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Abstract

We study linearity testing over the p-biased hypercube ({0, 1}n, µ⊗np ) in the 1%

regime. For a distribution ν supported over {x ∈ {0, 1}k :
∑k

i=1 xi = 0 (mod 2)}, with
marginal distribution µp in each coordinate, the corresponding k-query linearity test
Lin(ν) proceeds as follows: Given query access to a function f : {0, 1}n → {−1, 1}, sam-
ple (x1, . . . , xk) ∼ ν⊗n, query f on x1, . . . , xk, and accept if and only if

∏
i∈[k] f(xi) = 1.

Building on the work of Bhangale, Khot, and Minzer (STOC ’23), we show, for
0 < p 6 1

2 , that if k > 1 + 1
p , then there exists a distribution ν such that the test

Lin(ν) works in the 1% regime; that is, any function f : {0, 1}n → {−1, 1} passing the
test Lin(ν) with probability > 1

2 + ε, for some constant ε > 0, satisfies Prx∼µ⊗np [f(x) =

g(x)] > 1
2 + δ, for some linear function g, and a constant δ = δ(ε) > 0.

Conversely, we show that if k < 1 + 1
p , then no such test Lin(ν) works in the 1%

regime. Our key observation is that the linearity test Lin(ν) works if and only if the
distribution ν satisfies a certain pairwise independence property.

1 Introduction

A function f : {0, 1}n → {−1, 1} is said to be linear over F2
1, if there exists a set S ⊆ [n],

such that f(x) =
∏

i∈S (−1)xi ; this function is denoted by χS. The classical linearity testing
problem, asks, given query access2 to a function f : {0, 1}n → {−1, 1}, to distinguish between
the following two cases3:

1. f is a linear function.

2. f is far from being linear; that is, for every linear function χS, the functions f and χS
disagree on many points.
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1by identifying the range F2 with {−1, 1}, under the map b→ (−1)b
2the algorithm is allowed to ask/query the value of f(x) at any x ∈ {0, 1}n
3the algorithm is allowed to answer arbitrarily for functions f which violate both the conditions
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Linearity testing was first studied by Blum, Luby, and Rubinfeld, who gave a very simple
3-query test for this problem [BLR93]. This test, known as the BLR test, proceeds in the
following manner: Sample x, y ∼ {0, 1}n uniformly and independently; query f at x, y, and
x ⊕ y, and accept if and only if f(x ⊕ y) = f(x) · f(y). Observe that this test accepts all
linear functions with probability 1. Blum, Luby and Rubinfeld proved that any function f
passing this test with high probability (1− δ, for some small δ > 0), must agree with some
linear function χS on most (at least 1−O(δ) fraction of) points in {0, 1}n. This result, with
the acceptance/agreement probability close to 1, is known as the 99%-regime of the test.

It was shown later [BCH+96, KLX10] that the above result extends to the 1% regime as
well; more precisely, for every δ ∈ [0, 1], and f : {0, 1}n → {−1, 1} such that

E
x,y∼{0,1}n

[f(x) · f(y) · f(x⊕ y)] > δ,

there exists S ⊆ [n] such that Ex∼{0,1}n [f(x) · χS(x)] > δ.
The above test is of fundamental importance in theoretical computer science, and has

several applications; for example, it is one of the ingredients in the proof of the celebrated
PCP theorem [FGL+96, AS98, ALM+98]. Furthermore, the analysis of the BLR test by
Bellare et al. [BCH+96] is one of the early uses of Fourier analysis over the boolean hypercube,
an area which now plays a crucial role in many diverse subfields of mathematics and computer
science, like complexity theory, harness of approximation, learning theory, coding theory,
social choice theory, etc. [O’D14].

In this work, we are interested in the problem of linearity testing over the p-biased
hypercube. For p ∈ (0, 1), we denote by µp the p-biased distribution on {0, 1}, which assigns
probability p to 1, and 1 − p to 0. The p-biased hypercube refers the set {0, 1}n, with the
n-fold product measure µ⊗np . Linearity testing, in this p-biased setting, asks to distinguish
between linear functions, and functions which are far (with respect to the p-biased measure)
from being linear.

The 99% regime of this problem is well-understood [KS09, DFH19], and a simple 4-query
test works in this case (see Example 4 below). The question for the 1% regime turns out to
be significantly more challenging for any p 6= 1/2, and was wide open until a recent work
of Bhangale, Khot and Minzer [BKM23b] made significant progress. In particular, for every
p ∈

(
1
3
, 2

3

)
, they give a 4-query test that works in the 1% regime.

Building upon the work of Bhangale, Khot and Minzer, we consider a very general class
of tests, where, very roughly, some k queries x1, . . . , xk ∈ {0, 1}n, satisfying

∑
i∈[k] xi =

0 (mod 2) are chosen, and the test accepts f : {0, 1}n → {−1, 1} if
∏

i∈[k] f(xi) = 1. We
shall require the following definitions:

Definition 1. (Class of Distributions) For k ∈ N, p ∈ (0, 1), we define D(p, k) to be the class
of all distributions ν on {0, 1}k having µp as the marginal distribution on each coordinate

i ∈ [k], and such that supp(ν) ⊆
{
x ∈ {0, 1}k :

∑k
i=1 xi = 0 (mod 2)

}
. We say that such a

distribution ν has full even-weight support, if the above inclusion is an equality.
For a distribution ν ∈ D(p, k), we say that i ∈ [k] is a pairwise independent coordinate,

if for each j ∈ [k], j 6= i, it holds that EX∼ν [Xi ·Xj] = p2. We say that ν is pairwise
independent, if all its coordinates are pairwise independent.
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Definition 2. (Class of Linearity Tests) For a distribution ν ∈ D(p, k), we define a cor-
responding linearity test, denoted by Lin(ν), as follows. Given query access to a func-
tion f : {0, 1}n → {−1, 1}: Sample4 x = (x1, . . . , xk) ∼ ν⊗n, and accept if and only if
f(x1) · f(x2) · · · f(xk) = 1.

Note that every linear function passes such a test with probability 15. More strongly,
each query in ν⊗n having marginal distribution µ⊗np ensures that functions that are close
to linear (with respect to p-biased measure) are also accepted with high probability; in the
property testing literature, such tests are called tolerant. Furthermore, this is a very general
class of linearity tests, containing many of the mentioned previously tests, as demonstrated
by the following examples:

Example 3. The BLR test uses ν to be uniform over
{
x ∈ {0, 1}3 : x1 + x2 + x3 = 0 (mod 2)

}
.

Example 4. The 4-query p-biased test of [DFH19] (for the 99% regime) uses a distribution
ν over {0, 1}4 of the following form: With probability p0, set all coordinates to 0; with
probability p1, set all coordinates to 1; and with probability 1 − p0 − p1, sample uniformly
from the set

{
x ∈ {0, 1}4 : x1 + x2 + x3 + x4 = 0 (mod 2)

}
. Note that each coordinate has

bias p1 + 1
2

(1− p0 − p1), and p0, p1 are chosen so that this equals p.

In this work, we analyze the precise conditions under which tests in Defintion 2 work for
linearity testing, in the 1% regime. Our main result (proven in Section 6) is the following:

Theorem 5. Let p ∈ (0, 1).

1. For every integer k > 1 + 1
min{p,1−p} , there exists a distribution ν ∈ D(p, k), such that

the test Lin(ν) is a k-query linearity test over the p-biased hypercube, for the 1% regime.

That is, for every ε > 0, there exists a δ > 0, such that for every large n ∈ N, and
every function f : {0, 1}n → [−1, 1] satisfying∣∣∣∣∣∣ E

(X1,...,Xk)∼ν⊗n

∏
i∈[k]

f(Xi)

∣∣∣∣∣∣ > ε,

there exists a set S ⊆ [n], such that
∣∣∣EX∼µ⊗np [f(X) · χS(X)]

∣∣∣ > δ.

2. The above point also holds for all integers k > 3 with p = 1
k−1

, and for all even integers

k > 4 with p = 1− 1
k−1

.

3. Conversely, for every positive integer k < 1 + 1
min{p,1−p} , and every distribution ν ∈

D(p, k), the test Lin(ν) fails in the 1% regime.

4here, by x = (x1, . . . , xk) ∼ ν⊗n, we mean that for each j ∈ [n], sample (x
(j)
1 , . . . , x

(j)
k ) ∼ ν independently

(also see Section 2 for notation).
5When k is even, affine functions of the form ±χS also pass the test with probability 1. In this work, we

shall ignore the distinction between these functions and linear functions.
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That is, there exists a constant α > 0, such that for every large n ∈ N, there exists a
function f : {0, 1}n → {−1, 1} satisfying∣∣∣∣∣∣ E

(X1,...,Xk)∼ν⊗n

∏
i∈[k]

f(Xi)

∣∣∣∣∣∣ > α,

and such that for every S ⊆ [n], it holds that
∣∣∣EX∼µ⊗np [f(X) · χS(X)]

∣∣∣ 6 on(1).

Remark 6. Note that the above theorem does not discuss the case when k > 5 is an odd
integer, and p = 1 − 1

k−1
. This case is very interesting and is discussed in more detail

in Section 6.1. Informally speaking, the test corresponding to the “natural” distribution
ν ∈ D(p, k), in this case, ensures correlation with a character of Z/(k−1)Z, and not a linear
function χS (that is, a character of Z/2Z). In Section 6.1, we also present an alternative
test to get around this.

Next, we shall describe the main technical results we prove along the way to prove
Theorem 5. We start by stating (a generalized version of) the main linearity testing result
of Bhangale, Khot and Minzer [BKM23b]:

Theorem 7. (General version proved later as Theorem 33) Let k > 3 be a positive integer,
and let p ∈ (0, 1), ε ∈ (0, 1] be constants, and let ν ∈ D(p, k) be a distribution with full
even-weight support (see Definition 1). Then, there exists constants δ > 0, d ∈ N (possibly
depending on k, p, ε, ν), such that for every large enough n ∈ N, the following is true:

Let f : {0, 1}n → [−1, 1] be a function such that∣∣∣∣∣ E
(X1,...,Xk)∼ν⊗n

[
k∏
i=1

f(Xi)

]∣∣∣∣∣ > ε .

Then, there exists a set S ⊆ [n], and a polynomial g : {0, 1}n → R of degree at most d and
with 2-norm EX∼µ⊗np [g(X)2] 6 1, such that∣∣∣∣∣ E

X∼µ⊗np
[f(X) · χS(X) · g(X)]

∣∣∣∣∣ > δ.

Moreover, if the distribution ν has some pairwise independent coordinate, then we may
assume g ≡ 1; that is, f correlates with a linear function χS.

We remark that Bhangale, Khot and Minzer only consider the case k = 4, and only
show g ≡ 1 in the case that all coordinates of ν are pairwise independent. However, their
proofs extend to the more general setting of Theorem 7; we give an outline of this proof in
Section 7. Furthermore, we note that we are able to analyze the linearity test for a class of
distributions which is much larger than the class of full even-weight support distributions;
these distributions, in some sense, contain the BLR test, and are formally defined in Section 7.

In the above work, the authors ask whether the conclusion g ≡ 1 can be obtained without
assumption that ν has a pairwise independent coordinate. We show this is not possible, and
in fact the assumption that ν has a pairwise independent coordinate is necessary.
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Theorem 8. (Restated and proved later as Theorem 24) Let k ∈ N, p ∈ (0, 1), and let
ν ∈ D(p, k) be a distribution having no pairwise independent coordinate (see Definition 1).

Then, there exists a constant α > 0, such that for every large enough n ∈ N, there exists
a function f : {0, 1}n → [−1, 1] such that

1.
∣∣∣EX∼ν⊗n [∏k

i=1 f(Xi)
]∣∣∣ > α.

2. For every S ⊆ [n], it holds that
∣∣∣EX∼µ⊗np [f(X) · χS(X)]

∣∣∣ 6 on(1).

Moreover, if the distribution ν is such that η := maxi,j∈[k],i 6=j PrX∼ν [Xi = Xj] < 1 (that
is, no two coordinates are almost surely equal), the above holds for a function f with range
{−1, 1}.

Remark 9.

1. The assumption η < 1 in the second part of the Theorem 8 is necessary. For example, if
the ith and jth coordinates of ν are equal, then, for functions f with range {−1, 1}, the

terms f(Xi) and f(Xj) cancel out in the product EX∼ν⊗n
[∏k

i=1 f(Xi)
]
. In particular,

the test is equivalent to the (k−2)-query test with coordinates i, j removed from ν, and
this new distribution may possibly satisfy the conditions of Theorem 7.

2. The function f we construct in Theorem 8 does not correlate well with any linear
function, although, as possibly required by Theorem 7, it does correlate well with some
constant degree function.

3. The above theorem, answers in the negative a question of [BKM23b], who ask if∣∣∣∣ E
(X,Y,Z,W )∼ν⊗n

[g1(X) · g2(Y ) · g3(Z) · g4(W )]

∣∣∣∣ = on(1)

for distributions ν ∈ D(p, 4) with full even-weight support, and g1, . . . , g4 : {0, 1}n → R
bounded, noise stable, and resilient functions.

4. It is an easy check that the distribution ν from Example 4 cannot have a pairwise
independent coordinate, unless p = 1/2. This shows that for p 6= 1

2
, simple tests that

work in the 99% regime fail to work in the 1% regime.

5. Recall that every ν ∈ D(p, k) satisfies
∑

iXi = 0 (mod 2) almost surely, for X ∼ ν.
We never use this in the proof of the above theorem, and the conclusion holds without
it.

Very roughly speaking, in the proof of the above theorem we first construct a counter-
example function in Gaussian space which “passes the test” with decent probability, while
having zero expectation; this function is then converted to a boolean function using the
Central Limit Theorem and a rounding procedure. Along the way, we prove a simple char-
acterization for a random vector to have an independent coordinate, which we believe to be
of independent interest, and is stated as follows:

5



Proposition 10. (Restated formally and proved later as Proposition 19) Let X = (X1, . . . , Xk)
be a k-dimensional multivariate Gaussian random vector, such that for each i ∈ [k], the
marginal is Xi ∼ N (0, 1). Then, the following are equivalent:

1. For every “nice” function f : R → R satisfying EZ∼N (0,1) [f(Z)] = 0, it holds that

E [f(X1) · f(X2) · · · f(Xk)] = 0.

2. There exists i ∈ [k] such that Xi is independent of (X1, . . . , Xi−1, Xi+1, . . . , Xk).

Finally, to use the above theorems (Theorem 7 and Theorem 8), we analyze the tradeoff
between the number of queries k and the bias p, such that a distribution ν ∈ D(p, k) with
some pairwise independent coordinate exists. In particular, we prove the following (restated
and proved later as Proposition 25 and Proposition 27):

Proposition 11. Let k ∈ N, p ∈ (0, 1). Then, there exists a distribution ν ∈ D(p, k) with
some pairwise independent coordinate if and only if k > 1 + 1

min{p,1−p} .

We note that the above generalizes the parameter setting for both the BLR test, corre-
sponding to p = 1

2
, k = 3, and the case of p ∈

(
1
3
, 2

3

)
, k = 4 considered in [BKM23b].

1.1 Related work

The problem of linearity testing has been extensively studied, starting with the work of Blum,
Luby and Rubinfeld [BLR93], who gave a test for the uniform distribution, in the 99% regime.
The analysis of their test was later extended to the 1% regime [BCH+96, KLX10]. Tests for
linearity have been also been studied in the low-randomness regime, and in the setting of
non-abelian groups [BSSVW03, BoCLR08, SW06].

For the p-biased case, in the 99% regime, Halevy and Kushilevitz [HK07] gave a 3-query
linearity test, that only uses random samples from the p-biased distribution! However, the
test is not tolerant, makes queries that are not distributed according to µ⊗np , and hence may
reject functions that are very close to linear (with respect to the p-biased measure). Tolerant
testers were analyzed later [KS09, DFH19]. More strongly, the work of Dinur, Filmus and
Harsha [DFH19] gives 2d-query tolerant tester for p-biased testing of degree d functions over
F2, a problem which has been well studied over the uniform distribution [AKK+05, BKS+10].

As a part of their work on approximability of satisfiable constraint satisfaction prob-
lems [BKM22, BKM23a, BKM23b, BKM24a, BKM24b], Bhangale, Khot and Minzer study
the p-biased version of linearity testing, in the 1% regime. As mentioned before, they give a
4-query test for p ∈

(
1
3
, 2

3

)
.

David, Dinur, Goldberg, Kindler and Shinkar [DDG+17] study linearity testing on the
k-slice (vectors of hamming-weight k), denoted by Lk,n, of the n-dimensional boolean hy-
percube, for even integers k. They show that if f : {0, 1}n → {−1, 1} is such that
f(x ⊕ y) = f(x)f(y) with probability 1 − ε over x, y, x ⊕ y (conditioned on all lying in
Lk,n), then f agrees with a linear function on 1− δ fraction of Lk,n, where δ = δ(ε) → 0 as
ε→ 0. In a recent work, Kalai, Lifshitz, Minzer and Ziegler [KLZM24] prove a similar result
for the n/2-slice, in the 1% regime.

6



1.2 Organization of the paper

We start by presenting some preliminaries in Section 2. In Section 3, we prove a variant
of Theorem 8 over the Gaussian distribution, which then is used in Section 4 to prove
Theorem 8. In Section 5, we analyze the tradeoff between the bias p and the number
of queries k, for the existence of a valid linearity test. Combining all results, we prove
Theorem 5 in Section 6. In Section 7, we outline of the proof of Theorem 7.

2 Preliminaries

We use exp to denote the exponential function, given by exp(x) = ex for x ∈ R.
Let N = {1, 2, . . .} be the set of natural numbers. For each n ∈ N, we use [n] to denote

the set {1, 2, . . . , n}. For non-negative functions f, g : N → R, we say that f(n) = on(g(n))

if limn→∞
f(n)
g(n)

= 0.

For a probability distribution ν on X , we use supp(ν) to denote its support. For n ∈ N,
we use ν⊗n to denote the n-fold product distribution on X n. In particular, we shall be
interested in the case when X ⊆ Rk for some k ∈ N. In this case, for vectors x ∈ Rkn,
we shall use subscripts for indices in [k] and superscripts for indices in [n]; that is, for each

i ∈ [k], j ∈ [n], we use x
(j)
i to denote the (i, j)

th
coordinate of x. Further, for each i ∈ [k],

we use xi to denote the vector
(
x

(1)
i , . . . , x

(n)
i

)
∈ Rn, and similarly for each j ∈ [n], we use

x(j) to denote the vector
(
x

(j)
1 , . . . , x

(j)
k

)
∈ Rk.

For k ∈ N, let Sk denote the group of all permutations on [k]. For each π ∈ Sk, x ∈ Rk,
we use xπ to denote

(
xπ(1), . . . , xπ(k)

)
∈ Rk. With this notation, we define the symmetrization

of functions over Rk:

Definition 12. For any function f : Rk → R, we define its symmetrization as the function
Sym(f) : Rk → R, given by Sym(f)(x) =

∑
π∈Sk f(xπ).

We shall use the following facts from probability theory:

Fact 13. (Chebyshev’s Inequality; see [Dur19] for reference) Let X be a random variable
such that E [X2] <∞. Then, for any any a > 0,

Pr [|X − E [X]| > a] 6
Var [X]

a2
.

Fact 14. (Hoeffding’s Inequality [Hoe63]) Let X1, . . . , Xn be independent random variables
such that ai 6 Xi 6 bi almost surely, and let S =

∑n
i=1 Xi. Then, for all t > 0,

Pr [|S − E [S]| > t] 6 2 · exp

(
− 2t2∑n

i=1 (bi − ai)2

)
.

Theorem 15. (Multivariate Central Limit Theorem; see [Dur19] for reference) Let X(1), X(2), . . .
be Rk-valued i.i.d. random vectors, with mean zero, and finite a covariance matrix Σ ∈ Rk×k
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given by Σi,j = E
[
X

(1)
i ·X

(1)
j

]
. If Sn = 1√

n

∑n
i=1X

(i), then, Sn
D−→ Z as n → ∞, for

Z ∼ N (0,Σ). That is, for every bounded continuous function H : Rk → R,

lim
n→∞

E [H(Sn)] = E
Z∼N (0,Σ)

[H(Z)] .

We shall also use the following fact about zeros of polynomials:

Lemma 16. Let p1, . . . , pr : Rk → R be non-zero polynomials. Then, there exists y ∈ Rk

such that for each permutation π ∈ Sk, and each i ∈ [r], it holds that pi(yπ) 6= 0.

Proof Sketch. The zero-set of any non-zero polynomial has measure zero, with respect to the
Lebesgue measure on Rk. Hence, by sub-additivity, the set of points y ∈ Rk violating the
statement of the lemma is of measure zero as well.

Next, we give some basic results about the probabilist’s Hermite polynomials. The reader
is referred to Chapter 11 in [O’D14] for more details.

Definition 17. The Hermite polynomials (Hj)j∈Z>0
are univariate polynomials, with Hj a

monic polynomial of degree j, satisfying the power series expression

exp

(
tx− t2

2

)
=
∞∑
j=0

1

j!
·Hj(x) · tj, for t, x ∈ R .

Note that the series above is absolutely convergent, with
∑∞

j=0
1
j!
·|Hj(x)|·|t|j 6 exp

(
|t| · |x|+ t2

2

)
for each t, x ∈ R.

Lemma 18. Let k ∈ N and s1, s2, . . . , sk ∈ Z>0, and let Σ ∈ Rk×k be a positive semi-definite
matrix such that Σi,i = 1 for each i. For V = Σ− I, it holds that

E
X∼N (0,Σ)

[Hs1(X1) · · ·Hsk(Xk)] =
s1! · · · sk!
d! · 2d

·
[(
t>V t

)d
: ts11 · · · t

sk
k

]
where s1 + · · · + sk = 2d, and

[(
t>V t

)d
: ts11 · · · t

sk
k

]
denotes the coefficient of ts11 · · · t

sk
k in

the polynomial
(
t>V t

)d
. Also, the above expectation is zero when s1 + · · ·+ sk is odd.

Proof. Recall that the moment generating function of a multivariate Gaussian distribution
is given by

E
X∼N (0,Σ)

[exp (t1X1 + . . . tkXk)] = exp

(
1

2
· t>Σ t

)
,

for each t ∈ Rk. Multiplying the above by exp(−1
2
· t>t), and plugging in the power series in
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Definition 17, we get for each t ∈ Rk that

∞∑
d=0

1

d! · 2d
·
(
t>V t

)d
= exp

(
1

2
· t>V t

)
= E

X∼N (0,Σ)

[
exp

((
t1X1 −

t21
2

)
+ · · ·+

(
tkXk −

t2k
2

))]
= E

X∼N (0,Σ)

[(
∞∑
s1=0

1

s1!
·Hs1(X1) · ts11

)
· · ·

(
∞∑
sk=0

1

sk!
·Hsk(Xk) · tskk

)]

=
∑

s1,...,sk>0

ts11 · · · t
sk
k

s1! · · · sk!
· E
X∼N (0,Σ)

[Hs1(X1) · · ·Hsk(Xk)] .

Note that since the power series in Definition 17 is absolutely convergent, all steps above
of interchanging limits and expectations are valid by the dominated convergence theorem.
Finally, comparing coefficients, we have the desired result.

3 A Gaussian Variant

The first step towards proving Theorem 8 is to prove a Gaussian variant, stated below:

Proposition 19. Let k ∈ N, and let Σ ∈ Rk×k be a symmetric positive semi-definite matrix
such that:

1. For each i ∈ [k], it holds that Σi,i = 1.

2. The matrix V = Σ− I has no row/column as all zeros.

Then, there exists a Lipschitz continuous function f : R→ [−1, 1] such that:

E
X∼N (0,1)

[f(X)] = 0, and

∣∣∣∣∣∣ E
X∼N (0,Σ)

∏
i∈[k]

f(Xi)

∣∣∣∣∣∣ > 0.

3.1 Symmetric Powers of Polynomials

Before we prove the above proposition, we first prove a lemma about (symmetrization of)
powers of multivariate polynomials. We show that if a polynomial q(x1, . . . , xk) depends on
all the variables x1, . . . , xk, then some power Sym(qd) (see Definition 12) contains a monomial
divisible by x1x2 · · ·xk.

Lemma 20. Let k ∈ N, and let q : Rk → R be a polynomial such that for each i ∈ [k],
the polynomial `i = ∂iq is not identically zero. Then, there exists some d ∈ N, and positive
integers s1, . . . , sk ∈ N such that the coefficient of xs11 · xs22 · · ·x

sk
k in the polynomial Sym(qd)

is non-zero.

We start by proving the following lemma about derivates of powers of q.

9



Lemma 21. Let k ∈ N, and let q : Rk → R be a polynomial. For each i ∈ [k], let `i = ∂iq.
Then, for every s = (s1, . . . , sk) ∈ Zk>0 with |s| =

∑
i∈[k] si, there exist polynomials

p0, . . . , p|s|, with p|s| =
∏

i∈[k] `
si
i , such that for each d > |s|, it holds that

∂s11 · ∂s22 · · · ∂
sk
k

(
qd
)

= qd−|s| ·

 |s|∑
i=0

di · pi

 .

Proof. The proof is by induction on |s|. For the base case, if |s| = 0, we have s = (0, 0, . . . , 0),
and p0 = 1 satisfies the statement of the lemma.

For the inductive step, consider any s = (s1, . . . , sk) ∈ Zk>0 with |s| =
∑

i∈[k] si > 0.
Without loss of generality, by symmetry, we can assume that s1 > 0. By the inductive
hypothesis applied to (s1 − 1, s2 . . . , sk), we have the existence of polynomials p0, . . . , p|s|−1,

with p|s|−1 = `s1−1
1 ·

∏k
i=2 `

si
i , and such that for each d > |s| − 1, we have

∂s1−1
1 · ∂s22 · · · ∂

sk
k

(
qd
)

= qd−|s|+1 ·

|s|−1∑
i=0

di · pi

 .

Now, if d > |s|, differentiating the above with respect to x1, we get

∂s11 · ∂s22 · · · ∂
sk
k

(
qd
)

= qd−|s| ·

(d− |s|+ 1) · `1 ·
|s|−1∑
i=0

di · pi

+ qd−|s|+1 ·

|s|−1∑
i=0

di · ∂1(pi)


= qd−|s| ·

 |s|∑
i=1

di · `1 · pi−1 +

|s|−1∑
i=0

di · ((− |s|+ 1) · `1 · pi + q · ∂1pi)


= qd−|s| ·

 |s|∑
i=0

di · p̃i

 ,

where the polynomials p̃1, . . . , p̃|s| do not depend on d, and are such that p̃|s| = p|s|−1 · `1 =∏
i∈[k] `

si
i , as desired.

With the above lemma in hand, next we shall consider the symmetrization operation
applied to derivatives of powers of q.

Lemma 22. Let k ∈ N, and let q : Rk → R be a polynomial such that for each i ∈ [k], the
polynomial `i = ∂iq is not identically zero.

Then, for each large enough even integer d ∈ N, the polynomial Sym
(
∂2

1 · ∂2
2 · · · ∂2

k

(
qd
))

is not identically zero.

Proof. By applying Lemma 21 on s = (2, 2, . . . , 2), we have the existence of polynomials
p0, . . . , p2k, with p2k =

∏
i∈[k] `

2
i , such that for each d > 2k, it holds that ∂2

1 · ∂2
2 · · · ∂2

k

(
qd
)

=

qd−2k ·
(∑2k

i=0 d
i · pi

)
.

10



By Lemma 16, let y ∈ Rk be such that y (and its permutations) don’t lie in the zero set
of any of the polynomials `1, . . . , `k, q. We define

A = min
π∈Sk

∏
i∈[k]

`i (yπ)2

 > 0, B = max
06i62k−1, π∈Sk

|pi(yπ)| > 0.

Then, for any even integer d > max
{

2k, 4kB
A

}
, it holds that

Sym
(
∂2

1 · ∂2
2 · · · ∂2

k

(
qd
))

(y) =
∑
π∈Sk

q (yπ)d−2k ·

d2k ·
∏
i∈[k]

`i (yπ)2 +
2k−1∑
i=0

di · pi (yπ)


>
∑
π∈Sk

q (yπ)d−2k ·

(
d2k · A−

2k−1∑
i=0

di ·B

)

>

(∑
π∈Sk

q (yπ)d−2k

)
·
(
d2k · A− 2k · d2k−1 ·B

)
>

(∑
π∈Sk

q (yπ)d−2k

)
· d

2kA

2
> 0.

Hence, for even integers d > max
{

2k, 4kB
A

}
, the polynomial Sym

(
∂2

1 · ∂2
2 · · · ∂2

k

(
qd
))

is not
identically zero.

Finally, we prove the main lemma of this section.

Proof of Lemma 20. Let k ∈ N, and let q : Rk → R be a polynomial such that for each
i ∈ [k], the polynomial `i = ∂iq is not identically zero. It suffices to prove that for some
d ∈ N, the polynomial ∂2

1 ·∂2
2 · · · ∂2

k

(
Sym(qd)

)
is not identically zero, since then the coefficient

of some monomial divisible by x2
1 · x2

2 · · ·x2
k is non-zero.

For each polynomial p : Rk → R, and each π ∈ Sk, we shall use pπ to denote the
polynomial given by pπ(x) = p(xπ). Then, for all s1, . . . , sk ∈ Z>0, we have that ∂s11 ·
∂s22 · · · ∂

sk
k (pπ) =

(
∂s1π−1(1) · ∂

s2
π−1(2) · · · ∂

sk
π−1(k) (p)

)
π
.

By the above, we have that for each d ∈ N,

∂2
1 · ∂2

2 · · · ∂2
k

(
Sym(qd)

)
= ∂2

1 · ∂2
2 · · · ∂2

k

(∑
π∈Sk

qdπ

)
=
∑
π∈Sk

∂2
1 · ∂2

2 · · · ∂2
k

(
qdπ
)

=
∑
π∈Sk

(
∂2
π−1(1) · ∂2

π−1(2) · · · ∂2
π−1(k)

(
qd
))

π

=
∑
π∈Sk

(
∂2

1 · ∂2
2 · · · ∂2

k

(
qd
))
π

= Sym
(
∂2

1 · ∂2
2 · · · ∂2

k

(
qd
))
.

Now, the result follows from Lemma 22.
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3.2 Proving the Gaussian Variant

We start by proving a slight variant of Proposition 19, where we allow f to be an arbitrary
(possibly unbounded) polynomial.

Lemma 23. Let k ∈ N, and let Σ ∈ Rk×k be a symmetric positive semi-definite matrix such
that:

1. For each i ∈ [k], it holds that Σi,i = 1.

2. The matrix V = Σ− I has no row/column as all zeros.

Then, there exists a polynomial f : R→ R such that EX∼N (0,1) [f(X)] = 0, and∣∣∣∣∣∣ E
X∼N (0,Σ)

∏
i∈[k]

f(Xi)

∣∣∣∣∣∣ > 0.

Proof. For s = (s1, . . . , sk) ∈ Nk and α = (α1, . . . , αk) ∈ Rk, let fs,α : R → R be the
polynomial defined by fs,α(x) = α1Hs1(x) + · · · + αkHsk(x), where the polynomials Hsi are
Hermite polynomials (see Definition 17). Observe that since s1, . . . , sk > 1, this polynomial
satisfies EX∼N (0,1) [f(X)] = 0.

Suppose, for the sake of contradiction, that for every s ∈ Nk, α ∈ Rk, it holds that

E
X∼N (0,Σ)

∏
i∈[k]

fs,α(Xi)

 = E
X∼N (0,Σ)

∏
i∈[k]

∑
j∈[k]

αjHsj(Xi)

 = 0.

Observe that for every s ∈ Nk, the above expression can be written as a multivariate polyno-
mial in α1, . . . , αk. If the polynomial vanishes for all α ∈ Rk, the coefficient of α1 · α2 · · ·αk
must be zero; that is, ∑

π∈Sk

E
X∼N (0,Σ)

∏
i∈[k]

Hsπ(i)
(Xi)

 = 0.

Now, applying Lemma 18, we get that for each d ∈ N, and each s1, . . . , sk > 1 with s1 +
· · ·+ sk = 2d,∑
π∈Sk

[(
t>V t

)d
: t
sπ(1)

1 · · · tsπ(k)

k

]
=
∑
π∈Sk

[(
t>π V tπ

)d
: tsk1 · · · t

sk
k

]
=
[
Sym

((
t>V t

)d)
: tsk1 · · · t

sk
k

]
= 0.

Note that the assumption that V has no zero row/column implies that for every i ∈ [k], the
polynomial ∂i

(
t>V t

)
is not identically zero. By Lemma 20, this is a contradiction.

With the above, we now prove Proposition 19 via a standard truncation argument.

Proof of Proposition 19. By Lemma 23, we know that there exists a polynomial f : R→ R
such that EX∼N (0,1) [f(X)] = 0, and

∣∣∣EX∼N (0,Σ)

[∏
i∈[k] f(Xi)

]∣∣∣ > 0.

12



For each integer M ∈ N, we define the truncated function fM : R→ [−M,M ] by

fM(x) = f(x) · 1|f(x)|6M +M · 1f(x)>M −M · 1f(x)<−M .

Also, let gM : R → [−2M, 2M ], be given by gM(x) = fM(x) − EX∼N (0,1) [fM(X)]. Observe
that

1. For every M , it holds that EX∼N (0,1) [gM(X)] = 0.

2. For every M , the function gM is bounded and Lipschitz continuous.

3. For every x ∈ R, fM(x) → f(x) as M → ∞. Further, since |fM(x)| 6 |f(x)| for each
x ∈ R,M ∈ N, by the dominated convergence theorem, we have EX∼N (0,1) [fM(x)] →
EX∼N (0,1) [f(x)] = 0 as M → ∞. This implies that for each x ∈ R, gM(x) → f(x) as
M →∞.

Also, for each x ∈ R,M ∈ N, we have |gM(x)| 6 |f(x)| + EX∼N (0,1) [|f(X)|]. Hence,

by the dominated convergence theorem, we have that EX∼N (0,Σ)

[∏
i∈[k] gM(Xi)

]
→

EX∼N (0,Σ)

[∏
i∈[k] f(Xi)

]
6= 0 as M →∞.

By the above, for some large enough M , the function 1
2M
· gM : R→ [−1, 1] satisfies the

desired properties.

4 Linearity Testing Requires Pairwise Independence

In this section, we prove Theorem 8, which is restated below.

Theorem 24. Let k ∈ N, p ∈ (0, 1), and let ν ∈ D(p, k) be a distribution having no pairwise
independent coordinate (see Definition 1). Then, there exists a constant α > 0, such that for
every large enough n ∈ N, there exists a function f : {0, 1}n → [−1, 1] such that

1.
∣∣∣EX∼ν⊗n [∏k

i=1 f(Xi)
]∣∣∣ > α.

2. For every S ⊆ [n], it holds that
∣∣∣EX∼µ⊗np [f(X)χS(X)]

∣∣∣ 6 on(1).

Moreover, if the distribution ν is such that η := maxi,j∈[k],i 6=j PrX∼ν [Xi = Xj] < 1 (that
is, no two coordinates are almost surely equal), the above holds for a function f with range
{−1, 1}.

The remainder of this section is devoted to the proof of Theorem 24. In Section 4.1,
we prove the first part of the theorem, dealing with functions with range [−1, 1]. Then, in
Section 4.2, we show how to round to functions with range {−1, 1}.
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4.1 Function with Range [−1, 1]

Let k ∈ N, p ∈ (0, 1), and let ν ∈ D(p, k) be a distribution having no pairwise independent
coordinate. Let Σ ∈ Rk×k be the (normalized) covariance matrix corresponding to the

distribution ν, given by, Σi,j = EX∼ν
[

(Xi−p)·(Xj−p)
p−p2

]
. Observe that the matrix Σ satisfies the

conditions of Proposition 19, and hence there exists a function h : R→ [−1, 1] such that

1. EZ∼N (0,1) [h(Z)] = 0

2. The function H : Rk → [−1, 1] given by H(x) =
∏

i∈[k] h (xi) is such that

α :=
1

2
·
∣∣∣∣ E
Z∼N (0,Σ)

[H(Z)]

∣∣∣∣ > 0.

3. The function h is K-Lipschitz for some K > 0; in particular, both h and H are bounded
continuous functions.

Consider any large n ∈ N. We define f : {0, 1}n → [−1, 1] by

f(x) = h

(
1√
n
·

n∑
j=1

x(j) − p√
p− p2

)
,

The function f satisfies the two properties in the theorem statement, as follows:

• Let X ∼ ν⊗n, and let Y = (Y1, . . . , Yk) be a {0, 1}k-valued random vector, defined as

Yi = 1√
n
·
∑n

j=1
X

(j)
i −p√
p−p2

.

Let F : {0, 1}kn → [−1, 1] be given by F (x) =
∏

i∈[k] f (xi). Since H is continuous and

bounded, we have by the Multivariate CLT (Theorem 15) that∣∣∣∣ E [F (X)]− E
Z∼N (0,Σ)

[H(Z)]

∣∣∣∣ =

∣∣∣∣ E [H(Y )]− E
Z∼N (0,Σ)

[H(Z)]

∣∣∣∣ 6 on(1).

Hence, for large n, we get
∣∣∣EX∼ν⊗n [∏k

i=1 f(Xi)
]∣∣∣ > 2α− on(1) > α, as desired.

• Consider any subset S ⊆ [n], and let T ⊆ S be any subset of size |T | = min
{
bn1/4c, |S|

}
.

Let f̃ : {0, 1}n → [−1, 1] be defined by f̃(X) = h

(
1√
n−|T |

·
∑

j∈[n]\T
x(j)−p√
p−p2

)
; note that

this function only depends on the coordinates of x outside the set T . Further, for each
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x ∈ {0, 1}n, by the Lipschitz bound on h, we get

∣∣∣f(x)− f̃(x)
∣∣∣ 6 K ·

∣∣∣∣∣∣ 1√
n
·

n∑
j=1

x(j) − p√
p− p2

− 1√
n− |T |

·
∑

j∈[n]\T

x(j) − p√
p− p2

∣∣∣∣∣∣
6

K√
p− p2

·

(
|T |√
n

+ (n− |T |) ·

∣∣∣∣∣ 1√
n− |T |

− 1√
n

∣∣∣∣∣
)

6
K√
p− p2

·
(
|T |√
n

+
n− |T |√

n
· |T |
n

)
6

K√
p− p2

· 2 |T |√
n

= on(1),

where we used that (1− t)−1/2 6 1 + t for each t ∈ [0, 1/2].

Now, for X ∼ µ⊗np , we have∣∣∣∣ E
X

[f(X) · χS(X)]

∣∣∣∣ 6 ∣∣∣∣ E
X

[
f̃(X) · χS(X)

] ∣∣∣∣+ on(1)

=

∣∣∣∣ E
X

[
f̃(X) · χS\T (X)

]
· E
X

[χT (X)]

∣∣∣∣+ on(1)

=

∣∣∣∣ E
X

[
f̃(X) · χS\T (X)

] ∣∣∣∣ · |1− 2p||T | + on(1).

If |S| > bn1/4c, then |1− 2p||T | = on(1). Otherwise, we have that S = T , and by the
Central Limit Theorem (see Theorem 15) , the first term in the above product equals∣∣∣∣ E

X

[
f̃(X)

] ∣∣∣∣ =

∣∣∣∣ E
X

[
f̃(X)

]
− E

Z∼N (0,1)
[h(Z)]

∣∣∣∣ = on(1).

4.2 Rounding to a Function with Range {−1, 1}
Now, we shall prove the second part of Theorem 24.

Let k ∈ N, p ∈ (0, 1), and let ν ∈ D(p, k) be a distribution having no pairwise independent
coordinate. Further suppose that the distribution ν is such that

η := max
i,j∈[k],i 6=j

Pr
X∼ν

[Xi = Xj] < 1.

Let α > 0 be as obtained in Section 4.1. Consider any large n ∈ N, and let f : {0, 1}n →
[−1, 1] be the function obtained in Section 4.1.

Let g : {0, 1}n → {−1, 1} be a random function, defined as g(x) =

{
1, w.p. 1+f(x)

2

−1, w.p. 1−f(x)
2

,

independently for each x ∈ {0, 1}n. Observe that this satisfies Eg [g(x)] = f(x) for each
x ∈ {0, 1}n. We will show that the function g satisfies the two desired properties with
probability 1− on(1), and hence by the probabilistic method, this guarantees the existence
of a non-random g as desired. This is done as follows:
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1. Let F,G : {0, 1}kn → [−1, 1] be defined as F (x) =
∏

i∈[k] f (xi) andG(x) =
∏

i∈[k] g (xi).

Let X, Y ∼ ν⊗n be independent (of each other and of g) and let E be the event
that X1, . . . , Xk, Y1, . . . , Yk are all distinct. Then, by a union bound, we have that
Pr
[
Ē
]
6 2 ·

(
k
2

)
· ηn + k2 ·

(
p2 + (1− p)2)n = on(1), and hence∣∣∣∣ E

g
E

X∼ν⊗n
[G(X)]− E

X∼ν⊗n
[F (X)]

∣∣∣∣ 6 Pr
[
Ē
]

+

∣∣∣∣ E
g

E
X,Y

[G(X) · 1E]− E
X

[F (X)]

∣∣∣∣
6 Pr

[
Ē
]

+

∣∣∣∣ E
X,Y

[F (X) · 1E]− E
X

[F (X)]

∣∣∣∣
6 2 Pr

[
Ē
]

= on(1).

Similarly, we have∣∣∣∣∣ Eg
[
E
X

[G(X)]

]2

−
[
E
X

[F (X)]

]2
∣∣∣∣∣ =

∣∣∣∣ E
g

E
X,Y

[G(X) ·G(Y )]− E
X,Y

[F (X) · F (Y )]

∣∣∣∣
6 2 Pr

[
Ē
]

= on(1).

Letting β = |EX [F (X)]| > α, we get Varg [EX [G(X)]] 6 β2 + on(1) − (β − on(1))2 =
on(1). Hence, by Chebyshev’s inequality (Fact 13), we have |EX [G(X)]| > α

2
with

probability 1− on(1).

2. Fix S ⊆ [n]. Let X ∼ µ⊗np , and let W = EX [χS(X) · g(X)] =
∑

x∈{0,1}n Pr [X = x] ·
χS(x)·g(x). Observe that W is a sum of 2n independent and bounded random variables,
and such that Eg[W ] = EX [χS(X) · f(X)]. For q = max {p, 1− p} < 1, it holds that∑

x(2 Pr[X = x])2 6 4qn·
∑

x Pr[X = x] = 4qn, and by Hoeffding’s inequality (Fact 14),
we have for each t > 0 that

Pr [|W − E[W ]| > t] 6 2 · exp

(
− 2t2

4qn

)
.

Let t = qn/4. Then, with probability at least 1 − on(2−n), it holds that |W | =
|EX [χS(X) · g(X)]| 6 |EX [χS(X) · f(X)]|+ qn/4 = on(1).

Now, a union bound over S ⊆ [n] shows that with probability 1 − on(1), the above
holds for every S ⊆ [n].

5 Queries vs. Bias Tradeoff

In this section, we analyze the relation between p (the bias) and k (the number of queries)
for the existence of a distribution ν ∈ D(p, k) with some pairwise independent coordinate,
and with full even-weight support (see Definition 1).

5.1 Query Lower Bound

We prove a lower bound on k in terms of the p, as follows:
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Proposition 25. Let k ∈ N, p ∈ (0, 1), and let ν ∈ D(p, k) be a distribution that has some
pairwise independent coordinate. Then, it holds that k > 3 and 1

k−1
6 p 6 1− 1

k−1
.

Proof. Let X ∼ ν, and let i ∈ [k] be a pairwise independent coordinate under ν.
For Z =

∑
j 6=iXj, we have by linearity of expectation, that E [Xi · Z] = (k − 1)p2. On

the other hand, observe that if Xi = 1, then Z = 1 (mod 2) and so Z > 1. Hence,

p = E [Xi · 1] 6 E [Xi · Z] = (k − 1)p2,

and we have (k − 1)p > 1; in particular, this shows k > 3.
For the upper bound on p, we consider the following cases:

• k is odd: In this case, if Xi = 1, then Z = 1 (mod 2) and so Z 6 k − 2. Hence,

(k − 1)p2 = E [Xi · Z] 6 E [Xi · (k − 2)] = p(k − 2),

and we have (k − 1)p 6 (k − 2), as desired.

• k is even: In this case, observe that the distribution of the random variable (1 −
X1, . . . , 1 − Xk) also satisfies the hypothesis of the proposition, with p replaced by
1− p. Hence, the above proof gives us (k − 1) · (1− p) > 1, as desired.

Remark 26. The proof of Proposition 25 also shows that for k > 3 and p ∈
{

1
k−1

, 1− 1
k−1

}
,

any distribution satisfying the assumptions of Proposition 25 cannot have full even-weight
support. This is because if p ∈

{
1

k−1
, 1− 1

k−1

}
, in all cases in the above proof, the random

variable Z must be constant under some value of Xi (either Xi = 0 or Xi = 1); this cannot
be the case for a distribution with full even-weight support when k > 3.

5.2 Query Upper Bound

In this subsection, we shall prove the following proposition.

Proposition 27. Let k > 3 be a positive integer, and let p ∈
[

1
k−1

, 1− 1
k−1

]
(note that this

interval is non-empty for k > 3).
Then, there exists a permutation-invariant6 and pairwise independent distribution ν(k, p) ∈

D(p, k) (see Definition 1). Furthermore, if k = 3 or if p 6∈
{

1
k−1

, 1− 1
k−1

}
, then there exists

such a distribution with full even-weight support.

The proof involves various cases, considered below in Lemma 28 and Lemma 29.

Lemma 28. Let k > 4 be a positive integer, and let p ∈
[

1
k−1

, 2
k−1

)
∪
(
1− 2

k−1
, 1− 1

k−1

]
(note

that this interval is contained in
[

1
k−1

, 1− 1
k−1

]
for k > 4). Then, there exists a pairwise

independent distribution ν(k, p) ∈ D(p, k).
Moreover, if p 6∈

{
1

k−1
, 1− 1

k−1

}
, then there exists such a distribution with full even-weight

support.

6we say that a distribution ν over {0, 1}k is permutation-invariant, if for X = (X1, . . . , Xk) ∼ ν, and any
permutation π : [k]→ [k], the distribution of

(
Xπ(1), . . . , Xπ(k)

)
is the same as ν.
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Proof. Let k > 4 be a positive integer, and let p ∈
[

1
k−1

, 2
k−1

)
∪
(
1− 2

k−1
, 1− 1

k−1

]
. Let

s = bk
2
c; we shall exhibit a vector q = (q0, q1, . . . , qs) ∈ [0, 1]s+1 satisfying:

s∑
i=0

(
k

2i

)
· qi = 1,

s∑
i=1

(
k − 1

2i− 1

)
· qi = p,

s∑
i=1

(
k − 2

2i− 2

)
· qi = p2.

The distribution ν(p, k) is then defined by assigning probability

{
q|x|/2, |x| = 0 (mod 2)

0, |x| = 1 (mod 2)

to the point x ∈ {0, 1}k, where |x| =
∑k

i=1 xi. Note that the above properties correspond
to ν(k, p) being a valid probability distribution supported on even-hamming-weight vectors,
having marginals µp, and pairwise independent coordinates. Furthermore, the distribution
ν(p, k) has full even-weight support if and only if each qi ∈ (0, 1).

The vector q is defined as follows in different cases (for brevity, we omit the verification
of the above properties):

1. k > 5 is odd, p ∈
[

1
k−1

, 2
k−1

)
: Let q0 = 1 + kp2

2
− k2p

2(k−1)
, q1 = (k−2)p−(k−1)p2

(k−1)(k−3)
, q(k−1)/2 =

(k−1)p2−p
(k−1)(k−3)

, and zero otherwise.

2. k > 5 is odd, 1−p ∈
[

1
k−1

, 2
k−1

)
: Let q0 = 1+ kp2

k−3
− k(2k−5)p

(k−1)(k−3)
, q(k−3)/2 = 3(k−2)p−3(k−1)p2

(k−1)(k−2)(k−3)
,

q(k−1)/2 = (k−1)p2−(k−4)p
2(k−1)

, and zero otherwise.

3. k > 4 is even, p ∈
[

1
k−1

, 2
k−1

)
: Let q0 = (k−1)p2−(k+1)p+2

2
, q1 = p−p2

k−2
, qk/2 = (k−1)p2−p

k−2
,

and zero otherwise.

4. k > 4 is even, 1− p ∈
[

1
k−1

, 2
k−1

)
: In this case, we define ν(k, p) to be the distribution

obtained by flipping each coordinate of ν(k, 1− p).

Next, we show that if p 6∈
{

1
k−1

, 1− 1
k−1

}
, then such a distribution ν(p, k) with full even-

weight support exists. We only need to do this for the first three cases, as the procedure
described in the fourth case preserves the property of full even-weight support.

The same argument applies in all cases, and we present it for the first case: that is
when k > 5 is odd, and p ∈

(
1

k−1
, 2
k−1

)
. We observe if p 6= 1

k−1
, each of the probabilities

q0, q1, q(k−1)/2 above lie in the interval (0, 1). Now, consider the equations

s∑
i=0

(
k

2i

)
· q̃i = 0,

s∑
i=1

(
k − 1

2i− 1

)
· q̃i = 0,

s∑
i=1

(
k − 2

2i− 2

)
· q̃i = 0.

In these equations, the variables q̃0, q̃1, q̃(k−1)/2 are linearly independent, and hence, there
exists a vector q̃ ∈ Rs+1 satisfying these equations, which has all coordinates equal to 1,
other than possibly q̃0, q̃1, q̃(k−1)/2. Then, for some small δ > 0, the vector q + δ · q̃ has all
coordinates in (0, 1), and satisfies the required properties.

Lemma 29. Let k > 6 be a positive integer, and let p ∈
[

2
k−1

, 1− 2
k−1

]
\
{

1
2

}
(note that this

interval is non-empty for k > 6). There, there exists a pairwise independent distribution
ν(k, p) ∈ D(p, k) with full even-weight support.
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Proof. Let k > 6 be a positive integer, and let p ∈
[

2
k−1

, 1− 2
k−1

]
, p 6= 1

2
. That is, for

q = min {p, 1− p} < 1
2
, we have k > 1 + 2

q
. Let ` be the smallest odd integer satisfying

` > 1+ 1
q
> 3. Note that this satisfies 4 6 ` 6 3+ 1

q
< 1+ 2

q
6 k, and we have q ∈

(
1
`−1

, 2
`−1

)
.

By Lemma 28, there exist pairwise independent distributions ν(`, p) and ν(`, 1−p), with
full even-weight support. Let ν̃0 = ν(`, p), and let ν̃1 be the distribution obtained by flip-
ping each coordinate of ν(`, 1 − p). Since ` is odd, for each b ∈ {0, 1}, it holds that ν̃b
has pairwise independent coordinates, each with marginal µp, and such that supp(ν̃b) ={
x ∈ {0, 1}k :

∑k
i=1 xi = b (mod 2)

}
. Finally, we define X ∼ ν(k, p) via the following ran-

dom process: Let (X`+1, . . . , Xk) ∼ µ
⊗(k−`)
p , and with Z =

∑k
i=`+1Xi (mod 2), we let

(X1, . . . , X`) ∼ ν̃Z . It is an easy check that this distribution satisfies the required prop-
erties.

Finally, we prove Proposition 27.

Proof of Proposition 27. Note that it suffices to find such a distribution that is not necessar-
ily permutation invariant, since averaging the distribution over all permutations preserves
pairwise independence and full even-weight support.

If p = 1/2, for any k > 3, we let ν(k, p) be the uniform distribution on the set{
x ∈ {0, 1}k :

∑k
i=1 xi = 0 (mod 2)

}
.

Now, for k = 3, it must hold that p = 1/2, in which case ν(k, p) is as above. For k = 4
or k = 5, and p 6= 1/2, it must hold that p ∈

[
1

k−1
, 2
k−1

)
∪
(
1− 2

k−1
, 1− 1

k−1

]
, and the result

follows from Lemma 28. For k > 6 and p 6= 1
2
, the result follows from Lemma 28 and

Lemma 29.

6 Putting Everything Together

We are now ready to prove our main result.

Proof of Theorem 5. Let p ∈ (0, 1).

1. Consider any positive integer k > 1 + 1
min{p,1−p} > 3 (or k = 3 with p = 1

2
). By

Proposition 27, there exists a pairwise independent distribution ν ∈ D(p, k) with full
even-weight support. The result now follows by Theorem 33.

2. Suppose that k > 3 with p = 1
k−1

, or k > 4 is even with p = 1− 1
k−1

. In these cases,
we observe that the distribution ν ∈ D(p, k) constructed in Lemma 28 is pairwise
independent, and contains BLR (see Definition 32):

(a) If k > 3, p = 1
k−1

, the distribution ν contains all vectors in {0, 1}k of hamming-

weights 0 and 2 in its support. In this case, Definition 32 is satisfied with b̃ = 0
and z̃ as the all-zeros vector.

(b) If k > 4 is even, and p = 1− 1
k−1

, the distribution ν contains all vectors in {0, 1}k
of hamming-weights k − 2 and k in its support. In this case, Definition 32 is
satisfied with b̃ = 1 and z̃ as the all-ones vector.
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The result now follows by Theorem 33.

3. Suppose that k < 1+ 1
min{p,1−p} is a positive integer, and let ν ∈ D(p, k). We perform the

following operation on the distribution ν: if i, j ∈ [k], i 6= j are such that PrX∼ν [Xi =
Xj] = 1, we remove coordinates i, j from ν, and repeat until no such pairs remain.

Finally, we are left with a distribution ν̃ on k̃ 6 k coordinates. We consider the
following two cases:

(a) Suppose that k̃ = 0. In this case, for every n ∈ N, and every f : {0, 1}n →
{−1, 1}, it holds that EX∼ν⊗n

[∏k
i=1 f(Xi)

]
= 1, since the k terms in the product

cancel out in pairs. Hence, it suffices to show the existence of a function f :

{0, 1}n → {−1, 1} satisfying
∣∣∣EX∼µ⊗np [f(X) · χS(X)]

∣∣∣ 6 on(1) for every S ⊆ [n].

Note that a (uniformly) random function f : {0, 1}n → {−1, 1} satisfies this with
high probability, by an argument similar to the one at the end of Section 4.2 (a
random function can be thought of as rounding the constant zero function as in
Section 4.2).

(b) Now, suppose that k̃ 6= 0. Then, it holds that ν̃ ∈ D(p, k̃), and by Proposition 25,
we have that ν̃ has no pairwise independent coordinate. Now, by Theorem 24
there exists a constant α > 0, such that for every large n ∈ N, there exists a
function f : {0, 1}n → {−1, 1} such that∣∣∣∣∣∣ E

(X1,...,Xk)∼ν⊗n

∏
i∈[k]

f(Xi)

∣∣∣∣∣∣ =

∣∣∣∣∣∣ E
(X1,...,Xk̃)∼ν̃⊗n

∏
i∈[k̃]

f(Xi)

∣∣∣∣∣∣ > α,

and such that
∣∣∣EX∼µ⊗np [f(X) · χS(X)]

∣∣∣ 6 on(1) for every S ⊆ [n].

6.1 A Corner Case

In the above proof, we leave the case of odd k > 5 and p = 1 − 1
k−1

. This turns out to be
very interesting, and we discuss it next. For the remainder of this section, we fix such a k
and p.

In this case, the pairwise independent distribution ν ∈ D(p, k) constructed in Lemma 28,
is supported on vectors of hamming weights 0 and k − 1 (and does not contain BLR as in
Definition 32). In particular, for every x ∈ supp(ν), it holds that

∑k
i=1 xi = 0 (mod k − 1).

For this reason, as we show next, the best we can expect from the test Lin(ν), is to guarantee
correlation with a character over Z/(k − 1)Z, and this is indeed true.

Definition 30. (Characters over Z/(k − 1)Z) Let ω be a primitive (k − 1)th root of unity.
For every 0 6 r 6 k − 2, we define the function φr : {0, 1} → C as φr(x) = ωrx.

For every n ∈ N, and every integers 0 6 r(1), . . . , r(n) 6 k − 2, we define the product

character φr(1),...,r(n) : {0, 1}n → C by φr(1),...,r(n)(x) =
∏n

j=1 φr(j)(x(j)) = ω
∑n
j=1 r

(j)x(j)

.
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Now, consider the test Lin(ν). Observe that any character f = φr(1),...,r(n) passes this test
with probability 1:

E
X∼ν⊗n

∏
i∈[k]

f(Xi)

 =
n∏
j=1

E
Y∼ν

∏
i∈[k]

φr(j)(Yi)

 =
n∏
j=1

E
Y∼ν

[
ωr

(j)·(
∑
i∈[k] Yi)

]
= 1.

Next, we claim that characters explain the success of Lin(ν) for any function f :

Theorem 31. For every constant ε > 0, there exists a constant δ > 0 such that for every
large enough n ∈ N, the following is true:

Let f : {0, 1}n → [−1, 1] be a function such that
∣∣∣EX∼ν⊗n [∏k

i=1 f(Xi)
]∣∣∣ > ε . Then, there

exist integers 0 6 r(1), . . . , r(n) 6 k − 2, such that∣∣∣∣∣ E
X∼µ⊗np

[
f(X) · φr(1),...,r(n)(X)

]∣∣∣∣∣ > δ.

Proof. The result follows from the work of Bhangale, Khot, Liu and Minzer [BKLM24a,
BKLM24b], and we omit the details. Very roughly speaking, the proof follows a similar
strategy as in Section 7: first show that f has good correlation with a character under
random restrictions; then, use this to show that f has good correlation with character times
a low-degree function; finally, use that ν is pairwise independent to get rid of the low-degree
function.

Finally, we present an alternative solution to deal with this corner case of odd k > 5 and
p = 1− 1

k−1
. Instead of the test Lin(ν), we can perform the following test:

Let f : {0, 1}n → [−1, 1], and let ν ′ ∈ D(1−p, k) = D( 1
k−1

, k) be the pairwise independent
distribution from Lemma 28.

1. Sample X = (X1, . . . , Xk) ∼ ν ′⊗n.

2. Let X ′ be the vector obtained by negating each of the kn coordinates of X.

3. Query f on X ′1, . . . , X
′
k and accept if and only if

∏
i∈[k] f(X ′i) = 1.

Each query X ′i of the above test is distributed according to µ⊗np , and the analysis of the test
simply follows from the analysis for Lin(ν ′) in Theorem 5. The drawback here, though, is
that the test does not accept all linear functions with probability 1, but only functions of
the form (−1)|S| · χS, for S ⊆ [n].

7 Analysis of the Linearity Test

In this section, we shall state and prove a generalized version of Theorem 7. The proof
follows the work of Bhangale, Khot and Minzer [BKM23b], and hence we only give a rough
outline (skipping many of the technical points), pointing out the places where the proof
differs from the above work. We start with the following definition:
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Definition 32. Let k > 3, p ∈ (0, 1), and let ν ∈ D(p, k) be a distribution. We say that ν
contains BLR, if there exists some b̃ ∈ {0, 1} , z̃ ∈ {0, 1}k−3, such that{

(x1, x2, x1 ⊕ x2 ⊕ b̃, z̃) : x1, x2 ∈ {0, 1}
}
⊆ supp(ν) ⊆ {0, 1}k .

Furthermore, for technical reasons, we shall also require that

spanF2
(supp(ν)) =

{
x ∈ {0, 1}k :

k∑
i=1

xi = 0 (mod 2)

}
.

Observe that any ν with full even-weight support contains BLR (with b̃ = 0, and z̃ the
all-zeros vector). With this, we state the following generalization of Theorem 7:

Theorem 33. Let k > 3 be a positive integer, and let p ∈ (0, 1), ε ∈ (0, 1] be constants,
and let ν ∈ D(p, k) be a distribution containing BLR (see Definition 32). Then, there exists
constants δ > 0, d ∈ N (possibly depending on k, p, ε, ν), such that for every large enough
n ∈ N, the following is true:

Let f : {0, 1}n → [−1, 1] be a function such that∣∣∣∣∣ E
(X1,...,Xk)∼ν⊗n

[
k∏
i=1

f(Xi)

]∣∣∣∣∣ > ε .

Then, there exists a set S ⊆ [n], and a polynomial g : {0, 1}n → R of degree at most d and
with 2-norm EX∼µ⊗np [g(X)2] 6 1, such that∣∣∣∣∣ E

X∼µ⊗np
[f(X) · χS(X) · g(X)]

∣∣∣∣∣ > δ.

Moreover, if the distribution ν has some pairwise independent coordinate, then we may
assume g ≡ 1; that is, f correlates with a linear function χS.

The remainder of this section is devoted to the proof of the above theorem. Let k > 3 be
an integer, and let p ∈ (0, 1), ε ∈ (0, 1] be constants, and let ν ∈ D(p, k) be a distribution
containing BLR (see Definition 32). Also, let f : {0, 1}n → [−1, 1] be a function such that∣∣∣∣∣ E

X=(X1,...,Xk)∼ν⊗n

[
k∏
i=1

f(Xi)

]∣∣∣∣∣ > ε . (1)

Step 1: Large Fourier Coefficient under Random Restriction.

We note that the proof of this step is where we differ from [BKM23b].
Since the distribution ν ∈ D(p, k) contains BLR, we can write ν = (1− β) · ν ′+ β · µ, for

some small constant 0 < β < 1
2

min {p, 1− p}, some distribution ν ′ over {0, 1}k, and with

µ the uniform distribution over
{

(x1, x2, x1 ⊕ x2 ⊕ b̃, z̃) : x1, x2 ∈ {0, 1}
}

, where b̃, z̃ are as

in Definition 32. Using this, we can describe choosing X ∼ ν⊗n as the following two step
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process. First choose a set I ⊆ [n], denoted I ∼1−β [n], by choosing i ∈ I with probability
1−β, independently for each i ∈ [n]. Then, choose Z ∼ ν ′⊗I and Y ∼ µĪ , and set X = (Y, Z).

With the above, we can prove that the function f satisfies the property of having a
large fourier coefficient under random restrictions; the reader is referred to [O’D14] for an
introduction to Fourier analysis over the hypercube.

Lemma 34. With δ = ε/2, it holds that

Pr
I∼1−β [n], Z∼ν′⊗I

[
∃S ⊆ [n] \ I :

∣∣∣f̂I→Z1(S)
∣∣∣ > δ

]
> δ.

Here, fI→Z1 refers to the restriction of the function f , with the variables in I set to Z1.

Proof. By Equation 1, we have

ε 6

∣∣∣∣∣ E
X=(X1,...,Xk)∼ν⊗n

[
k∏
i=1

f(Xi)

] ∣∣∣∣∣
=

∣∣∣∣∣ E
I∼1−β [n], Z∼ν′⊗I

E
Y∼µ⊗Ī

[
k∏
i=1

fI→Zi(Yi)

] ∣∣∣∣∣
6 E

I∼1−β [n], Z∼ν′⊗I

∣∣∣∣∣ E
Y∼µ⊗Ī

[
k∏
i=1

fI→Zi(Yi)

] ∣∣∣∣∣
Observe that in the above expression, the random variables Y4, . . . , Yk are constants (deter-
mined by z̃). Now, using a (classical) Fourier analytic argument to analyze the BLR linearity
test over the uniform distribution (see Chapter 1 of [O’D14]), we get

ε 6 E
I∼1−β [n], Z∼ν′⊗I

∣∣∣∣∣ E
Y∼µ⊗Ī

[
3∏
i=1

fI→Zi(Yi)

] ∣∣∣∣∣
= E

I∼1−β [n], Z∼ν′⊗I

∣∣∣∣∣∣
∑
S⊆Ī

f̂I→Z1(S) · f̂I→Z2(S) · f̂I→Z3(S) · (−1)b̃·|S|

∣∣∣∣∣∣
6 E

I∼1−β [n], Z∼ν′⊗I

[
max
S⊆Ī

∣∣∣f̂I→Z1(S)
∣∣∣]

6 Pr
I∼1−β [n], Z∼ν′⊗I

[
∃S ⊆ Ī :

∣∣∣f̂I→Z1(S)
∣∣∣ > ε/2

]
+ ε/2.

Step 2: Direct Product Test

Using Theorem 1.1 in [BKM23b], by Lemma 34 we get the existence of constants d ∈ N, δ′ >
0, a set S ⊆ [n], and a polynomial g : {0, 1}n → R of degree at most d, and with 2-norm

EX∼µ⊗np [g(X)2] 6 1, such that∣∣∣∣∣ E
X∼µ⊗np

[f(X) · χS(X) · g(X)]

∣∣∣∣∣ > δ′.

This proves the first part of Theorem 7. It remains to show that if ν has some pairwise
independent coordinate, it is possible to remove the function g in the above expression.
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Step 3: List Decoding.

This step follows Section 4.2 and Section 4.3 in [BKM23b].
Using an iterative list-decoding process, we can find a constant r ∈ N, and functions

χS1 , . . . , χSr , and constant degree polynomials g1, . . . , gr, such that it is possible to “replace”
f by

∑
i∈[r] χSi · gi in Equation 1 (and lose at most some constant factor in ε). Now, this

implies that for some constant ε′ > 0, and some indices j1, . . . , jk ∈ [r], we have∣∣∣∣∣ E
(X1,...,Xk)∼ν⊗n

[
k∏
i=1

χSji (Xi)gji(Xi)

]∣∣∣∣∣ > ε′. (2)

We remark that for the next step, some extra structure on Sji ’s is needed, and ensuring that
it holds requires the condition on spanF2

(supp(ν)) in Definition 32.

Step 4: Invariance Principle Argument.

This step follows Section 4.4, Section 4.5, and Section 4.6 in [BKM23b].
Assume, for the sake of contradiction, that f is not correlated well with any χS; that

is, EX∼µ⊗np [f(X) · χS(X)] 6 on(1) for each S ⊆ [n]. Using this, it can be shown, roughly,

that for each i ∈ [k], the expectation EX∼µ⊗np
[
χSji (X)gji(X)

]
6 on(1); note that for this

conclusion to hold, we might have to modify Sji ’s and gji ’s, however it is possible to do so
while maintaining Equation 2.

Now, by an invariance principle argument [MOO10, Mos10, Mos20], very roughly, it is
possible to replace the expectation in Equation 2 over (X1, . . . , Xk) ∼ ν⊗n, by an expectation
over (Z1, . . . , Zk) ∼ N (0,Σ)⊗n, where Σ ∈ Rk×k is the (normalized) covariance matrix of
ν. Finally, we use that some coordinate Xi∗ is pairwise independent of each Xi, for i 6= i∗.
Since the Gaussian distribution is determined by its covariance matrix, this implies that Zi∗
is mutually independent of (Zi)i 6=i∗ . We have

ε′ 6

∣∣∣∣∣ E
X=(X1,...,Xk)∼ν⊗n

[
k∏
i=1

χSji (Xi)gji(Xi)

]∣∣∣∣∣
≈

∣∣∣∣∣ E
Z=(Z1,...,Zk)∼N (0,Σ)⊗n

[
k∏
i=1

χSji (Zi)gji(Zi)

]∣∣∣∣∣
≈
∣∣∣∣ E
Zi∗∼N (0,1)⊗n

[
χSji∗ (Zi∗)gji∗ (Zi∗)

]∣∣∣∣ ·
∣∣∣∣∣∣ EZ
 ∏
i∈[k],i 6=i∗

χSji (Zi)gji(Zi)

∣∣∣∣∣∣
≈

∣∣∣∣∣ E
Xi∗∼µ⊗np

[
χSji∗ (Xi∗)gji∗ (Xi∗)

]∣∣∣∣∣ ·
∣∣∣∣∣∣ EZ
 ∏
i∈[k],i 6=i∗

χSji (Zi)gji(Zi)

∣∣∣∣∣∣
6 on(1),

which is a contradiction.
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