Electronic Colloquium on Computational Complexity, Report No. 5 (2025)

SDPs and Robust Satisfiability of Promise CSP*

Joshua Brakensiek Venkatesan Guruswami * Sai Sandeep®

Abstract

For a constraint satisfaction problem (CSP), a robust satisfaction algorithm is one that outputs an
assignment satisfying most of the constraints on instances that are near-satisfiable. It is known that the
CSPs that admit efficient robust satisfaction algorithms are precisely those of bounded width, i.e., CSPs
whose satisfiability can be checked by a simple local consistency algorithm (eg., 2-SAT or Horn-SAT in
the Boolean case). While the exact satisfiability of a bounded width CSP can be checked by combinato-
rial algorithms, the robust algorithm is based on rounding a canonical Semidefinite Programming (SDP)
relaxation.

In this work, we initiate the study of robust satisfaction algorithms for promise CSPs, which are a
vast generalization of CSPs that have received much attention recently. The motivation is to extend the
theory beyond CSPs, as well as to better understand the power of SDPs. We present robust SDP rounding
algorithms under some general conditions, namely the existence of particular high-dimensional Boolean
symmetries known as majority or alternating threshold polymorphisms. On the hardness front, we prove
that the lack of such polymorphisms makes the PCSP hard for all pairs of symmetric Boolean predicates.
Our approach relies on SDP integrality gaps argued via the absence of certain colorings of the sphere,
with connections to sphere Ramsey theory.

We conjecture that PCSPs with robust satisfaction algorithms are precisely those for which the fea-
sibility of the canonical SDP implies (exact) satisfiability. We also give a precise algebraic condition,
known as a minion characterization, of which PCSPs have the latter property.

*An abridged preliminary version of this paper appeared in the proceedings of the 2023 Symposium on the Theory of Computing
(STOC 23). This version is significantly expanded with numerous revisions and corrections.

TUniversity of California, Berkeley, josh.brakensiek@berkeley.edu. Part of this work was performed while affiliated with
Stanford University and supported in part by an NSF Graduate Research Fellowship and a Microsoft Research PhD Fellowship.

#University of California, Berkeley. venkatg@berkeley.edu. Research supported in part by NSF grants CCF-2228287 and
CCF-2211972 and a Simons Investigator award.

$University of California, Berkeley. saisandeep@berkeley.edu. Research supported in part by NSF grant CCF-2228287.

ISSN 1433-8092

Contents

1

Introduction 1
1.1 Our results: Robust algorithms and hardness 3
1.2 Minion characterization of basic SDP L oo 5
1.3 Connections to Discrete Analysis 6
Preliminaries 7
2.1 (P)CSP instances, templates, and polymorphisms 8
22 ThebasicSDP e 12
2.3 Gram and orthogonal matrices 15
2.4 Elementary properties of Gaussians oL 16
Overview of Techniques 18
3.1 Robust algorithm for MAJ polymorphisms 18
3.2 Robust algorithm for AT polymorphisms L L. 20
3.3 UG-hardness of robust algorithms, 21
Robust Algorithms 23
4.1 CMM is a robust algorithm when MAJ is a polymorphism 23
4.2 Warm-up for AT: Random threshold rounding algorithm for Dual-Horn SAT 29
4.3 Algorithm for AT e 31
44 Proofof Lemma4.9 35
Unique Games based Hardness 36
5.1 Sphere Ramsey theory e 39
5.2 Absence of sphere coloring via sphere Ramsey theory 42
5.3 Absence of sphere coloring via connectivity of configurations 47
The SDP minion 51
6.1 Minion preliminaries L. e e e e e 51
6.2 SDP minion definition L e 54
6.3 OnthebasicSDP e 55
6.4 From minion homomorphism to SDP rounding algorithm 58
6.5 From SDP rounding algorithm to minion homomorphism 59
Conclusion 60
Efficient SDP Solution 65
Missing Proofs 67
B.1 Missing proofs from Section4 67
B.2 Missing proofs from Section 5 70

1 Introduction

Horn-SAT and 2-SAT are Boolean constraint satisfaction problems (CSPs) that admit simple combinatorial
algorithms for satisfiability. They are both examples of bounded width CSPs: the existence of a locally con-
sistent set of assignments (which satisfy all local constraints involving some bounded number of variables,
and which are consistent on the intersections) implies the existence of a global satisfying assignment.

While the simple local propagation algorithms for Horn-SAT and 2-SAT work when the instance is per-
fectly satisfiable, they are not robust to errors—if the given instance is almost satisfiable, the local consis-
tency based algorithms do not guarantee solutions that satisfy almost all the constraints. In a beautiful work,
Zwick [Zwi98] initiated the study of finding “robust” algorithms for CSPs, namely algorithms that output
solutions satisfying 1 — f(¢) fraction of the constraints when the instance is promised to be 1 — € satisfiable,
where f(€) — 0 as € — 0. Zwick obtained robust algorithms for 2-SAT using Semidefinite Programming
(SDP) rounding and for Horn-SAT based on rounding a Linear Program (LP). The PCP theorem together
with Schaefer’s reductions [Sch78] shows that Boolean CSPs that are NP-Hard are also APX-hard with
perfect completeness, which in particular means that they do not admit robust satisfiability algorithms. The
only other interesting Boolean CSP besides Horn-SAT and 2-SAT for which satisfiability is polynomial-time
decidable is Linear Equations modulo 2. Hastad [HasO1] in his seminal work showed that even for 3-LIN
(when all equations involve just three variables), for every €, > 0, it is NP-Hard to output a solution sat-
isfying % + 0 fraction of the constraints even when the instance is guaranteed to have a solution satisfying
(1 — ¢€) fraction of the constraints.

Unlike Horn-SAT or 2-SAT, the satisfiability algorithm for 3-LIN is not local, and 3-LIN does not have
bounded width. Together with Schaefer’s dichotomy theorem [Sch78], this yields that for Boolean CSPs,
bounded width characterizes robust satisfiability. For CSPs over general domains, a landmark result in the
algebraic approach to CSP due to Barto and Kozik [BK14] showed that CSPs that are not bounded width can
express linear equations. A reduction from Hastad’s result then shows that CSPs that are not bounded width
do not admit robust algorithms. Guruswami and Zhou [GZ12] conjectured the converse—namely that all
bounded width CSPs, over any domain, admit robust algorithms. Another work by Barto and Kozik [BK16]
resolved this conjecture in the affirmative, thus giving a full characterization of CSPs that have robust
algorithms.

In this work, we study robust algorithms for the class of Promise Constraint Satisfaction Problems (PC-
SPs). PCSPs are a generalization of CSPs where each constraint has a strong form and a weak form. Given
an instance that is promised to have a solution satisfying the stronger form of the constraints, the objective is
to find a solution satisfying the weaker form of the constraints. A classic example of PCSPs is (1-in-3-SAT,
NAE-3-SAT). While both the underlying CSPs are NP-Hard, the resulting PCSP does have a polynomial-
time algorithm: given an instance of 1-in-3-SAT that is promised to be satisfiable, we can find an assignment
to the variables in polynomial time that satisfies each constraint as an NAE-3-SAT instance. PCSPs are a
vast generalization of CSPs and capture key problems such as approximate graph and hypergraph coloring.

Since their formal introduction in [AGH17] and subsequent detailed study in [BG21] and [BBKO21],
there has been a flurry of recent works on PCSPs [AB21, AD22, ABP20, BBB21, BK22, BG19, BG20,
BGWZ20,BGS23,BWZ21,CZ23a]. These have led to a rich and still developing theory aimed at classifying
the complexity of PCSPs, by tying their (in)tractability to the symmetries associated with their defining re-
lations, and understanding the power and limitations of various algorithmic approaches influential for CSPs
in the context of PCSPs.

Against this backdrop, we initiate the study of robust algorithms for PCSPs. The motivation is two-

fold. First, as algorithms resilient to a small noise in the input, robust algorithms are important in their own
right. Second, in the CSP world, the existence of efficient robust algorithms is equivalent to having bounded
width and being decided by O(1) levels of Sherali Adams for CSPs [TZ17]. Tt is also proven [TZ18] to be
equivalent to being decided by the basic semidefinite programming (SDP) relaxation [Rag08]. Here, we say
that the basic SDP decides a CSP if for every instance @ of the CSP, ® has an assignment satisfying all the
constraints if and only if there is a vector solution satisfying all the constraints in the SDP relaxation. For
CSPs, therefore, the study of robust algorithms sheds light on, and in fact, precisely captures, the power of
the most popular algorithmic approaches. Robust algorithms for PCSPs provide a rich context to understand
how well these algorithmic tools generalize beyond CSPs.

The main question that we are interested in this work is the following.

Question 1.1. Which PCSPs admit polynomial time robust algorithms?

As is the case with CSPs, a natural approach to characterize which PCSPs have robust algorithms is via
the bounded width of PCSPs. However, it turns out that bounded width for PCSPs is weaker than having
robust algorithms. Concretely, Atserias and Dalmau [AD22] have proved recently that the PCSP (1-in-3-
SAT, NAE-3-SAT) does not have bounded width. Our work implies there is a robust algorithm for this PCSP.
Atserias and Dalmau also proved that this PCSP is decided by O(1) levels of Sherali-Adams, and as we shall
prove later, it is also decided by the basic SDP.! On the other hand, Raghavendra’s framework of converting
integrality gaps of CSPs to the hardness of approximation applies to PCSPs as well [Rag08]. In particular,
his result implies that every PCSP that is not decided by the basic SDP does not admit a polynomial-time
robust algorithm, assuming the Unique Games Conjecture [KhoO2a]. This gives a powerful tool to show
the absence of a polynomial time robust algorithm for a PCSP (albeit under the Unique Games Conjecture):
showing an integrality gap for its basic SDP relaxation. With this connection, Question 1.1 naturally leads
to the following question.

Question 1.2. Which PCSPs are decided by the basic SDP relaxation?

We make progress on Question 1.1 and Question 1.2 by studying the polymorphisms of PCSPs. Poly-
morphisms are closure properties of satisfying solutions to (Promise) CSPs. As a concrete example, consider
the 2-SAT CSP: given an instance ® of 2-SAT over n variables x;,x3,...,X,, suppose that u,v,w are three
assignments to these variables satisfying all the constraints in @, then the assignment z that is coordinatewise
Majority operation on three bits, i.e., z; = MAJ(u;,v;,w;) for every i € [n], also satisfies all the constraints
in ®. This shows that the Majority function on three variables is a polymorphism of the 2-SAT CSP. More
generally, the Majority function on any odd number of variables is a polymorphism of the 2-SAT CSP. Sim-
ilarly, the Parity function on any odd number of variables is a polymorphism of 3-LIN. On the other hand,
there are no non-trivial polymorphisms for 3-SAT. Polymorphisms are the central objects in the universal
algebraic approach to CSPs [JCGY97,Jea98, BJK05, BKW17,Bull7,Zhu20], which has then been extended
to PCSPs [BG21,BBKO21].

At a high level, the existence of non-trivial polymorphisms implies algorithms, and vice-versa. The key
challenge is to precisely characterize which polymorphisms lead to algorithms. It is known that the poly-
morphism family of a PCSP fully captures its computational complexity, i.e., if there are promise templates
[,I” (that is, a set of pairs of relations) such that the polymorphism family of I, Pol(I") is contained in
Pol(I""), then PCSP(I") (the decision problem for PCSP instances using relations from I') is formally easier

"'We say that the basic SDP decides a PCSP (formally defined in Section 2) if for every instance ® of the PCSP, if there is a
vector solution satisfying all the strong constraints in @, then, ® has an assignment satisfying all the weak constraints.

than PCSP(T'), i.e., there is a gadget reduction from PCSP(I”) to PCSP(I"). It turns out that this gadget
reduction preserves the existence of robust algorithms as well. This was used by Dalmau, Krokhin [DK13]
in the CSP setting, which we extend to PCSPs in Proposition 2.10). Thus, Question 1.1 and Question 1.2 can
be rephrased as Which polymorphisms lead to robust algorithms for PCSPs? Which polymorphisms lead to
being decided by the basic SDP relaxation?

We make progress on these questions on two fronts: first, for a large class of Boolean symmetric> PCSPs
where we allow negation of variables, we characterize the polymorphisms that lead to robust algorithms. Our
algorithms are based on novel rounding schemes for the basic SDP relaxation, and our hardness results are
proved using integrality gaps for the basic SDP relaxation. Second, towards understanding the power of
basic SDP for promise CSPs, we introduce a minion .# and show that PCSP(I") can be decided by basic
SDP if and only if there is a minion homomorphism from .# to Pol(T).

1.1 Our results: Robust algorithms and hardness

As is the case with CSPs, if a PCSP is NP-Hard, then it does not admit polynomial time robust algorithms,
assuming P # NP. Thus, Question 1.1 is only relevant for PCSPs that can be solved in polynomial time.
A large class of PCSPs for which polynomial time solvability has been fully characterized is the problems
based on Boolean symmetric promise templates. In [BG21], the authors showed that a Boolean symmetric
PCSP with folding (i.e., we allow negating the variables) can be solved in polynomial time if and only if
it contains at least one of Alternate-Threshold (AT), Majority (MAJ) or Parity polymorphisms of all odd
arities. Later an analogous result was shown without the folding restriction in [FKOS19] where in addition
one needs to consider all families of threshold polymorphisms.

Robust algorithms. Our main algorithmic result shows that in two of these cases when the PCSP has MAJ
or AT polymorphisms of all odd arities, the PCSP admits a robust algorithm. More strongly, we allow our
instances to have negated variables and constnat literals, which we call iPCSP, short for folded, idempotent
PCSP.

Theorem 1.3. Let I" be a Boolean promise template. If Pol(I") contains AT or MAJ polymorphisms of all
odd arities. Then, the robust version of fiPCSP(I') admits a polynomial time algorithm. In particular,

1. IfPol(T") contains MAJ polymorphisms of all odd arities then there exists a polynomial time algorithm
that given an instance of fiPCSP(T") and € > 0 that is promised to have a solution satisfying 1 — &
fraction of the constraints, outputs a solution satisfying 1 — 0(8%) fraction of the constraints.’

2. If Pol(T') contains AT polymorphisms of all odd arities then there exists a polynomial time algo-
loglogé
logé
fiPCSP(T") promised to have a solution satisfying 1 — € fraction of the constraints.

rithm that outputs a solution satisfying 1 — O () fraction of the constraints on an instance of

Similar to the robust algorithms for CSPs [Zwi98, CMMO09, BK16], our robust algorithms for promise
templates with MAJ and AT polymorphisms are based on rounding the basic SDP relaxation. The main
challenge here is to obtain robust algorithms for a large class of promise template without access to the
predicates and just using the properties of their polymorphisms. We achieve this using a combination of

2 A predicate P is symmetric if for every satisfying assignment (x1,...,X,) to P, any permutation of that assignment also satisfies
P. For a Boolean predicate whether an assignment satisfies a predicate depends only on the Hamming weight. A PCSP is said to
be symmetric if all the predicates in the template are symmetric.

3Here, O hides multiplicative poly logarithmic factors.

polymorphic tools where we use the fact that the promise template contains AT or MAJ polymorphisms to
deduce structural properties of the underlying predicate pairs, and SDP rounding tools where we then use
these structural properties to get a robust algorithm.

For MAJ polymorphisms, we first reduce the problem to the case when every weak predicate is of the
form k-SAT. We then show that the robust algorithm of Charikar, Makarychev, and Makarychev [CMMO09]
for the 2-SAT predicate generalizes to these classes of promise templates. While the analysis of [CMMO09]
is tailored towards 2-SAT, we give a completely different analysis that is not based on predicates and instead
uses the existence of MAJ polymorphisms as a black box. Similarly, for the AT polymorphisms, we first
use the properties of AT polymorphisms to reduce to the weighted hyperplane promise template that gen-
eralizes the (1-in-3-SAT, NAE-3-SAT) promise template. We then give a robust algorithm for the weighted
hyperplane promise template based on a random threshold rounding technique. A detailed overview of our
algorithmic ideas appears in Sections 3.1 and 3.2.

Hardness results. Unlike our robust algorithms, which work for general Boolean promise template with
the said polymorphisms, in our hardness results, we rely on the symmetry of the predicates of the promise
template. Furthermore, we assume that the promise template contains a single predicate pair I' = (P, Q)
that does not admit AT or MAJ polymorphisms of all odd arities. We show that for such Boolean symmetric
folded PCSPs, the basic SDP relaxation has an integrality gap with perfect completeness, i.e., there is a finite
instance on which the SDP relaxation satisfies all the strong constraints with zero error but the instance is
not satisfiable even using the weak constraints. By Raghavendra’s framework connecting SDP gaps and
Unique-Games hardness [Rag08], the integrality gap rules out robust satisfaction algorithms (under the
Unique Games conjecture (UGC) [Kho02a]).

Theorem 1.4. Let "= {(P,Q)} be a promise template consisting of a pair of symmetric Boolean predicates
such that ATy, ,MAJ, ¢ Pol(T") for some odd integers L,L,. Then, under the UGC, unless P = NP, there
is no polynomial time robust algorithm for the PCSP associated with iPCSP(T").

Similar to our algorithmic result, we first use the properties of the polymorphisms to reduce to a small
set of promise templates. We obtain integrality gaps for these fiPCSPs for the basic SDP relaxation, which
then implies robust hardness under the UGC. For CSPs, strong integrality gaps [Sch08, Tul09, STT07] are
known for the basic SDP relaxation and its strengthenings such as the Lasserre hierarchy, almost all of them
being random constructions. For the case of PCSPs, analyzing the random constructions is trickier since
we need to sample the constraints with a precise density such that there is a vector solution to the strong
constraints, but the weak constraints are not satisfied. Instead, we take the opposite approach where we
first construct the vector solution and then add all the constraints that the vector solution satisfies. This is
similar in spirit to Feige and Schechtman’s integrality gap [FSO1] for MAX-CUT where they first sampled
n uniformly random points on a d-dimensional sphere and then added edges between every pair of points
whose distance falls within a preset range.

In particular, we first construct an infinite integrality gap instance where the vertex set corresponds to
the n-dimensional sphere S” for a large integer n and there are constraints for every tuple of vertices whose
corresponding vectors satisfy the SDP constraints. For the set of promise templates that we study, we show
that this instance is not satisfiable, even using weak constraints. A compactness argument then implies the
existence of a finite integrality gap instance. As we shall see later, by using our minion characterization
result, showing that the infinite instance has no satisfiable assignment is a necessary step to obtain a finite
integrality gap instance. Toward showing that the infinite instance does not have an assignment satisfying
all the weak constraints, we study colorings of the sphere f:S" — {—1,41} and use a result of Matousek
and Rodl [MR9S5] from sphere Ramsey theory where the existence of monochromatic configurations in

4

colorings of the sphere are studied. While their result directly applies to some promise templates, for others,
we combine their result with new techniques to prove the existence of structured configurations in sphere
colorings. A more detailed overview appears in Section 3.3.

The power of SDPs and robust PCSP algorithms. Both our algorithmic and hardness results crucially
use the basic SDP relaxation. As our algorithms for the AT and MAJ polymorphisms are based on rounding
the basic SDP, we get that every Boolean promise template that contains AT or MAJ polymorphisms is
decided by the basic SDP. On the hardness front, Theorem 1.4, shows that many Boolean symmetric folded
PCSPs without AT or MAJ polymorphisms cannot be decided by the basic SDP. This suggests a more
general relation between the basic SDP and robust algorithms for PCSPs. At an intuitive level, for both the
existence of robust algorithms and being decided by the basic SDP, the underlying requirement seems to
be the existence of polymorphism families that are robust to noise. While our results show that this is true
for the PCSPs that we study in this paper (noise stability is one crucial aspect that distinguishes MAJ and
AT from Parity.), we believe this is a more general phenomenon and motivates us to make the following
conjecture.

Conjecture 1.5. A promise template I" has a polynomial time robust algorithm if PCSP(T') is decided by the
basic SDP relaxation. Else, there is no polynomial time robust algorithm for PCSP(I"), unless P = NP.

As mentioned earlier, if there is an integrality gap for I" with respect to the basic SDP relaxation, then
by Raghavendra’s [Rag08] result, we get that I" does not have a polynomial time robust algorithm, assuming
the Unique Games Conjecture. This already proves one direction of Conjecture 1.5. The other direction
is more interesting: can we obtain robust algorithms for PCSPs just using the fact that basic SDP decides
them? We remind the reader that the conjecture is already proven for CSPs, where the existence of robust
algorithms [BK16] and decidability by basic SDP [TZ18] are both shown to be equivalent to having bounded
width.

1.2 Minion characterization of basic SDP

In addition to our concrete characterization of robust algorithms for a subfamily of PCSPs, we also present
a novel algebraic characterization of which PCSPs can be decided via basic SDP. Originally, in the study of
CSPs, such algebraic characterizations were structured as follows (e.g., [Bull7,Zhu20]).

o “Algorithm <f solves CSP(I'), if and only if there is a polymorphism f € Pol(I") with specific proper-
ties.”

Since the early days of PCSPs, it has been known that a single polymorphism cannot dictate hardness
(c.f., [BG21]), and thus one must instead consider a sequence of polymorphisms (e.g., [BGWZZO]):

o “Algorithm o solves PCSP(L'), if and only if there is an infinite sequence of polymorphism fi, fa,... €
Pol(T") with specific properties.”

However, in many cases, such a characterization is unfeasible or unwieldy. Instead, a more general ap-
proach, pioneered by [BBKO21], captures the structure of polymorphism via a minion (formally defined in
Section 6). A key property of the polymorphisms of promise template I" is that the function family Pol(I")
is closed under taking minors*. A minion is an abstraction based on this: it is a collection of objects each

4A function f : D'} — D of arity n is said to be a minor of another function g : D' — D, of arity m with respect to a mapping
7 [m] — [n] such that f(x1,x2,....Xn) = g(Xz(1)sXz(2): - - - Xn(m)) fOr every x € Df.

with an arity, and for every object a of arity m, and a mapping 7 : [m] — [n], there is a unique object b of
arity n that is said to be a minor of a with respect to . A minion homomorphism is a mapping between
minions that preserves the minor operation. A powerful way to capture the limits of algorithms for PCSPs
is via minion homomorphisms:

» “Algorithm <f solves PCSP(I'), if and only if there is minion homomorphism from .# ; to Pol(I").”

Many recent papers [BGWZ20, CZ23a, CZ22] have proven such characterizations in various contexts.
Our contribution to this line of work is showing that the basic SDP can be captured by a minion, which we
call %SDP-

Theorem 1.6. The basic SDP decides PCSP(I') if and only if there is a minion homomorphism from #spp
to Pol(T").

We note that a similar minion was concurrently and independently discovered by Ciardo-Zivny [CZ23b].
The theorem applies equally to Boolean and non-Boolean PCSPs.

The construction of the .#Zspp minion is inspired by the vector interpretation of solutions to the basic
SDP. Each object in the minion is a collection of orthogonal vectors which sum to a reference vector vy. The
minors involve adding groups of vectors together. Having a minion homomorphism from .#spp to Pol(T")
implies that there are polymorphisms of I whose minors behave exactly like combining orthogonal vectors.

Proving Theorem 1.6 has a few technical hurdles. One challenge is that SDP solutions may require vec-
tors of an arbitrarily large dimension. For these arbitrarily-large dimensional relationships to be captured in
our minion, we have that the families of vectors making up .#spp reside in a (countably) infinite-dimensional
vector space. Similar techniques have been used in other minion constructions [CZ23a, CZ22].

Another challenge that appears specifically unique to this paper is that a Basic SDP solution gives a
vector corresponding to each variable, but for the proof to go through additional vectors are needed which
correspond to the constraints. (The variable vectors are "projections” of the constraint vectors.) Obtaining
such constraints would typically be done via Sum-of-Squares or a related routine, but we prove that including
such vector constraints are without loss of generality. That is, any basic SDP solution can be extended to
a solution that includes constraint vectors without modifying the original variable vectors. This gives us
enough vector structure to prove that the minion homomorphism corresponds to the basic SDP solution.

Relation with sphere colorings. By a result of [BBKO21], there is a minion homomorphism .Zspp —
Pol(T") if and only if there is an assignment satisfying all the constraints in a “universal” instance of PCSP(I")
known as a free structure. In the case that I is a Boolean folded PCSP, this free structure for .#gspp turns out
to be an instance where every possible unit vector is a variable. The constraints correspond to collections
of vectors that satisfy the corresponding basic SDP constraints. This is precisely the same infinite instance
that we use to show integrality gaps. Thus, the result of [BBKO21] translates to Boolean promise templates
as stating that a Boolean folded PCSP(I") is decided by the basic SDP if and only if there is an assignment
satisfying all the constraints in the infinite integrality gap instance. For the general theory of approximation
of basic SDPs, similar constructs with sphere coloring being a ‘universal’ gap have appeared in the literature
(eg. in [BHPZ21]).

1.3 Connections to Discrete Analysis

Before concluding the introduction, we want to outline some viewpoints related to Discrete Analysis, and
specifically the analysis of Boolean functions, that underlie the polymorphic approach to CSPs in general,
and the study of robust satisfiability in particular.

First, polymorphisms embody a discrete analogue of convexity, as they are operations under which the
space of satisfying assignments to a CSP are closed. The existence of certain symmetric Boolean functions
(such as OR, Majority, Parity) as polymorphisms drives the tractable cases of Boolean CSP [Sch78, Che(09].
The study of Boolean promise CSPs is much richer, and includes polymorphisms such as the Alternating
Threshold polymorphism which govern efficient satisfiability algorithms [BG21,BGWZ20, BBKO21].

Among variants of promise CSPs, robust PCSPs (and more broadly approximate PCSPs) are particularly
suited to the tools of discrete analysis. Satisfiability algorithms can be very brittle to noise, with Gaussian
elimination to solve linear equations being the quintessential example. In fact this is inherent as solving
linear systems becomes highly intractable under noise [Has01], and this can be attributed to the fact that the
underlying polymorphism (Parity function) is highly sensitive to noise. The robustness criterion seems to
require that the associated polymorphisms are essentially “smooth” objects (i.e., concentrate on low-degree
Fourier coefficients and demonstrate some noise stability). Understanding such phenomenon has been piv-
otal in developments to the theory of approximation algorithms over the last few decades, including the
formulation of the Unique Games Conjecture [Kho02b, KKMO07, MOO10, Mos10,0’D14, KMS18]. The
more brittle algebraic methods used throughout the study of (P)CSPs therefore seem less useful. This is
in part why the breakthrough of Raghavendra [Rag08] for approximate CSP satisfaibility algorithms relied
heavily on analytical methods whereas the proof of the CSP Dichotomy Theorem needed a number of break-
throughs in universal algebra [JCG97,Jea98, BJK05, BKW17,Bull7,Zhu20]. Even with this “smoothness”
condition simplifying the landscape, proving a dichotomy for all promise CSPs will be much trickier than
the corresponding result for CSPs due to a much richer family of smooth polymorphisms such as Alternating
Threshold. Thus, robust algorithms for promise CSPs provides an excellent avenue to further develop the
analytical machinery that has shaped the approximation algorithms field in CSPs, and potentially uncover
deeper connections with universal algebra tools.

As mentioned earlier, our hardness results are obtained by connections to sphere Ramsey theory, and
specifically the existence of certain monochromatic vector configurations in colorings of high-dimensional
spheres. Such continuous analogs of questions normally posed in discrete/combinatorial settings seem inter-
esting in their own right, and hold many exciting challenges. For instance, are there density analogs of such
sphere Ramsey statements which bound the measure of subsets that avoid monochromatic configurations
(see Section 7 for a discussion)?

Organization of the paper. We first start by introducing formal definitions and some general observations
in Section 2 (experts familiar with SDPs and CSPs can skip or just skim this section). We then give a
detailed technical overview of our results in Section 3. We provide our algorithmic results (Theorem 1.3)
in Section 4 and prove the hardness results (Theorem 1.4) in Section 5. We propose and establish properties
of the basic SDP minion in Section 6. Finally, we conclude in Section 7 with several intriguing challenges
and open problems raised by our work.

Acknowledgment. We thank anonymous reviewers for numerous helpful comments. We thank Ryan
O’Donnell and Anupam Gupta for helpful discussions on SDP solvability which led to Appendix A.

2 Preliminaries

Notations. We use [r] to denote the set {1,2,...,n}. Welet #:={—1,+1} A predicate or a relation over a
domain D of arity k > 0 is a subset of D¥. For a relation P C DF of arity k, we abuse the notation and use P
both as a subset of D, and also as a function P : D¥ — {0, 1}. We use boldface letters to denote vectors and

roman letters to denote their elements, e.g., X = (x1,%2,...,x). We have S" := {v € R""! : ||v||, = 1}. For
a vector v € DY and a function f : Dy — Dy, we use f(v) € D5 to denote (f(v1), f(v2),...,f(vk)).

For a vector x € #*, we use hw(x) to denote the number of +1s in x, i.e., hw(x) = % For

S C {0,1,...,k}, we use Ham; S to denote {x € {—1,+1}*: hw(x) € S}. We use NAE; to denote the set
Hamy{1,2,...,k— 1}, and k-SAT to denote the set Ham;{1,2,... k}. For vectors x,y € R", we use (X,y)
to denote Y, x;y;.

2.1 (P)CSP instances, templates, and polymorphisms

We now work toward defining the main computational problem we seek to study: symmetric idempotent
Boolean folded promise constraint satisfaction problems (PCSP) as well as the main tool we shall use for
analyzing the complexity of such problems: polymorphisms. To build toward these definitions, we begin
by defining constraint satisfaction problems (CSP). The main “parameter” defining a (P)CSP is its set of
allowable constraint types, which we call a template. We can then use the template to build instances of the
(P)CSP which have associated assignments for which one can define multiple computational problems.

Definition 2.1 (CSP template/instance/assignment). We define a CSP template to be a finite set of predicates
I'={P,Ps,...,P} over a finite domain D, where for all i € [(], P; has arity k; > 0. An instance ® = (V, %)
of the constraint satisfaction problem (CSP) associated with the template T (i.e., “® is an instance of
CSP(I')”), consists of a variable set V and a constraint set €. The variable set consists of n variables
V ={ui,uz,...,uy}. The m constraints € = {Cy,Cs,...,Cy} each consist of a tuple of variables C; =
(wjn,ujo,..., uj’lj) € VY and an associated predicate PYY) € T of the same arity lj. An assignment 6 :V — D
is said to satisfy the constraint C; if 6(C;) = (0(uj1),0(u;2),...,0(u;;,)) € PU),

We now define two computational problems associated with CSP(I") where an instance ® of CSP(I') is
given as input.

Definition 2.2 (CSP decision/search problems). In the decision version of CSP(I"), the objective is to decide
if there is an assignment to a given instance of CSP(I') that satisfies all the constraints. In the search version
of CSP(I'), the objective is to output an assignment to a given instance of CSP(I') that satisfies all the
constraints.

We next define promise constraint satisfaction problems (PCSP). We begin by defining what a promise
template is.’

Definition 2.3 (promise template). Let Dy,D, be finite domains. A promise template consists of a finite
collection T = {(P1,01),(P2,02),...,(P,Qy)} consists of pairs of predicates, where for all i € [{], P; has
arity k; > 0 over domain Dy and each Q; has arity k; over domain D,. Furthermore, we assert there exists
a map h: Dy — Dy such that for all i € [I] and x € lei, x € P, implies h(x) € Q;. In other words, h is a
homomorphism from P; to Q; for all i € [I].

We say that (D, D) is the domain of the promise template I".

Definition 2.4 (PCSP instance/assignments). In an instance ® = (V,€’) of PCSP(I"), we have a set of n
variables V. ={uy,uy, ... ,u,} and m constraints € = {Cy,Ca,...,Cp} each consisting of a tuple of variables
Ci=(uj1,uj2,... ,uij) € V4 and an associated predicate pair (P(j) , Q(j)) € I of the same arity l;.

SOther works, such as [BBKO21], parameterize the promise CSP as a pair of a relational structures with a homomorphism
between them.

A P-assignment is a map o) : V — Dy and a Q-assignment is a map 6, : V — D,. A P-assignment O} is
said to strongly satisfy the constraint C; if 6(C;) € PY), and a Q-assignment o, is said to weakly satisfy the
constraint C; if 5(C;) € QU).

Crucially, due to the existence of the homomorphism /4 connecting each P, with its corresponding Q;,
any P-assignment strongly satisfying a collection of constraint can be converted into a Q-assignment weakly
satisfying that those constraints by composing 4 with the P-assignment. If I' = { (P, Q) } consists a single pair
of predicates, we often state I' = (P, Q) and write PCSP(P, Q) for PCSP(I"). The following are computational
problems associated with instances of PCSP(I").

Definition 2.5 (PCSP problems). In the decision version of PCSP(T"), given an input instance ® = (V,€)
of PCSP(T'), the objective is to distinguish between the two cases.

1. There is a P-assignment o1 : V — D that strongly satisfies all the constraints.

2. There is no Q-assignment 0, : V. — D; that weakly satisfies all the constraints.

In the search version of PCSP(T), given an input instance ® = (V,%€) of PCSP(I") with the promise
that there is an assignment o1 : V. — D that strongly satisfies all the constraints, the objective is to find an
assignment 6, : V. — D, that weakly satisfies all the constraints.®

An algorithm for PCSP(T) is said to be f-robust algorithm for a function f : R — R if the following
holds. The inputs to the algorithm are an instance ® = (V,€) of PCSP(I') and a parameter € with the
promise that there is an assignment oy : V — Dy that strongly satisfies 1 — € fraction of the constraints. The
objective of the algorithm is to output an assignment 6, : V — D, that weakly satisfies at least 1 — f(€)
fraction of the constraints. We call such an algorithm a robust algorithm for PCSP(T) if it is f-robust for
some monotone and non-negative function f with f(€) — 0 as € — 0.

In this paper, we restrict ourselves to PCSP templates where both the domains are equal to & :=
{—1,+1}. We call such templates Boolean templates. For technical reasons, to more closely align with
the conventions in the robust CSP literature, we consider a different notion of an PCSP instance which in-
corporates variable folding, i.e., the negation of variables. We also assume that the PCSP instance allows
for the setting of constants, which we call idempotence.

Definition 2.6 (Boolean folded idempotent instance/assignment). Given a Boolean template T = {(P;,Q)),
(Py,Q2),..., (P,01)} where P, C Q; C %" for every i € [I, an instance ® = (V,€¢") of iPCSP(T') consists of
a set of nvariables V = {uy,...,u,} and a set of m constraints € = {Ci,...,Cy}. Fori € [n], each variable
u; has two corresponding literals: u; and u;, the positive and negative literals, respectively. Observe that we
identify the positive literal with the variable itself. We also have two constant literals corresponding to the
elements of . For each j € [m], C; consists of a tuple of literals C; = (xj1,x2,...,xj;;,) € (VUVU B
and an associated predicate pair (P(/)7 Q(j)) € I' of the same arity I;.

Given an assignment’ & :V — 9B, define its extended assignment ' : VUV U — B to be ¢’ (u;) =
o (u;) and o' (;) = —o(u;) for every i € [n] and 6'(b) = b for b € AB. The assignment G is said to strongly
(and respectively weakly) satisfy the constraint C; in ® if 6'(C;) € PY) (and respectively ¢'(C;) € QW)

SThis explains the terminology promise CSPs to refer to such problems. For the decision version, a promise problem consists
of disjoint sets of Yes and No instances, which together need not exhaust all instances.

7Since the families P; and Q; of predicates have a common domain %, we need not distinguish between “P-assignments” and
“Q-assignments” in the Boolean setting.

We now restate the portion of Definition 2.5 for robust PCSP in the fiPCSP setting.

Definition 2.7. An algorithm for iPCSP(I') is said to be f-robust algorithm for a function f : R — R if
the following holds. The inputs to the algorithm are an instance ® = (V,€) of iPCSP(I") and a parameter
€ with the promise that there is an assignment o1 : V — D\ that strongly satisfies 1 — € fraction of the
constraints. The objective of the algorithm is to output an assignment 0, : V — D, that weakly satisfies at
least 1 — f(€) fraction of the constraints. We call such an algorithm a robust algorithm for iPCSP(T") if it
is f-robust for some monotone and non-negative function f with f(€) — 0 as € — 0.

Associated with every PCSP template, the notion of polymorphism captures the various closure proper-
ties of the satisfying solutions to any instance of the corresponding PCSP. More formally, we can define the
polymorphisms of a PCSP template as follows.

Definition 2.8 (Polymorphisms of PCSPs). Given a promise template T ={((P;,Q1), (P,,02),...,(P,0;))}
such that for every i € [l], P, C D]f" ,0i C Dg", a polymorphism of arity L is a function f : Df — D» that satisfies
the below property for every i € [I|. For allvy,v,,...,vy, € D% satisfying (v1)j,(v2) j,- .., (vk;) ;) € P, for each
J € [L], we have
(f(vl)vf(VZ)v e 7f(vki)) € Qi

If T is Boolean (i.e., D\ = Dy = B), we say that f : B" — A is folded if f(—v) = —f(v) for allv € B".
Likewise, we say that that f is idempotent if f(1,1,...,1) =1and f(—1,—1,...,—1) = —1. We use Pol(T')
to denote the family of all the polymorphisms of T.

Given a predicate P C D’f and a function f : Df — Dy, welet f(P) C Dé denote the set

f(P) = U f(Xl,...,XL),

where f(x1,...,x¢) == (f(x1,1,--,x2,1), -, f (X145 - - ., X2 &)) is the component-wise application of f. Given
a family .% of functions f; : Df" — Dy welet O7(P) :=Upez f(P).

For our algorithmic results, we focus on studying Boolean promise templates I" whose corresponding
polymorphisms contain particular families of functions. In particular, we extensively study the alternate-
threshold (AT) and majority (MAJ) polymorphisms in this paper:

1. For an odd integer L > 1 and x € P, we have AT (x) =+1,ifx; —xp+x3—...+x2 >0, and —1,
otherwise.

2. For an odd integer L > 1 and x € %", we have MAJ(x) = +1, if x; +x2 +x34...4+x7 >0, and —1,
otherwise.

We let AT denote the set of AT for L > 1 odd and MAJ the set of MAJ; for L > 1 odd.

Relaxations of PCSPs. We say that a promise template I" is a relaxation of another promise template
[if Pol(I') C Pol(I'"). If I is a relaxation of I', then there is a gadget reduction from I'" U{(=,=)} to
I'U{(=,=)}, where = denotes the equality predicate in the relevant domain. More formally, it is referred
to as I" U{(=,=)} is positive primitive promise (ppp)-definable from ' U{(=,=)}.

Definition 2.9 (ppp-definability of PCSPs [Che09, BG21]). We say that a pair of predicates (P',Q’) of the
same arity is ppp-definable from a promise template I" over the same domain pair if there exists a fixed
constant | and an instance ® of PCSP(I') over k + [variables uy,uy, ... ug,vi,va,...,v; such that

10

1. If (x1,x2,...,x;) € P, then there exist yi,ys,...,y; such that the assignment (xi,...,Xp,Y1,---,YI)
strongly satisfies all the constraints in .

2. Ifthere is an assignment (21, . ..,zk4+1) weakly satisfying all the constraints in @, then (z1,22,...,2) €
0.

More generally, we say that a promise template I is ppp-definable from another promise template I if every
predicate pair in 1" is ppp-definable from T.

Note that if I is ppp-definable from I, then the decision version of PCSP(I") can be reduced to PCSP(T")
in polynomial time. We now observe that the same holds for the robust version as well. More formally, we
have the following proposition.®

Proposition 2.10. Suppose that the promise template I over (D1, D») is ppp-definable from T over the same
domain. If there exists an f-robust algorithm for PCSP(I"), then there exists an Or (1) - f-robust algorithm
for PCSP(I").

Proof. Given an instance @ = (V',¢”) of PCSP(I") over a set of variables V' and containing m con-
straints ¢’ = {C{,C,...,C,,}, we output an instance ® of PCSP(I") containing |V’| original variables and
a set of dummy variables. For every constraint C} using (P',Q’) of arity k; involving the tuple of literals
(uj1,uj2,...,ujx;) in @, we have a set of dummy variables w;1,w;2,...,w;;, and a set of constraints %
whose variable scope is S;U{w;1,w;2,...,w;} as in Definition 2.9. Let W = U;{w; 1,w;2,...,w;} and
let V.=V’ UW be the set of variables of ®, and ¢ = U jeim € 1s the set of constraints in . We claim that
this reduction preserves robust algorithms.

1. (Completeness). Suppose that there exists an assignment ¢’ : V' — D strongly satisfying 1 — € frac-
tion of the constraints in @'. For every j € [m] such that 6’ strongly satisfies the constraint C’;, there
is an assignment o : {Wj,l Wi, ,ijj} — D such that 6 U 6 : C; — D strongly satisfies all the
constraints of %;. Consider an assignment ¢ : V — D; where we set o(u;) = o’(u;) for u; € V',
o(wji) = oj(w;;) for all w;; € W such that o strongly satisfies the constraint C}. If ¢ does not
strongly satisfy the constraint C’;, we set 6(w;;) arbitrarily. The assignment o strongly satisfies at
least 1 — Or(€) fraction of the constraints in ®.

2. (Soundness). Suppose that there is an assignment o : V — D, weakly satisfying 1 — € fraction of the
constraints in ®. By Markov’s inequality, for at least 1 — Or (&) values of j € [m], all the constraints
in €; are weakly satisfied by 6. This shows that the assignment o restricted to V' weakly satisfies
1 — Or(¢) fraction of the constraints in @'. O

In the folded, idempotent setting, we also allow for negations of variables and the setting of constants,
we represent these additional operations via what we coin as “fippp”’-definitions.

Definition 2.11 (fippp-definability of iPCSPs). We say that a pair of predicates (P',Q") of the same arity
is fippp-definable from a promise template I" over the same domain pair if there exists a fixed constant | and
an instance ® of iPCSP(T") over k+ 1 variables uy,uy, ... ug,vi,va,...,v; such that

8We previously claimed falsely that the reduction holds more generally when we are given that I is a relaxation of I. We are
grateful to Andrei Krokhin for pointing this mistake to us. Under the general assumption that I” is a relaxation of I', we can reduce
the robust version of I”” to the robust version of I together with binary equality constraints. For the sake of exact satisfiability, the
equality constraints do not matter [BKW 17, BG21] but we do not know a way to obtain a robust algorithm for PCSP(I") together
with binary equality constraints just using the fact that I" has a robust algorithm. Even for CSPs, a direct way to show this is not
known [DK13], without using the full robust dichotomy result of [BK16].

11

1. If (x1,x2,...,x;) € P, then there exist yi,ys,...,y; such that the assignment (xi,...,Xp,Y1,---,YI)
strongly satisfies all the constraints in .

2. If there is an assignment (z1, . .., zx+;) weakly satisfying all the constraints in ®, then (z1,22,...,2k) €

Q.

More generally, we say that a promise template I is fippp-definable from another promise template T if
every predicate pair in I" is fippp-definable from T.

Proposition 2.12. Suppose that the promise template T over (Dy,D;) is fippp-definable from T over the
same domain. If there exists an f-robust algorithm for iPCSP(I), then there exists an Or /(1) - f-robust
algorithm for iPCSP(I").

The proof of Proposition 2.12 is essentially identical to that of Proposition 2.10.

Proof. Given an instance @ = (V' ¢”) of fiPCSP(I"”) over a set of variables V' and containing m con-
straints ¢ = {C},C,, ...,C,,}, we output an instance & of fiPCSP(I") containing |V’| original variables and
a set of dummy variables. For every constraint C} using (P', Q') of arity k; involving the tuple of literals
(um,uj,z, ey uj’k_/.) in @', we have a set of dummy variables Wil Wi, s Wil and a set of constraints ¢
whose variable scope is S;U{w;1,w;2,...,w;;;} as in Definition 2.11. Let W = U{w;1,wj2,...,w;; }
and let V =V’ UW be the set of variables of ®, and ¢ = U jem € 1s the set of constraints in ®. We claim
that this reduction preserves robust algorithms.

1. (Completeness). Suppose that there exists an assignment ¢’ : V' — D; strongly satisfying 1 — € frac-
tion of the constraints in @'. For every j € [m] such that 6’ strongly satisfies the constraint C’;, there
is an assignment o; : {Wj,l Wi, .. ,ijj} — D such that 6 U 6 : C; — D strongly satisfies all the
constraints of %;. Consider an assignment ¢ : V — D; where we set o(u;) = o'(u;) for u; € V',
o(wji) = oj(w;;) for all w;; € W such that o strongly satisfies the constraint C}. If ¢ does not
strongly satisfy the constraint C’;, we set 6(w;;) arbitrarily. The assignment o strongly satisfies at
least 1 — Or(€) fraction of the constraints in ®.

2. (Soundness). Suppose that there is an assignment o : V — D, weakly satisfying 1 — € fraction of the
constraints in ®. By Markov’s inequality, for at least 1 — Or (&) values of j € [m], all the constraints
in € are weakly satisfied by o. This shows that the assignment o restricted to V' weakly satisfies
1 — Or(¢) fraction of the constraints in o]

2.2 The basic SDP

We now describe the Basic SDP relaxation of an instance of a PCSP, similar to how it is presented in [Rag08].
Let I be a promise template over domain (D,D’), and let ® be an instance of PCSP(I") over n variables
V = {u1,uz,...,u,} and m constraints C;,C,...,C,. Suppose that the constraint C; subjects the variables
().1,u;2,...,ujy,) to the predicate pair (P/), 0U)). In the basic SDP relaxation of PCSP(I") corresponding
to ®, we have a vector v;, corresponding to each variable u;, i € [n], along with a label a € D. We also
have a unit vector vo. For each constraint C;, j € [m], there is a probability distribution (referred to as the
local distribution of the constraint C;) over the set of possible local assignments to that constraint. Since
C; may contain repeated variables, we let S; := {u;1,...,u J-Jj} denote the set of variables appearing in
C;. Our probability distribution is then over the set of functions {f : §; — D}. We represent this using a
variable A;(f) for every j € [m] and local assignment f : S; — D. Note that we use f(C;) as shorthand

12

for (f(uj1),f(uj2),...,f(u;j;;)) Finally, we have an error parameter €; corresponding to the constraint
J»J € [m], equal to the probability that A; is supported outside PU). We refer to €; as the error of the basic
SDP relaxation on the constraint j, and }"; €; as the error of the basic SDP relaxation of the instance ®.

minimize: Z €
=1
subject to: £; > 0 Vj € [m]
Ai(f) =0 vjem], f:S; =D
Y (=1 j € m)
fISj*}D
Y A =l-g vj € [m]
f:8;—D,f(C;)eP)
<V0,V0> =1
(First moments.) (Via,Vo) = Z Ai(f) Vjem], ui€Sj, aeD
f:SjA)D
fui)=a
(Second moments.) (Vjq, Vi g) = Z Ai(f) Vj € [m], ui,uy €S;, a,a €D
f:Sj—D
flui)=a,f(uy)=d

We implicitly assume that every variable appears in at least one clause, so the second moment condition also
implies that (v; 4,v; ») = 0 fora # d for all i € [n].

Proposition 2.13. Let I" be a promise template over domain (Dy,D,). Suppose that ® = (V,€) is an
instance of a PCSP(I') such that there is an assignment ¢ : V — D that strongly satisfies all the constraints.
Then, the basic SDP relaxation of ® is feasible with objective value 0.

Proof. We embed our vectors in the real line. We set vo = 1, and for every i € [n] and a € D, we set

{1 a=o(u),
Vl'ﬂ =

0 otherwise.

For any j € [m] and f: S; — Dy, we set A;(f) = 1 if f(x) = o(x) for every x € §;, and we set A;(f) =0
otherwise. These variables satisfy all the constraints in the basic SDP relaxation with €; = 0 for all j €
[m]. O

Boolean folded idempotent variant. In Sections 4 and 5 of the paper, we prefer to consider an alternative
formulation of the Basic SDP for the Boolean folded idempotent PCSP. We let I" be a promise template and
consider an instance ® = (V, %) of iPCSP(I") where V = {u;,uy,...,u,} and € = {C,,C>,...,C,} with
the constraint C; using the predicate pair (PV), QW) for j € [m]. Let £ =V UV U 2 be the set of literals.
Each clause is a tuple of literals C; = (x;1,x;2,...,%;;) € " bound by the predicate pair (P(j), Q(j)).

For each variable u; € V, we have an associated vector v; along with a truth vector vp We extend this

association to all literals by assigning amap v : £ — {vy,...,v,} where
V; x=u; €V
vX)=¢ —-v;, x=m;eV (D
X-vy Xx€EARB.

13

For each clause C; € ¢, we let S; denote the set of variables appearing in C;. In particular, S; = {u; €
V i3k € [lj],x;;;, = ui Vxj;, = u}. Given a local assignment of variables f: S; — %, we let f(C;) =
(f(xj1), f(xj2)s---5 f(xj1;)), where we define f(%) = — f(u;) and f(&1) = £1.

The relaxation is as follows.

m
minimize: Z &

=1
subject to: £; > 0 Vj € [m]
Ai(f) >0 Vjielm], f:8; =%
) A(H=1 Vj € [m]
1:8,—B
y Lil(f)=1—¢; Vj € [m]
F:8-7.5(C;)ePU)
Ivill3=1 Vie{0,1,...,n}
(First moments.) (v(x),vo) = Z Ai(f)f(x) Vje[m], xeC;
fSi—%
(Second moments.) (v(x),v(x')) = Y A;(f)f(x)f(x) Vj € [m], x,x' € C;
fSi—%

We say that basic SDP is feasible on ® if the above objective function is zero on ®. We show that the
SDP is feasible if there is an assignment that strongly satisfies all the constraints of ®.

Proposition 2.14. Suppose that ® = (V, %) is an instance of a Boolean folded idempotent PCSP such that
there is an assignment & .V — 9B that strongly satisfies all the constraints. Then, the basic SDP relaxation
of ® is feasible with objective value .

Proof. We embed our vectors in the real line. We set vo = 1, and v; := o(u;) € R for every i € [n]. For any
j€[mland f:S; — A, weset A;(f) = 1if f(x) = o(x) for every x € C;, and we set A;(f) = 0 otherwise.
These variables satisfy all the constraints in the basic SDP relaxation with €; = 0 for all j € [m]. O

More generally, we get that if there is an assignment that strongly satisfies 1 — € fraction of the constraints
in @, the objective value of the above relaxation is at most €m, for every € > 0. On the other hand, if the
basic SDP is feasible for an instance ® of a PCSP, it doesn’t necessarily imply that & has an assignment
weakly satisfying all the constraints. For some PCSPs however, this is indeed the case, and we say that such
PCSPs are decided by the basic SDP.

Definition 2.15. For a promise template T, we say that the basic SDP decides PCSP(T") if for every in-
stance P such that the basic SDP is feasible on ®, there is an assignment to ® that weakly satisfies all the
constraints.

Efficient solvability. Polynomial-time SDP solving algorithms can only sovle the problem ‘“‘approxi-
mately.” In the SDP literature, this notion of approximation can vary widely. For our purposes, we are
satisfied if the objective is approximate (computed to within 1/poly(n) precision), but the solution returned
is a “feasible” solution to the SDP.

Theorem 2.16. Suppose an instance ® of iPCSP(I') has a solution strongly satisfying 1 — € fraction of the
constraints. Then, for any input 6 > 0, we can find a vector solution to the basic SDP whose coefficients are

14

square roots of rational numbers and all inner products are rational numbers. The objective value of the
SDP solution is at most (€ + 8)m and it can be computed in time poly(n,m,1/d).

This precise formulation does not seem to appear in the literature [GLS93, Fre04, GM12, O’D16].As
such, we show how this result can be proved using known methods. See Appendix A for details.

2.3 Gram and orthogonal matrices

Recall that a real symmetric matrix M € R™*" is positive semidefinite if v/ Mv > 0 for all v € R”". Since M
is real and symmetric, we know that M has a full eigenspace: there exists A;,...,4, € R and unit vectors
vi,...,V, € R" such that

M=Y 2w’

n
i=1

Since M is positive semidefinite, we know that each A; > 0. In particular, if we let V € R"*" be the matrix
such that the ith row is v/A;v;, then we have that M = VTV In other words, M is also a Gram matrix. It is
also straightforward that any Gram matrix is positive semidefinite since if M = V7V, then for any v € R”,
we have that v/ Mv = ||V'v||3 > 0. We call V a realization of the Gram matrix, and we call the columns of V

the vectors of the realization.

A crucial fact about realizations is that they generate the same Gram matrix if and only if they are related
by an orthogonal matrix, a matrix Q € R™" for which QT Q = QQ" = I,. We prove a generalization of this
equivalence where the number of vectors differs from the ambient dimension.

Proposition 2.17. Let n,m be positive integers and letuy, ... ,0,,vy,...,v, € R™ be vectors. The following
are equivalent.

(1) Foralli,j € [n], we have that (u;,u;) = (v;,V;j).

(2) There exists an orthogonal matrix Q € R™ ™ such that for all i € [n], v; = Qu;

Proof. Proving that (2) implies (1) is straightforward for if v; = Qu; for all i € [n], we have that
(vi,vj) = (Qui, Qu;) = (Qu;)" Qu; = u 0" Qu; = (u;,uy),
where we use that Q is an orthogonal matrix.
We now prove that (1) implies (2). Let U := span{u; : i € [n]} C R™. Using the Gram-Schmidt algorithm,

we can construct an orthonormal basis aj,...,a,, of R” such that a;,...,a4ny is a basis of U. (Assume
dimU > 1 or else every vector equals O for which we can pick Q to be the identity matrix.)

Also pick S C [n] such that {u, : s € S} is a basis of U. There exists a unique linear map L: U — R for
which L(uy) = v, for all s € S. We claim the following properties about L,

(1) L(u;) = v; for all i € [n], so the image of Lis V :=span{v;:i € [n]}.
(2) L(ay),...,L(agimy) is an orthonormal basis of V.

To verify (1), for any i € [n], let A : S — R be such that w; = Y, cgA(s)u,. Then, L(w;) = Y csA(s)vy. Note
then that

(L(w;),v;) = Z?L(s) (Vs, Vi) = Z)L(s)(us,u,-> = (u;,w;) = (v;,v;), and

seS seS
(L(uw;), L(w;)) = ;Sl(s)l(sl)<stVs'> = A(s)A(s) (us,uy) = (i u;) = (vi,vi).

15

This can only happen if L(w;) = v;. To verify (2), for each i € [dimU], let x; : S — R be such that a; =
Y scs Ki(s)us. Then, note that for any 7, j € [dimU] we have that

(a;,a)) = Z Ki(s) K (s") (uy, uy) Z Ki(s) ki (uy),L(uy)) = (L(a;),L(a;),),

s,s'eS s,s'eS
so L(ay),...,L(agimy) is an orthonormal basis of V.
To finish, we can extend L(a,),...,L(adimy) into an orthonormal basis by, ...,b,, of R” such that b; =

L(a;) for all i € [dimU]. We can thus construct a linear map Q : R — R” such that Q(a;) =b; for all i € [m].
The matrix representation of Q is an orthogonal matrix and it sends w; to v; for all i € [n] because Q extends
L. O

As an immediate corollary, we recover the equivalence of realizations.

Corollary 2.18. Let M = UTU and N = VTV be n x n real matrices. We have that M = N if and only if
there exists an orthogonal matrix Q such that V = QU.

Proof. Apply Proposition 2.17 with m = n, uy,...,u, as the columns of U, and vy, ..., v, as the columns of
V. O

2.4 Elementary properties of Gaussians

We state a couple of elementary properties of Gaussian distribution that we use later. First, we prove the
following anti-concentration inequality for the standard Gaussian random variable.

Proposition 2.19. Suppose that X ~ A (0,6?) is a Gaussian random variable with zero mean and variance
o2. Then, foreveryc € Rand € >0,

€
Pr(X €lc—¢,c+¢]) < 5

Proof. By the definition of the Gaussian density, we have:

Pr(Xe[c—e,c+8}):/

By substituting Z = <, we get
— &)
Pr(X € [c—¢,c+e]) Pr<Z€[C o D
c c
cte
< 1 2
= e 2dz

O
Proposition 2.20. Suppose that X ~ A (0,1) has the standard Gaussian distribution. Then, for every c
and € > 0,

Pr(Xec—e,c+eg])<e

16

Proof. We have
c+E
Pr(Xe€|c—¢g,c+¢ a’x</ —a’x<£ O
(el D=/ o B

c—E&

We also need the following concentration inequality for 1-dimensional Gaussian.
Proposition 2.21. [Verl8] Suppose that X ~ A (0,6?) has Gaussian distribution with variance . Then,
foreveryt > 0,

2

Pr(X>t)<e 272.
We will need the following properties of the multivariate Gaussian distribution:
Proposition 2.22. Let { ~ .4 (0,X) be an n-dimensional multivariate Gaussian random vector.

1. For any fixed vector v € R", the random variable ({,v) follows A (0,vI Zv).

2. For any two fixed vectors v,w € R", the covariance of the random variables (£ ,v) and ({,w) is equal
to v Iw.

Proof. The random variable r = ({,v) = Yicn) v;{; is a linear combination of Gaussian random variables,
and therefore, follows a Gaussian distribution. We calculate its mean and variance as follows:

Z V,C,] = ZH V,‘E[Ci} =0.

i€[n]

The variance of r is:

2
Var(r) =E[r!] = E (Z] ViCi) = Z viviE[Gi).

icn i,j€[n]

Since E[({,¢T] =

Var(r Z ViviXij =V LV.
i, j€ln]

Therefore, r ~ .4 (0,v! £v), which proves the first part.

Letr' = ({,w) = Yicln] w;&;. The covariance of r and 7’ is:

Cov(r,/)=E[rr]=E [(Z[:] v,@-) . <X{:}W1Cj>] .

Expanding the product, we have:

Z viw,E[§E] = Z viw ;.

i,jeln] i,jeln]

This simplifies to:
Cov(r,”) = v Zw. O

17

3 Overview of Techniques

Moving forward, unless otherwise specified, all promise templates I' are Boolean, and we consider the
folded, idempotent variant of promise constraint satisfaction, i.e., iPCSP(T").

3.1 Robust algorithm for MAJ polymorphisms

We obtain our robust algorithms by first solving the basic SDP relaxation and then rounding the vectors. We
first illustrate the SDP rounding idea with a warm-up algorithm (originally appeared in [Zwi98]) to solve the
decision version of 2-SAT CSP predicate P = {(—1,+1),(+1,—1),(4+1,+1)}. Consider an instance ® of
2-SAT (i.e., fiPCSP(P,P)) over a set of n variables and m constraints. We first solve the basic SDP relaxation
of ®@. If the basic SDP relaxation has a strictly positive error, then the instance is clearly not satisfiable. For
the moment, suppose that the relaxation has zero error and we found a set of vectors vg, vy,...,V,, and the
local probability variables A;(f) for all j € [m], f: S; — 24 that satisfy all the constraints in the basic SDP
relaxation with €; = 0 for every j € [m]. Consider an arbitrary constraint C; using the literals xi,x,. We
abuse the notation and let vy, v, denote the vectors assigned by the SDP to x; and x, respectively (i.e., v(x)
and v(x,)). Using the first moment and second moment properties satisfied by the local probabilities A;(f),
we get the following.

1. (vy,vo) + (v2,vg) > 0.
2. If (vi,vo) + (v2,v9) =0, vi + v, = 0.

These properties motivate the following simple rounding algorithm that outputs the assignment ¢ : V —
2. We sample a random vector § ~ .47(0,1I), and set

+1, if (v;,vg) > 0.

o) = —1, if (v;,vp) <O.
+1, if (vi,vo) =0and ({,v;) >0
—1, if (v;,vo) =0and ({,v;) <0

This ensures that if a constraint uses the literals x;,x,, at least one of x; or x; is rounded to +1.

While this algorithm finds a satisfying solution when the underlying instance & has a solution satisfying
all the constraints, it does not give any non-trivial guarantees when the instance is only promised to have a
solution satisfying 1 — € fraction of the constraints. By setting § = € in Theorem 2.16, we get that the average
error of the basic SDP relaxation is at most O(€) on any instance that is promised to satisfy 1 — € fraction
of the constraints. Zwick [Zwi98] gave a robust algorithm based on rounding the basic SDP relaxation for
2-SAT which was later improved by Charikar, Makarychev, and Makarychev [CMMO09]. They sample a
random vector § ~ .47(0,I), and set

uj) =
—1, otherwise.

One can view their algorithm as a smoothed version of the earlier discussed algorithm: Using Proposi-
tion 2.22, the random variable r; = (v;,) follows .4#°(0,1) for all i € [n]. Thus, if |(v;,vo)| > A+/€ for a
positive real number A, then o (u;) is equal to the sign of (v;,vo) if r; < A, which occurs with probability

18

at least 1 — e*%(Proposition 2.21). On the other hand, if (v;,vo) = 0, we set 6(u;) = +1 if and only if
<C, V,'> Z 0.

We use this algorithm in our proof of Theorem 1.3 but we give a completely different analysis. Consider
a constraint C; in the 2-SAT instance and let vy, v, denote the vectors assigned by the basic SDP to the literals
in a constraint. Let r; = (v}, {) and r, = (v, {). From Proposition 2.22, both the random variables r; and
r, are standard Gaussian variables with covariance Cov(ry,r2) = (vy,v2). To upper bound the probability
that the output assignment ¢ violates the constraint C;, [CMMO09] calculate the probability that r| < — %

<Vi¢V0>

and r, < — N They do so by computing the probability that a pair of Gaussian random variables with
known covariance lie in a given intersection of two half-spaces. While this analysis works for 2-SAT, these
calculations turn out to be significantly harder when there are more than two Gaussian random variables.

Instead, we take a conceptually different, and arguably simpler route. As a concrete example, consider
the promise template I' = (P, Q) where P = Hamy{2,3,4}, O = Ham4{1,2,3,4}, i.e.,

P={xe#":Y x>0}, 0=2\{(-1,-1,—-1,-1)}.
ic4
Consider a constraint C; of an instance ® of fiPCSP(I"). As the average error of SDP over all the constraints
is at most &, for at least 1 — €!/4 fraction of the constraints, the error is at most €3/, We restrict ourselves
to these constraints and let vy, ..., v4 denote the vectors assigned by the SDP to the literals in the constraint.

We have that ¥;ci4)(Vi, Vo) > —g3/*, Recall that if for some i € [4], (v;, Vo) > C+/€ for a positive real number
2
C, the corresponding literal is rounded to +1 with probability at least 1 — ¢~ 7. On the other hand, if for

some i € [4], (v;,vo) < —4C\/€, there is some i’ € [4] with (v;,vo) > C+\/€, which again ensures that there
2

is at least one literal that is rounded to 41 with probability at least 1 — e 7. Hence, if there is at least one
2

i € [4] with |(v;,v)| > 4C+/&, at least one literal is rounded to +1 with probability at least 1 — e~ 7 .

Thus the interesting case is when |(v;,vo)| < O(y/€) for every i € [4]. In this case, using the first

and second moment properties satisfied by these vectors, we get that HZiGW vi||, is at most 0(81/ 4). The

I
. Vi,V . .
output assignment ¢ violates Q on this constraint only if (v;,{) < —% for every i € [4], or equivalently,

(vi,)+ % < 0 for every i € [4]. However, using HZiE[Ar] V,-H2 < 0(¢'/*) and Yicp4)(Vi, Vo) > —&3/%, we
get that

<Vl'av0>
T (00 87)= o

If o does not satisfy Q, then for some i € [4], we have that

(vin§) + <V:’/;°> e [~o@"*),0)
Finally, we can upper bound the probability that this occurs to be at most O (81/ 4) using anti-concentration
of the Gaussian (v;,{) ~ .47(0,1) (Proposition 2.20). Thus, we can infer that the assignment o satisfies
at least 1 — 5(81/ 4) fraction of the constraints in expectation. A careful analysis of the parameters gives a
guarantee of 1 — O(g'/?).

For an arbitrary Boolean promise template I" with MAJ C Pol(I"), we obtain a robust algorithm for
fiPCSP(T") by first reducing to the case when all the predicate pairs are of the form (P,Q) with Q =
B\ {(—1,—1,...,—1)}, generalizing the above two examples of the 2-SAT template (i.e., P = Q =
{(—=1,+1),(1,—1),(1,1)}) and (Ham4{2,3,4}, Ham4{1,2,3,4}). Then, we find a weight vector w which
satisfies that (w,x) > 0 for all x € P (w = (1,1,...,1) suffices for the previous two examples). We prove

19

the existence of such a vector w by using a Linear Programming relaxation, and we crucially use the fact
that MAJ C Pol(P, Q) in the analysis of this LP relaxation. Once we find the vector w, the above analysis of
(Hamy{2,3,4} ,Ham4{1,2,3,4}) can be generalized, the main change being that we study the properties of
the weighted sum of the v;s with weights being given by the vector w.

3.2 Robust algorithm for AT polymorphisms

For the Alternating-Threshold (AT) case, we combine these ideas with a random geometric sampling trick.
As a concrete example, consider the templates for 1-in-3-SAT and NAE-SAT: P = {x € B x| +x+x3 =
—1}and Q= {x € %> : x| +xa+x3 € {—1,1}}, respectively. We have that AT C Pol(P, Q) [BG21]. Assume
that an instance (V, %) of fiPCSP(P,Q) is perfectly satisfiable. For this case, we can efficiently find an
exact solution using the basic SDP relaxation via random hyperplane rounding as follows. Consider an
arbitrary constraint C; and let vy, v;,v3 denote the vectors assigned by the basic SDP to the literals in C;.
Using the fact that these vectors satisfy the first and second moment constraints of the basic SDP relaxation
with zero error, we can infer that their sum vy = v| 4+ v, + v3 is equal to —vg for every constraint C. Let
v L vo = v;— (v;,vo)vp for i € [3]. Note that Yiep3) Vi L vo = 0. Using this observation, we can design
a rounding scheme. We first sample § ~ 47(0,I), and set o(u;) = +1 if (v; L vo,{) >0, and —1 if
(vi L vp,8) < 0. Each variable u; is assigned a value with probability 1 unless v; € {vo,—vo} since v; is
a unit vector. In that undetermined case, we set o(u;) = +1 if v; = vo and o(u;) = —1 otherwise.” As
V| 4 V2 +v3 = —Vvp, the rounding scheme ensures that at least one literal associated with these vectors is set
to +1, and at least one literal is set to —1.

For the robust setting where we are only guaranteed that there is an assignment strongly satisfying 1 — &
fraction of the constraints. By setting 6 = € in Theorem 2.16, we get that the average SDP error is at most
O(¢). By Markov’s inequality, we are guaranteed that for at least 1 — /€ fraction of the constraints, the SDP
error is at most O(,/€). For these constraints, we get that the sum vector v,’s component orthogonal to vy
has ¢, norm at most O(g'/4), i.e., ||Lic3 Vi L vo||, < O(g'/*). Using this, we design a rounding scheme that
is similar to the above, with the addition that when ||v; L vo||, is very small, we want to round it to +1 or
—1 depending on its component along v, similar to how we were rounding v to +1 and —vg to —1 in the
exact algorithm earlier. We have the following compact algorithm based on this idea.

o (1) +1, if (v; L v, &) > —8(vi,vo).
u,) =
l —1, otherwise.

We choose & to be €¥, where K is a constant such that k < J, to be set later. Note that when |(v; L
vo,&)| > 6, our new rounding scheme is equivalent to the earlier exact algorithm, i.e., o(u;) = +1if (v; L
vo,§) > 0, and —1 otherwise.

If [(v; L vo,{)| > 38 for some i € [3], the condition HZiEB] v, L VOH2 < 0(e'/*) < & implies that there
exist distinct i,i' € [3] such that (v; L vo,{) > & and (vs L vy,{) < —8. In this case, o(u;) = +1 and
o (uy) = —1, ensuring that the output assignment satisfies the NAE-3-SAT constraint. On the other hand,
when |(v; L vp,{)| is much smaller than & for every i € [3], our rounding function sets o(u;) = +1 if
(vi,¥0) >0 and —1 otherwise. Since Y ;c[3 Vi is close to —vo, the output satisfies the NAE-3-SAT constraint
even in this case.

Finally, we employ a geometric sampling trick where 0 is sampled uniformly at random from a geo-
metric series (by choosing k from an arithmetic series) to ensure that, with high probability, either |(v; L

90bserve this choice of assignment is consistent with the default rounding of the constant literals 1.

20

vo, §)| > 36 for some i € [3], or |(v; L vo,)| is much smaller than & for every i € [3].

For an arbitrary Boolean promise template I" with AT C Pol(I"), we first show that fiPCSP(I") reduces
to iPCSP(P, Q) where
P={ve#:(vw) b}, 0=%"\{xx}

for some w € R¥,b € R with w; # 0 Vi € [k], where we set x as x; = +1 if w; > 0, and —1 otherwise.
This generalizes our previous 1-in-3-SAT versus NAE-3-SAT template which corresponds to the case when
w = (1,1,1),b = —1. We show that the algorithm above works for this general predicate pair as well,
thereby obtaining for every promise template I' with AT C Pol(I") a robust algorithm for iPCSP(T").

3.3 UG-hardness of robust algorithms

As mentioned earlier, our Unique Games hardness for fiPCSP(I") (Theorem 1.4) is based on an integrality
gap for the basic SDP relaxation, i.e., we need to show that there is a finite instance ® of fiPCSP(I") that
has SDP error of zero, yet there is no assignment that weakly satisfies all the constraints. In pursuit of this
goal, we develop a general recipe for showing integrality gaps with respect to basic SDP for Promise CSPs
via colorings of the n-dimensional unit sphere S".

We focus on Boolean promise templates which are symmetric. We say that a predicate P C % is
symmetric if for every x,y € %* such that hw(x) = hw(y), we have x € P if and only if y € P.

We first start by showing an integrality gap instance for 3-LIN. Recall that the 3-LIN CSP has the
predicate P with

PZ{X€%3ZX1+X2+X3=—1 OFX1—|-X2+X3=+3}. 2)

Consider the instance ® of fiPCSP(P, P) that uses three variables and uses two constraints Cy,C, with C; =
{(x1,x2,x3)},C> = {(x7,%2,%3) }. The instance has no assignment that satisfies both the constraints, and we
now show that the basic SDP solution has zero error on ®. We first describe the local probability variables:
for each j € [2] and each assignment f : S; — %, where S; = {u1,us,u3}, we set

/4 f(CjePp

Ai(f) =

/ 0 otherwise.
That is, we set each local distribution to be the uniform distribution over satisfying assignments. Substituting
these in the first and second moment constraints, we get the following requirements that the vectors v, v,,v3
need to satisfy.

(vi,vo) =0 Vie[3] (3)
(vi,vi) =0 Vi#i €3] 4)

We can find such three vectors by picking three orthogonal vectors that are all orthogonal to vg. This shows
that there is a solution to the basic SDP relaxation of & that has zero error, thus finishing the proof of the
existence of an integrality gap for .

While the simple example gives an integrality gap for 3-LIN, it is a challenging task to find such explicit
integrality gap instances for general predicates. We develop a non-explicit approach where for a given
promise template I" we first construct an infinite integrality gap instance .#"(I") for fiPCSP(T") and then use
it to show the existence of a finite integrality gap instance. The variable set V of .#"(T") to be the set of unit

21

vectors in R*™!: V = {uy : v € S"}. We fix an arbitrary vector to be assigned vo. We let & =V UV U % be
our set of literals, and let ¥ : . — S”" be the map

v X = Uy
Vx)=<-v x=u
xX-vyg x€ A

We now describe the clauses & of our integrality gap instance. Consider (P,Q) € I of arity k. For a
potential clause C = (x1,...,x;) € Z*, let S be the set of variables making up C. We add C to ¥ if there
exists a probability distribution A over assignments f : S(C) — 4 satisfying the following constraints.

Y Aun=1

f:S—B.f(C)eP
(First moments.) (V(x),vo) = Z A(f)f(x) xeC
f[:S—A
(Second moments.) (¥(x),9(x)) = Y A(f)f(x)f(x) x,x' €C.
f:S—~%#
We refer to ¥(C) := (V(x1),...,V(x;)) satisfying the above as a P-configuration with respect to vo. The way

we have added the constraints ensures that setting a to the variable u, satisfies all the basic SDP constraints
with zero error. We then show that the instance .#"(I") does not have any assignment ¢ that weakly satisfies
all the constraints to obtain the integrality gap. Towards this, we study the sphere colorings f, : S" — 48 that
weakly satisfy all the constraints of .#"(T").

We now return to examining 3-LIN in terms of .#"(P) for P as in (2). As mentioned earlier, a set of three
vectors vy, vy, v3 are a P-configuration with respect to vy if they satisfy Equation (3) and Equation (4). Thus,
to show that the instance .#"(P) does not have any assignment satisfying all the constraints, it suffices to
show that for some positive integer n, there is no function f : S" — 2 that satisfies the following condition:
For all vectors vi,v,,v3 € S"” are mutually orthogonal and are orthogonal to vy, we have

fvi)+ f(v2) +f(v3) e {-1,+3}.

Since we allow negations of variables in our instance, we also require such a function f to be folded, i.e.,
f(=v) = —f(v) for every v € S". Such a coloring f trivially does not exist: consider a set of three mutually
orthogonal vectors that are all orthogonal to v, V = (v, Vv, v3) and their negations, V' = (—v;, —v,, —v3).
Such a set of vectors is guaranteed to exist if n > 4. Note that both these are valid P-configurations, but
at least one of f(v1)+ f(v2) + f(v3), f(—v1) + f(—=v2) + f(—v3) does not belong to {—1,+3}, thus com-
pleting the proof that there is no assignment satisfying all the constraints of .#"(P). Hence, .#"(P) is an
integrality gap instance for 3-LIN, i.e., fiPCSP(P, P), and this implies the existence of a finite integrality
gap instance as well. While there is a direct integrality gap instance for the 3-LIN, for an arbitrary promise
template I', to show the existence of an integrality gap for the basic SDP relaxation, it is more convenient
and practical to show the absence of any assignment f : S" — 4 satisfying all the constraints of .#"(I") for
some n which then implies the existence of a finite integrality gap instance by a compactness argument.

While the P-configurations in the above proof for 3-LIN are easy to study, in general, proving the
absence of sphere coloring is challenging. For example, consider the promise template I' = (P,Q) where
P =Hams{2,5}, 0 =Hams{1,2,3,4,5}:

P={xe# :|{ic[5]:x=+1} €{2,5}}, Q:{XE%5:ixi7é—5}.

22

Here, a set of P-configurations with respect to a vector vy are five unit vectors {vj,vs,...,Vs} such that
every two distinct vectors have an inner product equal to —é, and (v;,vg) = O for every i € [5]. The sphere
coloring problem is then to show that there exists n such that for any folded f : S” — %, there exists a set of
five vectors in S” with every pair of them having inner product equal to —% that are all colored —1.

Such problems where the goal is to find a monochromatic structure in sphere colorings are studied in a
topic called sphere Ramsey theory. In a striking result using tools from combinatorics, linear algebra, and
Banach space theory, MatouSek and Rodl [MR95] proved that every set of affinely independent vectors V
whose circumradius is smaller than 1 is sphere Ramsey—i.e., for every r, there exists n large enough such
that every r-coloring of S” must have a monochromatic set U that is congruent to V. This directly answers
the above question regarding sphere coloring of .#" (P, Q) where P = Hams{2,5}, Q = Hams{1,2,3,4,5}.

For an arbitrary Boolean symmetric promise template I' = (P, Q), to prove Theorem 1.4, we first reduce
the problem into a fixed number of templates using the properties of AT and MAJ polymorphisms, fol-
lowing [BG21]. For some of these templates, the result of Matousek and Rodl [MR95] directly answers the
sphere coloring problem associated with them. For others, we need extra work built on the sphere Ramsey re-
sult. We highlight one such promise template I' = (P, Q) where P =Hamy{1,k}, 0 =Ham;{0, 1,... ,k} \ {b}
for positive integers k,b : 0 < b < k. In the sphere coloring problem associated with this template, we need
to show that for any real o € [0, 1], in any folded f : S" — 4, there are k vectors all of whose pairwise inner
products are equal to &, and exactly b of them are assigned +1 according to f. We refer to such a set of
vectors S = {vy,..., v} C S" as a-configuration if (v;,v;) = o for all i # j € [k].

The sphere Ramsey result shows that there is an a-configuration with b vectors being colored +1 only
when b = 0 or b = k. To extend to general b, we prove the following connectivity lemma: Between any two
arbitrary ot-configurations S, T, there is a path Uy, Us, ..., Uy of a-configurations with length L := L(a, k,n)
where U; = S, Uy, = T, and any two consecutive configurations U;, U;; differ in at most one element. The
sphere Ramsey result shows that there is an o-configuration with all the vectors being colored +1, and by
negating these vectors, we get an ¢-configuration with all the vectors being colored —1. Finally, using the
connectivity lemma between these two configurations, we get that for every b € {0,1,...,k}, there is an
a-configuration where in exactly b vectors are colored +1, thereby finishing the proof of the integrality
gap. We also remark that while our integrality proofs are non-constructive in general, we get an explicit
integrality gap instance for fiPCSP(T") inspired by the connectivity lemma.

4 Robust Algorithms

4.1 CMMis a robust algorithm when MA]J is a polymorphism

We restate Theorem 1.3 for the case of MAJ polymorphisms.

Theorem 4.1. LetI"'={(P1,01),(P2,Q02),...,(P,Q:1)} be a Boolean promise template with MAJ C Pol(T").
For every € > 0, there is a randomized polynomial time algorithm that given an instance ® of fiPCSP(I')
that is promised to have an assignment satisfying 1 — € fraction of the constraints, finds an assignment to o
that satisfies 1 — OF(E%) fraction'® of the constraints in expectation.

In the rest of this subsection, we prove Theorem 4.1. Our strategy is to reduce the problem into a special
case in which every predicate pair of I"is of the form (P, %*\ {(—~1,—1,...,—1)}), and then solve the robust
version of iPCSP(T") using the algorithm of Charikar, Makarychev, and Makarychev [CMMO09].

10We use Or to denote a hidden constant which depends on the specific template I".

23

For ease of notation, we use O(-) instead of Or(-) when I' is clear from the context. We first remove from
I all predicate pairs (P, Q) for which Q = #* for some integer k since these constraints are trivially satisfied
by any assignment. To justify why we can remove these predicate pairs in the robust setting, let ® be our
instance of fiPCSP(I"). Suppose that there are m constraints in @, and m’ = am of them use predicates of
the form (P,Q) where P C Q = 2. We consider the instance @’ containing m — m’ constraints obtained by
deleting the constraints that use predicates of the form (P, Q) where P C Q = 2*. In the instance &', we are
promised that there is a solution satisfying m —m’ — em constraints, i.e., 1 — = fraction of the constraints.

We use the algorithm that we will present later in the subsection on the instance @’ to get an assignment
€

-

0((1;‘3(1)1) <m—m’>—0((1fa);) (1 -y < Ofeym

constraints in ®. Thus, it suffices to study Boolean promise templates where no predicate pair is of the form
(P, 5").
We further transform the instance into one in which every predicate pair is of the form (P, Q) with

Q=%\{(—1,-1,....,—1)}).

Lemma 4.2. Consider a Boolean promise template T = {(P{,Q1),...,(P;,Q;)} where P, C Q; C %" for
every i € [l|. There exits a promise template I' = {(P[,Q}), ..., (P;,Q})} and a polynomial time algorithm
such that given an instance ® of fiPCSP(T') over a set of variables V, the algorithm outputs an instance @'
of iPCSP(I") such that the following hold.

~ 1
weakly violating at most O (() 3) (m —m') constraints. The same assignment weakly violates at most

w

1. (Completeness.) For every € > 0, if an assignment ¢ : V — A strongly satisfies 1 — € fraction of the
constraints in ®, then & strongly satisfies at least 1 — Or(€) fraction of the constraints in ® as well.

2. (Soundness.) For every € > 0, if an assignment ¢ : V — 9B weakly satisfies 1 — € fraction of the
constraints in ®', then 6 weakly satisfies at least 1 — Or(€) fraction of constraints in .

3. The resulting promise template I" satisfies the below two properties:

(a) Foreveryic [I'], Qis equal to B84\ {(—1,—1,...,—1)} for some positive integer k..
(b) If MAJ C Pol(T"), then, MAJ C Pol(I").

Proof. We obtain the above transformation in two steps. First, we construct a Boolean promise template ['*
from I" as follows:

.= {(P,-,%""\{b}) iclllbe %’k"\Qi}

Note that for every predicate pair (P,Q) € ['*, there is a predicate pair (P,Q’) € I' with Q' C Q, and thus,
Pol(T") C Pol(I'™).

Given an instance @ of fiPCSP(I") over a set of variables V, we obtain an instance ®* of iPCSP(I™*)
over the same set of variables V as follows. We order the constraints of & as C;,(C»,...,C,,. Consider
a constraint C; = (x;,1,Xj2,...,Xjk) in ® using the predicate pair (F;,Q;). In the instance ®*, we add
2k — |Qi| constraints C;, associated with every b € i \ Qi. The constraint C;, uses the same tuple of
literals as C; but uses the predicate pair (P, %%\ {b}). We analyze the completeness and soundness of this
reduction.

24

1. (Completeness.) If 6 : V — 2 strongly satisfies a constraint C;, then o strongly satisfies C; y, for every
b € %5\ Q;. If o strongly satisfies (1 — &€)m constraints in @, then the number of constraints that &
does not strongly satisfy in ®* is at most 2Xem, where K := max;ec(; k;. Thus, o strongly satisfies at
least m* — 2Kem > (1— 2K €)m* constraints, where m* is the number of constraints in ®*. Here, we
are using the fact that m* > m, as we have Q; # %% for every i € [k|.

2. (Soundness.) Suppose that ¢ : V — % weakly satisfies 1 — € fraction of the constraints in ®*. As ¢
weakly violates at most €m* < 2K em constraints, for at least 1 —2X ¢ fraction of the original constraints
C;, o weakly satisfies C;, for every b € 2"\ Q;. For these constraints C j» 0 weakly satisfies C; as
well, and thus, o weakly satisfies at least 1 — 2X¢ fraction of the constraints in ®.

Next, we transform I'* to I to ensure that every weak predicate is of the form %%\ {(—1,...,—1)}. We
use the following entry-wise product notation: for a pair of vectors u,v € R¥, we let

u@v:.= (ulvl,ugvz,. . .,ukvk).

For a predicate P C B, we let
PoOv:={u®v:ue€P}.

We let I be the following.

r .= {(P@(—b),,%’k\{(—l,—1,...,—1)}) : (P,gg"\{b}) c r*}

Given the instance ®* of iPCSP(I'™*) that is obtained from @, we construct an instance @’ of iPCSP(I"”)
on the same set of variables as follows. Consider a constraint C;}, using the predicate pair (P, %% \ {b}).
We have a constraint C};, in @' using the predicate pair (P ©b, B4\ {(—1,—1,...,—1)}. However, in the
constraint C}’b, we negate the literals corresponding to the indices p € [k;] where b, = 1. More formally, we
define the constraint C}’b =(¥j,1,Yj2,--+,Yjk) as follows.

I
PP\ x5, if by = 1.

For the constant literals, X; , refers to a change of sign. An assignment ¢ : V — % strongly (and respectively
weakly) satisfies C}b if and only if o strongly (and respectively weakly) satisfies C; . Thus, we get that &’
satisfies the completeness and soundness properties of the lemma. Finally, the operation of negating a subset
of coordinates preserves all polymorphisms that are folded, and thus, if MAJ C Pol(T"), MAJ C Pol(I") as
well. O

Given an instance @ of fiPCSP(T"), we transform it to an instance @’ of iPCSP(I") using Lemma 4.2. If
® is promised to have an assignment strongly satisfying at least 1 — € fraction of the constraints, then @' has
an assignment strongly satisfying 1 — O(¢€) fraction of the constraints as well. If there is a polynomial time
robust algorithm that outputs an assignment weakly satisfying 1 — f(&) fraction of the constraints, then we
can use this assignment to obtain a robust algorithm for fiPCSP(I") as well. Thus, a polynomial time robust
algorithm for iPCSP(I") gives a polynomial time robust algorithm for fiPCSP(I") as well.

Given a Boolean promise template I in which every predicate pair is of the form (P, Z*\ {(—1,—1,...,—1)})
with MAJ C Pol(T"), we show that the robust algorithm of Charikar, Makarychev, and Makarychev [CMMO09]
for 2-SAT generalizes and gives a robust algorithm for the Boolean folded PCSP I' as well. First, we state
their algorithm.

25

1. Given an instance ® of fiPCSP(I") containing n variables u,us,...,u,, solve the Boolean folded
idempotent basic SDP and obtain a set of vectors vy, vy, ..., Vv, and objective value € > 0. Let u € R"
denote the first moments and £ € R"*" be the Gram matrix of these vectors.

Wi = (vi,vo) Vi€ [n]
Zi,j = <V,',Vj> Vi,j c [l’l]

2. Sample an n dimensional Gaussian § ~ .47(0,X). Note that X is positive semidefinite. We can also
equivalently sample {’ ~ .4#7(0,I) and use (v;,{’) in the place of ; in step 4 below. We stick with
§ ~ A4 (0,%) for ease of notation in the analysis.

3. Set!ly=eg3.

4. For each i € [n], round as follows

o(u;) =

—1 otherwise.

{‘H &> —uw/y.

We shall prove the following guarantee about the algorithm.

Theorem 4.3. Let I' = {(P1,01),(P,02),...,(P,0Q;)} be a Boolean promise template such that MAJ C
Pol(T") where B; C Q; = %5\ {(—1,—1,...,—1)} for every i € [I]. Let ® be an instance of fiPCSP(T") over
n variables and using m constraints for which the basic SDP relaxation has a solution with error value at
most em. Then, the assignment G output by the above CMM algorithm weakly satisfies 1 — Or(sl/ 3) fraction
of the constraints in expectation.

Theorem 4.3, together with Lemma 4.2 and Theorem 2.16, completes the proof of Theorem 4.1. Suppose
that I' = {(P1,01), (P>, Q2),...,(P;,Q;)} is a Boolean promise template with MAJ C Pol(T") with Q; =
B4\ {(—1,—1,...,—1)} for every i € [I]. Given € > 0 and an instance ® of iPCSP(I") that is promised
to have an assignment satisfying 1 — € fraction of the constraints, we solve the basic SDP relaxation of the
instance. Without loss of generality, we assume that € > % where m is the number of constraints in the
instance. By setting 8 = € in Theorem 2.16, we obtain that the basic SDP relaxation has an error of at
most 2em. Finally, Theorem 4.3 implies that the output assignment of the above algorithm weakly satisfies
1 — Or(g'/3) of the constraints in expectation.

Towards proving Theorem 4.3, we analyze the probability that the output assignment weakly satisfies
each constraint separately. Fix a constraint C; using the predicate pair (P,Q) of arity k with P C Q =
B\ {(—1,—1,...,—1)}. Suppose that the basic SDP solution has error equal to ¢ on this constraint, i.e.,
€; = c. Our goal is to upper bound the probability that the rounded solution violates the constraint Q by a
function of € and c. Using the fact that the expected value of ¢ over all the constraints is at most €, we get
our required robustness guarantee. More formally, we prove the following.

Lemma 4.4. Fix j € [m|, and suppose that the basic SDP solution has an error value equal to c on Cj, i.e.,

e change the parameter slightly — in the original CMM algorithm, ¥ is set to be /€.

26

€; = c. Then, the probability that ¢ does not weakly satisfy C; is at most

[1 1
O Ve+ (}/ 10g8+2c>log8+;

By summing over all the constraints, and using linearity of expectation, the expected number of con-
straints that are not weakly satisfied by o is at most

[1 1 &
ol vem+ Y, (y 10g8+2£j>10g8+? : (5)

Jjelm

As the basic SDP has a total error at most m, the average value of €; over j € [m] is at most €. Also note
that the expression in Equation (5) is a concave function of €;. Thus, using Jensen’s inequality, we get that
the expected number of constraints that are not weakly satisfied by o is at most

o vem+m (7\/log8+2£>log€+y _0(m£)

This completes the proof of Theorem 4.3. In the rest of the subsection, we prove Lemma 4.4.

For our predicate P C FB*, let 2 be the convex hull of P, where the tuples are viewed as vectors in Rk,

e@::{z%a:ZQZOVaER Z)Lazl}.

acP acP
We prove the following property about &2 using the fact that MAJ C Pol(P, %%\ {(—1,...,—1)}. We recall
that Oymay(P) denotes the set Uy, x, epren, oda MAJL(X1, ..., X,) for a predicate P C 7
Lemma 4.5. Let P C %* be a predicate such that (—1,—1,...,—1) & Omaj(P). Then, there is a hyperplane

separating 2 from the origin: there existsw € RX, w >0 and ||w||, = 1 such that for everya € 2, (a,w) > 0.

Proof. Consider the following linear program,

maximize: 1)

k
subject to: Zwi =1
i=1

k
Va € P, n—ZaiwiSO

i=1

w>0

It suffices to prove that the objective of this linear program is non-negative. To do this, we consider the
dual program on variables v € R and 4, € R for a € P:

minimize: v

subject to: L > 0A Z Aa=1 (dual of 1)
acP
Vie [k],v— Z ail, >0 (dual of w)
acP

27

As all the coefficients used in the LP are rational, we may assume that v and A are rational. Assume for
sake of contradiction that there is a solution to the dual LP with v < 0. Then, we have that for all i € [k],

Z ail, < 0.

acP
Let N be the least common denominator of the A,s. Consider the set of satisfying assignments to P where we
take 2N A, copies of a for each a € P. We also add an arbitrary element b of a to our set. As Y ,cpa; AN <0
for every i € [k], and ¥ ,cpa;A;N is an integer, we get that for every i € [k], 2Y ,cpaiAsN + b < 0. In other
words, when we apply MAJ,y1 coordinatewise to this set of assignments in P, we get (—1,—1,...,—1).
As (P,Q) contains Majority of all odd arities as polymorphisms, this implies that the resulting output
(=1,—1,...,—1) is in Q, a contradiction.

Thus, the objective 1 of the original LP is non-negative, completing the proof. O

Now we use this lemma to complete the proof of Lemma 4.4. Recall that our goal is to lower bound the
probability that the assignment ¢ output by the above algorithm weakly satisfies the constraint C;. Suppose
that C; = (xj1,Xj2,...,%jx), and uses the predicate pair (P,Q) where P C Q = #\ {(—1,—1,...,—1)}.
Let S; denote the set of variables appearing in C;. For each [€ [k], let ¥; := v(x;;), where the function v is
defined as in (1). Let ,u(j) and () be defined as follows:

().

= <V[,V0> vl e [k],
)= (81,%) VLI € [K].
Since €; = ¢, we have that
Y M(f)=l-c
f:S_j—L%
f(Cj)eP

Using Lemma 4.5, we get w € R with w > 0 and ||w||,; = 1 such that (w,a;) > 0 for all a; € P. Combining
this with the above properties of the basic SDP solution, we get the following.

1. (First moment). We have
(wouD)y =¥ 4w £(Cy)
fZSj%%
> —c (Using Lemma 4.5 and —1 < (w,a) < 1Va € B

2. (Second moment). We have

w/EVw = A ()W, £(C))?
15,

<

t
4

%lj(f)(<wvf(cj)>2+c
epP

&
Rl g

=%
2

<
[:Si—%A
f(Cj)eP

()W, F(C))) +e < (w,u)+2c.

1™

Qs

J

-

We do casework on the value of (w, (/). First, consider the case that (w, u/)) > =y, /log 1 As|wl|,=1,
and w > 0, there exists i € [k] such that ,ul-(j) > K. As §; ~ 47(0,1), using Proposition 2.21, with probability

()
at least 1 — /€, we have {; > —%. Thus, with probability at least 1 — /€, the rounded solution satisfies Q.

28

Henceforth, we assume w’ [.L(j) < k. For notational convenience let t = — ul) /7. We have

wit<

(6)

<Io

and w/ZU)w < x4 2¢. From Proposition 2.22, (w,{) ~ .4 (0,w'£)w). Thus, using Proposition 2.21,
with probability at least 1 — /€, we have that

W' | §0< <K+2c)1ogi> (7

Note that the rounded solution does not satisfy Q only if t > {. We now upper bound the probability
that this occurs. Together with Equation (6) and Equation (7), t > £ implies that

o<wi(t—-¢) <0 (V (K+2c)logi+;> .

Take some coordinate with w; > 1/k and note that

i
QO(yKK+2@bg8+;>

Since ¢; is a constant, this occurs with probability

0 (U (K+26)logi+;>)

using Proposition 2.20 applied to §; ~ .#7(0,1).. Thus, the probability that the assignment ¢ does not satisfy

Q is at most
1
0<\/§—|—\/(K—|—2C)10g8+;>.

This completes the proof of Lemma 4.4.

ti—§ €

4.2 Warm-up for AT: Random threshold rounding algorithm for Dual-Horn SAT

As a stepping-stone for our algorithm for AT presented in the next section, we present a robust algorithm
for the Dual-Horn SAT CSP. The formal template Dual-Horn SAT allows for constraints of arbitrarily large
arity, but we consider a finite fragment. In particular, our template I' = {P;,P,,...,P;} has P, = %k \
{(—=1,—1,...,—1)} for i € [I]. Specifically to emulate Dual-Horn SAT, we restrict ourself to instances of
fiPCSP(T") such that each clause has at most one negated literal and no constant literals appear.

A robust algorithm for Dual-Horn SAT was found previously by Zwick [Zwi98], and a matching hard-
ness result was obtained by Guruswami and Zhou [GZ12]. We now present a robust algorithm for Dual-Horn
SAT achieving similar guarantees as [Zwi98]. The random thresholding idea that we use here serves as a
good warmup for the AT algorithm presented in the next subsection.

29

1. Given an instance ® of iPCSP(I") containing n variables {u;,us,...,u,}, solve the basic SDP and
obtain a set of vectors vy, Vy,...,V, and objective value € > 0. Let u € R” denote the first moments.

Wi = (vi,vo) Vi€ [n]

2. Let T be a geometric progression with first term /€, last term 1/K and spacing between terms is at
least K, where K is the maximum arity of the predicates in I'.

3. Sample a uniformly random threshold r € T'.

4. For each i € [n], round as follows

(x) +1 ity >r—1.
o(x;) =
l —1 otherwise.

Theorem 4.6. Let ® be an instance of fiPCSP(I") such that each clause has at most one negated literal and
no constant literals for which there is a basic SDP solution with error at most €. Then, the assignment ©
output by the above algorithm satisfies 1 — Or(1/1og(1/¢€)) fraction of the constraints of ® in expectation.

Proof. As with the analysis of the MAJ polymorphism, we fix a single constraint C; using the predicate P
and analyze the probability that o satisfies C;. Since the average SDP error over the constraints is equal to
€, by Markov’s inequality, for at least 1 — /€ fraction of the constraints, the SDP error value is at most /€.
Henceforth, we assume that ¢ < /€.

Suppose that the constraint C; uses the literals xp,...,x; with some potentially equal. As an abuse of
notation, we let u; denote the inner product of vy with v(x;). First, consider the case when none of the
variables are negated. Using the fact that the local assignments in the SDP solution have weight at least
1 — /€ fraction on assignments in P, we get that

> (1= V/E) (—(k—2)) + Ve(—k) = —(k—2) ~2V/e

on

i=1

By the pigeonhole principle, we must have some i with
—(k—2)—2+/¢ 2—-2/¢ 1
> — =14+ ——— > -1+
Hi = k T STk
where in the final step, we assumed that € is small enough that 21/€ < 1. Thus, y; >t —1forallz € T. In
this case, o(x;) = +1, and the constraint is satisfied by o.

Next, consider the case in which exactly one literal is a negated variable in the constraint. Without loss
of generality, assume that x; is negated. Then, we have that

i p e > (1 VE) (~(k—2) +VE(K) = ~(k—2) ~2VE.
In particular, there exists an integer i € {2,3,...,k} such that

- (k-2)-2yE

1 > pyFlo2vE

(k—1) k—1

30

The algorithm rounds x; to —1 only if ¢ > %—12\/5 On the other hand, the algorithm rounds x; to +1 only

if t < uy + 1. Since there is at most one element in 7 in (%}2‘/5,#1 + 1), there exists at most one r € T

which would round x; to —1 but x; to 4+1. Therefore, the probability the constraint is satisfied is at least
1—1/|T| =1-0r(1/log(1/¢€)). By linearity of expectation over all the constraints with error at most 1/,
we get the required claim. O

Theorem 4.6 implies a polynomial time robust algorithm for Dual-Horn SAT: Suppose that the template
LC={P,P,...,P} has B, = %%\ {(—1,—1,...,—1)}ori € [I]. Consider an instance & of iPCSP(I") such
that each clause has at most one negated literal and no constant literals appear, with the property that there
is an assignment that strongly satisfies (1 — €) fraction of the constraints. Without loss of generality, we can
assume that &€ > %, where m is the number of constraints in ®. By setting § = \/€ — € in Theorem 2.16, we
can obtain a solution to basic SDP relaxation of ® with error at most v/€m. Theorem 4.6 then implies that the
output of the above algorithm satisfies 1 — Or(1/1log(1/€)) fraction of the constraints of ® in expectation.

Remark 4.7. We remark that the above algorithm applies directly to Horn-SAT as well. Furthermore,
for an arbitrary Boolean promise template T = {(P,Q1),(P>,02),...,(P;,Q;)} with OR polymorphisms'?
OR C Pol(T'), it’s been proved [BG21] that OR C Pol(I") where I is the CSP containing the predicates
{01,02,...,01}. By Schaefer’s theorem [Sch78], any template T with OR C Pol(I") is ppp-definable from
k-Horn-SAT, and thus, our algorithm proves that there is a polynomial time robust algorithm for PCSP(T")
(i.e., negated literals are not allowed) for every Boolean promise template T" with OR C Pol(T").

4.3 Algorithm for AT

We now show how to combine the ideas in the previous two subsections to obtain a polynomial time robust
algorithm for every Boolean promise template ' = { (P, Q1),..., (P, Q) }, B C Q; C %% with AT C Pol(T').
Similar to the MAJ polymorphisms case, we can without loss of generality assume that Q; # % for every
i € [I]. We first reduce an arbitrary promise template I" with AT C Pol(T") to a specific template that we will
work with. For a vector w € R¥, define sgn(w); to be —1 if w; < 0 and +1 otherwise. Define 'z to be the
following infinite family of weighted hyperplane predicates:

Tar = {(Pop i= {x € B 1 (W,x) = b}, Oy i= 2\ {sgn(w), —sen(w)}) :
keN,beQ,weQ\0,w.sgn(w) > b, —w.sgn(w) < b}
We prove that these predicates indeed have AT of all odd arities as polymorphisms.
Claim 4.8. AT C Pol(T'ar)

Proof. Fixb e Qand w € QF \ 0. Let (Py 5, Qw) be the corresponding predicate for these values. It suffices
to show that AT C Pol(Py 5, Ow,5). Fix an odd arity L and pick x,...,X; € Py ;. Observe that

AT(xy,...,X.) =sgn(X; —Xp + - +Xz).
Further, (w, (X; —X; +---+xz)) = b. This implies that sgn(x; — X + - - - + X1) # sgn(w) as otherwise,
b= (w,(x1 —X2+---+Xxr)) > (W,sgn(w)) > b.

where we used the fact that the absolute value of each entry in x; — X, + ...+ Xy is at least 1. By a similar
argument, sgn(X; —Xp + - -+ +Xr) # —sgn(w). Thus, AT(X,...,Xz) € Qw, as desired. d

20R(x1,x2,...,x) is equal to 41 if there is i € [L] with x; = 41, and —1 otherwise.

31

Let I'const be the Boolean promise template {({—1},{—1}),({+1},{+1})}. Since AT is an idempotent
family of polymorphisms, we have that AT C Pol(I'const). We show that an arbitrary Boolean promise
template with AT polymorphisms can be reduced to a finite fragment of I'ar U T ¢ops-

Lemma 4.9. Let T be any Boolean promise template with T = {(P,Q1),...,(P,0))},P. C Q; C B with

=

AT C Pol(T"). Then, T is ppp-definable from a finite Boolean promise template T with T C Tar UT congs-

We prove Lemma 4.9 in Section 4.4. Recall that if a promise template I" is ppp-definable from another
promise template I and if iPCSP(I"”) has a polynomial time robust algorithm, then iPCSP(T") has a poly-
nomial time robust algorithm as well (up to losing constant factors in the error parameter). In the rest of
this section, we prove that for any finite Boolean promise template I with I' C I'sr, fiPCSP(I") has a robust
algorithm, thereby obtaining a robust algorithm for iPCSP(I") for every Boolean promise template I" with
AT C Pol(I"). We state our algorithm below.

1. Given an instance ® of iPCSP(T") containing n variables V = {u;,uy,...,u,}, solve the basic SDP
and obtain a set of vectors vy, Vy,...,V, and objective value € > 0.

2. Sample an n dimensional Gaussian § ~ .47(0,1).

1
3. Choose 6 uniformly at random from {p,rp,...,r*p} where p = €%, and r = k = O (102)?0;) such

that r*p = €. Here, c¢; and c¢; are two arbitrary real constants satisfying 0 < ¢, < ¢; < 0.25.

4. For every i € [n], let v; = o4V + Vi, where v/ is orthogonal to vo. We output an assignment o as
follows.
—1, if (£, V)Y > 60, |(L,vp)].
o) = { (£.¥)) > 804[(L.vo)|

+1, otherwise.

We now analyze the algorithm.

Theorem 4.10. Let I be a finite Boolean promise template such that I" C Uxt C Tcong. Let @ be an instance

of iPCSP(I") for which there is a basic SDP solution with average error at most € > 0. Then, the assignment

loglog é
log é

output by the above algorithm satisfies at least 1 — Or () fraction of constraints of ® in expectation.

Theorem 4.10 together with Lemma 4.9 implies a polynomial time robust algorithm for Boolean
promise templates with AT polymorphisms. Consider an instance ® of iPCSP(I") with I' C T'yy U T cons
with the property that there is an assignment that strongly satisfies (1 — €) fraction of the constraints. With-
out loss of generality, we can assume that € > %, where m is the number of constraints in ®. By setting
0 = /€ — € in Theorem 2.16, we can obtain a solution to basic SDP relaxation of ® with erfor at most
loglog ¢

1

ve€m. Theorem 4.10 then implies that the output of the above algorithm satisfies 1 — Or (v) fraction

of the constraints of ® in expectation. Together with Lemma 4.4, this completes the proof of Theorem 1.3.
For ease of notation, we just use O() instead of Or() when I' is clear from the context. As before, we
prove Theorem 4.10 by proving a lower bound on the probability that a particular constraint is satisfied.
Consider the constraint C = (xp,...,x;) using the predicate pair (P, Q) where P C Q C %, and let ¢ denote
the error of the SDP solution on constraint C;. As the average value of ¢ over all the constraints is at most
€, using Markov’s inequality, at least 1 — /€ fraction of the constraints have SDP error at most /€. We
restrict our analysis to these constraints with SDP error ¢ < /€ and show that the rounded solution violates

32

loglog ¢

the predicate Q with probability at most O (T) thereby proving Theorem 4.10. Finally, we note that

the rounding algorithm preserves the properties of idempotence and folding: specifically, +vg are rounded
to £1, respectively. Moreover, for any vector v, the algorithm ensures that v and —v are rounded to distinct
values.

We break the analysis into cases based on the predicate pair (P,Q). We first consider the case when
P = Q and P C Ham{0,k}, which is a generalization of I'¢,.

Lemma 4.11. Let I' = (P,Q) be a finite Boolean promise template with AT C Pol(I") and P = Q, P C
Hamy{0,k} for an integer k > 1. Let ® be an instance of fiPCSP(I"), and in the basic SDP solution of P,
suppose that the constraint C; using the predicate pair (P, Q) has error at most \/€. Then, the assignment &

1
output by the above algorithm does not weakly satisfy C; with probability at most O (loli lgo‘% £)

We defer the proof of Lemma 4.11 to Appendix B.
We now consider the case when P = Py, and Q = Qy,, for some k € N,b € Q,w € Q*\ 0, w.sgn(w) >

b,—w.sgn(w) < b. For ease of notation, we let x1,x», ..., x; denote the literals assigned to C;, with vi,..., v
the corresponding values of v(x1),...,v(xx). We let S denote the set of variables in the scope of C;. We have
that
Y A(f)=1-Ve
f[:S—A
f(Cpep

Let vy = Zie[k] w;v;, and let the component of v along vy be vy, and the component normal to vg be
equal to v/.
Vs = Vg + Vi, (vo, Vi) = 0.

We use the first and second moments properties of the vectors vy, v, ..., v, to get the following.

1. (First moments). We have

Y. AW f(C))

f[:S—2A
Y LNDWAC))+ Y L)W f(C))
f:S—A [:S—%
f(Cj)ep f(Cpep
Y A(Hb+ Y, AW F(C)))
f:S—% [:S—%A
f(Cj)epP f(Cj)¢P
=b+p
where
= Y M w. f(C))))
fS—w?
f(Ccj)gp
We have |B| = O(\/¢).
2. (Second moments). We have
HVSHZ_ Z Wiw,; Vl,V] Z)v) W>)2=b2+ﬁl
i,jelk] f:S—2

where |B'| = O(V/€).

33

Thus, we get ||V.[|5 = ||vs]|3 — &% = (b + B') — (b+ B)? which is at most O(\/€).
We are now ready to analyze the algorithm. We consider two cases separately:

Case 1. Suppose that there exists i € [k] such that ||V}||, > k8r>. We claim that in this case, the rounded
solution satisfies Q with probability at least 1 — O(1).

From Proposition 2.22, (£, V') ~ JV(O,‘ v

tion 2.20, with probability at least 1 — O (1), we have that [(,V})| > k&r.
Recall that [|v}]|, < €%2% < §. Thus, [({,V})| < r8 with probability at least O (). As |[({,v})| > kér,

there exists i’ € [k],i’ # i, such that |({, V)| > &r, and ({,v;) and ({,V/,) have opposite signs.

2
2) for every j € [k]. Since ||V}||, > k872, using Proposi-

Furthermore, as (§,vo) ~ .47(0, 1), using Proposition 2.21, we get that |({,vo)| < r with probability at
least 1 — O(¢g). Combining this with the above, we conclude that with probability 1 — O (}) all the following
hold:

(D [(&,vo)| <.
(2) [{€,V))| > érforall je {i,i'}.

(3) (&,v;) and ({,V)) have opposite signs.

Note that for every j € [k], |aj| = |(vo,V;)| < 1. Using (1), we have |da;(C,vo)| < rd. Thus, from (2),
forall j € {i,i'}, we deduce that x; is set to — 1 if ({,v}) > 0, and +1 otherwise.
1

r

Combining with (3), with probability at least 1 — O (
implies that the rounded solution satisfies Q.

), i and i’ are rounded to different values, which

.

As (§, Vi) ~ A0, ||V;H§), using Proposition 2.21, we get that with probability at least 1 — O(1), for
every i € [k], [(£,v})| < %. On the other hand, using Proposition 2.20, we have that |[({,vo)| > 1 with
probability at least 1 — 1. Furthermore, As o + HviH% = 1 for every i € [k], we get that || > 1 — & > for
every i € [k]. Thus, with probability at least 1 — O(1), for every i € [k], x; is set to be —1 if 07 <0, and +1
otherwise. Combining this with the fact that }"; w;0; = b+ O(1/€), and that w. sgn(w) > b, —w.sgn(w) < b,
for small enough €, we get the rounded solution has variables assigned +1 and —1. Here, we assumed that
€ is at most ¢ := ¢(I") for some function c. This is without loss of generality, since when € is larger than c,

a uniformly random assignment satisfies the robust algorithm requirement.

Case 2. Suppose that for every i € [k], we have ||v}]|, <

Completing the proof. We finish the proof by showing that with probability at least 1 — O(}), at least one
of the above two cases holds. None of the above two cases hold only if for some i € [k], we have

g / 2
ﬁ < HViHZ < kor
Or equivalently,
Vil
kr?
This holds with probability at most O(1) for every value of ||v}|| as we are picking & from {p,rp,...,r*p}
uniformly at random with Kk = r.

<8 < |vi,2r

34

4.4 Proof of Lemma 4.9

For a predicate P C %%, we let Aff(P) C R to denote the affine hull of P.

Aff(P) := {Z‘;)Aaa: Z;.fa =1l ¢€ R} .
ac ac

We recall that Oar(P) denotes the set Uy, . x, cpren, odd, ATL(X1, - ..,X.) for a predicate P C *. In order to
prove Lemma 4.9, we need to use the following lemma implicit in [BG21].

Lemma 4.12. Let P C PB* be a predicate such that there is non-trivial dependence in each coordinate, i.e.,
for every i € [k], there exist vectors x,y € P with x; = —1 and y; = +1. Then, Oxr(P) = {sgn(x —y) : x,y €
Aff(P),Vi,x,- 75 y,'}.

We present the proof in Appendix B for the sake of completeness. We also need the following claim.

Claim 4.13. Let H be a vector space in R* such that there is noy € H with y; > 0 for all i. Then, there exists
w # 0 with w; > 0 for all i and (w,y) =0 forally € H.

Proof. Since H and the positive orthant RX := {y € R¥ : y; > 0 Vi € [k]} are disjoint convex bodies, by
the separating hyperplane theorem (e.g., [BV04]), there exists nonzero w € R and b € R such that for all
vVE R’j_, (w,v) >bandforally € H, (y,w) <b. Since w is nonzero and Rﬁ is open, we must more strongly
have that (w,v) > b and for all v € RX .

Taking the limit as v — 0 of (y,w) < b for all y € H, we have that b < 0. Further, since (0,0,...,0) € H,
we must have that b = 0 and since H is a vector space, (y,w) =0 for all y € H. Thus, w is normal to H. Note
that w is nonzero and has all coordinates non-negative as (v,w) > 0 for all v in the positive orthant. O

Proof of Lemma 4.9. Fix a pair of predicates (P, Q) € I. It suffices to show that (P, Q) is ppp-definable from
Lat UTconst. If P has coordinates of fixed value, we can use a gadget reduction from I'copg to simulate
these values. Thus, we assume that P has non-trivial dependence in each coordinate, and thus we apply
Lemma 4.12 to get that Q D Oar(P) = {sgn(x—y) : X,y € Aff(P),Vi,x; # y;}. We may without loss of
generality assume that Q = {sgn(x—y) : X,y € Aff(P),Vi,x; # yi}.

For every x € %%\ Q, we find w, b such that

Pyp:={ve B (W,v) =b}, OQwp:= %’k\{sgn(w), —sgn(w})

satisfy P C Py j,,Q € Qw5 and sgn(w) = x. By applying this for every x € %\ Q, we get a set of predicate
pairs (P,01),(P>,03),...,(PL,Qr) with L < 2¥ such that

1. PC P foreveryic [L].
2. (P,Q;) € Tyr foreveryi€ [L].
3. Nigy Qi = 0O

This shows that (P, Q) is ppp-definable from {(P,Q1), (P>, Q2),...,(PL,0r)} C Tar.

Henceforth, our goal is to show that for every x € %%\ Q, we can find w,b such that Py, := {x €
HB* . (w,x) = b} satisfies P C Pyp, (W,sgn(w)) > b, (w,sgn(w)) > —b and sgn(w) = x. Without loss
of generality, we can assume that x = (+1,+1,...,+1). Fix an arbitrary vector X € P such that X ¢

35

{(=1,—1,...,—1),(+1,+1,...,+1)}. Such a vector is guaranteed to exist as P does not contain x and
has non-trivial dependence on each coordinate. Let H be a subspace of R¥ defined as follows:

H:={y—X:ycAff(P)}

As X ¢ Our(P), using Lemma 4.12, we get that for every z € H, sgn(z) # X, or in other words, there is no
z € H with z; > 0 for all i € [k]. Using Claim 4.13, we can obtain nonzero w > 0 such that (w,y) = 0 for all
y € H. This shows that (w,y) = b for every y € P, where b := (w,X) satisfies Y;w; > b, Y, w; > —b. O

S Unique Games based Hardness

In this section, we prove Theorem 1.4. First, we use the analysis of AT and MAJ polymorphisms for
symmetric promise tempaltes with folding and idempotence in [BG21] to show that we can relax I into one
of five candidate PCSP types.

Lemma 5.1. Let I" = (P,Q) be a Boolean promise template such that MAJy,, ATy, ¢ Pol(T") for some odd
integers Ly, Ly. Then, there exists a Boolean template I = (P, Q) that is fippp-definable from T that is equal
to one of the following:

1. kiseven, andT'y = (P,Q),P = Ham{%},0 = Ham; {0, 1,... ,k} \ {b} where b € {1,k —1}.

2. kisodd, T> = (P,Q),P = Hami{l, 5}, 0 = Ham{0,1,2,...,k— 1}, where | < 51,

3. I's=(P,Q),P =Ham{l,k}, 0 =Hamy{1,2,... k}, where | # 0,1 < %

4. Ty = (P,Q),P = Ham{l},0 = Hami{0, 1,...,k} \ {0,k — 1} where | € {1,2,....k— 1}, < L.
5. T's = (P,Q),P =Ham{1,k},Q = Ham {0, 1,...,k} \ {b} for arbitrary b € {0,1,... k}.

We defer the proof of Lemma 5.1 to Appendix B.

Recall that if a promise template I is fippp-definable from another promise template I, if iPCSP(T")
has a polynomial time robust algorithm, then iPCSP(I"”) has a polynomial time robust algorithm as well
(Proposition 2.12). Thus, to show Theorem 1.4, it suffices to show Unique Games based hardness of ob-
taining robust algorithms for iPCSP(I';) for i € [5] from Lemma 5.1. We achieve these hardness results
by showing integrality gaps for the basic SDP relaxation of each fiPCSP(I';). Raghavendra’s result for
CSPs [Rag08] shows that integrality gaps for the basic SDP relaxation can be translated to Unique Games
Conjecture (UGC) [Kho(O2a] based inapproximability results. In fact, his result is verbatim applicable to
Promise CSPs as well.

Theorem 5.2 (Special case of [Rag08] for Boolean fiPCSPs when the SDP is feasible). Suppose that for
a Boolean promise template T, there is a finite integrality gap for the basic SDP relaxation fiPCSP(T),
i.e., there is a finite instance I of iPCSP(I") on which the basic SDP relaxation is feasible but there is no
assignment that weakly satisfies 1. Then, there exists a constant s < 1 that is a function of I, I such that the
Sollowing decision problem is NP-hard for sufficiently small €,6 > 0, assuming UGC. Given an instance ®
of iPCSP(T'), distinguish between the two cases:

1. (Completeness.) There exists an assignment that strongly satisfies 1 — € fraction of the constraints in

.

36

2. (Soundness.) No assignment weakly satisfies s+ & fraction of the constraints in P.

Remark 5.3. It is worth noting that Raghavendra does not work directly with the basic SDP relaxation
of iPCSP(I") but rather with the basic SDP relaxation of PCSP(I") for a suitable promise template T".
In particular, consider for each relation (P,Q) € I of arity k the variable set V.= {xi,...,x;}. For every
possible clause C = (y1,...,yi) € (VUVURB)* using variables S CV, we construct a corresponding relation
pair (Pc,Qc) of arity S such that

Pc={ze %°:C(z) € P}
Oc={z€ % :C(z) € 0}.

In particular, T consists of every (Pc,Qc) which can be defined from some (P,Q) € I. The key observation
is that every instance ¥ of iPCSP(T") can then be replaced by a suitable instance ¥’ of PCSP(I") by replace
each use of (P,Q) with the corresponding (Pc,Qc). One can verify that each strong and weak assignment
to ¥ has the same value as the corresponding assignment to V' and that the SDP relaxations have the same
value. Thus, Raghavendra’s theorem does indeed apply.

Thus, to show Theorem 1.4, our goal is to show the existence of finite integrality gaps for the basic SDP
relaxations of the Boolean promise templates in Lemma 5.1. To obtain such an integrality gap for the basic
SDP relaxation of a PCSP, we study colorings of the n dimensional sphere S” that satisfy certain properties.
We start by defining a few notations that we need.

Definition 5.4. Fix a predicate P C %*. We say that a tuple of vectors V = (v{,va,...,v;),v; € S"Vi € [k]
are a P-configuration with respect to another vector vy € S" if the tuple of vectors can be assigned to a set of
literals in a constraint by the basic SDP relaxation of an instance of fiPCSP(P, Q) with zero error, for some
Q D P. In other words, there exists a probability distribution {A(a) : a € P} supported on P that satisfies
the following properties.

1. 0<A(a) < lforallac P, and
Y Ala)=1.

acP

2. First moments:

(vi,vo) = Y Ala)a; Vie[k].

acP

3. Second moments:
vive) =Y Aa)ajar Vi,i' € [k].
acP
We now define the notion of a function respecting a Boolean fiPCSP. We refer to functions f : S" — %
as colorings of the sphere.

Definition 5.5. Fix a vector vo € S". We say that a coloring of the sphere [:S" — A is folded if f(—v) =
—f(v) for every v € S". We say that f is idempotent if f(vo) = +1 and f(—vo) = —1. We say that a coloring
f respects the promise template (P, Q) with respect to a vector vo € S" if the following condition holds. For
every P-configuration V.= (v,va,...,vy) with respect to vy, we have that the colors of the vectors satisfy Q,
ie.,

(f(vl)vf(VZ)a"'7f(Vk)) €0

More generally, we say that a coloring f : S" — 9B respects a Boolean promise template I" with respect to a
vector v if it respects every predicate pair in (P,Q) € I with respect to .

37

Our key observation is that the absence of such a folded sphere coloring respecting I" for some finite n
gives an integrality gap for the basic SDP relaxation of iPCSP(T").

Lemma 5.6. For every Boolean promise template T’ = {(P\,Q)),...,(P;,0Q;)}, the Basic SDP decides
fiPCSP(T) if and only if for every integer n > 1, there exists a folded, idempotent coloring f) .s" - 2
that respects I with respect to a vector v(()").

Proof. We slightly abuse the notation and say that a “partial” folded function f : § — #,§ C S" respects
a Boolean promise template (P,Q) with respect to vo if and only if for every P-configuration of vectors
V = (v1,...,Vx) with respect to vo with v; € SVi € [k], f(V) € Q. More generally, for a Boolean promise
template I, f : S — 2 respects I' if and only if it respects every predicate pair in I". Via a compactness'?
argument (e.g., like the De Brujin-Erdos theorem [dBE51], for more details see Remark 7.13 of [BBKO21]
or [CZ23a]), we can infer that there is a folded coloring f : " — Z respecting I with respect to vy if and
only if for every finite subset S C S”, there exists a folded coloring fs : S — 2 that respects I' with respect
to vo.

First, assume that the Basic SDP decides fiPCSP(T"). Fix an arbitrary set of vectors V(()") eS"neZ".
Also pick a subset T C S” such that for every v € S”, exactly one of v or —v is in 7. For any finite subset
S C §", we construct an instance ®g of I" as follows. By increasing the size of S, we may assume that §
is closed with respect to negation. The variable set of ®@g is {xy : v € SNT}. We define the constraints
as follows. For every i € [I] and every P-configuration (vy,Va,...,v;.) € Sk with respect to V(()"), we add a
constraint over (P, Q;) using the literals ly,,... Ly, , where

+1 vj:V(()")
-1 v;= —V(()")
Xy; Vj €& T

X_v, —V;€ T.

We have that xy — v is a basic SDP solution with zero error. Thus, there exists an assignment fsn7 :
SNT — & to the variables that weakly satisfies all the constraints in ®g, or equivalently, there exists folded,
idempotent fs : § — 2 that respects the promise template I" with respect to V(()"), where

fsnr(v) veSNT
fs(v) = _
—fsnr(v) otherwise.
Hence, there exists a folded, idempotent coloring f : S" — Z that respects I" with respect to v(()") for every
positive integer n.

Second, suppose that for every integer n > 1, there exists a folded, idempotent coloring £ : §" — 2
that respects I" with respect to some vector V(()"). We seek to show that the Basic SDP decides fiPCSP(I).
Take an arbitrary instance ® of iPCSP(I") such that there is a solution to Basic SDP with zero error. We
solve the SDP relaxation of ® and obtain a set of vectors vo and vy, ..., v, € S" corresponding to the variables
in @ that satisfies all the constraints in ® with zero error. By Proposition 2.17, there exists an orthogonal
matrix Q € RUHD>(+1) for which Qv = V(()n). Since orthogonal matrices preserve the inner products of
vectors, we have that multiplication on the left by Q is an automorphism of §". Define /") : " — 2
by f'® vy=f (n) (Qv). Since multiplication by an orthogonal matrixpreserves inner products, we have that

13We assume the axiom of choice.

38

'(n) respects I with respect to vy if and only if (n) respects I” with respect to V(n). Therefore, the assignment
P p y P p 0 g

£ (v;) to the variable u; weakly satisfies all the constraints in ®. Thus, for every instance ® of iPCSP(I")
with zero error on the basic SDP relaxation, there is an assignment that weakly satisfies all the constraints
in @, or equivalently, the basic SDP decides fiPCSP(I"). O

As a corollary, we get the following.

Corollary 5.7. Let I" be a Boolean promise template. Then, there is a finite integrality gap for the basic
SDP relaxation of fiPCSP(I') if and only if for some positive integer n, there exists no folded, idempotent
coloring f : S" — % that respects I.

Theorem 5.2 together with Corollary 5.7 shows that if for a Boolean promise template I" does not admit
a sphere coloring f : S" — 2 that respects I" for some positive integer n, then, iPCSP(I") does not admit
a polynomial time robust algorithm, assuming the Unique Games Conjecture. Thus, our goal is to show
that the promise templates mentioned in Lemma 5.1 do not admit sphere coloring that respects them, and
use Corollary 5.7 to prove Theorem 1.4.

In the rest of this section, we first prove a couple of lemmas regarding sphere Ramsey theory. Then, we
show that the earlier mentioned promise templates I';__s do not have folded sphere coloring respecting them
using the sphere Ramsey results.

5.1 Sphere Ramsey theory

We start with some more notation. For a tuple of vectors S = (vi,va,...,v;) with v; € S¢, we use p(S) to
denote the the smallest radius of a sphere that contains S as a subset.

p(S) :=min{r:Ic € R? |lc—vi||, = rVi € [K]}.

Let S| = (uy,ua,...,u), S = (V1,Va,...,vx) with u; € S, v; € S© be two tuples with the same arity. We
say that S; and S, are congruent if they have the same pairwise inner products, i.e., (u;,u;) = (v;,v;) for all
i,j € [k]. Matousek and Rodl [MR95] proved the following:

Theorem 5.8 ([MRO5]). Let S = (u;,uz,...,ux) be a tuple of affinely independent vectors with p(S) < 1.
Then, for every positive integer r > 2, there exists an integer ny := no(S,r) such that for every n > ny, for
every coloring f : S" — [r], there exists a tuple of vectors S' = (v1,va,...,vi),v; € S"Vi € [k] that is congruent
to S, and is monochromatic, i.e., f(v;) = f(v;) for every i, j € [k].

We will use this to show the following lemma regarding sphere colorings.

Lemma 5.9. Fix an integer k > 3 and r > 2. There exists ny := no(k,r) such that for every n > ng and
coloring f :S" — [r] and y € R with % < Y < 1, there exists a monochromatic set of vectors V =
{vi,v2,...,vi} C©S" such that (vi,v;) =y for everyi# j.

Proof. Consider an arbitrary set S = {uy,uy,...,u} of k unit vectors in S” such that (u;,u;) = vy for every
i # j. Such a set S is guaranteed to exist when n is large enough. We show that the vectors are affinely
independent: suppose for contradiction that there exists reals ¢y, ca, ..., c; notall zero, Y ;c; =0and } ; c;u; =

0. We have
0= <l11, (Zciui>> =cit+y(et.. ta)=ca+y(-c)

39

implying that ¢; = 0. The same argument shows that ¢; = 0 for all i € [k], a contradiction.

The set of vectors can be embedded on a sphere of radius strictly smaller than 1: let & € R such that
O<a< %, and let u, = Zie[k] u;, ¢ = aug. We have

g3 = Y lhwil3 +2 Y (wiw) = k+k(k— 1)y
i i#]
Note that

s — 15 = w15 + lle]l5 — 2(e, w,)
=1+ a*(k+k(k—1)y) —2a(l+ (k—1)y)

1 (a-2)

which is strictly smaller than 1 when 0 < a < % Thus, all the vectors are on a sphere centered at ¢ and
radius strictly smaller than 1, implying that p(S) < 1. Now, we can use Theorem 5.8 on S and f to obtain
the required set of vectors V. 0

While Theorem 5.8 is applicable to a wide range of sets S, we sometimes need to apply it to sets S that
do not form a simplex or have p(S) = 1. Towards this, we use the “Spreads” based idea in [MR95] to obtain
a version of Theorem 5.8 directly for certain sets S where Theorem 5.8 is not applicable.

We use the following notion of Spread vectors from [MR95]. For an integer 7, a vector a € R, and a set
J C [n] of cardinality k with J = {1, j2,..., ji} where jj; < --- < ji, we let

k
Spread-s,(a,J) =)_ aje;,
i=1

where e}, ey, ..., €, is an orthonormal basis of R". For a set I C [n], we let
Spread, (a,I) = {Spread-s,(a,J) : J CI,|J| =k}

Recall the hypergraph Ramsey theorem: for any n,k,r there exists N such that in any r-coloring of the
hyperedges of the complete k-uniform hypergraph on N vertices, there exists an induced subgraph on n-
vertices which is monochromatic. As a direct consequence, we get the following application to spreads.

Lemma 5.10. ([MR95]) For everya € R n,k, there exists N such that in any coloring f : Spready (a, [N]) —
[r], there exists I with |I| = n such that Spready (a,I) is monochromatic with respect to f, i.e., 3p € [r] such
that f(v) = p for all v € Spready (a,I).

Lemma 5.10 implies the following immediately.

Corollary 5.11. Let U = {u;,us,...,u;} be a set of k unit vectors such that u; € Spready(a, [N]) for all
i € [k] for an integer N, and a vector a € RN with |la||, = 1. Then there exists no := no(U,a,N) such that
for every n > ny,r, for every sphere coloring f : S" — [r], there exists a set of k vectors V.= {vy,...,v;} that
are all colored the same, and (v;,v ;) = (u;,u;) for every i, j € [k|.

We use Corollary 5.11 to prove a lemma regarding sphere colorings. For ease of notation, we call a set
of k unit vectors V = {vy,va,..., v} to be k-regular if (v;,v;) = — 1 for every i # j.

40

Lemma 5.12. Fix an integer k > 2. There exists ny := no(k) such that for every n > ngy and folded coloring
f:S" — B, there exist a k-regular set of vectors V.= {v,va,...,vi} CS" such that exactly k — 1 vectors in
V are colored —1.

Proof. We construct a set of k unit vectors V = {v},v,,...,v;} in Spready (a,[N]) such that the set of vec-
tors {Vi,Va,...,Vk_1, —Vi} is a k-regular set, where N and a depend only on k, and ||a||, = 1. Using Corol-
lary 5.11, we can infer that in the coloring f, there exist k vectors V = {v;,va,..., v, } that are all assigned
the same color, such that {v;,va,...,Vi_1,—Vi} is a k-regular set. As f is folded, this implies that there is a
k-regular set in which exactly k — 1 vectors are assigned the color —1.

Thus our goal is to construct k unit vectors V = {v;,Va,..., v} in Spready(a, [N]) such that the set of

vectors {Vi,Va,...,Vk_1,—Vg} is a k-regular set. Or equivalently, we construct the vectors vi,Va,...,Vi_|
in Spready (a, [N]) and v; in Spready (—a,[N]) such that {vy,...,v;} is a k-regular set. We set y = \/2(1](71)

anda=(v,—7,%,—%,...,—Y) € R2k=D We set v; = Spread, (a,J;),i € [k — 1], v; = Spread(—a, J;) where
Ji,J2,...,Ji such that |J;| = 2(k— 1) for every i € [k]. We obtain these sets by induction on k. First, we
consider the base case when k = 2. In this case, we set J; = J, = {1,2} and N = 2 suffices. The vectors are
the following:

vi=(v,=7)

V2= (=77
where y = % Note that the above two vectors are a 2-regular set, and letting a = (y,—7), we have
v) € Spread,(a,[2]), and v, € Spread,(—a,[2]). Now, suppose that Ji,Js,...,Ji, N are such that v; =

~—

Spready(a,J;),i € [k — 1],vx = Spready (—a,Ji) satisfy the property that {vi,va,...,Vi} is a k-regular set
witha=(y,—7,...,7,—7) e R2 k-1 L We construct Ji,...,J; ,; such that v; = Spread,, (a’, J;)

V= V20k—=1)"

for all i € [k], v),; = Spready,(—a’,Ji11) satisfy the property that {v},v},...,v;,} is a (k+ 1)-regular set
witha' = (Y, —v,....Y,—7) e R*, vy = ﬁ

1. For every i € [k— 1], we obtain J; from J; by adding two new elements.

J=JU{N+2i,N+2i+1}
This ensures that (v;,v}) = —(y)? forevery i, j € [k—1],i # j.
2. We obtain Ji11 from J; by adding two new elements.
Jes1 =S U{N +1,N + 2k}
This ensures that (v}, v}) = —(¥)? for every i € [k —1].

3. Finally, we set Jj.
Ji={N+1,N+2,... N+2k}

This ensures that (v},v}) = —(y)? forevery i € [k+1],i # k.

We illustrate our construction by obtaining the vectors for the case when k = 3 and k = 4:

vi=(a,—a, 0, a,—a, O0)
vwo=(0, 0, a,—ct, o,—)
vi=(—a, a,—a, 0, 0, a)

41

vi=(B—B, 0, B,—B, 0, 0, B,—B, 0, 0, 0)
v2=(0, 0, B,=B, BB, 0, 0, 0, B,—B, 0)
vs=(0, 0, 0, 0, 0, 0, B,—B, B,—B, B,—B)
va= (=B, B,—B, 0, 0, B,—B, 0, 0, 0, 0, B)
Wherea:%andﬁ:%.
As the pairwise inner product of every pair in {V{,v},..., v}, } is equal to —(7)?> = —1, we get that
these set of vectors are a (k+ 1)-regular set, completing the inductive proof. O

5.2 Absence of sphere coloring via sphere Ramsey theory
First, we show the absence of sphere coloring respecting I'; using Lemma 5.12.

Lemma 5.13. Fix an even integer k > 4. There exists an integer ng such that for every n > ng, there is
no folded f :S" — % that respects T'y = (P,Q), P = Ham{4}, Q@ = Ham{0,1,...,k} \ {b} where b €
{1,k—1}.

Proof. Consider a large integer n and suppose for the sake of contradiction that there is a folded function f :
S" — % that respects ['} with respect to a vector vo € S”. We get the P-configuration of vectors v, v, ..., Vg

where we set A (a) = ﬁ for every a € P in Definition 5.4. The vectors satisfy the following properties.

1. (First moments.) (v;,vo) = 0 for every i € [k].

2 / q
()
Our goal is to show that there is a P-configuration of such vectors such that exactly b of them are colored

+1 according to f. Consider the set of vectors

2 k/2>_ﬁ

2. (Second moments.) (v;,v;) = = % for every i # j € [k].

vp :={uecS": (u,vo) =0}

Using Lemma 5.12, we can obtain a set of k vectors uy,up,...,u; € Vé such that (u;,u;) = kfll and exactly
k—1of {uj,uy,...,u;} are colored —1.

Hi: f(w)=—1}=k—1.

Note that both {u;,uy,...,ut} and {—u;,—uy,...,—u;} are P-configurations with respect to vo. Since f
is folded, in at least one of these two P-configurations, there are exactly b vectors that are colored +1, a
contradiction. O

We show the absence of sphere coloring respecting I';, I'3, and I'4 using Lemma 5.9.

Lemma 5.14. Fix an odd integer k > 3 and integer | : 0 <[< kal There exists an integer ng such
that for every n > ny, there is no folded f : S" — 9 that respects I'; = (P,Q), P = Ham{l, %} 0=
Hamy{0,1,2,...,k—1}.

Proof. Consider a large integer n and suppose for contradiction that there is a folded function f : §" — %
that respects I, with respect to a vector vo € S”. The P-configuration that we consider is a set of vectors

42

Vi,V2,...,V; that are obtained by setting A(a) in Definition 5.4 as follows. We first sample an integer
red{l, k%l} as below.
B {l, with probability .

k+1

=5, with probability ;..

where s =1 — (k—1) < 0. The probability distribution A is obtained by sampling a uniform element of
Hamy{¢}. In other words, we have

, if a € Ham{/}.
Aa) := _—S, else if a € Ham; {&{1}.

()

0, otherwise.

We obtain the following properties:

1. (First moments). By symmetry, (v;, Vo) = (v}, Vo) for all i, j € [k].
We have (v;,vg) = %((Zie[k] vi,vo) = 1 (75 (1= (k=1))+ £ 1) = 0 for every i € [K].

2. (Second moments). By symmetry of variables, we get that (v;,v;) = 7y for every i # j, for some
Y :=v(k,l). We have

2 2
ktk(k—1)y= |1} vi :ZA(a)():a,) > 0.
i]

acP iclk

Thus, we get that ,:_—11 <y<l.

Now, restricting ourselves to the vectors in S” that are orthogonal to vy, and using Lemma 5.9, we get that
there exists a P-configuration of vectors that are all colored the same. By taking the negation of these vectors
if needed, we get our required claim. O

Lemma 5.15. Fix integers k,l such that 0 <[< kal Then, there exists an integer ng such that for every
n > ng, there is no folded f : S" — A that respects I's = (P,Q), P = Hamy{l,k}, O = Hamy{1,2,... k},
where | # 0,1 < %

Proof. Consider a large integer n and suppose for contradiction that there is a folded function f : 8" — %
that respects I'; with respect to a vector vo € S”. We pick the P-configuration along the same lines as
in Lemma 5.14. We sample 7 € {/,k} with

—S

i I with probability A~
k with probability —

where s =1 — (k—1) < 0. As before, the probability distribution A is obtained by sampling a uniform
element of Hamy {r}. We get

1. (First moments). (v;,vo) = 1 { (=) £+ (%) 1} = O forevery i € [k].

43

2. (Second moments). As in Lemma 5.14, we have (v;,v;) = y for every i # j, for some y:= y(k,[) with

2

_ Zx(a)(zuai)z > 0.
iclk

acP

k+k(k—1)y=

Lvi
i

Thus, we get that % <y<l

We restrict ourselves to vectors in S” that are orthogonal to v, and applying Lemma 5.9, we get that for any
coloring f : S" — 4, there is a monochromatic P-configuration that we described. By negating the vectors
if needed, we get our required proof. O

For the proof of the next case I'y we will need Lemma 5.9 applied to 4-colorings of the sphere.

Lemma 5.16. Fix integers k > 3,1 € {1,...;k—1},1 < % There exists integer ng such that for every
n > ny, there does not exist coloring f : S" — {0, 1} that is folded and respects the promise template Ty =
(P,Q),P =Ham{l},Q0 = Ham{0,1,...,k} \ {0,k —1}.

Proof. As before, consider a large integer n and suppose for contradiction that there is a folded function
f:S" — Z that respects I'y with respect to a vector vo € S”. We partition the predicate P into P; and P_;
depending on the value of the first element, i.e.,

P={xeP:x;=i},ic B

We pick the probability distribution A as follows: sample i from % uniformly at random, then, sample a
uniformly random element from P,. We get

1. (First moments). By our choice of P;s, we get that
<V1 s V()> =0

By using the symmetry of the rest of the variables and the fact that Y5 (v;, vo) =1 — (k—1) =21 —k
, we get that

21—k
€ {2,3,...,k}.
k_IVIE{ ,3,...,k}

(vi,vo) =
For ease of notation, let ¢ = =—".

2. (Second moments). We have

Thus, we get

Note that we have

Using this, we get that

N2 (F—
(Vi) = (ZZ(k—k)l)(k(fz)2> Vi€ {23 k)it

(21—k)?—(k—2)

For ease of notation, let f = =2 -

Our goal is to show that there exists ng such that for every n > ng, for every folded sphere coloring
f:S" — P and vy € S, there exists a set of k vectors V = {v},v,,..., v, } that satisfy the above first and
second moments, and exactly b vectors in V are colored +1, where b € {0,k — 1}.

Lety= ? :gzz . We expand this as follows:

(21—k)>—(k—=2) (21—k)?

;k=D&-2) = (x-1)7?
B 1—o?

(21—k)? 1
(= 1D2(-2) k-1
B 1—o?

o 1 10— 1

_ k2 k1 _ k2 k—1

1—a? 1—a?

Simplifying further, we obtain:
1 1 1

TS U k-Dk=2) k-2~ k-2 ®

We apply Lemma 5.9 on the following coloring of the sphere. For a vector u € S” such that (u, vg) = 0,
let f:S" ! — % be defined as

f'(u) = (f (O‘VO +V1-a? “) S ("‘VO - mu))

Using Lemma 5.9 on f’ combined with the fact that y > — obtamed from Equation (8), we can infer that
there exist k — 1 unit vectors uj,uy, ..., ux_; € S* ! such that (u;,vo) = 0 for all i, (u;,u;) = yforall i # j
and f'(u;) = f'(u;) forall i # j,i,j € k—1].

We define Vg),Vgl), V,El),vgz), ... ,V,(f) as follows. Fori € {2,3,...,k}, we let

l(l =avg+ V1 —(lell 1
1(2) =avp—V1-— 062111;1

We let

k—
V§1) B Z, ! u;
Tl
and ng) = —Vgl). We now prove that the set of vectors Vgl), el ,V,((U and the set of vectors ng), el ,V,Ez) are a

P-configuration with first and second moments as computed earlier, where we sampled i from % uniformly
at random and set the probability distribution A as the uniform distribution over P,.

45

1. (First moments). As (u;,vo) =0 for all i € [k — 1], we get that
(v, v0) = (v} vo) =0

and
(v; ', vo) = <V§2),vo> =aVie{2,... k}

2. (Second moments). We have Vi € {2,3,... k},

(1) (1) <():1;;% u;), (avo+v1—o’u; 1))

(Vi v) =—
=i
_Vi-o? (ESiuy), (X))
U e
Vo &
e |5
)
_ \/1 o _1+2 1)(k— 2>y
2
\/1— \/ 1 . .
i % Using Equation (8)
-
k—1

Furthermore, Vi, j € {2,3,...,k}, i # J,

v 51 ((avo+ V1 —0?v;), (avo+ V1 —a?v;))
=’ +(1-a®)y
—B.

Similarly, we have

v y@y = (Ti=iu), (avo—v1—a?u; 1))

VLY

-1
= Vie{2,3,...,k}.
HZ’,‘-;%WH k=1

v VD) = ((avo — V1 a2vi), (avo — V1 - av;))

— @2 (1-0?)y= 0P+ (1—)y =BVi,j € {2.3,... . k},i #

(1) o) (1) 2 (2 (2)

Thus, both the set of vectors v, ’,v,,..., v, and the set of vectors v|”’,v,",...,v,” are P-configurations
with respect to vo. As f'(u;) = f'(up) = ... = f'(ux_1), we can infer that f(vgl)) :f(vgl)) =...= f(v,(cl))
and f (V(Zz)) =f (ng)) =...=f (Vk2). Furthermore, as V(ll) —V(lz) and f is folded, we can infer that

f(vgl)) =—f(v 2)) Thus, there exists p € {1,2} such that f(v; (p)) = —1. Thus, there are either 0 or k — 1

vectors among Vg),Vg),..., ,({ ?) that are colored +1 according to f, contradicting the fact that f respects

the PCSP (P, Q). O

46

5.3 Absence of sphere coloring via connectivity of configurations
Finally, we show the absence of sphere coloring for I's using a connectivity lemma.

Lemma 5.17. Fix integers k > 3,b € {0,1,...,k}\ {1,k}. There exists an integer ny such that for every n >
no, there does not exist coloring f : S" — {0, 1} that is folded and respects the promise template I's = (P,Q),

P =Ham{1,k}, Q = Ham{0,1,...,k}\ {b}.

We dedicate the rest of the section to proving Lemma 5.17. We pick the configuration of vectors along
the same lines as in Lemma 5.14. Fix vo € S". The P-configuration that we study is a set of vectors
Vi,V2,...,Vy that is obtained by first sampling 7 € {1,k} such that

o 1 with probabilityﬁ
k with probability 4%

Then, we sample a uniform element from Hamy{t}. We get the following properties:
1. (First moments). (v;,vo) = (525) 2 + (4=%) 1 = 0 for every i € [k].
2. (Second moments). For every i # j € [k], we get

= () g (65 15

2

For ease of notation, let o = k%f We restrict our attention to vectors in the unit sphere S” that are
orthogonal to vy. This allows us to focus on P-configurations which are sets of k unit vectors with pairwise

inner products equal to . More formally, we define such a set of vectors as an ¢¢-configuration.

Definition 5.18. A set of vectors V. = {vi,va,...,V¢} CS" is called an a-configuration if the vectors Vv;
satisfy:
(vi,vj) =0 foralli# j.

Given a folded sphere coloring f, our objective is to prove that there exists an a-configuration V such
that exactly b of the vectors in V are assigned the value +1.

Unlike the earlier studied promise template, here, the setting when b = 0 is relatively straightforward,
simply because o > 0. o > 0 implies that there are an arbitrarily large number of unit vectors (as we can
pick n to be large enough) all of whose pairwise inner product is equal to ¢. In particular, we pick a set of
2k — 1 unit vectors all of whose pairwise inner product is equal to &. Among those, k of them are colored the
same according to f. By taking the negation of these if needed, we can infer that there are ¢-configurations
that are all colored +1, and also a-configurations that are all colored —1.

Before delving further, we handle the case when o = 0, i.e., when k = 3. In this case, we just pick a set
of k unit vectors that are all orthogonal to each other and their negations. Note that these are 2k pairwise
orthogonal vectors where exactly k of them are colored +1 according to f. Thus, we can pick k pairwise
orthogonal vectors from this set where exactly b of them are colored +1 according to f. Henceforth, we
assume that o > 0.

To show that there are a-configurations that have exactly b vectors that are colored +1, we show a
connectivity lemma (Lemma 5.21) where we prove that between any two ¢-configurations, there exists a

47

path using Oy (1) a-configurations where we change a single vector at each step in the path. As there is
an a-configuration where all are k vectors are colored +1, and the a-configuration obtained by negating
these vectors where all the vectors are colored —1, the connectivity lemma then shows that for every b €
{0,1,...,k}, there exists an a-configuration that has exactly b vectors that are colored +1.

We first prove a simplified version of the connectivity lemma that we use to prove Lemma 5.21.

Lemma 5.19. Given an a-configuration U = {uy,uy,...,u} CS", and a unit vector w € S" that is or-
thogonal to each vector in U, there exists L := L(k,a) and a set of a-configurations V\,Va, ...,V such
that

1. The consecutive configurations differ in a single vector i.e.,

VinVigi| =k—1foreveryie [L—1].
2. Final configuration contains w, i.e., w € Vi, and the initial configuration V| is equal to U.

Proof. We prove the lemma by studying the inner product of w with an a-configuration V, which is equal
to all zeroes initially when V = U, and changing V one vector at a time such that the inner product of V with
w eventually reaches all as. Towards this end, for an a-configuration V, we define 7(V,w) as the Gram
matrix of {vy,va,..., Vg, W}.

(vi,vj)if 1 <i,j<k.
(viywyifi=k+1,1 <j<k.
(w.v,)if j=k+1,1<i<k.
(wow)=1,ifi=j=k+]1.

1 (V, W) i,j =
w
W7

Starting with I(V, w) where V = U, our goal is to change one vector in V at a time so that we eventually
reach a configuration where the last column in I(V,w) is equal to (¢, ..., o, 1). Note that changing one
vector in V' corresponds to changing a single value in the last column (and the corresponding value in the
last row) in I(V,w). We show that the opposite direction also holds, i.e., by changing a single value in the

last column (and the corresponding value in the last row) of 1(V,w), we obtain a new matrix that is I(V', w)
with V'’ being different from V only in a single vector, as long as the new matrix is positive semidefinite.

Claim 5.20. Suppose that A is a m x m real symmetric positive semidefinite matrix with A = UTU with
U= [uuy...uy) where u; € R" with n > m, and A’ is another real symmetric positive semidefinite matrix
such that A" and A differ only in the entries (1,2) and (2,1). Then, there exists Wy € R" such that for
U' = [W\u,...u,) we have that A' = (U")TU'.

Proof. As A’ is a positive semidefinite matrix, there exist vi,v2,...,V,, € R" such that A’ = VTV where V =
[ViV2...Vy]. Observe that (w;,u;) = (v;,v;) forall i, j € {2,...,n}. Therefore, by Proposition 2.17, there
exists an orthogonal matrix Q € R™*" such that v; = Qu; for all i € {2,...,n}. Thus, A’ = (VQT)T(QTV),
where the last 7 — 1 columns of QTV are uy, ..., u,. We set] to be the first column of orv.]

Thus, our goal is to obtain a series of (k+ 1) x (k+ 1) real symmetric positive semidefinite matrices
Mi,M>,...,M; such that

1. My =1(U,w).

2. The diagonal entries of M; for every i € [L] are all equal to 1.

48

3. All the off-diagonal entries of M} are equal to «.

4. Forevery i € [L— 1], M; and M;, differ only in one element in the last column (and the corresponding
element in the last row).

Towards this end, for € >0, 0 <y < a, and d € [k], we define the (k+ 1) x (k+ 1) matrix M(y,€,d) as
follows:

1, ifi=j.

a,if 1 <i,j<k.

yte ifi=k+1,1<j<dorj=k+1,1<i<d.

y, ifi=k+1,d+1<j<korj—k+1,d+1<i<k.

M(y,€,d);;=

Note that I;; w = M(0,0,k), and our goal M, is equal to M(a,0,k). We consider the below sequence of
positive semidefinite matrices M(0,0,k),M(0,€,1),M(0,¢€,2),...,M(0,€,k),M(g,e,1),M(¢,¢€,2),...,M(€,€,k),
M(Q2¢e,€e,1),...,....,M(o— €,€,k). At each step, we change a single element in the last column (and the cor-
responding element in the last row).

The final step is to show that when we set € < FTO‘, M(y,€,d) is positive semidefinite for every d €
[k],0 < y < a. This follows from a simple calculation.

k1 k k d
M(y,e,d)x sz (; Z xk+1+2£(xk+l)(; X;)
k+1 - d B "
le +2£(xk+1)(; Xi)
e 4
Zx —2¢ (xk+1)(; Xi)

d

xk+1 Z

k+1 1

a)zw()
i=1

-« k+1 d

() (e

0.

v

k+1 d
> k xlz_z +xl%+1)
i=1 i=1

Now, we prove the connectivity lemma.

v

Lemma 5.21. Fix an integer k > 2 and 0 < a < 1. Suppose that U and V are two o-configurations in S"
with cardinality k each. Then, there exists ny := no(k, @), and L := L(k, &) such that as long as n > ny, there
exist a-configurations Vi, V,, ...,V each with cardinality k such that

1. The endpoints are U andV i.e.,, U =V,V =V].

2. Any two consecutive configurations differ in exactly one vector i.e.,

IL—1].

ir1| =k—1 foreveryic

49

Proof. We use induction on k. First, we consider the case when k = 2. Let U = {uj,u;}, and V = {vy,v»}
be two a-configurations. Consider an arbitrary vector w that is orthogonal to all the vectors in U and V.
Such a w is guaranteed to exist when n is large enough. Now, using Lemma 5.19, we can infer that there
exists a configuration W = {w,w’} such that there is a path of length O(1) from U to W, and from V to W.
Thus, there exists a path of length O(1) from U to V.

Assume that the proof holds for k — 1, and we are given the configurations U and V consisting of k
vectors each. We choose a vector w that is orthogonal to each of the vectors in U and V. Using Lemma 5.19,
there are a-configurations X = {w,xy,Xa,...,X;_1} and Y = {W,y;,¥2,...,¥x—1} such that there is a path
of length Oy (1) from U to X and from V to Y. Now, our goal is to show that there is a path from X to Y
of length Oy x(1). We achieve this by restricting ourselves to components orthogonal to w of the (k—1)-
sized configurations X' = {x'1,X'5,...,Xs_1}and Y ={y'},¥5,...,¥s_1}, where X'; = % for each
i € [k—1] (and similarly for y’;). Note that X" and Y’ are T -configurations, each of which is a subset of

{veS':(v,w)=0} =8

By the induction hypothesis, there exists a path from X’ to ¥’ using %, -configurations in {v € §" : (v, w) =

0}. Adding the component along w, we get a path from X to Y of length Og (1), finishing the proof. [

We are now ready to prove Lemma 5.17.

Proof. Suppose for contradiction that there exists a coloring f : S" — {0, 1} that is folded and respects the
PCSP I's. Consider an arbitrary set of vectors {v;,va,..., Va1 } that are all orthogonal to vy, and have
pairwise inner product . Such a set is guaranteed to exist as & > 0. There exists a set of k vectors among
these that are all assigned the same color in f. Let these form the configuration U, and the set of negations of
these vectors be the configuration V. Using Lemma 5.21, there exists a path from U to V where we change a
single vector in each step. Note that the endpoints of the path have 0 and k vectors assigned +1 respectively.
Since we change at most one vector at a time, there exists a configuration where we have exactly b 1s, a
contradiction. O

Lemmas 5.13 to 5.17 for templates I'; s, together with Lemma 5.1, Theorem 5.2 and Lemma 5.6 finish
the proof of our main hardness result Theorem 1.4.

Explicit Construction. We give an explicit construction of an integrality gap instance for fiPCSP(I's) where
I's = (P,Q),P = Ham{1,k},Q = Ham {0, 1,...,k} \ {b} for arbitrary b € {0,1,...,k}. Let L be a large
constant (depends on k, to be set later). We have n =2k — 1+ (2]‘]: l)L variables x; : i € [2k — 1],x§i) R AS
[L],S C [2k — 1],|S| = k. For every subset S C [2k — 1] with |S| = k and S = {i},i2,...,ix}, we add the
following L+ k—+ 1 constraints to the instance:

1) (2 L—k+1 L
{xiy Xiys -y Xi b %Xy X - ,xik,xé)},{xi3,...,x§),x_(g)},...,{xg), . ,xg)},
L—k+2 L — L—k+3 — —
xé),...,xg),xil},{x_(g),...,x,-,,xiz},...,{xil,xiz,...,xik}.
We choose L to be the constant factor from Lemma 5.21 with @ = % The idea is that when all the literals in
the constraint {x;,,x;,,...,x; } are set to be True, all the literals in {X;,,X;,, ..., X;, } are set to be False. Since

there is a series of constraints between them where we alter a single variable, there must exist a constraint
where there are exactly b variables that are set to True.

Formally, we show that this instance lacks a weakly satisfying assignment for Q = Ham;{0, 1,... ,k} \
{b}. Suppose for contradiction that there is an assignment that weakly satisfies all the constraints. Since

50

there are 2k — 1 variables x1,x»,...,x2t_1, at least k of them are set to be true. If not, then at least k of the
negated variables are set to be true. This implies that there is a sequence of constraints where the endpoints
are assigned all True and all False, and at every point, we change a single variable. This implies that there
is a constraint where there are exactly b variables that are set to True, a contradiction.

We now show that the instance has a basic SDP solution with zero error. Set vi,vs,...,vy_1 € S" to
the variables x1,x2,...,x—1 such that (v;,vo) =0, and (v;,v;) = a for every i # j. We can prove the
existence of such a set of vectors by showing that the Gram matrix of the vectors {vy,vo,...,Vor_1} is
positive semidefinite.

The Gram matrix G has 1 on the diagonal entries and o > 0 on the off-diagonal entries:

Il a o - a
a 1l a -+ «
G=|aa oo 1 -+ «o
a o « 1]

We can write G as:
G= oy 1+ (1—a)h_1,

where Ly is the (2k — 1) x (2k — 1) identity matrix, and Jox_; is the (2k — 1) x (2k — 1) matrix with all
entries equal to 1.

Since both I, and Jy;_ are positive semidefinite, and 0 < a <1, the matrix G is positive semidefinite
as well. Finally, we use Lemma 5.21 to set the vectors Vg) for every S C [2k— 1], |S| = k,i € [L].

6 The SDP minion

As previously mentioned, polymorphisms are a powerful tool for understanding the computational com-
plexity of PCSPs. However, beyond some of the simplest classes of PCSPs, individually classifying the
complexity based on specific polymorphisms can be unwieldy. Instead, one often looks to higher-level struc-
ture between classes of polymorphisms, which is captured by the notion of minions (also called clonoids)
[BBKO21].

In this section, we describe the structure of the “basic SDP minion,” which gives a precise algebraic
condition for when the basic SDP decides a Promise CSP. We note that a similar minion was concurrently
and independently discovered by Ciardo-Zivny [CZ23b].

We prove our minion characterization for “ordinary” promise constraint satisfaction problems over any
domain. In particular, we do not consider instances with folding or the setting of constants.
6.1 Minion preliminaries

We now give the definition of a minion. This is most easily stated in the language of category theory,
however we shall also give “concrete” interpretations of any category-theoretic statements we make. We let
Set denote the category of sets, and NeFinSet denote the category of non-empty finite sets.

Definition 6.1. A minion ./ is a functor from NeFinSet to Set. More concretely, for every non-empty finite
set A, we let #* denote the image of A with respect to the functor. For every pair of non-empty finite sets A

51

and B and function 7 : A — B, we let the minor map .#™ : .M#* — #°® denote the image of Tt with respect
to the functor. Further, for any maps w:A — B and ©: B — C, we have that #* o H™ = .H™". We also
assert for the identity map idy : A — A, we have that M4 : .#* — .44 is also the identity map.

Remark 6.2. Some works only use minion (or clonoid) to refer to sets of the form Pol(I") for some (possibly)
promise template 1, and refer to all other minions as an abstract minions. In this work, all such objects are
minions.

In addition, ./ is typically only defined as a functor from the subcategory of NeFinSet of sets of the
form [k] for some k € N. Our definition is equivalent as every non-empty finite set A has a bijection with
[|A|]. However, we consider this richer definition of a minion so that we can discuss how the minion acts on
sets without an explicit enumeration.

6.1.1 Examples

We now walk through a few examples.

Polymorphisms. Given a promise template I = {(P;,0Q1),...,(P,Q;)} over the domain (D;,D;), one
can view Pol(I") as a minion. Formally, for every non-empty finite set A, we let Pol(I")* denote the set of

functions f : D‘i‘ — Dy (where D‘i‘ is the set of functions from A to D) such that forany i € [[Jand o : A — P,
we have that

(f(moa),...,f(m,oa)) € Qi)

where 7; : P, — D is the projection of P, C D onto the jth coordinate. Observe thatif A = {1,...,L} then
Pol(I")4 can be identified with the arity L polymorphisms.

Likewise, for any map 7 : A — B for non-empty finite sets A and B, we define Pol(I")? such that for any
f €Pol(I')* and B : B — D, we have that

(T2 f)(B)=f(BoT). (10)

We It’s clear that id4 @ f = f. Furthermore, for any pair of maps 7: A — B, 7' : B— C,and y: C — Dy, we
have that

(oo =(tof)(ror)=f((yor)or))=f(ro(r'o1)) = (o) 2 f)(¥),

so associativity also holds.

Trivial minion. The simplest example of a minion .#;;, maps every non-empty finite set to the same set
{e}. All functions 7 : A — B map to the same trivial map from e to istelf.

Identity minion. The identity minion .#q is the identity functor from NeFinSet to itself (when viewed as
a subcategory of Set). In other words, for every non-empty finite set A we have that ,///{d‘ = A, and for every
map 7:A — B, we have that ./Z] = 7.

52

Convex combinations. For every non-empty finite set A, let A4 be the set of probability distributions
over A. Thatis, Ay ={f:A—[0,1]: Y ,ca f(a) = 1}. We let Zony denote the minion which maps A to
A4 [BBKO21]. Given a map 7 : A — B and a probability distribution f € A4, we let T© f € Ap be defined
by
(tonN®) = Y fla),
act—1(b)

where the empty sum is equal to 0. The main motivation for studying 2.y is that it is closely related to the
use of basic LP [BBKO21].

6.1.2 Minion homomorphisms

A key approach of [BBKO21] is that to better understand PCSP(T"), we can ask how Pol(I") relates to other
(abstract) minions. The most natural way to do that is via a minion homomorphism, which in category-
theoretic language is a natural transformation between two minions.

Definition 6.3. A minion homomorphism Y : .#Z — A between two minions is a natural transformation
between the respective functors. More concretely, for every non-empty finite set A, we have a map Yy :
M — N4 such that for every map T:A — B and M € .#*, we have that

TOYA(M) = yp(TOM).

In other words, the following diagram commutes:

To assert the existence of a minion homomorphism from .# and .4/, we write .# — ./ . A key result
of [BBKO21] is that minion homomorphisms govern the computational complexity of PCSPs.

Theorem 6.4 ([BBKO21]). Let I'y,I'; be promise templates. If Pol(I'1) — Pol(I"2) then decision version of
PCSP(I';) is polynomial-time reducible to PCSP(I'y).

Another result of [BBKO21] is that for any promise template I', Z¢ony — Pol(I') if and only if the basic
LP solves PCSP(I"). Our goal in the remainder of this section is to prove an analogous result for the basic
SDP.

6.1.3 The free structure

Let I" be a promise template. One of the most important tools for understanding minion homomorphisms
of the form .# — Pol(I) is the free structure [BBKO21]. Since in this paper we parameterize our promise
constraint satisfaction problems using promise templates rather than a pair of relational structures, we restate
the definition of a free structure in our language, which we call a free template. Given a relation R C DF, we
define the free relation F_,(R) to be a predicate of arity k over .#" with the following property, we have
that (M1, ...,My) € (#P)¥ is an element of R if and only if there exists N € .#® such that for all i € [k], we
have that
T ON = A,

53

where 7; : R — D is the projection of R onto the ith coordinate.

Given a promise template I' = {(P1,Q1), ..., (P, Q;)}, we define the free relation

F//Z(F) = {(F//[(Pl)’Ql)a R (F%/(B)7Ql)}

Recall that for a promise template I" over domain (D;,D;), there exists a map & : D1 — D; such for every
i € [¢] and x € P, we have that h(x) € Q. It is not obvious (nor necessarily true) that for F_,(I") an anal-
ogous map h” : .#P' — D, necessarily exists. In fact, constructing &% asserts the existence of a minion
homomorphism. This is the fundamental property of the free structure.

Lemma 6.5 (Lemma 4.4 of [BBKO21]). .# — Pol(I') if and only if F (') is a promise template.

In the language of category theory, the free structure can be thought of as an adjoint functor. See the
discussion preceding Remark 4.5 in [BBKO21].

6.2 SDP minion definition

We now define the minion corresponding to the behavior of the basic SDP. We call this minion .#spp. Recall
that for Qcony, for any non-empty finite set A, we have that Q72 , = A4, where Ay is the set of probability
distributions over A. We define %é“DP in an analogous manner which captures orthogonal configurations of
vectors index by A.

Since the SDP minion is a universal object, we need to be able to represent vectors of arbitrary large
dimensions. We achieve this using infinite-dimensional vectors that are eventually zero. Similar techniques
have been used in other minion constructions [CZ23a].

Let R? be infinite sequences of real numbers indexed by N which are eventually 0. We note that R? is
an inner product space with the bilinear form

<X7y> = inJ’h
i=1

which is well-defined as only finitely many terms in the summation are nonzero.

We now formally define .#Zspp. For each non-empty finite set A, we define ///é‘DP to be the set of
functions w : A — R® with the following properties.

1. For all distinct a,d’ € A, (w(a),w(d")) =0.

2. Laeallw(@)lz = 1.

Observe that the first condition implies that the second condition is equivalent to || Y. ,c4 W(a)||2 = 1.

The minors of .Zspp are defined analogously to 2 ony. Let A and B be non-empty finite sets and consider
wE //lg“DP and 7:A — B. We define tT@ow: B — R? tobeforall b € B,

(tow)(b):=) w(a),

act1(b)

where the empty sum equals 0 € R®. We now finish the remaining details which prove that .Zspp is a
minion.

Lemma 6.6. .#Zspp is a minion.

54

Proof. First, for each w € //lé“DP and T:A — B we verify that W := 10w € ///SBDP. First, fix distinct
b,b’ € B. We have that

<w’,w’<b’>>=<(Y wa).(X w(a’>)>= Y (wla),w(d)) =0,

since b and b’ are distinct and 7 is a function. Further,

<<ZW’(b)>a (ZW’(b))> - <(£W(a)), (gw(a)» L

beEB bEB

Thus, W € .#8.. Tt is trivial to observe that . id4 i5 the identity map.

The only remaining condition to check is that the minors commute. Consider 7: A — Band 7: B — C.
Consider u € .Z4p. We seek to verify that 7@ (T @ u) = (tox) @ u. For all ¢ € C, we have that

co@ow)o= ¥ @owr)= ¥ ¥ uwe= Y u@=(ton)ou)a)
(b)

bet=1(c) bet(c)aen! a€(tom)~!(c)

as desired.

The goal of the rest of this section is to prove the following theorem.

Theorem 6.7. For any promise template T, the basic SDP decides PCSP(T') if and only if .#spp — Pol(T').

6.3 On the basic SDP

As we are considering the decision version of the basic SDP, we assume that €; = 0 for each clause index
J € [m]. For completeness, we state the simplified SDP below. Note that we omit an objective since we are
concerned only with feasibility. Any undefined notation is the same as in Section 2. Given a clause index
j € [m], we let Z; denote the set of assignments f : S; — D for which f(C;) € PV),

(al) Ai(f) =0 Vj€ml, feZ
(a2) Y AN =1 vj € [m]
feZ;
(a3) (vo,vo) =1
(ad) (Via:voy =Y, Ai(f) Vje[m], xi€Cj,aeD
feZ;
f(xi)=a
(35) <Vi,a>Vi’7a’> = Z 2‘j(f) \V/_] S [m]a Xiy Xi S C]a aaa/ eD
feﬂ‘j
fxi)=a.f(xy)=d

We call this formulation of the basic SDP the “traditional” basic SDP, in contrast to the “alternative”
basic SDP we soon present.

Remark 6.8. Although we specify here that the vectors can have an arbitrarily large dimension, it is known
that an SDP with n vector or scalar variables is feasible if and only if it is feasible in n dimensions. Thus,
nothing is lost from Section 2 by making the vectors have an arbitrarily large (but finite) dimension.

55

Remark 6.9. Some formulations of the basic SDP also impose that for every pair of vectors appearing in
the basic SDP has a nonnegative pairwise dot product. Raghavendra’s theorem does not use this in their
basic SDP formulation, so we do not include it in our formulation.

6.3.1 An alternative basic SDP

In order to prove Theorem 6.7, we now present a modified basic SDP which is more convenient to work
with. In particular, instead of having an LP variable A;(f) for each potential clause assignment f : S; — D,
we instead have a vector w; r € R®. For each i € [n], let v; : D — R® denote the function v;(a) = vj.
Likewise, for every j € [m], let w; : .#; — R® be the function w;(f) = w; ;. With this notation, we can
succinctly impose our SDP conditions as follows.

(b1) v, € MEp Vi € [n]
(b2) W € M, Vj € [m]
(b3) Via = Z W s Vje[m],i€SjacD,
fe7;
f(xi)=a

where we use the fact that membership in .3, can be expressed in O(|S|?) SDP constraints.

Remark 6.10. Note that the special “truth” vector vg is omitted from this formulation. As we shall soon see,
this does not change the power of the SDP relaxation, but it does make the analysis more straightforward.

Remark 6.11. Note that (b3) can also be rewritten as v; = T j ©Q W;, where 7, j : F; — D is the map
7.j(f) = f(xi). Written in this level of generality, conditions (b1-b3) can then be readily modified to give
a relaxation of any minion .#. However, such a relaxation is not algorithmically tractable in general and
thus the study of such relaxations in the PCSP literature has been restricted to a restricted class of minions
(e.g., “linear” minions in [CZ23b]).

6.3.2 Equivalence with traditional basic SDP

We now prove that these two notions formulations of the basic SDP are equivalent. That is, a solution to
either SDP can be transferred to the other.

Lemma 6.12. For any promise template I and any instance of PCSP(I'), the traditional basic SDP for the
instance is feasible if and only if the alternative basic SDP for the instance is feasible.

Before we begin, we note that we often apply linear maps to the vectors into order to transform vectors
from one SDP solution to another, extending the ideas in Section 2.3. In particular, we let R?*® denote the
set of matrices such that each row and column has finite support. These finite support conditions are such
that for any M € R®*® and v € R® we have that Mv € R? and that R®*® is closed under the transpose
operator.

The identity matrix I, € R®*® has (Ip);; = 1 if i = j and 0 otherwise. We say that Q € R®*? is
orthogonal if QQT = QT Q = I,. We now extend Proposition 2.17 to our setting.

Proposition 6.13. Let n be a positive integer and uy,...,u,,Vq,...,v, € R® be vectors. We have that
(wj,u;) = (v;,v;) for all i, j € [n] if and only if there exists an orthogonal matrix Q € R®*® such that
v, = Qu; forall i € [n].

56

Proof. Note that for any u,u’ € R® and Q € R®*? orthogonal, we have that (u,u’) = (Qu,Qu’). This
proves the “if”” direction. We now focus on proving the converse.

Assume that (u;,u;) = (v;,v;) for all i, j € [n]. Let N be a positive integer such that (u;); = 0 and
(vi);=0foralli€ [n] and j > N. We can thus assume that uy,...,u,,vy,...,v, € RV. By Proposition 2.17
there exists an orthogonal matrix Q € RV*V such that Qu; = v; for all i € [n]. We can extend this Q to an
orthogonal Q' € R®*® in the following straightforward manner.

Qij ,j<N
Q=11 i=j>N. O
0 otherwise

Alternative to traditional. First, we show that a solution to the alternative basic SDP is a solution to
the traditional basic SDP. For each i € [n], define v; p = Y ,cp Viq. By (bl), we know that each v; p is a unit
vector. Further by (b3), we can deduce that v; p = v; p whenever x; and x; appear in a common constraint
C;. Thus, v;p = vy p whenever x; and x; are in the same connected component of the hypergraph with
vertices {xi,...,x,} and hyperedges {Ci,...,Cy}. Let I C [n] and J C [m] be the indices of the variables
and constraints appearing in some connected component. For any orthogonal matrix Q € R®*® each of
the constraints (bl), (b2), and (b3) are preserved when we multiply each vector v;, for i € I and w; for
J € J on the left by Q. Thus, by multiplying by suitable orthogonal matrices (i.e., apply Proposition 6.13 for
n = 1), we can achieve a solution to (b1-3) such that each v; p is the same unit vector for all i € [n], which
we shall call vo. We call this an aligned solution to the alternative basic SDP.

We now transform this aligned solution into a solution to the traditional basic SDP. Each v, , in the
traditional basic SDP is actually the same as it appeared in the aligned solution to the alternative basic SDP.
We set vy to the newly-defined vo. Finally, we set A;(f) = ||v, ¢||3 for all f € .Z;.

To see that the traditional basic SDP is satisfied, note that condition (al) follows by inspection, and
condition (a2) follows from (b2). Conditions (a3) and (a4) follow by substituting v; p to vo and applying
(b3). Condition (a5) follows by combining (b2) and (b3).

Traditional to alternative. We now show that any solution to the traditional basic SDP is a solution to
the alternative basic SDP. Assume we have a traditional basic SDP solution. Recall that v; , € R® for each
i € [n] and a € D. We shall use the same vectors V; , in the solution to the alternative basic SDP. Note that
(bl) then follows from (a5) and (a2).

Since there are finitely many vectors, there exists some N € N such that each v; , (and vo) has its support
within the first N coordinates. For each j € [m] and f € .%;, provisionally assign W; s to be \/A;(f) - e;,
where ¢; € R? is the ith standard unit vector for some i > N chosen uniquely for each constraint-assignment
pair. As there are finitely many constraint-assignment pairs, all of these new vectors are in R?.

However, as written the W; ¢’s are not compatible with the v; ,’s. To rectify this, for each j € [m],i € S},
and a € D we define

Viiai=), Wis
JEF
f(xi)=a
Using (a5), we can readily verify that for any j € [m], i,i’ € S;, and a,d’ € D, we have that (v, V; y) =
(Vjia,Vjia). Thus, by Proposition 6.13, for each j € [m], there exists an orthogonal matrix Q; € R®*®
suchthat Q;V;;, = v, forallie€ S;and a € D.

57

For each j € [m] and f € %, define w; s := Q;jW, r. Observe that for each j € [m], i € S}, and a € D,
we have that
Vie=0iVjia= Y, QiWir=) Wiy,
JjEF JEF
fxi)=a f(xi)=a
as desired. Thus, conditions (b2) and (b3) hold. Therefore, the two SDP formulations are equivalent, proving
Lemma 6.12.

6.4 From minion homomorphism to SDP rounding algorithm

Recall that we are trying to prove that for any promise template I', the basic SDP decides PCSP(I") if and
only if .Zspp — Pol(I"). We begin by showing the easier direction that the minion homomorphism implies
that the basic SDP decides PCSP(T"). In other words, for any instance of PCSP(I"), the existence of a vector
solution to alternative basic SDP of the instance implies that there exists a weakly satisfying assignment to
the instance.

Theorem 6.14. If .#spp — Pol(I'), then the basic SDP decides PCSP(I).

Proof. Assume that (Dy,D;) is the domain of I" with homomorphism % : D; — D,. Consider an instance
of PCSP(T") on variables V = {x,...,x,} and clauses {Ci,...,C,} such that for all j € [m], the clause C;
corresponds to (P(j), Q(j)) € I' of arity k;. Let S; be the set of variables appearing at least once in C;. We
also define .%; as the set of assignments f : S; — D for which f(C;) € PUY) and ¢, as the set of assignments
g:S; — D, for which g(C;) € QU).

By Lemma 6.12, we may without loss of generality assume that there exist vectors {v;, : i € [n],a € D1}
and {w; s : j € [m], f € Sj} such that (bl), (b2), and (b3) hold, where we define v;(a) = v;, and w;(f) =
w; ¢. If no such vectors exist, we know that our instance is not strongly satisfiable by the contrapositive of
Proposition 2.13.

Let y : #spp — Pol(I") be the guaranteed minion homomorphism. Let idp, : D; — D; be the identity
map. We define our weak assignment ¢ : V — D; as follows. For all i € [n], we set

o(x;) == w(v;)(idp,).

Unpacking this, w(v;) € Pol(A, B)P1, so y(v;) has type y(v;) : D? ' — D,. The “canonical” element of D? !
is the identity map, so we plug that into the function to get a value in D5.

We now seek to show that for every j € [m], that 65, € ¢;. First, we need to eliminate any repetition
of variables. To do this, observe that (.%;,%;) can be viewed as a promise relation of arity S; since it is
obtained from (P\/),00/)) by setting some tuples in the relation equal. As such, we have that Pol(I") C
Pol(PU), Q1)) C Pol(.F;,%;). Therefore, we can think of ¥ as a minion homomorphism from .Zspp to
Pol(.#;,%;). Thus, since w; € ///éﬁ,, we have that y(w;) € Pol(.%;,%;)7/. Thus, y(w;) has type ﬂjD‘ —
D».

For x; € S}, let m; : #; — Dy be the evaluation map m;(f) = f(x;). We check that for all x; € S; and
a € Dy, we have that

(mow)@) = Y, wis=via), (D
feZ;
flxi)=a

58

by definition of the alternative basic SDP, so 7 @ w; = v;. Thus, for all x; € §; we have that

o(x;) = w(v;)(idp,) (definition of o)
= y(m o w;)(idp,) (11)
= (m @ y(w;))(idp,) (y is minion homomorphism)
= y(w;)(idp, o) (10)

= y(w))(moidsz,),

where for the last line idp, om; = m; = m; 0id Z;-
Apply (9) with A = Z; and (P, Q;) := (F},¥). Since y(w;) € Pol(Z;,%;)”/ and dg, : Fj— F;, we
have that
(o(xi):x; €8) = (y(w))(moidg,) :x; €5) €9,

as desired. Thus, o is indeed a satisfying assignment to the original instance. Therefore, the basic SDP
decides PCSP(T"). O

6.5 From SDP rounding algorithm to minion homomorphism

We now prove the converse. To do this, we adapt the proof techniques of Theorem 4.11 of [CZ23a].

Theorem 6.15. If the basic SDP decides PCSP(I"), then .#spp — Pol(I').

Proof. Assume that (D}, D;) is the domain of I' = {(P;,Q,),..., (P, Q;)} with a homomorphism % : D; —
D; such that h(P;) C Q; for all i € [I]. To simplify the proof, we make the following technical assumption
similar to the reduction in Remark 5.3. If a relation (P, Q) € I of arity k, then every possible relation which
can be created by repeating variables is also in I. For example, if P, Q have arity 3, then (P',Q’) € T where
P' = {(x,y) € D?: (x,y,x) € P} and Q' = {(x,y) € D3 : (x,y,x) € Q}. Note that Pol(P,Q) C Pol(P',Q'), so
adding (P',Q’) to I does not make .#spp — Pol(I") harder to verify. Likewise, since repeating variables is
allowed in PCSP instances, whether the basic SDP decides PCSP(I") is unaffected by these extra relations.

Assume now that the (alternative) basic SDP decides PCSP(I'). By Lemma 6.5, it suffices to prove
that IF 4, (I") is a promise structure. In other words, we must construct a map h: ///sll))lp — Dy such that
W(F s (P)) C Q; forall i € [1].

By the De Bruijn-Erdés Theorem'# [dBES51], it suffices to prove that any finite subsets F; C IF. sy (Pi)
for i € [I], we have that there exists / : ///S%'P — D such that i(F;) C Q; for all i € [I].

Note that each F; C (.///S%P)ki, let V be the subset of ///s%lp which appears in some tuple of F; for some
i € [I]. It suffices to construct hV— D; rather than all of //[é%‘},. Foreacht € F:=F U---F, let (P,0;)
be promise pair corresponding to ¢, and let S; C V be the set of distinct elements which appear in ¢. Since
[is closed under identification of variables, we can impose on ¢ a clause C; corresponding to (P/,Q;) such
that each variable of S; appears exactly once.

We view @ := (V,{C; : t € F}) as an instance of PCSP(I'). If we can show this instance is accepted
by the basic SDP, then we know there is an assignment /1 : V — D, which weakly satisfies every clause of
FyU---UF; since replacing (P, Q;) with (P/,Q}) does not change whether the clause /s, (r) € Q; if and only
if h|s,(S;) € Q.. Thus, & has precisely the property we want.

14Gee [CZ23a] or Remark 7.13 of [BBKO21] for additional context.

59

Thus, we conclude the proof by constructing an alternative basic SDP solution for ®. For convenience,
let V. ={xi,...,x,} and for each t € F, let .%, be the set of possible satisfying assignments f : S; — D to
G.

For each i € [n], we let v; € ///S%P be x; € j/g)'[, itself. This ensures that (bl) is satisfied. For each
t € F, let % be the set of satisfying assignments to f : S, — D to F/. By definition of F_ s, (P/), there
exists w; € .//lfD’P such that m; ©@ w; = x; = v; whenever x; € S;, where 7, : .%; — D7 is the evaluation map
7(f) = f(x;). The condition w, € ///S’ng is precisely (b2) and the equation m; © w, = v; is precisely (b3)
(see Remark 6.11). Thus, ® is indeed accepted by the alternative basic SDP, completing the proof. O

This completes the proof of Theorem 6.7, giving a minion homomorphism characterization of when the
basic SDP works for deciding a PCSP.

7 Conclusion

We studied the robust satisfiability of promise CSPs, and specifically the power of SDPs in this context,
revealing a number of new phenomena on both the algorithmic and integrality gap fronts. Our work brings
to the fore a number of intriguing questions and directions. We list a few below.

* Can we get a robust fiPCSP dichotomy result for all Boolean symmetric promise templates? We con-
jecture that every Boolean symmetric folded idempotent PCSP without MAJ or AT polymorphisms
does not admit a robust algorithm. In our hardness result Theorem 1.4, we showed the same when
there is a single predicate pair. Extending our result to multiple predicate pairs is an interesting chal-
lenge.

As a concrete example, consider the promise template I' = { (P}, Q1), (P>, Q2) } where P, = Hamy{ k%l }
Q) =Hamy{0,1,...,k—1},P, =Ham,{1},0, = Ham,{0, 1,...,r —2,¢} for odd integers k,t > 3. We
have AT C Pol(P;,Q;),MAJ C Pol(P,,Q,) while both AT,MAJ ¢ Pol(I"). To obtain the integrality
gap for the basic SDP relaxation of fiPCSP(I"), we need to show that there is no folded sphere coloring
that respects I'. There is a folded sphere coloring f; : S" — % respecting (P, Q1), and a folded sphere
coloring f» : S" — 2 respecting (P, Q>) for every positive integer n. The challenge lies in showing
that there is an integer n for which there is no single folded coloring f : S" — 4 that respects both
(Py,0Q1) and (P, Q;) simultaneously. We are able to prove this for small values of k,7 under an as-
sumption that Theorem 5.8 extends to the density setting: for any constant 0 < ¢ < 1, and any tuple S
of vectors in S” satisfying the conditions in Theorem 5.8, in any subset T of S” with spherical measure
at least o, there is a tuple of vectors ' C T that is congruent to S, as long as n > ng := ny(S, o). Both
proving the density sphere Ramsey theorem, and showing that I" does not admit a sphere coloring re-
specting it are interesting open problems, and the former problem could have applications elsewhere
as well.

On the other hand, extending the robust fiPCSP classification to PCSP (i.e., no idempotence or folding)
for all Boolean symmetric promise templates would require a better understanding of polymorphisms
of arbitrary Boolean symmetric promise templates. We remark that for the decision version of PCSPs
for Boolean symmetric promise tempaltes, a dichotomy was first proved for the folded case [BG21],
and later, the restriction was removed [FKOS19], where the authors showed that the decision version
of a Boolean symmetric PCSP can be solved in polynomial time if and only if it has Threshold, AT
or Parity polymorphisms. Our algorithm for the MAJ polymorphisms extends to the setting when

60

there are threshold polymorphisms, similar to the algorithmic result of [FKOS19]. Combining the
polymorphic ideas in [FKOS19] with our sphere coloring results is a potential venue to generalize our
hardness results to general Boolean symmetric PCSPs.

Finally, can we get a robust PCSP dichotomy result for general Boolean promise templates? We
believe new algorithmic techniques are needed to understand what polymorphic families lead to robust
algorithms. For the symmetric folded case, MAJ and AT polymorphisms resulted in robust algorithms
while Parity polymorphisms resulted in just the decision version being solved in polynomial time.
This suggests that the existence of a suitable notion of noise stable family of polymorphisms could be
the key to robust algorithms for PCSPs.

» Can we improve the quantitative aspects of our robust approximation algorithm based on the Majority
polymorphism to satisfy a 1 — O(1/€) fraction of the constraints (which would be optimal [KKMOO07]
under the UGC)? Even for robust Max-Cut, such an algorithm that makes black-box use of the Ma-
jority polymorphism is not known. More generally, we do not know how to translate a polymorphism
for the CSP into an approximation or robust satisfaction algorithm for it. For a suitable notion of “ap-
proximate" polymorphisms, there is such a connection [BR16]. Of note, in the case of CSP templates
of arity k (over an arbitrary domain) with a “near-unanimity operator” (of which MAJ; is a special
case), a robustness algorithm of 1 — € versus 1 — 0(81/ k) is known [DKK™*19].

* For the case of AT polymorphisms, our algorithm incurs an exponential loss, and only satisfies

loglog . L
1-— 0(Oli gof S) fraction of the constraints in a (1 — €)-satisfiable instance. Is this inherent (which

is known togbe the case for Horn-SAT [GZ12])? Can one show (Unique Games) hardness of how
robustly one can approximate concrete promise templates like 1-in-3-SAT vs. NAE-3-SAT?

* For CSPs it is known that if Sherali Adams LP correctly ascertains exact satisfiability, then the CSP
has a robust satisfaction algorithm (albeit not LP based). Does this connection remain true for PCSPs
(similar to Conjecture 1.5)?

* We have minion characterizations for the solvability of PCSPs by SDPs (this work) and the Sherali
Adams hierarchy [CZ22]. What is the relationship between these minions? Do there exist PCSPs
whose exact satisfiability is decided by the basic SDP but which cannot be decided by O(1) levels of
the Sherali Adams hierarchy? Note that for CSPs, both these classes are the same and coincide with
the class of bounded width CSPs.

* As mentioned earlier, our algorithm for Majority polymorphism can be generalized for arbitrary
threshold polymorphisms. Together with the hardness results in [BGS23], this gives a dichotomy w.r.t
robust PCSP satisfiability for the class ordered Boolean promise templates (whose polymorphisms
are monotone functions).

References

[AB21] Kristina Asimi and Libor Barto. Finitely tractable promise constraint satisfaction problems. In
Filippo Bonchi and Simon J. Puglisi, editors, 46th International Symposium on Mathematical
Foundations of Computer Science, MFCS 2021, August 23-27, 2021, volume 202 of LIPIcs,
pages 11:1-11:16, Talinn, Estonia, 2021. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik.

61

[ABP20]

[AD22]

[AGH17]

[BBB21]

[BBKO21]

[BG19]

[BG20]

[BG21]

[BGS23]

[BGWZ20]

[BHPZ21]

[BJKO5]

[BK14]

Per Austrin, Amey Bhangale, and Aditya Potukuchi. Improved inapproximability of rainbow
coloring. In Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA
2020, January 5-8, 2020, pages 1479-1495, Salt Lake City, UT, USA, 2020. SIAM.

Albert Atserias and Victor Dalmau. Promise constraint satisfaction and width. In Proceedings
of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1129-1153,
Alexandria, Virginia, USA, 2022. SIAM.

Per Austrin, Venkatesan Guruswami, and Johan Hastad. (2+€)-SAT is NP-hard. SIAM J.
Comput., 46(5):1554-1573, 2017.

Libor Barto, Diego Battistelli, and Kevin M. Berg. Symmetric promise constraint satisfaction
problems: Beyond the boolean case. In 38th International Symposium on Theoretical Aspects
of Computer Science, STACS 2021, March 16-19, 2021, volume 187 of LIPIcs, pages 10:1—
10:16, Saarbriicken, Germany (Virtual Conference), 2021. Schloss Dagstuhl - Leibniz-Zentrum
fiir Informatik.

Libor Barto, Jakub Bulin, Andrei A. Krokhin, and Jakub Oprsal. Algebraic approach to promise
constraint satisfaction. J. ACM, 68(4):28:1-28:66, 2021.

Joshua Brakensiek and Venkatesan Guruswami. An algorithmic blend of LPs and ring equa-
tions for promise CSPs. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2019, January 6-9, 2019, pages 436-455, San Diego, California,
USA, 2019. SIAM.

Joshua Brakensiek and Venkatesan Guruswami. Symmetric polymorphisms and efficient de-
cidability of promise CSPs. In Proceedings of the 2020 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2020, January 5-8, 2020, pages 297-304, Salt Lake City, UT, USA, 2020.
SIAM.

Joshua Brakensiek and Venkatesan Guruswami. Promise constraint satisfaction: Algebraic
structure and a symmetric Boolean dichotomy. SIAM J. Comput., 50(6):1663—1700, 2021.

Joshua Brakensiek, Venkatesan Guruswami, and Sai Sandeep. Conditional dichotomy of
Boolean ordered promise CSPs. TheoretiCS, 2, 2023.

Joshua Brakensiek, Venkatesan Guruswami, Marcin Wrochna, and Stanislav Zivn}’f. The power
of the combined basic linear programming and affine relaxation for promise constraint satis-
faction problems. SIAM J. Comput., 49(6):1232-1248, 2020.

Joshua Brakensiek, Neng Huang, Aaron Potechin, and Uri Zwick. On the mysteries of
MAX NAE-SAT. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 484-503. SIAM, 2021.

Andrei A. Bulatov, Peter Jeavons, and Andrei A. Krokhin. Classifying the complexity of
constraints using finite algebras. SIAM J. Comput., 34(3):720-742, 2005.

Libor Barto and Marcin Kozik. Constraint satisfaction problems solvable by local consistency
methods. J. ACM, 61(1):3:1-3:19, 2014.

62

[BK16]

[BK22]

[BKW17]

[BR16]

[Bull7]

[BV04]

[BWZ21]

[Che09]

[CMMO09]

[CZ22]

[CZ23a]

[CZ23b]

[dBES1]

[DK13]

[DKK'19]

Libor Barto and Marcin Kozik. Robustly solvable constraint satisfaction problems. SIAM J.
Comput., 45(4):1646-1669, 2016.

Libor Barto and Marcin Kozik. Combinatorial gap theorem and reductions between promise
CSPs. In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1204-1220, Alexandria, Virginia, USA, 2022. STAM.

Libor Barto, Andrei A. Krokhin, and Ross Willard. Polymorphisms, and how to use them. The
Constraint Satisfaction Problem: Complexity and Approximability, 7:1-44, 2017.

Jonah Brown-Cohen and Prasad Raghavendra. Correlation decay and tractability of CSPs. In
Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi, editors,
43rd International Colloquium on Automata, Languages, and Programming, ICALP 2016, July
11-15, 2016, Rome, Italy, volume 55 of LIPIcs, pages 79:1-79:13. Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik, 2016.

Andrei A. Bulatov. A dichotomy theorem for nonuniform CSPs. In 58th IEEE Annual Sympo-

sium on Foundations of Computer Science, pages 319-330, Berkeley, California, USA, 2017.
1IEEE.

Stephen P. Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

Alex Brandts, Marcin Wrochna, and Stanislav Zivny. The complexity of promise SAT on
non-Boolean domains. ACM Trans. Comput. Theory, 13(4):26:1-26:20, 2021.

Hubie Chen. A rendezvous of logic, complexity, and algebra. ACM Comput. Surv., 42(1):2:1—
2:32, 2009.

Moses Charikar, Konstantin Makarychev, and Yury Makarychev. Near-optimal algorithms for
maximum constraint satisfaction problems. ACM Trans. Algorithms, 5(3):32:1-32:14, 20009.

Lorenzo Ciardo and Stanislav Zivny. The Sherali-Adams hierarchy for promise CSPs through
tensors. arXiv preprint arXiv:2203.02478, 2022.

Lorenzo Ciardo and Stanislav Zivny. CLAP: A new algorithm for promise CSPs. SIAM J.
Comput., 52(1):1-37, 2023.

Lorenzo Ciardo and Stanislav Zivny. Hierarchies of minion tests for PCSPs through tensors.
In Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Flo-
rence, Italy, January 22-25, 2023, pages 568-580. SIAM, 2023.

Nicholaas Govert de Bruijn and Paul Erd8s. A colour problem for infinite graphs and a problem
in the theory of relations. Indigationes Mathematicae, 13:371-373, 1951.

Victor Dalmau and Andrei A. Krokhin. Robust satisfiability for CSPs: Hardness and algorith-
mic results. ACM Trans. Comput. Theory, 5(4):15:1-15:25, 2013.

Victor Dalmau, Marcin Kozik, Andrei Krokhin, Konstantin Makarychev, Yury Makarycheyv,
and Jakub OprSal. Robust Algorithms with Polynomial Loss for Near-Unanimity CSPs. SIAM
Journal on Computing, 48(6):1763—-1795, January 2019.

63

[FKOS19]

[Fre04]

[FSO1]

[GLS93]

[GM12]

[GZ12]

[Has01]

[JCGIT]

[Jea98]

[KhoO2a]

[KhoO2b]

[KKMOO07]

[KMS18]

[LovO03]

[MOO10]

[Mos10]

Miron Ficak, Marcin Kozik, Miroslav Olsdk, and Szymon Stankiewicz. Dichotomy for sym-
metric boolean PCSPs. In 46th International Colloquium on Automata, Languages, and Pro-
gramming, ICALP 2019, volume 132, pages 57:1-57:12, Patras, Greece, 2019. LIPIcs.

Robert M Freund. Introduction to semidefinite programming (SDP), 2004.

Uriel Feige and Gideon Schechtman. On the integrality ratio of semidefinite relaxations of
MAX CUT. In Proceedings on 33rd Annual ACM Symposium on Theory of Computing, STOC
2001, pages 433-442, Crete, Greece, 2001. ACM.

Martin Grotschel, Laszlé Lovész, and Alexander Schrijver. Geometric Algorithms and Com-
binatorial Optimization, volume 2 of Algorithms and Combinatorics. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 1993.

Bernd Girtner and Jiri Matousek. Approximation algorithms and semidefinite programming.
Springer Science & Business Media, 2012.

Venkatesan Guruswami and Yuan Zhou. Tight bounds on the approximability of almost-
satisfiable horn SAT and exact hitting set. Theory Comput., 8(1):239-267, 2012.

Johan Hastad. Some optimal inapproximability results. J. ACM, 48(4):798-859, 2001.

Peter Jeavons, David A. Cohen, and Marc Gyssens. Closure properties of constraints. J. ACM,
44(4):527-548, 1997.

Peter Jeavons. On the algebraic structure of combinatorial problems. Theor. Comput. Sci.,
200(1-2):185-204, 1998.

Subhash Khot. Hardness results for coloring 3-colorable 3-uniform hypergraphs. In The 43rd
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2002, pages 23-32,
Vancouver, Canada, 2002. IEEE.

Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings on 34th
Annual ACM Symposium on Theory of Computing, STOC 2002, pages 767-775. ACM, 2002.

Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal inapproxima-
bility results for MAX-CUT and other 2-variable CSPs? SIAM J. Comput., 37(1):319-357,
2007.

Subhash Khot, Dor Minzer, and Muli Safra. Pseudorandom sets in Grassmann graph have

near-perfect expansion. In 59th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2018, pages 592-601. IEEE Computer Society, 2018.

L. Lovasz. Semidefinite Programs and Combinatorial Optimization. In Bruce A. Reed and
Claudia L. Sales, editors, Recent Advances in Algorithms and Combinatorics, pages 137-194.
Springer New York, New York, NY, 2003.

Elchanan Mossel, Ryan O’Donnell, and Krzysztof Oleszkiewicz. Noise stability of functions
with low influences: invariance and optimality. Annals of Mathematics, 171:295-341, 2010.

Elchanan Mossel. Gaussian bounds for noise correlation of functions. Geometric and Func-
tional Analysis, 19:1713-1756, 2010.

64

[MRO5]

[0°'D14]
[0°D16]

[Rag08]

[Sch78]

[SchO8]

[STTO7]

[Tul09]

[TZ17]

[TZ18]

[Ver18]

[Zhu20]

[Zw198]

Jiff MatouSek and Vojtéch Rodl. On Ramsey sets in spheres. Journal of Combinatorial Theory,
Series A, 70(1):30-44, 1995.

Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014.
Ryan O’Donnell. SOS is not obviously automatizable, even approximately. R. O, 2016.

Prasad Raghavendra. Optimal algorithms and inapproximability results for every CSP? In
Proceedings of the 40th Annual ACM Symposium on Theory of Computing, May 17-20, 2008,
pages 245-254, Victoria, British Columbia, Canada, 2008. ACM.

Thomas J. Schaefer. The complexity of satisfiability problems. In Proceedings of the 10th
Annual ACM Symposium on Theory of Computing, STOC 1978, pages 216-226, San Diego,
California, USA, 1978. ACM.

Grant Schoenebeck. Linear level Lasserre lower bounds for certain k-CSPs. In 49th Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2008, October 25-28, 2008,
pages 593—-602, Philadelphia, PA, USA, 2008. IEEE Computer Society.

Grant Schoenebeck, Luca Trevisan, and Madhur Tulsiani. A linear round lower bound for
Lovasz-Schrijver SDP relaxations of vertex cover. In 22nd Annual IEEE Conference on Com-
putational Complexity (CCC 2007), pages 205-216, San Diego, California, USA, 2007. IEEE
Computer Society.

Madhur Tulsiani. CSP gaps and reductions in the Lasserre hierarchy. In Proceedings of the
41st Annual ACM Symposium on Theory of Computing, STOC 2009, pages 303312, Bethesda,
Maryland, USA, 2009. ACM.

Johan Thapper and Stanislav Zivny. The power of Sherali-Adams relaxations for general-
valued CSPs. SIAM J. Comput., 46(4):1241-1279, 2017.

Johan Thapper and Stanislav Zivny. The limits of SDP relaxations for general-valued CSPs.
ACM Trans. Comput. Theory, 10(3):12:1-12:22, 2018.

Roman Vershynin. High-Dimensional Probability: An Introduction with Applications in Data
Science, volume 47 of Cambridge Series in Statistical and Probabilistic Mathematics. Cam-
bridge University Press, 2018.

Dmitriy Zhuk. A proof of the CSP dichotomy conjecture. J. ACM, 67(5):30:1-30:78, 2020.

Uri Zwick. Finding almost-satisfying assignments. In Proceedings of the Thirtieth Annual
ACM Symposium on the Theory of Computing, May 23-26, 1998, pages 551-560, Dallas, Texas,
USA, 1998. ACM.

A Efficient SDP Solution

To begin, state a reformulated basic SDP for which it is easier to reason about approximate solutions. Let
A eX denote the entry-wise product of matrices. If .% is a collection of matrices, we let hull(.#) denote the
convex hull of these matrices—the set of all convex combinations. If .% is a finite set, then hull(.#) can be
described by a finite family of inequalities (and thus with bounded coefficients).

65

Given a clause C; with variable set S;, we let .%; be the set of square matrices with |S;| 42 rows and
columns with the following properties. For every ¢ : §; — 24, we have a matrix Ms € .#; corresponding
to the outer product of the vector (1,0, 1s), where 1 = 0 if © is a satisfying assignment to C; and g = 1
otherwise. We also define ¥; to be a set of square matrices with |S;| + 1 rows corresponding to the outer
products of the form (1,0) where 6 : §; — 4.

Let X be a symmetric matrix with n+m+ 1 rows/columns—the last m columns correspond to the “error”
in each of the m clauses. Given a set S of indices, we let X|g denote the square submatrix whose rows and
columns come from S.

m
minimize: ZX n,jtn
j=1
subject to: X|s,,(0,j4n) € hull(.F;),Vj € [m]

X =0.

By Theorem 5.1.1 of [GM12], for any § = (n/e)~°!) we can efficiently find a realization M of X
such that M has rational entries, M is PSD, the objective is optimized up to an additive 8§, and every linear
constraint is satisfied up to an additive §. For the last condition, this means we “only” have that

M|s,500,j4ny + Ej € hull(F),

where E; is an “error” matrix in which all entries have absolute value at most §. In particular, we only
know that M;; € [1 — 8,14 8] for all i € {0,1,...,n}. Let M’ be a matrix which is the same as M except
Mi;=1+¢ foralli€ {0,1,...,n}. By definition, D' := M’ — M is a diagonal matrix with nonnegative
entries, so M’ = 0. Let N = :—g “M'|10,1,...ny + Al for some A ~ ©(5). Note that N = 0 as well and that
N;;j=1forallie€{0,1,...,n}.

We claim that for all j € [m] that N|gus, € hull(¢;). If not, there exist a matrix A and number b such
that such that Ae X < b for all X € hull(¢;) but Ae N > b. Since N;; = 1 foralli € {0,1,...,n} and X;; =1
for all X € hull(¥;), we may assume without loss of generality that A;; = 0 forall i € {0, 1,...,n}. Likewise,
since all matrices in hull(¢;) are symmetric, we may assume that A is symmetric. Thus, since I € hull(¥;),

we may assume that b > 0. In fact, we now show for nonzero A we need b > 0.

Claim A.1. Let A be a symmetric matrix with an all-zero diagonal such that Ae X <0 for all X € hull(¥)).
Then, A is the zero matrix.

Proof. Consider indices i < j and let %]’ C ¢, be the matrices ¥ € ¢; for which ¥; ; = 1. Let Z be the
(uniform) average of all matrices in E?]’ . It is straightforward to verify that Z; ; = Z;; = 1, but all other
off-diagonal entries are zero. Since Z, —Z € hull(¥;), we have that

A,’J :AOZSO,
—Aid' :A.(—Z) § 0.

Therefore, A; ; = 0 for all i < j. Thus, A is the zero matrix. OJ

Since hull(¥;) is a projection of hull(.%;), we have that this inequality is approximately satisfied by M:

66

AeM|oyus; < b+0(8). Thus,

b<AeN

+06

=Aef

1
1-4 1-4
= 7'(A°M’{o}us_,+1+75 (Ao D'|(gyus, +A(Ael)

(M +D')|1opus, + A1)

< "b10(S
S +0(8),

where we use the fact that every entry of D’ is bounded in absolute value by 6 and A el = 0. Thus, for
A =Q(0), we get a contradiction. This proves that N ‘{O}USJ- € hull(¥;) for all j € [m].

Using Gaussian elimination (see O’Donnell [O’D16] and references therein, including [Lov03]), we can
efficiently compute rational square matrices L and D, where L is lower triangular and D is a diagonal, such
that N = LDLT. Then, we can compute vectors vo,...,V, whose coordinates are square roots of rational
numbers such that N; ; = (v;, v;). Since N|(ous; € hull(¥;) for all j € [m], by solving a suitable linear pro-
gram, we can efficiently find a probability distribution A; over assignments S; — D which is consistent with
the first and second moment conditions of the fiPCSP basic SDP, where the objective value is to minimize
the total weight €; on non-assignments to C;.

To finish, it suffices to prove that &; < M.y, j+n + O(6) for all j € [m]. Recall that Mg, (0,j1n} +E;j €
hull(#;). Thus, N’ := (M|s,u(0,j4n) + Ej)l{ojus; € hull(%;). Furthermore, if we solve the same “error”
LP for N’, we will get an error 8;- which must be at most M, j+, + 6. One can see that every entry in
N and N’ differ by at most O(8). Let € : hull(¢;) — [0,1] be the value of the LP on all possible input
matrices. It is clear that € is a bounded convex function, so it must be Lipschitz. Thus, €; — 8} < 0(9d), so
€ <My jin+0(d), as desired.

B Missing Proofs

B.1 Missing proofs from Section 4

Proof of Lemma 4.11. We first consider the case when k = 1. Without loss of generality, let P = Q = {+1},
and we use Vi = avp + V| to denote the SDP vector corresponding to the variable used in the constraint. As
the basic SDP has error at most /€, we get that

06121—\/5

vi|l, < O(%%). Thus, using Proposition 2.21, we get that ({,v}) < O(e**°r) with

2
probability at least 1 —e 2 > 1 — /€. On the other hand, using Proposition 2.20, we get that [({,vo)| > 1
with probability at least 1 — % This implies that

As a2+ V2 =1,

0
Soul(E.w)| > o
Thus, with probablity at least 1 — O(1), we have

() < 01 < 3 < Seul{€,w)

67

Hence, with probability at least 1 — O(1), we round the variable to +1.

We now consider the general case when k& > 2. Note that the above proof for k = 1 holds when P =
Ham; {0} or when P = Ham{k}. We are left with the setting when P = Ham;{0,k}. In order to show that
our algorithm is a robust algorithm for this fiPCSP, it suffices to show that all the elements in the predicates
are rounded to the same value with high probability. Consider i, j € [k]. We show that the probability that

the variables x; and x; get rounded to different values is at most O (%) Using the union bound over all the
(]2‘) pairs of indices, we get our required claim.

We first collect useful properties using the fact that the basic SDP is supported with a probability of at
least 1 —c on P.

1. (First moment.) We have
i — pj| < 2c.

2. (Second moment.) We have
<V,‘,Vj> > 1-2¢

Using this, we get
NVl =i (o=
< [lvi—vil+ (o

< 0(c).

Thus,

<O0(Ve).

/ /

As earlier, we assume that ¢ is at most /€.

Recall that our goal is to upper bound the probability that x; and x; are rounded to different values.
Without loss of generality, suppose that x; is rounded to +1, and x; is rounded to —1. We get that

(C.vi) = 8l (L, vo)|
(€,v)) < 8ayl(E,vo)|

Using Proposition 2.21, we can infer that

(&, vi) = (& Vi)l < O(rv/e)

with probability at least 1 — %

We consider two cases: first, when |o;| < 1. As o + HVfH% =1, and |o; — ;| < 2c, we get that ’

v,
i
Q(1). In this case, we have

(C.v)) = (E,vi) = O(rVe)
> 804/(¢, vo)| — O(rv/c)

Thus, we have

(€.v)) € [8ail(L,vo)| = O(rv/c), 80| (L, vo)]

68

Here, (£,V)) € [p,q] where g— p < O(8r)+O(r\/c) < O(dr). However, as ‘ vi|| > Q(1), this happens with
probability at most O(5r).

Now, suppose that |¢;| > 7. We have

ai|(E,vo)| = 8a;|(C,vo)| —28¢[(E, Vo)

However, as (§,vo) ~.47(0,1), we have |({, vo)| < r with probability at least 1 —+/€. Thus, with probability
at least 1 — /€, we have

(C,vi) = 804[(C,vo)| > (§,V);) —28¢r

We have 8a;|(C,vo)| € [p,q] where ¢ — p < O(8cr) + O(r\/c). However, this happens with probability at
most 0("°) < O(1). O
Proof of Lemma 4.12. Suppose that a =sgn(x—y) for x,y € Aff(P), and x; # y; for all i € [k]. By modifying
the affine combinations slightly, we can assume that x and y are rational affine combinations of P while still
preserving the fact that a = sgn(x —y). In other words, there exist py,p2,...,Pk,q1,92,---,q9x € Q such
that Yie(x) Pi = Yick)9i = 1. and X = Yic(x] Pidi» Y = Lic[k] 4ii> Where #* ={aj,a,,...,ag}. Let N be a
positive integer such that we can write p; = pﬁg, qi = qﬁg where p/, g} are integers for every i € [K].

Let S be a list of elements of of %* where for each i € [K], there are |p}| +|q]| copies of a;. Let s € £/l
be a £1 vector such that for each i € [K] we have that |p!| of the j € [|S|] with §; = a; have s; = sgn(p}) and
the other |g;| copies have s; = sgn(q;). Since Yc(x| P; = Lic[k] ¢;» We have that s; has an equal number of
each of 41 and —1.

Let z denote the signed sum of all vectors (including repetitions) in S according to the signs of s. Note
that sgn(z) = sgn(x—y). As each element of z is an integer, we get that the absolute value of each coordinate
in z is at least 1. Furthermore, we can take multiple copies of S to ensure that the absolute value of each
coordinate in z is at least 2. Now, we add an arbitrary element of P with sign +1 to S. Note that we still have
that the signed sum of S, i.e., the updated z satisfies sgn(z) = sgn(x —y). Furthermore, z=x; —Xa +...+X,,
where each x; € P. Thus, a =sgn(x —y) = sgn(w) = sgn(X; —Xa +...+X.) € Oar(P). Thus,

{sgn(x—y) :x,y € Aff(P),Vi,x; # yi} C Oar(P)

To prove the other direction, suppose that a € Oa7(P). That is, a = sgn(x; — Xz +...+x.). Let S be
a multiset of X1,Xy,...,X; with the corresponding sign as in the summation. As P is non-trivial in every
coordinate i.e., for every i € [k], there exist assignments x in P where x; = +1, and similarly, X' € P where
x} = —1. By adding vectors with both signs +1 and —1, we can assume that S is non-trivial in every
coordinate while still preserving the fact that the sign vector of the signed sum of S is equal to sgn(a). We
modify S while still preserving this property to ensure that the signed sum of vectors in $ has an absolute
value of at least 2 in every coordinate.

As there are an odd number of vectors in S, the signed sum of the vectors has an absolute value of at
least 1 in every coordinate. Fix a vector x; € S. Create two copies of every other vector in S (with the same
sign as the original). Note that this operation does not alter the sign vector of the signed sum of the vectors
in S. We can repeat this process at most 2k times to ensure that in the final multiset S, the signed sum has
an absolute value of at least 2 in every coordinate. Finally, we add an arbitrary vector with sign —1 to S,
to ensure that the number of vectors with 41 sign and the number of vectors with —1 sign are equal in S.
Overall, we get that there are X;,X2,...,Xy € Pand y;,y,,...,¥y € P such that

1 1 1 1
a:SgH(X1+---+XN—y1—---—yN):sgn(Nx1+...+NxN—Ny1—...—NyN>

69

Thus, we get that a € {sgn(x—y) : X,y € Aff(P),Vi,x; # y;}, completing the proof that
Oar(P) C {sgn(x—y) : x,y € Aff(P),Vi,x; # yi} 0

B.2 Missing proofs from Section 5

Proof of Lemma 5.1. We extensively use the properties of AT, MAJ polymorphisms of Boolean symmetric
folded idempotent PCSPs proved in [BG21]."> We recall that Oar(P) (respectively Onaj(P)) denotes the
set Uy, ... x,epLen, odd, ATL(X1,...,XL) (respectively MAJ;) for a predicate P.

Let k denote the arity of P,Q, i.e., P C Q C #*. Note that P ¢ {(—1,...,—1),(+1,...,+1)} as in that
case Omaj(P) = P C Q, contradicting the fact that MAJ ¢ Pol(P, Q). Thus, there exists / € {1,2,...,k—1}
such that Ham{/} C P.

Case 1. We first consider the case when P = Hamy{/} for some / € {1,2,...,k—1}. As P is symmetric,
Owmay(P) is symmetric as well [BG21]. Furthermore, as MAJ Z Pol(P, Q), there exists b € {0, 1,...,k} such
that Ham {b} N Q = ¢ and Hamy{b} C Omaj(P).

Suppose that b ¢ {0,k}. Let Q' = %%\ Ham{b}. By definition, MAJ ¢ Pol(P,Q"). Using the fact that
Oar(Hamy{l}) =Hamy{1,2,...,k—1}, we get that AT ¢ Pol(P, Q). Thus, we get a promise template (P, Q)
that is fippp-definable from original promise template where P = Hamy{/}, Q = Ham{0, 1,...,k} \ {b}
where b € {1,2,...,k—1}\ {/}. Note that MAJ, AT ¢ Pol(P,Q). We now modify this promise template
further, updating P, Q, [, k,b while preserving the following two properties:

1. Atevery step, P = Hami{/},Q = Ham{0,1,...,k} \ {b} where b € {1,2,...;k—1}\ {/}.
2. MAJ, AT ¢ Pol(P, Q).

As Omar(P) =Ham{0,1,...,k} {2l —k+1,--- ,2l — 1}, and Hamy{b} € Onmas(P), we get that b € {2/ —
k+1,---,21—1}NnA{0,--- ,k}. Furthermore, as b > 0, we get that / > 1. Similarly, we get that [< k— 1.
This also implies thatk >4 asl € {1,...,k—1}.

We use the following two tools to repeatedly obtain a new promise template that is fippp-definable from
the previous one.

1. Given a promise template P = Hamy{/},Q = Ham {0, 1,...,k} \ {b} where b € {1,2,... . k—1}\{/},
then the promise template P’ = Hamy_;{/},Q" =Ham;_1{0,1,...,k—1}\ {b} is fippp-definable from
(P,Q) (Claim 4.2 of [BG21]). Aslong as b < k— 1 and b # 2] — k+ 1, this update preserves the above
two properties.

2. Given a promise template P = Ham{/},Q = Ham;{0,1,...,k} \ {b} where b € {1,2,...;k—1}\
{1}, then the promise template P’ = Hamy_{l — 1},Q" = Ham;_1{0,1,...,k—1}\ {b— 1} is fippp-
definable from (P, Q) (Claim 4.4 of [BG21]). As long as b > 1 and b # 2] — 1, this update preserves
the above two properties.

Now, we update the promise template using the above two steps. As k is decreasing at every step, this
procedure terminates at some point. Then, either of the two conditions holds:

1. b=1,b=2l—k+ 1. In this case, we get that [= % and b = 1. Thus, (P',Q’) is fippp-definable from
I" where P’ = Ham{4},0 = Ham{0, 1,...,k} \ {1} where k is even and is at least 4.

15The notion of ppp-reduction used in [BG21] implicitly allows for equality constraints. However, the ppp-reductions we use in
this proof (particularly those in Claims 4.2 and 4.4 of [BG21]) do not use equalities.

70

2. b=k—1,b=2l— 1. In this case, we get that [= & and b =k — 1. Thus, (P',Q’) is fippp-definable
from I' where P’ = Hamk{é}, Q0 =Ham{0,1,...,k} \ {k— 1} where k is even and is at least 4.

Suppose that there is no b ¢ {0,k} such that Hamg{b} C Omaj(P)\ Q. As Omas(P) € Q, by negating the
variables if needed, we can assume that Ham {0} € Onmaj(P) \ Q. Furthermore, there exists b € {1,2,...,k—
1} such that Hamy ¢ Q as Oar(P) € Q. Thus, we obtain (P, Q) that is fippp-definable from the original
promise template such that P = Hamy{/},Q = Hamy{1,...,k} \ {b} where [, b€ {1,2,... ,k—1},b>2]—1.
By using the first type of update used above (Claim 4.2 of [BG21]), we obtain a new promise template (P, Q)
that is fippp-definable from the original promise template such that P = Hamy{/},Q = Ham;{0,1,... k}\
{0,k—1}, where I € {1,2,....k—1},1 < &1L
Case 2. There exist [# I’ such that Ham{l,/'} C P. Recall that P ¢ Ham{0,k}. This implies that
Oar(P) = Ham {0, 1,...,k}. Hence, we can get a promise template (P,Q’) that is fippp-definable from the
original promise template such that Q' = Ham;{0, 1,...,k} \ {»} and Hamy{b} & Omas(P).

For ease of notation, let P = Hamy S, where S C {0, 1,...,k}. First, consider the case when minS =
0,max S = k. As mentioned earlier, we know that there exists / € {1,2,...,k— 1} such that Ham{/} C P.

Thus, we can obtain a new PCSP (P, Q) that is fippp-definable from the original promise template where
P =Ham{0,l,k},Q = Ham{0,1,... .k} \ {b} and b ¢ {0,1,k}. We consider three cases separately:

1. Suppose that / < % In this case, we have a promise template (P,Q) that is fippp-definable from
the original promise template where P = Hamy{/,k} and Q = Ham {0, 1,...,k} \ {b} and b ¢ {I,k}.
Note that this promise template does not contain AT or MAJ as polymorphisms.

2. Suppose that [= % In this case, we have a promise template (P, Q) that is fippp-definable from the
original promise template where P = Hamy{/} and Q = Hamy{0, 1,...,k} \ {b} where b ¢ {0,1,k}.
This also doesn’t have AT and MAJ as polymorphisms. We have already shown that we can relax this
further to the earlier mentioned three promise templates.

3. Suppose that [> % In this case, we have a promise template (P, Q) that is fippp-definable from the
original PCSP where P = Ham{0,/} and Q = Ham;{0,1,...,k} \ {b} where b ¢ {0,/}. Note that
this promise template does not contain AT or MAJ as polymorphisms.

Thus, there is a promise template (P, Q) that is fippp-definable from the original PCSP where P = Hamy{/,'},Q =
Hamy{0,1,...,k}\{b} such that! <!, {l,I'} #{0,k}, b € Onma;(P). We end up with the same PCSP when
{minS,max S} # {0,k}.

If {I,I'} ={1,k} or {0,k— 1}, we get that the promise template P = Ham;{1,k},Q =Ham{0,1,...,k}\
{b} is fippp-definable from the original promise template, and we are done. If not, we update the promise
template while maintaining the two below properties:

1. P=Hamy{l,I'} withl <1"and {l,I'} # {0,k} and Q = Ham;{0, 1,...,k} \ {b}. We also assume that
{l)l,} 7é {17k} and {lal/} 75 {ka_ 1}

2. AT,MAJ ¢ Pol(P,Q).

As with the earlier case, we obtain a series of new promise templates that are fippp-definable from the
previous promise templates using the below tools.

1. We get P =Hamy_{/,/'} and Q = Ham;_{0,1,...,k} \ {b} using Claim 4.2 of [BG21]. For this to
preserve the above properties, we need that I’ # k,b # k and b # 2] —k+ 1.

71

2. We get P =Hamy_{l—1,I'"— 1} and Q = Ham;_{0, 1,...,k} \ {b— 1} using Claim 4.4 of [BG21].
For this to preserve the above properties, we need that / £ 0,b # 0 and b # 21 — 1.

As the arity of the predicates is decreasing at each step, this process terminates in finite steps. When we are
unable to update the promise template using the above procedures, one of the following must be true.

1. I'=k,b=0. In this case, we have a promise template (P, Q) where P = Ham{/,k}, Q = Hamy{1,2,... k},

k=1
where [# 0,1 < -

2. b =k, = 0. By negating the variables, we can observe that the above promise template is fippp-
definable from this promise template.

3. b=kb=2I'—1. We have I' = HTI In this case, we have promise template (P,Q) where P =
Ham{l,31}, 0 = Ham{0,1,2, ...,k — 1}, where [< &1

4. We have b =2l —k+1,b = 0. By negating the variables, we can observe that the above promise
template is fippp-definable from this promise template.

Thus, we have obtained a new promise template that is fippp-definable from the original promise tem-
plate and is equal to either of the following promise templates.

1. kiseven, and P = Hami{4},0 = Ham{0, 1,...,k} \ {b} where b € {1,k—1}.

2. kis odd, P =Ham{l,5'}, 0 = Ham;{0,1,2,...,k— 1}, where < %51,

3. P =Hamy{l,k}, Q = Hamy{1,2,...,k}, where [# 0,1 < %

4. P=Ham{l},Q =Ham{0,1,...,k}\{0,k—1} where l € {1,2,...,k—1},1 < k;zl
5. P=Hamy{1,k},Q = Ham{0,1,... k}\ {b} for arbitrary b.

Finally, we note that if a Boolean promise template I" = {(Py,Q1),..., (P, Q;)} is fippp-definable from
another Boolean promise template I', then I remains fippp-definable from I even when we disallow the
constraints of I in the fippp-definition to use constants. O

ECCC ISSN 1433-8092
72
https://eccc.weizmann.ac.il

