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Abstract

We prove a time hierarchy theorem for the pr-BPTIME. This is considered to be a folklore
problem and was thought to follow from the existence of complete problems or through direct
diagonalization. We observe that neither argument carries through in some immediate way in
the promise version. However, the hierarchy theorem can be proved by the standard delayed
diagonalization for the nondeterministic time hierarchy theorem [Coo72, SFM78, Žák83], or,
as it was observed by Rahul Santhanam, from the established BPTIME hierarchies with advice
[Bar02, FS04, GST11, FST05, Per05, vMP07, San25].

1 Introduction

Hierarchy theorems are fundamental results in complexity theory. They state that with increased
computational resources, one can solve strictly more problems. The time hierarchy theorem for
BPTIME remains an infamously elusive topic. To date, unconditional hierarchy theorems for
BPTIME are only known to hold when logarithmic or constant advice bits are provided [Bar02,
FS04, GST11, FST05, Per05, vMP07]. Additionally, hierarchy theorems are known to hold condi-
tioned on the existence of complete problems for BPP [Bar02]. Unlike deterministic [HS65, HS66]
or nondeterministic time hierarchies [Coo72, SFM78, Žák83], the hierarchy theorem for BPTIME
remains open since, intuitively, it seems infeasible to efficiently determine whether a randomized
Turing machine given an input accepts or rejects with bounded error or not. Hence, the standard
diagonalization fails at the step enumerating all the randomized Turing machines with bounded
two-sided error. In fact, determining whether a randomized Turing machine has bounded error on
every input or not is undecidable.

The situation is believed to be different in its promise version. The time hierarchy for pr-BPTIME
(promise probabilistic time classes) is a folklore statement that has appeared in talks, courses, and
popular textbooks such as [AB09]. We observed that there is no source sketching its proof, and its
validity is potentially assumed to follow from the direct diagonalization or follow by the existence
of complete problems for pr-BPTIME; see e.g., [Gaj22].

However, we observed that the direct diagonalization or proofs that are based on direct diagonal-
ization (e.g., the reduction to BPTIME complete problems [Bar02]) does not easily carry through the
pr-BPTIME hierarchy theorem. At a high level, a critical step in diagonalization involves negating
the output of the enumerated Turing machine. By negating the output, the constructed language
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will be computed incorrectly by the enumerated Turing machine on that input. However, if the
input does not satisfy the promise, negating the output does not yield a valid promise-satisfying
result, and no contradiction is achieved. This means that the standard resource-bounded diagonal-
ization arguments fail for promise classes.

To that end, this note shows that the hierarchy theorem follows by adapting the non-deterministic
time hierarchy theorem of [Žák83]. Santhanam [San25] also pointed out that a coarser hierarchy
theorem for pr-BPTIME can also be obtained directly from the well-established BPTIME hierarchy
theorems with advice. Both proofs are presented in this note. I have added an appendix where
I explain where the argument [Bar02] that shows the connection between complete problems and
the hierarchy for BPTIME does not carry through for pr-BPTIME.

Previous works. The technique of delayed diagonalization was firstly developed in establish-
ing non-deterministic time hierarchies. Direct diagonalization fails in this setting because non-
deterministic time classes are not closed under complementation. This challenge was initially
addressed by [Coo72], who introduced a padding technique to create sufficient collapses for diago-
nalization. Subsequently, [SFM78, Žák83] improved the time hierarchy and introduced the delayed
diagonalization method.

The time hierarchy theorem for BPTIME was widely open until [Bar02] had the novel idea of
proving hierarchy theorems using optimal algorithms, where he showed a time hierarchy of the form
BPP/ log log n ̸⊆ BPTIME[nd]/ log n for every constant d ≥ 1. The obstacle of testing whether an
input satisfies the promise or not was bypassed by using the instance checker for EXP complete
problems. [FS04, GST11] improved the usage of advice bits from log logn to only 1 bit (i.e.,
BPP/1 ̸⊆ BPTIME[nd]/1) by a more careful padding argument.

Semantic classes with one-sided error posed additional challenges, as the instance checker for
EXP complete problems inherently relies on two-sided error. To that end, [FST05] obtained a
strong hierarchy theorem for RP/1 by using Levin’s optimal algorithm [Lev73] instead. [Per05,
vMP07] settled down this line of works by obtaining a strong time hierarchy theorem for every
reasonable semantic class with one bit of advice. The use of indirect diagonalization arguments
[Coo72, SFM78, Žák83] was also introduced in establishing time hierarchies for semantic classes
in the aforementioned previous works [FST05, vMP07]. Readers interested in a comprehensive
discussion of these results and techniques are encouraged to [vMP07].

All the above hierarchies with advice imply hierarchies for promise problems [San25]. This is
achieved by incorporating the advice into the input of the promise problem. We will present the
proof in the next section.

2 The time hierarchy theorem for pr-BPTIME

We will show two different proofs to the hierarchy theorem for promise-BPTIME. In addition, both
approaches extend naturally to the promise versions of several other semantic complexity classes,
including ZPTIME, RTIME, MATIME, AMTIME, and NTIME ∩ coNTIME. The first proof is based
on the delayed diagonalization argument [Žák83]. The second proof, credit to Santhanam [San25],
is obtained by a reduction to the BPTIME hierarchies with advice, which are well established in
the literature. We note that the hierarchy theorem obtained in the first way is tighter.
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2.1 Hierarchy by delayed diagonalization

The key observation in the first proof is that even though efficiently determining whether an input
satisfies the promise is infeasible, the delayed diagonalization technique can still be used to construct
a contradiction and establish the desired separations.

Theorem 1. For every time-constructible increasing t(n) ≥ n,

pr-BPTIME[t(n)] ⊊ pr-BPTIME[t(n+ 1) log t(n+ 1)]

Proof. We will construct an unary problem in pr-BPTIME[t(n + 1) log t(n + 1)] that is not in
pr-BPTIME[t(n)]. Since the language is unary its length determines the input.

We want to construct a promise problem L = (LY ES , LNO) that does not agree with the output
of any randomized Turing machine running in t(n) steps. To achieve that, we enumerate the Turing
machines. The enumeration is constructed inductively. Denote by h : N+ 7→ N+ the enumeration
function, which is a non-decreasing function. We let h(1) = h(2) = · · · = h(t(1) · 2t(1)) = 1. For
every i ≥ 2, let k be the smallest number (this number is the Turing machine description) such
that h(k) which is yet to be defined, we let h(k) = h(k+ 1) = · · · = h(t(k) · 2t(k)) = i. One can see
that the function h increases slowly, which is needed for its time constructibility. Note that each
h(k) can be computed in O(t(k + 1) log t(k + 1)) time.

For each i ≥ 1, denote by Mi the i-th randomized Turing machine, and still k to be the smallest
number such that h(k) = i. Viewing L as a boolean problem, we want to construct L such that at

least one among L(1k), . . . , L(1t(k)·2
t(k)

) disagrees with the corresponding Mi(1
k), . . . ,Mi(1

t(k)·2t(k));
i.e., for each i, the Turing machine Mi computes the problem L incorrectly in at least one input
length between k and t(k) · 2t(k) where k is a function of i. More specifically, we want to show that

there exists k ≤ r ≤ t(k) · 2t(k), such that one of the following happens

1. The input 1r cannot be computed in t(r) steps by Mi with accept or reject probability ≥ 2/3,
but 1r ∈ LY ES ∩ LNO.

2. Mi(1
r) rejects with ≥ 2/3 probability while 1r ∈ LY ES .

3. Mi(1
r) accepts with ≥ 2/3 probability while 1r ∈ LNO.

Construction of the adversarial L. The construction is adapted from [Žák83].
The promise is critically used to deal with the case that the acceptance probability is close to

1/2.
For every i, we construct part of the promise problem L. Fix an arbitrary i and k as above.

For every n = k, k + 1, . . . , t(k) · 2t(k) − 1, we let 1n ∈ LY ES if Mi(1
n+1) accepts in bounded time

with ≥ 2/3 probability, and 1n ∈ LNO if Mi(1
n+1) rejects in bounded time with ≥ 2/3 probability.

Additionally, 1t(k)·2
t(k) ∈ LY ES if Mi(1

k) rejects with ≥ 2/3 probability, 1t(k)·2
t(k) ∈ LNO otherwise.

By simulating Mi, computing L costs running time O(t(n+ 1) log t(n+ 1)) for n = k, . . . , t(k) ·
2t(k) − 1, and costs runtime O(n log n) when n = t(k) · 2t(k).

Now we are going to show that for every i ≥ 1, Mi does not compute L. For simplicity, we
say L(1r) = 1 if 1r ∈ LY ES , L(1

r) = 0 if 1r ∈ LNO, and L(1r) =⊥ otherwise. Similarly, we say
Mi(1

r) =⊥ if it runs in more than t(r) steps or if it accepts and rejects with probability < 2/3.
There are two cases.
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1. If for every k ≤ r ≤ t(k) · 2t(k), Mi(1
r) ̸=⊥, by our construction, it means that L(1k) =

L(1k+1) = · · · = L(1t(k)·2
t(k)

). However, since L(1t(k)·2
t(k)

) ̸= Mi(1
k) = L(1k), we get a

contradiction. This part is the same as in [Žák83].

2. Otherwise, we let r ≤ t(k) · 2t(k) to be the largest number such that Mi(1
r) =⊥. When

r = t(k) · 2t(k), L(1r) ̸=⊥ by the definition. When r < t(k) · 2t(k), L(1r) = Mi(1
r+1) ̸=⊥ by

our assumption. Therefore, Mi(1
r) =⊥≠ L(1r).

This shows that none of the enumerated randomized Turing machines Mi can compute L correctly.
Since L ∈ pr-BPTIME[t(n+ 1) log t(n+ 1)], we obtain the desired hierarchy theorem.

Corollary 2. Let pr-BPTIMEk[t(n)] denote the set of promise problems decidable by k-tape ran-
domized Turing machines in O(t(n)) time. For every k ≥ 2 and every k-tape time-constructible
functions t1(n), t2(n) ≥ n such that t1(n+ 1) = o(t2(n)),

pr-BPTIMEk[t1(n)] ⊊ pr-BPTIMEk[t2(n)]

The proof to Corollary 2 is almost identical to Theorem 1. We achieve a tighter time hierarchy
theorem by introducing the linear-time simulation to k-tape Turing machines [Für82].

2.2 Hierarchy from non-uniform BPTIME hierarchies

Alternatively, the hierarchy theorem also directly follows from the non-uniform BPTIME hierarchy
theorems [FS04, vMP07]. This proof is credited to Rahul Santhanam [San25].

Theorem 3 ([San25]). For every non-decreasing functions 0 ≤ a(n) ≤ b(n) ≤ n and every constant
c ≥ 1, if

BPP/a(n) ̸⊆ BPTIME[nc]/b(n)

then
pr-BPP ̸⊆ pr-BPTIME[nc]

Proof. Let L be a problem in BPP/a(n) − BPTIME[nc]/b(n). L ∈ BPP/a(n) implies that there
exists a polynomial-time randomized Turing machine M and advice s(n) ∈ {0, 1}a(n) such that M
with s(n) decides L within bounded error.

We construct a promise problem L′ = (L′
Y ES , L

′
NO) such that L′ ∈ pr-BPP − pr-BPTIME[nc].

L′
Y ES consists of all the pairs (x, s(|x|)) where x ∈ L and L′

NO consists of all the pairs (x, s(|x|))
where x ̸∈ L. Notice that the input length only increases by at most a factor of 2. Therefore, the
asymptotic running time remains the same.

L′ ∈ pr-BPP since the advice-taking Turing machine M computes L′ if we let M to take the
advice from the input.

Suppose for the sake of contradiction that there exists a randomized Turing machine M ′ that
computes L′ within time nc. It means that the same Turing machine given as advice s(n) also
computes L, which is a contradiction to L ̸∈ BPTIME[nc]/a(n) ⊆ BPTIME[nc]/b(n).

Combined with the BPTIME hierarchy theorem with advice BPP/1 ̸⊆ BPTIME[nc]/1 for every
c ≥ 1 [FS04, vMP07], we obtain the following.

Corollary 4. For every constant c ≥ 1,

pr-BPP ̸⊆ pr-BPTIME[nc]
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By the standard padding argument, we are able to strengthen it to the following.

Corollary 5. For every constants d > c ≥ 1,

pr-BPTIME[nd] ̸⊆ pr-BPTIME[nc]

Proof. Suppose for the sake of contradiction that there exists d > c ≥ 1 such that pr-BPTIME[nd] =
pr-BPTIME[nc].

This combined with the standard padding argument imply that for every constant r > d,

pr-BPTIME[nr] = pr-BPTIME[nrc/d] = pr-BPTIME[nrc2/d2 ] = · · · = pr-BPTIME[nc]

and hence pr-BPP = pr-BPTIME[nc], a contradiction to Corollary 4.

More specifically, for every problem L ∈ pr-BPTIME[nr], we construct a problem L′ = {(x, 1|x|r/d) :
x ∈ L} ∈ pr-BPTIME[nd]. By our assumption, L′ ∈ pr-BPTIME[nd] = pr-BPTIME[nc]. There-
fore, L has an nrc/d-time algorithm. By repeating this argument finitely many times, we get
L ∈ pr-BPTIME[nc].
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Appendix

A The “gap” in adapting the argument “from complete problem
to hierarchy for pr-BPTIME”

It is well-known that the existence of BPP-complete problems implies time hierarchy theorems for
BPTIME [Bar02].

Theorem 6 (Theorem 3.6 of [Bar02]). Suppose that BPP has a complete problem.1 Then there
exists a constant c such that for every time constructible t : N 7→ N it holds that BPTIME[t(n)] ⊊
BPTIME[(t(n))c].

1We require a more restricted form of completeness. We say a problem L is BPP-complete if for every problem
L′ ∈ BPP, there is a deterministic polynomial-time reduction from L′ to L. Moreover, we require that for every
time-constructible t(n) ≥ n, there exists b ≥ 1 such that the reduction from any L′ ∈ BPTIME[t(n)] runs in time
O(t(n)b). This is not a strict requirement. Please refer to [Bar02] for more discussions.
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Together with a padding argument, the above theorem also implies that under this assumption
BPTIME[nd] ⊊ BPTIME[nd+1] for every constant d ≥ 1.

To prove a hierarchy theorem for pr-BPTIME, a natural approach is to combine Theorem 6 with
the fact that there is a complete problem for pr-BPP. However, there is a gap in adapting the proof
when we replace BPP by pr-BPP and BPTIME by pr-BPTIME in the statement.

We will first go through the proof to the above theorem, and then point out the missing part
in its promise version.

Proof. Let L be the BPP-complete problem, and ML be a probabilistic machine that computes L
in time na for some constant a. As we specified in the footnote, there exists a constant b ≥ 1 such
that for every L′ ∈ BPTIME[t(n)], the deterministic reduction from L′ to L runs in time O(t(n)b).
To apply the diagonalization argument, instead of enumerating randomized Turing machines, we
enumerate deterministic reductions to L. Specifically, denote by M t

i the i-th deterministic machine
restricted to run for at most t steps. The following problem K is computable in BPTIME[t(n)O(ab)]
but not in BPTIME[t(n)].

K : x ∈ K iff M t(|x|)b
x (x) ̸∈ L

The algorithm for K is simply 1−ML(M
t(|x|)b
x (x)), which runs in t(|x|)O(ab) steps.

Suppose for the sake of contradiction that K ∈ BPTIME[t(n)]. By the completeness of L, there

exists an integer i such that for every x ∈ {0, 1}∗, x ∈ K ⇐⇒ M
t(|x|)b
i (x) ∈ L. In particular for

x = i it holds that i ∈ K ⇐⇒ M
t(|i|)b
i (i) ∈ L. Yet by the definition of K this happens if and only

if i ̸∈ K, and so we get a contradiction.

The last step of the above proof can fail in the promise setting (i.e. we do not know whether
it is true). Denote by K = (KY ES ,KNO) and L = (LY ES , LNO) the promise problems defined

in the a similar way as above. We still have i ∈ KY ES ⇐⇒ M
t(|i|)b
i (i) ∈ LNO and i ∈ KNO ⇐⇒

M
t(|i|)b
i (i) ∈ LY ES , in which case the above proof works. However, when i ̸∈ KY ES ∪ KNO,

M
t(|i|)b
i (i) ̸∈ LY ES ∪LNO. The negation of an output that lies outside the promise remains outside

the promise, and no contradiction appears to arise.
We note that the approach described above represents a straightforward adaptation of the proof

of Theorem 6 to the promise setting. However, there may exist a smarter way that circumvents
this gap that the author is not aware of.
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