
Reconstruction of Depth 3 Arithmetic Circuits with Top Fan-in 3

Shubhangi Saraf∗ Devansh Shringi†

February 9, 2025

Abstract

In this paper, we give the first subexponential (and in fact quasi-polynomial time) recon-
struction algorithm for depth 3 circuits of top fan-in 3 (ΣΠΣ(3) circuits) over the fields R and
C. Concretely, we show that given blackbox access to an n-variate polynomial f computed by
a ΣΠΣ(3) circuit of size s, there is a randomized algorithm that runs in time quasi-poly(n, s)
and outputs a generalized ΣΠΣ(3) circuit computing f . The size s includes the bit complexity
of coefficients appearing in the circuit.

Depth 3 circuits of constant fan-in (ΣΠΣ(k) circuits) and closely related models have been ex-
tensively studied in the context of polynomial identity testing (PIT). The study of PIT for these
models led to an understanding of the structure of identically zero ΣΠΣ(3) circuits and ΣΠΣ(k)
circuits using some very elegant connections to discrete geometry, specifically the Sylvester-
Gallai Theorem, and colorful and high dimensional variants of them. Despite a lot of progress
on PIT for ΣΠΣ(k) circuits and more recently on PIT for depth 4 circuits of bounded top
and bottom fan-in, reconstruction algorithms for ΣΠΣ(k) circuits has proven to be extremely
challenging.

In this paper, we build upon the structural results for identically zero ΣΠΣ(3) circuits that
bound their rank, and prove stronger structural properties of ΣΠΣ(3) circuits (again using
connections to discrete geometry). One such result is a bound on the number of codimension 3
subspaces on which a polynomial computed by an ΣΠΣ(3) circuit can vanish on. Armed with
the new structural results, we provide the first reconstruction algorithms for ΣΠΣ(3) circuits
over R and C.

Our work extends the work of [Sinha, CCC 2016] who provided a reconstruction algorithm
for ΣΠΣ(2) circuits over R and C as well as the works of [Shpilka, STOC 2007] who provided a
reconstruction algorithms for ΣΠΣ(2) circuits in the setting of small finite fields, and [Karnin-
Shpilka, CCC 2009] who provided reconstruction algorithms for ΣΠΣ(k) circuits in the setting
of small finite fields.

∗Department of Mathematics & Department of Computer Science, University of Toronto, Toronto,
Canada. Research partially supported by an NSERC Discovery Grant and a McLean Award. Email:
shubhangi.saraf@utoronto.ca

†Department of Computer Science, University of Toronto, Toronto, Canada. Email: devansh@cs.toronto.edu

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 8 (2025)



1 Introduction
Arithmetic circuits are directed acyclic graphs (DAGs) that compute multivariate polynomials in a
compact form, constructing these polynomials from variables using addition (+) and multiplication
(×) operations.

Reconstruction of arithmetic circuits is the following problem: given black-box or oracle access
to a polynomial computed by a circuit C of size s from a certain class of circuits C, design an
efficient algorithm (either deterministic or randomized) to recover a circuit that computes the same
polynomial as C. This question is the algebraic equivalent of exact learning in Boolean circuit
complexity [Ang88]. If it is additionally required that the output circuit belongs to the same class
C as the input circuit, this process is referred to as proper learning.

Reconstruction of arithmetic circuits is a fundamental and challenging problem. In recent years,
there has been a flurry of works on developing reconstruction algorithms for various interesting
subclasses of arithmetic circuits [BBB+00, KS01, KS06, FS12].

Thanks to the depth reduction results from [AV08, Koi10, Tav13, GKKS13], we now know that
even depth-3 and depth-4 circuits are quite expressive. Thus, efficient reconstruction algorithms
even for depth three circuits would have significant implications for more general circuit models.
Perhaps not surprisingly, we are quite far from achieving efficient reconstruction algorithms for
general depth-3 circuits. However, in recent years there have been several works developing recon-
struction algorithms for restricted yet interesting subclasses of depth 3 (ΣΠΣ) and depth 4 (ΣΠΣΠ)
circuits [Shp07, KS09a, Sin16b, Sin22, BSV21, PSV24, BS24, GKL12, BSV20].

A closely related problem is that of blackbox polynomial identity testing (PIT) which asks for
the following. Given blackbox access to a polynomial f computed by some circuit C of size s from
some class C, the goal is to decide if f is identically zero. In other words, the goal is to compute
an explicit hitting set for the class C1.

It is easy to see that obtaining deterministic reconstruction algorithms for a class of circuits C
is at least as hard is derandomizing black-box PIT for C. Even randomized reconstruction almost
always requires some deep understanding of the structure of the underlying circuit class and in
almost every case we know, it seems harder than derandomizing PIT for that class. Indeed for
most circuits classes that have been studied, efficient PIT algorithms have been a precursor to
understanding reconstruction algorithms for that class. Since reconstruction for depth 3 circuits of
constant top fan-in (ΣΠΣ(k) circuits) is the main focus of this paper, we first give some context by
describing what is know about PIT for this class.

PIT for ΣΠΣ(k) circuits The recent breakthrough work of [LST22] gives the first subexponen-
tial deterministic blackbox PIT for ΣΠΣ (and in fact any constant depth) circuits. If we want truly
polynomial time blackbox derandomization, then we only know how do this for restricted classes of
depth 3 circuits. When the the top fan-in of the output sum gate is a constant k, then this class is
referred to as the class of ΣΠΣ(k) circuits. ΣΠΣ(k) circuits have received a great deal of attention in
the context of blackbox PIT, and there has been a large body of beautiful works eventually showing
polynomial time blackbox PIT algorithms for ΣΠΣ(k) circuits [DS05, KS08, KS09b, SS13, SS11].
A running theme through several of these works is to show that identically zero ΣΠΣ(k) circuits
have some very interesting structure; they must be low rank. Along the way some very elegant
connections to discrete geometry, specifically the Sylvester-Gallai Theorem, and colorful and high
dimensional variants of them were developed and used. In the last few years, there have been
several exciting works trying obtaining similar results for interesting subclasses of depth-4 circuits,

1With randomness, this problem is easy using the Schwartz-Zippel Lemma [Sch80, Zip79]

2



in particular for ΣkΠΣΠr which are depth 4 circuits with bounded top and bottom fan-in. A
sequence of results [Shp19, PS22a, PS21, PS22b, GOS22] developed a beautiful theory of Sylvester-
Gallai type configurations for quadratic polynomials and was able to obtain a polynomial time
deterministic PIT result for Σ3ΠΣΠ2 (think of ΣΠΣ(3) circuits but with product of quadratics
computed at the second layer of gates instead of a product of linear forms). Extending this to
larger k and r is a very interesting direction and partial results in this direction have been obtained
in [OS22, GOPS23, OS24]. Using completely different techniques, a remarkable work by [DDS21]
gives quasipolynomial blackbox PIT for ΣkΠΣΠr circuits for any constants k and r.

Reconstruction for ΣΠΣ(k) circuits Despite all this progress for PIT, far less is known for
reconstruction of ΣΠΣ(k) circuits even when the algorithms are allowed to be randomized.

For now let us assume the underlying field has characteristic 0. In particular let us assume the
coefficients lie in R or C. Without additional restrictions like multilinearity and set-multilinearity,
we essentially only how to do efficient reconstruction of ΣΠΣ(k) circuits over infinite fields like R and
C when k = 2 [Sin16b]! The result in [Sin16b] gives a randomized poly(n, d) time reconstruction
algorithm for n variate, degree d polynomials represented by a ΣΠΣ(2) circuit over R or C.

Note that when k = 2, then derandomizing PIT is easy, and it only starts becoming challenging
once k ≥ 3. However reconstruction is much more challenging and despite all the progress on the
PIT front, it took a really long time to get efficient reconstruction for ΣΠΣ(2) circuits. The proof
in [Sin16b] is quite sophisticated and uses some really beautiful connections to discrete geometry,
in particular to the robust Sylvester-Gallai theorems (inspired by the theory developed for PIT of
ΣΠΣ(k) circuits). Thus even for the seemingly simple case of k = 2, reconstruction can be fairly
complex. Already when k = 3, the techniques of the above work break down and nothing nontrivial
was known for reconstructing ΣΠΣ(3) circuits over R or C.

In the setting of finite fields, there are some additional very interesting results for reconstruction
of ΣΠΣ(k) circuits. Over small (only polynomially large) finite fields, the first (and very nontrivial)
reconstruction algorithm for ΣΠΣ(2) circuits was given in [Shp07]. This algorithm run time has
a quasipolynomial dependence on |F| (it crucially needs to iterate over all field constants) and
is therefore only efficient for small fields. This work was extended to ΣΠΣ(k) circuits for any
constant k in [KS09a], but again it is only efficient for small finite fields due to the quasipolynomial
dependence on |F|. When the input is an n-variate, degree d polynomial computed by a size s circuit,
both the above algorithms run in quasi-poly(n, d, |F|, s) time. In the setting of k = 2, only very
recently it was shown in [Sin22] that there is a polynomial time reconstruction algorithms with a run
time that has a polynomial dependence on log |F|. In the further restricted setting where we have
additional constraints of multilinearity or set-multilinearity2, there has been a large body of work
on reconstruction algorithms for ΣΠΣ(k) circuits [BBB+00, Shp07, KS09a, BSV21, PSV24, BS24].

Thus to summarize, over large fields, or infinite fields such as R or C, we knew no nontrivial
reconstruction algorithms for general ΣΠΣ(k) circuits even for k = 3. The main result of this paper
is to give the first efficient reconstruction algorithm for ΣΠΣ(3) circuits over infinite fields such as
R and C.

Our result (informal): Given blackbox access to an n-variate degree d polynomial f over R
or C, computed by a ΣΠΣ(3) circuit, there is a randomized quasi-poly(n, d, s) time reconstruction
algorithm for f, where s is the maximum bit complexity of any constant appearing in the circuit

Before we state our results more formally, we first introduce some definitions and notions related
2This setting captures tensor reconstruction for constant rank tensors

3



to ΣΠΣ(k) circuits.

Some definitions related to ΣΠΣ(k) circuits: The model of depth-3 arithmetic circuits with
top fan-in k, which we refer as ΣΠΣ(k) circuits, has three layers of alternating Σ and Π gates and
computes a polynomial of the form

C(x̄) =
k∑

i=1
Ti(x̄) =

k∑
i=1

di∏
j=1

lij(x̄)

where the lij(x̄)-s are linear polynomials.
We will in fact assume that the circuits are homogeneous and all the di’s are actually the same.

This is because for the purpose of reconstruction and PIT, one can easily reduce to the homogeneous
setting (see discussion in Lemma 3.1).

We say that the circuit is simple if gcd{Ti|i ∈ [k]} = 1 and minimal if for all proper subsets
S ⊂ [k], ∑i∈S Ti ̸= 0. We define gcd(C) = gcd(T1, . . . , Tk). The simplification of C, denoted by
sim(C), is defined as C/ gcd(C). We define the rank of a circuit (rank(C)) as the dimension of the
space spanned by all the linear forms in the circuit dim(span({li,j : i ∈ [k], j ∈ [di]})). We will
often be concerned with rank(sim(C)).

A generalized depth 3 circuit ΣΠΣ(k, d, r) is of the form

C =
k∑

i=1

 di∏
j=1

lij · hi(li1, . . . , lir)


where lij ,lik are linear forms in F[x1, . . . , xn] and d = maxi(di + deg(hi)). Notice that when r is

small (say constant or O(log d), the representation looks like a ΣΠΣ(k) circuit where every product
gate is further multiplied by a polynomial in few (r) linear forms.

Our techniques: Rank bounds and connections to discrete geometry As mentioned
previously, several of the blackbox PIT results for ΣΠΣ(k) circuits and related models follows from
some insight into the structure of identically zero ΣΠΣ(k) circuits. One such remarkable structural
result which is also a central ingredient in our proof is that identically zero simple and minimal
ΣΠΣ(k) circuits over R or C must be of only constant rank [KS09b, SS11, SS13]. In particular, if
a simple and minimal ΣΠΣ(3) circuit computes the identically zero polynomial, then the set of all
linear forms appearing at any gates in the circuit can only span a constant dimensional space.

In this paper, we develop a deeper understanding of some structural properties of ΣΠΣ(3)
circuits. Since we need to learn the linear forms in a given underlying ΣΠΣ(3) circuit (not just
determine whether the polynomial is zero or nonzero), thus we need also to understand and develop
structural properties of non-zero ΣΠΣ(3) circuits. One example of such a structural result we show
is that if a polynomial f is computed by an ΣΠΣ(3) circuit (which has some mild non-degeneracy
property) then the number of codimension 3 subspaces on which it can vanish is polynomially
bounded (see Lemma 4.4).

1.1 Our Results

In this paper, we give the first subexponential time (and in fact quasipolynomial time) algorithm
for reconstructing ΣΠΣ(3) circuits over R and C. When the three multiplication gates in our circuit
are sufficiently distant, i.e. when ∀i, j ∈ [3], i ̸= j, rank(sim(Ti + Tj)) ≥ c log d for some absolute
constant c, then our algorithm does “proper learning”, i.e. its output is the unique ΣΠΣ(3) circuit

4



computing f . If this distance property does not hold, then our algorithm outputs a generalized
depth 3 circuit of top fan-in at most 2 with parameters ΣΠΣ(2, d, c log d). We state our main
theorem below. The running time in the statement is suppressing a poly(s) dependence on the
max bit complexity s of any constant appearing in the circuit C.
Theorem 1.1. Let F be a field that is R or C. Let f ∈ F[x1, . . . , xn] be a degree d polynomial
computed by ΣΠΣ(3) circuit of the form C = T1 + T2 + T3. There exist an absolute constant c > 0
such that the following holds. There is a randomized algorithm that runs in (nd)O(log d) time, makes
blackbox queries to f , and with probability 1− o(1) does the following:

1. If ∀i, j ∈ [3], i ̸= j, rank(sim(Ti + Tj)) ≥ c log d then it outputs a ΣΠΣ(3) circuit computing f .

2. If ∃i, j ∈ [3], i ̸= j, such that rank(sim(Ti + Tj)) < c log d then it outputs a ΣΠΣ(2, d, c log d)
generalized depth 3 circuit computing f .

Remark 1.2 (Dependence on bit complexity). If s is the maximum bit complexity of any coefficient
appearing in C, then our algorithm run time also depends polynomially on s. In the statement of
the above theorem and later in the paper, we have suppressed the poly(s) dependence in the running
time for clarity of exposition.
Remark 1.3 (Proper vs improper learning). Note that our algorithm is a proper learning algorithm
only when every pair of multiplication gates had enough “distance”. Otherwise, the output came
from the model of generalized depth 3 circuits. All prior works on reconstruction of ΣΠΣ(2) circuits
and ΣΠΣ(k) circuits ( [Shp07, KS09a, Sin16b, Sin22]) also had a similar kind of output.

We discuss the open problems in Section 8.

1.2 Other related works

As the case of general ΣΠΣ(k) is considered hard, several restrictions of the model have been consid-
ered for reconstruction. Some well-studied models are powering depth-3 circuits Σ∧Σ(k), multilinear
ΣΠΣ(k), and set-multilinear ΣΠΣ(k) circuits. The restrictions of powering circuits Σ∧Σ(k) and
set-multilinear ΣΠΣ(k) have received special attention due to their connections with finding sym-
metric tensor decomposition and tensor decomposition problems [BBB+00, Shp07, KS09a, BSV21,
PSV24, BS24].

For the model of depth 2 circuits, ΣΠ, the problem of reconstruction is equivalent to sparse
multivariate interpolation for which we have a polynomial time algorithm in [BOT88]. The work
of [BSV20] studied multilinear depth-4 circuits with bounded top fan-in (ΣΠΣΠ(k) circuits), and
gave deterministic reconstruction algorithms which ran in poly(n, d, |F|) time. The running time
is however still at least poly(|F|), and hence it does not work over large/infinite fields. Note
that when the top fan-in is 2, i.e. for ΣΠΣΠ(2) circuits, we do know such efficient polynomial-
time reconstruction algorithms by the work of [GKL12]. Read-once oblivious branching programs
(ROABPs) are another model that have been well studied in the context of reconstruction. In
[KS06], the authors presented a randomized reconstruction (proper learning) algorithm for ran
in time poly(n, d, s). This was derandomized in [FS12], giving a deterministic quasi-poly(n, d, s)
reconstruction algorithm.

Recently, there have also been several works studying average case learning algorithms for
arithmetic circuits. In [KS19], the authors give a poly(n, d, k) time reconstruction algorithm for
non-degenerate homogeneous depth three circuits ΣΠΣ(k) circuits. A poly(n, d, s) learning algo-
rithm for generalized depth three circuits in the non-degenerate case is presented in [BGKS22].
Reconstruction algorithms for other constant depth circuits in the non-degenerate case have also
been obtained in [GKL11, GKQ14, KNST17, KNS19, GKS20].

5



2 Proof Overview
Let f be a polynomial that has a ΣΠΣ(3) representation and let

C = T1 + T2 + T3

be a ΣΠΣ(3) circuit computing f . Thus each Ti is a product of linear forms, and as we describe in the
preliminaries, with some simple preprocessing, we can assume that the circuit and all gates within
it are homogeneous (see Lemma 3.1). In general, the gates Ti might have nontrivial gcd, which has
to be dealt with, but for the purpose of the proof overview, let us assume that gcd(T1, T2, T3) = 1.
Note that we cannot easily reduce to the case of gcd(T1, T2, T3) = 1 by factoring and dividing out
the linear factors since there might be linear factors which do not divide the gcd, and division by
those factors might not preserve the property of the polynomial being representable by a ΣΠΣ(3)
circuit.

In order to reconstruct the circuit C, we need to somehow try and learn the linear forms
appearing in C. What we have is (randomized) access to a blackbox computing f .

Notice that if l1 is a linear form dividing T1, l2 is a linear form dividing T2 and l3 is a linear
form dividing T3 then if we go modulo l1, l2 and l3, then the polynomial f vanishes identically. In
other words, for any input where l1, l2 and l3 evaluate to 0, f evaluates to 0 as well.

Let S3(f) to be the set of all codimension 3 subspaces of Fn over which f vanishes. Then if we
could somehow “learn” all the spaces in this set, then one of them would correspond to V(l1, l2, l3)
i.e. the codimension 3 space where l1, l2, l3 vanish (or evaluate to 0). Thus, a starting challenge for
us is to show that the set S3(f) can be learned. It turns out that the set can be infinite. Suppose
V(l, l′) is some codimension 2 space on which f vanishes. Then any codimension 3 space contained
within V(l, l′) will also be a space on which f vanishes and hence be contained in S3(f). This makes
the set unwieldy to deal with and hence we modify the definition.

Let S3(f) to be the set of all codimension 3 subspaces of Fn over which f vanishes, such that it
is not contained within any codimension 1 or 2 space on which f vanishes. One of our significant
structural results is to show that other than in certain degenerate settings, S3(f) is finite and in
fact has at most poly(d) distinct elements. This is indeed the first major ingredient of our proof and
we prove this in Section 4. We also show that S2(f), which is defined similarly with codimension
2 spaces, is finite, and has at most poly(d) distinct elements. This is the starting point of our
analysis.

Once we prove that S3(f) and S2(f) are finite and polynomially bounded (other than in degen-
erate settings), the next thing we show is how to actually compute S3(f) and S2(f). Once we have
these sets, we then use them to learn the linear forms appearing in C.

Our reconstruction algorithm for ΣΠΣ(3) circuits over R or C (and proof of correctness of the
algorithm) follows from the following broad outline

1. Obtain an upper bound on the number of a codimension 2 subspaces (S2(f)) and codimension
3 subspaces (S3(f)) on which f vanishes (other than in some degenerate settings). This is
shown in Section 4.

2. Algorithmically compute S2(f) and S3(f). This is shown in Section 5. At a high level, we
consider projections of the circuit to constantly many variables, compute S2 and S3 for the
constant variate polynomials by solving a suitable system of polynomial equations for each
projection, and then “glue” or “lift” the solutions to a global solution over the entire original
space. The ideas are inspired by the algorithms in [Sin22]. However there are some additional
nontrivial challenges that arise in our setting.

6



3. Use S2(f) and S3(f) to form a list of linear forms (which we call Lcand) such that several of
these linear forms actually divide one of the gates of the circuit. We will do this in settings
where S2(f) and S3(f) can be computed as well as in the degenerate cases where they cannot,
and for this we will use the structure of the degeneracy. This is shown in Section 6 and is the
most technically complex part of the proof.

4. Reconstruct the entirety of the circuit using the few linear forms learned in the previous
part. This is achieved by going modulo the linear forms and learning the projected circuit
of top fan-in at most 2, and then gluing the projections to recover the original circuit. This
part uses several ideas from the reconstruction algorithms of Shpilka [Shp07] and Karnin-
Shpilka [KS09a].

We will discuss each of the four parts in some more detail in the following subsections below.

2.1 Overview: Upper bounding the size of S2(f) and S3(f)
For S1(f), which is defined to be the number of codimension 1 spaces over which f vanishes,
bounding its size is easy since, each member of S1(f) corresponds to a linear factor of f , and there
can be at most d of those.

We now give a flavor of what goes into bounding S2(f). We will only be able to bound S2(f)
when the circuit C = T1 + T2 + T3 is such that rank(sim(C)) > c2 for some absolutely constant c2
which depends on the rank bound for identically zero ΣΠΣ(3) circuits.

By assumption, let rank(sim(C)) > c2. For any V(l, l′) which is an S2(f) space, let C ′ = C
mod ⟨l1, l2⟩. The C ′ computes a polynomial that is identically zero. Thus by rank bounds for
identically zero ΣΠΣ(3) circuits (see Theorem 3.4), it holds that rank(sim(C ′)) < R(3) which is an
absolute constant much smaller than c2. Suppose we are only trying to bound the number of those
V(l, l′) ∈ S2(f) over which none of the individual Ti vanish (the other case is not so hard to bound)
then the fact that rank(sim(C mod ⟨l1, l2⟩)) is much smaller than rank(sim(C)) means that many
triples of linear forms coming from distinct gates must “collapse” and become identical when we go
mod ⟨l, l′⟩. Thus they will no longer contribute to the rank of sim(C ′) as they will be in the gcd.
(If there is no movement to the gcd, then the overall rank can reduce by at most two). Now if l1
which divides T1, l2 which divides T2 and l3 which divides T3 are three linearly independent linear
forms that become identical mod ⟨l, l′⟩ then it must hold that span(l, l′) ⊆ span(l1, l2, l3). Suppose
this happens for another triple l′1, l′2, l′3 which is linearly independent and such that span(l1, l2, l3) is
distinct from span(l′1, l′2, l′3). Then, since span(l, l′) must belong to the spans of both triples, it must
hold that span(l, l′) is in fact equal to span(l1, l2, l3) ∩ span(l′1, l′2, l′3). Thus l1, l2, l3, l′1, l′2, l′3 jointly
determine span(l, l′) and hence, given the circuit C, there are only O(d6) choices for span(l, l′).

Note that we haven’t covered all cases. It could be that the triples which collapse and move
to the gcd are not linearly independent and they only span 2-dimensional spaces. This case needs
to be handled separately. Also the case where one of the gates (say T1) identically vanishes over
V(l, l′) has to be dealt with. In each of these cases we are able to bound the number of such spaces
in S2(f) and thus we get a polynomial bound on |S2(f)|.

Bounding |S3(f)| is significantly more challenging, and the analysis breaks down into a larger
number of cases. Also, we are not able to bound the size of S3(f) whenever rank(sim(C)) is large,
unlike the bounding of |S2(f)|. Notice that even if rank(sim(C)) is large, there could exists a
linear form l such that rank(sim(C mod l)) is quite small. In this case perhaps f mod l which is
computed by C mod l can vanish on a large (maybe infinite) set of codimension 2 spaces. Then
along with l, this will give us a large (possibly unbounded) set of codimension 3 spaces that f
vanishes on in S3(f). Thus we are only able to bound S3(f) when we have the added condition

7



that there is no linear form l such that rank(sim(C mod l)) is small. This is the non-degeneracy
condition that we alluded to earlier.

For circuits C that start off with rank(sim(C)) being large but such that there exists a linear
form l such that rank(sim(C mod l)) is small, we call these circuits “special form” circuits (see
Definition 10). We are unable to bound the number of S3 spaces for polynomials computed by such
circuits, but nevertheless, we show that such circuits have other additional nice properties that we
will eventually exploit to learn them.

Comparison to [Sin22] In [Sin22], the authors develop a similar structural result where they
bound the number of codimension 2 vanishing spaces for the non-linear part for a ΣΠΣ(2) circuit.
The structure of ΣΠΣ(2) circuits is simpler. Note for instance that derandomizing PIT for ΣΠΣ(2)
circuits is trivial whereas derandomizing PIT for ΣΠΣ(3) circuits is more challenging and is closely
related to the rank bound. Indeed (unlike in [Sin22]) we need to crucially use the rank bound to
bound vanishing spaces, and the analysis is more intricate.

2.2 Overview: Algorithmically computing S2(f) and S3(f)
We will only show how to compute S2(f) and S3(f) in the settings where we have proved that their
size is polynomially bounded.

Our high level strategy is inspired by the algorithms in [Sin22]. However there are some addi-
tional nontrivial challenges that arise in our setting.

For the purpose of the proof overview, we focus on the case of computing S3(f), and assume
that we know how to compute S2(f).

Constant variate case: We first show that if the underlying polynomial is constant variate,
then this can be done. We do this by setting up a suitable system of polynomial equations. Setting
up equations to find all l1, l2, l3 (the variables are the coefficients of the monomials in l1, l2, l3)
such that f vanishes over the codimension 3 space V(l1, l2, l3) is fairly straightforward. However
this might have infinitely many solutions unless we ensure that V(l1, l2, l3) does not lie within any
codimension 2 space on which f vanishes. For this we first compute S1(f) and S2(f) and for
each element in these sets we will require that some certain matrix has large rank. By introducing
additional variables (just constantly many) we show how to capture these “large rank” constraints as
well using polynomial equations. Thus overall we have polynomially many equations of polynomial
degree, but in only constantly many variables. This can be solved (over R or C) to recover all
solutions.

Large variate case: In case f is over a large number of variables, we consider several distinct
projections of f to the constant variate case. We learn the S3 spaces for each of the projections
and then glue them together to recover the S3 spaces for f . Before performing the projections,
we first apply a random linear invertible transformation to the variables of f to ensure that the
projection has nice properties (such as being able to apply Hilbert irreducibility). For our proof to
go through, we will require that the projections of f do not contain new linear factors (which would
correspond to new S1 spaces not arising from projections of original S1 spaces) and this is easy
to obtain using Hilbert irreducibility. However, crucially we will also require that the projections
don’t generate new S2 spaces. This is important since if new S2 spaces were generated, then
potentially one could lose out on S3 spaces when we take a projection (since we are not able to
learn codimension 3 spaces contained within an S2 space). Proving that new S2 spaces (i.e. not
just the ones that are projections of S2 spaces of f) are not generated does not follow immediately

8



from Hilbert irreducibility, and indeed we are not able to prove this fact for general polynomials
(though perhaps it might be true in general as well). Our proof crucially use the fact that f can
be represented as a high rank ΣΠΣ(3) circuit. Indeed a crucial ingredient in our proof (of the fact
that no new S2 spaces are generated in the projections) is the upper bound on the number of S3
spaces of f .

Once we can prove that no new S2 spaces are generated in the projections, then it is not hard
to show that every space in S3(f) gets projected to a distinct space in S3(gi) for each projected
polynomial gi. Now gi for each i is a constant variate polynomial and we can show that S3(gi) can
be computed. Given the structure of how gi are chosen, it is then not hard to see that the spaces
in S3(gi) can be stitched across the different choices of gi to recover S3(f).

Comparison to [Sin22] A similar algorithm (Algorithm 7) appeared in [Sin22] for computing
the set of codimension 2 vanishing spaces for ΣΠΣ(2) circuits. Our algorithm for learning the set of
codimension 3 vanishing spaces is inspired by this work, but there is one crucial difficulty/difference.
In [Sin22], when S2(f) is being learnt, one needs to discard those vanishing spaces that are contained
in an S1 space. This can be easily achieved by just dividing out the linear factors. This process
needs to be modified when learning S3(f) since there is no way of just “factoring out" the spaces
in S2(f). Instead, we have to set up a modified system of polynomial equations that handles this.
We also need to prove a structural result that ensures that after projecting the large variate case to
the constant variate case, the bounds on the number of S3 spaces still holds (no linear form exists
modulo which the rank of the simple part drops below c2), and no new S2 spaces are generated.
These issues did not arise in [Sin22].

2.3 Overview: Using S2(f) and S3(f) to learn some linear forms appearing in C

Recall, f is a polynomial that has a ΣΠΣ(3) representation and let

C = T1 + T2 + T3

be the ΣΠΣ(3) circuit computing f . Each Ti is product of linear forms and for now we are assuming
that gcd(T1, T2, T3) = 1. We will show that we are able to learn Ω(log d) independent linear forms
from one of the gates in C.

If l1 is a linear form dividing T1, l2 is a linear form dividing T2 and l3 is a linear form dividing
T3 such that dim(span(l1, l2, l3)) = 3, then V(l1, l2, l3) will belong to S3(f) unless it is contained
within some space in S2(f) or is some space in S1(f). In such a case, we will say V(l1, l2, l3) got
“blocked” by an S1 or S2 space and hence did not get learned.

Now suppose that V(l1, l2, l3) did not get blocked and hence lies in S3(f). Thus we can use
S3(f) to learn span(l1, l2, l3). Suppose there exists l′3 dividing T3 such that V(l1, l2, l′3) is some other
distinct space in S3(f). Thus we can also learn span(l1, l2, l′3). The intersection of these two spaces
allows us to learn span(l1, l2). Just like we managed to learn span(l1, l2), if we could also somehow
learn span(l1, l′2) for some other linear form l′2 dividing T2, then we could take the intersection of
span(l1, l2) and span(l1, l′2) to learn l1 and hence learn one of the linear forms appearing in C !

Thus intersections of kernels of spaces in S3(f) can be useful in learning linear forms in C.
Can this strategy always be carried out to learn linear forms? Or could it be that we cannot learn
any linear forms because S3(f) is empty, since every codimension 3 space on which f vanishes got
blocked by a space in S1(f) or S2(f)?

It turns out that this part proved to be surprisingly challenging to show and is the technically
most difficult and intricate part of the paper. Indeed we are not able to show that intersections of

9



spaces in S3(f) will suffice in learning linear forms. However, we do show that in most interesting
cases, either intersections of kernels of S3 spaces, or intersections of kernels of S2 spaces will suffice.
When these do not suffice, then we show that the underlying circuit has some other nice structure
which can be exploited to learn the linear forms. We first prove some useful structural properties
of S1(f) and S2(f).

In the rest of the proof overview, we will just try to give some high level ideas of the kinds of
structural results we need to prove, and some of the algorithmic ideas that go into the reconstruc-
tion. It will be a considerable simplification of all the actual cases we need to consider and their
analyses.

S1(f) is essentially low dimensional: S1(f) is in correspondence with the linear factors of
f . The linear factors could either divide gcd(T1 + T2 + T3) (which we assume is 1 for the proof
overview) or it could divide sim(T1 + T2 + T3). We show that the set of linear factors dividing
sim(T1 + T2 + T3) can span dimension at most O(log d). This uses lower bounds for 2-query locally
decodable codes (similar such bounds also appeared in [DS05, Shp07, KS09a]). See Lemma 6.4 for
the precise statement.

Understanding the structure of S2(f): If we could show that linear forms defining the kernels
of spaces in S2(f) are also low dimensional then that would be very convenient, since then if the
gates in the circuit start off having many high rank linear forms, it would show that many of the
spaces in S3(f) remain unblocked, and then we can use them to learn linear forms.

However, this turns out to be not true and this causes the proof to become quite a bit more
involved. Though we are not able to bound the dimension of S2(f) as a whole, we still manage to
prove some structural results that suffice for our purpose.

Consider any V(l, l′) ∈ S2(f). Thus when we consider f modulo l and l′, it is identically zero.
There are two ways this can happen. Either each of the Ti’s vanishes modulo l and l′ (in other
words, each Ti has a linear form dividing it that is in the span of l and l′) or the Ti’s don’t all
individually vanish, but still their sum vanishes.

We would like to partition the set S2(f) based on the above two possibilities. We say V(l, l′) ∈
S2(f) is in Ssp

2 (f) if each Ti has a linear factor lying in span(l, l′) and we say it is in Sreg
2 (f)

otherwise. (We are cheating a bit here - our actual definitions of these two sets is a bit more subtle,
but for intuition, this is good enough. In reality the set Sreg

2 (f) is a bit larger. It could be that
each Ti has a linear form in span(l, l′) but when we remove those linear forms (taking into account
multiplicities) then the resulting circuit still vanishes when we go mod l and l′. In this case we add
V(l, l′) to Sreg

2 (f)).
The set Ssp

2 (f) is actually a nice helpful set. It can be quite useful in learning linear forms that
appear in the circuit. For l1 dividing T1, l2 dividing T2 and l3 dividing T3 suppose that V(l1, l2, l3)
did not belong to S3(f) since it got blocked by a space in S2(f). Then we show that if that was a
space in Ssp

2 (f), that is usually not a big problem, since the space in Ssp
2 (f) can actually be used

to learn the space V(l1, l2, l3) unless one of l1, l2, or l3 is in the kernel of the Ssp
2 (f) space. This

argument is not immediate to see. The details appear in Lemma 6.8. If a large fraction V(l1, l2, l3)
spaces are blocked by Ssp

2 (f) spaces whose kernel contains one of l1, l2, or l3, then we learn these
linear forms from the intersection of kernels of Ssp

2 (f) spaces, so this case turns out not be be a
problem either.

The bigger issue is when V(l1, l2, l3) gets blocked by a space in Sreg
2 (f). We show that this

cannot happen too often. Though we cannot say that the union of kernels of spaces in Sreg
2 (f)

is low dimensional, we can say something close. Consider the maximum number of spaces, k, in

10



Sreg
2 (f) such that their kernels are completely linearly independent. In other words, the k kernels

(that are each 2 dimensional) in total span a 2k dimensional space. We show that k is at most
O(log d). (See Lemma 6.6 for details). This structure ends up being sufficient to show that Sreg

2 (f)
cannot just block all spaces of the form V(l1, l2, l3) that we wanted to learn, assuming that each of
the Ti’s started off with enough linearly independent linear forms present in all of them.

Though our target is to learn Ω(log d) independent linear forms appearing in one gate, in most
cases it is sufficient to learn two independent linear forms (not in kernels of S1 spaces) from one
gate. We can then reconstruct the circuit mod these linear forms as ΣΠΣ(2) circuits using the
reconstruction algorithm in [Sin16b] and use it to get projections of a high-rank gate, which we can
then glue to obtain Ω(log d) independent linear forms from one gate.

We now discuss a few additional algorithmic tools that go into the analysis of one specific case
that cannot be learned using the above mentioned ideas. Suppose that there is one gate such that
all linear forms appearing in it only span a constant dimensional space.

Learning linear forms when some of the gates have low rank Assume the linear forms
appearing in T3 span a c dimensional space for some constant c. In this case, it can be that S3(f)
and Ssp

2 (f) are both empty, and spaces in S1(f) and Sreg
2 (f) block any codimension 3 space from

appearing in S3(f). For details on this case, see Lemma 6.13 and Lemma 6.14. We mention a few
ingredients that go into the analysis.

We need a new algorithmic insight, since S1(f), S2(f) and S3(f) might be useless. This method
also shows up in the learning of a few other other instances (of the structural partitioning) of
ΣΠΣ(3) circuits.

When T3 has only low rank linear forms, it turns out we can then (essentially) compute S2(T1 +
T2). Note that we do not have blackbox access to T1 + T2. We would still like to compute
S2(T1 + T2). The key observation is that if V(l, l′) ∈ S2(T1 + T2) then even though we don’t know
that C mod ⟨l, l′⟩ is zero, we can still conclude that C mod ⟨l, l′⟩ has few essential variables (see
Definition 6) , i.e. it can be written as a polynomial depending on constantly many linear forms.
In order to compute S2(T1 + T2) we will attempt to find all V(l, l′) such that C mod ⟨l, l′⟩ has
few essential variables. We show that this can be done using our algorithms for finding S2 spaces
of a polynomial, combined with a suitable modification of an algorithm by Carlini [Car06] (see
Theorem 3.11) which can compute the number of essential variables in a polynomial. Once we can
compute S2(T1 +T2), we can use intersections of the kernels of these spaces to compute linear forms
appearing in one of T1 or T2

3.

Learning linear forms when C is of special form We say a circuit C is of special form if
there is a linear form l such that when we go modulo l, the simple part of the circuit has low rank.
Note, this is the case when we don’t know how to bound and hence compute S3(f). Thus again new
ideas are needed. In this case we inspect the structure of the circuit and show that it must be one of
three types (see Section 6.4). In each of these types, though S3(f) cannot be learned, we show how
to bound and learn an interesting subset of S3(f) (which we call S∗

3 (f)) that still contains enough
useful codimension 3 spaces that allow us to learn some of the linear forms appearing in C. We
then again have to consider cases based on whether all gates are high rank or not, and construct
learning algorithms similar to the non-special form cases, but with S∗

3 (f) playing the role of S3(f).
3This is again a bit of a simplification of our algorithm. It could be that the rank of T3 is super constant, or it

could be that most of S2(T1 + T2) is blocked by the S1 spaces. For details, see Section 6.2.2

11



2.4 Overview: From a few linear forms to reconstructing the entire circuit

Once we learn a few linear independent linear factors (we will actually ensure we learn Ω(log d)
linear factors) appearing in one of the gates (say T1) then the high-level plan is to consider the
circuit modulo each of the factors to obtain a projected circuit of top fan-in at most two. This can
be learnt using a reconstruction algorithm for ΣΠΣ(2) circuits from [Sin16b] (see Theorem 3.10) as
a unique ΣΠΣ(2) circuit when the distance between the projected gates is high or as a ΣΠΣ(1, d, r)
circuit when the distance is low. Moreover by a result by Shpilka [Shp07] (See Theorem 3.15), given
enough linearly independent projections of T2 + T3 suffices in recovering T2 + T3. An extension of
this result by Karnin and Shpilka [KS09a] (See Lemma 3.16), gives a way of recovering T2 + T3
from enough ΣΠΣ(1, d, r) projections of low distance T2 + T3.

Comparison to [KS09a] As described in our overview, once we have a few linear forms from a
gate, the process of learning the entire circuit follows closely the outline from [KS09a]. The main
difference stems from how the few linear forms are obtained. The main technical contribution of
this paper is to show how to efficiently compute these linear forms over large fields. In the works
of [KS09a, Shp07], the authors obtained the linear forms using a brute-force search approach, by
searching over all possible linear forms with O(log d) variables, which took quasi-poly(|F|) time.

3 Preliminaries
Notations. Let N := {0, 1, 2, . . .} and N+ := {1, 2, . . .}. Denote {1, 2, . . . , n} by [n]. The cardinal-
ity of a set S is denoted by |S|. F is usually used to denote the underlying field. R refers to the
field of real numbers, and C refers to the field of complex numbers. Denote by log a the logarithm
of a with base two.

Throughout the paper, we use uppercase letters X, Y to denote sets of variables, lowercase xi to
denote variables, x, y or x̄, ȳ to denote vectors/tuples of variables, and v to denote a vector/tuple
of field constants.

Whenever we say linear forms divide a multiplication gate, we mean up to scalar multiples. For
a polynomial f , Lin(f) denotes the multiset of linear factors of f (including multiplicities), and
NonLin(f) refers to f∏

l∈Lin(f) l
. We use span(l1, . . . , lr) to refer to the vector space that is the span

of the linear forms {l1, . . . , lr}. In other words, it is the set of all vectors of the form ∑r
i=1 αili for

αi ∈ F. For a vector space V, dim(V) denotes the dimension of V.
Given k linearly independent linear forms l1, l2, · · · lk, let V(l1, l2, . . . , lk) ⊆ Fn denote the codi-

mension k subspace of Fn corresponding to those vectors where l1, l2, · · · lk evaluate to 0. We say that
V(l1, l2, . . . , lk) is a vanishing space for a polynomial f if f vanishes on all points of V(l1, l2, . . . , lk).

Consider any invertible linear transformation ϕ ∈ Fn×n such that ϕ(li) = xi for all i ∈ [k]. Let
ϕ · f = f(ϕ(x̄)). Then setting x1, x2, . . . xk to 0 in ϕ · f results in the identically 0 polynomial. The
polynomial f mod ⟨l1, . . . , lk⟩ is equivalent (up to an invertible linear map) to ϕ · f after setting
x1, x2, . . . xk to 0. Often it is easier to think in terms of ϕ ·f , and once we learn ϕ ·f , one can recover
f after applying the inverse linear map. We abuse notation and use f mod l (and C mod l where
C is a circuit computing f) to denote f mod ⟨l⟩ (or C mod ⟨l⟩) for a linear form l.

3.1 Depth-3 Circuits

In this section, we formally introduce the general model of depth-3 circuits which is the focus of
our paper.

12



Definition 1. A depth-3 ΣΠΣ(k) circuit C computes a polynomial of the form

C(X) =
k∑

i=1
Ti(X) =

k∑
i=1

di∏
j=1

li,j(X),

where the li,j-s are linear functions; li,j(X) =
n∑

t=1
at

i,jxt + a0
i,j with at

i,j ∈ F.

We say that C is minimal if no strict subset of the multiplication gates sums to zero. We define
gcd(C) as the linear product of all the non-constant linear functions that belong to all the Ti-s. I.e.
gcd(C) = gcd(T1, . . . , Tk). We say that C is simple if gcd(C) = 1. The simplification of C, denoted
by sim(C), is defined as C/ gcd(C). In other words, the circuit resulting upon the removal of all
the linear functions that appears in gcd(C).

Definition 2 (Homogeneous Depth 3 circuit). A depth 3 circuit ΣΠΣ(k) computing a polynomial
f ∈ F[x1, . . . , xn] is a homogeneous depth 3 circuit ΣΠΣ(k) if f is homogeneous and the polynomial
computed in every gate of the circuit is homogeneous as well. It will have the following form

C(X) =
k∑

i=1
Ti(X) =

k∑
i=1

d∏
j=1

li,j(X),

where the li,j-s are linear functions; li,j(X) =
n∑

t=1
at

i,jxt + a0
i,j with at

i,j ∈ F and a0
i,j = 0.

Definition 3 (Rank of circuit). The rank of a circuit C(X) =
k∑

i=1
Ti(X) = ∑k

i=1
∏di

j=1 li,j(X) is

defined as the dimension of the space spanned by all the linear forms in the circuit dim(span({li,j :
i ∈ [k], j ∈ [di]})). We denote it by rank(C).

Definition 4 (Rank of Simple part of circuit). The rank of the simple part of the circuit C(X) =
k∑

i=1
Ti(X) = ∑k

i=1
∏di

j=1 li,j(X) is defined as the rank of the simple part (obtained after removing the

gcd of Ti’s). We will denote the simple rank of C using ∆(C) = rank(sim(C)). This also defines a
distance measure between 2 circuits C1, C2 as ∆(C1, C2) = rank(sim(C1 + C2)).

In the following lemma, we will reduce the problem of reconstruction for any polynomial f
computed by a ΣΠΣ(3) circuit to the reconstruction of a homogeneous polynomial fhom computed
by a homogeneous ΣΠΣ(3) circuit. Therefore, from now on, we are only concerned with the
reconstruction of ΣΠΣ(3) circuits in this paper and all ΣΠΣ(3) circuits we consider will be assume
to be homogeneous.

Lemma 3.1 (Section 1.5, [Sin16a]). Let f ∈ F[x1, . . . , xn] be degree d polynomial computed by
a ΣΠΣ(k) circuit C. Then in time poly(n, d) (per query) one can simulate a blackbox access to
a homogeneous ΣΠΣ(3) circuit computing a homogeneous fhom ∈ F[x1, . . . , xn, z] such that any
reconstruction algorithm for fhom immediately implies a reconstruction algorithm for f , with only
a poly(n, d) overhead in time complexity.

Proof. Let fd denote the degree d homogeneous part of f . Given f , define fhom to be

fhom(x1, . . . , xn, z) =
{

zdf
(x1

z , . . . , xn
z

)
z ̸= 0

fd(x1, . . . , xn) z = 0

13



If f is computed by a ΣΠΣ(k) circuit C of the form

C =
k∑

i=1
Ti(X) =

k∑
i=1

di∏
j=1

(li,j(X) + a0
i,j)

circuit, then one can easily construct the following ΣΠΣ(k) circuit Chom computing fhom

Chom =
k∑

i=1
T ′

i (X) =
k∑

i=1
zd−di ·

di∏
j=1

(li,j(X) + a0
i,j · z).

Given black-box access to f , one can easily simulate black-box access to fhom. To query
fhom(x1, . . . , xn, z), query f(x1

z , . . . , xn
z ) and multiply the result with zd if z ̸= 0. From Lemma

2.1 of [DS05], we can get black-box access to fd(x1, . . . , xn) using black-box access to f in poly(n)
time. Therefore, we can query fd(x1, . . . , xn) when z = 0.

Finally, if we can reconstruct a circuit computing fhom, we can get a circuit computing f by
simply substituting z = 1.

3.2 Polynomial Identity Testing and Rank Bounds

Lemma 3.2 (Schwartz-Zippel Lemma,[Sch80, Zip79]). Let f ∈ F[x1, . . . , xn] be a polynomial of
total degree d such that it is not identically zero. Let S ⊂ F be any finite set. For s1, . . . , sn picked
independently and uniformly from S,

Pr[f(s1, . . . , sn) = 0] ≤ d

|S|
.

A finite set of points S with the property that every line through two points of S passes through
a third point in S is called a Sylvester-Gallai configuration. The famous Sylvester-Gallai theorem
states that the only Sylvester-Gallai configurations in Rn are those formed by collinear points. This
basic theorem about point-line incidences was extended to higher dimensional flats in [Han65, BE67]
over the Real numbers and in [BDWY13, DSW14] over C. We define the rank of a set of vectors
to be the dimension of the linear space they span.

Definition 5 (SGk(F, m)). Let S be a set of non-zero vectors in Fn+1 without multiples: ie no
two vectors in S are scalar multiples of each other. Suppose that for every set V ⊆ S of k linearly
independent vectors, the linear span of V contains at least k + 1 vectors of S. Then, the set S is
said to be SGk-closed. The largest possible rank of an SGk-closed set of at most m vectors in Fn

(for any n) is denoted by SGk(F, m).

Over the field of Real numbers, it is known that SGk(R, m) = 2(k−1) [Han65, BE67]. The rank
of high dimensional Sylvester-Gallai configurations over C was bounded by 2ck for a fixed constant
c in [BDWY13]. This bound was further improved to SGk(C, m) = ck(for a fixed constant c) in
[DSW14].

The polynomial time blackbox PIT algorithms for ΣΠΣ(k) circuits over R and C follow from
some strong structural properties of identically zero ΣΠΣ(k) circuits. In [KS09b] it was shown
that the rank of any identically zero, simple and minimal ΣΠΣ(k) circuit is at most some constant
depending on k. This bound was improved in [SS11, SS13], and the theorem below gives the best
bound we know.

Theorem 3.3 ([SS13]). Let C be a ΣΠΣ(k) circuit, over field F, that is simple, minimal and zero.
Then, we have rank(C) ≤ 2k2 + k · SGk(F, d).

14



Combining the above theorem with the best bounds we know for SGk(R, m) and SGk(C, m) we
obtain the following,

Theorem 3.4. Let C be a simple, minimal and identically zero ΣΠΣ(k) circuit over R or C. Then
there is an absolute constant R(k) depending only on k such that rank(C) < R(k). If C is over R
then we can bound rank(C) by 3k2. If C is over C then we can bound rank(C) by 2k2 + k · ck for
some absolute constant c.

3.3 Other Known Results

Theorem 3.5 (Theorem 1.1[KSS14]). [Effective Hilbert irreducibility] Let S ⊆ F be a finite set
and g(X, A1, . . . , An) a monic polynomial in X of total degree at most d. If g is irreducible then it
holds that

Pα,β[g(X, α1T + β1, . . . , αnT + βn) is not irreducible] < O(d5/|S|),

where α and β are chosen uniformly and independently from Sn.

Lemma 3.6 (Black-box multivariate polynomial interpolation,[BOT88]). Let n, m, d be parameters
and F be a field that is R or C (or large enough). There exists a deterministic algorithm that runs
in time (nmd)O(1), and outputs a set S of points in Fn, such that given black-box access to any
degree d polynomial f ∈ F[x1, . . . , xn] with at most m monomials, the coefficients of all monomials
can be recovered in (nmd)O(1) time using evaluations from the set {f(s) : s ∈ S}.

Lemma 3.7 (Blackbox Factoring, [KT90]). There exists a randomized algorithm that takes as
input black-box access to a degree d, n-variate polynomial f with coefficients in some field F, runs
in time poly(nd) and outputs black-box access to polynomials f1, . . . , fm (m ≤ d) along with integers
e1, . . . , em such that,

Pr[f = fe1
1 . . . fem

m

∧
f1, . . . , fm are irreducible] ≥ 1− o(1).

Using the above, we can also decompose any circuit into its linear factors(which we can inter-
polate) and NonLin(f) in randomized poly(n, d) time.

3.4 Solving a System of Polynomial Equations

We obtain the vanishing spaces of our circuit by solving a system of polynomial equations. We will
need to find all possible solutions of the system that we set up, and in order to do this, we show
that the number of solutions is finite, and in particular polynomially bounded.

A longer discussion on the complexity of finding a single solution to a system of polynomial
equations for various fields can be found in [BSV21].

In this work, the polynomial systems we solve have a small (O(1)) number of variables, and
hence once can find solutions efficiently. The theorem we state below is a variant of an analogous
one that appears in [BSV21], and it describes the current known upper bounds for solving a system
of polynomial equations for various fields.

Let F̄ denote the algebraic closure of F.

Theorem 3.8. Let f1, f2, . . . fm ∈ F[x1, . . . , xn] be n-variate polynomials of degree at most d.
Suppose that the system of equations f1(x) = 0, . . . , fm(x) = 0 has finitely many solutions in the
algebraic closure of F. Then, the complexity of finding all the solutions in F̄ is as follows:

15



1. [GVJ88] For F = R, there is a deterministic poly((md)n2) time algorithm. Here the authors
assumed that the constants appearing in the system are integers (or rationals). Note that for
all computational applications we can WLOG assume this by simply approximating/truncating
a given real number at some number of bits.

2. [Ier89, Buc76] For F = C (or any algebraically closed field), there is a deterministic (mn)O(n) ·
dO(nn) time algorithm.

Thus in deterministic time (mdn)O(nn), we can find all the solutions of f1(x) = 0, . . . , fm(x) = 0
if it has finitely many solutions in the algebraic closure of F.

Remark 3.9. In the results used above, we have suppressed poly(s) multiplicative dependence
(when n is a constant) in the running time where s is the maximum bit complexity of any coefficient
appearing in the input circuit. We use the above algorithm only in cases where n is constant, and
hence there is an additional poly(s) running time factor, which we suppress throughout the paper.

3.5 Reconstruction for Top Fan-in 2

In [Sin16b], for fields F of characteristic 0 (Q,R or C for simplicity), a reconstruction algorithm for
ΣΠΣ(2) circuits was presented as below:

Theorem 3.10 (Theorem 1.1, [Sin16b]). Let f ∈ F[x1, . . . , xn] be any degree d, n-variate polynomial
(to which we have blackbox access) which can be computed by a depth 3 circuit of the form C =
G × (T0 + T1) with top fan-in 2 (i.e. a ΣΠΣ(2) circuit). Let R(k) be as defined in Theorem 3.4.
Assume gcd(T0, T1) = 1 and dim(span{l : l|T0T1}) is bigger than R(4) + 1. Then there exists a
randomized algorithm that runs in time poly(n, d) and computes a ΣΠΣ(2) circuit computing f
with high probability.

3.6 Essential Variables of a Polynomial

This notion will be useful in reconstruction when the input circuit is low rank, as well as when one
of more gates is low rank. We start by defining essential variables in a polynomial.

Definition 6. [[Kay11]](Essential Variables) The number of essential variables in f(x1, . . . , xn) is
the smallest t such that there exists an invertible linear transformation A ∈ F(n×n) on the variables
such that f(A · x) depends on only t variables.

The number of redundant variables is the number of essential variables subtracted from n. We
will use the following result from [Car06] that allows us to compute t, the number of essential
variables, and the linear transformation A.

Theorem 3.11 ([Car06],[Kay11]). Let n, d be positive integers and F be a field with char(F) > d
or 0. There is a randomized algorithm that takes as input black-box access to an n-variate degree
d polynomial f(x) ∈ F[x̄] having m essential variables, that runs in time (nd)O(1) and outputs an
invertible matrix A ∈ F(n×n) such that f(A · x̄) depends only on the first m-variables.

The partial derivative ∂if is used to represent ∂f
∂xi

. We use ∂f to denote (∂1f, . . . , ∂nf). We
define the partial derivative matrix of a polynomial f , M(f), as the matrix with columns indexed
by monomials over n variables and degree d − 1, while the rows are indexed by [n], and Mi,j =
coeffj(∂if) where coeffj(g) is the coefficient of monomial j (represented as vector) in g.

We denote ∂f⊥ as the set of vectors a ∈ Fn such that a · ∂f = 0. The proof of the above
theorem relies on the following lemma which describes the relation between the partial derivative
matrix and the number of essential variables.

16



Lemma 3.12 ([Car06], Lemma B.1[Kay11]). The number of redundant variables in a polynomial
f(x1, . . . , xn) equals the dimension of ∂f⊥. In particular, the number of essential variables of f is
the rank of the partial derivative matrix M(f).

The following lemma from [Shp07] will also be useful to us.

Lemma 3.13 (Lemma 23,[Shp07]). Let f(x1, . . . , xn) ∈ F[x1, . . . , xn] be a polynomial with k es-
sential variables, such that it has two different representations: f = g(l1, . . . , lk) = h(l′1, . . . , l′k)
for polynomial g, h ∈ F[y1, . . . , yk] and l1, . . . , lk, l′1, . . . , l′k are linear forms in F[x1, . . . , xn]. Then
span({li}i∈[k]) = span({l′i}i∈[k]).

3.7 Generalized Depth-3 circuits

Definition 7. A generalized depth 3 circuit ΣΠΣ(k, d, r) is of the form

C =
k∑

i=1

 di∏
j=1

lij · hi(li1, . . . , lir)


where lij,lik are linear forms in F[x1, . . . , xn] and d = maxi(di + deg(hi)).

In particular in the setting when r is small (say constant or O(log d)), the representation looks
like a ΣΠΣ(k) circuit where every product gate is further multiplied by a polynomial in few (r)
linear forms.

3.8 Locally Decodable Codes

Locally decodable codes are error-correcting codes that allow the recovery of each symbol of the
message, from a corrupted code word, by looking at only a constant or small number of entries of
the corrupted code word.

Definition 8. A (q, δ, ϵ)-locally decodable code encodes x ∈ Fn to E(x) ∈ Fm such that for each
index i ∈ [n], xi can be recovered from E(x) with probability > ϵ by reading only q (random) entries,
even if E(x) was corrupted in δm positions.

The following lower bound for 2-query LDCs over arbitrary fields is from [DS05]. (Exponential
lower bounds for 2-query LDCs over small finite fields were proved in [GKST06]).

Theorem 3.14 ([DS05], Theorem 1.2). Let δ, ϵ ∈ [0, 1], F be an arbitrary field, and let E : Fn −→ Fm

be a linear (2, δ, ϵ)-LDC. Then

m ≥ 2
ϵδn

4 −1

The LDC lower bounds have been influential in obtaining reconstruction results like [Shp07,
KS09a]. One application (that was useful for reconstruction) is the following lemma, which bounds
the dimension of the set of “rank-reducing” linear forms. We use these in Section 6, specifically
Lemma 6.3.

Lower bounds for 2-query LDCs also formed the basis for the method of gluing projections of a
product of linear forms to reconstruct a multiplication gate in [Shp07] and [KS09a] (which we will
discuss next).

17



3.9 Gluing Projections

Using locally Decodable lower bounds, in [Shp07], the authors gave an algorithm that could learn a
product of linear forms exactly with multiplicities if given access to Ω(log d) independent non-zero
projections of the product. This is summarized in the theorem below.

Theorem 3.15 (Implicit in [Shp07]). Let L be a multiset containing d linear functions in n vari-
ables. Let {φ1, . . . , φm} be a set of linearly independent linear functions such that m ≥ 100 log(d).
For each j ∈ [m] define the multiset

Lj ≜ {l mod φj : l ∈ L}.

Then there exists a deterministic algorithm that given {Lj}mj=1 outputs L in poly(n, d) time.

In [KS09a], the authors gave a way to similarly glue projections of gates in a generalized circuit.
The two key ingredients were the theorem above, and the following lemma below that allows one
to glue the projections of low-rank polynomials.

Lemma 3.16 (Special case of Lemma 4.20 in [KS09a]). Let h be a non-zero n-variate polynomial
of degree d. Let r ∈ N+ be such that h has r essential variables. Let l1, l2 be two independent
linear forms in F[x1, . . . , xn] such that h mod ⟨l1, l2⟩ has r essential variables. Then there exists a
deterministic algorithm which when given as the input the two polynomials {h mod l1, h mod l2},
outputs a representation of h as a polynomial of r linear functions in O(n · dr) time.

4 Upper bounding the size of S2(f) and S3(f)
In this section, we will show that if a degree d polynomial f ∈ F[x̄] is computed by a ΣΠΣ(3) circuit
C then other then in certain degenerate cases, it will “vanish” on only finitely many codimension
3 subspaces. In the next sections we will show how to compute these subspaces and then how to
extract the linear forms of C from these subspaces.

Given k linearly independent linear forms l1, l2, · · · lk, let V(l1, l2, . . . , lk) ⊆ Fn denote the codi-
mension k subspace of Fn corresponding to those vectors where l1, l2, · · · lk evaluate to 0. We say that
V(l1, l2, . . . , lk) is a vanishing space for a polynomial f if f vanishes on all points of V(l1, l2, . . . , lk).

Equivalently, consider any invertible linear transformation ϕ ∈ Fn×n such that ϕ(li) = xi for
all i ∈ [k]. Let ϕ · f = f(ϕ(x̄)). Then setting x1, x2, . . . xk to 0 in ϕ · f results in the identically 0
polynomial.

For a polynomial f defined over Fn, we will define S1(f) to be the set of codimension 1 subspaces
over which f vanishes. S1(f) = {V(l) | V(l) is a vanishing space forf}

We would like to define S2(f) to be the set of codimension 2 subspaces over which f vanishes
and try to show that this is finite. However note that if f has even one codimension 1 subspace on
which it vanishes, then there will be infinitely many codimension 2 subspaces on which it vanishes,
since for any W ∈ S1(f), f vanishes on every single codimension 2 subspace of W . Thus when we
define S2(f), we will not consider such subspaces.

Let S2(f) = {W |W is a codimension 2 subspace of Fn, f vanishes over W and W ̸⊂W ′ for any
W ′ ∈ S1(f)}.

Note that any W ∈ S2(f) is of the form V(l1, l2) for some two linear forms l1, l2. Moreover any
two independent linear forms in the span of l1 and l2 will result in the same space W .

Similarly we define S3(f) to be the set of codimension 3 subspaces W over which f vanishes
such that W is not contained in any subspace from S2(f) or S1(f).

18



S3(f) = {W |W is a codimension 3 subspace of Fn, f vanishes over W and W ̸⊂W ′

for any W ′ ∈ S1(f) ∪ S2(f)}.
Note again that any W ∈ S3(f) is of the form V(l1, l2, l3) for some three linearly independent

linear forms l1, l2, l3. Moreover any three independent linear forms in the span of l1, l2 and l3 will
result in the same space W .

Lemma 4.1. Let f be a degree d polynomial. Then, |S1(f)| ≤ d.

Proof. The proof is quite simple. Any linear form l such that f vanishes on V(l) must be a linear
factor of f . Since f has degree d, it can have at most d distinct factors.

We will also show how to bound the size of S2(f) and S3(f) under additional structural as-
sumptions of f . Note that if f is computed by an ΣΠΣ(3, d) circuit of the form T1 + T2 + T3, then
by picking one linear form from each of the three multiplication gates, we can obtain codimension
3 spaces on which f vanishes. Learning these spaces will eventually allow us to learn the linear
forms, and it will be an important ingredient of our final algorithm. Note however that f might
have other codimension 3 vanishing subspaces that are not of this form. The main goal of this
section is to show that nevertheless under some structural assumptions, we are able to bound the
number of these spaces.

Before we state and prove our upper bounds for S2 and S3 spaces we state and prove a slightly
modified version of a result from [Sin22] that we will be useful for us.

Claim 4.2. Let P1, P2, P3 be distinct 2-dim subspaces of some vector space V such that
dim(span(P1, P2, P3)) ≥ 4 and P3 is not contained in span(P1, P2). Suppose that P is a 2-dim
subspace such that for each i ∈ [3], dim(Pi ∩ P ) = 1. Then either

• dim(P1 ∩ P2) = 1 and P1 ∩ P2 ⊂ P or

• dim(P3 ∩ span(P1, P2)) = 1 and P3 ∩ span(P1, P2) ⊂ P .

Proof. Case (1): P1 ∩P = P2 ∩P . Then since P1 and P2 are distinct, clearly dim(P1 ∩P2) = 1 and
P1 ∩ P2 ⊂ P .

Case(2): P1 ∩ P ̸= P2 ∩ P .
Here, we have dim(span(P ∩ P1, P ∩ P2)) = dim(P ∩ span(P1, P2))) = 2, but as dim(P ) = 2,

we have P ⊂ span(P1, P2). As the P1, P2 and P3 together span a space of dimension ≥ 4 and
P3 ̸⊂ span(P1, P2), thus dim(P3 ∩ span(P1, P2)) ≤ 1. Now as P ⊂ span(P1, P2), thus (P3 ∩ P ) ⊂
(P3 ∩ span(P1, P2)). But we also know dim(P3 ∩ P ) = 1, and therefore dim(P3 ∩ span(P1, P2)) = 1
and P3 ∩ P = P3 ∩ span(P1, P2), which means P3 ∩ span(P1, P2) ⊂ P .

4.1 Bounding the number of vanishing codimension 2 subspaces

Lemma 4.3. Let F be a field that is R or C. Let f be a degree d, n variate polynomial in
F[x1, . . . , xn]. Then there is an absolute constant c2 such that if f is computed by a ΣΠΣ(3) circuit
C = T1 + T2 + T3 with rank(sim(C)) ≥ c2, then

S2(f) ≤ O(d7).

Proof. We will be dividing our analysis into the following cases.

1. Case 1: We bound the number of W = V(l1, l2) ∈ S2(f) such that for some i ∈ [3], Ti

vanishes on V(l1, l2).

19



Wlog Ti = T1. Note that if T1 vanishes on V(l1, l2), then there must be some l ∈ span(l1, l2)
such that l divides T1. Note that since V(l1, l2) ̸∈ V(l) for any V(l) ∈ S1(f), thus C ′ = (T2+T3
mod l) is nonzero, and moreover there is some linear form l′ with span(l, l′) = span(l1, l2)
such that C ′ mod l′ ≡ 0. There are at most d choices for l′ from the factors of (T2 + T3
mod l), and there were at most d choices for l (once we fix i). Therefore, there are at most
O(d2) possibilities for W ∈ S2(f).

2. Case 2: We bound the number of W = V(l1, l2) ∈ S2(f) such that no Ti vanishes on V(l1, l2).
Consider C mod ⟨l1, l2⟩ which is of the form G×(T ′

1 +T ′
2 +T ′

3) where T ′
1 +T ′

2 +T ′
3 is a simple,

minimal ΣΠΣ(3) circuit computing the identically zero polynomial and G is a product of linear
forms. By the rank bound given in Theorem 3.4, rank(T ′

1 + T ′
2 + T ′

3) < R(3) where R(3) is
some absolute constant. Over the real numbers R(3) = 5.
Let c2 be any constant greater than R(3) + 10. Therefore, rank(sim(C)) ≥ R(3) + 10. When
we consider C mod ⟨l1, l2⟩, the linear forms appearing in the gates of sim(C) get mapped to
linear forms in G or in (T ′

1 + T ′
2 + T ′

3). The rank of those linear forms that get mapped to
(T ′

1 + T ′
2 + T ′

3) can be at most R(3) + 2. Thus the rank of the set of linear forms that gets
mapped to G is at least 8.
Consider 3 linear forms (not all the same) l1j , l2j , l3j from distinct product gates of sim(C)
such that when we consider them mod ⟨l1, l2⟩, they map to the same linear form l (we don’t
distinguish between a linear form and its multiple) and hence all get mapped to the linear
forms of G. Call such triple of linear forms a “collapsing” triple when we go mod ⟨l1, l2⟩.
These linear forms must be of the form

l1j = l + α1l1 + α2l2

l2j = l + β1l1 + β2l2

l3j = l + γ1l1 + γ2l2

where the α, β, γ denote field constants.
A collapsing triple can either span a 2 or 3 dimensional space. Now, since the rank of linear
forms mapping to G is at least 8, one of the following two scenarios must occur.

• Case 2(a): There are two collapsing triples (l1j , l2j , l3j) and (l1k, l2k, l3k) such that each
spans a 3-dim space and jointly the two triples span at least a 4-dim space.
Let Vj = span(l1j , l2j , l3j) and Vk = span(l1k, l2k, l3k). Let U = span(l1, l2). Since Vj

and Vk both become 1-dimensional when U = span(l1, l2) is projected to 0, it must hold
that U ⊂ Vj and U ⊂ Vk. Moreover as Vj and Vk are distinct 3-dim spaces, thus it must
hold that Vj ∩ Vi = U . Thus Vj and Vk determine U . In particular, the two triples of
linear forms determine U .
Since, there can be d possibilities for each of l1j , l2j , l3j , l1k, l2k, l3k, we have O(d6) possi-
bilities for U , and hence for V(l1, l2) ∈ S2(f).

• Case 2(b): The collapsing triples that span 2-dim spaces have combined rank at least
5.
Clearly there must be at least 3 collapsing triples. Let Vi, Vj and Vk be the span of of 3 of
the triples such that span(Vi∪Vj∪Vk) ≥ 5. Since Vi, Vj and Vk all become 1-dimensional
when U = span(l1, l2) is projected to 0, it follows that each of Vi, Vj , Vk intersects U

20



in a 1-dim space. By Claim 4.2, it follows that knowing Vi, Vj and Vk is enough to
determine a vector l ∈ U . Once l is determined, then the rest of the argument is similar
to case 1. C ′ = (T2 + T3 mod l) is nonzero, and moreover there is some linear form l′

with span(l, l′) = span(l1, l2) such that C ′ mod l′ ≡ 0. There are at most d choices for
l′ from the factors of (T2 + T3 mod l). Since there were at most O(d6) possibilities for
Vi, Vj and Vk, and hence at most O(d6) possibilities for the choice of l, thus overall there
are at most O(d7) possibilities for U and hence for for W ∈ S2(f).

4.2 Bounding the number of vanishing codimension 3 subspaces

Lemma 4.4. Let F be a field that is R or C. Let f be a degree d, n variate polynomial in
F[x1, . . . , xn]. Then there is an absolute constant c3 such that if f is computed by a ΣΠΣ(3) circuit
C = T1 + T2 + T3 with the following properties

1. rank(sim(C)) ≥ c3,

2. There is no linear form l such that (C mod l) is nonzero and rank(sim(C mod l)) < c2 .

then
S3(f) ≤ O(d15).

Proof. We will be dividing our analysis into the following cases.

1. Case 1: We bound the number of W = V(l1, l2, l3) ∈ S3(f) such that for some i ∈ [3], Ti

vanishes on V(l1, l2, l3).
Note that if Ti vanishes on V(l1, l2, l3), then there must be some l ∈ span(l1, l2, l3) such that l
divides Ti. Note that since V(l1, l2, l3) ̸∈ V(l) for any V(l) ∈ S1(f) thus C ′ = (T2 +T3 mod l)
is nonzero. Moreover by assumption, rank(sim(C mod l)) = rank(sim(T2 +T3 mod l)) ≥ c2.
Observe that (T2 + T3 mod l) must vanish when we consider it mod ⟨la, lb⟩ for any la, lb
such that span(l, la, lb) = span(l1, l2, l3). Thus once l is fixed, any such W ′ = span(la, lb) is a
vanishing codimension 2 space for (T2 + T3 mod l). By Lemma 4.3, there are at most O(d7)
choices for W ′. Given that there are at most O(d) choices for l, thus there are totally O(d8)
possibilities for W ∈ S3(f) in this case.

2. Case 2: We bound the number of W = V(l1, l2, l3) ∈ S3(f) such that no Ti vanishes on
V(l1, l2, l3).
Consider C mod ⟨l1, l2, l3⟩ which is of the form G × (T ′

1 + T ′
2 + T ′

3) where T ′
1 + T ′

2 + T ′
3 is a

simple, minimal ΣΠΣ(3) circuit computing the identically zero polynomial and G is a product
of linear forms. By the rank bound given in Theorem 3.4, rank(T ′

1 + T ′
2 + T ′

3) < R(3) where
R(3) is some absolute constant. Over the real numbers R(3) = 5.
Let c3 be any constant greater than R(3) + 17. Therefore, rank(sim(C)) ≥ R(3) + 17. When
we consider C mod ⟨l1, l2, l3⟩, the linear forms appearing in the gates of sim(C) get mapped
to linear forms in G or in (T ′

1 + T ′
2 + T ′

3). The rank of those linear forms that get mapped to
(T ′

1 + T ′
2 + T ′

3) can be at most R(3) + 3. Thus the rank of the set of linear forms that gets
mapped to G is at least 14.
Note that by assumption, there is no linear form l such that C mod l is nonzero and
rank(sim(C mod l)) ≤ c2. However there could exists two independent linear forms l, l′ ∈

21



span(l1, l2, l3), such that rank(sim(C mod ⟨l, l′⟩)) < R(3). We consider two further sub-cases
based on whether this happens or not.

A Case 2(a): We bound the number of W = V(l1, l2, l3) ∈ S3(f) such that no Ti vanishes
on V(l1, l2, l3) but there exists two independent linear forms l, l′ ∈ span(l1, l2, l3), such
that rank(sim(C mod ⟨l, l′⟩)) < R(3).
The analysis for this case is almost identical to that of Case 2 in Lemma 4.3. By the
analysis of Case 2 in Lemma 4.3, the number of spaces W ′ = V(l, l′) such that rank(sim(C
mod ⟨l, l′⟩)) < R(3) is at most O(d7). For each fixing of W ′ = V(l, l′) we now count the
number of W = V(l1, l2, l3) ∈ S3(f) such that l, l′ ∈ span(l1, l2, l3). Thus any such W is
of the form V(l, l′, l′′), Note that since for any space in S3(f), it is not contained in any
space in S2(f), we only need to consider those W ′ = V(l, l′) such that C mod ⟨l, l′⟩ ≠ 0.
Since C ′ = (C mod ⟨l, l′⟩) ̸= 0 but (C mod ⟨l, l′, l′′⟩) = 0 thus l′′ must be a linear factor
of C ′ and hence there can be only d choices for l′′. Thus in this case there are at most
O(d8) possibilities for W ∈ S3(f).

B Case 2(b): We bound the number of W = V(l1, l2, l3) ∈ S3(f) such that no Ti vanishes
on V(l1, l2, l3) and there do not exist two independent linear forms l, l′ ∈ span(l1, l2, l3),
such that rank(sim(C mod ⟨l, l′⟩)) < R(3).
Consider 3 linear forms (not all the same) l1j , l2j , l3j from distinct product gates of
sim(C) such that when we consider them mod ⟨l1, l2, l3⟩, they map to the same linear
form l (we don’t distinguish between a linear form and its multiple) and hence all get
mapped to the linear forms of G. Call such triple of linear forms a “collapsing” triple
when we go mod ⟨l1, l2, l3⟩. These linear forms must be of the form

l1j = l + α1l1 + α2l2 + α3l3

l2j = l + β1l1 + β2l2 + β3l3

l3j = l + γ1l1 + γ2l2 + γ3l3

where the α, β, γ denote field constants.
A collapsing triple can either span a 2 or 3 dimensional space. Now, since the rank of
linear forms mapping to G is at least 14, one of the following two scenarios must occur.
Either (i) The set of collapsing triples such that each spans a 3-dim space has combined
rank (over all the triples) of at least 7 or (ii) The set of collapsing triples such that each
spans a 2-dim space has combined rank at least 8.
We will separately analyze both these subcases.

• Case 2(b)(i):The set of collapsing triples such that each spans a 3-dim space has
combined rank (over all the triples) of at least 7.
Let V1, V2, V3 be the vector spaces spanned by three of the triples such that the V1,
V2 and V3 are distinct and span(V1 ∪ V2 ∪ V3) ≥ 5. Three such vector spaces must
exist.
Now since going mod ⟨l1, l2, l3⟩ maps these triples to a line l, letting
U = span(l1, l2, l3), it must hold that for all i ∈ [3], dim(Vi ∩U) = 2. It follows that
for all i, j ∈ [3], dim(Vi ∩ Vj) ≥ 1. Since the spaces are distinct, thus dim(Vi ∩ Vj)
can equal 1 or 2.
Now if for any i, j ∈ [3], dim(Vi∩Vj) = 1 then thus intersection must be contained in
U . Thus knowing Vi and Vj determines a 1-dim subspace of U . Let l′ be the linear

22



form representing this space. Since l′ is determined by two of the triples, thus there
are at most O(d6) possibilities for l′. Once l′ is determined, we consider C ′ = C
mod l′. This is nonzero and by assumption, the rank of its simple part is at least
c2. By Lemma 4.3 there are only O(d7) choices of co-dim 2 subspaces modulo which
C ′ vanishes (we disregard those co-dim 2 spaces which contain a co-dim 1 space on
which C ′ vanishes. Thus in total, in this case there are at most O(d13) choices of
W = V(l1, l2, l3) ∈ S3(f).
We need to still consider the case when for all distinct i, j ∈ [3], dim(Vi ∩ Vj) = 2.
We first prove the following simple claim.
Claim 4.5. Let V1, V2, V3 be distinct 3-dim subspaces of some vector space V such
that dim(span(V1, V2, V3)) ≥ 5. Suppose that for any distinct i, j ∈ [3], dim(Vi∩Vj) =
2. Then there exists a subspace U ′ ⊆ V such that dim(U ′) = 2 such that for any
distinct i, j ∈ [3], (Vi ∩ Vj) = U ′.
Proof. Since V1, V2 are distinct 3-dimensional spaces with dim(V1∩V2) = 2, we have
dim(V1∪V2) = 4. As dim(span(V1, V2, V3)) ≥ 5, we have V3 ̸⊂ V1∪V2. If V3 intersects
V1 and V2 in distinct 2-dimensional spaces, then dim((V3 ∩V1)∪ (V3 ∩V2)) ≥ 3. But
(V3∩V1)∪ (V3∩V2) = V3∩ (V1∪V2) ⊆ V3 and as dim(V3) = 3, V3 = V3∩ (V1∪V2) ⊆
(V1 ∪ V2), which is a contradiction. Therefore, V3 intersects V1 and V2 in the same
2-dimensional plane, let it be U ′ = V1 ∩ V3 = V2 ∩ V3. Moreover, this means
U ′ ⊂ V1 and U ′ ⊂ V2, and therefore U ′ ⊆ (V1 ∩ V2). As dim(V1 ∩ V2) = 2, we have
U ′ = (V1 ∩ V2).
By the above claim, it follows that V1 ∩ V2 ∩ V3 = U ′ for some 2-dim space U ′.
Moreover we know that U is a 3-dim space intersecting each Vi in a 2-dim space. It
must hold that U ′ ⊆ U . If not, then dim(U ′∩U) ≤ 1. Thus U needs to still intersect
each Vi in a vector outside of U ′. These three additional vectors will be distinct and
also linearly independent since span(V1 ∪ V2 ∪ V3) ≥ 5. This is not possible since
dim(U) = 3.
Thus U ′ ⊆ U . Hence V1 and V2 determine U ′ and hence determine a 2-dim subspace
of U . Since U ′ is determined by two of the triples, thus there are at most O(d6)
possibilities for U ′. Once we fix U ′ ⊆ U , it remains to find the number of W =
V(l1, l2, l3) ∈ S3(f) such that U ′ ∈ span(l1, l2, l3). When we go mod U ′, we can
assume that C does not vanish (since we are only counting those W that are not
contained in an S2 space), and hence for each fixing of U ′, since C mod U ′ has only
at most d linear factors, thus there are at most O(d7) possibilities for W .

• Case 2(b)(ii):The set of collapsing triples such that each spans a 2-dim space, has
combined rank at least 8.
Let P1, P2, P3, P4 be the vector spaces spanned by four of the triples such that the P1,
P2, P3 and P4 are distinct and span(P1, P2, P3, P4) ≥ 5. Moreover P3 ̸⊆ span(P1, P2)
and P4 ̸⊆ span(P1, P2, P3). Four such vector spaces must exist.
Now since going mod ⟨l1, l2, l3⟩ maps these triples to a single line l, letting U =
span(l1, l2, l3), it must hold that for all i ∈ [4], dim(Pi ∩ U) = 1.
There are three subcases that we will consider. In each case we show that the
knowledge of the four subspaces Pi allows us to determine a single linear form
l′ ∈ U . There are at most hence d8 choices for l′. Once we find and fix l′ ∈ U
we consider C ′ = C mod l′. This is nonzero and by assumption, the rank of its
simple part is at least c2. By Lemma 4.3 there are only O(d7) choices of co-dim
2 subspaces modulo which C ′ vanishes (we disregard those co-dim 2 spaces which

23



contain a co-dim 1 space on which C ′ vanishes. Thus in total, the number of choices
of W = V(l1, l2, l3) ∈ S3(f) is O(d15).

– subcase 1: P1, P2 are such that P1 ∩ U = P2 ∩ U .
In particular P1∩P2 ⊂ U. Thus knowing P1 and P2 determines a 1-dim subspace
of U .

– subcase 2: The 2-dim space defined by P ′ = span(U ∩P1, U ∩P2) ⊂ U contains
the line U ∩ P3. Since P3 ̸⊆ span(P1, P2), thus dim(span(P1, P2, P3)) ≥ 4 and
dim(P ′ ∩ P1) = dim(P ′ ∩ P2) = dim(P ′ ∩ P3) = 1.
Using Claim 4.2, it follows that P ′ and hence U contains the line P3∩span(P1, P2).

– subcase 3: dim(span(U ∩P1, U ∩P2, U ∩P3)) = 3 i.e. the three 1-dim intersec-
tions are independent. But as dim(U) = 3 and span(U ∩ P1, U ∩ P2, U ∩ P3) ⊆
U , we have U = U ∩ span(P1, P2, P3), which means U ⊂ span(P1, P2, P3).
As dim(P4 ∩ U) = 1, we have dim(P4 ∩ span(P1, P2, P3)) ≥ 1. By assump-
tion, P4 ̸⊆ span(P1, P2, P3) and therefore dim(P4 ∩ span(P1, P2, P3)) ≤ 1. So,
P4 ∩ span(P1, P2, P3) = U ∩ P4 is a 1-dim space that is contained in U , and is
determined by knowing P1, P2, P3 and P4

5 Algorithmically computing S2(f) and S3(f)
This section aims to compute the set of vanishing spaces of codimension up to 3 for polynomials
that can be computed by ΣΠΣ(3) circuits. We showed in the previous section, under some rank
constraints, these sets have size dO(1). The set of codimension 1 space is easy to compute as it is
just the set of linear factors of the polynomial, which we can compute using the randomized black
box factoring algorithm in Lemma 3.7. We will be working on proving the following two lemmas

Lemma 5.1. Let F be a field that is R or C. Let f be a n-variate, degree d polynomial in
F[x1, . . . , xn] that is computed by a ΣΠΣ(3) circuit C with rank(sim(C)) ≥ c2, where c2 is as
in Lemma 4.3. Then, there exists a randomized algorithm(Algorithm 2) that outputs S2(f) in
poly(n, d)-time with probability 1− o(1).

Lemma 5.2. Let F be a field that is R or C. Let f be a n-variate, degree d polynomial in
F[x1, . . . , xn] that is computed by a ΣΠΣ(3) circuit C such that rank(sim(C)) ≥ c3 and there doesn’t
exist a linear form l ∈ F[x1, . . . , xn] with rank(sim(C mod l)) < c2, where c2 is as in Lemma 4.3
and c3 is as in Lemma 4.4. Then, there exists a randomized algorithm (Algorithm 4) that outputs
S3(f), in poly(n, d)-time with probability 1− o(1).

We divide the remaining section into two subsections for computing the codimension 2 and 3
spaces over which f vanishes, i.e. S2(f) and S3(f) respectively.

5.1 Computing S2(f)
Recall that in Lemma 4.3, we have defined S2(f) as

S2(f) = {W |W is a codimension 2 subspace of Fn, f vanishes over W

and W ̸⊂W ′ for any W ′ ∈ S1(f)}

24



We will first discuss computing S2(f) when f depends only on a constant number of variables
t such that t ≥ c2. Then, solve the general case computation of S2 spaces by solving it on multiple
instances of constant variate cases and gluing them together.

5.1.1 Computing S2(f) for constant variate polynomials

Lemma 5.3. Let F be a field that is R or C. Let f be a t-variate, degree d polynomial in F[x1, . . . , xt]
that is computed by a ΣΠΣ(3) circuit C with rank(sim(C)) = t ≥ c2, where c2 is as in Lemma 4.3.
Then, there exists a randomized algorithm(Algorithm 1) that outputs S2(f) in poly(dO(tt))-time
with probability 1− o(1).

Proof. Let Φ be a random linear isomorphism on F[x1, . . . , xt] such that ∀i ∈ [t], Φ(xi) = ∑t
j=1 αijxj

where αij are sampled randomly from [dt]. We first observe that if f vanishes over a codimension
2 space V(l1, l2), then after a random linear isomorphism Φ on the variables, g = Φ(f) = f(Φ(x))
will vanish over a space V(Φ(l1), Φ(l2)) and moreover this space can be represented in the form
V(x1 − la, x2 − lb) for linear forms la, lb ∈ F[x3, . . . , xn].

Let la = a3x3 + . . . + atxt and lb = b3x3 + . . . + btxt. The basic idea in the constant variate
case is that we can substitute x1 = a3x3 + . . . + atxt = la and x2 = b3x3 + . . . + btxt = lb into
the monomial representation of g, and obtain the polynomial g mod ⟨x1 − la, x2 − lb⟩. Since we
are interested in the case when f vanishes over codimension 2 spaces, we equate coefficients of
monomials over the variables x3, . . . , xt to 0 to get a system of polynomial equations treating ai, bi

as formal variables, and therefore it will have 2t−4 variables. This system of polynomial equations
might have infinitely many solutions unless we discard all those codimension 2 spaces that are
contained in S1 spaces. We also know from Lemma 4.3 that this suffices as t ≥ c2. The challenge
remains to remove the codimension 2 over which f vanishes that are contained in spaces in S1(f).
To do that, we add an additional polynomial equation to the system of polynomial equations, that
ensures for any V(l) ∈ S1(g), dim(span(l, x1− la, x2− lb)) = 3. Finally, having computed the spaces
V(x1 − la, x2 − lb) on which g vanishes, we simply apply Φ−1 to get V(l1, l2).

We now give a more detailed analysis.
We first observe that in Step 1 of Algorithm 1, the random linear forms l′1, . . . , l′t will be inde-

pendent with high probability (as otherwise it will correspond to a certain determinant evaluating
to 0, which happens with probability at most d−(t−1) due to Lemma 3.2).

Thus will high probability Φ is a random isomorphism, and we obtain the polynomial g = Φ(f)
which is also computable by a ΣΠΣ(3) circuit over t variables, and the simple part of the circuit
has rank t. From now onwards let us assume that Φ is an isomorphism.

g vanishes on spaces of the form V(x1 − la, x2 − lb) As Φ is a random isomorphism, f
vanishes on a codimension 2 space V(l1, l2) if and only if g vanishes on V(Φ(l1), Φ(l2)). We will first
observe that with high probability, for any space V(Φ(l1), Φ(l2)) ∈ S2(g), there are linear forms
la, lb ∈ F[x3, . . . , xn] such that V(x1− la, x2− lb) = V(Φ(l1), Φ(l2)). The reason is the following: Let
l1 = u1x1 + . . . + utxt and l2 = v1x1 + . . . + vtxt. As V(l1, l2) is a codimension 2 space, l1 and l2
are not scalar multiples of each other. After applying the isomorphism Φ, they remain independent
with high probability. The coefficients of xi in Φ(l1) can be expressed as ∑n

j=1 αi,jujxj and similarly
for Φ(l2) they will be ∑n

j=1 αi,jvjxj . As they were independent, the determinant of the 2×2 matrix
formed by the coefficients of x1, x2 from Φ(l1), Φ(l2) will be a non-zero polynomial in α1,1, . . . , α2,n

and will vanish with vanishingly small probability due to Lemma 3.2. This means that for space
V(Φ(l1), Φ(l2)) ∈ S2(g) there is a space V(x1 − la, x2 − lb) ∈ S2(g) where la, lb ∈ F[x3, . . . , xn].

25



Setting up a system of equations Observe that we can use interpolation to get monomial
access to g in time poly(dt) using Lemma 3.6.

We set la := a3x3 + . . . + atxt and lb := b3x3 + . . . + btxt for variables a3, . . . , at, b3, . . . , bt.
Substituting x1 = la, x2 = lb into the monomial form, we obtain a system of dO(t) equations of
degree at most d in 2(t − 2) variables by equating the coefficients of monomials in the variables
x3, . . . , xt to 0. Solutions to this would correspond to codimension 2 spaces that g vanishes on.

To remove the codimension 2 spaces that are contained in S1(f), we first compute the set of
all linear factors, S1(g), by using a blackbox factoring algorithm as in Lemma 3.7, and then obtain
monomial access to all the linear factors by interpolating them in poly(d, t)-time.

Then, we need to ensure that the solution to our system of equations x1 − la, x2 − lb is such
that ∀l such that V(l) ∈ S1(g) we have that dim(span(x1 − la, x2 − lb, l)) = 3. This is the same as
saying that the t× 3 matrix Al with x1− la, x2− lb, l as rows has rank 3, which means at least one
of the 3× 3 minors is full-rank and has a non-zero determinant. Let the number of such minors be
k =

(t
3
)
. To handle these constraints, we introduce new variables y1, . . . , yk, and for each relevant

l we consider the inequality suml = ∑k
j=1 yjMj ̸= 0, where the Mj are the determinants of the

3 × 3 minors of Al. The inequality has solutions if and only if there exists a solution for which
at least one of the M ′

js is non-zero. So now, we have |S1(g)| (which is ≤ d) inequalities in our
system along with the previous equations. We note that we use the same variables y1, . . . , yk in all
of the inequalities. Let suml = ∑k

j=1 yjMj for all V(l) ∈ S1(g). Observe that the set of inequalities
∀ V(l) ∈ S1(g) suml ̸= 0 is the same as having a single inequality (∏V(l)∈S1(g) suml) ̸= 0, which is
same as requiring that (∏V(l)∈S1(g) suml) · z = 1 has a solution for a new variable z.

Thus, we can handle the condition of the solution not lying in any S1(g) space, by simply adding
one extra equation of degree 4|S1(g)|+ 1 = 4d + 1 and k + 1 additional variables to the system of
equations we had earlier.

Running Time Analysis The sampling of the random αi,j can be done in randomized poly(t, log d)
time. From Lemma 3.7, we can get black-box access to the factors in time randomized poly(t, d). We
can do interpolation and get monomial access to g in time dO(t) using Lemma 3.6. As |S1(g)| ≤ d,
the loop on line 7 runs O(d) times and does poly(t) computation. Finally, the system of equations
has dO(t) equations with degree O(d) in poly(t) variables. Therefore, we can find la, lb by solving
the system of equations in time poly(dO(tt)) using Theorem 3.8. Thus the entire algorithm works
in poly(dO(tt)) time.

26



Algorithm 1 Computing Vanishing S2(f) for constant variate polynomials
Input: Blackbox access to circuit C of form ΣΠΣ(3) computing polynomial f ∈ F[x1, . . . , xt],
t ≥ c2 and rank(sim(C)) = t

1: function S2(f)
2: Sample t2 random values αij ; i, j ∈ [t] uniformly from {1, . . . , dt}, and use them to define

t linear forms l′i = ∑t
j=1 αijxj . Check if they are independent, otherwise output error. Define

isomorphism Φ such that for all i ∈ [t], Φ(xi) := l′i. Let g = Φ(f) = f(Φ(x)).
3: Using randomized black-box factoring from Lemma 3.7 and get access to the linear factors

of g
4: Interpolate g to get monomial access to it and interpolate the linear factors to obtain
S1(g) := {V(l) : l|g}

5: Substitute x1 = a3x3 + . . . + at−1xt−1 + atxt for linear form x1 − la, x2 = b3x3 + . . . +
bt−1xt−1 + btxt for linear form x2 − lb in g and obtain equations in a3, . . . , at, b3, . . . , bt by
equating coefficients of monomials in the variables x3, x4, . . . , xt−1, xt to 0.

6: Let k =
(t

3
)
. Introduce new variables z, y1, . . . , yk

7: for V(l)← S1(g) do
8: Consider the 3× t matrix Al formed by l, x1 − la, x2 − lb.
9: Compute determinant of each 3 × 3 minor Mj of Al. Compute and store suml :=∑k

j=1 yjMj

10: Add Equation (∏V(l)∈S1(g) suml) · z = 1 to the system of equations in Step 5.
11: Solve the system of equations in a3, . . . , at, b3, . . . , bt, y1, . . . , yk, z using Theorem 3.8 to ob-

tain a set of (x1 − la, x2 − lb).
12: Verify for each (x1 − la, x2 − lb) if f vanishes on V(Φ−1(x1 − la), Φ−1(x2 − lb)) = V(l1, l2)

using Lemma 3.2, then add V(l1, l2) to S2(f).
13: Output S2(f).

5.1.2 Computing S2(f) general case

We will now discuss how we can use the solution for the constant variate case to compute S2(f) in
the general case.

We will start by using a random linear isomorphism Φ on f such that Φ(xi) = ∑n
j=1 αijxj ,

where αij are chosen randomly from [dn], and define g = Φ(f) = f(Φ(x)). Let t = c2 + 1. We
will then consider the t variate polynomials gi (for i ≥ t) which are obtained from g by setting all
variables xj for j > t− 1 to zero, except xi.

Thus
gi = g|xt=...=xi−1=xi+1=...=xn=0

We will then find S2(gi) spaces using the constant variate algorithm and then show how to glue
the learned spaces to get S2(g) and then S2(f).

We will need the following collection of simpler properties about gi’s summed up into Lemma 5.4
to prove the correctness of the algorithm computing S2(f).

Lemma 5.4. With probability 1− o(1), the following hold.

1. For each i ∈ {t, . . . , n}, the polynomials gi can be computed by ΣΠΣ(3) circuits Ci with
rank(sim(Ci)) = t = c2 + 1

2. For each i ∈ {t, . . . , n}, S1(gi) = {Φ(l) : l ∈ Lin(f)}|xt=...=xi−1=xi+1=...=xn=0. In other words,
no new linear factors arise after setting some of the variables to 0.

27



3. If V(x1 − l1, x2 − l2) ∈ S2(g), where l1, l2 ∈ F[x3, . . . , xn] then V(x1 − l1i, x2 − l2i) ∈ S2(gi),
where lji = lj |xt=0,...,xi−1=0,xi+1=0,...,xn=0. In other words, the projected codimension 2 space
continues to be a vanishing space as also continues to not lie in a codimension 1 vanishing
space.

Proof. The proof of this lemma is very similar to the proof of Lemma 5.3 in [Sin22]. We prove all
three items below.

1. The circuit C after applying the isomorphism Φ will be of the form

Φ(C) = Φ(G)× (Φ(T1) + Φ(T2) + Φ(T3))

Since Φ is an isomorphism, we have gcd(Φ(T1), Φ(T2), Φ(T3)) = 1. We denote Γi as the
homomorphism from F[x1 . . . , xn] to F[x1, . . . , xt−1, xi] mapping xj −→ 0 for j ∈ {t, . . . , i −
1} ∪ {i + 1, . . . , n}. Then for each i, gi is computable by the following circuit

gi = Γi(g) = Γi(Φ(G))× (Γi(Φ(T1)) + Γi(Φ(T2)) + Γi(Φ(T3)))

We will first argue that with high probability gcd(Γi(Φ(T1), Φ(T2), Φ(T3))) = 1. Consider
any two linear forms l = ∑n

i=1 cixi and l′ = ∑n
i=1 c′

ixi that span(l) ̸= span(l′) that appear in
the circuit. After applying Φ, the coefficients of x1, x2 in Φ(l), Φ(l′) will be ∑n

i=1 α1,icixi and∑n
i=1 α2,icixi for Φ(l) and ∑n

i=1 α1,ic
′
ixi and ∑n

i=1 α2,ic
′
ixi for Φ(l′). As span(l) ̸= span(l′), if

these two linear forms were in distinct gates, they would become equal and move to the gcd
part only if the determinant of the 2 × 2 matrix with these coefficients as entries becomes
identically 0. This happens with vanishingly small probability ( by Lemma 3.2) as the deter-
minant is a non-zero polynomial in α1,1, . . . , α2,n and we we choose αi,j from a large set of
size dn.
Also, as we assumed that rank(sim(C)) ≥ t, thus dim(span({l : l|T1 × T2 × T3})) ≥ t.
Therefore, for each i we conclude that dim(span({Γi(Φ(l)) : l|T1 × T2 × T3})))) = t, which is
the same set as {l : l|Γi(Φ(T1))×Γi(Φ(T2))×Γi(Φ(T3))} as nothing moved to gcd. Therefore,
rank(sim(gi)) = t.

2. From Theorem 3.5 (Effective Hilbert Irreducibility), we have that for random projections
that keep at least 3 variables alive, the irreducible factors of f remain irreducible with high
probability, and hence no new linear factors are introduced. We make a random isomorphism
and then reduce it to t = c2 > 3 variables using Φ, Γi, and hence the set of linear factors of gi

should be precisely {Γi(Φ(l)) : l|f}. Thus with high probability S1(gi) = {V(Γi(Φ(l)) : V(l) ∈
S1(f)}.

3. As we already saw in proof of Lemma 5.3, for any V(l1, l2) ∈ S2(g), it can be represented
in the form V(x1 − l′1, x2 − l′2) where l′1, l′2 ∈ F[x3, . . . , xn]. It is fairly straightforward to
see that if g vanishes on V(x1 − l′1, x2 − l′2) then gi vanishes on V(x1 − l′1i, x2 − l′2i) where
l′ji = l′j |xt=0,...,xi−1=0,xi+1=0,...,xn=0.
Also from part 2 of this lemma, we have that S1(gi) = {V(Γi(l)) : V(l) ∈ S1(g)}, which means
if V(x1− l′1, x2− l′2) weren’t contained in any S1(g) space, then V(x1− l′1i, x2− l′2i) is also not
contained in any S1(gi) space. Both of the above combine to give us that V(x1− l′1i, x2− l′2i) ∈
S2(gi).

28



Now, provide the proof of Lemma 5.1, which we restate here for clarity.

Lemma 5.1 restated. Let F be a field that is R or C. Let f be a n-variate, degree d polynomial
in F[x1, . . . , xn] that is computed by a ΣΠΣ(3) circuit C with rank(sim(C)) ≥ c2, where c2 is as
in Lemma 4.3. Then, there exists an algorithm(Algorithm 2) that outputs S2(f) in poly(n, d)-time
with probability 1− o(1).

Proof of Lemma 5.1. We first apply a random linear isomorphism and obtain g = Φ(f). For
t = c2 + 1, we obtain n− t polynomials gi ∈ F[x1, . . . , xt−1, xi] by setting all except x1, . . . , xt−1, xi

to 0. Then we solve the constant variate cases using Algorithm 1 discussed above to recover S2(gi).
We will then recover S2(g) by gluing together spaces from S2(gi) (across different choices of i) when
the spaces are consistent when restricted to x1, . . . , xt−1.

By part 1 of Lemma 5.4, the random invertible linear isomorphism ensures that when we set
some of the variables to 0, the rank of the linear forms present in the circuits computing the gi’s
remains high (equal to t) with high probability. Also, from part 2 or Lemma 5.4, we know the set
S1(gi) contains exactly the linear factors of g projected down to the t variables in gi.

From part 3 of Lemma 5.4, we have for every V(x1− l1, x2− l2) ∈ S2(g), there is V(x1− l1i, x2−
l2i) ∈ S2(gi), where lji = lj |xt=0,...,xi−1=0,xi+1=0,...,xn=0. Moreover we can find S2(gi) in poly(d)poly(t)

time as described in Lemma 5.3.
To obtain S2(g) (wlog of the form V(x1 − l1, x2 − l2)), we will show how to glue these spaces

learned in the constant variate case. To do this, we will look at spaces in S2(gi) and S2(gj) (for
i ̸= j) and “glue” them if they are consistent in the first t−1 variables. For this to be efficient, it will
be very useful to have the property that distinct spaces in S2(gi) are distinct when restricted to the
first t− 1 coordinates. This is probably already true with high probability due to the randomness
of Φ. However to make the argument simpler to analyze, we consider and apply another random
linear isomorphism Ψ (we will apply these to the spaces in S2(gi) for each i) defined as follows:
∀i < t, Ψ(xi) = xi and ∀i ∈ [t, n], Ψ(xi) = xi + βi,3x3 + . . . + βi,t−1xt−1 where βi,j are sampled
independently and uniformly from [dn]. The goal of introducing the map Ψ is to ensure that distinct
spaces in S2(gi) are distinct when restricted to the first t−1 coordinates, and we prove this formally
in the claim below.

Claim 5.5. For all i ∈ {t, . . . , n}, let V(x1− l1, x2− l2) and V(x1− l′1, x2− l′2) be distinct spaces in
S2(gi) such that l1, l2, l′1, l′2 only depend on x3, . . . , xt−1, xi. Then V(Ψ(x1−l1)xi=0, Ψ(x2−l2)xi=0) ̸=
V(Ψ(x1 − l′1)xi=0, Ψ(x2 − l′2)xi=0). In particular

⟨Ψ(x1 − l1)|xi=0, Ψ(x2 − l2)|xi=0⟩ ≠
〈
Ψ(x1 − l′1)|xi=0, Ψ(x2 − l′2)|xi=0

〉
Proof. The proof of this claim is very similar to Lemma 5.4 of [Sin22]. Consider 2 distinct elements
V(x1 − l1, x2 − l2) and V(x1 − l′1, x2 − l′2) in S2(gi), with l1, l′1, l2, l′2 ∈ F[x3, . . . , xt−1, xi]. Let
l1 = a3x3 + . . . + at−1xt−1 + aixi, l2 = b3x3 + . . . + bt−1xt−1 + bixi, l′1 = a′

3x3 + . . . + a′
t−1xt−1 + a′

ixi

and l′2 = b′
3x3 + . . . + b′

t−1xt−1 + b′
ixi. Therefore, we have

l1 = (a3 + βi,3ai)x3 + . . . + (at−1 + βi,t−1ai)xt−1 + aixi

l2 = (b3 + βi,3bi)x3 + . . . + (bt−1 + βi,t−1bi)xt−1 + bixi

l′1 = (a′
3 + βi,3a′

i)x3 + . . . + (a′
t−1 + βi,t−1a′

i)xt−1 + a′
ixi

l′2 = (b′
3 + βi,3b′

i)x3 + . . . + (b′
t−1 + βi,t−1b′

i)xt−1 + b′
ixi

29



Now, if ⟨Ψ(x1 − l1)|xi=0, Ψ(x2 − l2)|xi=0⟩ = ⟨Ψ(x1 − l′1)|xi=0, Ψ(x2 − l′2)|xi=0⟩, this gives rise to
system of linear equations in βi,3, . . . , βi,t−1 given by ∀j ∈ {3, . . . , t − 1}, βi,j(ai − a′

i) = (aj − a′
j)

and ∀j ∈ {3, . . . , t − 1}, βi,j(bi − b′
i) = (bj − b′

j). Since ⟨x1 − l1, x2 − l2⟩ and ⟨x1 − l′1, x2 − l′2⟩ are
distinct, there is some choice of j for which at least one of aj ̸= a′

j or bj ̸= b′
j must hold. This gives

a nonzero linear equation in βi,j (when viewed as formal variables) which must become zero for
the specific choice of sampled values. By using Lemma 3.2, the probability this can happen is 1

dn

as we choose the βi,j from [dn]. From Lemma 4.3 we know the |S2(gi)| = dO(1), and hence taking
union of all pairs from S2(gi) and union over all i, this gives us that with probability 1 − o(1) no
two spaces in any of the S2(gi) are equal after applying Ψ and setting xi to zero.

As described in Algorithm 2, for each V(x1− lt1, x2− lt2) ∈ S2(gt) we “glue” or combine it with
a corresponding V(x1− li1, x2− li2) ∈ S2(gi) if ⟨Ψ(li1)|xi=0, Ψ(li2)|xi=0⟩ = ⟨Ψ(lt1)|xt=0, Ψ(lt2)|xt=0⟩.
We each fixed space in S2(gt) with high probability there is a unique space in S2(gi) where this
happens by the above claim. Note that every space in S2(g) corresponds to some unique space in
S2(gt) (since the spaces in S2(gt) are distinct restricted to first t − 1 coordinates). To recover the
spaces of S2(g) with information for all coordinates, for each i, we use the information present in
the glued space in S2(gi) to recover the information for the coordinate corresponding to xi. Thus
we obtain all spaces V(l1, l2) on which g vanishes and use Φ−1 to obtain S2(f).

Algorithm 2 Computing Vanishing Codimension 2 Subspaces
Input: Blackbox access to circuit C of form ΣΠΣ(3) computing polynomial f ∈ F[x1, . . . , xn],
rank(sim(C)) ≥ c2

1: function S2(f)
2: Sample n2 random values αij ; i, j ∈ [n] uniformly from {1, . . . , dn}, and use them to define

n linear forms l′i = ∑n
j=1 αijxj . Check if they are independent, otherwise repeat. Define

isomorphism Φ such that for all i ∈ [n], Φ(xi) := l′i. Let g = Φ(f) = f(Φ(x)).
3: Set t = c2 + 1. For i ∈ [t, n], Obtain gi = g|xt=...=xi−1=xi+1=...=xn=0
4: For each gi, i ∈ [t, n], Compute S2(gi) using Algorithm 1.
5: We now describe how to glue these spaces across gi.
6: Consider an isomorphism Ψ obtained as follows. Sample (n− t + 1)× (t− 3) random values

βi,j where i ∈ [t, n], j ∈ [3, t− 1] uniformly from {1, . . . , dn}. For all i ∈ [1, t− 1], let Ψ(xi) = xi

and for all i ∈ [t, n], let Ψ(xi) = xi + βi,3x3 + . . . + βi,t−1xt−1.
7: for V(x1 − lt1, x2 − lt2) ∈ S2(gt) do
8: la := lt1, lb := lt2
9: for i ∈ {t + 1, . . . , n} do

10: Search for V(x1 − li1, x2 − li2) such that

⟨Ψ(x1 − lt1)|xt=0, Ψ(x2 − lt2)|xt=0⟩ = ⟨Ψ(x1 − li1)|xi=0, Ψ(x2 − li2)|xi=0⟩

11: If multiple such spaces are found, break out of the loop, and go to the next space in
the outer loop.

12: If only one such space is found then update la = la − αxi and lb = lb − βxi where
α, β are coefficients of xi in li1, li2 respectively.

13: Add V(x1 − la, x2 − lb) to S2(g)
14: For each V(l1, l2) ∈ S2(g), verify f vanishes on V(Φ−1(l1), Φ−1(l2)). Output the set thus

obtained, as S2(f).

30



5.2 Computing S3(f)
Recall that in Lemma 4.4, we have defined S3(f) as

S3(f) = {W |W is a codimension 3 subspace of Fn, f vanishes over W and W ̸⊂W ′

for any W ′ ∈ S1(f) ∪ S2(f)}

We will first discuss computing S3(f) when f depends only on a constant number of variables
t such that t ≥ c3. Then, solve the general case computation of S3 spaces by solving it on multiple
instances of constant variate cases and gluing them together.

5.2.1 Computing S3(f) for constant variate polynomials

Lemma 5.6. Let F be a field that is R or C. Let f be a t-variate, degree d polynomial in F[x1, . . . , xt]
that is computed by a ΣΠΣ(3) circuit such that rank(sim(C)) = t and there doesn’t exist a linear
form l ∈ F[x1, . . . , xt] with rank(sim(C mod l)) < c2(where c2 is as in Lemma 4.3) and C mod l ̸=
0, then there exists a randomized algorithm (Algorithm 3) computes S3(f) in time poly(dO(tt)) if
t ≥ c3, where c3 as in Lemma 4.4.

Proof. This is mostly similar to Lemma 5.3.We try to learn all codimension 3 spaces on which the
polynomial vanishes, while excluding those spaces contained within the codimension 1 and 2 spaces
(that we can compute using the previous algorithms.

Let Φ be a random linear isomorphism on F[x1, . . . , xt] such that ∀i ∈ [t], Φ(xi) = ∑t
j=1 αijxj

where αij are sampled randomly from [dt]. We first observe that if f vanishes over a codimension 2
space V(l1, l2, l3), then after a random linear isomorphism Φ on the variables, g = Φ(f) = f(Φ(x))
will vanish over a space V(Φ(l1), Φ(l2), Φ(l3)) and moreover this space can be represented in the
form V(x1 − la, x2 − lb, x3 − lc) for linear forms la, lb, lc ∈ F[x4, . . . , xn].

Let la = a4x4 + . . . + atxt,lb = b4x4 + . . . + btxt and lc = c4x4 + . . . + ctxt. The basic idea in the
constant variate case is that we can substitute x1 = a4x4 + . . .+atxt = la, x2 = b4x4 + . . .+btxt = lb
and x3 = c4x4 + . . . + ctxt = lc into the monomial representation of the polynomial, and obtain the
polynomial g mod ⟨x1 − la, x2 − lb, x3 − lc⟩. Since we are interested in the case when f vanishes
over codimension 3 spaces, we equate coefficients of monomials over the variables x4, . . . , xt to 0
to get a system of equations over 3t − 9 variables. This system of polynomial equations might
have infinitely many solutions unless we discard all those codimension 3 spaces that are contained
in S1 and S2 spaces. We also know from Lemma 4.4 that this suffices as t ≥ c3 and there is no
linear form l such that rank(sim(C mod l)) < c2 and C mod l ̸= 0. The challenge remains to
remove S1(f) and S2(f). To do that, we add two additional polynomial equations to the system of
polynomial equations, that ensure for any V(l) ∈ S1(g), dim(span(l, x1− la, x2− lb, x3− lc)) = 4 and
V(l, l′) ∈ S2(g), dim(span(l, l′, x1 − la, x2 − lb, x3 − lc)) ≥ 4. Finally, having computed the spaces
V(x1 − la, x2 − lb, x3 − lc) on which g vanishes, we simply apply Φ−1 to get V(l1, l2, l3).

We now give a more detailed analysis.
We first observe that in Step 1 of Algorithm 3, the random linear forms l′1, . . . , l′t will be inde-

pendent with high probability (as otherwise it will correspond to a certain determinant evaluating
to 0, which happens with probability at most d−(t−1) due to Lemma 3.2).

Thus will high probability Φ is a random isomorphism, and we obtain the polynomial g = Φ(f)
which is also computable by a ΣΠΣ(3) circuit over t variables, and the simple part of the circuit
has rank t. From now onwards let us assume that Φ is an isomorphism.

31



g vanishes on spaces of the form V(x1 − la, x2 − lb, x3 − lc) As Φ is an isomorphism, f
vanishes on V(l1, l2, l3) if and only if g vanishes on V(Φ(l1), Φ(l2), Φ(l3). We will first observe
that with high probability, for any space V(Φ(l1), Φ(l2), Φ(l3)) ∈ S2(g), there are linear forms
la, lb, lc ∈ F[x4, . . . , xn] such that V(x1 − la, x2 − lb, x3 − lc) = V(Φ(l1), Φ(l2), Φ(l3)). The reason is
the following: Let l1 = u1x1 + . . . + utxt, l2 = v1x1 + . . . + vtxt, and l3 = w1x1 + . . . + wtxt. As
V(l1, l2, l3) is a codimension 3 space, hence dim(span(l1, l2, l3)) = 3. After applying the isomorphism
Φ, they remain independent with high probability and coefficients of xi in Φ(l1) as ∑n

j=1 αi,jujxj

and similarly for Φ(l2) = ∑n
j=1 αi,jvjxj , Φ(l3) = ∑n

j=1 αi,jwjxj . As they were independent, the
determinant of the 3× 3 matrix formed by the coefficients of x1, x2, x3 from Φ(l1), Φ(l2), Φ(l3) will
be a non-zero polynomial in α1,1, . . . , α3,n and will vanish with low probability due to Lemma 3.2.
This means that for space V(l1, l2, l3) ∈ S3(g) there is a space V(x1 − la, x2 − lb, x3 − lc) ∈ S3(g)
where la, lb, lc ∈ F[x4, . . . , xn].

Setting up a system of equations Observe that we can use interpolation to get monomial
access to g in time poly(dt) using Lemma 3.6.

We set la := a4x4 + . . . + atxt, lb := b4x4 + . . . + btxt and lc := c4x4 + . . . + ctxt for variables
a4, . . . , at, b4, . . . , bt, c4, . . . , ct. Substituting x1 = la, x2 = lb, x3 = lc into the monomial form,
obtaining a system of dO(t) equations of degree at most d in 3(t − 3) variables by equating the
coefficients of monomials in the variables x4, . . . , xt to 0. Solutions to this would correspond to
codimension 3 spaces that g vanishes on.

To remove the codimension 3 spaces that are contained in S1(f) and S2(f), we first compute
the set of all linear factors, S1(g) by using blackbox factoring algorithm Lemma 3.7, and obtain the
monomial access to all of them by interpolating them in poly(d, t)-time. We also use Lemma 5.1(Al-
gorithm 1) to get S2(g) in dO(tt) time.

Then, we need to ensure that the solution to our system of equations x1 − la, x2 − lb, x3 − lc is
such that ∀l such that V(l) ∈ S1(g), we have that dim(span(x1− la, x2− lb, x3− lc, l)) = 4 and ∀l, l′

such that V(l, l′) ∈ S2(g), we have dim(span(x1 − la, x2 − lb, x3 − lc, l, l′)) ≥ 4. This is the same as
saying that the t × 4 matrix Al with x1 − la, x2 − lb, x3 − lc, l as rows and t × 5 matrix Al,l′ with
x1− la, x2− lb, x3− lc, l, l′ as rows have rank at least 4. This means at least one of the 4× 4 minors
of Al is full rank, with a non-zero determinant. Let the number of such minors be k1 :=

(t
4
)
. Also,

at least one of the 4× 4 minors of Al,l′ is full rank, with a non-zero determinant. Let the number
of such minors be k2 = 5 ·

(t
4
)
. To handle these, we introduce new variables y1, . . . , yk2+k1 , and for

each relevant l we consider the inequalities suml = ∑k1
j=1 yjMj ̸= 0, where Mj are the determinants

of the 4 × 4 minors of Al. For each relevant l, l′, we also consider suml,l = ∑k2
j=1 yj+k1M ′

j ̸= 0
where Mj are the determinants of the 4×4 minors of Al,l′ . The inequality has solutions if and only
if there exists a solution for which at least one of the Mj , M ′

j is non-zero. So now, we have from
Lemma 4.3 |S1(g)|+ |S2(g)| (which is ≤ d + d7) inequalities in our system along with the previous
equations. We note that we can use the same new variables y1, . . . , yk1+k2 in all of the inequalities.
Observe that the set of inequalities ∀ V(l) ∈ S1(g) suml ̸= 0 and ∀ V(l, l′) ∈ S2(g) suml,l′ ̸= 0 is
the same as having a single inequality (∏V(l)∈S1(g) suml) · (

∏
V(l,l′)∈S2(g) suml,l′) ̸= 0, which is same

as requiring that (∏V(l)∈S1(g) suml) · (
∏

V(l,l′)∈S2(g) suml,l′) · z = 1 has a solution for a new variable
z.

Thus, we can handle the condition of the solution not lying in any S1(g) and S2(g) space, by
simply adding one extra equation of degree 5|S1(g)|+5|S2(g)|+1 = O(d7) and k1 +k2 +1 = poly(t)
variables to the system of equations we had earlier.

32



Running Time Analysis The sampling of the random αi,j can be done in randomized poly(t, log d)
time. From Lemma 3.7, we can get black-box access to the factors in time randomized poly(t, d).
Computing S2(g) also takes poly(dO(tt)) time from Lemma 5.3. We can do interpolation and get
monomial access to g in time dO(t) using Lemma 3.6. As |S1(g)| ≤ d and |S2(g)| ≤ O(d8) from
Lemma 4.3, the loop on line 8 runs O(d) times and loop on line 11 runs in O(d8) time, both do-
ing poly(t) computation. Finally, the system of equations has dO(t) equations with degree O(d)
in poly(t) variables. Therefore, we can find la, lb, lc by solving the system of equations in time
poly(dO(tt)) using Theorem 3.8. Thus, the entire algorithm works in poly(dO(tt)) time.

Algorithm 3 Computing Vanishing S3(f) for constant variate polynomials
Input: Blackbox access to circuit C of form ΣΠΣ(3) computing polynomial f ∈ F[x1, . . . , xt],
t ≥ c3 and rank(sim(C)) = t

1: function S3(f)
2: Sample t2 random values αij ; i, j ∈ [t] uniformly from {1, . . . , dt}, and use them to define

t linear forms l′i = ∑t
j=1 αijxj . Check if they are independent, otherwise repeat. Define

isomorphism Φ such that for all i ∈ [t], Φ(xi) := l′i. Let g = Φ(f) = f(Φ(x)).
3: Using randomized black-box factoring from Lemma 3.7 and get access to the linear factors

of g
4: Interpolate g to get monomial access to it and interpolate the linear factors to obtain
S1(g) := {V(l) : l|g}

5: Use Algorithm 1 to get S2(g)
6: Substitute x1 = a4x4 + . . . + at−1xt−1 + aixi for linear form x1 − la, x2 = b4x4 + . . . +

bt−1xt−1 + bixi for linear form x2 − lb and x3 = c4x4 + . . . + ct−1xt−1 + cixi for linear form
x3 − lc in g and obtain equations in a4, . . . , at, b4, . . . , bt, c4, . . . , ct by equating the coefficients
of monomials in the variables x4, . . . , xt−1, xi to 0.

7: Let k1 =
(t

4
)

and k2 = 5
(t

5
)
. Introduce new variables z, y1, . . . , yk1+k2

8: for V(l)← S1(g) do
9: Consider the 4× t matrix Al formed by l and x1 − la, x2 − lb, x3 − lc.

10: Compute the determinant of each 4 × 4 minor Mj of Al. Compute and store suml :=∑k1
j=1 yjMj

11: for V(l, l′)← S2(g) do
12: Consider the 4× t matrix Al,l′ formed by l, l′ and x1 − l1, x2 − l2, x3 − l3.
13: Compute each 4× 4 minor Mj of Al,l′ . Compute and store suml,l′ := ∑k1+k2

j=k1
yjMj

14: Add Equation (∏V(l)∈S1(g) suml) · (
∏

V(l1,l2)∈S2(g) suml1,l2) · z = 1 to the system of equations
in Step 6.

15: Solve the system of equations in a, b, c to obtain a set of (x1 − l1, x2 − l2, x3 − l3).
16: Solve the system of equations in a4, . . . , at, b4, . . . , bt, c4, . . . , ct, y1, . . . , yk1+k2 , z using Theo-

rem 3.8 to obtain a set of (x1 − la, x2 − lb, x3 − lc).
17: Verify for each (x1−la, x2−lb, x3−lc) if f vanishes on V(Φ−1(x1−la), Φ−1(x2−lb), Φ−1(x3−

lc)) = V(l1, l2, l3) using Lemma 3.2, then add V(l1, l2, l3) to S3(f)
18: Output S3(f)

5.2.2 Computing S3(f) general case

We will now discuss how we can use the solution for the constant variate case to compute S3(f) in
the general case.

33



We will start by using a random linear isomorphism Φ on f such that Φ(xi) = ∑n
j=1 αijxj ,

where αij are chosen randomly from [dn], and define g = Φ(f) = f(Φ(x)). Let t = c3 + 1. We
will then consider the t variate polynomials gi (for i ≥ t) which are obtained from g by setting all
variables xj for j > t− 1 to zero, except xi.

Thus
gi = g|xt=...=xi−1=xi+1=...=xn=0

We will then find S3(gi) spaces using the constant variate algorithm and then show how to glue
the learned spaces to get S3(g) and then S3(f).

But, we still need to argue that the removal of S2 spaces(similar to the removal of S1 spaces in
part 2 of Lemma 5.4) after the number of variables is reduced corresponds exactly to the S2 spaces
of g. From part 1 of Lemma 5.4, we have that all gi can be computed by ΣΠΣ(3) circuits Ci of
rank t. Also, to be able to find the S3 spaces in the constant variate case, we need to argue that
there is no linear form l such that rank(sim(Ci mod l)) < c2.

We will first argue that when we project down to t variables (t = c3 + 1), there is no linear form
l such that rank(sim(Ci mod l)) < c2 and Ci mod li ̸= 0.

Lemma 5.7. If f is computed by a ΣΠΣ(3) circuit C such that rank(sim(C)) ≥ c3 and there
doesn’t exist a linear form l ∈ F[x1, . . . , xn] with rank(sim(C mod l)) < c2 and C mod l ̸= 0,
then with probability 1− o(1), for each i ∈ {t, . . . , n}, gi is also computed by a circuit Ci such that
there doesn’t exist a linear form li ∈ F[x1, . . . , xt−1, xi] with rank(sim(Ci mod li)) < c2 and Ci

mod li ̸= 0.

Proof. Observe that gi is obtained by applying a random linear isomorphism and then setting a
bunch of variables to zero. To prove the above lemma, observe that it suffices to prove it in the
case where we apply a random linear isomorphism and then just set one variable to zero. If we
can show that with a very high probability the resulting circuit will continue to have the desired
property in this case, then we can recursively apply this procedure (alternately applying random
linear isomorphisms and then setting a variable to zero) to eventually come down to only t variables
and continue to show with high probability that still there is no li for which when we go mod li then
the rank of the simple part drops. However alternately applying random linear isomorphisms and
then setting a variable to zero is (essentially) equivalent to applying one single random isomorphism
and then setting severable variables to zero at once. For simplicity, we will assume that these two
distributions are the same for the rest of the argument. It is easy to adapt the argument to the
original distribution or to change the definition of gi to be sampled from the recursively defined
distribution.

Let f be computed by a circuit of the form G × (T1 + T2 + T3) such that gcd(T1, T2, T3) = 1.
Note that g is then computed by a circuit of the form Φ(G) × (Φ(T1) + Φ(T2) + Φ(T3)) where
gcd(Φ(T1), Φ(T2), Φ(T3)) = 1. Thus g mod xn is computed by a circuit C ′ of the form Φ(C)
mod xn. Note that we need to show that with very high probability the circuit C ′ computing
g mod xn is such that there is no l ∈ F[x1, . . . , xn−1] with rank(sim(C ′ mod l)) < c2 and C ′

mod l ̸= 0.
Assume, this is not the case, i.e. C ′ = Φ(C) mod xn is such that for a linear form l, rank(sim(C ′

mod l)) < c2 and C ′ mod l ̸= 0. From the assumption in the lemma, we know rank(sim(Φ(C)
mod l)) ≥ c2 as C ′ mod l = Φ(C) mod ⟨l, xn⟩ ≠ 0 implies Φ(C) mod l ̸= 0.

Let P be the set of all 2-dimensional spaces such that for all span(la, lb) ∈ P there exists
l1 ∈ T1, l2 ∈ T2, l3 ∈ T3 such that span(la, lb) = span(l1, l2, l3). Define a set of linear forms S as
follows

34



S := {l : l ∈ Lin(Ti) for some i ∈ [3], or span(l) = V1 ∩ V2, V1, V2 ∈ P}

We have |S| = d6 + 3d as |Lin(Ti)| ≤ d for each i ∈ [3] and the number of spaces in P is at most
d3.

Claim 5.8. In the setting of the lemma, If there exists a linear form l such that rank(sim(C ′

mod l)) < c2 and C ′ mod l ̸= 0, then with probability 1 − o(1) there exists a linear form l′ ∈ S
such that span(l, xn) = span(l′, xn).

Proof. We know rank(sim(Φ(C) mod ⟨l, xn⟩)) < c2 while rank(sim(Φ(C) mod l)) ≥ c2 and
rank(sim(Φ(C))) ≥ c3. Therefore, the rank decrease from Φ(C) to Φ(C) mod ⟨l, xn⟩ happens in
2 possible ways, either a linear form in one of the gates (say Ti) vanishes mod ⟨l, xn⟩ or there are
linear forms l1 ∈ Φ(T1), l2 ∈ Φ(T2), l3 ∈ Φ(T3) that become the same when we consider the circuit
mod ⟨l, xn⟩ and move to the gcd.

If it is the first case, and Φ(Ti) mod ⟨l, xn⟩ = 0, this means there is a linear form l′ ∈
span(l, xn) ∩ Lin(Ti). Therefore, l′ is a linear form in S such that span(l′, xn) = span(l, xn) unless
xn ∈ span(l′). In this case, we have Φ−1(xn) ∈ span(li), or dim(span(li, Φ−1(xn))) = 1 for some
li ∈ Ti. Since the coefficients of Φ are chosen randomly from [dn], the probability that this happens
for a fixed li is O(d−n). As there are at most 3d possibilities for li, after taking union bound over
all li, we get this happens with probability o(1). Therefore, with high probability, there is l′ ∈ S
such that span(l′, xn) = span(l, xn).

In the second case, we have several set of linear forms l1 ∈ Φ(T1), l2 ∈ Φ(T2), l3 ∈ Φ(T3) that
become the same linear form l̃ ̸= 0 mod ⟨l, xn⟩ when we consider the circuit mod ⟨l, xn⟩ and move
to the gcd. We break it into 2 cases based on dim(span(l1, l2, l3)):

• There is a l1, l2, l3 such that dim(span(l1, l2, l3)) = 3: In this case, span(l, x, l̃) = span(l1, l2, l3)
and therefore xn ∈ span(l1, l2, l3) and after Φ−1, we have Φ−1(xn) ∈ span(Φ−1(l1), Φ−1(l2),
Φ−1(l3)), where Φ−1(l1), Φ−1(l2), Φ−1(l3) are linear forms in T1, T2, T3 respectively. Again,
this happens for fixed l1, l2, l3 with probability O(d−n). Taking a union bound over d3 possi-
bilities of l1, l2, l3, it happens with probability o(1).

• For all l1, l2, l3 moving to gcd dim(span(l1, l2, l3)) = 2: In this case, we have span(l1, l2, l3)
must intersect span(l, xn) in a line. Consider the case where there are 2 sets of linear forms
going into the gcd (l1, l2, l3 and l′1, l′2, l′3) when we consider the circuit mod ⟨l, xn⟩, such that
they intersect span(l, xn) in different lines. Then we have xn ∈ span(l1, l2, l3, l′1, l′2, l′3). Similar
to the earlier discussion, this happens with probability O(d−n) for fixed l1, l2, l3, l′1, l′2, l′3, and
taking union bound over d6 choices, we get this happens with probability o(1). Therefore, with
a high probability, there are at least 2 sets of linear forms that move into the gcd that intersect
span(l, xn) in the same space, let us say span(l0). From definition, we have these sets of linear
forms in P and therefore l0 ∈ S. Note, we already argued that xn ∈ span(l1, l2, l3, l′1, l′2, l′3)
happens with probability o(1). Therefore, again in this case there is a linear form l′ = l0 in
S such that with high probability, there is l′ ∈ S such that span(l′, xn) = span(l, xn).

From the above claim, as rank(sim(C ′ mod l)) < c2 and C ′ mod l ̸= 0, we have there must
be a linear forms l′ ∈ S such that span(l, xn) = span(l′, xn). Let us fix a linear form l0 in S. From
the assumption, we have rank(sim(Φ(C) mod l0) ≥ c2. If there exists an l such that rank(sim(C ′

mod l)) < c2 and C ′ mod l ̸= 0, then we also have rank(sim(Φ(C) mod ⟨l0, xn⟩) < c2. In part 1

35



of Lemma 5.4, we showed that this happens with probability O(d−n) and therefore for fixed l0 this
happens with probability O(d−n). Taking a union bound for all l0 in S which has size O(d6), we
get that the probability such a l exists is o(1).

The fact that there are no new S1 spaces was already argued in Part 2 of Lemma 5.4. Also in
Part 3 of Lemma 5.4 we showed that the number of S2 spaces doesn’t shrink. Now, we will argue
no new S2 spaces are created for gi’s with high probability.

Lemma 5.9. If f is computed by a ΣΠΣ(3) circuit C such that rank(sim(C)) ≥ c3 and there
doesn’t exist a linear form l ∈ F[x1, . . . , xn] with rank(sim(C mod l)) < c2 and C mod l ̸= 0, then
with probability 1− o(1),

S2(gi) = {Φ(S2(f))}|xt=...=xi−1=xi+1=...=xn=0

Proof. We want to argue that there is no new codimension 2 space over which gi vanishes, which
doesn’t correspond to a space in S2(g).

Similar to Lemma 5.7, we argue this recursively and therefore only need to show that no new
S2 spaces are added when we consider g mod xn.

Consider a new space V(l1, l2) ∈ S2(g mod xn) such that it doesn’t correspond to a space
in S2(g), i.e. V(l1, l2) ̸∈ {S2(g)}|xn=0. This means that the space V(l1, l2, xn) is a codimension
3 space on which g vanishes. So V(l1, l2, xn) ∈ S3(g) unless there is a space V(la, lb) ∈ S2(g)
such that span(la, lb) ⊆ span(l1, l2, xn). But in this case for g mod xn, V(l1, l2) is not a new
space, but just V(la, lb) mod xn unless xn ∈ span(la, lb) and therefore V(xn, l′) ∈ S2(g) such
that span(la, lb) = span(xn, l′). Therefore, V(l1, l2, xn) ∈ S3(g) or V(xn, l′) ∈ S2(g). Consider
V(l1, l2, xn) ∈ S3(g) first. Applying Φ−1, we get that V(Φ−1(l1), Φ−1(l2), Φ−1(xn)) is in S3(f).
This means Φ−1(xn) must be in span(l1, l2, l3) for some V(l1, l2, l3) ∈ S3(f). Since Φ was random,
Φ−1(xn) must be random as well. We argue that a random linear form l doesn’t lie in the kernel
of a S3 space with high probability. From Lemma 4.4, we know as rank(sim(f)) ≥ c3 and there
doesn’t exist a linear form l, such that rank(sim(f mod l)) < c2, |S3(f)| ≤ O(d15). And, we
pick l randomly, so the probability that the line lies in one of the spaces in S3(f) is at most
|S3(f)| · P[l ∈ span(l1, l2, l3)] for fixed l1, l2, l3 over n variables by union bound. This means the
rank of the matrix defined by l, l1, l2, l3 as rows is 3, which happens with probability O(d−n) as we
pick coefficients of Φ from [dn].

Thus, the probability that a new space is introduced is d15

dn ≤ o(1). The same argument holds
for Φ−1(xn) lying in the kernels of a S2(f) space.

Now, provide the proof of Lemma 5.2, which we restate here for clarity.

Lemma 5.2 restated. Let F be a field that is R or C. Let f be a n-variate, degree d polynomial in
F[x1, . . . , xn] that is computed by a ΣΠΣ(3) circuit C such that rank(sim(C)) ≥ c3 and there doesn’t
exist a linear form l ∈ F[x1, . . . , xn] with rank(sim(C mod l)) < c2, where c2 is as in Lemma 4.3
and c3 is as in Lemma 4.4. Then, there exists an algorithm (Algorithm 4) that outputs S3(f), in
poly(n, d)-time with probability 1− o(1).

Proof of Lemma 5.2. The idea is the same as Lemma 5.1, but we need to argue some more tech-
nicalities using the lemmas mentioned above. We first apply a random linear isomorphism and
obtain g = Φ(f). For t = c3 + 1, we obtain n− t polynomials gi ∈ F[x1, . . . , xt−1, xi] by setting all
except x1, . . . , xt−1, xi to 0. Then we solve the constant variate cases, using Algorithm 3 discussed

36



above to recover S3(gi). We will then recover S3(g) by gluing together spaces from S3(gi) (across
different choices of i) when the spaces are consistent when restricted to x1, . . . , xt−1.

By part 1 of Lemma 5.4, the random invertible linear isomorphism ensures that when we set
some of the variables to 0, the rank of the linear forms present in the circuits computing the gi’s
remains high (equal to t) with high probability. Also, from part 2 or Lemma 5.4, we know the set
S1(gi) contains exactly the linear factors of g projected down to the t variables in gi.

Similar to part 3 of Lemma 5.4, we have for every V(x1−l1, x2−l2, x3−l3) ∈ S3(g), there is V(x1−
l1i, x2 − l2i, x3 − l3i) ∈ S3(gi), where lji = lj |xt=0,...,xi−1=0,xi+1=0,...,xn=0. As we already saw in proof
of Lemma 5.6, for any V(l1, l2, l3) ∈ S3(g), it can be represented in the form V(x1−l′1, x2−l′2, x3−l′3)
where l′1, l′2, l′3 ∈ F[x4, . . . , xn]. It is fairly straightforward to see that if g vanishes on V(x1− l′1, x2−
l′2, x3 − l′3) then gi vanishes on V(x1 − l′1i, x2 − l′2i) where l′ji = l′j |xt=0,...,xi−1=0,xi+1=0,...,xn=0.

Also from part 2 of Lemma 5.4, we have that S1(gi) = {V(l|xt=...=xi−1=xi+1=...=xn=0) : V(l) ∈
S1(g)} and from Lemma 5.9, we have S2(gi) = {S2(g)}|xt=...=xi−1=xi+1=...=xn=0, which means if
V(x1 − l′1, x2 − l′2, x3 − l′3) weren’t contained in any S1(g) or S2(g) space, then V(x1 − l′1i, x2 − l′2i)
is also not contained in any S1(gi) or S2(g′

i) space. Both of the above combine to give us that
V(x1 − l′1i, x2 − l′2i, x3 − l′3i) ∈ S2(gi).

From Lemma 5.7, we have that with 1 − o(1) probability none of the gi’s are such that there
is a linear form l with rank(sim(gi mod l)) < c2, and therefore from Lemma 4.4 the output list
S3(gi) is also poly(d) in size. We can find S3(gi) in poly(d) time as described in Lemma 5.6. By
Lemma 5.9, we also have that the codimension 2 spaces removed in Algorithm 3 correspond to
S2(g).

To obtain S3(g) (wlog of the form V(x1 − l1, x2 − l2, x3 − l3)), we will show how to glue these
spaces learned in the constant variate case. To do this, we will look at spaces in S3(gi) and S3(gj)
(for i ̸= j) and “glue” them if they are consistent in the first t − 1 variables. For this to be
efficient, it will be very useful to have the property that distinct spaces in S3(gi) are distinct when
restricted to the first t− 1 coordinates. This is probably already true with high probability due to
the randomness of Φ. However to make the argument simpler to analyze, we consider and apply
another random linear isomorphism Ψ (we will apply these to the spaces in S3(gi) for each i) defined
as follows: ∀i < t, Ψ(xi) = xi and ∀i ∈ [t, n], Ψ(xi) = xi + βi,4x4 + . . . + βi,t−1xt−1 where βi,j are
sampled independently and uniformly from [dn]. The goal of introducing the map Ψ is to ensure
that distinct spaces in S3(gi) are distinct when restricted to the first t−1 coordinates, and we prove
this formally in the claim below.

Claim 5.10. For all i ∈ {t, . . . , n}, let V(l1, l2, l3) and V(l′1, l′2, l′3) be distinct spaces in S3(gi) such
that l1, l2, l3, l′1, l′2, l′3 only depend on x4, . . . , xt−1, xi. Then V(Ψ(x1− l1)xi=0, Ψ(x2− l2)xi=0, Ψ(x3−
l3)xi=0) ̸= V(Ψ(x1 − l′1)xi=0, Ψ(x2 − l′2)xi=0, Ψ(x3 − l′3)xi=0). In particular

⟨Ψ(l1)|xi=0, Ψ(l2)|xi=0, Ψ(l3)|xi=0⟩ ≠
〈
Ψ(l′1)|xi=0, Ψ(l′2)|xi=0, Ψ(l′3)|xi=0

〉
Proof. The proof of this claim is very similar to Claim 5.5and Lemma 5.4 of [Sin22]. Consider 2 dis-
tinct elements V(x1−l1, x2−l2, x3−l3) and V(x1−l′1, x2−l′2, x3−l′3) in S3(gi), with l1, l′1, l2, l′2, l3, l′3 ∈
F[x4, . . . , xt−1, xi]. Let l1 = a4x4 + . . . + at−1xt−1 + aixi, l2 = b4x4 + . . . + bt−1xt−1 + bixi,
l3 = c4x4 + . . . + ct−1xt−1 + cixi, l′1 = a′

4x4 + . . . + a′
t−1xt−1 + a′

ixi, l2 = b′
4x4 + . . . + b′

t−1xt−1 + b′
ixi,

and l′3 = c′
4x4 + . . . + c′

t−1xt−1 + c′
ixi. Therefore, we have

37



l1 = (a4 + βi,4ai)x4 + . . . + (at−1 + βi,t−1ai)xt−1 + aixi

l2 = (b4 + βi,4bi)x4 + . . . + (bt−1 + βi,t−1bi)xt−1 + bixi

l3 = (c4 + βi,4ci)x4 + . . . + (ct−1 + βi,t−1ci)xt−1 + cixi

l′1 = (a′
4 + βi,4a′

i)x4 + . . . + (a′
t−1 + βi,t−1a′

i)xt−1 + a′
ixi

l′2 = (b′
4 + βi,4b′

i)x4 + . . . + (b′
t−1 + βi,t−1b′

i)xt−1 + b′
ixi

l′3 = (c′
4 + βi,4c′

i)x4 + . . . + (c′
t−1 + βi,t−1c′

i)xt−1 + c′
ixi

Now, if ⟨Ψ(x1 − l1), Ψ(x2 − l2), Ψ(x3 − l3)⟩ |xi=0 = ⟨Ψ(x1 − l′1), Ψ(x2 − l′2), Ψ(x3 − l′3)⟩ |xi=0, we
have a system of linear equations in βi,4, . . . , βi,t−1 given by ∀j ∈ {4, . . . , t − 1} βi,j(ai − a′

i) =
(aj − a′

j), βi,j(bi − b′
i) = (bj − b′

j), and βi,j(ci − c′
i) = (cj − c′

j). Since ⟨x1 − l1, x2 − l2, x3 − l3⟩ and
⟨x1 − l′1, x2 − l′2, x3 − l′3⟩ are distinct, there is some choice of j for which at least one of aj ̸= a′

j ,
bj ̸= b′

j or cj ̸= c′
j must hold. This gives a nonzero linear equation in βi,j (when viewed as formal

variables) which must become zero for the specific choice of sampled values. By using Lemma 3.2,the
probability this can happen is 1

dn as we choose the βi,j from [dn]. From Lemma 4.4 we know the
S3(gi) = dO(1), and taking the union of all pairs from S3(gi) gives us that with probability 1− o(1)
no two spaces in any of the S3(gi) are equal after applying Ψ and setting xi to zero.

As described in Algorithm 4, for each V(x1−lt1, x2−lt2, x3−lt3) ∈ S2(gt) we “glue” or combine it
with a corresponding V(x1−li1, x2−li2, x3−li3) ∈ S2(gi) if they are consistent in first t variables, i.e.
⟨Ψ(li1)|xi=0, Ψ(li2)|xi=0, Ψ(li3)|xi=0⟩ = ⟨Ψ(lt1)|xt=0, Ψ(lt2)|xt=0, Ψ(lt3)|xt=0⟩. We each fixed space in
S3(gt) with high probability there is a unique space in S3(gi) where this happens by the above
claim. Note that every space in S3(g) corresponds to some unique space in S3(gt) (since the spaces
in S3(gt) are distinct restricted to first t − 1 coordinates). To recover the spaces of S3(g) with
information for all coordinates, for each i, we use the information present in the glued space in
S3(gi) to recover the information for the coordinate corresponding to xi. Thus we obtain all spaces
V(l1, l2, l3) on which g vanishes and use Φ−1 to obtain S3(f).

38



Algorithm 4 Computing Vanishing Codimension 3 Subspaces
Input: Blackbox access to circuit C of form ΣΠΣ(3) computing polynomial f ∈ F[x1, . . . , xn]

1: function S3(f)
2: Sample n2 random values αij ; i, j ∈ [n] uniformly from {1, . . . , dn}, and use them to define

n linear forms l′i = ∑n
j=1 αijxj . Check if they are independent, otherwise repeat. Define

isomorphism Φ such that for all i ∈ [n], Φ(xi) := l′i. Let g = Φ(f) = f(Φ(x)).
3: Set t = c3 + 1. For i ∈ [t, n], Obtain gi = gxt=0,...,xi−1=0,xi−1=0,...,xn=0
4: For each gi, i ∈ [t, n], Compute S3(gi) using Algorithm 3.
5: We now describe how to glue these spaces across gi.
6: Consider an isomorphism Ψ obtained as follows. Sample (n− t + 1)× (t− 4) random values

βi,j where i ∈ [t, n], j ∈ [4, t− 1] uniformly from {1, . . . , dn}. For all i ∈ [1, t− 1], let Ψ(xi) = xi

and for all i ∈ [t, n], let Ψ(xi) = xi + βi,4x4 + . . . + βi,t−1xt−1.
7: for V(x1 − lt1, x2 − lt2, x3 − lt3) ∈ S3(gt) do
8: la := lt1, lb := lt2, lc := lt3
9: for i ∈ {t + 1, . . . , n} do

10: Search for V(x1 − li1, x2 − li2, x3 − li3) such that

⟨Ψ(x1 − lt1)|xt=0, Ψ(x2 − lt2)|xt=0, Ψ(x3 − lt3)|xt=0⟩ = ⟨Ψ(x1 − li1)|xi=0, Ψ(x2 − li2)|xi=0,

Ψ(x3 − li3)|xi=0⟩

11: If multiple such spaces are found, break out of the loop, and go to the next space in
the outer loop.

12: If only one such space is found then update la = la−αxi, lb = lb−βxi and lc = lc−γxi

where α, β, γ are coefficients of xi in li1, li2, li3 respectively.
13: Add V(x1 − la, x2 − lb, x3 − lc) to S3(g)
14: For each V(l1, l2, l3) ∈ S3(g),Verify f vanishes on V(Φ−1(l1), Φ−1(l2), Φ−1(l3). Output the

set thus obtained, as S3(f).

6 Using S2(f) and S3(f) to get some linear forms appearing in C

In this section, we show how to use the set of spaces in S2,S3 that were learnt in the previous
section to actually learn a few linear forms that appear in the circuit. We do this by looking at
intersections of the kernels of these spaces. The bulk of the section will be devoted to showing
that these intersections enable us to learn many useful linear forms, and this is formalized in
Theorem 6.1.

We classify the linear forms, which we can learn from S2 and S3, into the following 3 sets.
Consider 2 distinct spaces V(l1, l2),V(l′1, l′2) ∈ S2(f). If the intersection of the two spaces

span(l1, l2) and span(l′1, l′2) has dimension 1, then we add the linear form that corresponds to this
dimension 1 space(we do this in a some canonical way, with leading coefficient 1, say) to the set
L2.

Similarly, we consider 3 distinct spaces V(l1, l2, l3),V(l′1, l′2, l′3),V(l′′1 , l′′2 , l′′3) ∈ S3(f), and the
intersection of the three spaces span(l1, l2, l3), span(l′1, l′2, l′3), span(l′′1 , l′′2 , l′′3). If it has dimension 1,
we add the linear form corresponding to the intersection to L3.

In the general case, where we can find S2,S3(satisfying conditions of Lemma 5.1 and Lemma 5.2),
we will make our set of candidate linear forms using the union of the two sets

39



Lcand = L2 ∪ L3

From Lemma 5.1 and Lemma 5.2, we see that we can compute S2(f) and S3(f)(except in certain
special cases that we handle separately) in time (nd)O(1) time. We also showed in Lemma 4.3 and
Lemma 4.4 that the size of S2 and S3 in these cases is dO(1) and thus we can go over all pairs or
triplets and find their intersections in time (nd)O(1), and therefore find Lcand in poly(n, d) time.
This process is described in more detail in Algorithm 6.

This section aims to show that using these intersections we can obtain a significant number of
linear forms from at least one of the gates in C. It is summarised as the following main theorem of
the section.
Theorem 6.1. Let F be a field that is R or C. Let f ∈ F[x1, . . . , xn] be a degree d polynomial
computed by ΣΠΣ(3) circuit of the form C = G× (T1 + T2 + T3) such that gcd(T1, T2, T3) = 1. Let
R(k) be as defined in Theorem 3.4. Let ccand > 36R(3) be any constant. Suppose that C is such
that rank(sim(C)) ≥ 15ccand log d, then there exists an algorithm that runs in (nd)O(log d) time and
with 1 − o(1) probability outputs a set of linear forms Lcand such that |Lcand| = dO(1) and there is
a gate Ti, i ∈ [3] such that dim(span(Lin(Ti) ∩ Lcand)) ≥ ccand log d.
Proof of Theorem 6.1. The analysis of obtain this set of linear forms becomes much easier if we
have two additional assumptions namely:

• dim(span(Lin(G))) ≤ 6R(3) log d and

• Ti is not of the form αld for any α ∈ F and l that is a linear form in F[x1, . . . , xn]
We show in Theorem 6.2 how to obtain the set of linear forms Lcand in poly(n, d) time with prob-

ability 1−o(1) such that |Lcand| = dO(1) and there is a gate Ti, i ∈ [3] such that dim(span(Lin(Ti)∩
Lcand)) ≥ ccand log d.

The case where there is a gate Ti that is of the form αld for some α ∈ F and l that is a linear
form in F[x1, . . . , xn] is handled in Lemma 6.20, where we show how to obtain the required set in
poly(n, d) time with 1− o(1) probability.

We will now argue that we can reduce the problem of finding Lcand for the general setting, with
any G to finding Lcand when dim(span(Lin(G))) ≤ 6R(3) log d.

To do this, we first define Ls1 := {l : V(l) ∈ S1(f)} = {l : l|f} as the set of linear factors of f .
We can find Ls1 easily as we can get blackbox access to the factors of f in randomized poly(n, d)
time by Lemma 3.7 and then find the linear factors among them. We show in Lemma 6.4 that
the set Ls1 \ Lin(G) spans a space of dimension at most 6R(3) log d. For all possible S ⊆ Ls1
such that dim(span(S)) ≤ 6R(3) log d, we divide the circuit by linear forms in Ls1 \ span(S) to
get a new circuit C ′. There will be one such S such that span(S) = span(Ls1 \ Lin(G)), and in
this case all the linear forms in Ls1 \ span(S) that we divide C by will be in Lin(G). Therefore,
for the new circuit C ′ = G′ × (T1 + T2 + T3) will still be computable by a ΣΠΣ(3) circuit with
sim(C) = sim(C ′) and dim(span(Lin(G))) ≤ 6R(3) log d. As sim(C) = sim(C ′), the set Lcand that
satisfies the required properties for C ′ will also satisfy them for C. Since, we can find the set Lcand

for input C ′ by Theorem 6.2 in poly(n, d) time, we can find Lcand in poly(n, d) for each choice of
S. Clearly, |Ls1| ≤ d and therefore the number of sets S will be at most dO(log d). Thus, we can
compute the set Ls1 for general circuit with high rank in time (nd)O(log d).

Theorem 6.2. Let F be a field that is R or C. Let f ∈ F[x1, . . . , xn] be a degree d polynomial
computed by ΣΠΣ(3, d) circuit of the form C = G × (T1 + T2 + T3) such that gcd(T1, T2, T3) = 1.
Let R(k) be as defined in Theorem 3.4. Let ccand > 36R(3) be any constant. Suppose that C is
such that

40



1. rank(sim(C)) ≥ 15ccand log d

2. dim(span(Lin(G))) ≤ 6R(3) log d and

3. Ti is not of the form αld for any α ∈ F and l that is a linear form in F[x1, . . . , xn]

then there exists an algorithm that runs in poly(n, d) time and with 1 − o(1) probability outputs
a set of linear forms Lcand such that |Lcand| = dO(1) and there is a gate Ti, i ∈ [3] such that
dim(span(Lin(Ti) ∩ Lcand)) ≥ ccand log d.

Proof. Let Ls1 be the set of linear forms l that divide f . To show that we can obtain ccand log d
candidate linear forms, we divide the analysis into the following cases and then prove that we can
get the candidate linear forms in separate lemmas.

• There is no linear form l such that rank(sim(C mod l)) ≤ c2 and C mod l ̸= 0.

– When there are at least 2 high-rank gates i.e. wlog T1, T2 are such that
dim(span(Lin(T1))) ≥ 5ccand log d and dim(span(Lin(T2))) ≥ 5ccand log d

∗ The Third gate T3 is such that dim(span(Lin(T3) \ Ls1)) ≥ 2. (Lemma 6.10)
∗ The Third gate T3 is such that dim(span(Lin(T3) \ Ls1)) ≤ 1. (Lemma 6.13)

– There is exactly 1 gate, wlog T1, with rank greater than 5ccand log d. (Lemma 6.14)

• There is a linear form l such that rank(sim(C mod l)) ≤ c2 and C mod l ̸= 0.

– No Ti vanish mod l. (Lemma 6.15)
– rank(sim(T2 + T3)) < c2 and l|T1. (Lemma 6.17)
– l|T1, rank(sim(T2 + T3)) ≥ c2 but rank(sim((T2 + T3) mod l)) < c2. (Lemma 6.18)

All the cases of this theorem are covered by the above division, and we will see the proofs for
each of the cases in the following section.

Before we go into the details of the cases outlined in Theorem 6.2, we will need some structural
results about S1,S2 spaces which we will discuss in the next subsection.

6.1 Structural Results

Our first structural result is the following lemma, which bounds the dimension of the set of “rank-
reducing” linear forms. The proof of Claim 4.8 in [DS05] implies this result. It can also be inferred
as a special case of Lemma B.1 (restated with better notation in section B.1.2) in [KS09a], with
A = [k], r̂ = rk(sim(T1 + T2 + . . . + Tk)), rt = r′, χ =

⌊
r̂

2r′ log d

⌋
.

Lemma 6.3 (Implied from Claim 4.8,[DS05]). Let C be a ΣΠΣ(k) circuit of the form T1 + T2 +
. . . + Tk such that gcd(T1, . . . , Tk) = 1. Fix r′ > 0 to be any constant such that rank(sim(T1 + T2 +
. . . + Tk)) > 2r′ log d + 2k. We define a linear form l to be rank-reducing if ∀i ∈ [k] l ∤ Ti and
rank(sim(C mod l)) ≤ r′. If we define a set of rank-reducing linear forms for C as

L := {l : l is rank-reducing for C}

then dim(span(L)) ≤ max(r′ log d, 2k log dk + 2k).

41



The next structural lemma bounds the dimension of linear forms dividing f that do not divide
the gcd G.

Lemma 6.4. Let R(k) be as defined in Theorem 3.4. Let f ∈ F[x1, . . . , xn] be a degree d polynomial
computed by ΣΠΣ(3) circuit of the form C = G× (T1 + T2 + T3) such that gcd(T1, T2, T3) = 1, we
define

Ls1 := {l : V(l) ∈ S1(f)} = {l : l|f}
then, we have dim(span(Ls1 \Lin(G))) ≤ 5R(3) log d+42. In particular, as we consider polynomial
families with increasing d, for large enough d, we have

dim(span(Ls1 \ Lin(G))) ≤ 6R(3) log d

Proof. The only interesting case is when rank(T1 + T2 + T3) ≥ 5R(3) log d + 42 as otherwise the
contribution of linear forms dividing T1 + T2 + T3 has to be less than rank(T1 + T2 + T3). So, we
assume rk(T1 + T2 + T3) ≥ 5R(3) log d + 42. Let l be any linear form such that l|(T1 + T2 + T3).
Such an l must be one of the following two kinds.

1. Case 1: ∀i ∈ [3] l ∤ Ti. As f = 0 mod l, the circuit (C mod l) computes 0. Let the circuit
C mod l be of the form G′× (T ′

1 +T ′
2 +T ′

3) with gcd(T ′
1, T ′

2, T ′
3) = 1. Note that (T ′

1 +T ′
2 +T ′

3)
is a simple circuit computing 0, and hence by definition, rank(T ′

1 + T ′
2 + T ′

3) < R(3). Let L′
s1

be the set of linear forms in Ls1 which do not divide any Ti. We can use Lemma 6.3 with
r′ = R(3), k = 3 and rank(sim(T1 + T2 + T3)) > 2R(3) log d + 6, to obtain dim(sp(L′

s1)) ≤
max(R(3) log d, 6 log(3d) + 6) ≤ 2R(3) log d + 18.

2. Case 2: ∃i ∈ [3] l|Ti. If a linear form is such that it divides 2 Ti’s, then for it to be
in Ls1, it also has to divide the third gate which means it contributes to G. Thus we are
considering linear forms l that divide a gate (say T1) and sim(T2 + T3)(but do not divide T2
or T3). If rank(sim(T2 + T3)) < 2 log d, then we are done as dim(span(Lin(sim(T2 + T3))) <
rank(sim(T2 +T3)) < 2 log d and thus the linear forms in this case contribute to the dimension
only by 2 log d. Thus let us assume rank(sim(T2 +T3)) ≥ 2 log d. Now if l divides sim(T2 +T3),
then when we go mod l, the rank reduces from greater than 2 log d to 1, as T ′

2 + T ′
3 = 0 only

when T ′
2 = −T ′

3. So, using Lemma 6.3 with r′ = 1 and rank(sim(T2 +T3)) > 2 log d, the linear
forms contributing in this case would lie in a 4 log 2d + 4 dimensional space. Since i could be
1, 2, or 3, there are actually three such cases to consider. Thus, we have the linear forms in
Ls1 in this case lie in at most a 12 log d + 24 ≤ 3R(3) log d + 24 dimensional space.

Combining the two cases we get that dim(span(Ls1) \ Lin(G)) ≤ 5R(3) log d + 42.

We see from the above proof that it is important that when the rank is high, for a codimension
1 vanishing space outside the gcd to exist, the gcd after we go mod the linear form needs to be
high dimension and the remaining circuit needs to be low rank for it to be identity. In the case,
where one of the gates Ti is such that dim(span(Lin(Ti))) is small, the rank of the new gcd will be
upper bounded by the rank of the smallest rank gate, and hence there will be no linear forms in
S1 \ G(except the ones that divide the low-rank gate and also sim(C)). We argue this idea more
formally in the following lemma.

Lemma 6.5. Let R(k) be as defined in Theorem 3.4. Let f ∈ F[x1, . . . , xn] be a degree d polynomial
computed by ΣΠΣ(3) circuit of the form C = G × (T1 + T2 + T3) such that gcd(T1, T2, T3) =
1. Moreover assume that rank(sim(C)) ≥ 2R(3) log d, and ∃ i ∈ [3] such that rank(sim(C)) −
dim(span(Lin(Ti))) ≥ R(3) + 3. Then

42



1. Any l ∈ Ls1 \ Lin(G) will be such that l|Tj for some j ∈ [3]

2. S2(f) contains only spaces over which at least one of T1, T2, T3 vanish.

Proof. Let l ∈ Ls1 \ Lin(G). For the sake of contradiction, assume no multiplication gate vanishes
when we go mod l. Let C mod l be of the form G′ × (T ′

1 + T ′
2 + T ′

3) where gcd(T ′
1 + T ′

2 + T ′
3) = 1.

Then dim(span(Lin(G′))) ≤ dim(span(Lin(G)) + dim(span(Lin(Ti))), and therefore rank(sim(C
mod l)) ≥ rank(sim(C)) − dim(span(Lin(Ti))) − 1 > R(3). Thus C mod l ̸= 0. Hence, there are
no linear forms l ∈ Ls1 \ Lin(G) that give rise to this case.

Now, we consider S2(f) and want to show that for any V(l1, l2) ∈ S2(f) at least one of Ti’s
vanishes. Consider the case where none of the Ti’s vanish on V(l1, l2) ∈ S2(f). Let C mod ⟨l1, l2⟩ =
G′ × (T ′

1 + T ′
2 + T ′

3) where gcd(T ′
1, T ′

2, T ′
3) = 1. Then, dim(span(Lin(G′))) ≤ dim(span(Lin(G)) +

dim(span(Lin(Ti))), and therefore we have

rank(sim(C mod ⟨l1, l2⟩)) ≥ rank(sim(C))− dim(span(Lin(Ti)))− 2 > R(3)

by assumption. Thus C mod ⟨l1, l2⟩ ≠ 0, but this cannot be since V(l1, l2) ∈ S2(f). Therefore,
S2(f) is empty in this case.

The set S2(f) contains all spaces of the form V(l1, l2, l3) with dim(span(l1, l2, l3)) = 2 and
l1 ∈ Lin(T1), l2 ∈ Lin(T2), l3 ∈ Lin(T3). These spaces are useful as the intersection of the kernels of
such spaces gives us linear forms in the circuit. At the same time, it also contains spaces that do
not give us any information about the circuit and prevent us from learning codimension 3 spaces
contained in them. To capture this usefulness, we partition S2(f) into two subsets of spaces Sreg

2
and Ssp

2 as defined below:

Sreg
2 (f) := {V(l1, l2) : V(l1, l2) ∈ S2, For a random l ∈ span(l1, l2) and

span(l′) := (span(l1, l2) mod l) , with high probability l′|sim(C mod l)}

Ssp
2 (f) := S2 \ Sreg

2 (f)

Now, we will work on bounding the structure of Sreg
2 (f).

Definition 9 (Independent Vanishing Set). We define a subset W ⊆ Sreg
2 (f) to be an independent

vanishing set if there exists an integer k such that

• |W | = k

• dim(span({span(l1, l2) : V(l1, l2) ∈W})) = 2k

i.e. the kernels of the spaces in W are independent.

We will argue in the following lemma that the size of any Independent Vanishing Set W is small.

Lemma 6.6. Let f be a n-variate degree d polynomial over any infinite field4 computed by circuit
C = G× (T1 + T2 + T3) such that gcd(T1, T2, T3) = 1. Let R(k) be as defined in Theorem 3.4. Then
for any W ⊆ Sreg

2 (f) that is an independent vanishing set for f we have

|W | ≤ 6R(3) log d

4in fact any large enough field would suffice

43



We first state and prove a simple claim that will be useful for the proof.

Claim 6.7. Let S = {U1, U2, . . . Ur} be any collection of 2-dimensional subspaces of Fn (where F is
an infinite or large enough field) such that dim(span(S)) = 2r. For i ∈ [r], let li be the linear form
corresponding to a uniformly random vector sampled from Ui. Let f ∈ F[x1 . . . xn] be a nonzero
degree d polynomial. Then the probability that f = 0 mod ⟨l1, . . . , lr⟩ is vanishingly small.

Proof. First observe that it suffices to prove the above result for r = 1 and then use induction
(since U1, U2, . . . Ur are all independent). For r = 1, note that for any linear form l such that f = 0
mod ⟨l⟩, l must be a linear factor of f . Since f can have at most d distinct linear factors (up to
scaling), the result follows.

We now prove Lemma 6.6

Proof of Lemma 6.6. Let k = |W |. Let W = {W1, W2, . . . Wk}. Now each Wi ∈ W is of the form
V(li1, li2). Let Vi = span{vi1, vi2} where vi1 ∈ Fn is the vector corresponding to li1 and vi2 is the
vector corresponding to li2.

For each i let li be the linear form corresponding to a uniformly random vector sampled from
Vi. Let l′i be such that span{li, l′i} = span{li1, li2}.

Let A = {li : i ∈ [k]}.
Now, we consider the circuit C ′ = C mod ⟨A⟩. Let f ′ = f mod ⟨A⟩.
Let C ′ be of the form C ′ = G′ × (T ′

1 + T ′
2 + T ′

3), where gcd(T ′
1, T ′

2, T ′
3) = 1. Observe that by

Claim 6.7, C ′ ̸= 0. Moreover each of G′, T ′
1, T ′

2, T ′
3 compute nonzero polynomials. We will show

that l′1, l′2, . . . , l′k are all linear factors of f ′ (in the space V(l1, l2, . . . , lk)) that divide (T ′
1 + T ′

2 + T ′
3).

Then, by Lemma 6.4, the bound on k follows.
Let C mod li be of the form Gi × (T1i + T2i + T3i) with gcd(T1i, T2i, T3i) = 1. By definition

of Sreg
2 , we have l′i divides (T1i + T2i + T3i). We would like to show that l′i continues to divide

T ′
1 + T ′

2 + T ′
3, i.e. it divides sim(T1i + T2i + T3i mod ⟨A⟩).

Let T1i be a gate such that l′i ∤ T1i. Such a gate exists as gcd(T1i, T2i, T3i) = 1. It suffices to
show that no linear form dividing T1i becomes equal to l′i when we consider it over V(l1, l2, . . . , lk).
Consider any linear form l dividing T1i. By assumption, span{l′i} cannot contain any factor of
T1i. Thus l ̸∈ span{l′i} and hence it is of the form βl′i + l′ where l′ ̸∈ span{l′i}. By Claim 6.7
(applied to βl′i + l′ but in the space V(l′i)), l′ remains nonzero with high probability when we go
mod l1, l2, . . . , li−1, li+1, . . . lk, and moreover is still not in span{l′i}.

We also define a set of codimension 3 spaces Ssp
3 (f) for a polynomial f computed by a ΣΠΣ(3)

circuit as follows

Ssp
3 (f) = {V(l1, l2, l3) : l1|T1, l2|T2, l3|T3, and dim(span(l1, l2, l3)) = 3,

V(l1, l2, l3) ⊂ V(l′1, l′2) ∈ Ssp
2 (f) and, l1, l2, l3 ̸∈ span(l′1, l′2)}

We will below describe an algorithm that has knowledge of S2(f) and it computes a set Ssp
3

such that |Ssp
3 | = dO(1) and it contains all the spaces in Ssp

3 (f) .

44



Algorithm 5 Computing codimension 3 vanishing spaces contained in Ssp
2

Input: Blackbox access to circuit C of form ΣΠΣ(3, d) computing polynomial f ∈ F[x1, . . . , xn]
1: function set-containing-Ssp

3 (C)
2: Compute S2(f) using Algorithm 2
3: for V(l1, l2) ∈ S2(f) do
4: Pick a random vector l in span(l1, l2)
5: Let C ′ := C mod l and l′ := span(l1, l2) mod l.
6: Let e be the multiplicity of l′ in Lin(C)
7: Let C̄ := (C ′/ (l′)e) mod l′. Factorize C̄ to get access to Lin(C̄).
8: for l∗ ∈ Lin(C̄) do
9: Add V(l1, l2, l∗) to Ssp

3
10: Output Ssp

3

Lemma 6.8. Let f computed by a ΣΠΣ(3) circuit C with rank(sim(C)) ≥ c2, where c2 is as in
Lemma 4.3. Then, there exists an algorithm(Algorithm 5) that outputs a set Ssp

3 with |Ssp
3 | = dO(1)

in poly(n, d)-time with probability 1− o(1) such that Ssp
3 (f) ⊆ Ssp

3 .

Proof. Consider any codimension 3 space W = V(l′1, l′2, l′3) such that l′1|T1, l′2|T2, l′3|T3 and
V(l′1, l′2, l′3) ⊆ V(l1, l2) ∈ Ssp

2 (f) and l′1, l′2, l′3 ̸∈ span(l1, l2). Recall from Algorithm 5, l is a ran-
dom vector in span(l1, l2) and l′ = span(l1, l2) mod l. As V(l′1, l′2, l′3) ⊆ V(l1, l2), span(l1, l2) ⊆
span(l′1, l′2, l′3) and span(l′1, l′2, l′3) mod ⟨l, l′⟩ = span(l′1, l′2, l′3) mod ⟨l1, l2⟩ = span(l∗) for a linear
form l∗, i.e. span(l, l′, l∗) = span(l′1, l′2, l′3). We want to argue that l∗|C̄ where C̄ is as defined in
Algorithm 5. We first show that C̄ is a ΣΠΣ(3) circuit computing a non-zero polynomial. From
Claim 6.7, C ′ is non-zero and C̄ being non-zero follows. As V(l1, l2) is a space in Ssp

2 (f), which
means when we consider the circuit C ′ = C mod l, each gate in the circuit is divisible by l′. By def-
inition of Ssp

2 l′ ∤ sim(C ′), as V(l1, l2) would be a Sreg
2 space in that case. Therefore, all l′ ∈ Lin(C ′)

occurrences will come from the gcd. Therefore after dividing by (l′)e for e being the multiplicity of
e, sim(C ′) remains a ΣΠΣ(3) circuit. Now, we have after going mod ⟨l, l′⟩ C̄ is a ΣΠΣ(3) circuit
computing a non-zero polynomial. From assumption, none of the linear forms l′1, l′2, l′3 is zero mod
⟨l, l′⟩ and all the nonzero linear forms will be multiple of l∗. Therefore, l∗ will divide the nonzero
circuit C̄. Hence, when Algorithm 5 iterates over V(l1, l2) ∈ Ssp

2 (f) ⊆ S2(f), one of the spaces
added to Ssp

3 will be V(l′1, l′2, l′3).
As |S2(f)| = dO(1) from Lemma 4.3 as rank(sim(C)) ≥ c2, and |Lin(C̄)| ≤ d, the number of

spaces added into Ssp
3 , will also be dO(1). From Lemma 5.1, we know S2(f) can be computed in

poly(n, d) time, while the rest of the operations in the loop of Algorithm 5 are also poly(n, d) time
each repeated |S2(f)| = dO(1) so the entire algorithm runs in poly(n, d) time.

We make another observation as follows: if the rank of the simple part of the circuit of T1 + T2
is large, then the number of essential variables is also large.

Lemma 6.9. Let f be a homogeneous polynomial computed by a ΣΠΣ(2) circuit C = T1 + T2 such
that gcd(T1, T2) = 1. Let t > 0 be any nonnegative integer such that dim(span(Lin(T1))) ≥ t and
dim(span(Lin(T2))) ≥ t and let l, l1, l2 ∈ F[x1, . . . , xn] be arbitrary linear forms. R(k) as defined in
Theorem 3.4. Then

• The number of essential variables(Definition 6) in T1 + T2 is at least t−R(3)
2 .

• If f mod l has less than t−R(3)−1
3 essential variables, then f mod l = 0

45



• If f mod ⟨l1, l2⟩ has less than t−R(3)−2
3 essential variables, then f mod ⟨l1, l2⟩ = 0

Proof. Let the number of essential variables in T1+T2 be c. Thus by definition T1+T2 = g(l1, . . . , lc)
for some homogeneous polynomial g in F[x1, . . . , xc] and linear forms l1, . . . , lc in F[x1, . . . , xn]. Let
z be a new variable and consider a random linear isomorphism Φ which for each i ∈ [c] maps
li −→ αiz for a random αi ∈ F. Then with high probability g is nonzero and is of the form αzd for
some constant α ∈ F. Therefore, we have Φ(T1 + T2) − αzd = 0. Now we have a ΣΠΣ(3) circuit
equalling 0 and hence we can use rank bounds! By Lemma 3.4, rank(sim(Φ(T1+T2)−αzd)) ≤ R(3).

We will first show that the linear forms contributing to the GCD have rank at most c.
Consider any two linear forms la ∈ T1, lb ∈ T2. As gcd(T1, T2) = 1, we have span(la) ̸= span(lb)

and hence these linear forms do not contribute to the gcd. Suppose after applying Φ, two distinct
linear forms got “collapsed” to the same and moved into the gcd. In other words span(Φ(la)) =
span(Φ(lb)). We will now show that the only way this can happen is if la, lb ∈ span(l1, . . . , lc). This
will then imply that the linear forms in the gcd have rank at most c.

Let la = l′a + ∑c
i=1 βa,ili where βa,i ∈ F, and l′a = 0 or l′a ̸∈ span(l1, . . . , lc). Similarly lb =

l′b +∑c
i=1 βb,ili where βb,i ∈ F, and l′b = 0 or l′b ̸∈ span(l1, . . . , lc). We have Φ(la) = l′a +∑c

i=1 βa,iαiz
and Φ(lb) = l′b +∑c

i=1 βb,iαiz.
Case 1: span(l′a) ̸= span(l′b). In this case Φ(la) and Φ(lb) clearly remain independent.
Case 2: span(l′a) = span(l′b). In case these spans are actually 0, then we are done. So let us

assume the span is nonzero. In this case, without loss of generality assume the linear forms are
scaled such that l′a = l′b. Then, since span(la) ̸= span(lb), for some i, βa,i ̸= βb,i. Hence with high
probability ∑c

i=1 βa,iαi ̸=
∑c

i=1 βb,iαi. Therefore Φ(la) and Φ(lb) remain independent with high
probability.

So, the only linear forms that move to the gcd of Φ(T1), Φ(T2) are the ones that lie in span(l1, . . . , lc).
Therefore, the linear forms that move into the gcd lie in a space of dimension at most c. Moreover,
after applying Φ, the span of the linear forms from T1 that do not move to the gcd can get shrunk by
at most c. Therefore, rank(sim(Φ(T1 +T2)−αzd)) ≥ t−2c. By the rank bound, thus t−2c ≤ R(3),
which gives us c ≥ t−R(3)

2 . Thus finishes the first part of the lemma.
We now show that if f mod l is nonzero then it must have a large number of essential variables,

and we will show how to deduce this either from the gcd or the simple part of the circuit.
C mod l is of the form G′ × (T ′

1 + T ′
2) with gcd(T ′

1, T ′
2) = 1. Now if dim(span(Lin(G′))) ≥

t−R(3)−1
3 , then clearly the number of essential variables of C mod l is greater than or equal to

t−R(3)−1
3 (unless C mod l = 0) since G′ is a product of linear forms which will continue to have

high rank under any linear isomorphism. In the other case, when dim(span(Lin(G′))) < t−R(3)−1
3 ,

then dim(span(Lin(T ′
1))) ≥ 2t+R(3)−2

3 and dim(span(Lin(T ′
2))) ≥ 2t+R(3)−2

3 . Therefore by part 1
of the current lemma, we have C mod l has at least t−R(3)−1

3 essential variables. Therefore, if C

mod l has less than t−R(3)−1
3 essential variables, then C mod l = 0.

Similarly if C mod ⟨l1, l2⟩ has less than t−R(3)−2
3 essential variables, C mod ⟨l1, l2⟩ = 0.

6.2 Candidate linear forms when there are at least two high rank gates

Wlog, we assume dim(span(Lin(T1))) ≥ 5ccand log d and dim(span(Lin(T2))) ≥ 5ccand log d. Now,
there could be two cases based on dim(span(Lin(T3) \ Ls1)), which will be covered in the following
subsections:

46



6.2.1 Obtaining candidate linear forms when dim(span(Lin(T3) \ Ls1)) ≥ 2

In this case, we obtain the candidate linear forms using the sets L2 and L3, which we compute
using Algorithm 6 (which runs in time poly(n, d)). Note, in L3, we also include linear forms that
are the intersection of kernels of spaces in Ssp

3 .

Algorithm 6 Computing Candidate Linear Forms
Input: Blackbox access to circuit C of form ΣΠΣ(3) computing polynomial f ∈ F[x1, . . . , xn] and
S3(f),S2(f)

1: function cand− L(f)(C)
2: Compute S2(f) and S3(f) using Algorithms 2 and 4. Compute Ssp

3 using Algorithm 5. Set
S̄3(f) := S3(f) ∪ Ssp

3 (f)
3: Initialize L2,L3,Lcand ← ϕ
4: for S1, S2, S3 ∈ S̄3(f) do
5: Let Si = V(li1, li2, li3)
6: Check if dim(∩i∈[3]sp(li1, li2, li3)) = 1, which means the three spaces intersect in a line.

Find the line l that is the intersection of the three spaces and add it to L3

7: Lcand ← Lcand ∪ L3
8: for S1, S2 ∈ S2(f) do
9: Let Si = V(li1, li2)

10: Check if dim(∩i∈[2]sp(li1, li2)) = 1, which means the two spaces intersect in a line. Find
the line l that is the intersection of the two spaces.

11: Add l to L2
12: Lcand ← Lcand ∪ L2
13: Output Lcand

In the following lemma, we show that if there are 2 gates with at least 5ccand log d independent
linear forms, then our output Lcand from either Algorithm 6 and Algorithm 7 will have at least
ccand log d linear forms from one of the Ti’s. Recall Ls1 is the set of linear forms l that divide f .

Lemma 6.10. Let f be a polynomial computed by ΣΠΣ(3) circuit C = G× (T1 +T2 +T3) such that
gcd(T1, T2, T3) = 1 and satisfies all properties from Theorem 6.2. Also, there doesn’t exist linear
form l such that rank(sim(C mod l)) ≤ c2 and C mod l ̸= 0, where c2 is as defined in Lemma 4.3,
dim(span(Lin(T1))) ≥ 5ccand log d and dim(span(Lin(T2))) ≥ 5ccand log d, and dim(span((Lin(T3) \
Ls1))) ≥ 2. Then, there exists an algorithm that computes a set of linear forms Lcand such that
|Lcand| = dO(1) and ∃j ∈ [3] such that dim(span(Lin(Tj) ∩ Lcand)) ≥ ccand log d.

Proof. Observe that any linear form l|T1 × T2 × T3 is in Lcand which is output of Algorithm 6, if it
satisfies any of the following properties:

1. there exist three distinct spaces in S̄3(f) = S3(f) ∪ Ssp
3 , the intersection of whose kernels is

span(l).

2. there exist two distinct spaces in S2(f), the intersection of whose kernels is span(l).

We need to show that, for at least ccand log d independent linear forms in some Tj , at least one
of the three above conditions is met. We will heavily use the structural results we obtained in the
previous subsection. We will further break up the proof into the following cases:

47



• Case 1: ∀ i ∈ [3], dim(span(Lin(Ti))) ≥ (2ccand + 36R(3)) log d + 5
The set Lcand in this case will be the output of Algorithm 6. From Lemma 6.4, we know that
the dim(span(Ls1 \ Lin(G))) ≤ 6R(3) log d. Therefore, the dimension of the span of linear
forms from any Ti in Ls1 is at most 6R(3) log d. Fix S to be any maximal set of independent
spaces5 of the form span(l1, l2, l3) with l1 ∈ T1, l2 ∈ T2, l3 ∈ T3 such that V(l1, l2, l3) is
contained in some space V(l′1, l′2) ∈ Sreg

2 (f), in particular span(l′1, l′2) ⊂ span(l1, l2, l3). As
the spaces span(l1, l2, l3) are all independent, all the corresponding spaces in Sreg

2 (f) will
have independent kernels and hence will be an Independent Vanishing Set. Thus it follows
from Lemma 6.6 that |S| ≤ 6R(3) log d and therefore dim(span(S)) ≤ 18R(3) log d. First,
we observe the following. Let W be any codimension-3 space of the form V(l1, l2, l3) on
which f vanishes and such that l1 ∈ T1, l2 ∈ T2, l3 ∈ T3. Then if W ⊆ V(l′1, l′2) such
that V(l′1, l′2) ∈ Sreg

2 (f), then span(l1, l2, l3) has to intersect span(S). This follows from the
maximality of S. Let S′ = {S ∪ (Ls1 \ Lin(G))}.
Consider any l1 ∈ Lin(T1) and l1 ̸∈ span(S′). Note that there will be at least (5ccand −
24R(3)) log d such independent linear forms in T1.
If we consider T1 +T2 +T3 mod l1, it will be of the form G′×(T ′

2 +T ′
3) where gcd(T ′

2, T ′
3) = 1.

We consider two cases as follows
Case(a) l1 ∈ Lin(T1) is such that l1 ̸∈ span(S′) and dim(span(Lin(C mod l1))) ≥ 12R(3) log d+
3. In this case, we will show that l1 will be in Lcand.
Observe that since dim(Ls1 \ Lin(G)) ≤ 6R(3) log d (by Lemma 6.4) and by assumption,
dim(Lin(G)) ≤ 6R(3) log d, thus dim(Ls1) ≤ 12R(3) log d. It follows that there exist two
independent linear forms l and l′ dividing G′ such that V(l1, l) and V(l1, l′) are not contained
within any space in S1(f) and moreover f vanishes on them. Hence they lie in S2(f), with
their kernels intersecting in l1. Hence all such l1 ∈ Lin(T1) will be in Lcand.
Case(b) l1 ∈ Lin(T1) is such that l1 ̸∈ span(S′) and dim(span(Lin(C mod l1))) ≤ 12R(3) log d+
3.
We will show in most typical cases, any such l1 will be in Lcand. As we are showing this, there
will arise one degenerate case where we fail, but then we will show that we can learn enough
linear forms from T2 or T3.
Pick any l1 ∈ Lin(T1) such that l1 ̸∈ span(S′), l3 ∈ Lin(T ′

3) and l3 ̸∈ span(S′ ∪{l1}∪Lin(G′))
and l2 ∈ Lin(T ′

2) and l2 ̸∈ span(S′ ∪ {l1, l3} ∪ Lin(G′)). Consider V(l1, l2, l3). Note that it
does not intersect S′ and hence is not contained in any space in S1 and Sreg

2 . Thus we will
learn this space unless it is contained in a space in Ssp

2 , say V(l, l′). We first observe that
l1 ̸∈ span(l, l′). This because if it was the case then the space span(l, l′) would be of the form
span(l1, l′1) where l′1 ∈ Lin(G′). In particular l′1 ∈ span(l1, l2, l3) but by choice of l2 and l3,
this is not possible. Moreover observe that if l2 and l3 are also both not in span(l, l′), then we
call any such V(l1, l2, l3) a non-degenerate space for learning l1. Moreover every such space
gets learned as a space in Ssp

3 (contained in Ssp
3 ) or S3. It is not hard to see (we will formalize

below) that enough non-degenerate spaces for learning l1 will suffice in determining l1.
The issue arises in the degenerate case which is when either l2 or l3 is contained within V(l, l′).
We call any such V(l1, l2, l3) a degenerate space for learning l1. We will show that enough
degenerate spaces will enable us to learn lots of linear forms from either T2 or T3, and hence
in this case also we are done.

5where a set of spaces is independent if the dimension of the span of their union is a sum of dimensions of the
individual spaces

48



As dim(span(Lin(C mod l1))) ≤ 12R(3) log d + 3, we have dim(span(Lin(T ′
2))) ≥ (5ccand −

12R(3)) log d − 3 and dim(span(Lin(T ′
3))) ≥ (2ccand + 24R(3)) log d + 2. We pick a set of

independent linear forms L3 ⊆ Lin(T3) such that for any l3 ∈ L3, (l3 mod l1) ∈ Lin(T ′
3)

and l3 ̸∈ span(S′ ∪ {l1} ∪ Lin(G′)) and dim(span(L3)) = 2ccand log d + 2. It is not hard to
see that such a set exists. Similarly, we pick L2 ⊆ Lin(T2) such that for any l2 ∈ L2, (l2
mod l1) ∈ Lin(T ′

2) ̸∈ span(S′ ∪ {l1} ∪ L3 ∪ Lin(G′)) and dim(span(L2)) = 2ccand log d + 2.
Again it is not hard to see that such a set exists. In fact there could have been as many as
3ccand−36R(3)) log d−3 such linear forms since T2 by assumption starts off being significantly
high rank.
Now, consider the set of spaces S(l1) of the form V(l1, l2, l3) where l2 ∈ L2 and l3 ∈ L3.
Assume there is l2 ∈ L2 such that there are two linear forms l3, l′3 in L3 for which V(l1, l2, l3)
and V(l1, l2, l′3) are non-degenerate. Then for any l′2 ∈ L2, if there is a l′′3 ∈ L3(l′′3 maybe
equal to l3, l′3) such that V(l1, l′2, l′′3) is non-degenerate, then by the intersection of the kernels
of these non-degenerate spaces (which we observed we can learn) we have l1 ∈ Lcand. Also,
if we are in the case where we have l2, l′2, l′′2 ∈ L2 and l3, l′3, l′′3 ∈ L3 such that all three
of V(l1, l2, l3),V(l1, l′2, l′3),V(l1, l′′2 , l′′3) are non-degenerate, then we again have l1 ∈ Lcand by
considering the intersections of kernels of these spaces.
So, there are only two cases where we did not manage to deduce that l1 ∈ Lcand. Either there
is a linear form in l2 ∈ L2 such that for any other l′2 ∈ L2, and for any l3 ∈ L3, V(l1, l′2, l3)
is degenerate. Else, there are only two distinct spaces in S(l1) of the form V(l1, l2, l3) and
V(l1, l′2, l′3) with l2 ̸= l′2 and l3 ̸= l′3 which are non-degenerate.
In both cases, notice we have at least 2ccand log d independent linear forms from each of
L2, L3 (call these sets L′

2 and L′
3) for which all the corresponding 4c2

cand log2 d spaces are in
the degenerate setting. By definition of degeneracy any such degenerate space V(l1, l2, l3) is
contained in an Ssp

2 space of the form V(l, l′) where either l2 or l3 is contained in span(l, l′).
Recall that we have learnt all these Ssp

2 spaces. Moreover all the 4c2
cand log2 d Ssp

2 spaces are
distinct by choice of independence of linear forms that went into L2 and L3. To each such Ssp

2
space, we can associate it with a choice of l2 ∈ L′

2 or l3 ∈ L′
3 that is contained in its kernel.

If there are two distinct Ssp
2 spaces that are associated with the same l2 ∈ L′

2 or l3 ∈ L′
3 then

that choice of l2 or l3 will be learned in Lcand. Since each choice of l2 or l3 can be associated
with at most 2ccand log d of the Ssp

2 spaces, thus by a simple averaging argument there are
at least 2ccand log d independent linear forms from the union of L′

2 and L′
3 which are each

associated with at least two distinct Ssp
2 spaces and hence are in Lcand. This means from at

least one of Lin(T2), Lin(T3) there are at least ccand log d linear forms in Lcand.
The running time of Algorithm 6, is poly(n, d) as we have already seen that |S2(f)|, |S3(f)|,
|Ssp

3 (f)| are all dO(1) in Lemma 4.3, Lemma 4.4 and Lemma 6.8. Therefore their intersections
can be computed in poly(n, d) time and the list of candidate linear forms is also dO(1). We also
have seen how to compute S2(f), S3(f), and Ssp

3 in poly(n, d) time in Lemma 5.1, Lemma 5.2
and Lemma 6.8.

• Case 2: ∃i ∈ [3], dim(span(Lin(Ti))) < (2ccand + 36R(3)) log d + 5
Wlog, let T3 be the term such that dim(span(Lin(T3))) ≤ (2ccand + 36R(3)) log d + 5. The
Lcand for this case will be the output of Algorithm 7 which adds some more linear forms to
the output of Algorithm 6. In this case, we first argue that the output of Algorithm 6, will
have either ccand log d independent linear forms from one of Lin(T1) and Lin(T2), or will have
at least two independent linear forms l3, l′3 from Lin(T3) \ Ls1. We then argue that we can
reconstruct the circuit mod l3 and l′3 using Theorem 3.10. These circuits that we reconstruct

49



may not look exactly like C mod l3, but using rank bound results in Theorem 3.4, the circuits
we learn with be “close” to C mod l3 and hence will give us almost all linear forms from T1
mod l3 as well as T1 mod l′3. We can then consider gluings of these “projections” to obtain
true linear forms from T1. We include this set of possible gluings into Lcand and argue that
we have got at least ccand log d true linear forms from T1.
Recall that by assumption dim(span(Lin(T1))) and dim(span(Lin(T2))) are both at least
5ccand log d and rank(T1 + T2 + T3) ≥ 15ccand log d, which means rank(T1 + T2 + T3) −
dim(span(Lin(T3))) > R(3) + 3. From Lemma 6.5, we have that the only elements in
Ls1 \ Lin(G) will be linear forms that divide at least 1 gate, while S2(f) will have spaces
on which at least one of the Ti’s vanish. If l|T1 (or l|T2), then l|(T2 + T3), which is not
possible as there is a rank difference between T2 and T3. Therefore, all l ∈ Ls1 \ Lin(G) are
such that l|T3 and l|sim(T1 + T2). Consider any Sreg

2 space such that only T1 vanishes over
it. This means a linear form l|T1 vanishes over this space, which means there is a linear form
that divides sim(T2 + T3) mod l but this cannot happen as there is a difference between the
rank of linear forms in the gates. Similarly, we can argue there is no space in Sreg

2 such that
only T2 vanishes on it. This means all the spaces in Sreg

2 (f) are such that T3 and T1 + T2
vanish over it. So, the spaces left in S2 are those there either all three gates vanish over them
or T3 and T1 + T2 vanish over them.
The set of linear forms that divide sim(T1 + T2) lie in a 6R(3) log d dimensional space using
Lemma 6.4. Let this space be S. We define S′ = S ∪ (Ls1 \ Lin(G)).
Consider any l3 ∈ Lin(T3) \ Ls1. We will show that either l3 will be in Lcand which is the
output of Algorithm 6 or else we will manage to find ccand log d independent linear forms from
either T1 or T2 that lie in Lcand.
Fix any l3 ∈ Lin(T3) \ Ls1 and look at C mod l3. Observe that C mod l3 will be nonzero
and of the form G′ · (T ′

1 + T ′
2). If dim(span(Lin(G′) \ Ls1)) ≥ 2 then we have l3 in kernel of

at least two S2 spaces and hence will be in Lcand which is the output of Algorithm 6 and we
are done.
Now suppose dim(span(Lin(G′) \ Ls1)) ≤ 1.
We pick a set of independent linear forms L1 ⊆ Lin(T1) such that dim(span(L1)) = 2ccand log d+
2 and for any l1 ∈ L1 we have l1 ̸∈ span(S′ ∪ {l3}) and (l1 mod l3) ∈ T ′

1. Clearly such a set
L1 can be found. Similarly, we pick L2 ⊆ Lin(T2) such that dim(span(L2)) = 2ccand log d + 2
and for any l2 ∈ L2 we have (l2 mod l3) ∈ Lin(T ′

2) and l2 ̸∈ span(S′ ∪ {l3} ∪ L1). Such
an L2 can be found (in fact even larger such sets can be found) because Lin(T2) contains
at least (3ccand − 12R(3)) log d − 3 independent linear forms after removing linear forms in
span(S′ ∪ {l3} ∪ L1).
Now the argument proceeds almost identically to the argument in Case 1.b (with l3 ∈ Lin(T3)
playing the role of l1 ∈ Lin(T1)). By an identical argument we see that we have either
enough non-degenerate spaces of form V(l1, l2, l3) with (l1 ∈ L1, l2 ∈ L2) such that we deduce
l3 ∈ Lcand from the intersection of kernels of S3 spaces, or most spaces are degenerate and
we deduce that from one of L1, L2, we can find at least ccand log d independent linear forms
in Lcand (that arise from the intersection of kernels of S2 spaces).
Observe that since dim(span(Lin(T3) \ Ls1)) ≥ 2, by the above argument, we would have
learnt two distinct l3 and l′3 in Lcand ∩ (Lin(T3) \ Ls1), or we would have learnt ccand log d
independent linear forms in Lcand from one of T1 or T2.
So we are left with the case where we have learnt at least two independent linear forms l3, l′3

50



in Lcand ∩ (Lin(T3) \ Ls1). We run the reconstruction algorithm of Theorem 3.10 to obtain
a (possibly different) representation of the circuits C mod l3 and C mod l′3 if rank(sim(C
mod l3)) ≥ R(4)+1 and rank(sim(C mod l′3)) ≥ R(4)+1. In case, the circuits are rank lower
than R(4) + 1, we learn projections of the gates by just factoring C mod l3 and C mod l′3
using Lemma 3.7 giving us gcd(T1, T2) mod l3, l′3 and will have rank at least 5ccand log d−R(4)
and the gluing will give us ccand log d linear forms as required. In case, the circuits are high
simple rank, the learned circuits will still be ΣΠΣ(2) circuits, but as we will now observe,
even a distinct ΣΠΣ(2) representation of the same polynomial reveals enough information
about the original representation. Let the original representation of C mod l3 be of the
form G′ × (T ′

1 + T ′
2) where gcd(T ′

1, T ′
2) = 1. Then note that (G × T1) mod l3 = G′ × T ′

1
and (G × T2) mod l3 = G′ × T ′

2. The circuit reconstructed by Theorem 3.10 will be of the
form G′′ × (T ′′

1 + T ′′
2 ). As G′ × (T ′

1 + T ′
2)−G′′ × (T ′′

1 + T ′′
2 ) = 0, from Theorem 3.4, we have

rank(sim(G′ × (T ′
1 + T ′

2) − G′′ × (T ′′
1 + T ′′

2 ))) ≤ R(4) and hence either rank(sim(G′ × T ′
1 −

G′′ × T ′′
1 )) ≤ R(4) or rank(sim(G′ × T ′

1 − G′′ × T ′′
2 )) ≤ R(4). Wlog, assume this happens

with T ′′
1 , i.e. rank(sim(G′ × T ′

1 − G′′ × T ′′
1 )) ≤ R(4). Thus among the linear forms that

appear in G′′ × T ′′
1 , all except the linear forms that lie in a R(4)-dimensional space must

appear as linear forms in (G × T1) mod l3. Therefore, we have learned the projection mod
l3 of at least 5ccand log d − R(4) independent linear forms from T1

6 and similarly there are
5ccand log d−R(4) independent linear forms from T1 for which we know the projection mod l′3.
We then “glue” these projections (see Algorithm 7 for a description of the gluing) to obtain
at least ccand log d independent linear forms from T1 in Lcand output in Algorithm 7.
As described earlier, the output of Algorithm 6 can be computed in poly(n, d) time and is
dO(1)-sized list of linear forms. In Algorithm 7, the loop on Line 3 iterates over these dO(1)

possibilities while the reconstruction of ΣΠΣ(2) circuits is done by Theorem 3.10 in poly(n, d)
time. The number of linear forms added to proj is also O(d) and hence |proj| = dO(1) as well.
Therefore, Algorithm 7 runs in poly(n, d)-time and outputs a list Lcand of size dO(1).

6we actually learn a superset of these linear forms, but that suffices for us.

51



Algorithm 7 Computing Candidate Linear forms when 1 low rank term
Input: Blackbox access to circuit C of form ΣΠΣ(3) computing polynomial f ∈ F[x1, . . . , xn] with
1 term of low rank

1: function cand− L(f)(C)
2: Use Algorithm 6 to find Lcand(f), set proj := ϕ
3: for l← Lcand(f) do
4: Consider the circuit C mod l, and use reconstruction algorithm for fan-in 2 gate in

Theorem 3.10.
5: Move to the next step if the algorithm outputs a circuit of form G′× (T ′

1 +T ′
2), else move

to the next l
6: For li ∈ Lin(G′) ∪ Lin(T ′

1) ∪ Lin(T ′
2), add (li, l) to proj.

7: for (la, l1), (lb, l2) ∈ proj do
8: if la mod l2 = lb mod l1 then
9: l := la mod l2

10: Find α, β such that l + αl1 = lb and l + βl2 = la
11: Add l + αl1 + βl2 to Lcand

12: Output Lcand

6.2.2 Obtaining candidate linear forms when dim(span(Lin(T3) \ Ls1)) < 2

In this case, we will be handling the case when dim(span(Lin(T3) \ Ls1)) ≤ 1, while the other two
gates are high rank, i.e. dim(span(Lin(T1))) ≥ 5ccand log d and dim(span(Lin(T2))) ≥ 5ccand log d.
Observe that this is the only situation left to cover when there are two high rank gates.

Any linear form in Lin(T3) ∩ (Ls1 \ Lin(G)) will also divide sim(T1 + T2). Using Lemma 6.4,
one can see that dim(span(Lin(sim(T1 + T2)))) ≤ 6R(3) log d which means that this case happens
only when dim(span(Lin(T3)) ≤ 6R(3) log d + 1. Below, we will prove a more general result as we
do not use the condition that there doesn’t exist any l such that rank(sim(C mod l)) ≥ c2.

We will break the analysis of this case into two parts. First we will consider the case where
dim(span(Lin(T3))) < c for some constant c. In this case we will show something quite precise
and strong about the linear forms that we can learn (see lemma statement below). Essentially
we will learn almost all linear forms from the high rank gate (T1).The other is is case when c ≤
dim(span(T3)) ≤ 6R(3) log d+1. We will reduce the learning of linear forms in this case to learning
multiple instances of the case when dim(span(Lin(T3))) < c by taking suitable projections and then
showing that we can glue the linear forms obtained in these cases to get back linear forms in T1.

Lemma 6.11. Let R(k) be as defined in Theorem 3.4. For a polynomial f computed by a ΣΠΣ(3)
circuit C = G × (T1 + T2 + T3) satisfying conditions of Theorem 6.2 and dim(span(Lin(T1))) ≥
(5ccand − 12R(3)) log d and dim(span(Lin(T2))) ≥ (5ccand − 12R(3)) log d and dim(span(Lin(G ×
T3))) < c, for c = R(3), then there exists an algorithm(Algorithm 8) that runs in time poly(n, d)
(assuming R(3) is constant) and computes a list of linear forms Lcand of size dO(1) such that the
following hold:

1. Lin(gcd(T1, T2)) ⊆ Lcand

2. If dim(span(gcd(T1, T2))) < 5ccand log d−18R(3) log d−c2 (c2 as defined in Lemma 4.3), then
Lin(T1) ⊆ Lcand

Proof. Note that in this lemma, we did not need to make the additional assumption that
dim(span(Lin(T3) \ Ls1)) ≤ 1 since our proof holds in the more general setting. However when we

52



apply it to prove Lemma 6.13 we will only care about the setting where the conditional holds that
dim(span(Lin(T3) \Ls1)) ≤ 1. However, what makes this proof hard is precisely then the condition
does hold, i.e. all except at most 1 linear form in T3, also divide T1 + T2 and therefore, basically
all codimension 2 and 3 spaces on which T3 vanishes are contained in S1 spaces and hence are not
learned by our algorithm.

The key observation is that there are many 2-dimensional spaces (and possibly also 1-dimensional
spaces) spanned by linear forms in T1 and T2 such that when we go mod those spaces, T1 and T2
vanish, but T3 doesn’t and the whole circuit restricts to one that is constant dimensional. In par-
ticular, the resulting polynomial has only c essential variables (see Definition 6). Moreover we show
that by combining techniques from Section 5 and Theorem 3.11, these 1-dim and most of 2-dim
spaces can actually be learned. Once we have our hands on these spaces, we then use them to learn
enough linear forms from T1 and T2.

We first observe that any codimension 1 or 2 space such that restricted to these the circuit C
has at most c essential variables is an S1 or S2 space for T1 + T2. This follows immediately from
parts 2 and 3 of Lemma 6.9, since if T1 + T2 didn’t vanish, then it would have a large number of
essential variables, and then adding on T3 would keep the essential variables being high as T3 only
has low number of essential variables. .

We will show that these S1 and s2 spaces can be efficiently learned. To learn these spaces,
we will combine techniques from Section 5 and Theorem 3.11. In Lemma 5.1 from Section 5,
we compute S2 spaces for polynomials of the form T1 + T2 + T3 when rank(T1 + T2 + T3) ≥ c2.
In Lemma 5.1, to find the S2 spaces, we do a random projection to constantly many variables,
reconstruct to get access to the monomial form of the projections, find the S2 spaces V(l1, l2) of the
projected polynomial by solving a certain system of polynomial equations. To obtain this system,
we treat the coefficients of the linear forms of l1 and l2 as variables. Since the projected polynomial
must equal zero once l1 = l2 = 0, thus all its coefficients must become 0. Thus we obtain the system
of equations by equating the coefficients of the projected polynomial to 0 after the substitution of
l1 = l2 = 0. Once we learn the S2 spaces of the projected polynomial, we then glue them back
together to get S2 spaces for the original circuit. In our current setup, the high level plan is the
same. The problem in the current case is that when we try to find S2(T1 + T2) is we do not have
access to T1 + T2. However as we observed, in order to compute S2(T1 + T2), it suffices to find
codimension 2 spaces over which the polynomial restricts to few essential variables. We use this
observation to come up with a different system of polynomial equations. In Lemma 3.12, we see
that the rank of the partial derivative matrix of a polynomial f is equal to the number of essential
variables of f . Thus the condition that the number of essential variables is at most c is equivalent
to the condition that all the c + 1× c + 1 minors in the partial derivative matrix have determinant
0. We do have access to the entries of the partial derivative matrix of the projected polynomials,
and hence can set up a system of equations by equating the determinants of the minors to 0. The
rest of the idea is similar to Algorithm 2.

The algorithm for learning the S1 spaces of T1 + T2 is identical and just a simplification of
the algorithm for learning the S2 spaces. Below we elaborate more on the details of both these
algorithms.

Learning the S1 spaces of T1+T2 Similar to Algorithm 2, we take a random linear isomorphism
Φ defined by Φ(xi) = ∑n

j=1 αi,jxj(where αi,j are chosen randomly from [dn]) to get polynomial
g = Φ(f) = f(Φ(x)). We then obtain polynomials gi for i ∈ [10c + 1, n], by setting all but the first
10c variables and xi to 0 in C. We can interpolate these (since they are only constant variate) to get
white-box access to the monomial representation of the gi’s. Let Φ(C)|x10c+1=...=xi−1=xi+1=...=xn=0 =

53



G[i] × (T [i]
1 + T

[i]
2 + T

[i]
3 ). As dim(span(Lin(T1))) and dim(span(Lin(T2))) were Ω(log d) (which is

clearly more than 10c), after projecting down the gates would still have rank at least 10c with
high probability, similar to Lemma 5.1, while projected T3 will have at most c essential variables.
Now, any l such that C mod l has at most c essential variables must be such that T1 + T2 mod l
has at most 2c essential variables. From part 2 of Lemma 6.9, any l such that T1 + T2 mod l has
at most 2c essential variables must be such that T1 + T2 mod l = 0 (Since we know that both
T1 and T2 have rank at least 10c and c is large enough). Thus to learn S1(T1 + T2), it suffices
to learn the codimension 1 spaces on which G × (T1 + T2 + T3) has at most c essential variables.
We substitute x1 = α2x2 + . . . + α10cx10c + αixi into gi which we have monomial access to. As
seen in Lemma 3.12, the number of essential variables will be the rank of the partial derivative
matrix. Using white-box access to the gi’s, we can get access to the partial derivative matrix and
hence get a system of polynomial equations in α2, . . . , α10c, αi by equating all (c + 1) × (c + 1)
minors of the matrix to 0, ensuring rank of the matrix is at most c. This ensures C mod l
has at most c essential variables. The system of equations is in 10c variables and has poly(d)
equations (if c is constant) with a degree at most c + 1 and hence can be solved in poly(d) time
using Theorem 3.8. We can then glue these solutions for gi, similar to Lemma 2, by comparing
coefficients in x2, . . . , x10c, to get linear forms in Lin(T1 + T2). From part 2 of Lemma 5.4, we have
Lin(T ′

1 + T ′
2) = Lin(Φ(T1) + Φ(T2))|x10c+1=...=xi−1=xi+1=...=xn=0. Therefore each Li, will contain

linear forms from Lin(T1 + T2) after Φ and x10c+1 = . . . = xi−1 = xi+1 = . . . = xn = 0. We can
then glue these projections naturally to get linear forms in Lin(T1 + T2). Since we learn all linear
forms in Lin(T1 + T2), in particular, we learn all linear forms in Lin(gcd(T1, T2)). Therefore, we are
done with the requirement of the first condition of the current lemma.

Learning S2 spaces of T1 + T2 Recall that we only need to learn the S2 spaces when
dim(span(gcd(T1, T2))) < 5ccand log d − 18R(3) log d − c2. Otherwise, the S1 spaces suffice for the
first part of the lemma. In Algorithm 8, we only find S2 spaces if the linear forms we found from
S1 spaces lie in a space with dimension at most 5ccand log d − 12R(3) log d − c2, but since from
Lemma 6.4, we have dim(span(Ls1 \ Lin(G))) ≤ 6R(3), means this case contains all instances of
the case with dim(span(gcd(T1 + T2))) < 5ccand log d− 18R(3) log d− c2.

Let T1 + T2 = gcd(T1, T2) · (T ′
1 + T ′

2). We will find codimension 2 spaces on which C has at most
c essential variables, and these codimension 2 spaces are not contained in codimension 1 (i.e. S1)
spaces found earlier. Much of the algorithm is similar to what was done to find the S1 spaces. We
substitute x1 = α3x3+. . .+α10cx10c+αixi and x2 = β3x3+. . .+β10cx10c+βixi into gi, and obtain the
partial derivative matrix. Using it, we create a system of equations by setting the determinants of all
(c+1)×(c+1) minors to zero, thus ensuring at most c essential variables. We ensure that the pair of
linear forms obtained as solutions should form a space of dimension at least 3 with linear forms found
in the previous step (i.e. the kernels of the S1 spaces), using the same approach as in Lemma 5.3.
Since gcd(T1, T2) < 5ccand log d−18R(3) log d−c2, we have rank(sim(T1 +T2)) ≥ 6R(3) log d+c2 ≥
10c+1. Similar to Lemma 5.4, the projection will not create new linear factors, and therefore in the
projected version, rank(sim((T1 + T2)|x10c+1=...=xi−1=xi+1=...=xn)) = 10c + 1 with high probability.
As we have 10c + 1 > c2, from Lemma 4.3, the restriction of T1 + T2 has only dO(1) S2 spaces.
Thus, we can find all these spaces for each gi, and then glue them together similar to Algorithm 2.
Similar to part 4 of Lemma 5.4, one can use a map Ψ such that for all xi ∈ [10c + 1, n] Ψ(xi) =
xi +∑10c

j=3 βi,jxj(where βi,j are chosen randomly from [dn]) to show that with high probability, that
distinct spaces remain distinct when you set xi to 0. Therefore, each V(l1i, l2i) ∈ S2(gi) map to
unique V(l1j , l2j) ∈ S2(gj) such that ⟨Ψ(l1i), Ψ(l2i)⟩ |xi=0 = ⟨Ψ(l1j), Ψ(l2j)⟩ |xj=0 and all of which
can be glued to get S2 spaces for T1 + T2. Thus, we have the set S2(T1 + T2).

54



Using S2(T1 + T2) to learn linear forms from T1: Using S2(T1 + T2), we form the list of
candidate linear forms by including the linear forms that are the intersection of kernels of the
spaces in S2. We now show that this list of candidate linear forms already contains all linear forms
in T1. Consider any l1 ∈ T1 and l1 ̸∈ gcd(T1, T2) (since the gcd was already learnt). The polynomial
computed by T1 + T2 mod l1 = T2 mod l1 will be a non-zero polynomial which is a product of
linear forms. By Lemma 6.4, recall that the linear forms in Lin(sim(T1 + T2)) lie in a 6R(3) log d
dimensional space. Since, dim(span(Lin(gcd(T1, T2)))) < 5ccand log d − 18R(3) log d − c2, we have
dim(span(Lin(T1 + T2))) < (5ccand − 12R(3)) log d − c2. From the assumption in the lemma, we
have dim(span(Lin(T2))) ≥ (5ccand − 12R(3)) log d. Therefore, there we can find two independent
linear forms l2, l′2 in T2, such that l2, l′2 ̸∈ span({l1} ∪ Lin(T1 + T2)). This means there is no linear
form l ∈ Lin(T1 + T2) such that l ∈ span(l1, l2) or l ∈ span(l1, l′2). Therefore, V(l1, l2) and V(l1, l′2)
are in S2(T1 + T2). Thus, for any l1 ∈ Lin(T1) and l1 ̸∈ gcd(T1, T2), we have l1 ∈ Lcand from
the intersection of kernels of spaces in S2(T1 + T2). We already showed gcd(T1, T2) ⊆ Lcand and
therefore, Lin(T1) ⊆ Lcand.

Analysis of runtime: The system of equations we get in Line 9 will have dO(cc) polynomial
equations of degree c + 1 in variables O(c), and as c = O(1), we can obtain the solutions to the
system in poly(d) time. As described earlier each solution must be part of Lin(T1 + T2) projected
down to c + 1 variables and therefore there can be at most O(d) solutions for each gi. Thus, the
gluing step can also be done in poly(n, d) time, similar to Lemma 5.3. Algorithm 8 ensures that
when we find the S2 spaces, the linear forms we found from codimension 1 spaces lie in a space with
dimension less than (5ccand − 12R(3)) log d− c2. As discussed above, the set of linear forms learnt
L′ = Lin(Φ(T1 + T2)), and gcd(Φ(T1), Φ(T2)) ⊆ Lin(Φ(T1 + T2). Therefore, if dim(span(L′)) <
(5ccand− 12R(3)) log d− c2, then dim(span(Lin(gcd(Φ(T1), Φ(T2))))) < (5ccand− 12R(3)) log d− c2
and rank(sim(Φ(T1 + T2))) ≥ c2. Therefore, the number of S2 spaces will be dO(1) as discussed
in Lemma 4.3. Since, Li = Lin(Φ(T1 + T2)|x10c+1=...=xi−1=xi+1=...=xn=0), |Li| ≤ d. Therefore, the
system of equations we obtain for codimension 2 spaces, will have additional O(d) equations similar
to Algorithm 1. Therefore, we can solve the system of poly(d) polynomial equations with the degree
at most c + 1 over O(c) variables in time poly(d). As the number of S2 spaces is dO(1), we can find
the intersections of the codimension 2 spaces in time poly(n, d) as well, and the number of linear
forms added to Lcand is also dO(1).

Remark 6.12. We observe that in Algorithm 8, if the output for polynomial f is Lcand, then for an
invertible linear isomorphism Ψ and input Ψ(f), Algorithm 8 outputs Ψ(Li) := {Ψ(l) : l ∈ Lcand}.
To see this we observe that the linear forms in Lcand come from Lin(T1 + T2) and intersection of
kernels of spaces in S2(T1+T2). Clearly for any l ∈ Lin(T1+T2), we have Ψ(l) ∈ Lin(Ψ(T1)+Ψ(T2)).
Also, for a space V(l1, l2) ∈ S2(T1 + T2), we will have V(Ψ(l1), Ψ(l2)) ∈ S2(Ψ(T1) + Ψ(T2)). This
means for every linear form l in the intersections of kernels of S2(T1 + T2) spaces, there will Ψ(l)
in the intersections of kernels of S2(Ψ(T1) + Ψ(T2)) spaces.

55



Algorithm 8 Computing Candidate Linear forms with two high dimensional gates and
dim(span(Lin(T3) \ Ls1)) < 2 and constant dimension T3
Input: Blackbox access to circuit C of form ΣΠΣ(3) computing polynomial f ∈ F[x1, . . . , xn] of
Special form 4 with dim(span(Lin(T3))) < c

1: function cand− L(f)(C)
2: Sample n2 random values aij ; i, j ∈ [n] uniformly from S := {1, . . . , dn}, and use them to

define n linear forms l′i = ∑n
j=1 aijxj . Check if they are independent, otherwise repeat. Define

isomorphism Φ with these linear forms l′1, . . . , l′n ∈ F[x1, . . . , xn] mapping xi −→ l′i. Let g = Φ(f)
3: Set t = 10c. For i ∈ {t, . . . , n}, obtain polynomials gi = gxt=...=xi−1=xi+1=...=xn=0
4: for i← {t, . . . , n} do
5: Interpolate to get monomial access to gi

6: Substitute x1 = α2x2 + . . . + αt−1xt−1 + αixi into the gi and get monomial access to ∂gi
∂xj

for j ∈ {2, . . . , t− 1, i}
7: Use these to access the partial derivative matrix M
8: For each (c + 1)× (c + 1) minor A of M add an equation det(A) = 0
9: Solve the system of equations to get solutions for α2, . . . , αt−1, αi

10: Add x1 − α2x2 − . . .− αt−1xt−1 − αixi to Li

11: Glue all linear forms in Li together if they are consistent in the first t coordinates to obtain
a set of linear forms L′. Add Φ−1(l) for all l ∈ L′ to Lcand

12: if dim(span(L′)) < (5ccand − 12R(3)) log d− c2 then
13: for i← {t, . . . , n} do
14: Substitute x1 = α3x3 + . . . + αt−1xt−1 + αixi = l1i and x2 = β3x3 + . . . + βt−1xt−1 +

βixi = l2i into the gi and get monomial access to ∂gi
∂xj

for j ∈ {3, . . . , t− 1, i}
15: Use these to access the partial derivative matrix M
16: For each (c + 1)× (c + 1) minor A of M add an equation det(A) = 0
17: for l ∈ Li do
18: Add an equation to the system of equations above which enforces dim(span(l, x1−

l1i, x2 − l2i)) = 3 (similar to Algorithm 1)
19: Solve the system of equations in α3, . . . , αt−1, αi, β3, . . . , βt−1, βi

20: Add V(x1 − l1i, x2 − l2i) to S2i

21: Glue the spaces together if their projections to the first t coordinates is identical, to
obtain S2(T1 + T2)

22: If spaces V(l1, l2) and V(l′1, l′2) in S2(T1 + T2) are such that sp(l1, l2) ∩ sp(l′1, l′2) = sp(l),
add Φ−1(l) to Lcand

23: Output Lcand

Now, we are left with the only case where T3 has a rank greater than constant but less than
6R(3) log d and dim(span(Lin(T3) \ Ls1)) ≤ 1.

Lemma 6.13. Let R(k) be as defined in Theorem 3.4. For a polynomial f computed by circuit
C = G× (T1 + T2 + T3) satisfying conditions of Theorem 6.2 and dim(span(Lin(T1))) ≥ 5ccand log d
and dim(span(Lin(T2))) ≥ 5ccand log d, with dim(span(Lin(T3)\Ls1)) ≤ 1, there exists an algorithm
that computes in poly(n, d) time, assuming R(3) is constant, a list of linear forms Lcand such that
|Lcand| = dO(1) and dim(span(Lcand ∩ Lin(T1)) ≥ ccand log d.

Proof. We will reduce this case to multiple instances of the case when T3 has rank at most c = R(3).
To do this, we first observe that we can learn all but one of the linear forms (up to multiplicity) of

56



T3 as part of the set Ls1. This is because we are assuming that dim(span(Lin(T3) \ Ls1)) ≤ 1, and
we can compute Ls1.

Let S be a basis of the linear forms in span(Ls1). As dim(span(Lin(G))) ≤ 6R(3) log d and
dim(span(Lin(Ls1 \ Lin(G)))) ≤ 6R(3) log d, we have |S| ≤ 12R(3) log d. From dim(span(Lin(T3) \
Ls1)) ≤ 1 and Lemma 6.4, we know dim(span(T3)) ≤ 6R(3) log d + 1.

Note that Lemma 6.5 implies that all linear forms in Ls1 \ Lin(G) divide at least one gate. If
l ∈ Ls1 \ Lin(G) is such that l|T1, then l also divides T2 + T3 (but doesn’t individually divide T2 or
T3), which is impossible as there is a rank difference in the linear forms of T2 and T3. Similarly it
cannot be that l divides T2. Therefore, all linear forms in Ls1 \ Lin(G) are in Lin(T3).

The plan is to project the variables in the circuit in some random manner so that the linear
forms from G × T3 only span a constant c-dimensional space, but at the same time, T1 and T2
continue to be high rank even after the projection. We will use the set S to find such a projection.
At this point we can invoke Lemma 6.11 to learn some candidate linear forms from the projected
circuit. We do this for several projections and then “glue” the candidate linear forms the we obtain.
Note that the linear forms obtained from the projections will contain the projected versions of all
the linear forms in gcd(T1, T2), and will contain the projected versions of all the linear in Lin(T1)
if dim(span(gcd(T1 + T2))) < 5ccand log d− 18R(3) log d− c2.

Without loss of generality, let S := {x1, . . . , x|S|}. We can make this assumption for the
following reason. Recall that S is a basis of span(Ls1); therefore, we can compute S and consider
an appropriate invertible linear transformation which makes S := {x1, . . . , x|S|}. Now, consider
a random linear isomorphism Φ such that ∀ xi ∈ S, Φ(xi) = ∑|S|

j=1 αi,jxj where αi,j are picked
randomly from {1, . . . , dn}, and let g = Φ(f) = f(Φ(x)). Now we consider for each i ∈ [c − 1, |S|]
the polynomials gi, obtained from g by setting xc−1 = . . . = xi−1 = xi+1 = . . . = x|S| = 0. Observe,
that for each gi, one can view the way gi is obtained from f as taking random linear subspace of
span(S) and considering the circuit C modulo the subspace. By Lemma 3.2 and similar to the
analysis of Lemma 5.4 it follows that with high probability, under this transformation each gate of
C remains nonzero and so does T1 + T2.

Thus for each i, the projected circuit gi is of the form T
[i]
1 + T

[i]
2 + T

[i]
3 where T

[i]
3 has at most

c essential variables and T
[i]
1 , T

[i]
2 each have linear forms spanning a space with dimension at least

(5ccand − 12R(3)) log d (since we set at most 12R(3) log d variables to 0).
Now, we consider the following two cases on the original circuit: dim(span(gcd(T1, T2))) ≥

5ccand log d− 18R(3) log d− c2 and dim(span(gcd(T1, T2))) < 5ccand log d− 18R(3) log d− c2.
In the former case, for all gi’s, by Lemma 6.11 we can learn a set of linear forms Li which

contains gcd(T [i]
1 , T

[i]
2 ). We will assume wlog that the coefficient of x1 in all linear forms will be 1

since we only care about the linear forms up to scaling by a constant. Moreover due to the random
map Φ, with high probability, for each i ∈ [c − 1, |S|], the coefficient of x1 will be non-zero in all
l ∈ Li. Consider a map Ψ such that for each i ∈ [c − 1, |S|], Ψ(xi) = ∑c−2

j=1 βi,jxj for βi,j chosen
randomly from [dn]. This map will allow us to argue that for each i ∈ [c − 1, |S|], distinct linear
forms in Li will remain distinct after applying Ψ and then setting xi to 0. This distinctness holds
due to remark 6.12 and a proof similar to part 4 of Lemma 5.4 (where a similar distinctness was
proved). Thus we get that with probability 1−o(1), for two distinct l, l′ ∈ Li, Ψ(l)|xi=0 ̸= Ψ(l′)|xi=0.

Once we have this distinctness property, we can glue these set of candidate linear forms across the
different Li. To do this we glue li ∈ Li with lj ∈ Lj (in the natural way) if Ψ(li)|xi=0 = Ψ(lj)|xj=0.

Note that due to the distinctness property, there is at most one linear form each li ∈ Li maps
to in other Lj ’s and thus the gluing is efficient. Moreover the gluing will recover the linear forms
in gcd(T1, T2). Since, dim(span(gcd(T1, T2))) ≥ 5ccand log d− 18R(3) log d− c2, we learn ccand log d
independent linear forms from T1.

57



In the latter case, since dim(span(gcd(T1, T2))) < 5ccand log d − 18R(3) log d − c2, after the
projection we have dim(span(gcd(T ′

1, T ′
2))) < 5ccand log d− 18R(3) log d− c2 as no two linear forms

become equal with high probability. We can learn a set of linear forms that contain the projections
of all linear forms in Lin(T1) from lemma 6.11. Now, we can glue these set of candidate linear
forms of gi’s similar to above case by using Ψ as defined above. We will glue li ∈ Li with lj ∈ Lj if
Ψ(li)|xi=0 = Ψ(lj)|xj=0. This gives us linear forms from Lin(T1). Therefore, in this case we learn the
entire Lin(T1) which we know from assumption has at least 5ccand log d independent linear forms.

The number of calls to Algorithm 8 will be at most 6R(3) log d − c and each call runs in
time poly(n, d) and outputs a list of size dO(1). Therefore, the gluing can also be done in time
poly(n, d). Thus, we can compute a dO(1) sized list of linear forms Lcand in poly(n, d) time such
that dim(span(Lcand ∩ Lin(T1)) ≥ ccand log d.

6.3 Candidate Linear forms when There is exactly 1 High Rank Gate

In this case, the circuit is of form C = G×(T1+T2+T3) where gcd(T1, T2, T3) = 1, dim(span(Lin(T1))) ≥
5ccand log d and dim(span(Lin(T2))), dim(span(Lin(T3))) < 5ccand log d. We also assume the circuit
is such that there is no linear form l such that rank(sim(C mod l)) ≤ c2 and C mod l ̸= 0.

Algorithm 9 Computing Candidate Linear forms when 1 high rank term(Case A)
Input: Blackbox access to circuit C of form ΣΠΣ(3) computing polynomial f ∈ F[x1, . . . , xn] with
1 term of high rank

1: function cand− L(f)(C)
2: Use Algorithm 6 to find Lcand(f), set proj := ϕ
3: for l← Lcand(f) do
4: Consider the circuit C mod l, and use reconstruction algorithm for fan-in 2 gate in

[Sin16a].
5: Move to the next step if the algorithm outputs a circuit of form G′× (T ′

1 +T ′
2), else move

to the next l
6: For li ∈ Lin(G′) ∪ Lin(T ′

1) ∪ Lin(T ′
2), add (li, l) to proj.

7: for (la, l1), (lb, l2) ∈ proj do
8: if la mod l2 = lb mod l1 then
9: l := la mod l2

10: Find α, β such that l + αl1 = lb and l + βl2 = la
11: Add l + αl1 + βl2 to Lcand

12: Output Lcand

Lemma 6.14. Let f be a polynomial computed by ΣΠΣ(3) circuit C = G × (T1 + T2 + T3) such
that gcd(T1, T2, T3) = 1 and satisfies all properties from Theorem 6.2. Let c2 be as defined in
Lemma 4.3. We assume there doesn’t exist any linear form l such that rank(sim(C mod l)) ≤ c2
and C mod l ̸= 0. Assume also that dim(span(Lin(T2))) < 5ccand log d and dim(span(Lin(T3))) <
5ccand log d. Then, there exists an algorithm that computes a set of linear forms Lcand such that
|Lcand| = dO(1) and dim(span(Lin(T1) ∩ Lcand)) ≥ ccand log d.

Proof. The idea in this lemma is pretty similar to Case 2 of Lemma 6.10 and Lemma 6.13. The
analysis is more involved due to the two gates having small ranks.

From Lemma 6.5, we have that any linear form l in Ls1 \ Lin(G) must divide a gate in the
circuit. Consider the l ∈ Ls1 \ Lin(G) such that it divides T2(or T3), then is must also divide
T1 + T3(or T1 + T2), which cannot happen as there is a rank gap. Therefore, all linear forms l in

58



Ls1 \ Lin(G) are such that l divides T1 and T2 + T3. Now, when we remove the codimension 2 and
3 spaces contained in S1 spaces, we might also remove all spaces containing linear forms from T2
and T3 in which case we don’t learn any linear forms.

To handle all such cases, we divide this lemma into 2 major cases, where dim(span(Lin(T2) ∪
Lin(T3) \ span(Ls1))) ≥ c2 and dim(span(Lin(T2) ∪ Lin(T3) \ span(Ls1))) < c2.

Case A: dim(span(Lin(T2) ∪ Lin(T3) \ span(Ls1))) ≥ c2
In this case, we will first argue that by considering the intersection of the kernels of S2 and

S3(S̄3) spaces, we will either learn at least ccand log d independent linear forms from T1, or at least
two independent linear forms from one of T2 or T3. If we learn two independent linear forms from
one of T2 or T3 then we can use them to learn ccand log d independent linear forms from T1 as follows:
we can reconstruct the circuit mod these two linear forms (one at a time), learn the resulting circuit
of top fan-in 2 which is close to the original representation, and thus learn projections of enough
linear forms in T1, which we can glue back to get enough true linear forms from T1 in Lcand output
by Algorithm 9. The key difference in this from Case 2 of Lemma 6.10 is there might be two gates
that are low rank instead of just one.

We also have from Lemma 6.5, that in this case, for all S2 spaces, at least one of the Tis must
vanish, and hence also the sum of the other two. As the simple part of T1 + T2 or T1 + T3 cannot
not have any divisors due to the rank difference in the gates, hence all spaces in Sreg

2 will be of
form V(l1, l) such that l1|T1 and l|sim((T2 + T3) mod l1).

Also, since rank(T1+T2+T3) ≥ 15ccand log d and dim(span(T2)), dim(span(T3)) < 5ccand log d, it
follows that there exists a set of independent linear forms L1 ⊆ Lin(T1) such that |L1| = 5ccand log d
and for any l1 ∈ L1, it holds that l1 ̸∈ span(Lin(T2) ∪ Lin(T3)).

We will consider three cases. In each case we will first show that we can either learn at least
ccand log d independent linear forms from T1, or at least two independent linear forms from one of
T2 or T3.

Case A.1: The first case is when dim(span(Lin(T2 + T3) \ span(Ls1))) ≥ 2. This case is easy.
Any space corresponding to a linear form in L1 and any linear form in Lin(T2 + T3) \ span(Ls1),
will be learned in the set of S2 spaces as they are not contained in any S1 space. This we have for
all l1 ∈ L1, at least two S2 spaces whose kernels contain l1, and therefore L1 ⊆ Lcand where Lcand

is output of Algorithm 6.
Therefore, we only now need to consider the case where dim(span(Lin(T2+T3)\span(Ls1))) ≤ 1.

We will break this into two cases depending on whether dim(span(Lin(T2 +T3)\ span(Ls1))) equals
0 or 1.

Case A.2: First, consider the subcase where dim(span(Lin(T2 + T3)\ span(Ls1))) = 0, in other
words Lin(T2 + T3) is empty. All S2 spaces whose kernels contain any l1 ∈ L1 will be of form
V(l1, l) where l1 ∈ L1 and l ∈ Lin(T2 + T3) ∩ span(Ls1). Moreover, from the assumption of this
case we know dim(span(Lin(T2) ∪ Lin(T3) \ span(Ls1))) ≥ c2 ≥ R(3) + 10 ≥ 14. Then, one of
dim(span(Lin(T2) \ span(Ls1))) or dim(span(Lin(T3) \ span(Ls1))) is at least 7. Wlog, let it be for
T2. Note that for any linear form l to be in Ls1 \ Lin(G), as discussed earlier, it needs to divide
T2 + T3(but not T2 or T3). For that to happen, the linear forms in T2 and T3 become the same mod
it, and therefore, both will have at least 6 independent linear forms outside span(Ls1). We can
also ensure span(Lin(G)) = span(Lin(T1 + T2 + T3)) by guessing(from a basis) at most 6R(3) log d
subspace from span(Ls1) and dividing by linear forms not in the subspace as we did in Theorem 6.1
to decrease dim(span(Lin(G))). In case Ls1 is empty, we still have dim(span(Lin(T3))) ≥ 2 from
assumption in Theorem 6.2. Let L2 and L3 be sets of independent linear forms such that L3 ⊆
Lin(T3) \ span(Ls1), dim(span(L3)) = 2, L2 ⊆ Lin(T2), dim(span(L2)) = 4, and for any l2 ∈ L2 it
holds that l2 ̸∈ span(L3 ∪Ls1). Consider the set of spaces V(l1, l2, l3) with l1 ∈ L1, l2 ∈ L2, l3 ∈ L3.
Our choice of L2, L3 ensures that these spaces are not contained in S1 spaces. These spaces will

59



be in S3(f) or non-degenerate Ssp
3 (f)(where non-degenerate case as defined in Lemma 6.10) unless

they are contained in a Ssp
2 space whose kernel contains l2 or l3 (since all S2 spaces whose kernels

contain anything in L1 will also have a linear form from Ls1 in the kernel which is not possible due
to our choice of L2, L3). Recall that every space in S3(f) or non-degenerate Ssp

3 (f) will be learned.
Let L3 = {l3, l′3} and consider the spaces V(l1, l2, l3) for l1 ∈ L1, l2 ∈ L2. We will argue that

either we learn l3 in the output of Algorithm 6 or at least two independent linear forms from T2.
We break up the analysis of this case into the following subcases.

Case A.2a: These exists a choice of l2 ∈ L2 such that there are two linear forms l1, l′1 in L1
for which V(l1, l2, l3) and V(l′1, l2, l3) are learnable. Moreover there is a choice of l′2 ∈ L2, and a
choice of l′′1 ∈ L1(l′′1 maybe equal to l1, l′1) such that V(l′′1 , l′2, l3) is learnable. In this case, by the
intersection of the kernels of these learnable spaces we have l3 ∈ Lcand.

Case A.2b: For at least three choices of l2 (say l2, l′2, l′′2) for which it it holds that for at least
all except one choice of linear form l1 ∈ L1, V(l1, l2, l3) is degenerate (and hence unlearnable).
For each degenerate space, we associate it with a linear form l′′(equal to one of l1, l2, l3) such that
V(l1, l2, l3) ⊆ V(l, l′) ∈ Ssp

2 and l′′ ∈ span(l, l′).
Fix l2. We will show that either V(l2, l3) is an Ssp

2 space or one of l2, l3 is in Lcand.
For the fixed choice of l2 and l3, we consider the set of spaces V(l1, l2, l3) as l1 ranges over

all linear forms in L1. Since, all except one of them are degenerate and there are at least 4 of
them (in fact there are 5ccand log d − 1), one of l2 or l3 is associated twice with some degenerate
space7. If any two of the degenerate spaces (say V(l1, l2, l3),V(l′1, l2, l3)) are contained in the same
Ssp

2 space V(l, l′), then span(l, l′) ⊂ span(l1, l2, l3) and span(l, l′) ⊂ span(l′1, l2, l3). This means
span(l, l′) ⊂ span(l1, l2, l3) ∩ span(l′1, l2, l3), and span(l1, l2, l3) ∩ span(l′1, l2, l3) = span(l2, l3) which
means V(l, l′) = V(l2, l3). In particular V(l2, l3) is an Ssp

2 space. If this does not happen, this means
that no two choices of V(l1, l2, l3) and V(l′1, l2, l3) are contained in the same Ssp

2 space, then there
are distinct Ssp

2 spaces for each choice of degenerate space. In this situation, since one of l2, l3 is
associated with two degenerate spaces, it is also contained in the kernel of two distinct Ssp

2 spaces,
and hence obtained in Lcand.

We can argue the same for l′2 and l′′2 . If any two of V(l2, l3),V(l′2, l3),V(l′′2 , l3) are in Ssp
2 , we

again have two distinct Ssp
2 spaces whose kernels contain l3, and therefore l3 ∈ Lcand. Otherwise,

we have at least two linear forms (say l2, l′2) in L2 such that either l3 ∈ Lcand or l2, l′2 ∈ Lcand. Thus
we have either l3 in the output of Algorithm 6 or at least two independent linear forms from T2.

We can repeat this argument for l′3 ∈ L3, and therefore, we have either two independent linear
forms from T2 or T3 in Lcand output in Algorithm 6.

We are now done with Case A.2. We are left with the case of dim(span(Lin(T2 + T3)) = 1. Let
l′ be the single linear form which equals span(Lin(T2 + T3)). We consider two further cases where
l′ ̸∈ gcd(T2, T3) and l′ ∈ gcd(T2, T3).

Case A.3a: dim(span(Lin(T2 + T3) \ Ls1)) = 1 and if l′ is the single linear form which equals
span(Lin(T2 + T3) \ Ls1)) then l′|sim(T2 + T3).

In this case, T2 and T3 must be close in rank(by almost 1), since when we go mod l′, they
become nonzero and equal. Recall that by assumption of this case, dim(span(Lin(T2) ∪ Lin(T3) \
span(Ls1))) ≥ c2. Applying this to the linear forms in T2 and T3, it follows that dim(span(Lin(T2)\
span(Ls1))) and dim(span(Lin(T3) \ span(Ls1))) both are at least 7 (by the property of closeness
of rank). So, we can pick a set of independent linear forms L2 ⊆ Lin(T2) \ span(Ls1) such that for
any l2 ∈ L2, l2 ̸∈ span(L1, l′) and dim(span(L2)) = 4. Here we are using the fact that L1 which was
picked earlier had all its linear forms not lying in span(Lin(T2)∪Lin(T3)). Similarly, we can pick a
set of independent linear forms L3 ⊆ Lin(T3) such that for any l3 ∈ L3, l3 ̸∈ span(L1, L2, l′,Ls1) and

7as observed before, the degenerate space cannot be associated with a linear form in L1

60



dim(span(L3)) = 2. Now, we are in the same situation as Case A.2, i.e. when Lin(T2+T3)\span(Ls1)
was empty as our choice of L2 and L3 ensures the presence of l′ doesn’t interfere with the spaces
V(l1, l2, l3). In particular since every Sreg

2 space must contain l′, the choice of L1, L2 and L3
guarantees that no space of the form V(l1, l2, l3) coming from them is contained in an Sreg

2 space.
Also, our choice of L2 and L3 ensures that V(l1, l2, l3) are not contained in any S1 spaces. Thus,
the exact same argument works and we learn at least two linear forms from T2 or T3 in the output
of Algorithm 6.

Case A.3b: dim(span(Lin(T2 + T3) \ span(Ls1))) = 1 and if l′ is the single linear form which
equals span(Lin(T2 + T3) \ span(Ls1)) then l′| gcd(T2, T3).

In this case, we first observe that we can learn l′ by the intersection of kernels of S2 spaces
V(l1, l′) for l1 ∈ L1. As dim(span(Lin(T2) ∪ Lin(T3) \ span(Ls1))) ≥ c2, it means for at least one of
T2 or T3(wlog T2) dim(span(Lin(T2) \ span(Ls1))) is at least 7. As discussed all linear forms l in
Ls1 \ Lin(G), will be such that l|T1 and l|T2 + T3. If there is a linear form in Ls1 \ Lin(G), then
there is no rank gap in T2 and T3 and this case is the same as case 3a. In case there is rank gap
between T2 and T3, Ls1 \ Lin(G) is empty. We have dim(span(Lin(T3))) ≥ 2, so there is at least 1
linear form l3 ̸∈ span(L1, l′). Let L2 ⊆ T2 be a set of independent linear forms such that for any
l2 ∈ L2, l2 ̸∈ span(L1, l′, l3) and dim(span(L2))) = 4. Now, consider the set of spaces V(l1, l2, l3)
with l1 ∈ L1 and l2 ∈ L2. Again, we are in the same situation as case A.2 when Lin(T2 + T3)
was empty as our choice of L2 and L3 ensures the existence of l′ doesn’t interfere with the spaces
V(l1, l2, l3). So, we have either l3 ∈ Lcand or at least two independent linear forms from T2 in Lcand

output from Algorithm 6. As we already observed we can learn l′ ∈ gcd(T2, T3) in Lcand. Thus we
again learn at least two linear forms from T2 or T3 in the output of Algorithm 6.

This completes Case A.3. In each case, we have shown that we can either learn at least ccand log d
independent linear forms from T1, or at least two independent linear forms from one of T2 or T3.
In the event that we learned two independent linear forms from one of T2 or T3, we now show how
to proceed.

We assume we have learned at least two independent linear forms l3, l′3 in Lcand ∩ Lin(T3) or
two independent linear forms l2, l′2 in Lcand ∩Lin(T2). Wlog, assume it is the former. Since there is
a rank gap between T1 and T2(or T3), rank(sim(C mod l3)) > R(4)(same for l′3, l2, l′2). Therefore,
We can use Theorem 3.10 to obtain a (possibly different) representation of the circuits C mod l3
and C mod l′3. The learned circuits will still be ΣΠΣ(2) circuits, but as we will now observe, even
a distinct ΣΠΣ(2) representation of the same polynomial reveals enough information about the
original representation. Let the original representation of C mod l3 be of the form G′ × (T ′

1 + T ′
2)

where gcd(T ′
1, T ′

2) = 1. Then note that (G×T1) mod l3 = G′×T ′
1 and (G×T2) mod l3 = G′×T ′

2.
The circuit reconstructed by Theorem 3.10 will be of the form G′′×(T ′′

1 +T ′′
2 ). As G′×(T ′

1+T ′
2)−G′′×

(T ′′
1 +T ′′

2 ) = 0, from rank bounds in Theorem 3.4, we have rank(sim(G′×(T ′
1+T ′

2)−G′′×(T ′′
1 +T ′′

2 ))) ≤
R(4) and hence either rank(sim(G′×T ′

1−G′′×T ′′
1 )) ≤ R(4) or rank(sim(G′×T ′

1−G′′×T ′′
2 )) ≤ R(4).

Wlog, assume this happens with T ′′
1 , i.e. rank(sim(G′ × T ′

1 −G′′ × T ′′
1 )) ≤ R(4). Thus among the

linear forms that appear in G′′ × T ′′
1 , all except the linear forms that lie in a R(4)-dimensional

space must appear as linear forms in (G× T1) mod l3. Therefore, we have learned the projection
mod l3 of at least 5ccand log d − R(4) independent linear forms from T1

8 and similarly there are
5ccand log d−R(4) independent linear forms from T1 for which we know the projection mod l′3. We
then “glue” these projections (see Algorithm 9 for a description of the gluing) to obtain at least
ccand log d independent linear forms from T1 in Lcand output in Algorithm 9.

As described earlier, the output of Algorithm 6 can be computed in poly(n, d) time and is dO(1)-
sized list of linear forms. In Algorithm 9, the loop on Line 3 iterates over these dO(1) possibilities

8we actually learn a superset of these linear forms, but that suffices for us.

61



while the reconstruction of ΣΠΣ(2) circuits is done by [Sin16b] in poly(n, d) time. The number of
linear forms added to proj is also O(d) and hence |proj| = dO(1) as well. Therefore, Algorithm 9
runs in poly(n, d)-time and outputs a list Lcand of size dO(1).

Thus, we finish with Case A. Now, we consider Case B where we have dim(span(Lin(T2) ∪
Lin(T3) \ span(Ls1))) < c2.

Case B: dim(span(Lin(T2) ∪ Lin(T3) \ span(Ls1))) < c2 In this case, we will use an approach
similar to Lemma 6.13. We present the outline of the argument here, but most details follow from
proofs of Lemma 6.11 and Lemma 6.13. We will do a random linear transformation on Ls1 and
project it to a constant c = R(3) dimensional space. Then, we will have the number of essential
variables in T2 + T3 will be at most c + c2 as dim(span(Lin(T2) ∪ Lin(T3) \ span(Ls1))) < c2 while
T1 will have Ω(log d) essential variables. Therefore, we can learn projected versions of linear forms
in T1 by finding linear forms l such that mod l the circuit has at most c + c2 essential variables.
Finally, we can glue all these projected versions to get linear forms in T1.

Wlog let S := {x1, . . . , x|S|} be a basis for Ls1. We know from Lemma 6.4 dim(span(Ls1 \
Lin(G))) ≤ 6R(3) log d and the assumption in Theorem 6.2 that dim(span(Lin(G))) ≤ 6R(3) log d,
which combined means |S| ≤ 12R(3) log d. Now, consider a random linear isomorphism Φ such that
∀ xi ∈ S, Φ(xi) = ∑|S|

j=1 αi,jxj where αi,j are picked randomly from {1, . . . , dn} and let g = Φ(f).
Now we consider for each i ∈ [c−1, |S|] the polynomials gi, obtained from g by setting xc−1 = . . . =
xi−1 = xi+1 = . . . = x|S| = 0. Observe, that for each gi, one can view the way gi is obtained as
taking random linear subspace of span(S) and considering the circuit C modulo the subspace. By
Lemma 3.2 and similar to the analysis of Lemma 5.4 it follows that with high probability, under
this transformation each gate of C remains nonzero.

Thus for each i, the projected circuit gi is of the form T
[i]
1 + T

[i]
2 + T

[i]
3 where T

[i]
2 + T

[i]
3 has at

most c + c2 essential variables and T
[i]
1 has linear forms spanning a space with dimension at least

(5ccand − 12R(3)) log d.
We find the set of linear forms from T

[i]
1 similar to the first half of Lemma 6.11. For each gi, we

take a random invertible linear transformation Ψ and project the circuits to the first 10(c + c2)− 1
variables and xj to obtain polynomials hj . In this, with high probability, the projected T

[i,j]
1 will

be full rank, i.e. dim(span(Ψ(T [i]
1 )|x10(c+c2)=...=xj−1=xj+1=...=xn=0)) = 10(c + c2), while T

[i]
2 + T

[i]
3

will have at most c + c2 essential variables. We can then interpolate this in time poly(d) to get
monomial access to these polynomials hj ’s. We can form a system of equations to find linear forms
l such that mod l, the polynomial has c + c2 essential variables using the partial derivative matrix
similar to Lemma 6.11. Solving this system of equations for each hj and gluing these linear forms
will give us linear forms in T

[i]
1 . The gluing step is the same as Lemma 6.11 and therefore also

efficient.
Once we have linear forms in T

[i]
1 for each gi, we glue them to get linear forms in T1 in Lcand

similar to Lemma 6.13. Thus, we obtain all linear forms in T1, while we know dim(span(Lin(T1))) ≥
5ccand log d. Therefore, we have in this case as well dim(span(Lin(T1) ∩ Lcand)) ≥ ccand log d

6.4 Candidate Linear Forms when there is a linear form l such that rank(sim(C
mod l)) < c2 and C mod l ̸= 0

We saw in Lemma 4.4, that we were able to bound the number of S3 spaces when the rank of
the circuit is greater than c3 except when there exists a linear form l, such that rank(sim(C
mod l)) < c2 and C mod l ̸= 0. We showed in the previous section how to learn candidate linear
forms whenever we could bound the number of S3 spaces. In this section, we will show how to

62



learn linear forms in the case where were not able to bound the number of S3 spaces, i.e. where
there exists a linear form l, such that rank(sim(C mod l)) < c2 and C mod l ̸= 0. This condition
restricts the circuit structure to be of a few different special types (or forms), and in each of these
different structural types we show how to learn the candidate linear forms.

We are still assuming in this section the assumptions that come with Theorem 6.2.
We get the following types of circuits when there exists l such that rank(sim(C mod l)) < c2

and C mod l ̸= 0.

• No Ti vanishes mod l. (We handle this case in Lemma 6.15, and we call such circuits as
Special Form 1 )

• l divides some gate, say T1, and rank(sim(T2 +T3)) < c2. (We handle this case in Lemma 6.17
and we call such circuits as Special Form 2 )

• l divides some gate, say T1, rank(sim(T2 + T3)) ≥ c2 but rank(sim((T2 + T3) mod l)) < c2.
(We handle this case in Lemma 6.18 and we call such circuits as Special Form 3 )

The first case is when l does not divide any Ti, and in this, most linear forms from all 3 gates
(except c2 independent ones) must move to the gcd when we go mod l. This means the circuit will
have the following structure

Definition 10 (Special form 1). We define an input polynomial f to be of Special form 1 if it can
be computed by a ΣΠΣ(3) circuit C such that, for some linear form l and constants αi, βi, γi ∈ F,
it is of form

C = G×

 d′∏
i=1

(li + αil)

T ′
1 +

 d′∏
i=1

(li + βil)

T ′
2 +

 d′∏
i=1

(li + γil)

T ′
3


where T ′

1, T ′
2, T ′

3 are the product of linear forms such that gcd(T ′
1, T ′

2, T ′
3) = 1, rank(T ′

1+T ′
2+T ′

3) < c2
where c2 is as defined in Lemma 4.3. Moreover, there is no l′ such that for some i ∈ [3] l′|Ti and
rank(sim(C mod l′)) < c2 and C mod l′ ̸= 0.

Now, we are left with cases, when there exists a gate (wlog say it is T1) that vanishes mod some
linear form l, and rank(sim(T2 + T3 mod l)) < c2. We further break this into two cases and first
handle the case where rank(sim(T2 + T3)) < c2, as defined below.

Definition 11 (Special form 2). We define an input polynomial to be of Special form 2 if it can
be computed by a ΣΠΣ(3) circuit C such that, it is of form

C = G×
((

d∏
i=1

li

)
+ T2 + T3

)

such that gcd(∏d
i=1 li, T2, T3) = 1 and rank(sim(T2 +T3)) < c2 where c2 is as defined in Lemma 4.3.

The only case left is that rank(sim(T2 + T3)) was high initially but for some l|T1, we have
rank(sim(T2 + T3 mod l)) < c2.

Definition 12 (Special form 3). We define an input polynomial f to be of Special form 3 if it
can be computed by a ΣΠΣ(3) circuit C such that it is of the form

C = G× (T1 + T2 + T3)

63



where gcd(T1, T2, T3) = 1 and for some l ∈ T1, rank(sim(T2 + T3 mod l)) < c2, but rank(sim(T2 +
T3)) ≥ c2. This circuit will be of the following form

C = G×

l · T ′
1 +

d′∏
i=1

(li + αil)T ′
2 +

d′∏
i=1

(li + βil)T ′
3


such that rank(sim(T ′

2 + T ′
3)) < c2 where c2 is as defined in Lemma 4.3.

In this section, we handle all three special forms and get a dO(1) list of linear forms such that
it has at least ccand log d independent linear forms from one of the multiplication gates. The main
issue with all special forms is that we do not have a bound on the size of the set S3(f) for these
polynomials, but we utilize the structure in the circuits to compute the candidate linear forms using
S2(f).

6.4.1 Candidate Linear forms for Special form 1

A polynomial in special form 1 is of form

C = G×

 d′∏
i=1

(li + αil)

T ′
1 +

 d′∏
i=1

(li + βil)

T ′
2 +

 d′∏
i=1

(li + γil)

T ′
3


for rank(T ′

1 + T ′
2 + T ′

3) < c2.
The high level plan to learn linear forms for such circuits will be the following. We will first

show how to obtain the linear form l (note that there might be many different choices of l for
which the structure arises), which defines the structure of the circuit, and we do this by considering
the intersection of S2 spaces. We then learn the li’s by factoring the circuit mod l. To obtain
the required constants, we use the fact that f will vanish over the codimension 3 subspace V(li +
αil, lj + βjl, lk + γkl), to get a system of equations in αi, βj , γk.

Lemma 6.15. Let f be a polynomial that can be computed by a circuit C = G × (T1 + T2 + T3)
in Special form 1 as defined in Definition 10 satisfying all assumptions from Theorem 6.2. Then
there exists an algorithm that computes a list of linear forms Lcand in poly(n, d) time such that
|Lcand| = dO(1) and dim(span(Lcand ∩ Lin(T1))) ≥ ccand log d.

Proof. We will first show that for a polynomial that is computed by a circuit in special form 1, the
S2(f) spaces will contain spaces of form V(l, li) for many choices of i ∈ [d′]. In particular we will
show that there are at least two distinct spaces of the form V(l, li) that are learnt in S2(f). To see
this, first note from the definition of special forms, we have C mod l ̸= 0 and therefore V(l) is not
an S1 space. Also, note that dim(span({li}i∈[d′]) ≥ 15ccand log d−c2−1 as we know from assumption
in Theorem 6.2 that rank(sim(C)) ≥ 15ccand log d. As dim(span(Ls1 \ Lin(G))) ≤ 6R(3) log d from
Lemma 6.4 and dim(span({li}i∈[d′]) ≥ 15ccand log d− c2 − 1, thus it follows that we have at least 2
distinct spaces V(l, li) not contained in S1 spaces. Thus we we look at the intersection of kernels of
all S2(f) spaces, l will lie in one of the intersections and thus we can recover a list which contains
l. As shown in Lemma 4.3, |S2(f)| = dO(1) and therefore, possibilities for l are also dO(1).

Once, we have access to l, we consider C mod l and a factorization of it gives us access to the
different li (note that C mod l ̸= 0). Note that l (which determines the special form 1 structure)
might not be unique. We will consider two cases based on whether there is a unique choice of l or
there are at least 2 such choices of l.

64



Case 1: Assume, we have 2 such special linear forms l and l′ which both give rise to the special
form 1 structure.

Let the circuit in special form 1 using the linear form l be of the form

C = G×

 d′∏
i=1

(li + αil)

T ′
1 +

 d′∏
i=1

(li + βil)

T ′
2 +

 d′∏
i=1

(li + γil)

T ′
3

 .

Also, let the circuit in special form 1 with l′ be of form

C ′ = G′ ×

 d′∏
i=1

(l′i + α′
il

′)

T ′′
1 +

 d′∏
i=1

(l′i + β′
il

′)

T ′′
2 +

 d′∏
i=1

(l′i + γ′
il

′)

T ′′
3

 .

Since they are computing the same polynomial, we have C −C ′ computes an identity. By rela-
belling of gates and by rank bounds (Lemma 3.4), we can assume the first gate in both representa-
tions are “close” (i.e. the have common linear forms except for those lying in a R(6) dimensional
space). Since by assumption G and G′ both have rank at most 6R(3) log d and since T ′

1 and T ′′
1 both

have rank at most c2, thus, except for linear forms lying in a 2c2 +R(6) + 12R(3) log d dimensional
space, we get that for each i, there is a j such that li + αil = l′j + α′

jl′

When we go mod l, all the linear forms in ∏d′
i=1(li + αil) move to the gcd and hence can be

learnt by factorization. When we go mod l′, all the linear forms in ∏d′
i=1(l′i + α′

il
′) move to the gcd

and hence can be learnt by factorization. Thus except for linear forms in a 2c2 +R(6)+12R(3) log d
dimensional space, for all other common linear forms that appear in ∏d′

i=1(li + αil) as well as in∏d′
i=1(l′i + α′

il
′) , we have learnt those linear forms mod l and well as mod l′.

Observe that there are at least 15ccand log d−2c2−R(6)−12R(3) log d independent and common
linear forms appearing in each of ∏d′

i=1(li + αil) and ∏d′
i=1(l′i + α′

il
′) . Consider linear form li + αil

that is common on both circuits. Thus li + αil = l′i + α′
il

′. Since we can learn l, l′, li, and
l′i thus this information is enough to recover αi and α′

i by solving a suitable system of linear
equations. Once we do this, we add li + αil to the set of candidate linear forms. Thus we obtain
15ccand log d− 2c2 −R(6)− 12R(3) log d independent linear forms in one of gates of C.

Case 2: We now consider the case when there is a unique choice of linear form l that gives rise to
the special form structure for the underlying polynomial. After going mod l and factoring, we learn
the different li, which as a set are high dimensional (dim(span({li}i∈[d′]) ≥ 15ccand log d − c2 − 1).
We will be interested in triples of linear forms of the following kind: the triple li, lj , lk from the
list of linear factors that we will like to consider is such that dim(span(l, li, lj , lk)) = 4. Define the
set S∗

3 (f) to be the set of codimension 3 spaces of the form V(li + αl, lj + βl, lk + γl) with li, lj , lk
satisfying properties above and α, β, γ ∈ F such that V(li + αl, lj + βl, lk + γl) ∈ S3(f). We see
that for α = αi, β = βj , γ = γk, V(li + αl, lj + βl, lk + γl) belongs to S∗

3 (f). We would like to learn
(αi, βj , γk) (and do this for many choices of i, j, k), and to do this, we will try to learn S∗

3 (f). We
then add li + αil, lj + βjl and lk + γkl to the set Lcand.

Claim 6.16. Assuming, we are in case 2 of Special form 1, i.e. there is a unique linear form l
giving rise to the special form structure, then S∗

3 (f) can be computed in randomized time poly(n, d),
and |S∗

3 (f)| = dO(1).

Proof. We will first prove that |S∗
3 (f)| = dO(1). From Lemma 4.4, we have that if rank of the

circuit is at least c3, and there does not exist a linear form l such that rank(sim(C mod l)) ≤ c2,
then |S3(f)| = dO(1). However in our case, we do have a linear form l such that rank(sim(C

65



mod l)) ≤ c2. However though we are not able to bound |S3(f)|, we will still be able to bound
|S∗

3 (f)|. To see this, we inspect the proof of Lemma 4.4. Note that in our setting there is a single
unique linear form l such that rank(sim(C mod l)) ≤ c2. l does not divide any gate Ti of the
circuit. Thus the only case where Lemma 4.4 does not allow us to prove a bound on |S3(f)| is case
2.A. In this case, we consider triples of the form V(l1, l2, l3), and if there is no l′ ∈ span(l1, l2, l3)
such that rank(sim(C mod l′)) ≤ c2 then the number of such triples is bounded. Now, of course
in S3(f) this condition does not always hold. However, it is easy to see that in S∗

3 (f) it does hold!
In every space V(li + αl, lj + βl, lk + γl) in S∗

3 (f), clearly l ̸∈ span{li + αl, lj + βl, lk + γl} since
dim(span(l, li, lj , lk)) = 4. Also since l is the unique linear form such that rank(sim(C mod l)) ≤ c2
thus there is no linear form in span{li + αl, lj + βl, lk + γl} such that modulo it the rank crashes.
Thus we are able to bound the number of codimension 3 spaces in S∗

3 (f) even in Case 2.A and
hence we are able to bound the number of these spaces overall.

We now show how to learn the set of spaces in S∗
3 (f). The algorithm is even simpler than that

for learning S3(f) since we already know l and the various li. Thus after projecting to few variables
and solving a system of polynomial equations, we can recover the values of all possible α, β, γ and
we do not need to glue and lift. We provide the details below.

Pick li, lj , lk from {li}i∈[d′] learnt from factoring mod l such that dim(span(l, li, lj , lk)) = 4. Just
like in Lemma 5.2 we consider a random invertible linear transformation Φ and set all but t = c3 =
O(1) (c3 is as in Lemma 4.4) variables xt+1 = . . . = xn = 0, to obtain g. As Φ is a random linear
isomorphism, if f vanishes on V(l1, l2, l3) then g vanishes on V (Φ(l1), Φ(l2), Φ(l3)) |xt+1=...=xn=0
with high probability.

Therefore, g vanishes on V (Φ(li) + αiΦ(l), Φ(lj) + βjΦ(l), Φ(lk) + γkΦ(l))xt+1=...=xn=0. Let α, β, γ
be formal variables, and consider any invertible linear transformation Ψ on x1, . . . , xt such that it
takes x1 ← Φ(li +αl), x2 ← Φ(lj +βl), x3 ← Φ(lk +γl). Consider Ψ(g) after setting x1 = x2 = x3 =
0. Set up a system of polynomial equations in α, β, γ by equating the coefficients of monomials in
x4, . . . , xt in Ψ(g)|x1=x2=x3=0 to zero. Also add equations so that
V (Φ(li) + αiΦ(l), Φ(lj) + βjΦ(l), Φ(lk) + γkΦ(l)) is not contained in a S1 or S2 space after the pro-
jection and Ψ similar to what was done in Lemma 5.6. So, the solutions of the system of equations
will contain α = αi, β = βj , γ = γk for all required values that determine the set Sast

3 (f) .
So, all we need to argue is that the system of equations will have at most dO(1) solutions. As

discussed in proof of Lemma 5.4, after a random invertible linear transformation and setting of all
except constant variables, with high probability, the circuit will be full-rank, i.e.
rank(sim(Φ(C)|xt+1=...=xn=0)) = t. Moreover, by Lemma 5.7, there will remain a unique linear
form such that modulo it the circuit has rank at most c2. Thus even after the random linear
transformation and projection, the number of S∗

3 spaces of the new polynomial are still dO(1). It
is easy to see that each solution of the system of equations we set up corresponds to a distinct S∗

3
space of the projected polynomial. Therefore, the number of solutions of the system of equations
will be dO(1), and hence we can efficiently find all solutions.

We now need to show that we can learn ccand log d independent linear forms from a gate, and
the analysis is basically identical to Case 1 of Lemma 6.10 except that we use S∗

3 (f) which we
computed instead of S3(f) (which we do not know how to bound).

Now, we want to show we learn enough linear forms from our computation of S∗
3 (f). Interest-

ingly, if V(li + αl, lj + βl, lk + γl) is a S∗
3 (f) space, then we learn three linear forms, one in each of

the gates. We can also learn linear forms from the intersection of kernels of S2 spaces since S2(f)
can be computed in our setting. Observe that we can still also compute Ssp

3 spaces just as they
were defined and computed in Lemma 6.8, and so can also learn linear forms from the intersection

66



of kernels of spaces in Ssp
3 . We will show that the union of linear forms computed by all these

intersections and the computation of S∗
3 (f) spaces will give us all the linear forms we need.

From Lemma 6.4, we know that the dim(span(Ls1 \ Lin(G))) ≤ 6R(3) log d. Therefore, the
dimension of the span of linear forms from any Ti in Ls1 is at most 6R(3) log d. Fix S to be
any maximal set of independent spaces9 of the form span(l1, l2, l3) with l1 ∈ T1, l2 ∈ T2, l3 ∈ T3
such that V(l1, l2, l3) is contained in some space V(l′1, l′2) ∈ Sreg

2 (f), in particular span(l′1, l′2) ⊂
span(l1, l2, l3). As the spaces span(l1, l2, l3) are all independent, all the corresponding spaces in
Sreg

2 (f) will have independent kernels and hence will be an Independent Vanishing Set. Thus it
follows from Lemma 6.6 that |S| ≤ 6R(3) log d and therefore dim(span(S)) ≤ 18R(3) log d. First,
we observe the following. Let W be any codimension-3 space of the form V(l1, l2, l3) on which f
vanishes and such that l1 ∈ T1, l2 ∈ T2, l3 ∈ T3. Then if W ⊆ V(l′1, l′2) such that V(l′1, l′2) ∈ Sreg

2 (f),
then span(l1, l2, l3) has to intersect span(S). This follows from the maximality of S. Let S′ =
{S ∪ (Ls1 \ Lin(G))}.

Consider any (l1 + α1l) ∈ Lin(∏d′
i=1(li + αil)) ̸∈ span(S′). Note that there will be at least

(15ccand − 24R(3)) log d− c2 − 1 such independent linear forms in Lin(T1).
If we consider T1 + T2 + T3 mod (l1 + α1l), it will be of the form G′ × (T ′′

2 + T ′′
3 ) where

gcd(T ′′
2 , T ′′

3 ) = 1. We consider two cases as follows
Case(a) (l1 + α1l) ∈ Lin(∏d′

i=1(li + αil)) is such that (l1 + α1l) ̸∈ span(S′) and dim(span(Lin(C
mod (l1 + α1l)))) ≥ 12R(3) log d + 3. In this case, we will show that (l1 + α1l) will be in Lcand.

Observe that since dim(Ls1 \ Lin(G)) ≤ 6R(3) log d (by Lemma 6.4) and by assumption,
dim(Lin(G)) ≤ 6R(3) log d, thus dim(Ls1) ≤ 12R(3) log d. It follows that there exist two inde-
pendent linear forms l and l′ dividing G′ such that V((l1 + α1l), l) and V((l1 + α1l), l′) are not
contained within any space in S1(f) and moreover f vanishes on them. Hence they lie in S2(f),
with their kernels intersecting in (l1 + α1l). Hence all such (l1 + α1l) ∈ Lin(∏d′

i=1(li + αil)) will be
in Lcand.

Case(b) (l1 + α1l) ∈ Lin(∏d′
i=1(li + αil)) is such that (l1 + α1l) ̸∈ span(S′) and dim(span(Lin(C

mod (l1 + α1l)))) ≤ 12R(3) log d + 3.
We will show in most typical cases, any such (l1 + α1l) will be in Lcand. As we are showing this,

there will arise one degenerate case where we fail, but then we will show that we can learn enough
linear forms from T2 or T3.

Pick any (l1 + α1l) ∈ Lin(∏d′
i=1(li + αil)) such that (l1 + α1l) ̸∈ span(S′), pick any (l3 + γ3l) ∈

Lin(∏d′
i=1(li +γil)) and (l3 +γ3l) ̸∈ span(S′∪{l1, l}∪Lin(G′)) and pick any (l2 +β2l) ∈ Lin(∏d′

i=1(li +
βil)) and (l2 + β2l) ̸∈ span(S′ ∪ {l1, l3, l} ∪ Lin(G′)). Consider V((l1 + α1l), (l2 + β2l), (l3 + γ3l)).
Note that it does not intersect S′ and hence is not contained in any space in S1 and Sreg

2 . Thus we
will learn this space in S∗

3 (f) unless it is contained in a space in Ssp
2 , say V(l, l′). We first observe

that (l1 +α1l) ̸∈ span(l, l′). This because if it was the case then the space span(l, l′) would be of the
form span((l1 + α1l), l′1) where l′1 ∈ Lin(G′). In particular l′1 ∈ span((l1 + α1l), (l2 + β2l), (l3 + γ3l))
but by choice of (l2 +β2l) and (l3 +γ3l), this is not possible. Moreover observe that if (l2 +β2l) and
(l3 + γ3l) are also both not in span(l, l′), then we call any such V((l1 + α1l), (l2 + β2l), (l3 + γ3l))
a non-degenerate space for learning (l1 + α1l). Moreover every such space gets learned as a space
in Ssp

3 (contained in Ssp
3 ) or S∗

3 . It is not hard to see (we will formalize below) that enough non-
degenerate spaces for learning (l1 + α1l) will suffice in determining (l1 + α1l).

The issue arises in the degenerate case which is when either (l2 + β2l) or (l3 + γ3l) is contained
within V(l, l′). We call any such V((l1 + α1l), (l2 + β2l), (l3 + γ3l)) a degenerate space for learning
(l1 + α1l). We will show that enough degenerate spaces will enable us to learn lots of linear forms

9where a set of spaces is independent if the dimension of the span of their union is a sum of dimensions of the
individual spaces

67



from either T2 or T3, and hence in this case also we are done.
As dim(span(Lin(C mod (l1 + α1l)))) ≤ 12R(3) log d + 3, we have dim(span(Lin(T ′′

2 ))) ≥
(15ccand−12R(3)) log d−c2−3 and dim(span(Lin(T ′′

3 ))) ≥ (15ccand−12R(3)) log d−c2−3. We pick a
set of independent linear forms L3 ⊆ Lin

(∏d′
i=1(li + γil)

)
such that for any (l3+γ3l) ∈ L3, ((l3+γ3l)

mod (l1 + α1l) ∈ Lin(T ′′
3 ) and l3 ̸∈ span(S′∪{l1, l}∪Lin(G′)) and dim(span(L3)) = 2ccand log d + 2.

It is not hard to see that such a set exists. Similarly, we pick L2 ⊆ Lin
(∏d′

i=1(li + βil)
)

such that
for any (l2 + β2l) ∈ L2, ((l2 + β2l) mod (l1 + α1l)) ∈ Lin(T ′′

2 ) ̸∈ span(S′ ∪ {l1, l} ∪ L3 ∪ Lin(G′))
and dim(span(L2)) = 2ccand log d + 2. Again it is not hard to see that such a set exists. In fact
there could have been as many as 13ccand − 36R(3)) log d − 3 such linear forms since {li}i∈[d′] by
assumption starts off being significantly high rank.

Now, consider the set of spaces S(l1) of the form V((l1 + α1l), (l2 + β2l), (l3 + γ3l)) where
(l2+β2l) ∈ L2 and (l3+γ3l) ∈ L3. Assume there is (l2+β2l) ∈ L2 such that there are two linear forms
(l3+γ3l), (l′3+γ′

3l) in L3 for which V((l1+α1l), (l2+β2l), (l3+γ3l)) and V((l1+α1l), (l2+β2l), (l′3+γ′
3l))

are non-degenerate. Then for any (l′2 +β′
2l) ∈ L2, if there is a (l′′3 +γ′′

3 l) ∈ L3((l′′3 +γ′′
3 l) maybe equal

to (l3 + γ3l), (l′3 + γ′
3l)) such that V((l1 + α1l), (l′2 + β′

2l), (l′′3 + γ′′
3 l)) is non-degenerate, then by the

intersection of the kernels of these non-degenerate spaces (which we observed we can learn) we have
(l1 +α1l) ∈ Lcand. Also, if we are in the case where we have (l2 +β2l), (l′2 +β′

2l), (l′′2 +β′′
2 l) ∈ L2 and

(l3 + γ3l), (l′3 + γ′
3l), (l′′3 + γ′′

3 l) ∈ L3 such that all three of V((l1 + α1l), (l2 + β2l), (l3 + γ3l)),V((l1 +
α1l), (l′2 +β′

2l), (l′3 +γ′
3l)),V((l1 +α1l), (l′′2 +β′′

2 l), (l′′3 +γ′′
3 l)) are non-degenerate, then we again have

(l1 + α1l) ∈ Lcand by considering the intersections of kernels of these spaces.
So, there are only two cases where we did not manage to deduce that (l1 + α1l) ∈ Lcand. Either

there is a linear form in (l2 + β2l) ∈ L2 such that for any other (l′2 + β′
2l) ∈ L2, and for any

(l3 + γ3l) ∈ L3, V((l1 + α1l), (l′2 + β′
2l), (l3 + γ3l)) is degenerate. Else, there are only two distinct

spaces in S(l1) of the form V((l1 + α1l), (l2 + β2l), (l3 + γ3l)) and V((l1 + α1l), (l′2 + β′
2l), (l′3 + γ′

3l))
with (l2 + β2l) ̸= (l′2 + β′

2l) and (l3 + γ3l) ̸= (l′3 + γ′
3l) which are non-degenerate.

In both cases, notice we have at least 2ccand log d independent linear forms from each of L2, L3
(call these sets L′

2 and L′
3) for which all the corresponding 4c2

cand log2 d spaces are in the degenerate
setting. By definition of degeneracy any such degenerate space V((l1 + α1l), (l2 + β2l), (l3 + γ3l)) is
contained in an Ssp

2 space of the form V(l, l′) where either l2 or l3 is contained in span(l, l′). Recall
that we have learnt all these Ssp

2 spaces. Moreover all the 4c2
cand log2 d Ssp

2 spaces are distinct by
choice of independence of linear forms that went into L2 and L3. To each such Ssp

2 space, we can
associate it with a choice of (l2 +β2l) ∈ L′

2 or (l3 +γ3l) ∈ L′
3 that is contained in its kernel. If there

are two distinct Ssp
2 spaces that are associated with the same (l2 + β2l) ∈ L′

2 or (l3 + γ3l) ∈ L′
3

then that choice of (l2 + β2l) or (l3 + γ3l) will be learned in Lcand. Since each choice of (l2 + β2l) or
(l3 + γ3l) can be associated with at most 2ccand log d of the Ssp

2 spaces, thus by a simple averaging
argument there are at least 2ccand log d independent linear forms from the union of L′

2 and L′
3 which

are each associated with at least two distinct Ssp
2 spaces and hence are in Lcand. This means from

at least one of T2, T3 there are at least ccand log d linear forms in Lcand.

6.4.2 Candidate Linear forms for Special form 2

A polynomial in special form 2 has a circuit of the form

C = G×
((

d∏
i=1

li

)
+ T2 + T3

)

such that gcd(∏d
i=1 li, T2, T3) = 1 and rank(sim(T2 +T3)) < c2 where c2 is as defined in Lemma 4.3.

68



Lemma 6.17. Let f be a polynomial that can be computed by a circuit C in special form 2 as
defined in Definition 11 satisfying all assumptions from Theorem 6.2, then there exists an algo-
rithm that computes a list of linear forms Lcand in poly(n, d) time such that |Lcand| = dO(1) and
dim(span(Lcand ∩ Lin(T1))) ≥ ccand log d.

Proof. In this case, the input circuit is of form C = G × (T1 + T2 + T3) with gcd(T1, T2, T3) = 1
such that rank(T1 + T2 + T3) ≥ 15ccand log d and rank(sim(T2 + T3)) < c2. We will again break the
analysis into several cases and argue that we have handled most of the cases already in previous
arguments, and the only interesting case left for the lemma is when dim(span(gcd(T2, T3))) < c2+2.

To do this, we consider the following division into cases for the problem

• Case 1: When dim(span(gcd(T2, T3))) ≥ 5ccand log d:
We divide this further into 2 cases based on dim(span(Lin(T1) \ span(Ls1))):

– Case 1.a dim(span(Lin(T1) \ span(Ls1))) ≥ 2. From Lemma 6.4 and assumption
on G from Theorem 6.2, we have that dim(span(Ls1)) ≤ 12R(3) log d. Therefore,
dim(span(gcd(T2, T3) \ Ls1)) ≥ (5ccand − 12R(3)) log d > ccand log d. Let l1, l2 be two
independent linear forms that lie in Lin(T1) \ span(Ls1). Then for every linear form
l ∈ gcd(T2, T3) \Ls1, V(l, l1) and V(l, l2) are distinct spaces in S2(f), and hence l can be
learnt by the intersection of their kernels.
Therefore, we learn ccand log d linear forms in gcd(T2, T3) by intersection of kernels of S2
spaces.

– Case 1.b dim(span(Lin(T1)\span(Ls1))) ≤ 1. This case has been handled in Lemma 6.13
where we handle the case when there are 2 high-rank gates and for some gate
dim(span(Lin(Ti) \ span(Ls1))) ≤ 1. Note that in Lemma 6.13, we do not use S3(f) and
therefore the condition rank(sim(C mod l)) < c2 doesn’t affect it.

• Case 2: When c2 + 2 ≤ dim(span(gcd(T2, T3))) < 5ccand log d:
In this case, we have from Lemma 6.5 that Ls1 will only have linear forms that divide one of
the gates in T1, T2, T3 as combined rank of T2, T3 is low(since their gcd is low rank and their
simple part has constant rank). This also means T1 is high rank, i.e. dim(span(Lin(T1))) ≥
10ccand log d−c2. Any linear form that divides gcd(T2, T3) will not divide T1 as gcd(T1, T2, T3) =
1. Moreover any linear form in Ls1 \Lin(G) will not divide T2 or T3 as if it did then it would
also divide T1 +T2 or T1 +T3, but this cannot happen due to their rank difference. Therefore,
all linear forms in Ls1\Lin(G) must divide T1 and sim(T2+T3). Since rank(sim(T2+T3)) < c2,
dim(span(Ls1 \ Lin(G))) < c2. Now, we will argue that we can reduce it to the case when
dim(span(Ls1)) < c2. We can guess (run for all choices) a c2− 1 dimensional subspace of Ls1
and divide the circuit by the linear forms in Ls1 not in the subspace. For correct choice of this
space, we only divide by linear forms in Lin(G). Thus the resulting circuit retains its ΣΠΣ(3)
structure and it suffices to learn the candidate linear forms from it. The new circuit clearly has
dim(span(Ls1)) < c2. We also have dim(span(gcd(T2, T3))) ≥ c2+2, and therefore there are at
least 2 independent linear forms in Lin(gcd(T2, T3))\Ls1. Let l1, l2 be two independent linear
forms that lie in gcd(T2, T3) \Ls1. Also, recall that dim(span(Lin(T1))) ≥ ccand log d + c2 + 2.
Then for every linear form l ∈ Lin(T1) such that l is not in span(Ls1, l1, l2), it follows that
V(l, l1) and V(l, l2) are distinct spaces in S2(f), and hence l can be learnt by the intersection
of their kernels.
Therefore, we learn ccand log d linear forms in Lin(T1) \ Ls1 by intersection of kernels of S2
spaces.

69



• Case 3: When dim(span(gcd(T2, T3))) < c2 + 2 :
The discussion from the previous case follows in this case as well and we can reduce to the
case where dim(span(Ls1)) < c2. Also, dim(span(Lin(T1))) ≥ 15ccand log d− 2c2 − 2. We will
show how to learn linear forms in T1 using the fact that in this case the number of essential
variables in T2 + T3 < 2c2 + 2, while the number of essential variables in T1 is large. The
solution is essentially the same as in the case B of Lemma 6.14, and in fact it is even simpler
as we already have dim(span(Ls1)) ≤ c2.
To solve this case, we use Lemma 3.12, which shows that the number of essential variables
is equal to rank of the partial derivative matrix. Using this, we are able to set up a system
of polynomial equations to compute linear forms l such that C mod l has less than 2c2 + 2
essential variables. Moreover we show that these linear forms will be precisely the linear forms
in T1. The solution is similar to Lemma 6.11 and case B of Lemma 6.14.
Clearly, if l|T1, then C mod l = G × (T2 + T3) mod l, and C mod l has less than 2c2 + 2
essential variables. Let Φ be a random linear isomorphism such that Φ(xi) = ∑n

j=1 αi,jxj for
αi,j chosen from [dn] and g = Φ(f) = f(Φ(x)). Also, for t = 10c2 + 1 and i ∈ [t, n] obtain
polynomials gi = g|xt=...=xi−1=xi+1=...=xn=0. Let a2, . . . , an be formal variables. Substitute
x1 = a2x2 + . . . + atxt + aixi into each gi. We can interpolate and obtain monomial access to
the polynomials gi and their partial derivatives. For each gi we do the following. We know
the rank of the partial derivative matrix is equal to the number of essential variables. We
want to solve for linear forms which make this number smaller than 2c2 + 2. Therefore we
add equations specifying that all (2c2 + 2)× (2c2 + 2) minors of the partial derivative matrix
corresponding to gi after substitution of x1 = a2x2 + . . . + atxt + aixi will be 0. This gives us
a system of equations whose solutions (we argue in the next paragraph that the system can
be solved) will contain the projection of l. We can then glue these projections learnt across
the different gi based on the first t coordinates similar to Lemma 6.11 (indeed this is the step
for which we need the random isomorphism), to get linear forms in T1.
The main thing we need to argue still is that the set of solutions of each of the systems of
equations is small as we can then use Theorem 3.8 to obtain the set of solutions in poly(d)
time. For this we observe that the only linear forms l for which gi mod l has < 2c2 + 2
essential variables are precisely the linear forms in T1 projected down to x1, . . . , xt−1, xi (and
hence there are at most d of them). Since we fix the linear forms to have the coefficient of
x1 as 1, there is exactly 1 solution per linear form of T1. If possible there is a linear form
l ∤ T1 for which gi mod l has less than 2c2 + 2 essential variables. This cannot happen as T1
after the random restriction, with high probability has t essential variables, and if l ∤ T1, T1
mod l ̸= 0 and hence after going mod l, the projected T1 must have at least t − 1 essential
variables. Moreover, T2 + T3 has less than 2c2 + 2 essential variables and after projection it
will continue to have less than 2c2 + 2 essential variables. Since the sum of a polynomial with
a high number of essential variables and small essential variables cannot have a small number
of essential variables, therefore, only linear forms that divide T1 after restriction will be part
of the solutions.

6.4.3 Candidate Linear forms for Special form 3

In this case, the circuit is of form

70



C = G× (T1 + T2 + T3) = G×

l · T ′
1 +

d′∏
i=1

(li + αil)T ′
2 +

d′∏
i=1

(li + βil)T ′
3


where rank(sim(T ′

2 + T ′
3)) < c2, but rank(sim(T2 + T3)) ≥ c2.

Lemma 6.18. Let f be a polynomial that can be computed by a circuit C = G × (T1 + T2 + T3)
in special form 3 as defined in Definition 12 satisfying all assumptions from Theorem 6.2, then
there exists an algorithm that computes a list of linear forms Lcand in poly(n, d) time such that
|Lcand| = dO(1) and there exists an i ∈ [3] such that dim(span(Lcand ∩ Lin(Ti))) ≥ ccand log d.

Proof. We will break up our analysis into several cases. The analyses of many of the cases closely
follow previous analyses of cases when the circuit was not in special form. The most involved case
which we handle last will correspond to the setting where there is only one linear form l which
results in the structure of the circuit being a special form circuit, and dim(span(Lin(T ′

1)\Ls1)) ≥ 2
and dim(span({li}i∈[d′] \ Ls1)) ≥ R(6) + 2c2 + 2.

• Case A: dim(span(gcd(T ′
2, T ′

3))) ≥ 5ccand log d.

– Case A.1 dim(span(Lin(T1) \ Ls1)) ≥ 2.
From Lemma 6.4 and assumption on G from Theorem 6.2, we have that dim(span(Ls1)) ≤
12R(3) log d. Therefore, dim(span(gcd(T ′

2, T ′
3) \ span(Ls1))) ≥ (5ccand − 12R(3)) log d >

ccand log d + 2. Let l1, l2 be two independent linear forms that lie in span(Lin(T1) \ Ls1.
Then for every linear form l′ ∈ gcd(T ′

2, T ′
3) \ span(Ls1, l1, l2), there are at least 2 distinct

codimension 2 spaces in S2(f) V(l′, l1) and V(l′, l2). Therefore, we learn ccand log d linear
forms in gcd(T ′

2, T ′
3) by intersection of kernels of S2 spaces.

– Case A.2 dim(span(Lin(T1) \ Ls1)) < 2.
This case has been handled in Lemma 6.13 where we handle the case when there are
2 high-rank gates and for some gate dim(span(Lin(Ti) \ span(Ls1))) ≤ 1. Note that
in Lemma 6.13, we do not use S3(f) and therefore the condition that rank(sim(C
mod l)) < c2 doesn’t affect it.

• Case B: dim(span(gcd(T ′
2, T ′

3))) < 5ccand log d.
In this case, at least one of Lin(T1) or {li}i∈[d′] must have dimension at least 5ccand log d (and
in particular their sum must have dimension at least 10ccand log d) as the simple part of the
circuit C has rank at least 15ccand log d.

– Case B.1: dim(span({li}i∈[d′] \ span(Ls1))) < R(6) + 2c2 + 2.
In this case, we know using Lemma 6.4 that dim(span({li}i∈[d′])) < 12R(3) log d+R(6)+
2c2+2, which means dim(span(Lin(T1))) ≥ 10ccand log d−12R(3) log d−(R(6)+2c2+2).

∗ Case B.1.a: dim(span(gcd(T ′
2, T ′

3) \ span(Ls1)) ≥ 2.
From Lemma 6.4 and assumption on G from Theorem 6.2, we have that
dim(span(Ls1)) ≤ 12R(3) log d. Therefore, dim(span(Lin(T1) \ Ls1)) ≥ (10ccand −
24R(3)) log d − (R(6) + 2c2 + 2) > ccand log d. Let l1, l2 be two independent lin-
ear forms that lie in gcd(T ′

2, T ′
3) \ Ls1. Then for every linear form l′ ∈ Lin(T1) \

span(Ls1, l1, l2), there are at least 2 distinct codimension 2 spaces in S2(f) V(l′, l1)
and V(l′, l2). Therefore, we learn ccand log d linear forms in Lin(T1) by the intersec-
tion of kernels of S2 spaces.

71



∗ Case B.1.b: dim(span(gcd(T ′
2, T ′

3) \ span(Ls1)) < 2.
In this case, we have dim(span(Lin(T2) ∪ Lin(T3) \ span(Ls1))) < R(6) + 3c2 + 4,
which same as case B of Lemma 6.14. Note that in case B of Lemma 6.14, we do
not use S3(f) and therefore the condition rank(sim(C mod l)) < c2 doesn’t affect
it. We know from Lemma 3.4 that R(6) + 3c2 + 4 is a constant. Therefore, the
constant in case B of Lemma 6.14 can be replaced with R(6) + 3c2 + 4 instead of
c2, as it doesn’t affect the analysis because T1 has Ω(log d) rank.

– Case B.2: dim(span({li}i∈[d′] \ span(Ls1))) ≥ R(6) + 2c2 + 2.
∗ Case B.2.a: dim(span(Lin(T1) \ Ls1)) < 2.

From Lemma 6.4 and assumption on G from Theorem 6.2, we have that
dim(span(Ls1)) ≤ 12R(3) log d. Therefore, dim(span(Lin(T1))) < 12R(3) log d + 2
and dim(span({li}i∈[d′])) ≥ 10ccand log d− (12R(3) log d + 2). Therefore, this case is
handled by Lemma 6.13 as well.

∗ Case B.2.b: dim(span(Lin(T1) \ Ls1)) ≥ 2.
This is last case left and the rest of the proof is devoted to understanding this case.
Note that in this case we can learn linear forms l that give the circuit structure
of special form 3 using intersection of kernels of S2 spaces. Fix one such l. To
see this, let l1, l2 be two independent linear forms in {li}i∈[d′] \ span(Ls1, l) (where
{li}i∈[d′] are the linear forms as defined in the structure of special form 3) such that
dim(span(l, l1, l2)) = 3. Then V(l, l1) and V(l, l2) are two distinct codimension 2
spaces in S2(f), whose kernels intersect in l and hence l can be learnt. Also, note
that from the definition of Special form, it follows that C mod l ̸= 0. Thus once,
we have l, we also can learn the set {li}i∈[d′] by factoring C mod l.

Case B.2.b: Let us again remind the reader the parameters of this case. We are in the setting
where dim(span(Lin(T1) \ Ls1)) < 2 and dim(span({li}i∈[d′] \ span(Ls1))) ≥ R(6) + 2c2 + 2. Also
dim(span(gcd(T ′

2, T ′
3))) < 5ccand log d. We will first analyze the (easier) subcases where there are at

least two distinct linear forms which give rise to the special form structure. Note that if any linear
form gave rise to a Special form 2 structure, then we already handled this case when we handled
Special form 2.

Case B.2.b with two linear forms giving special form structure Let la and lb be two
independent linear forms such that there are circuits Ca and Cb computing f with rank(sim(Ca

mod la)) < c2, Ca mod la ̸= 0, and rank(sim(Cb mod lb)) < c2, Cb mod lb ̸= 0. We will divide
it into two cases, one where both Ca and Cb are in Special form 3, and one where Ca is in special
form 3 and Cb is in Special form 1. The case where there are only circuits for f in Special form 1,
has already been handled in Lemma 6.15.

Case 1: There are two linear forms which both give rise to Special form 3 circuits.
Let

Ca = Ga × (T1a + T2a + T3a) = Ga ×

la · T ′
1a +

d′∏
i=1

(lia + αiala)T ′
2a +

d′∏
i=1

(lia + βiala)T ′
3a


and

Cb = Gb × (T1b + T2b + T3b) = Gb ×

lb · T ′
1b +

d′∏
i=1

(lib + αiblb)T ′
2b +

d′∏
i=1

(lib + βiblb)T ′
3b

 .

72



The main observation is that we can learn la and lb (at least as part of a larger set) and also
learn the lia and the lib. Moreoever by rank bounds, since the two circuits compute the same
polynomial, the gates of Ca must be “close” to the gates of Cb. From this we can show that we can
glue together to recover at least two of the linear forms from one of the gates of Ca. Once we have
this, we can go mod these linear forms to get two different projections of another gate, which can
again be glued to recover enough linear forms. We elaborate on this strategy below.

Since we know that Ca and Cb are computing the same polynomial, Ca−Cb computes identity.
By Lemma 3.4, we have that rank(sim(Ca − Cb)) < R(6) where R(6) is a constant for F = R or
C. Then one of T2a or T3a, should be close to one T2b or T3b. Wlog let T2a be close to T2b, i.e.
rank(sim(Ga × T2a + Gb × T2b)) < R(6). Note Ls1 is a set defined by the polynomial f and not
the circuit representation. Therefore, Lin(Ga) ⊆ Ls1 and Lin(Gb) ⊆ Ls1. Thus, in Ga × T2a and
Gb × T2b all linear forms, except those that lie in dim(span(Ls1)) + R(6) dimensional space, will
be the same. This means all (lia + αiala) ∈ Lin(T2a), except those in dim(span(Ls1)) +R(6) + 2c2
dimensional space, are identical up to scaling to some (ljb + αjblb) ∈ Lin(T2b). We already know
for both circuits dim(span({lia}i∈[d′] \ span(Ls1))) ≥ R(6) + 2c2 + 2 and dim(span({lib}i∈[d′] \
span(Ls1))) ≥ R(6) + 2c2 + 2 from discussion above. Now we consider two cases. The first one
if when dim(span({lia}i∈[d′] \ span(Ls1))) ≥ ccand log d +R(6) + 2c2 + 2 and dim(span({lib}i∈[d′] \
span(Ls1))) ≥ ccand log d + R(6) + 2c2 + 2. The second case is when one of the two is smaller
than ccand log d + R(6) + 2c2 + 2. In the first case for every pair of potential linear forms where
(lia + αiala) = (ljb + αjblb) we can learn these identical linear forms as follows. Note that we
already have learnt lia, la, ljb, lb as part of a larger set. We can solve a system of linear equations to
recover αia and αjb. We do this for every possible choice of lia, la, ljb, lb to recover at least ccand log d
independent linear forms from T2a.

In the second case, one of the circuits (wlog Ca) has a small rank {li}i∈[d′]. However we know
the rank is still at least R(6) + 2c2 + 2, which means we will be able to learn at least 2 indepen-
dent linear forms (lia + αiala) and (lja + αjala) from T2a. Also, in this case span(Lin(T ′

1a)) must
have dimension at least 9ccand log d − R(6) + 2c2 + 2 as the rank of the simple part of Ca is at
least 15ccand log d. In this case, we can reconstruct Ca mod (lia + αiala) and (lja + αjala) to get
2 independent projections of the linear forms in Lin(T ′

1a)(Algorithm 9), which we can glue back
to get linear forms in Lin(T ′

1a), similar to case A of Lemma 6.14. Therefore, we have ccand log d
independent linear forms from a gate.

Case 2: One linear form that makes the circuit of form Special form 3, and one linear form
that makes the circuit into Special form 1

Let

Ca = Ga × (T1a + T2a + T3a) = Ga ×

la · T ′
1a +

d′∏
i=1

(lia + αiala)T ′
2a +

d′∏
i=1

(lia + βiala)T ′
3a


be the circuit that is in Special form 3, and

Cb = Gb×(T1b+T2b+T3b) = Gb×

 d′∏
i=1

(lib + αiblb)

T ′
1b +

 d′∏
i=1

(lib + βiblb)

T ′
2b +

 d′∏
i=1

(lib + γiblb)

T ′
3b


be the circuit in Special form 1 computing the same polynomial f . Recall that in Lemma 6.15, we
argued that {lib}i∈[d′] spans a space of dimension at least 15ccand log d− c2− 1. As the two circuits
compute the same polynomial, Ca − Cb computes identity and by rank bounds in Lemma 3.4, we
have rank(sim(Ca − Cb)) < R(6). Then T2a must be close to one of T1b, T2b, T3b(wlog T1b), i.e.

73



rank(sim(Ga × T2a + Gb × T1b)) < R(6). Thus, in Ga × T2a and Gb × T1b all linear forms, except
those that lie in dim(span(Ls1)) +R(6) dimensional space, will be the same. The rest of the proof
remains the same as Case 1, but is even easier to analyze as we know dim(span({lib}i∈[d′])) ≥
15ccand log d− c2 − 1, and hence dim(span({lia}i∈[d′])) ≥ 10ccand log d−R(6)− 2c2 − 1, and hence
at least ccand log d linear forms of the form (lia + αiala) can be learned from T2a.

Case B.2.b with unique linear form giving special form structure. We are now only left
with the case when we are in Case B.2.b and there is a single linear form l for which rank(sim(C
mod l)) < c2 and C mod l ̸= 0 and l|T1. Our approach in this case remains similar to our approach
in Special form 1. Firstly, as discussed earlier we can find l in the intersection of S2 spaces of f
and li’s from factors of C mod l.

Define S∗
3 (f) to be the set of spaces of the form V(l′, li +αl, lj +βl) such that li, lj are in the set

of linear factors C mod l and α, β ∈ F, l ̸∈ span(l′, li + αl, lj +βl) and V(l′, li + αl, lj + βl) ∈ S3(f).
We see that for l′ ∈ Lin(T ′

1) such that l′ ̸∈ span(l) and li, lj such that dim(span(li, lj , l, l′)) =
4, V(l′, li + αil, lj + βjl) will be in S∗

3 (f). Note that one such l′ exists as dim(span(Lin(T1) \
span(Ls1))) ≥ 2 and many li, lj exist (for each choice of l′) as dim(span({li}i∈[d′] \ span(Ls1))) ≥
R(6)+2c2 +2.Our goal is to learn the αi, βj since then we can add li +αil, lj +βjl to the set Lcand.

Claim 6.19. Assuming, we are in case B.2.b of Special form 3 and there is a unique linear form l
giving rise to the special form structure, then S∗

3 (f) can be computed in randomized time poly(n, d),
and |S∗

3 (f)| = dO(1).

Proof. The proof of this claim follows exactly the same idea as Claim 6.16. We will first prove that
|S∗

3 (f)| = dO(1). From Lemma 4.4, we have that if rank of the circuit is at least c3, and there does
not exist a linear form l such that rank(sim(C mod l)) ≤ c2, then |S3(f)| = dO(1). However, in
our case, we do have a linear form l such that rank(sim(C mod l)) ≤ c2. However though we are
not able to bound |S3(f)|, we will still be able to bound |S∗

3 (f)|. To see this, we inspect the proof
of Lemma 4.4. Note that in our setting there is a single unique linear form l such that rank(sim(C
mod l)) ≤ c2. l does divides a gate T1 of the circuit. Thus the only case where Lemma 4.4 does
not allow us to prove a bound on |S3(f)| is case 1. We further observe in case 1, we are not able
to upper bound the number of S3 spaces V(l1, l2, l3) when for the linear form l ∈ span(l1, l2, l3)
that divides a gate, rank of the simple part of the rest of the circuit mod l is small(< c2). In this
case, we consider triples of the form V(l1, l2, l3), and if there is no l′′ ∈ span(l1, l2, l3) such that
rank(sim(C mod l′′)) ≤ c2 then the number of such triples is bounded. Now, of course in S3(f)
this condition does not always hold. However, by definition, this condition holds in S∗

3 (f)! Also
since l is the unique linear form such that rank(sim(C mod l)) ≤ c2 thus there is no linear form in
span{l′, li +αl, lj +βl} such that modulo it the rank crashes. Thus we are able to bound the number
of codimension 3 spaces in S∗

3 (f) when there is linear form such that rank(sim(C mod l′)) ≤ c2
and hence we are able to bound the number of these spaces overall.

We now show how to learn the set of spaces in S∗
3 (f). The algorithm is even simpler than that

for learning S3(f) since we already know l and the various li. Thus after projecting to few variables
and solving a system of polynomial equations, we can recover the values of all possible α, β and we
do not need to glue and lift. We provide the details below.

Pick li, lj from {li}i∈[d′] learnt from factoring mod l such that li, lj ̸∈ span(Ls1, l). Just like in
Lemma 5.2 we consider a random invertible linear transformation Φ and set all but t = c3 = O(1)
(c3 is as in Lemma 4.4) variables xt+1 = . . . = xn = 0, to obtain g. As Φ is a random linear
isomorphism, if f vanishes on V(l1, l2, l3) then g vanishes on V (Φ(l1), Φ(l2), Φ(l3)) |xt+1=...=xn=0
with high probability.

74



Therefore, g vanishes on V (Φ(l′), Φ(li) + αΦ(l), Φ(lj) + βΦ(l))xt+1=...=xn=0. Consider new for-
mal variables a1, . . . , at and let l1 = a1x1 + . . .+atxt. Let α, β be formal variables, and consider any
invertible linear transformation Ψ on x1, . . . , xt such that it takes x1 ← l1, x2 ← Φ(li + αl), x3 ←
Φ(lj + βl). Consider Ψ(g) after setting x1 = x2 = x3 = 0. Set up a system of polynomial equations
in a1, . . . , at, α, β by equating the coefficients of monomials in x4, . . . , xt in Ψ(g)|x1=x2=x3=0 to zero.
Also add equations so that V (l1, Φ(li) + αΦ(l), Φ(lj) + βΦ(l)) is not contained in a S1 or S2 space
after the projection and Ψ similar to what was done in Lemma 5.6. Also add an equation that
ensures dim(span(Φ(l), l1, Φ(li) + αΦ(l), Φ(lj) + βΦ(l))) = 4, similar to adding an equation so that
the space is not contained in V(l) in Lemma 5.6. So, the solutions of the system of equations will
contain l1 = Φ(l′)|xt+1=...=xn=0, α = αi, β = βj for all required values that determine the set S∗

3 (f).
So, all we need to argue is that the system of equations will have at most dO(1) solutions. As

discussed in proof of Lemma 5.4, after a random invertible linear transformation and setting of all
except constant variables, with high probability, the circuit will be full-rank, i.e.
rank(sim(Φ(C)|xt+1=...=xn=0)) = t. Moreover, by Lemma 5.7, there will remain a unique linear
form such that modulo it the circuit has rank at most c2. Thus even after the random linear
transformation and projection, the number of S∗

3 spaces of the new polynomial are still dO(1). It
is easy to see that each solution of the system of equations we set up corresponds to a distinct S∗

3
space of the projected polynomial. Therefore, the number of solutions of the system of equations
will be dO(1), and hence we can efficiently find all solutions.

We now need to show that we can learn ccand log d independent linear forms from a gate, and
the analysis is basically identical to the union of the analyses of Lemma 6.15, Case 2 of Lemma 6.10
and Case A of Lemma 6.14 except that we use S∗

3 (f) which we computed instead of S3(f) (which
we do not know how to bound).

Now, we want to show that we can learn enough linear forms from some gate from our compu-
tation of S∗

3 (f). Interestingly, if V(l′, li + αl, lj + βl) is a S∗
3 (f) space, then we immediately learn

two linear forms, (li + αl) and (lj + βl), one from each of T2 and T3. We can also learn linear forms
from the intersection of kernels of S2 spaces since S2(f) can be computed in our setting. Observe
that we can still also compute Ssp

3 spaces just as they were defined and computed in Lemma 6.8,
and so can also learn linear forms from the intersection of kernels of spaces in Ssp

3 . We will show
that the union of linear forms computed by all these intersections and the computation of S∗

3 (f)
spaces will give us all the linear forms we need.

We now break the analysis into 3 cases using dim(span({li}i∈[d′])) and dim(span(Lin(T ′
1))).

Note that both dim(span({li}i∈[d′])) and dim(span(Lin(T ′
1))) cannot be smaller than 5ccand log d as

we know dim(span(gcd(T ′
2, T ′

3)) < 5ccand log d and rank(T1 + T2 + T3) ≥ 15ccand log d.

1. Case 1: dim(span({li}i∈[d′])) ≥ 5ccand log d and dim(span(Lin(T ′
1))) ≥ 5ccand log d.

This analysis goes exactly similar to the analysis for Special form 1. Fix S to be any maximal
set of independent spaces10 of the form span(l1, l2, l3) with l1 ∈ T1, l2 ∈ T2, l3 ∈ T3 such
that V(l1, l2, l3) is contained in some space V(l′1, l′2) ∈ Sreg

2 (f), in particular span(l′1, l′2) ⊂
span(l1, l2, l3). We discussed in Lemma 6.10 and Lemma 6.15 that |S| ≤ 12R(3) log d. Let
S′ = {S ∪ Ls1} which will have dimension 24R(3) log d. Consider any l1 ∈ Lin(T ′

1) such that
l1 ̸∈ span(S′). There will be 5ccand log d − 24R(3) log d − 1 such independent linear forms.
Consider C mod l1, and if dim(span(Lin(C mod l1))) ≥ 12R(3) log d+2 then l1 is learned by
intersection of kernels of two distinct S2(f). Therefore, we handled the case when there are Ssp

2
10where a set of spaces is independent if the dimension of the span of their union is a sum of dimensions of the

individual spaces

75



spaces on which l1 vanishes. In case, we have dim(span(Lin(C mod l1))) < 12R(3) log d + 2,
we also have dim(span({li}i∈[d′])) ≥ 7ccand log d and dim(span(Lin(T1))) ≥ 7ccand log d as
gcd(T ′

2, T ′
3) ⊆ Lin(C mod l1). We consider set L2 ⊆ Lin(∏d′

i=1 li + αil) such that any (l2 +
α2l) ∈ L2, (l2+α2l) ̸∈ span({l, l1}∪S′∪Lin(C mod l1)) and dim(span(L2)) = 3ccand log d+2.
Similarly, pick L3 ⊆ Lin(∏d′

i=1 li + βil) such that any l3 + β3l ∈ L3, l3 + β3l ̸∈ span({l, l1} ∪
S′∪Lin(C mod l1)∪L2) and dim(span(L3)) = 3ccand log d + 2. Now because of our choice of
L2, L3, we have every space in S∗

3 unless it is contained in a space in Ssp
2 . If space is contained

in S∗
3 then we learn the corresponding linear forms in L2 and L3. Therefore the number of

spaces l1 in S∗
3 is less than ccand log d, otherwise we have learned sufficient linear forms. Let

the sets be L′
2 and L′

3 be subsets of L2 and L3 respectively such that none of the spaces
corresponding to them are in S∗

3 (f) and are contained in a codimension 2 space in Ssp
2 . We

also have dim(span(L′
2)) ≥ 2ccand + 2 and dim(span(L′

3)) ≥ 2ccand + 2. Now we consider the
set of spaces S(l1) of the form V(l1, l2 + α2l, l3 + β3l) where l2 + α2l ∈ L2 and l3 + β3l ∈ L3.
If it is contained in a Ssp

2 space then also we learned it in Ssp
3 unless one of l2 + α2l, l3 + β3l is

contained in the kernel of the Ssp
2 space, and we call such spaces non-degenerate and we learn

all non-degenerate spaces. Therefore, this case is now exactly like the analysis in Lemma 6.15,
where we either learn l1 from enough non-degenerate spaces or there are a lot of degenerate
spaces and we learn ccand log d linear forms from one of L′

2 or L′
3. Since, we learn a general

l1(or we are already done), and there are 5ccand log d − 24R(3) log d − 1 > ccand log d such
independent linear forms, we learn ccand log d independent linear forms from T1.

2. Case 2: dim(span({li}i∈[d′])) < 5ccand log d and dim(span(Lin(T ′
1))) ≥ 5ccand log d.

The analysis in this case is similar to case A of Lemma 6.14. In this case, we observe
we only need to learn 2 independent linear forms in Lin(∏d′

i=1(li + αil)) and Lin(∏d′
i=1(li +

βil)), then you can just reconstruct the circuit mod these linear forms to get projections
of T ′

1, and therefore learn linear forms in T ′
1 by gluing these projections as done in case 2

of Lemma 6.10(Algorithm 7). The low rank means from Lemma 6.5 we can conclude that
all S2 spaces are such that at least one of the gates vanishes over them. The gate has to
be T1 as if T2(or T3) vanished, then T1 + T3(or T1 + T2) will be divisible by a linear form
which cannot happen due to the rank gap. Every space in Sreg

2 will be of form V(l1, l′) where
l1 ∈ Lin(T1) and l′|sim(T2 +T3 mod l1). Since we know dim(span(gcd(T ′

2, T ′
3))) < 5ccand log d

and dim(span({li}i∈[d′])) < 5ccand log d, then we can pick a set of linear forms L1 such that for
every l1 ∈ L1, l1 ̸∈ span(Lin(T2)∪Lin(T3)). Consider the first case where dim(span(Lin(T2 +
T3)\span(Ls1)) ≥ 2, then we learn every linear form l1 ∈ L1 from the intersection of kernels of
S2 spaces and hence have learned ccand log d independent linear forms from a gate. Therefore,
we are left with the case where dim(span(Lin(T2 + T3) \ span(Ls1)) < 1. Let l′ be the linear
form such that span(l′) = span(Lin(T2 + T3) \ span(Ls1)). Recall we already showed we only
need to consider the cases when dim(span({li}i∈[d′] \ span(Ls1)) ≥ R(6) + 2c2 + 2 ≥ 36. Pick
L2 ⊆ Lin(∏d′

i=1(li + αil)) such that for any (l2 + α2l) ∈ L2, (l2 + α2l) ̸∈ span(L1, l′, l) and
dim(span(L2)) = 4. Here we are using the fact that L1 which was picked earlier had all its
linear forms not lying in span(Lin(T2)∪Lin(T3)). Similarly, we can pick a set of independent
linear forms L3 ⊆ Lin(T3) such that for any (l3 + β3l) ∈ L3, (l3 + β3l) ̸∈ span(L1, L2, l′, l,Ls1)
and dim(span(L3)) = 2. Now, consider the spaces V(l1, (l2 + α2l), (l3 + β3l)) with l1 ∈
L1, (l2 + α2l) ∈ L2, (l3 + β3l) ∈ L3. From our choices of L1, L2, L3, these spaces will be in
S∗

3 (f) unless they are contained in a Ssp
2 (f) spaces. If any of these is contained in S∗

3 (f),
then we learn the required 2 independent linear forms and are done. So, we are in the case
when all these spaces will be contained in Ssp

2 spaces. We will learn these spaces still in Ssp
3

76



and can learn any l1 ∈ L1 with the intersections of the kernels(non-degenerate case), unless
the linear forms from L2, L3 lie in the kernel of Ssp

2 spaces(degenerate cases). Now, we are
exactly in Case A.2 of Lemma 6.14, where we can learn 2 linear forms from L2 or L3 with
enough degenerate spaces, or learn linear forms in L1 from non-degenerate spaces. Thus, we
can either learn ccand log d linear forms from T ′

1 or learn 2 linear forms from T2 or T3, and
then learn ccand log d linear forms from T ′

1 by gluing the projection mod these linear forms
which we obtain by reconstructing the top fan-in 2 circuit.

3. Case 3: dim(span({li}i∈[d′])) ≥ 5ccand log d and dim(span(Lin(T ′
1))) < 5ccand log d.

The analysis in this case is similar to case 2 of Lemma 6.10. In this case, we only need to
learn 2 linear forms from Lin(T1) \ Ls1, and then we can reconstruct the circuit mod these
linear forms, and then glue these projections to get Lin(∏d′

i=1(li + αil)). Note, we already
know a linear form in Lin(T1) \ Ls1, which is l, so we only need 1 more linear form. Now
as dim(span(Lin(T ′

1))) < 5ccand log d, from Lemma 6.5, we have all linear forms in Ls1 will
divide at least 1 gate, while S2(f) will have spaces on which at least one of the Ti’s vanish. If
l|T2 (or l|T3), then l|(T1 + T3), which is not possible as there is a rank difference between T1
and T3. Therefore, all l ∈ Ls1 \ Lin(G) are such that l|T1 and l|(T2 + T3). Consider any Sreg

2
space such that only T2 vanishes over it. This means a linear form l|T2 vanishes over this
space, which means there is a linear form that divides sim(T1 + T3) mod l but this cannot
happen as there is a difference between the rank of linear forms in the gates. Similarly, we
can argue there is no space in Sreg

2 such that only T3 vanishes on it. This means all the spaces
in Sreg

2 (f) are such that T1 and T2 + T3 vanish over it. So, the spaces left in S2 are those
there either all three gates vanish over them or T3 and T1 + T2 vanish over them.
The set of linear forms that divide sim(T2 + T3) lie in a 6R(3) log d dimensional space using
Lemma 6.4. Let this space be S. We define S′ = S ∪ (Ls1 \ Lin(G)).
Consider any l′ ∈ Lin(T ′

1) \ Ls1 such that l′ ̸∈ span(l). We will show that either l′ will
be in Lcand or else we will manage to find ccand log d independent linear forms from either∏d′

i=1(li + αil)) or ∏d′
i=1(li + βil)) that lie in Lcand.

Observe that C mod l′ will be nonzero and of the form G′′ · (T ′′
2 + T ′′

3 ) with gcd(T ′′
2 , T ′′

3 ) = 1.
If dim(span(Lin(G′) \ Ls1)) ≥ 2 then we have l′ in kernel of at least two S2 spaces and hence
will be in Lcand and we are done.
Now suppose dim(span(Lin(G′) \ Ls1)) ≤ 1. In this case, dim(span(gcd(T ′

2, T ′
3))) ≤ 1, and

therefore dim(span({li}i∈[d′])) ≥ 10ccand log d− 2− c2.

We pick a set of independent linear forms L2 ⊆ Lin(∏d′
i=1(li + αil))) from Lin(T2) such that

dim(span(L2)) = 3ccand log d+2 and for any (l2+α2l) ∈ L2 we have (l2+α2l) ̸∈ span(S′∪{l′, l})
and ((l2 + α2l) mod l′) ∈ Lin(T ′′

2 ). Clearly such a set L2 can be found. Similarly, we pick
L3 ⊆ Lin(∏d′

i=1(li +βil)) such that dim(span(L2)) = 3ccand log d+2 and for any (l3 +β3l) ∈ L3
we have ((l3 + β3l) mod l′) ∈ Lin(T ′′

3 ) and (l3 + β3l) ̸∈ span(S′ ∪{l′, l}∪L2). Such an L3 can
be found (in fact even larger such sets can be found) because Lin(∏d′

i=1(li + βil)) contains at
least (7ccand − 12R(3)) log d− 5− c2 independent linear forms after removing linear forms in
span(S′ ∪ {l′, l} ∪L2). Now we are in the same case as Case 1, and we either learn ccand log d
linear forms from L2 or L3 from S∗

3 or degenerate spaces or learn l′ from non-degenrate spaces
and intersection of kernels of Ssp

3 spaces.

77



6.5 Candidate Linear forms when some Ti = αld

Lemma 6.20. Given polynomial f computed by a circuit ΣΠΣ(3) C of form

C = G× (T1 + T2 + αld)

such that rank(sim(C)) ≥ 15ccand log d, there exists an algorithm that computes a list of linear forms
Lcand such that |Lcand| = dO(1) and dim(span(Lcand ∩ Lin(T1))) ≥ ccand log d in time randomized
poly(n, d) time.

Proof. Since rank(sim(C)) ≥ 15ccand log d, there will be at least one gate(wlog T1) such that
dim(span(Lin(T1)) ≥ 7ccand log d. If dim(span(Lin(T2)) ≤ c2 − 1, we have already handled that
case in Special form 2 in Lemma 6.17. If dim(span(Lin(T2)) ≥ (5ccand− 12R(3)) log d, then we can
use Lemma 6.11 to get the required set of candidate linear forms.

Therefore, we are interested in the case when dim(span(Lin(T1)) ≥ 7ccand log d and c2 ≤
dim(span(Lin(T2)) < (5ccand−12R(3)) log d. As there is a rank gap between any 2 gates, there is no
linear form in Ls1\Lin(G). Therefore, we can also assume G = 1 as we can divide by the set of linear
factors of C after factoring. The approach in this is similar to Lemma 6.11, as we look for codimen-
sion 1 and codimension 2 spaces on which the polynomial has 1 essential variable. From Lemma 6.9,
we have that the number of essential variables in T1 +T2 is at least c2−R(3)

2 ≥ 5 while the number of
essential variables in T3 is 1. We use a random linear isomorphism Φ such that Φ(xi) = ∑n

j=1 αi,jxj

for αi,j chosen randomly from [dn] and let g = Φ(f) = f(Φ(x)). Let c = c2 be a constant. For each
i ∈ [10c, n], we obtain polynomials gi by setting x10c = . . . = xi−1 = xi+1 = . . . = xn = 0 in g.
After this, T

[i]
1 + T

[i]
2 will continue to be high rank, and will have at least 5 essential variables while

T
[i]
3 have 1 essential variable. From part 2 of Lemma 6.9, we know the only way the polynomial

has 1 essential variable is if l|(T1 + T2). We can interpolate gi’s and get monomial access to them
and the partial derivatives in poly(d) time. Substitute x1 = a2x2 + . . . + a10cx10c + aixi into the
polynomials. Therefore, we can form a system of equation mod a linear form for which the poly-
nomial has exactly 1 essential variable and therefore learn Lin(T [i]

1 + T
[i]
2 ) containing gcd(T [i]

1 , T
[i]
2 ).

We then glue these projections to learn Lin(T1 + T2). Since there is a rank gap between T1 and
T2 there is no linear factor of T1 + T2, and therefore Lin(T1 + T2) = gcd(T1, T2). Similarly, we also
learn S2(T1 + T2) as we find the S2 space for gi’s and glue them together as we did in Lemma 6.11.
We can further learn linear forms by looking at the intersection of the kernels of the spaces in
S2(T1 + T2). The details of these computations are the same as Lemma 6.13.

We divide the analysis into two parts based on dimension of gcd, dim(span(gcd(T1, T2))) ≥ 2
and dim(span(gcd(T1, T2))) ≤ 1.

In case dim(span(gcd(T1, T2))) ≥ 2, let l1, l2 ∈ gcd(T1, T2) be two independent linear forms.
There will be two distinct S2 spaces V(l1, l) and V(l2, l) of f whose kernels intersect in l. Therefore,
we can learn l by the intersection of kernels of spaces in S2(f). Then we consider C mod l1
equal to αld mod l. Since we know l, we can find α and therefore know T3. We can subtract
αld from C, and then use the reconstruction algorithm of [Sin16b] for ΣΠΣ(2) circuits to learn
a circuit T ′

1 + T ′
2 computing the same polynomial T1 + T2. Due to rank bounds we get that

rank(sim(T1 + T ′
1)) ≤ R(4)(or rank(sim(T1 + T ′

2)) ≤ R(4)), and from Lemma 3.4, we have that we
learnt in T ′

1, 7ccand log d−R(4) ≥ ccand log d independent linear forms in T1.
In case dim(span(gcd(T1, T2))) ≤ 1, let l1 be any linear form such that l1 ∈ T1 and l1 ̸∈

gcd(T1, T2). Since dim(span(Lin(T2))) ≥ c2, we have at least two linear forms l′, l′′ ∈ Lin(T2)
such that they are not in span(l1 ∪ gcd(T1, T2)). This means there are two distinct codimension 2
spaces V(l1, l′) and V(l1, l′′) in S2(T1 + T2) learnt above. Therefore we can learn any l1 ∈ T1 such
that l1 ̸∈ gcd(T1, T2) through intersection of kernels of S2(T1 + T2). We already learned the linear

78



forms in gcd(T1, T2), and therefore, in this case, we can learn the entire Lin(T1) which has at least
7ccand log d independent linear forms.

7 From a few linear forms to the reconstructing the entire circuit
We saw in Theorem 6.1 that if the polynomial can be computed by a ΣΠΣ(3) circuit C = G×(T1 +
T2 + T3) such that rank(sim(C)) ≥ 15ccand log d for some constant ccand > 36R(3), then we can
compute a set of linear forms Lcand such that |Lcand| = dO(1) and there exists a gate Ti, such that
dim(span(Lcand ∩ Lin(Ti))) ≥ ccand log d. In this section, we will discuss how we can reconstruct
the entire circuit if we have blackbox access to a ΣΠΣ(3) circuit C = G× (T1 + T2 + T3) using the
set Lcand.

We divide the analysis into two cases. The first case is the setting where we can compute Lcand

(i.e. rank(sim(C)) ≥ 15ccand log d), and the other case is where rank(sim(C)) < 15ccand log d.
We will divide the case where rank(sim(C)) ≥ 15ccand log d into two further subcases based on

the distance(see Definition 4) between the gates of the circuit. The first subcase is when all gates are
far apart, i.e. ∀i, j ∈ [3], ∆(Ti +Tj) = rank(sim(Ti +Tj)) ≥ 2R(4) log d+6, and in this case we learn
a ΣΠΣ(3) computing the underlying polynomial (this representation will in fact be unique). The
other subcase is when there are two distinct gates Ti, Tj such that ∆(Ti+Tj) = rank(sim(Ti+Tj)) <
2R(4) log d+6. In this case we will learn either a ΣΠΣ(3) or a ΣΠΣ(2, d, 2R(4) log d+6) generalized
circuit computing the polynomial as defined in Definition 7.

We will prove Theorem 7.1 in this section, from which the proof of Theorem 1.1 follows easily.

Theorem 7.1. Let F be a field that is R or C. Let f ∈ F[x1, . . . , xn] be a degree d polynomial
computed by ΣΠΣ(3) circuit of the form C = G× (T1 + T2 + T3) such that gcd(T1, T2, T3) = 1. Let
R(k) be as defined in Theorem 3.4. Let ccand > max(36R(3), 6R(3)+2R(4)+100) be any constant.
Then, there exists a randomized algorithm that runs in (nd)O(log d) time, and with probability 1−o(1)
does the following:

1. If rank(sim(C)) < 15ccand log d, then it outputs a ΣΠΣ(1, d, 15ccand log d) generalized depth 3
circuit computing f .

2. If rank(sim(C)) ≥ 15ccand log d, with ∀i, j ∈ [3], i ̸= j, rank(sim(Ti + Tj)) ≥ 2R(4) log d + 6
then it outputs a ΣΠΣ(3) circuit computing f .

3. If rank(sim(C)) ≥ 15ccand log d and for some gates Ti ̸= Tj, rank(sim(Ti+Tj)) < 2R(4) log d+
6 then it outputs a ΣΠΣ(2, d, 2R(4) log d + 6) generalized depth 3 circuit computing f .

Proof. In the first case, when rank(sim(C)) < 15ccand log d, we use Lemma 7.2 to obtain the
ΣΠΣ(1, d, 15ccand log d) generalized depth 3 circuit computing f . When rank(sim(C)) ≥ 15ccand log d,
we use Theorem 6.1 to get a list of linear forms Lcand in (nd)O(log d) time such that |Lcand| = dO(1)

and dim(span(Lin(T1) ∩ Lcand)) ≥ ccand log d. If the gates all have a high distance with each
other, i.e. ∀i, j ∈ [3], i ̸= j, rank(sim(Ti + Tj)) ≥ 2R(4) log d + 6 then use Lemma 7.3 to output
a ΣΠΣ(3) circuit computing f . If there are at least two gates that are close to each other, i.e.
rank(sim(Ti + Tj)) < 2R(4) log d + 6 then use Lemma 7.4 to output a ΣΠΣ(2, d, 2R(4) log d + 6)
generalized depth 3 circuit computing f .

Proof of Theorem 1.1. Let ccand be as in THeorem 7.1. We fix c > 15 · ccand. When ∀i, j ∈ [3], i ̸=
j, rank(sim(Ti + Tj)) ≥ c log d, we also have rank(sim(C)) ≥ c log d,and therefore we reconstruct
ΣΠΣ(3) circuit from part 2 of Theorem 7.1. When for some i, j ∈ [3], i ̸= j, rank(sim(Ti + Tj)) <

79



c log d, we have two cases, rank(sim(C)) ≥ c log d or rank(sim(C)) < c log d. In the first case,
from part 3 of Theorem 7.1, we learn a ΣΠΣ(2, d, 2R(4) log d + 6) circuit which is contained in the
class ΣΠΣ(2, d, c log d) as c > 2R(4). In the second case, from part 1 of Theorem 7.1, we learn a
ΣΠΣ(1, d, c log d) circuit which is contained in class ΣΠΣ(2, d, c log d).

7.1 Low Rank Reconstruction

In this section, we will give a reconstruction algorithm for the case when the rank(sim(C)) <
15ccand log d.

Lemma 7.2. Given black-box access to a ΣΠΣ(3) circuit C = G×(T1 +T2 +T3) computing a degree
d polynomial f ∈ F[x1, . . . , xn] with rank(sim(C)) < 15ccand log d, there exists an algorithm that
runs in time (nd)O(log d) and with probability 1− o(1) outputs a ΣΠΣ(1, d, 15ccand log d) generalized
depth 3 circuit as defined in Definition 7.

Proof. The input circuit is of the form C = G × (T1 + T2 + T3) computing f where dim(span({l :
l|(T1 × T2 × T3)})) < 15ccand log d. Clearly, the non-linear factor of f , NonLin(f) = f∏

l∈Lin(f) l
will

divide T1 + T2 + T3 and therefore, will have essential variables less than rank(sim(C)). So, we
use Lemma 3.7 to get black-box access to NonLin(f) and the linear factors Lin(f) in randomized
poly(n, d) time. As NonLin(f) has at most rank(sim(C)) essential variables, there exist a linear
transformation A such that NonLin(f)(A · x) depends only on rank(sim(C)) variables. Using The-
orem 3.11, we can compute A in randomized polynomial time. We can do polynomial interpolation
in time (nd)rank(sim(C)) from Lemma 3.6 to get monomial access to and hence learn NonLin(f)(A·x).
We use A−1 to recover NonLin(f), and then the circuit by multiplying it with Lin(f). Notice that
this would give us a ΣΠΣ(1, d, 15ccand log d) circuit computing f .

7.2 Large Distance Reconstruction

In this case, we assume the input circuit is of form C = G×(T1 +T2 +T3) such that rank(sim(C)) ≥
15ccand log d and ∀i, j ∈ [3], rank(sim(Ti + Tj)) ≥ 2R(4) log d + 6. In this setting we will show that
we can do proper reconstruction. In particular we will give an algorithm that outputs a ΣΠΣ(3)
circuit computing the underlying polynomial in (nd)O(log d) time.

The outline of the algorithm is as follows. Notice that in this setting, using Theorem 6.1,
we have a list of linear forms Lcand such that dim(span(Lin(T1) ∩ Lcand)) ≥ ccand log d (wlog by
relabelling we can assume the gate is T1). Since, we have |Lcand| = dO(1), we look at all subsets
L ⊂ Lcand such that dim(span(L)) = ccand log d and at least one of these subsets would be such
that L ⊆ Lin(T1). We will reconstruct the projections of T2 + T3 mod these linear forms and then
glue them back to reconstruct T2.

80



Algorithm 10 Reconstruction when distance is large
Input: Black-box access to Circuit ΣΠΣ(3) with distance between gates ≥ 2R(4) log d + 6, list of
Linear forms Lcand from Theorem 6.1

1: function Reconstruction(f)(C,Lcand)
2: for L ⊆ Lcand with dim(span(L)) = ccand log d do
3: Projections = [].
4: for l ∈ L do
5: Run the reconstruction Algorithm of Theorem 3.10 for ΣΠΣ(2) circuits for C mod l
6: If the Algorithm returns a valid circuit, append it to Projections
7: For all Gi(T2i + T3i) mod li guess which gate is projection of T2 and run the following

for all possible choices.
8: Use gluing algorithm from Theorem 3.15 to reconstruct G×T2 up to a constant. Compare

with projections to obtain T2 exactly.
9: Run the reconstruction algorithm of Theorem 3.10 on f ′ = C −G× T2.

10: If the output is a ΣΠΣ(2) circuit C ′, use PIT to check if C ′ + G×T2 = C. If yes, output
C ′ + G× T2.

Lemma 7.3. Let R(k) be as defined in Theorem 3.4. Given black-box access to a ΣΠΣ(3) circuit
C = G × (T1 + T2 + T3) computing a degree d polynomial f ∈ F[x1, . . . , xn] with rank(sim(C)) ≥
15ccand log d, with ∀i, j ∈ [3], i ̸= j, rank(sim(Ti + Tj)) ≥ 2R(4) log d + 6 and a list of linear forms
Lcand such that |Lcand| = dO(1), dim(span(Lin(T1) ∩ Lcand)) ≥ ccand log d, then there exists an
algorithm(Algorithm 10) that runs in randomized (nd)O(log d) time and with 1 − o(1) probability,
outputs a ΣΠΣ(3) circuit computing f .

Proof. The main idea is that from the list of linear forms from Theorem 6.1, we can iterate over
all subsets of Lcand size ccand log d till we hit upon the correct set of linearly independent ccand log d
linear forms which we call L such that L ⊆ Lin(T1). From assumption, we have that rank(sim(T2 +
T3)) ≥ 2R(4) log d + 6.

Using Lemma 6.3 which follows from [KS09a] it follows that the linear forms modulo which T2 +
T3 become nonzero and low rank (less thanR(4)) will all lie in a low dimensional space(2R(4) log d).
Moreover the number of linear forms in L such that modulo it T2 + T3 becomes identically zero is
at most 6R(3) log d from Lemma 6.4.

Thus we can conclude that for most linear forms l in L (all but 2R(4) log d+6R(3) log d), T2+T3
stays high rank (rank at least R(4)) after going modulo l. We can then reconstruct G× (T2 + T3)
mod l as a ΣΠΣ(2) circuit using Theorem 3.10. In fact, this reconstruction will be the unique
representation using rank bounds Lemma 3.4. Since we can do this for most choices of l ∈ L, this
gives us enough ((ccand − 2R(4)− 6R(3)) log d > 100 log d) projections of the gate G× T2, that we
can glue using Theorem 3.15 to obtain G × T2 up to a constant. To figure out the constant, we
compare the glued G× T2 with the projections learned mod l, to learn G× T2 exactly.

We subtract G × T2 from C and reconstruct G × (T1 + T3) as a ΣΠΣ(2) circuit (note that
from assumption rank(sim(T1 + T3)) ≥ 2R(4) log d + 6) using Theorem 3.10. We then output
G× (T1 + T2 + T3), after checking it computes the same polynomial as C using PIT. As there are
dO(log d) choices of L, the total running time is (nd)O(log d)

81



7.3 Low Distance Reconstruction

We now are left to handle the case where there are some two gates such that the distance between
them is less than 2R(4) log d + 6. In this case, we will not do proper learning but instead learn the
underlying polynomial as a generalized depth 2 circuit.

Algorithm 11 Reconstruction when distance is small
Input: Black-box access to Circuit ΣΠΣ(3) with distance between terms less than 2R(4) log d + 6,
list of Candidate Linear forms Lcand from Theorem 6.1

1: function Reconstruction(f)(C,Lcand)
2: for L ⊆ Lcand with dim(span(L)) = ccand log d do
3: Projections = [].
4: for li ∈ L do
5: Learn C mod li using low rank reconstruction in Lemma 7.2 as

ΣΠΣ(1, d, 2R(4) log d + 6) circuit
6: Let the learnt circuit be Ci =

(∏di
j=1 lij

)
· hi(li1, . . . , lir) with r ≤ 2R(4) log d + 6

7: Use Gluing algorithm from Theorem 3.15 to glue the∏di
j=1 lij parts and obtain G·

∏d
j=1 lj .

8: Take the largest set of linear forms in L for which r is same. Fix a linear form l0 ∈ L
and r.

9: Find a li in the set such that l01, . . . , l0r, li are all independent.
10: Glue h0 and hi using Lemma 3.16 to learn the h(l1, . . . , lr)
11: Factorize C −

(
G ·

∏d
j=1 lj

)
· h(l1, . . . , lr) to learn G× T1.

12: Use PIT to check if G × (T1 +
(∏d

j=1 lj
)
· h(l1, . . . , lr)) = C. If yes, output G × (T1 +(∏d

j=1 lj
)
· h(l1, . . . , lr)).

Lemma 7.4. Let R(k) be as defined in Theorem 3.4. Given black-box access to a ΣΠΣ(3) circuit
C = G × (T1 + T2 + T3) computing polynomial f with rank(sim(C)) ≥ 15ccand log d, with two
gates Ti, Tj such that rank(sim(Ti + Tj)) < 2R(4) log d + 6 and a list of candidate linear forms
Lcand such that |Lcand| = dO(1), dim(span(Lin(T1) ∩ Lcand)) ≥ ccand log d, then there exists an
algorithm(Algorithm 11) that runs in randomized time (nd)O(log d) time and with 1−o(1) probability,
outputs a ΣΠΣ(2, d, 2R(4) log d + 6) circuit computing f .

Proof. Similar to Lemma 7.3, we can iterate over all subsets L of Lcand with ccand log d linear
independent linear forms till we hit upon a set L ⊆ Lin(T1). We divide the analysis into 2 parts.

First, the gates that are close are either T1 and T2 or T1 and T3. Wlog, let it be T1 and T2, i.e.
rank(sim(T1 + T2)) < 2R(4) log d + 6. In this since, rank(T1 + T2 + T3) ≥ 15ccand log d, we have
rank(sim(T2 + T3)) ≥ (15ccand − 4R(4)) log d− 6 > 2R(4) log d + 6. Therefore, in this case, we can
learn G×T3 as in Lemma 7.3. Subtracting G×T3 gives us blackbox access to G× (T1 + T2). Now,
we learn G× (T1 + T2) as a ΣΠΣ(1, d, 2R(4) log d + 6) circuit from Lemma 7.2 in time (nd)O(log d).
Hence, we get a ΣΠΣ(2, d, 2R(4) log d + 6) circuit computing f .

Now we consider the case where it is T2 and T3 that are close, i.e. rank(sim(T2 + T3)) <
2R(4) log d + 6. Hence, G × (T2 + T3) can be written as a ΣΠΣ(1, d, 2R(4) log d + 6) circuit C ′ =(∏d′

j=1 lj
)
· h(L1, . . . , Lr) where h does not have linear factors with r < 2R(4) log d + 6. We

consider the circuit C ′ mod the linear forms li ∈ L and learn it as a ΣΠΣ(1, d, 2R(4) log d + 6)
circuit using Lemma 7.2 in time (nd)rank(sim(T2+T3)) = (nd)O(log d). From Lemma 6.4, for at least
(ccand − 6R(3)) log d linear forms in L, we are able to learn non-zero ΣΠΣ(1, d, 2R(4) log d + 6)

82



circuits. Therefore, we learn the projections of circuit mod li as (∏di
j=1 lij · hi(Li1, . . . , Lir)), where

hi don’t have linear factors and r < 2R(4) log d + 6. In the following claim, we show that for most
of the projections ∏di

j=1 lij will be projections of ∏d′
j=1 lj and hi(Li1, . . . , Lir)) are projections of

h(L1, . . . , Lr)).

Claim 7.5. Let f be a polynomial in F[x1, . . . , xn] with no linear factors and k essential variables
such that f = h(l1, . . . , lk) for a polynomial h ∈ F[y1, . . . , yk] and l1, . . . , lk are linear forms in
F[x1, . . . , xn]. Then for any linear forms l ̸∈ span(l1, . . . , lk), f mod l will have k essential variables
and no linear factors.

Proof. The property of having linear factors is invariant under linear isomorphism, i.e. for a
linear isomorphism Φ, f doesn’t have linear factors iff Φ(f) doesn’t have linear factors. Since
l ̸∈ span(l1, . . . , lk), we can consider an isomorphism Φ such that for i ∈ [k], xi ← li and xk+1 ← l.
Now, we have Φ(f) = h(x1, . . . , xk) and Φ(f mod l) = h(x1, . . . , xk) mod xk+1. Now, clearly
h(x1, . . . , xk) mod xk+1 will not have a linear factor if h(x1, . . . , xk) doesn’t as it doesn’t even
depend on xk+1. Also, from Lemma 3.13, we have that the representation h(l1, . . . , lk) of f is
unique up to span(l1, . . . , lk). Therefore, Φ(f mod l) has linear factors iff Φ(f) has linear factors.
Since, we have from assumption f doesn’t have linear factors, f mod l will also not have linear
factors.

From Claim 7.5, if li ̸∈ span(L1, . . . , Lr), then for projections modulo li, we have ∏di
i=1 lij =(∏d′

j=1 lj
)

mod li and hi(Li1, . . . , Lir) = h(L1, . . . , Lr) mod li. There will be (ccand − 6R(3) −
2R(4)) log d− 6 such independent linear forms li in L. We can glue the ∏di

i=1 lij projections to get(∏d′
j=1 lj

)
as (ccand−6R(3)−2R(4)) log d−6 > 100 log d from Theorem 3.15 in time poly(d). From

the (ccand − 6R(3) − 2R(4)) log d − 6 set of linear forms, we can find two linear forms l1, l2 such
that l1 ̸∈ span(L1, . . . , Lr) and l2 ̸∈ span(l1, L1, . . . , Lr), and therefore h mod ⟨l1, l2⟩ will have
r essential variables. From Lemma 3.16, we can glue the hi representations of h mod l1 and h
mod l2 , i.e. projections of the simple part mod l1 and l2 in time (n ·dO(log d)). Therefore, we obtain
T2 + T3 as a ΣΠΣ(1, d, 2R(4) log d + 6) circuit in time O(n · dO(log d). Finally, we subtract T2 + T3
from C and factorize it using Lemma 3.7 to get T1.

8 Future Work
The main open question would be to develop a reconstruction algorithm for depth 3 arithmetic
circuits with arbitrary constant top fan-in. Several of the techniques developed in this paper, such
as the algorithms for computing S2,S3 spaces (given that we know a way of bounding the number
of them) and gluing projections from reconstructed gates, are generalizable to larger top fan-in.
However, there are some significant challenges that remain. One main challenge is to prove a
stronger structure theorem that bounds the number of Si spaces (for all i that is at most the top
fanin). Once we can bound the number of these spaces, we still do not know how to show that
intersections of these spaces will recover the linear forms in the circuit. It is also a very interesting
question to derandomize the current algorithm, as well as to generalize our algorithm to work in
the setting of “generalized" depth-3 circuits. We believe the latter question to be not too difficult
given the techniques developed in this paper.

References
[Ang88] D. Angluin. Queries and concept learning. Machine Learning, 2:319–342, 1988.

83



[AV08] M. Agrawal and V. Vinay. Arithmetic circuits: A chasm at depth four. In Proceedings
of the 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pages 67–75, 2008.

[BBB+00] A. Beimel, F. Bergadano, N. H. Bshouty, E. Kushilevitz, and S. Varricchio. Learning
functions represented as multiplicity automata. J. ACM, 47(3):506–530, 2000.

[BDWY13] Boaz Barak, Zeev Dvir, Avi Wigderson, and Amir Yehudayoff. Fractional sylvester–
gallai theorems. Proceedings of the National Academy of Sciences, 110(48):19213–19219,
2013.

[BE67] W Bonnice and MICHAEL Edelstein. Flats associated with finite sets in pd. Niew.
Arch. Wisk, 15:11–14, 1967.

[BGKS22] Vishwas Bhargava, Ankit Garg, Neeraj Kayal, and Chandan Saha. Learning general-
ized depth three arithmetic circuits in the non-degenerate case. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques (AP-
PROX/RANDOM 2022). Schloss-Dagstuhl-Leibniz Zentrum für Informatik, 2022.

[BOT88] M. Ben-Or and P. Tiwari. A deterministic algorithm for sparse multivariate polynom-
inal interpolation. In Proceedings of the 20th Annual ACM Symposium on Theory of
Computing (STOC), pages 301–309, 1988.

[BS24] Vishwas Bhargava and Devansh Shringi. Faster & deterministic FPT algorithm for
worst-case tensor decomposition. Electron. Colloquium Comput. Complex., TR24-123,
2024.

[BSV20] Vishwas Bhargava, Shubhangi Saraf, and Ilya Volkovich. Reconstruction of depth-4
multilinear circuits. SODA 2020, 2020.

[BSV21] Vishwas Bhargava, Shubhangi Saraf, and Ilya Volkovich. Reconstruction algorithms for
low-rank tensors and depth-3 multilinear circuits. In Proceedings of the 53rd Annual
ACM SIGACT Symposium on Theory of Computing, pages 809–822, 2021.

[Buc76] Bruno Buchberger. A theoretical basis for the reduction of polynomials to canonical
forms. ACM SIGSAM Bulletin, 10(3):19–29, 1976.

[Car06] Enrico Carlini. Reducing the number of variables of a polynomial. In Algebraic geometry
and geometric modeling, pages 237–247. Springer, 2006.

[DDS21] Pranjal Dutta, Prateek Dwivedi, and Nitin Saxena. Deterministic Identity Testing
Paradigms for Bounded Top-Fanin Depth-4 Circuits. In Valentine Kabanets, editor,
36th Computational Complexity Conference (CCC 2021), volume 200 of Leibniz Inter-
national Proceedings in Informatics (LIPIcs), pages 11:1–11:27, Dagstuhl, Germany,
2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[DS05] Zeev Dvir and Amir Shpilka. Locally decodable codes with 2 queries and polynomial
identity testing for depth 3 circuits. In Proceedings of the Thirty-Seventh Annual ACM
Symposium on Theory of Computing, STOC ’05, page 592–601, New York, NY, USA,
2005. Association for Computing Machinery.

84



[DSW14] Zeev Dvir, Shubhangi Saraf, and Avi Wigderson. Improved rank bounds for design ma-
trices and a new proof of kelly’s theorem. In Forum of Mathematics, Sigma, volume 2,
page e4. Cambridge University Press, 2014.

[FS12] M. A. Forbes and A. Shpilka. Quasipolynomial-time identity testing of non-
commutative and read-once oblivious algebraic branching programs. Electronic Collo-
quium on Computational Complexity (ECCC), 19:115, 2012.

[GKKS13] A. Gupta, P. Kamath, N. Kayal, and R. Saptharishi. Arithmetic circuits: A chasm at
depth three. In Proceedings of the 54th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 578–587, 2013.

[GKL11] A. Gupta, N. Kayal, and S. V. Lokam. Efficient reconstruction of random multilinear
formulas. In IEEE 52nd Annual Symposium on Foundations of Computer Science,
FOCS, pages 778–787, 2011.

[GKL12] A. Gupta, N. Kayal, and S. V. Lokam. Reconstruction of depth-4 multilin-
ear circuits with top fanin 2. In Proceedings of the 44th Annual ACM Sympo-
sium on Theory of Computing (STOC), pages 625–642, 2012. Full version at
https://eccc.weizmann.ac.il/report/2011/153.

[GKQ14] A. Gupta, N. Kayal, and Y. Qiao. Random arithmetic formulas can be reconstructed
efficiently. Computational Complexity, 23(2):207–303, 2014.

[GKS20] Ankit Garg, Neeraj Kayal, and Chandan Saha. Learning sums of powers of low-degree
polynomials in the non-degenerate case. In 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science (FOCS), pages 889–899. IEEE, 2020.

[GKST06] Oded Goldreich, Howard Karloff, Leonard J Schulman, and Luca Trevisan. Lower
bounds for linear locally decodable codes and private information retrieval. computa-
tional complexity, 15:263–296, 2006.

[GOPS23] Abhibhav Garg, Rafael Oliveira, Shir Peleg, and Akash Kumar Sengupta. Radical
sylvester-gallai theorem for tuples of quadratics. In 38th Computational Complexity
Conference (CCC 2023). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2023.

[GOS22] Abhibhav Garg, Rafael Oliveira, and Akash Kumar Sengupta. Robust Radical
Sylvester-Gallai Theorem for Quadratics. In Xavier Goaoc and Michael Kerber, edi-
tors, 38th International Symposium on Computational Geometry (SoCG 2022), volume
224 of Leibniz International Proceedings in Informatics (LIPIcs), pages 42:1–42:13,
Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[GVJ88] D Yu Grigor’ev and Nicolai N Vorobjov Jr. Solving systems of polynomial inequalities
in subexponential time. Journal of symbolic computation, 5(1-2):37–64, 1988.

[Han65] Sten Hansen. A generalization of a theorem of sylvester on the lines determined by a
finite point set. Mathematica Scandinavica, 16(2):175–180, 1965.

[Ier89] D. Ierardi. Quantifier elimination in the theory of an algebraically-closed field. In Pro-
ceedings of the Twenty-First Annual ACM Symposium on Theory of Computing, STOC
’89, page 138–147, New York, NY, USA, 1989. Association for Computing Machinery.

85



[Kay11] Neeraj Kayal. Efficient algorithms for some special cases of the polynomial equiva-
lence problem. In Proceedings of the twenty-second annual ACM-SIAM symposium on
Discrete algorithms, pages 1409–1421. SIAM, 2011.

[KNS19] Neeraj Kayal, Vineet Nair, and Chandan Saha. Average-case linear matrix factoriza-
tion and reconstruction of low width algebraic branching programs. computational
complexity, 28:749–828, 2019.

[KNST17] N. Kayal, V. Nair, C. Saha, and S. Tavenas. Reconstruction of full rank algebraic
branching programs. In 32nd Computational Complexity Conference, CCC 2017., pages
21:1–21:61, 2017.

[Koi10] P. Koiran. Arithmetic circuits: the chasm at depth four gets wider. CoRR,
abs/1006.4700, 2010.

[KS01] A. Klivans and D. Spielman. Randomness efficient identity testing of multivariate poly-
nomials. In Proceedings of the 33rd Annual ACM Symposium on Theory of Computing
(STOC), pages 216–223, 2001.

[KS06] A. Klivans and A. Shpilka. Learning restricted models of arithmetic circuits. Theory
of computing, 2(10):185–206, 2006.

[KS08] Zohar S Karnin and Amir Shpilka. Black box polynomial identity testing of general-
ized depth-3 arithmetic circuits with bounded top fan-in. In 2008 23rd Annual IEEE
Conference on Computational Complexity, pages 280–291. IEEE, 2008.

[KS09a] Zohar S Karnin and Amir Shpilka. Reconstruction of generalized depth-3 arithmetic
circuits with bounded top fan-in. In 2009 24th Annual IEEE Conference on Computa-
tional Complexity, pages 274–285. IEEE, 2009.

[KS09b] N. Kayal and S. Saraf. Blackbox polynomial identity testing for depth 3
circuits. In Proceedings of the 50th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS), pages 198–207, 2009. Full version at
https://eccc.weizmann.ac.il/report/2009/032.

[KS19] Neeraj Kayal and Chandan Saha. Reconstruction of non-degenerate homogeneous
depth three circuits. In Proceedings of the 51st Annual ACM SIGACT Symposium
on Theory of Computing, pages 413–424, 2019.

[KSS14] Swastik Kopparty, Shubhangi Saraf, and Amir Shpilka. Equivalence of polynomial
identity testing and deterministic multivariate polynomial factorization. In 2014 IEEE
29th Conference on Computational Complexity (CCC), pages 169–180. IEEE, 2014.

[KT90] Erich Kaltofen and Barry M Trager. Computing with polynomials given by black boxes
for their evaluations: Greatest common divisors, factorization, separation of numerators
and denominators. Journal of Symbolic Computation, 9(3):301–320, 1990.

[LST22] Nutan Limaye, Srikanth Srinivasan, and Sébastien Tavenas. Superpolynomial lower
bounds against low-depth algebraic circuits. In 2021 IEEE 62nd Annual Symposium
on Foundations of Computer Science (FOCS), pages 804–814, 2022.

86



[OS22] Rafael Oliveira and Akash Kumar Sengupta. Radical sylvester-gallai theorem for cu-
bics. In 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science
(FOCS), pages 212–220. IEEE, 2022.

[OS24] Rafael Oliveira and Akash Kumar Sengupta. Strong algebras and radical sylvester-
gallai configurations. In Proceedings of the 56th Annual ACM Symposium on Theory
of Computing, pages 95–105, 2024.

[PS21] Shir Peleg and Amir Shpilka. Polynomial time deterministic identity testing algorithm
for Σ[3]ΠΣΠ[2] circuits via Edelstein–Kelly type theorem for quadratic polynomials. In
Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing,
pages 259–271, 2021.

[PS22a] Shir Peleg and Amir Shpilka. A generalized sylvester–gallai-type theorem for quadratic
polynomials. In Forum of Mathematics, Sigma, volume 10, page e112. Cambridge
University Press, 2022.

[PS22b] Shir Peleg and Amir Shpilka. Robust Sylvester-Gallai Type Theorem for Quadratic
Polynomials. In Xavier Goaoc and Michael Kerber, editors, 38th International Sym-
posium on Computational Geometry (SoCG 2022), volume 224 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pages 43:1–43:15, Dagstuhl, Germany, 2022.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[PSV24] Shir Peleg, Amir Shpilka, and Ben Lee Volk. Tensor Reconstruction Beyond Constant
Rank. In Venkatesan Guruswami, editor, 15th Innovations in Theoretical Computer
Science Conference (ITCS 2024), volume 287 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 87:1–87:20, Dagstuhl, Germany, 2024. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik.

[Sch80] Jacob T Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
Journal of the ACM (JACM), 27(4):701–717, 1980.

[Shp07] Amir Shpilka. Interpolation of depth-3 arithmetic circuits with two multiplication
gates. In Proceedings of the thirty-ninth annual ACM symposium on Theory of com-
puting, pages 284–293, 2007.

[Shp19] Amir Shpilka. Sylvester-gallai type theorems for quadratic polynomials. In Proceedings
of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pages 1203–
1214, 2019.

[Sin16a] Gaurav Sinha. Blackbox Reconstruction of Depth Three Circuits with Top Fan-In Two.
PhD thesis, California Institute of Technology, 2016.

[Sin16b] Gaurav Sinha. Reconstruction of Real Depth-3 Circuits with Top Fan-In 2. In Ran
Raz, editor, 31st Conference on Computational Complexity (CCC 2016), volume 50 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 31:1–31:53, Dagstuhl,
Germany, 2016. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[Sin22] Gaurav Sinha. Efficient reconstruction of depth three arithmetic circuits with top fan-
in two. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

87



[SS11] Nitin Saxena and Comandur Seshadhri. Blackbox identity testing for bounded top fanin
depth-3 circuits: the field doesn’t matter. In Proceedings of the forty-third annual ACM
symposium on Theory of computing, pages 431–440, 2011.

[SS13] Nitin Saxena and Comandur Seshadhri. From sylvester-gallai configurations to rank
bounds: Improved blackbox identity test for depth-3 circuits. Journal of the ACM
(JACM), 60(5):1–33, 2013.

[Tav13] S. Tavenas. Improved bounds for reduction to depth 4 and depth 3. In MFCS, pages
813–824, 2013.

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In International sym-
posium on symbolic and algebraic manipulation, pages 216–226. Springer, 1979.

88
ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il


