.1007/BF01196134
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.915
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.915
https://doi.org/10.1016/0012-365X(73)90098-8
https://doi.org/10.1007/s10958-020-04813-1
https://doi.org/10.1007/978-3-642-03685-9_46
https://doi.org/10.1007/978-3-642-03685-9_46
https://doi.org/10.1016/0304-3975(93)90257-T
https://doi.org/10.1016/0304-3975(93)90257-T
https://doi.org/10.1137/100811623
https://doi.org/10.1137/100811623
https://doi.org/10.1137/0222053
https://doi.org/10.1137/0222053
https://doi.org/10.1109/SFCS.1995.492475
http://www.pdmi.ras.ru/preprint/2009/09-10.html
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.54
https://doi.org/10.1109/FOCS57990.2023.00061
https://doi.org/10.2307/2983576
https://eccc.weizmann.ac.il/report/2002/009/
https://doi.org/10.1109/18.6031
https://doi.org/10.1109/18.6031

[Sko22] Maciej Skorski. “Tight Chernoff-Like Bounds Under Limited Independence”. In: Proceedings
of the 26th International Conference on Randomization and Computation (RANDOM). 2022,
15:1–15:14. doi: 10.4230/LIPIcs.APPROX/RANDOM.2022.15.

[SSS95] Jeanette P. Schmidt, Alan Siegel, and Aravind Srinivasan. “Chernoff-Hoeffding bounds for
applications with limited independence”. In: SIAM J. Discrete Math. 8.2 (1995), pp. 223–250.
issn: 0895-4801. doi: 10.1137/S089548019223872X.

[SVW17] Thomas Steinke, Salil Vadhan, and Andrew Wan. “Pseudorandomness and Fourier-growth
bounds for width-3 branching programs”. In: Theory Comput. 13 (2017), Paper No. 12, 50.
doi: 10.4086/toc.2017.v013a012.

[Ta-17] Amnon Ta-Shma. “Explicit, almost optimal, epsilon-balanced codes”. In: Proceedings of
the 49th Annual Symposium on Theory of Computing (STOC). 2017, pp. 238–251. doi:
10.1145/3055399.3055408.

[TW83] Donald T. Tang and Lin S. Woo. “Exhaustive Test Pattern Generation with Constant
Weight Vectors”. In: IEEE Transactions on Computers C-32.12 (1983), pp. 1145–1150. doi:
10.1109/TC.1983.1676175.

[WC81] Mark N. Wegman and J. Lawrence Carter. “New hash functions and their use in authentica-
tion and set equality”. In: J. Comput. System Sci. 22.3 (1981). Special issue dedicated to
Michael Machtey, pp. 265–279. issn: 0022-0000. doi: 10.1016/0022-0000(81)90033-7.

30

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.15
https://doi.org/10.1137/S089548019223872X
https://doi.org/10.4086/toc.2017.v013a012
https://doi.org/10.1145/3055399.3055408
https://doi.org/10.1109/TC.1983.1676175
https://doi.org/10.1016/0022-0000(81)90033-7

