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Abstract

We prove that if a degree-d homogeneous polynomial f has border Waring rank WR(f) = r, then its
Waring rank is bounded by

WR(f) ⩽ d · rO(
√
r).

This result significantly improves upon the recent bound WR(f) ⩽ d · 4r established in [Dutta, Gesmundo,
Ikenmeyer, Jindal, and Lysikov, STACS 2024], which itself was an improvement over the earlier bound
WR(f) ⩽ dr.

1 Introduction

Given a circuit class C, its closure, C, is defined as the closure of the set of polynomials computable in
C.Specifically, this includes all polynomials that are limits, in the Zariski topology, of a converging sequence
of polynomials computable in C. Over the complex or real fields, this is equivalent to the coefficient vectors
converging in the usual sense (i.e., with respect to the Euclidean topology). However, this notion also
applies to arbitrary fields and can be defined algebraically.

In this paper, we study the closure of depth-3 powering circuit, denoted by Σ∧Σ. The output of a
Σ[r]∧[d]Σ circuit is a degree-d homogeneous polynomial of the form

f(x) =

r∑
i=1

ℓi(x)
d.

where ℓi are linear forms (i.e., homogeneous linear polynomials).1 The Waring rank of a homogeneous
polynomial of degree d is defined as the minimal r such that f can be computed by a Σ[r]∧[d]Σ circuit. It is
also known as the symmetric tensor rank of f. The border Waring rank of a polynomial f, denoted WR (f), is
the minimal r such that f is in the closure of polynomials of Waring rank at most r.

Alder [Ald84] (see also [BCS97, Appendix 20.6]) showed that WR (f) = r if there exist r linear functions
ℓi ∈ C(ε)[x] such that

f = lim
ε→0

r∑
i=1

ℓdi .

Equivalently, WR (f) = r if there exist a degree-d polynomial g ∈ C[ε][x], an integer q, and linear forms
ℓi ∈ C[ε][x] such that

εqf+ εq+1g =

r∑
i=1

ℓdi .

This alternative definition generalizes to arbitrary characteristic fields.

*This research was co-funded by the European Union by the European Union (ERC, EACTP, 101142020), the Israel Science Founda-
tion (grant number 514/20) and the Len Blavatnik and the Blavatnik Family Foundation. Views and opinions expressed are however
those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Council Executive
Agency. Neither the European Union nor the granting authority can be held responsible for them.

1We can allow representations of the form
∑r

i=1 ci · ℓdi , for scalars ci, but over algebraically closed fields this does not change the
complexity.
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Understanding the relationship between WR (f) and WR (f) is a longstanding open problem. Forbes
[For16] conjectures that Σ∧Σ = Σ∧Σ. In other words, if WR (f) = poly(n,d), then WR (f) is also polynomi-
ally bounded. Ballico and Bernardi [BB17] proposed a stronger conjecture, asserting that taking limits can
save at most a factor of d. Specifically, they conjectured

WR (f) ⩽ (WR (f) − 1) · deg(f).

This conjecture was verified for small values of r (r = 3, 4, and when d ⩾ 9, also for r = 5) [LT10, BB13,
Bal18].

In [DGI+24], Dutta, Gesmundo, Ikenmeyer, Jindal, and Lysikov studied the general case and proved
that if a polynomial f of degree d has WR (f) = r, then

WR (f) ⩽ d · 4r.

We significantly improve upon the upper bound given in [DGI+24].

Theorem 1.1. Let f ∈ C[x]d be a homogeneous polynomial. If WR (f) = r, then

WR (f) ⩽ d · r10
√
r.

For more on debordering, Waring rank, and related problems see [BCC+18, DDS22, DGI+24].

2 Preliminaries

In this section, we introduce some notation and formally define the Waring rank and border Waring rank.
We work over the field C of complex numbers. The space of homogeneous polynomials of degree d in
variables x = (x1, . . . , xn) is denoted by C[x]d. We write f ≃ g for f,g ∈ C(ε)[x] if limε→0 f = limε→0 g (in
particular, both limits must exist).

The projective space PV is defined as the set of lines passing through the origin in V . For each nonzero
v ∈ V , the corresponding line is denoted [v] ∈ PV , where [v] = [w] if and only if v = c · w for some scalar
c ∈ C.

For integers j ⩽ d, we denote

(d)j = j! ·
(
d

j

)
=

j−1∏
i=0

(d− i),

where (d)j represents the falling factorial.

2.1 Facts from [DGI+24]
Definition 2.1 (Waring Rank). Let f ∈ C[x] be a degree-d homogeneous polynomial. The Waring rank of f,
denoted WR (f), is the smallest integer r such that there exist homogeneous linear forms ℓ1, . . . , ℓr satisfying:

f =

r∑
i=1

ℓdi .

Definition 2.2 (Border Waring Rank). The border Waring rank of f, denoted WR (f), is the smallest r such
that f can be expressed as a limit of a sequence of polynomials with Waring rank at most r.

As shown in [Ald84], the next definition is equivalent to Definition 2.2.

Definition 2.3 (Border Waring Rank Decomposition). A border Waring rank decomposition of a degree-d ho-
mogeneous polynomial f ∈ C[x]d is an expression of the form:

f = lim
ε→0

r∑
i=1

ℓdi ,

where ℓ1, . . . , ℓr ∈ C(ε)[x]1 are linear forms with coefficients rationally dependent on ε. The border Waring
rank WR (f) is the smallest number r of summands in such a decomposition.
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A rational family of linear forms ℓ ∈ C(ε)[x]1 always has a well-defined limit when viewed projectively.
Specifically, if ℓ(ε) is expanded as a Laurent series:

ℓ(ε) =

∞∑
i=q

εiℓi, with ℓq ̸= 0,

then:

lim
ε→0

[ℓ(ε)] = lim
ε→0

∞∑
i=q

εiℓq+i = [ℓq]. (1)

A border Waring rank decomposition is called local if, for all summands in the decomposition, this limit
is the same.

Definition 2.4 (Local Decomposition [DGI+24]). Let f ∈ C[ε]d be a degree-d homogeneous polynomial. A
border Waring rank decomposition:

f = lim
ε→0

r∑
i=1

ℓdi

is called a local border decomposition if there exists a linear form ℓ ∈ C[x]1 such that:

lim
ε→0

[ℓi(ε)] = [ℓ] for all i ∈ [r].

The point [ℓ] ∈ PC[x]1 is called the base of the decomposition. A local decomposition is called standard if
ℓ1 = c · εqℓ for some q ∈ Z and c ∈ C.

The number of essential variables of a homogeneous polynomial f is the smallest integer m such that,
after a linear change of coordinates, f can be expressed as a polynomial in m variables. Denote the number
of essential variables of f by N(f).

Lemma 2.5 (Lemma 4 of [DGI+24]). For a homogeneous polynomial f ∈ C[x]d, we have N(f) ⩽ WR (f).

Lemma 2.6 (Lemma 6 of [DGI+24]). If f has a local border decomposition, then it has a standard local border
decomposition with the same base and the same number of summands.

The following lemma can be proved by induction on the degree. It also follows from Corollary 3.2, as
discussed in Remark 3.4.

Lemma 2.7 (Lemma 7 of [DGI+24]). Suppose f ∈ C[x]d has a local border decomposition with r summands based
at [ℓ]. If d ⩾ r− 1, then:

f = ℓd−r+1 · g(x),

where g is a homogeneous polynomial of degree r− 1.

The following lemma shows that when the degree is greater than the rank, the decomposition must be
local (or consist of local decompositions).

Lemma 2.8 (Lemma 10 of [DGI+24]). Let f ∈ C[x]d be such that WR (f) = r. If d ⩾ r − 1, then there exists a
partition r = r1 + · · ·+ rm such that f has a decomposition:

f =

m∑
k=1

ℓd−rk+1
k · gk,

where each ℓd−rk+1
k gk has a local decomposition, with [ℓk] as the base of the decomposition, and:

WR
(
ℓd−rk+1
k · gk

)
⩽ rk.

The following simple lemma is implicit in [DGI+24].
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Lemma 2.9 (Perturbing a Variable by ε). Let f ∈ C[ε][x]. If x1 ≃ g, where g ∈ C(ε)[x], then:

f(x) ≃ f(g, x2, . . . , xn).

Proof. Let f0 = limε→0 f(x), where f0 ∈ C[x]. For some f1 ∈ C[ε][x], we can write f = f0 + εf1. Similarly,
since limε→0 x1 = limε→0 g, we have g = x1 + εg ′ for some g ′ ∈ C[ε][x]. Expanding f0 monomial-wise and
substituting g for x1, it is straightforward to verify that:

f0(g, x2, . . . , xn) = f0(x) + εf2(x),

for some f2 ∈ C[ε][x]. Thus,

f(g, x2, . . . , xn) = f0(g, x2, . . . , xn) + εf1(g, x2, . . . , xn) = f0(x) + εf2(x) + εf1(g, x2, . . . , xn) ≃ f0,

as required.

We will frequently use this lemma to simplify border Waring rank decompositions.

Additionally, if WR (f) = r and f = limε→0
∑r

i=1 ℓ
d
i , where each ℓi(x) ∈ C(ε)[x]1, then for an integer q

such that εq · ℓi(x) ∈ C[ε][x]1 for all i, it holds that

εqdf+ εqd+1g =

r∑
i=1

(εqℓi)
d,

for some g ∈ C[ε][x]d.
Conversely, if for some integer q, polynomial g ∈ C[ε][x]d, and linear functions ℓi(x) ∈ C[ε][x]1, we have

εqf+ εq+1g =

r∑
i=1

ℓdi , (2)

then WR (f) ⩽ r.
From this point onward, we will consider the representation in (2) for polynomials f with WR (f) ⩽ r.

3 Improved debordering

In this section, we provide the proof of Theorem 1.1. The proof begins by describing an ε-perturbed di-
agonalization process. We consider homogeneous polynomials f ∈ C[x]d and assume, without loss of
generality, that N(f) = n ⩽ WR (f) (see Lemma 2.5).

Lemma 3.1 (Perturbed Diagonalization). Let

εqf+ εq+1g =

r∑
i=1

ℓdi

be a decomposition of f, where ℓi(x) ∈ C[ε][x]1. Then, there exist:

• a matrix A = A0 + εA1 ∈ C[ε]r×r, where A0 ∈ Cr×r is invertible,

• integers 0 = q1 ⩽ q2 ⩽ . . . ⩽ qn ⩽ q,

• a permutation π : [r] → [r], and

• linear functions L1, . . . ,Lr,
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such that, for every i ∈ [n] and m ∈ [qn], defining

ki,m = arg max
k∈[i−1]

{qk ⩽ m},

the linear function Li(x) satisfies the following:

Li(x) := ℓπ(i)(Ax) =


∑qi−1

m=0 εm
∑ki,m

k=1 ci,m,kxk + εqixi if i ⩽ n,∑q
m=0 ε

m
∑n

k=1 ci,m,kxk if n < i ⩽ r.
(3)

Furthermore, for some polynomial g̃ ∈ C[ε][x]d, we have

εqf(A0x) + εq+1g̃(x) =

r∑
i=1

Ldi ,

which is a border Waring rank decomposition of f(A0x). Moreover, if the original decomposition of f was local, then
the decomposition of f(A0x) is also local, based at x1.

To better understand this construction, consider the matrix Q representing the Li’s, where Qi,j is the
linear form corresponding to the coefficient of εj in Li. Explicitly:

Qi,j =


∑ki,j

k=1 ci,j,kxk if j < qi,

xi if j = qi,

0 if j > qi.

Thus, the first n rows of the matrix Q are in lower triangular form. Importantly, a variable xk does not
appear in L1, . . . ,Lk−1 and can only appear in columns j ⩾ qk.

Proof of Lemma 2.9. First, observe that we can assume, without loss of generality, that no ℓi contains powers
of ε larger than q. This simplification can be achieved by removing these higher-order terms from ℓi, which
would only modify g without affecting the decomposition.

Let us denote Cj[ℓi] ∈ C[x]1 as the coefficient of εj in ℓi.
In Algorithm 1, we outline the process for constructing the matrix A. The algorithm begins by construct-

ing a basis of linear functions. At each iteration, it identifies the smallest power of ε such that one of the
remaining ℓi has a coefficient at that power which is a linear function linearly independent of all previously
constructed basis elements. This ℓi is then removed from the set, and the identified linear function is added
to the basis. This process repeats until all ℓi are processed.

After this step, each ℓi is associated with a basis element and a corresponding power of ε, representing
the coefficient of that power in ℓi during the iteration. Additionally, the ℓis are re-indexed based on the
order in which they were removed.

Next, an invertible linear transformation is applied to ensure that each basis element corresponds to a
variable. Specifically, under the new indexing, xi becomes the variable associated with the basis element
derived from ℓi. After the transformation, each ℓi takes the form:

ℓi = ℓ̃i(x1, . . . , xi−1) + εqixi + εqi+1ℓ ′i,

where degε(ℓ̃i) < qi. Finally, we adjust xi by adding εℓ ′i, ensuring that:

ℓi = ℓ̃i(x1, . . . , xi−1) + εqixi.
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Algorithm 1 Perturbed Diagonalization
1: Set I0 = [r] and L = ∅.
2: for k = 1 . . .n do
3: Find the smallest power j such that Cj[ℓi] is linearly independent of all elements in L, for some

i ∈ Ik−1.
4: Set qk = j, and let ik be the smallest index i such that Cqk

[ℓi] is linearly independent of all the linear
forms in L.

5: Update Ik = Ik−1 \ {ik} and set π(k) = ik.
6: Define L̃k = Cqk

[ℓik ] and L̃k,ε =
∑q

j=qk+1 ε
j−qkCj[ℓik ].

7: Update L = L ∪ L̃k.
8: end for
9: Complete π to be a permutation on [r].

10: Define A ∈ C[ε]r×r such that for all k ∈ [r], (L̃k + L̃k,ε)(Ax) = xk.
11: Define Lk(x) := ℓπ(k)(Ax).

To verify the correctness of the constructed matrix A, observe that for each k, L̃k,ε|ε=0 = 0, meaning that
L̃k+ L̃k,ε = L̃k+O(ε). By the definition of qk, for every m < qk, Cm[ℓi] ∈ span{L̃j | j < k} for all i ∈ [r]\Ik−1.
Thus, after the variable transformation defined by A, only variables x1, . . . , xk−1 appear in the coefficients
of εm for m < qk. Furthermore, the coefficient of εqk in Lk is precisely xk, ensuring that (3) holds.

Note that A can be written as A = A0 + εA1, where A0 ∈ Cr×r is invertible because L̃k(A0x) = xk.
Consequently, for some polynomial g̃ ∈ C[ε][x]d, we have:

f(Ax) + ε · g(Ax) = f(A0x) + ε · g̃(A0x).

Therefore:

εqf(A0x) + εq+1g̃(A0x) = εqf(Ax) + εq+1g(Ax) =

r∑
i=1

ℓi(Ax)d =

r∑
i=1

Ldi .

The fact that the new decomposition remains local, provided the original decomposition was local, follows
directly from the invertibility of A0.

Corollary 3.2. Let f, Li, and g̃ be as in Lemma 2.9. Then, for every k ∈ [n] and j ∈ [r− 1], it holds that

WR

(
∂jf

∂xjk

)
⩽ r− k.

Proof. By the definition of the Lis, xk does not appear in L1, . . . ,Lk−1 (see (3)). Therefore, using the notation
of Lemma 2.9, we obtain:

εq
∂jf(A0x)

∂xjk
+ εq+1 ∂

jg̃(x)

∂xjk
=

∂j

∂xjk

(
εqf(Ax) + εq+1g(Ax)

)
=

∂j

∂xjk

(
r∑

i=1

Ldi

)
= (d)j ·

r∑
i=k+1

(
∂Li

∂xk

)j

· Ld−j
i .

Since A0 is invertible, it follows that

WR

(
∂jf

∂xjk

)
⩽ r− k.

Remark 3.3. The conclusion of Corollary 3.2 can be strengthened to

WR

(
∂jf

∂xjk

)
⩽ r− k− j+ 1,

as after each derivative, we can re-diagonalize and conclude that each successive derivative, not taken with
respect to x1, reduces the rank further.
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Remark 3.4. We note that Corollary 3.2 implies Lemma 2.7, as it shows that taking a derivative with respect
to any variable other than x1 reduces the Waring rank. Consequently, any monomial can contain at most
r− 1 other variables.

We now give the proof of Theorem 1.1.

Proof of Theorem 1.1. The proof proceeds by induction on r. For 1 < r ⩽ 100, the result of [DGI+24] implies
that WR (f) ⩽ 4r < r10

√
r. Hence, we assume from now on that r ⩾ 100.

Let εqf + εq+1g =
∑r

i=1 ℓ
d
i be a border Waring rank decomposition of f, where ℓi(x) ∈ C[ε][x]1. By ap-

plying Lemma 2.9, we can assume without loss of generality that the ℓis are in diagonal form, as described
in the lemma.

We handle two separate cases. The first is when d ⩾ r− 1, and the second is when d < r− 1.

The case d ⩾ r−1. From Lemma 2.8, there exists a partition r = r1+. . .+rm such that f has a decomposition

f =

m∑
k=1

ℓd−rk+1
k · gk,

where ℓd−rk+1
k gk has a local decomposition, with [ℓk] being the base of the decomposition, and

WR
(
ℓd−rk+1
k · gk

)
⩽ rk.

Since d·
∑m

k=1 r
10
√
rk

k ⩽ d·r10
√
r, it suffices to prove Theorem 1.1 for local decompositions when d ⩾ r−1.

Assume that f has a local border Waring rank decomposition, based in x1, as in the conclusion of
Lemma 2.9.

Let Y = {x1, . . . , x⌊10
√
r⌋} and Z = {x⌊10

√
r⌋+1, . . . , xn}. For convenience, rename the variables in Z as

Z = {z1, . . . , zm} for m = n− ⌊10
√
r⌋. By Lemma 2.7, we have the following representation of f:

f = xd−r+1
1

(
f0(Y) +

m∑
i=1

r−1∑
k=1

zki · gi,k(Y, zi+1, . . . , zm)

)
. (4)

In other words, we first consider monomials involving only the Y variables. Then, each other monomial
contains one or more variables from Z, and we group these monomials according to the minimal i and then
the maximal k such that zki divides them.

Clearly, f0 is a polynomial of degree r− 1 in ⌊10
√
r⌋ variables, and hence its Waring rank satisfies

WR (f0) ⩽

(
⌊10

√
r⌋+ r− 3
r− 2

)
=

(
⌊10

√
r⌋+ r− 3

⌊10
√
r⌋− 1

)
⩽

(
e(r+ ⌊10

√
r⌋− 3)

10
√
r− 1

)⌊10
√
r⌋−1

< (5 · r)5
√
r.

Consequently,
WR

(
xd−r+1

1 · f0
)
< d · (5 · r)5

√
r.

Next, observe that xd−r+1
1 · gi,k can be obtained by taking k derivatives of f with respect to zi, setting

z1 = . . . = zi = 0, and multiplying the result by k!.
From Corollary 3.2, we conclude that WR

(
xd−r+1

1 · gi,k
)
⩽ r− ⌊10

√
r⌋− i, and clearly it is a polynomial

on at most n− i variables. The induction hypothesis implies that

WR
(
xd−r+1

1 · gi,k
)
⩽ d · (r− ⌊10

√
r⌋− i)10

√
r−⌊10

√
r⌋−i.

Hence,
WR

(
xd−r+1

1 · zki · gi,k
)
⩽ r · d · (r− ⌊10

√
r⌋− i)10

√
r−⌊10

√
r⌋−i.
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It follows that

WR (f) < d · (5 · r)5
√
r + d ·

m∑
i=1

r−1∑
k=1

r · (r− ⌊10
√
r⌋− i)10

√
r−⌊10

√
r⌋−i

< d · (5 · r)5
√
r + d · r2 ·

m∑
i=1

(r− ⌊10
√
r⌋− i)10

√
r−⌊10

√
r⌋−i

< d · (5 · r)5
√
r + d · r3 · r10(

√
r−5)

< d · r10
√
r.

The case d < r − 1. Assume that f has a border Waring rank decomposition as in the conclusion of
Lemma 2.9. As before, set Y = {x1, . . . , x⌊10

√
r⌋} and Z = {x⌊10

√
r⌋+1, . . . , xn}, and rename the variables in Z as

Z = {z1, . . . , zm} for m = n− ⌊10
√
r⌋. Using the same reasoning as before, we conclude that

WR (f) < d · (5 · r)5
√
r + d · r ·

m∑
i=1

r−1∑
k=1

(r− ⌊10
√
r⌋− i)10

√
r−⌊10

√
r⌋−i

< d · r10
√
r.
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