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Abstract

The question of optimal derandomization, introduced by Doron et. al (JACM 2022), gar-
nered significant recent attention. Works in recent years showed conditional superfast deran-
domization algorithms, as well as conditional impossibility results, and barriers for obtaining
superfast derandomization using certain black-box techniques.

Of particular interest is the extreme high-end, which focuses on “free lunch” derandom-
ization, as suggested by Chen and Tell (FOCS 2021). This is derandomization that incurs
essentially no time overhead, and errs only on inputs that are infeasible to find. Constructing
such algorithms is challenging, and so far there have not been any results following the one in
their initial work. In their result, their algorithm is essentially the classical Nisan-Wigderson
generator, and they relied on an ad-hoc assumption asserting the existence of a function that
is non-batch-computable over all polynomial-time samplable distributions.

In this work we deduce free lunch derandomization from a variety of natural hardness
assumptions. In particular, we do not resort to non-batch-computability, and the common
denominator for all of our assumptions is hardness over all polynomial-time samplable distri-
butions, which is necessary for the conclusion. The main technical components in our proofs
are constructions of new and superfast targeted generators, which completely eliminate the
time overheads that are inherent to all previously known constructions. In particular, we
present an alternative construction for the targeted generator by Chen and Tell (FOCS 2021),
which is faster than the original construction, and also more natural and technically intuitive.

These contributions significantly strengthen the evidence for the possibility of free lunch
derandomization, distill the required assumptions for such a result, and provide the first set
of dedicated technical tools that are useful for studying the question.
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1 Introduction

The classical prBPP = prP conjecture asserts that all randomized algorithms solving decision
problems can be efficiently simulated by deterministic algorithms, with only a polynomial time
overhead. Celebrated hardness vs randomness results in complexity theory conditionally yield
such derandomization, while incurring an overhead that is polynomial but large [IW97; KM02;
SU05; Uma03]. Can we go further than that, simulating randomness with smaller overhead?

The challenge of finding the minimal overhead for derandomization was introduced by Doron
et al. [DMO+20], and has been intensively studied since. The goal in this context is to construct
“superfast” derandomization algorithms, with small overhead and ideally with no overhead at
all, under the weakest possible hardness assumption. Among the known results are conditional
superfast derandomization algorithms (see, e.g., [DMO+20; CT21b; CT21a]), conditional impos-
sibility results (see [CT21a; CT23b]), barriers for certain black-box techniques (see [SV22]), and a
study of this question in the setting of interactive proof systems (see [CT23b]) and in the space-
bounded setting (see [DT23; DPT24]).

When focusing on superfast derandomization that succeeds on all inputs (i.e., in the worst-
case), a potential emerging picture is starting to seem clearer. Following [DMO+20], Chen and
Tell [CT21b] showed that assuming one-way functions and sufficiently strong lower bounds for
non-uniform procedures (i.e., for algorithms with advice), we can simulate all randomized time-
T algorithms in deterministic time n · T1+ϵ. They also showed that, assuming #NSETH (i.e., a
strong assumption from the exponential-time hypotheses family, see [CGI+16]), this is optimal:
there is no worst-case derandomization running in time n · T1−ϵ.

Unfortunately, for fast randomized algorithms (e.g., running in linear time), this overhead is
significant. Is this indeed the price we must pay for derandomization?

“Free lunch” derandomization. A subsequent work of Chen and Tell [CT21a] offered a way out:
Following Impagliazzo and Wigderson [IW98], they considered derandomization that succeeds
not in the worst-case, but over all polynomial-time samplable distributions. That is, the deterministic
simulation errs on some inputs, but these inputs are infeasible to find. In other words, such
derandomization appears correct to every efficient observer.

Definition 1.1 (heuristic simulation). For L ⊆ {0, 1}∗ and a class C of languages, we say that L ∈
heur-C if there is L′ ∈ C such that for every probabilistic polynomial-time algorithm F it holds that
Prx←F(1n)[x ∈ ∆(L, L′)∩{0, 1}n] ≤ n−ω(1). The definition extends to the more general notion of promise-
problems Π = (ΠY, ΠN) ∈ heur-prC in the natural way (see Definition 3.2).

Constructing free lunch derandomization algorithms is a challenging problem, and at the
moment we only have one conditional construction (see below). We point out two concrete
technical obstacles that have so far hindered progress:

1. The “hybrid argument” challenge. 1 Assume that we just want to reduce the number of
coins of a probabilistic polynomial-time algorithm from poly(n) to nϵ. Almost all known
ways to do this incur a polynomial time overhead, due to the “hybrid argument” challenge,
which has been studied for decades (see, e.g., [SV22; LPT24], and the references therein).

The two known ways to handle this barrier either assume one-way functions [CT21b], or
assume hardness against non-uniform Merlin-Arthur circuits [DMO+20]. We are not aware

1This is usually referred to as the “hybrid argument barrier”, and we replace “barrier” with “challenge” to make
the point that this challenge should be tackled.
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of any reason to suspect that either of these assumptions is necessary to deduce the deran-
domization outcome (even just “morally” or qualitatively, let alone quantitatively).

2. The lack of technical tools to exponentially reduce the number of coins (with no over-
head). Assume that we somehow handled the hybrid argument challenge, and every proba-
bilistic polynomial-time algorithm now uses only nϵ random coins. Even then, when instan-
tiating the known hardness-vs-randomness tools with standard assumptions (e.g., circuit
lower bounds, or hardness for standard probabilistic algorithms), we incur significant run-
time overheads. In particular, the many constructions of targeted pseudorandom generators
and hitting set-generators from recent years incur such runtime overheads (see Section 2.1).

The only previously known way to bypass this falls back to using classical technical tools
(i.e., it simply used the Nisan-Wigderson generator [NW94]), instantiated with non-standard
assumptions. Specifically, the single previously known result relied on an ad-hoc assump-
tion, which – yet again – we have no reason to believe is necessary for the conclusion.

The aforementioned previously known result, from the original work of Chen and Tell [CT21a],
deduced that BPT IME [T] ⊆ heur-DT IME [T1+O(ϵ)] relying on one-way functions (to by-
pass the hybrid argument challenge), and on the following assumption: There is a function
f : {0, 1}n → {0, 1}nϵ

such that f (x) is hard to approximately batch-compute when x is sampled
from any polynomial-time samplable distribution.2 In an analogous result for the non-deterministic
setting, a subsequent work of Chen and Tell [CT23b] deduced free lunch derandomization of
certain classes of interactive proof systems into deterministic NP-type protocols, under stronger
assumptions of a similar “non-batch-computability” flavor (see [CT23b] for precise details).

1.1 Our contribution, at a high level

In this work we deduce free lunch derandomization from a variety of natural hardness assump-
tions. The common denominator for all of our assumptions is hardness over all polynomial-time
samplable distributions, which is necessary for the conclusion (see Claim 3.4). This significantly
strengthens the evidence for the possibility of free lunch derandomization, both since our as-
sumptions are more standard and well-studied (compared to non-batch-computability), and since
the conclusion is now known to follow from various different natural assumptions.

Our main technical contribution is a dedicated set of technical tools for studying the problem
of free lunch derandomization, addressing the second technical obstacle among the two obstacles
mentioned above. Specifically, we construct targeted pseudorandom generators that are super-
fast, and that completely avoid the large polynomial time overheads that were inherent to many
recent constructions. Our most interesting technical contribution is an alternative construction
for the targeted generator of Chen and Tell [CT21a] (i.e., their generator that was originally used
to deduce prBPP = prP , rather than free lunch derandomization), which is considerably faster
than the original construction, and also more natural and technically intuitive.

We view our work as the first technical step following [CT21a] towards deducing free lunch
derandomization from necessary assumptions. As part of this effort, we also show that non-
batch-computability as in [CT21a; CT23b] (by itself, i.e. not necessarily over all polynomial-
time samplable distributions) is not rare or hard to get: we deduce it from standard worst-case

2That is, each output coordinate f (x)i is computable in time T1+ϵ, but for every time-T algorithm A, and every
polynomial-time samplable distribution over inputs x, with all but negligible probability over x it holds that A(x)
does not print all of f (x) in time significantly faster than T · | f (x)| (i.e., in time T · | f (x)|ϵ). (In fact, they assumed that
A(x) cannot even print an approximate version of f (x); we ignore this for simplicity of exposition.)
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hardness assumptions. This gives further evidence that the non-batch-computability assumption
was ad-hoc, whereas the main key is hardness over all polynomial-time samplable distributions.

A preliminary observation about a more relaxed notion. A more relaxed notion than the one
in Definition 1.1 was considered in several prior works, which considered derandomization that
has essentially no time overhead and that succeeds on average over the uniform distribution. Pre-
vious works deduced such derandomization from OWFs and additional hardness assumptions
(see [CT21b; CT21a]). We observe that such derandomization actually follows from OWFs alone,
without additional assumptions, as a consequence of a lemma by Klivans, van Melkebeek, and
Shaltiel [KMS12] (see Section 3.1.2). Thus, throughout the paper we focus on the stronger notion
of free lunch derandomization from Definition 1.1, wherein errors are infeasible to find.

Assuming one-way functions. As in previous works, our results assume the existence of one-
way functions. Since this is a ubiquitous and widely believed assumption, it strikes us as more
urgent to improve the ad-hoc non-batch-computability assumption from [CT21a; CT23b] than to
remove the OWF assumption. We stress that for free lunch derandomization (i.e., as in Defi-
nition 1.1), the standard OWFs we assume (secure against polynomial-time adversaries) do not
seem to yield anything better than subexponential-time derandomization.3 Moreover, our results
actually only need a weaker assumption, which distills what is actually used in OWFs; for details
and further discussion, see Assumption 3.7, Assumption 3.9 and Section 1.2.2.

1.2 Free lunch derandomization from standard hardness

Our first result obtains superfast derandomization, as well as free lunch derandomization with
a small amount of advice bits (i.e., Õ(log n)) from hardness over all polynomial-time samplable
distributions of functions computable in bounded depth no(1). That is:

Theorem 1.2 (free lunch derandomization from hardness of no(1)-depth circuits; informal, see The-
orem 5.2). Assume that OWFs exist, and that for every polynomial T(n) there is f : {0, 1}∗ → {0, 1}∗
computable by sufficiently uniform circuits of size T1+ϵ and depth no(1) that is hard for probabilistic algo-
rithms running in time T1−ϵ over all polynomial-time samplable distributions. Then, for every polynomial
T(n) we have that prBPT IME [T] ⊆ heur-prDT IME [T2+O(ϵ)], and

prBPT IME [T] ⊆ heur-prDT IME [T1+O(ϵ)]/Õ(log n) .

The Õ(log n) bits of advice can be removed, at the cost of strengthening the OWFs assumption
to a more general one of a similar flavor; see Section 1.2.2 for details. The crux of Theorem 1.2 is
that we only assume standard hardness for functions computable in no(1)-depth, which is a more
standard and well-studied assumption than non-batch-computability.

The proof of Theorem 1.2 is the main technical contribution of this work. Indeed, while the
assumption in Theorem 1.2 is reminiscent of the ones used to deduce prBPP = prP in [CT21a],
we do not use their technical tools. Loosely speaking, we construct a new targeted generator
based on functions computable in bounded depth such that the generator has almost no time
overhead. This construction can be viewed as a variant of the generator from [CT21a], which was
also based on functions computable in bounded depth. The main new insight underlying our
construction is that we can replace the doubly efficient proof systems of Goldwasser, Kalai, and

3Alternatively, standard OWFs can yield free lunch derandomization with nϵ bits of advice (see Section 2.1.3).
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Rothblum [GKR15] (which were used in the previous construction) with PCP-based techniques,
and in particular relying on arithmetizations of highly efficient sorting networks.

This construction is of independent interest (i.e., beyond free lunch derandomization). As
mentioned above, it is more natural and technically intuitive than the previous one, while re-
lying on very similar assumptions regarding the hard function. Thus, it can serve as a general
alternative to the known proof-system-based targeted PRGs. See Section 2.1 for details.

1.2.1 Free lunch derandomization from two other assumptions

We are also able to deduce the same conclusion as in Theorem 1.2 from other natural assump-
tions. For example, using the new targeted generator mentioned above, we can deduce the same
conclusion from the assumption that there are functions computable in time T but not in space
T1−ϵ and time T1+ϵ, where hardness is over all polynomial-time samplable distributions.

Theorem 1.3 (free lunch derandomization from time-space tradeoffs; informal, see Theorem 5.4).
Assume that OWFs exist, and that for every polynomial T(n) there is f : {0, 1}∗ → {0, 1}∗ com-
putable in time T that is hard for probabilistic algorithms running in space T1−ϵ and time T1+ϵ over all
polynomial-time samplable distributions. Then, for every polynomial T(n) we have prBPT IME [T] ⊆
heur-prDT IME [T2+O(ϵ)], and prBPT IME [T] ⊆ heur-prDT IME [T1+O(ϵ)]/Õ(log n).

In yet another variation on the assumptions, we also show that free lunch derandomization
follows from the existence of a function x 7→ f (x) such that f (x) is hard to efficiently learn (from
membership queries) when x comes from any polynomial-time samplable distribution.

Theorem 1.4 (free lunch derandomization from hardness of learning; informal, see Theorem 5.7).
Assume that OWFs exist, let T be a polynomial, and assume that there is f : {0, 1}n → {0, 1}k=nϵ

com-
putable in time T1+O(ϵ) such that for every probabilistic algorithm M running in time T1+ϵ, when sam-
pling x from any polynomial-time samplable distribution, with all but negligible probability M fails to learn
f (x) with accuracy 0.99 from k.01 membership queries. Then, prBPT IME [T] ⊆ heur-prDT IME [T1+O(ϵ)].

In contrast to Theorem 1.3, the proof of Theorem 1.4 does not leverage our new technical tools,
and instead relies on ideas similar to the ones of Liu and Pass [LP22a; LP22b], and uses the Nisan-
Wigderson generator. Similarly to [LP22a; LP22b], we can actually obtain an equivalence between
the conclusion and the hardness hypothesis, assuming OWFs; see Theorem 5.7 for details.

The point in stating the variations above is to demonstrate that several different hardness as-
sumptions suffice for free lunch derandomization, the only common feature of which is hardness
over all polynomial-time samplable distributions.

1.2.2 What is actually being used in OWFs? Removing the Õ(log n) advice bits

If one is willing to generalize the OWF assumption, then the Õ(log n) bits of advice can be
removed. Specifically, we introduce a natural assumption that distills the actual content of the
OWF assumption that is being used in the proofs and generalizes it, and show that replacing
OWFs by this more general assumption suffices to eliminate the advice.

In our proofs and in [CT21b; CT21a], the OWF is only used to obtain a PRG that is computable
in near-linear-time n1+ϵ, has polynomial stretch nϵ 7→ n, and fools linear-time algorithms.4 This
is spelled out in Assumption 3.7. We observe that the crucial parameters in the foregoing as-
sumption are: (1) The near-linear running time of the PRG; (2) The lower running time of the

4We stress that the “cryptographic” properties of this PRG are not used, in the sense that we only need the PRG to
fool algorithms that run in less time than the PRG itself.
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distinguishers; (3) The polynomial stretch. What does not seem like a key defining property,
however, is that the polynomial stretch is nϵ 7→ n, rather than ℓϵ 7→ ℓ for some ℓ ≪ n. Hence,
a more general version of the foregoing assumption asserts that there is a PRG running in time
n1+ϵ, fooling O(n)-time adversaries, and stretching ℓϵ bits to ℓ bits, where ℓ may be smaller than
n. This general version is spelled out in Assumption 3.9, and may be of independent interest.

The more general assumption, by itself, does not seem to yield anything better than subexponential-
time derandomization (as one may expect, given that the PRG only has polynomial stretch), and
certainly does not seem to imply any cryptographic primitive. However, we prove that if we
replace OWFs by this assumption in Theorems 1.2 and 1.3, we can deduce free lunch derandom-
ization without non-uniform advice. For details, see Section 2.1 and Theorems 5.1 and 5.3.

1.3 Free lunch derandomization in the non-deterministic setting

In the non-deterministic setting, the situation gets quite better. In this setting, we are interested
either in derandomizing probabilistic algorithms non-deterministically (i.e., in showing superfast
versions of BPP ⊆ NP) or in derandomizing Merlin-Arthur protocols non-deterministically
(i.e., superfast versions ofMA ⊆ NP). For concreteness, let us focus on the latter.

For context, recall that any worst-case derandomization of MA incurs quadratic overhead,
assuming #NSETH (i.e., MAT IME [T] ̸⊆ NT IME [T2−ϵ] for any ϵ > 0; see [CT23b, Theorem
6.1]). Hence, in this context too we focus on derandomization in which errors may exist but are
infeasible to find. Specifically, recalling that derandomization of an MA verifier is conducted
with respect to both an input x and a witness π (that are given to the verifier), we are interested
in a notion in which it is infeasible to find a pair (x, π) that causes a derandomization error.

Following [CT23b], we consider free lunch derandomization ofMA into computationally sound

NP protocols. A cs-NT IME [T] protocol consists of a deterministic time-T verifier V and an
efficient prover P such that P can prove every correct statement to V (i.e., by sending a static,
NP-style witness π), yet no efficient uniform adversary can find an input x and proof π that
mislead V, except with negligible probability.5 Indeed, a cs-NP protocol is a deterministic
argument system; see Definition 6.1 for formal details, and for further background on this class
see [CT23b] and the very recent work of Chen, Rothblum, and Tell [CRT25].

The basic result: Free lunch derandomization from hardness in FP . Our first result is free
lunch derandomization of MA into cs-NP relying on a surprisingly clean assumption: we
just need a function computable in time n1+O(ϵ) that is hard for MAT IME [n1+ϵ] over all
polynomial-time samplable distributions. Indeed, this assumption does not involve non-batch-
computability, low-depth, time-space tradeoffs, or any other non-standard property.

Theorem 1.5 (free lunch derandomization of MA; informal, see Theorem 6.4). Assume that
OWFs exist, and that there is f : {0, 1}n → {0, 1}no(1)

computable in time n1+O(ϵ) that is hard for
MAT IME [n1+ϵ] over all polynomial-time samplable distributions. Then, for every polynomial T(n),

MAT IME [T] ⊆ cs-NT IME [T1+ϵ]/Õ(log n) .

The hypothesis in Theorem 1.5 is reminiscent of the one in [DMO+20], but they deduce
worst-case derandomization with quadratic overhead (of probabilistic algorithms), whereas The-
orem 1.5 deduces free lunch derandomization with essentially no overhead (ofMA into cs-NP

5When considering cs-NP protocols for L ∈ MA, we equip the honest prover with a witness in a witness-relation
for L (otherwise the prover cannot be efficient). This is the standard practice when defining argument systems in
cryptography (see, e.g., [Gol01, Section 4.8]), and it extends to deterministic argument systems; see [CRT25].
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protocols). Indeed, we do not use their technical tools. We prove Theorem 1.5 using a super-
fast targeted generator that is suitable for the non-deterministic setting, and which is a variant
of a PCP-based generator recently introduced by van Melkebeek and Sdroievski [MMS23]. For
details, see Section 2.2. Similarly to Section 1.2.2, we can remove the Õ(log n) bits of advice by
replacing the OWFs assumption with an assumption about the existence of a near-linear-time
PRG for a general setting of parameters (see Section 6 for details).

The conclusion in Theorem 1.5 addresses a significantly more general setting compared to
prior works concerning superfast derandomization into cs-NP protocols. This is since prior
works studied simulating subclasses of prBPP , rather than simulating all of MA. Specifically,
in [CT23b] they deduced free lunch derandomization of doubly efficient interactive proof sys-
tems into cs-NP protocols (and relied on a non-batch-computability and on the classical Nisan-
Wigderson generator). And in [CRT25], they simulated uniform-NC by cs-NP protocols with a
near-linear-time verifier (and relied on hardness for polylogarithmic space).6

A refined version: Free lunch derandomization from non-deterministic hardness. Note that
in Theorem 1.5, the hard function is computable in FP yet is hard for smaller MA time. This
was stated only for simplicity (and such an assumption also suffices to derandomize BPT IME
into heur-DT IME ). As one might expect, our more refined technical result relies on a non-
deterministic upper bound and on a corresponding non-deterministic lower bound.

Loosely speaking, we deduce the conclusion of Theorem 1.5 from the existence of a function
computable in cs-NT IME [n1+O(ϵ)] that is hard for cs-MAT IME [n1+ϵ] over all polynomial-
time samplable distributions. That is, the upper bound and the lower bound are both non-
deterministic, and both require only computational soundness. For formal definitions and a
discussion of the assumption, see Sections 2.2 and 6.2, and Theorem 6.7.

The proof of this result relies on an interesting technical contribution. Specifically, we con-
struct a superfast targeted generator that is suitable for the non-deterministic setting, and that
has properties useful for working with protocols that have computational soundness (e.g., cs-NP
protocols). The construction relies on a near-linear PCP that has an efficient proof of knowledge,
and specifically on the construction of Ben-Sasson et al. [BSCG+13]. See Section 2.2 for details.

1.4 Non-batch-computability from worst-case hardness

As another indication that the non-batch-computability assumption in [CT21a; CT23b] is a red
herring (or rather, an ad-hoc feature that can be replaced by various others), we prove that
non-batch-computability over the uniform distribution follows from standard worst-case hardness
assumptions. Indeed, this should not be surprising, since non-batch-computability is reminiscent
of hardness of direct product (i.e., it is harder to compute k instances of a function f (x1), ..., f (xk)
than to compute one instance f (x)). However, direct product hardness is known for limited
models, whereas we are interested in hardness for general models (see, e.g., [Sha03]).

Loosely speaking, we prove a general result asserting that if a function f is downward self-
reducible and efficiently arithmetizable (i.e., admits an efficient low-degree extension), then hard-
ness of f implies non-batch-computability of a related function f ′ (see Theorem 7.5). The point is
that many natural functions have these properties, and thus hardness for any of these functions

6The conclusions in both works are incomparable to the conclusion in Theorem 1.5. This is since in [CT23b], the
honest prover does not receive a witness in a witness-relation for the problem; whereas in [CRT25] the cs-NP verifier
runs in near-linear time even if the uniform NC circuit is of large polynomial size. We also note that the main result
in [CRT25] simulates a huge class (i.e., PSPACE ) by cs-NP protocols; this is again incomparable to Theorem 1.5,
since the latter result focuses on tight time bounds (i.e., free lunch derandomization) whereas the former does not.
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implies the existence of non-batch-computable functions. For example, consider the k-Orthogonal
Vectors problem (k-OV), in which we are given k sets A1, ..., Ak ⊆ {0, 1}d with |Ai| = n, and we
want to decide whether there are a1 ∈ A1, ..., ak ∈ Ak such that a1 · ... · ak = 0 (this problem is a
cornerstone of fine-grained complexity; see, e.g., [Wil15; Wil18]). Then:

Theorem 1.6 (non-batch-computability from worst-case hardness; informal, see Corollary 7.14). If
k-OV cannot be solved in randomized time nk−o(1), then for some ϵ, δ > 0 there is a function f : {0, 1}n →
{0, 1}r=nδ

such that:

1. Each output bit f (x)i can be computed in time T(n) = Õ(nk).

2. For every probabilistic algorithm A running in time T · rϵ, with probability 0.99 over x ∈ {0, 1}n it
holds that PrA,i∈[r][A(x) = f (x)i] < 0.99.

The reduction that we show of worst-case computation to approximate-batch-computing is
based on a direct product theorem for computing low-degree polynomials, which is targeted
specifically for the setting of a k-wise direct product for a small k. See Section 2.3 for details.

2 Technical overview

Free lunch derandomization relies on targeted pseudorandom generators (targeted PRGs), as
introduced by Goldreich [Gol11].7 Targeted PRGs get input x and produce pseudorandomness
for uniform algorithms that also get access to the same input x.

In recent years, three types of constructions of targeted PRGs have been developed: Tar-
geted PRGs based on the classical Nisan-Wigderson PRG [NW94] (see, e.g., [CT21a, Section 2.1],
or [LP22a; LP22b]); targeted PRGs based on the doubly efficient interactive proof system of Gold-
wasser, Kalai and Rothblum [GKR15], introduced by Chen and Tell [CT21a] (see, e.g., [CLO+23;
CT23b; CTW23; DPT24; LPT24]); and targeted PRGs suitable for non-deterministic derandom-
ization, a-laMA ⊆ NP , which are based on PCPs and were introduced by van Melkebeek and
Sdroievski [MMS23] (see also [MS23]). For a survey see [CT23a].

The point is that none of the constructions above suffice to get free lunch derandomization
from our assumptions. Generators based on NW can be very fast, but they rely on assumptions
such as non-batch-computability; generators based on interactive proofs are slow, and this obsta-
cle seems inherently difficult to bypass (see Section 2.1); and known PCP-based generators for the
non-deterministic setting lack specific features that we need in our setting (see Section 2.2). We
will thus have to develop new targeted PRGs, which are fast and rely on standard assumptions,
and then use additional ideas to leverage them and obtain our results.

Organization. In Section 2.1 we describe the construction underlying the proof of Theorem 1.2,
and in Section 2.2 we describe the construction underlying the proof of Theorem 1.5 and of its
technical extension. In Section 2.3 we describe the proof of Theorem 1.6.

7Recall that for free lunch derandomization we cannot rely on standard PRGs for non-uniform circuits. First, a
PRG for size-T circuits must have seed length at least log(T), in which case enumerating over seeds (and evaluating a
T-time algorithm) yields derandomization in quadratic time. Secondly, such a PRG necessitates circuit lower bounds,
and we want constructions from hardness for uniform algorithms.

7



2.1 A superfast targeted generator, and proof of Theorem 1.2

We first explain why known proof-system-based generators are slow, even when using very fast
proof systems, and what is our main idea for doing better. Readers who are only interested in a
self-contained technical description of the new generator may skip directly to Section 2.1.2.

2.1.1 Generators based on interactive proofs, and their drawbacks

Recall that the generator of Chen and Tell [CT21a] relies on an interactive proof system (specifi-
cally, that of [GKR15], but let us discuss their idea more generally). For each round i of the proof
system, they consider the prover strategy Pi on input x as a function of the verifier’s challenges
up to that point, and use the truth-table of Pi as a hard truth-table for a classical PRG (say, [NW94]
or [SU05]). The classical PRG yields a list Li of pseudorandom strings, and they output ∪iLi.8

One would hope that using superfast proof systems, wherein the prover’s strategy function
is computable in near-linear time (e.g., [CMT12]), would yield a superfast generator. However,
this idea faces inherent challenges. First, the generator uses the truth-table of Pi; thus, even if
the prover’s strategy is computable in near-linear time, computing it over all possible verifier
challenges (across all i’s) would take at least quadratic time. Secondly, the prover’s response at
round i depends not only on the verifier’s challenge in round i, but also on the challenges at
previous rounds. Thus, we need each Pi to depend on sufficiently few past responses so that the
truth-table of Pi is only of super-linear size. Proof systems that we are aware of, even ones with
very fast provers, yield generators with large polynomial overheads due to both problems.

Beyond these technical problems, more generally, interactive proofs do not seem to be the right
tool for the job. To see this, observe that this generator relies on a small sequence of long, static
“proofs” (i.e., the Pi’s) that are all committed to in advance. Indeed, this is far more similar to
a PCP than to an interactive proof system. The key to our new construction is using technical
tools underlying classical PCP constructions in order to replace the proof system of [GKR15].
Specifically, we will construct a superfast targeted generator using a highly efficient sorting network.

2.1.2 A superfast generator based on highly efficient sorting networks

We want a generator that gets input x ∈ {0, 1}n, runs in near-linear time in T, and produces
pseudorandomness for T.99-time algorithms that get x. We will prove the following:

Theorem 2.1 (superfast targeted generator; informal, see Theorem 4.8). Let {Cn} be a sufficiently
uniform circuit family of size T and depth d. Then, for every sufficiently small constant δ ∈ (0, 1) there is
a deterministic algorithm SPRGC and a probabilistic oracle algorithm RecC such that:

1. Generator. When SPRGC gets input x ∈ {0, 1}n it runs in time d · T1+O(
√

δ) and outputs a list of
Tδ-bit strings.

2. Reconstruction. Suppose that RecC gets input x ∈ {0, 1}n and oracle access to a function
D : {0, 1}Tδ → {0, 1} that is a (1/Tδ)-distinguisher for SPRGC(x). Then, RecC(x) runs in time
(d + n) · TO(

√
δ), makes TO(

√
δ) queries to D, and with probability at least 2/3 outputs Cn(x).

The main part in proving Theorem 2.1 is an encoding of the computation of Cn(x) as a
bootstrapping system, a-la [IW98; CT21a] (see definition below). In order to prove Theorem 2.1

8The generator also relies on specific features of the Pi’s, namely that they yield a downward self-reducible se-
quence of codewords, but let us ignore this fact for a moment.
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we need an extremely efficient bootstrapping system, which is significantly faster than previously
known constructions [CT21a; CTW23; CLO+23; DPT24; LPT24].

Standard setup. From here on, let ϵ = Θ(δ) be sufficiently small. The generator computes Cn(x)
and then encodes the gate-values obtained in Cn(x) during the computation as a bootstrapping

system, which is a sequence of functions {P1, ..., Pd′} (“layers”) with the following properties:

1. Error-correction: Each layer Pi : Fm → F is a low-degree polynomial.

2. Base case: Computing each entry of P1 can be done in time t = Tϵ, given x.

3. Downward self-reducibility (DSR): For i > 1, computing each entry of Pi reduces in time
t to computing entries in Pi−1.

4. Faithful representation: Computing each entry of f (x) can be done in time t given Pd.

It will be crucial for us that d′ ≈ d, that each Pi is a function over a domain of size |F|m ≈ T,
and that the generator can compute the bootstrapping system from x in near-linear time in T.

Warm-up: A nicely arranged grid. Observe that the gate-values of Cn(x) are already arranged
into d layers p1, ..., pd : [T]→ {0, 1} with built-in DSR.9 For convenience, let us replicate each gate
to “left” and “right” copies; that is, for every i ∈ [d] there are now 2T gates in layer pi, indexed
by (g, b) ∈ [T]× {lt, rt} such that pi(g, lt) = pi(g, rt). Also, let us arithmetize the input layer p1
in the standard way: Using a set H ⊆ F of size |h| = Tϵ and m such that |H|m ≥ 2T, we define
P1 : Fm → F to be a low-degree polynomial (i.e., of individual degree h− 1 ≈ Tϵ) such that if
w⃗j,b is the (j, b)th element of Hm, then P1(w⃗j,b) = p1(j, b). Since P1 is, essentially, just a low-degree
extension of x ∈ {0, 1}n, it is computable at any input in time Õ(n) ≤ Õ(T).

Now, imagine for a moment that the circuit is a d × 2T grid such that every gate takes its
inputs from the pair of gates directly below it. Formally, for every (g, b) ∈ [T] × {lt, rt}, the
value of pi+1(g, b) depends on pi(g, lt) and pi(g, rt). Then, constructing a bootstrapping system
is much easier. Specifically, starting from i = 1 and working our way up, we have a low-degree
polynomial Pi for pi, and we can easily construct a polynomial Pi+1 for pi+1:

Pi+1(w⃗j,b) = Bi+1
(

Pi(w⃗j,lt), Pi(w⃗j,rt)
)

,

where Bi+1 is a low-degre arithmetization of the Boolean gate operation in layer i + 1. Note that
Pi+1 defined above is a low-degree polynomial that agrees with pi+1 on Hm ≡ [2T], and that the
resulting sequence P1, ..., Pd is downward self-reducible in the straightforward way.

Even in this easy setting we are not done, since when naively propagating this construction
up across layers, the degree blows up (because deg(Pi+1) = c · deg(Pi) for some constant c > 1
that depends on the gate operation). However, we can maintain individual degree at most h− 1,
using the linearization idea of Shen [She92]. Specifically, after each Pi (and before Pi+1), we will
add a sequence of polynomials Pi,j that decrease the individual degree of each variable at a time
to h− 1, while maintaining the behavior of Pi on Hm (see Section 4.1.1 for an implementation).
Of course, after adding this sequence, it is no longer guaranteed that each gate in pi+1 takes
its inputs directly from the two gates below it in Pi,ℓ (where Pi,ℓ is the last polynomial in the
degree-reduction sequence). But observe that if this property would hold, we would be done.

9Indeed, we will assume that the circuit is sufficiently uniform, and in particular that given (i, j) ∈ [d]× [T] we can
output the indices of gates in layer i− 1 that feed into gate j at layer i, in time≪ T.
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The key component: Simple sorting. The crux of our proof is sorting the gate-values at each
layer such that after sorting, the value of each gate g will be directly below the gates to which
g feeds in the layer above. Towards this operation, we assume that the circuit is sufficiently
uniform, in the following sense: Each gate has fan-out two, and there is a uniform formula of
size polylog(T) that gets input (i, g, σ) ∈ [d]× [T]× {0, 1} and prints the index of the σth output
gate of g in layer i + 1 (see Definition 4.1).10 In particular, we can arithmetize this formula and
obtain low-degree polynomials OUTi,b computing the index of the bth output gate (i.e., left or
right) of g. Then, for each Pi, we obtain a low-degree P′i that maps (g, b) to (OUTi,b(g), Pi(g, b)).

We now sort the values of P′i such that the value that originally appeared in location (g, b)
(i.e., Pi(g, b)) will appear in location (OUTi,b(g), b) after sorting, for some b ∈ {lt, rt}. That is,
we construct a sequence of polynomials P′i,1, ..., P′i,ℓ such that, thinking of g′ as an index of a gate

in layer i + 1, we have that
{

P′i,ℓ(g′, b)
}

b∈{lt,rt}
= {P′i (IN(g′, b))}b∈{lt,rt}, where IN(g′, b) is index

index of the bth gate feeding into g′. We do this by arithmetizing the operations of a sorting
procedure that runs in parallel time ℓ = polylog(T) (and thus we only add ℓ polynomials).

We need a sorting procedure that is arithmetizable as a sequence of polynomials that are
simultaneously of low-degree and downward self-reducible; that is, each Pi,j is of low degree,
and the value of Pi,j(g, b) depends in a simple way on a small number of locations in Pi,j−1 whose
indices are easily computable from (g, b). This seems like a chicken-and-egg problem, since our
goal in constructing a bootstrapping system to begin with is precisely to encode the computation
of Cn(x) into a sequence of polynomials that achieve both properties simultaneously. However,
we have now reduced this problem to achieving these properties only for the specific computation
of a sorting procedure, and we can choose which sorting procedure to work with.

The key is using a highly efficient sorting network whose operations are as simple as possible.
Indeed, recall that sorting networks work in parallel, perform simple operations, and their circuit-
structure function is rigid and simple. For our purposes, the most useful network turns out to be
Batcher’s [Bat68] classical bitonic sorter: The non-recursive implementation of this sorting network
uses functionality that is as simple as one might imagine; see Figure 1.11

There are still some details left to sort out. We need to arithmetize the operations of the
bitonic sorter (see Section 4.1.2), to arithmetize the gate operations (see Section 4.1.3), and to add
degree-reduction polynomials in between all operations. For full details, see Section 4.1.

From bootstrapping system to targeted generator. Lifting the bootstrapping system to a proof
of Theorem 2.1 is standard by now (see, e.g., [CT21a] for details). In a gist, the generator maps
each layer in the bootstrapping system to a list of strings, using the NW generator; and the
reconstruction uses a distinguisher to iteratively compress each layer, starting from the input
layer and going up until reaching the top layer (which has the output Cn(x)). To compress a
layer, it uses the reconstruction procedure of NW, which works in small time TO(

√
δ) when the

output length Tδ of NW is small (as it will be in our setting; see below).
Note that the overall reconstruction uses d≪ T steps, each running in time TO(

√
δ) and using

access to a T-time distinguisher. If Cn is computable in time T̄ = T1+O(
√

δ) yet hard for time T̄1−ϵ,
we obtain a contradiction. See Section 4.2 for details.

10Note that many natural functions satisfy this notion of uniformity, since the adjacency relation in circuits for these
functions is typically very rigid (and we can add log(T) layers above each layer to ensure that gates have fan-out two).

11In particular, it will be very convenient for our arithmetization that the bitonic sorter compares the values of
gate-values whose indices are of the form x⃗ and y⃗ = x⃗ + e⃗i where e⃗i has Hamming weight 1.
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2.1.3 Proof of Theorem 1.2

Let us start by derandomizing RT IME [T]. Fix a machine M running in time T and solving
a problem with one-sided error. If we instantiate Theorem 2.1 with a function hard over all
polynomial-time samplable distribution, when x is chosen from a polynomial-time samplable
distribution, will all but negligible probability there exists s ∈ SPRGC(x) such that M(x, s) = 1.

Unfortunately, this only yields quadratic time derandomization. Specifically, if OWFs exist
we can assume wlog that M uses only Tϵ random coins (since the OWF yields a PRG with
polynomial stretch running in near-linear-time; see Assumption 3.7). We instantiate Theorem 2.1
with a hard function computable by circuits of size T1+O(ϵ) and depth TO(ϵ), in which case
SPRGC(x) yields T1+O(ϵ) pseudorandom strings for M(x, ·).12 However, evaluating M(x, ·) on
each of those strings (to search for s such that M(x, s) = 1) takes time T2+O(ϵ).

Nevertheless, using Theorem 2.1 we exponentially reduced the number of random coins used
by M, from Tϵ to (1+O(ϵ)) · log(T) (since it now suffices to choose from the list SPRGC(x)), and
crucially, we did so without meaningfully increasing the running time of M.

Free lunch derandomization with small advice. We now use a stronger property of SPRGC.
Specifically, observe that the generator computes a small number d′ = d · polylog(T) of lists, and
for every x such that the reconstruction fails, at least one of the lists is pseudorandom for M(x, ·).
In particular, on inputs x such that Prr[M(x, r)] ≥ 1/2 we have that Prs∈SPRGC(x)[M(x, s) = 1] ≥
1/O(d′).13 Our first step is to increase the density of “good” strings s in the list from 1/O(d′)
to 1− n−ω(1). Naively re-sampling from the list can achieve this while increasing the number of
random coins to O(log T)2, and using randomness-efficient samplers, we do this with Õ(log T)
random coins, and with no significant increase to the running time of M.

The crucial observation is that now there exists one seed s ∈ {0, 1}Õ(log T) that is good for
all efficiently samplable distributions, since there are only countably many such distributions. That
is, for every fixed polynomial-time machine sampling a distribution x = {xn}, note that the
probability over x ∼ xn and s ∈ {0, 1}Õ(log n) that Prr[M(x, r) ≥ 1/2] yet M(x, s) = 0 is negligible.
By a union-bound, the probability that this holds for at least one of the first (say) n Turing
machines is also negligible. Thus, if we fix a good seed sn ∈ {0, 1}Õ(log n) as advice to the
derandomization algorithm, then for every efficiently samplable distribution x = {xn} and every
sufficiently large n ∈ N, with all but negligible probability over x ∼ xn the derandomization
algorithm M(x, SPRGC(x)sn) outputs the correct decision in time T1+O(ϵ).

Loose ends. The argument above only derandomizes RP . However, since it uses a targeted
PRG, it also works for promise-problems; in particular, the argument shows that prRT IME [T] ⊆
heur-DT IME [T1+O(ϵ)]. Now we can imitate the standard non-black-box reduction of derandom-
ization of prBPP to derandomization of prRP (as in [BF99]), while noting that all the inputs to
prRT IME considered in this reduction are explicitly computable in polynomial time. Thus, if
this reduction fails with noticeable probability over x ∼ xn, then an efficient adversary can find

12Here is a sketch of the standard analysis. The hard function is computable in time T̄ = T1+O(ϵ), but hard for
time T̄1−ϵ. Note that the reconstruction runs in time TO(ϵ) and makes at most TO(ϵ) to its distinguisher D. We will
use Dx = M(x, ·), which runs in time T. In this case the reconstruction runs in time T1+O(ϵ) = T̄1−ϵ. If there is a
polynomial-time samplable distribution such that with noticeable probability the derandomization fails, then there is
a polynomial-time samplable distribution such that with noticeable probability, the reconstruction computes the hard
function too quickly. See Theorem 5.1 for further details.

13That is, the generator is actually a somewhere-PRG; a similar property of the generator of [CT21a] was used in
the past, see [CRT22; DPT24], albeit for different purposes.
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an input on which the derandomization of prRT IME fails, which is a contradiction. Moreover,
the compositional overhead caused by this reduction is small when we focus on derandomization
in near-linear time T1+O(1). See Theorem 3.5 for details.

Lastly, as mentioned in Section 1.2.2, we can eliminate the ℓ = Õ(log n) bits of advice, by
assuming a PRG that stretches ℓϵ bits to ℓ bits in time T1+O(ϵ) and fools uniform machines
running in slightly smaller time. See the proof of Theorem 5.1 for details.

2.2 A superfast targeted generator based on PCPs with proofs of knowledge

As a warm-up, let us first prove Theorem 1.5. Recall that we have a function f computable in
near-linear time n1+O(ϵ) that is hard for smaller MA time n1+ϵ over all polynomial-time sam-
plable distributions, and we want to simulateMAT IME [T] in cs-NT IME [T1+O(ϵ)].

A bare-bones version of [MS23]. We use a variant of the targeted generator of van Melkebeek
and Sdroievski [MS23]. Fix L0 ∈ MAT IME [T], decided by a verifier V0. The generator is given
x ∈ {0, 1}n, and it guesses a witness w for V0. It also guesses f (x, w), and a PCP witness π for the
language L = {((x, w), f (x, w))}, which is decidable in time |(x, w)|1+O(ϵ) = T(|x|)1+O(ϵ). The
generator then verifies that π is indeed a convincing witness (by enumerating the (1+ ϵ) · log(T)
coins of the PCP verifier), and outputs the NW PRG with π as the hard truth-table.

Our deterministic verifier V for L0 gets x and a witness w̄ = (w, f (x, w), π), uses this gener-
ator with (x, w, f (x, w), π), and outputs ∧s∈NW(π)V0(x, w, s).14 This verifier indeed runs in time
T1+O(ϵ), assuming that we use a fast PCP and relying on the OWF assumption.15 Now, assume
that an efficient dishonest prover P̃ can find, with noticeable probability, an input x /∈ L0 and
a proof w̄ = (w, f (x, w), π) such that V(x, w̄) = 1. We show that on the fixed input (x, w), an
MA reconstruction procedure succeeds in computing f (x, w) in time T1+ϵ. We stress that f is
only hard over polynomial-time samplable distributions, and thus we can only use this argu-
ment to deduce that no efficient adversary can find x and w̄ that mislead the verifier; that is, we
derandomizeMAT IME [T] into cs-NT IME [T1+O(ϵ)].

How does the MA reconstruction work for such a fixed (x, w)? By the above, there is π
such that Dx,w(r) = V0(x, w, r) is a distinguisher for NW(π). Given (x, w) as input, we run the
reconstruction algorithm RNW of NW. Recall that when RNW gets suitable advice (which consists
of random coins, and bits from the “correct” π), it uses Dx,w to build a concise version of π.
We non-deterministically guess advice for RNW, and this determines a concise version of a PCP
witness π′. We then guess f (x, w) and run the PCP verifier on input ((x, w), f (x, w)), giving it
oracle access to π′. The point is that: (1) The running time of this entire procedure is small, and
can be made T1+ϵ; (2) There is a guess such that this procedure accepts with probability 1, due
to the perfect completeness of the PCP verifier; (3) After guessing the advice for RNW, it commits
to a single PCP witness π′, and thus if we guessed f (x, w) incorrectly the PCP verifier will reject,
with high probability. For precise details see the proof of Theorem 6.4.

A non-deterministic hardness assumption, and a superfast generator with witnessable sound-
ness. Next, we would like to relax the hardness assumption, and only require that f will be

14Throughout the paper we assume thatMA verifiers have perfect completeness.
15Specifically, we use a PCP in which PCP proofs for DT IME [T] can be computed in time T1+o(1). Also, relying

on the OWF assumption, we can assume wlog that the MA verifier only uses Tϵ random coins. Indeed, when the
MA verifier uses Tϵ random coins, we can instantiate NW with small output length Tϵ ≈ |π|ϵ, in which case it runs
in time |π|1+O(ϵ) = T1+O(ϵ) and produces a list of size TO(ϵ).
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computable non-deterministically. Since are constructing a cs-NP protocol for L ∈ MA, we need
an efficient honest prover for f , and we thus use a hard function f ∈ cs-NT IME [n1+O(ϵ)].16

The cs-NP verifier for L is similar to the one in the “bare-bones” version above. The only
difference is that now it also gets a witness w f for f , uses a cs-NP-verifier Vf to compute
Vf ((x, w), w f ) (which hopefully outputs f (x, w)), and applies NW to a PCP proof πx,w,w f for
the T1+O(ϵ)-time computable language

{
((x, w, w f ), Vf ((x, w), w f ))

}
.

The main challenge is that with this new generator, the reconstruction procedure described
above is not an MA protocol anymore. To see why, consider an efficient adversary P̃ that
finds x and (w, w f , π) such that Dx,w(r) is a distinguisher for NW(πx,w,w f ). The reconstruction
procedure then quickly and non-deterministically computes Vf ((x, w), w f ). The key problem
is that Vf may err in computing f on some hard-to-find inputs. Specifically, on some inputs
(x, w), the reconstruction procedure has several possible outputs: It may be that Dx,w is a distin-
guisher for NW(πx,w,w f ) such that Vf ((x, w), w f ) = f (x, w), and also for NW(πx,w,w′f

) such that
Vf ((x, w), w′f ) ̸= f (x, w); in this case, on different non-deterministic guesses the reconstruction
procedure may output either Vf ((x, w), w f ) or Vf ((x, w), w′f ).

The issue above seems inherent to the common techniques in hardness-vs-randomness (see Re-
mark 6.10 for an explanation). Thus, as explained in Section 1.3, we will rely on a hardness
assumption for stronger MA-type reconstruction procedures, in which misleading input-proof
pairs do exist but are infeasible to find (i.e., for cs-MA protocols; see below).

It is still unclear why the protocol above should have such computationally soundness – after
all, maybe an adversary can indeed find a witness for the reconstruction (i.e., non-deterministic
guesseses for the protocol, and in particular a PCP witness πx,w,w′f

) that cause the reconstruction
to output an incorrect value (i.e., output Vf ((x, w), w′f ) ̸= f (x, w)). To ensure that no efficient ad-
versary can do this, we construct the following superfast targeted generator, which has additional
properties. The primary one is “witnessable soundness”: A witnessing algorithm can efficiently
map convincing witnesses for the reconstruction procedure into convincing witnesses for Vf .
Thus, since misleading input-witness pairs for Vf are infeasible to find, misleading input-witness
pairs for the reconstruction of the new generator are also infeasible to find.

Theorem 2.2 (superfast targeted PRG whose reconstruction has witnessable soundness; informal,
see Theorem 6.8). Consider Vf that gets (z, w′) of length N1+O(ϵ) and runs in linear time N1+O(ϵ). For
every δ > 0 there is a deterministic NGenV and a probabilistic NRecV that satisfy the following:

1. Generator. When NGenV gets (z, w′) it runs in time N1+O(ϵ+
√

δ), and if Vf (z, w′) does not reject,
it prints a list of Nδ-bit strings (otherwise, it outputs ⊥).

2. Reconstruction. The reconstruction NRecVf gets input z and oracle access to D : {0, 1}Nδ →
{0, 1}, runs in time N1+ϵ, guesses a witness π′, tosses random coins r, makes at most NO(

√
δ)

oracle queries, and satisfies the following.

(a) (Efficient honest prover.) There is a ppt oracle machine PrvVf such that for every (z, w′) such
that NGenVf (z, w′) ̸=⊥, and every (1/M)-distinguisher D for NGenVf (z, w′), the probability
that PrvD

Vf
convinces NRecD to output Vf (z, w′) is at least 2/3.17

16As in any argument system, the notion of cs-NP for L ∈ MA is non-trivial only when the honest prover is
efficient (at least when given a witness in an arbitraryMA-relation for L).

17That is, with probability at least 2/3, the output π′ of PrvD
Vf
(z, w′) satisfies Prr[NRec

D
Vf
(z, r, π′) = Vf (z, w′)] = 1.
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(b) (Witnessable soundness.) There is a ppt oracle machine WitVf satisfying the following. For
any D and any π′, if Prr[NRec

D
Vf
(z, r, π′) = y] ≥ 1/2 for some y ∈ {0, 1}∗, then with

probability at least 2/3 the algorithm WitVf (z, π′) outputs w′ such that Vf (z, w′) = y.

The construction of Theorem 2.2 is based on PCPs with proofs of knowledge, as defined by
Ben-Sasson et al. [BSCG+13]. This notion asserts that convincing PCP witnesses can be efficiently
“translated back” to satisfying assignments for the original predicate that the PCP proves. We
will use the specific construction from [BSCG+13], since we crucially need a PCP that is both
very fast (i.e., has short witnesses that can be computed by a near-linear-time prover) and that
has a polynomial-time proof of knowledge. The details appear in Theorem 6.8.

The derandomization result itself is stated in Theorem 6.7. The specific assumption that it
relies on is function f ∈ cs-NT IME [n1+O(ϵ), poly(n)] that is hard for cs-MAT IME [n1+ϵ, n2]
protocols over all polynomial-time samplable distributions, where the second quantitative term
in both expressions denotes the runtime of the honest prover in the protocol.18 That is, for every
cs-MAT IME [n1+ϵ, n2] protocol with a verifier V and an honest prover P such that the protocol
is computationally sound, it is infeasible to find inputs z on which P manages to convince V
of the correct value of f (z). We make this notion quantitatively precise in Definition 6.6 and
in Theorem 6.7. The rationale behind the hardness assumption is the obvious one: If we disregard
randomness, the verifier in the upper bound has more power than the verifier in the lower
bound. As an additional sanity check, a random function with (say) nϵ output bits also attains
this hardness; and indeed, it is even plausible that there is a function in FP (rather than only
cs-NP) with such hardness.

2.3 Worst-case to approximate-batch-case reductions for natural functions

Informally, a function g : {0, 1}n → {0, 1}k is non-batch computable if any individual output bit
g(x)i can be computed in time T, but no algorithm running in time significantly faster that T · k
can correctly print all of the k output bits g(x) (or a large fraction of them).

We prove that non-batch-computability assumption follows from any worst-case hard decision
problem f that admits two natural properties:

1. An efficient low-degree extension: There is a low-degree multivariate polynomial p that
computes f on binary-valued inputs (∀x ∈ {0, 1}n, f (x) = 0 ⇐⇒ p(x) = 0) and is
computable in time proportional to f . We denote d = deg(p).

2. Downward-self-reducibility: Solving a single instance of the problem efficiently reduces to
solving many smaller instances.

Given such a hard function, we show that the k-wise direct product of p is non-batch-
computable; that is, no algorithm can print a large fraction of the outputs significantly faster
than computing each output independently. The key lemma is a direct product theorem that is
akin to the ones in Ball et al. [BRS+18; BGH+24], but focuses on the case in which the number of
instances k = nγ is small. (In contrast, in prior work [BRS+18; BGH+24] the number of instances
k = poly(n) was significantly larger the size n of each instance.)

18The reason for bounding the running times of the honest provers is that we are computing a function f that does
not necessary have an underlying witness-relation. Again, this is standard when considering argument systems, and
cs-NP systems were also defined this way in prior work (see, e.g., [Gol01, Section 4.8] and [CT23b; CRT25]). We
note that in our assumption we will allow the honest prover in the cs-MA protocol to get a witness in an underlying
witness-relation that can be efficiently generated; see Theorem 6.7 for precise details.
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The main idea. We show that any batch-solver fails on a small constant fraction δ > 0 of the
k-tuples, and later explain how to lift this to hardness over 1− δ of the k-tuples.

Let us first attempt a naive reduction and see where it fails. Assume towards a contradiction
that a batch-solver B succeeds on more than 1− δ of the k-tuples. Given a (“large”) instance X to
the problem, we apply downward self-reduction to obtain k′ smaller instances x1, ..., xk′ ; a correct
solution to all k′ smaller instances can be easily combined into a solution for X. Since the batch-
solver only succeeds on average and we need to solve all k′ instances correctly, a natural idea
is to use error-correction: We randomly sample a low-degree curve C passing through x1, ..., xk′ ,
apply the batch-solver on a set of k = O(d · k′) points on this curve, and uniquely decode from
≈ δ errors to obtain the unique degree-(d · k′) polynomial p ◦ C that agrees with B ◦ C.

The only problem with this idea is that the points on the curve on which we apply the batch-
solver B are not uniformly distributed, and hence B is not guaranteed to succeed with probability
1− δ. The main idea to resolve this is to add additional error-correction. Specifically, assume that
x1, ..., xk′ are embedded in points C(1), ..., C(k′) on the curve, and that we decode using the points
C(k′ + 1), ..., C(k′ + k) on the curve. For each i ∈ {k′ + 1, ..., k′ + k}, we sample a random line Li
passing through C(i) (i.e., Li(0) = C(i)). Now, for each fixed j ∈ [O(d)], consider the k-tuple that
passes through the jth point in each of the k lines L1, ..., Lk

x̄j = (L1(j), ..., Lk(j)) .

Observe that for each j ∈ [d] the k-tuple x̄j is uniformly random (over choice of C and of
Li’s), so we can apply the batch-solver B to it. In particular, by an averaging argument, with high
probability over choices of C and Li’s, for most of the points C(i) (where i ∈ {k′ + 1, ..., k′ + k}),
for most of the points j ∈ [d] we have B(x̄j)i = p(Li(j)) (i.e., B(x̄j) is correct on its ith coordinate).19

Thus, we now apply the Reed-Solomon unique decoder twice:

1. First, for every i ∈ {k′ + 1, ..., k} we run the batch-solver B on x̄1, ..., x̄O(d) and look at its
ith coordinate. This yields a sequence of O(d) values, and we uniquely decode the results,
hoping to obtain the degree-d polynomial p ◦ Li and evaluate it on 0 to get p(C(i)).

2. Secondly, analogously to the naive attempt, we now uniquely decode the sequence of k
values obtained in the first step, hoping to obtain the degree-(d · k′) polynomial p ◦ C.

If indeed for most C(i)’s it holds that for most j ∈ [d] we have B(x̄j)i = p(Li(j)), then for most
C(i)’s we correctly obtain the value p(C(i)) in the first step, in which case the unique decoder
outputs p ◦ C in the second step. Then we can compute p ◦ C(1), ..., p ◦ C(k′) and combine the
results p(x1), ..., p(xk′) to compute the hard function at input X.

Remaining gaps. There are two remaining gaps in the proof above. First, the proof shows that
every batch-solver fails on a small fraction δ > 0 of the inputs, whereas we are interested in
showing that every batch-solver fails on a very large fraction 1− δ of the inputs.

We bridge this gap by applying direct-product again, which increases the average-case hard-
ness from δ to 1− δ, carefully adapting well-known techniques from a sequence of works by Im-
pagliazzo et al. [IJK07; IJK+10]. Their techniques require a way to verify that a batch-computation
is correct,20 and the key observation is that in our setting, we can efficiently test whether a batch-

19Our actual argument will use Chebyshev’s inequality (rather than an averaging argument), and to get pairwise
independence we will use Li’s that are quadratic curves. For simplicity, we hide this in the high-level overview.

20In other words, they only yield a list-decoder rather than a decoder, and we need to weed the list to find which
candidate is correct.
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solver correctly computes 1− ϵ of the bits of f (X), by sampling O(1/ϵ) output bits and comput-
ing f at each of these bits. (Observe that this does not significantly increase the running time of
the batch-solver.)

The second gap is that the proof shows hardness of batch-computing a polynomial over a
large field, rather than a Boolean function; we bridge this gap via the standard approach of
applying the Hadamard code to the polynomial. For precise details, see Section 7.

3 Preliminaries

The machine model throughout the paper is the RAM model. We will use the notation ◦ to denote
the concatenation of strings, and also of lists. We recall that standard definition of a distinguisher
for a distribution:

Definition 3.1 (distinguisher). We say that D : {0, 1}M → {0, 1} is an ϵ-distinguisher for a distribu-

tion w over {0, 1}M if
∣∣∣Prr∈{0,1}M [D(r) = 1]− Prw∼w[D(w) = 1]

∣∣∣ ≥ ϵ.

3.1 Derandomization and hardness over samplable distributions

Let us formally define the notion of derandomization over all polynomial-time samplable distri-
butions, where the derandomization refers to promise-problems. We stress that this is a stronger
notion (compared to only derandomizing languages), and it is useful (see, e.g., Theorem 3.5). All
of our results achieve this stronger notion, since they are based on targeted generators.

Definition 3.2 (simulation over all polynomial-time samplable distributions). For a promise-problem
Π = (ΠY, ΠN) and a class prC of promise-problems, we say that Π ∈ heur-prC if there is Π′ ∈ prC such
that for every probabilistic polynomial-time algorithm F it holds that

Pr
x←F(1n)

[
x ∈ (ΠY \ (Π′)Y) ∩ {0, 1}n ∨ x ∈ (ΠN \ (Π′)N) ∩ {0, 1}n

]
≤ nω(1) .

We now recall the definition of hardness over all polynomial-time samplable distributions,
and prove that such hardness is necessary for derandomization over all polynomial-time sam-
plable distributions.

Definition 3.3 (hardness over all polytime samplable distributions). We say that f : {0, 1}∗ →
{0, 1}∗ is hard for probabilistic time T over all polynomial-time samplable distributions if the following
holds. For every probabilistic time-T algorithm A, and every polynomial-time samplable distribution
x = {xn}n∈N, and every sufficiently large n ∈N, we have Prx∼xn [A(x) = f (x)] ≤ negl(n).

Claim 3.4 (hardness over all polytime samplable distributions is necessary for free lunch deran-
domization). Let T(n) be a polynomial, let ϵ > 0, and assume that prBPT IME [T] ⊆ heur-prDT IME [T1+ϵ].
Then, there is a function f : {0, 1}n → {0, 1}log(n) computable in deterministic time T1+3ϵ such that for
every probabilistic time-T machine M and every polynomial-time samplable distribution x = {xn}n∈N,
with all but negligible probability over x ∼ xn it holds that Pr[M(x) = f (x)] < 2/3.

Proof. Recall that there is a function f : {0, 1}n → {0, 1}log(n) that is computable in deterministic
time T1+3ϵ and yet is hard for deterministic time T1+2ϵ on all but finitely many inputs (see, e.g.,
the proof of [CT21a, Claim 5.2]).
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Assume towards a contradiction that there is a T-time machine M and a polynomial-time
samplable distribution x such that with noticeable probability 1/p(n) over x ∼ xn it holds that
Pr[M(x) = f (x)] ≥ 2/3. Let Π = (ΠY, ΠN) where

ΠY = {(x, i, b) : Pr[M(x)i = b] ≥ 2/3} and ΠN = {(x, i, b) : Pr[M(x)i = b] ≤ 1/3} ,

and note that Π ∈ prBPT IME [T], and that with probability at least 1/p(n) over x ∼ xn, for all
i ∈ [log(n)], b ∈ {0, 1} it holds that (x, i, b) ∈ Π and (x, i, b) ∈ ΠY ⇐⇒ f (x)i = b.

By our assumption, Π ∈ heur-prDT IME [T1+ϵ]. Let ML be a deterministic T1+ϵ-time ma-
chine for L. Consider a machine A that gets input x, runs ML on all i ∈ [log(n)], b ∈ {0, 1}, and if
ML yields a consistent output (i.e., for every i there is exactly one b such that ML(x, i, b) = 1) then
A(x) prints this output. By the above, there is a 1/p(n) fraction of inputs such that A(x) = f (x).
However, A runs in time less than T1+2ϵ, a contradiction.

3.1.1 Two-sided error vs one-sided error

The following result asserts that derandomization of randomized algorithms with one-sided error
implies derandomization of randomized algorithms with two-sided error, even when the context
is only derandomization over all polynomial-time samplable distributions. Indeed, the proofs
imitates the standard reduction [BF99], while observing that all inputs generated in the reduction
are explicit (i.e., generated in polynomial time), and hence the derandomization should work on
all of them (with all but negligible probability).

Theorem 3.5. Let ϵ ∈ (0, 1) be sufficiently small. Assuming OWFs exist, and suppose that for every
polynomial T, there is a targeted hitting-set generator that gets input x ∈ {0, 1}n, runs in time T1+ϵ,
outputs a list of at most Tϵ strings of length T, and fools all T-time algorithms with one sided-error, over
all polynomial-time samplable distributions.21 Then,

prBPT IME [T] ⊆ heur-prDT IME [T1+O(ϵ)] .

Moreover, if the targeted hitting set needs α = α(T) bits of advice, the final heuristic derandomization
needs α′ = 2 · α(T1+O(ϵ)) bits of advice.

Proof. We first consider the case where the targeted hitting set generator requires no advice, and
then explain how to handle the case with advice similarly.

Let A be a T-time algorithm deciding a promise problem Π = (ΠY, ΠN) ∈ prBPT IME [T].
Applying the assumed OWFs and a subsequent error reduction, we masy assume that for an
arbitrary small constant ϵ0 > 0, the algorithm A runs in T1+ϵ0 time and uses m = Tϵ0 random
bits, and that the following hold:

x ∈ ΠY =⇒ Pr
r∈{0,1}m

[A(x, r) = 1] ≥ 1− T−ω(1)

and
x ∈ ΠN =⇒ Pr

r∈{0,1}m
[A(x, r) = 1] ≤ T−ω(1) .

In the following, we use r⃗ ∈ {0, 1}m×m to denote a list of {ri}i∈[m] such that ri ∈ {0, 1}m. Now,
consider a new promise problem Π1, defined as follows:

ΠY
1 :=

{
(x, r⃗) : Pr

w∈{0,1}m
[∃i s.t. A(x, ri ⊕ w) = 1] = 1

}
21That is, for every T-time algorithm A and every polynomial-time samplable distribution x = {xn}n∈N,the proba-

bility over x ∼ xn that Prr[A(x, r) = 1] ≥ 1/2 yet A(x, s) = 0 for all s ∈ H(x) is negligible in n.
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and

ΠN
1 :=

{
(x, r⃗) : Pr

w∈{0,1}m
[∃i s.t. A(x, ri ⊕ w) = 1] ≤ 1/2

}
.

We denote the input length to Π1 by n′ = |x| + m2 = n + T2ϵ0 . Note that we have Π1 ∈
prRT IME [T1+O(ϵ0)(n′)], via the following algorithm A′: On input (x, r⃗), draw a random w ∼
{0, 1}m, and output 1 if and only if there exists i ∈ [m] such that A(x, ri ⊕ w) = 1. Hence, by our
assumption, there is a deterministic algorithm B running in time TB = T1+O(ϵ)(n′) that solves Π1
with probability 1− n−ω(1) over any polynomial-time samplable distribution.

Let H be a targeted hitting set that fools TB-time algorithms, and let M = Tϵ
B be the hypoth-

esized bound on the number of output strings of H. Note that H is computable in time T1+ϵ
B ,

and in particular, in polynomial time. Our algorithm E now works as follows: Given an input
x ∈ {0, 1}n, compute r⃗(1), . . . , r⃗(M) from H(x), output 1 if and only if there exists i ∈ [M] such
that B(x, r⃗(i)) = 1.

We claim that E solves Π over any polynomial-time samplable distribution with probability
1− n−ω(1). To see this, let D be a polynomial-time samplable distribution over {0, 1}n. Note that
E fails to solve x ∼ D if one of the following holds:

1. x ∈ ΠY and for every i ∈ [M] it holds that B(x, r⃗(i)) = 0.

2. x ∈ ΠN and there exists i ∈ [M] such that B(x, r⃗(i)) = 1.

We use E1 and E2 to denote the two events above, and we bound their probability separately.

Bounding the probability of E1. Let D1 be the distribution obtained by drawing x ∼ D and r⃗ ∈
{0, 1}m×m and outputting (x, r⃗). By a standard argument, when x ∈ ΠY it holds that Pr⃗r[(x, r⃗) ∈
ΠY

1 ] ≥ 1− T−ω(1). Also note that B solves Π1 over D1 with probability at least 1− T−ω(1). It
follows that

Pr
x∼D

[
x ∈ ΠY and Pr

r⃗
[B(x, r⃗) = 1] < 1/2

]
< T−ω(1).

From our assumption, it follows that:

Pr
x∼D

Pr
r⃗
[B(x, r⃗) = 1] ≥ 1/2 and

∧
i∼[M]

B(x, r⃗(i)) = 0

 < T−ω(1) .

Combining the above two, we have that

Pr
x∼D

x ∈ ΠY and
∧

i∼[M]

[B(x, r⃗(i)) = 0

 < T−ω(1) .

Bounding the probability of E2. Now, we consider the second term. Consider a new distribu-
tion D2 obtained by drawing x ∼ D and then outputting (x, r⃗(i)) for a random i ∈ [M].

Note that when x ∈ ΠN, we have that Pr⃗r[(x, r⃗) ∈ ΠN
1 ] = 1. Since B solves Π1 over D2 with

probability at least 1− T−ω(1), it follows that

Pr
x∼D, i∼[M]

[x ∈ ΠN and B(x, r⃗(i)) = 1] ≤ T−ω(1) .

Taking a union bound over i ∈ [M], we have

Pr
x∼D

[x ∈ ΠN and ∃i ∈ [M], B(x, r⃗(i)) = 1] ≤ T−ω(1) .
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When H uses advice. To handle advice, note that now B also needs α(T1+O(ϵ0)) bits of advice
and T needs α(TB) bits of advice. The analysis still works with straightforward adaptions.

3.1.2 OWFs suffice for derandomization over the uniform distribution

The following claim asserts that OWFs alone, without any additional assumption, suffice to
obtain near-linear-time derandomization that succeeds on average over the uniform distribution.
Note that this derandomization is fast (and, in particular, it bypasses the conditional impossibility
results for worst-case derandomization in [CT21b; CT23b]), and that it errs rarely, i.e. with
negligible probability n−ω(1). However, we are not guaranteed that errors are infeasible to find.

The proof essentially follows from a lemma of Kinne, van Melkebeek, and Shaltiel [KMS12],
and as far as we are aware it was not observed in writing before. For example, several previ-
ous results deduced the same conclusion from OWFs and additional assumptions (see [CT21b,
Theorem 1.7] and [CT21a, Theorem 6.12]).

Claim 3.6. Suppose that Assumption 3.7 is true. Then, for every polynomial T and constants ϵ > 0 and
c > 1 and every Π0 ∈ prBPT IME [T] there is Π ∈ prDT IME [T1+ϵ] such that

Pr
x∈{0,1}n

[
x ∈ ΠY

0 \ΠY ∨ x ∈ ΠN
0 \ΠN

]
≤ n−ω(1) .

Proof. Let Π0 ∈ prBPT IME [T] and let A0 be a probabilistic algorithm deciding Π0 in time T.
By naive error-reduction, we can assume that A0 runs in time T′ = T1+o(1) and has error at most
n−ω(1). By our hypothesis, there is a PRG Glin with stretch nϵ 7→ T′ and running time at most
T1+ϵ/2, and define A(x) = A0(x, Glin(x1,...,nϵ/2)).

Let L be any language that agrees with Π. Observe that L ∈ P/poly, and that by definition of
A0 we have Prx∈{0,1}n,r∈{0,1}T′ [A0(x, r) ̸= L(x)] ≤ n−ω(1). Using [KMS12, Lemma 1], we deduce

that Prx∈{0,1}n [A(x) ̸= L(x)] ≤ n−ω(1), relying on the fact that Glin is an n−ω(1)-PRG for tests of
the form T(x, r) = A(x, r)⊕ L(x). The claim follows by defining Π to be the language that A
decides, and observing that the event “x ∈ ΠY

0 \ ΠY ∨ x ∈ ΠN
0 \ ΠN” is a subset of the event

“A(x) ̸= L(x)”.

3.2 Near-linear-time PRG

In this section we present assumptions concerning PRGs that run in near-linear time, and have
polynomial stretch. The first assumption was used in most prior works (see, e.g., [CT21b; CT21a;
CT23b; DT23]), and it follows from the existence of OWFs:

Assumption 3.7 (near-linear-time PRG). The near-linear-time PRG assumption is that for every poly-
nomial T(n) ≥ n and every ϵ > 0, there is an algorithm Glin that gets input (1n, s) where s ∈ {0, 1}T(n)ϵ

,
runs in time T(n)1+ϵ, and outputs T(n) bits such that the following holds. For every large enough n ∈N

there is no T−ω(1)-distinguisher circuit of size T(n) for Glin(1n, ·).

Theorem 3.8 (OWFs ⇒ near-linear-time PRGs; see, e.g., [CT21b, Theorem 4.3]). If there are non-
uniformly secure one-way functions, then Assumption 3.7 holds.

We comment that the security of the PRG in Assumption 3.7 against circuits (and the security
of the OWF in Theorem 3.8 against circuits) is not necessary for our results, and it could be
replaced with security against uniform adversaries over all polynomial-time samplable distribu-
tions. We chose the formulation above merely for simplicity.

19



The second assumption that we will use is a generalization of the first one. Observe that the
first assumption allows to stretch ℓϵ bits to ℓ bits in time T1+ϵ and in a way that fools T-time
algorithms, for the specific value of ℓ = T. The next assumption will generalize this to values
of ℓ that may also be smaller than T; indeed, the PRG still runs in time T1+ϵ and fools T-time
algorithms, the only difference being that the stretch is ℓϵ 7→ ℓ. Since small values of ℓ are
allowed, we will need to be more careful, and avoid making a non-uniform assumption; we thus
assume a PRG that works over all polynomial-time samplable distributions.

Assumption 3.9 (generalized near-linear-time PRG). The generalized near-linear-time PRG assump-

tion is that for every polynomial T(n) ≥ n and every ϵ > 0 and every ℓ(n) ≥ (1 + ϵ) · log(T), there is
an algorithm Ggenlin

ℓ that gets input (1n, s) where s ∈ {0, 1}ℓ(T(n))ϵ
, runs in time T(n)1+ϵ, and outputs

ℓ(T(n)) bits such that the following holds. For every large enough n ∈ N and every uniform algorithm
S running in time polynomial in T, the probability that S(1n) outputs a 1/10-distinguisher circuit of size
T(n) for Ggenlin(1n, ·) is negligible in T.

Assumption 3.9 will not be used in our main results, but as explained in Section 1.2.2, the
assumption is useful to prove extensions of our results wherein we eliminate the small number
of advice bits.

We stress that both Assumption 3.7 and Assumption 3.9 do not apparently yield derandom-
ization that runs faster than sub-exponential time. The main crux of our proofs will be exponen-
tially reducing the number of random coins that probabilistic machines use, without increasing
their time overhead (and while only erring on inputs that are infeasible to find).

3.3 Standard constructions in pseudorandomness

We will need a version of the Nisan-Wigderson [NW94] generator from [CT21b] such that the
generator is instantiated with very small output length, so that both the generator and recon-
struction are very fast. In particular, for a truth-table of length N, the reconstruction receives
oracle access to ≈ N.99 bits of advice, and runs in time ≈ N.01.

Theorem 3.10 (the NW generator with small output length; see [CT21b, Theorem 4.1]). There is a
universal constant cNW > 1 such that for all ϵNW > 0 there are two algorithms GNW and RNW that for
any N ∈N and any f ∈ {0, 1}N satisfy the following:

1. (Generator.) The generator GNW( f ) runs in time N1+4c2
NW

√
ϵNW and outputs a list of NϵNW-bit

strings.

2. (Reconstruction.) For any (1/NϵNW)-distinguisher D : {0, 1}NϵNW → {0, 1} for GNW( f ) there is
a string adv of length N1−cNW·

√
ϵNW such that the following holds. When RNW gets input i ∈ [N]

and oracle access to D and to advice adv, it runs in time NcNW·
√

ϵNW and outputs fi.

Moreover, there is a probabilistic oracle machine PNW that for any (1/NϵNW)-distinguisher D : {0, 1}NϵNW →
{0, 1} for GNW( f ), when given input 1N and oracle access to f and to D satisfies the following. The
machine PNW runs in time O(N1+cNW·ϵNW)), and with probability at least 2/3 outputs adv such that
RD,adv
NW (i) = fi for all i ∈ [N].

Proof sketch. The only part that did not explicitly appear in [CT21b, Theorem 4.1] is the algorithm
PNW. Since the details are standard following [NW94; STV01], we sketch the proof.

Recall that adv consists of an index i ∈ [M] for a hybrid argument (where M = NϵNW), values
for the seed of NW outside the ith set in the design, a (M − i)-bit suffix of an input for D, a
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list-decoding index j ∈ [poly(M)], and fixed randomness for the local list-decoder that GNW is
instantiated with (which is the code of [STV01]). In particular, when choosing adv uniformly
at random, with probability at least 1/poly(M) it satisfies the requirements and RD

NW correctly
computes f .

The machine PNW repeatedly chooses adv, and for each choice it uses its oracle D to simulate
RD,adv
NW on all inputs and compare to result to f (which PNW also has as an oracle). Each attempt

can be performed in time N · poly(M), and after poly(M) attempts PNW succeeds with high
probability (and with zero error), with a total runtime of N · poly(M).

We will also need a randomness-efficient sampler. For concreteness, we will use the extractor
of Guruswami, Umans, and Vadhan [GUV09], and rely on the standard equivalence between
randomness extractors and averaging samplers (see, e.g., [Vad12, Corollary 6.24]).

Definition 3.11 (averaging sampler). We say that Ext : {0, 1}n × [D] → {0, 1}m is an (ϵ, δ)-sampler
if for every T ⊆ {0, 1}m, with probability at least 1− δ over z ∈ {0, 1}n it holds that Pri∈[D][Ext(z, i) ∈
T] ∈ |T|/2m ± ϵ.

Theorem 3.12 (the extractor of [GUV09]). For every constant α > 0 and every time-computable
k(n), ϵ(n) there is a polynomial-time algorithm that for every n ∈N computes a (k, ϵ)-extractor

Ext : {0, 1}n × [D]→ {0, 1}(1−α)·k ,

where D = poly(n, 1/ϵ).

Theorem 3.13 (seeded extractors are averaging samplers). Every (k, ϵ)-extractor Ext : {0, 1}n ×
[D]→ {0, 1}m is an (ϵ, δ)-sampler, where δ = 2k−n.

4 A superfast targeted generator

In this section we construct a new variant of the Chen-Tell generator with almost-linear running
time. We first define the type of circuit families that we will work with.

Definition 4.1 (sufficiently uniform circuit families). Let T, d, ℓ : N → N be computable in linear
time such that T(n) is always a power of 2. We say {Cn : {0, 1}n → {0, 1}ℓ(n)}n∈N is a sufficiently
uniform circuit family of width T(n) and depth d(n), if the following holds:

• The circuit has d + 1 layers, each with exactly T gates. For convenience, we assume the first n gates
on the first layer are the input gates, and the first ℓ(n) gates on the last layer are the output gates.
We also assume that all the non-input gates on the first layer have value 0.

• All gates are of one of the following types: NAND, AND, OR gates of fan-in 2. For every non-input
layer, the gates on that layer have the same type. All gates except for the last layer have fan-out 2.
There is a polylog(T)-time algorithm that takes i ∈ {2, . . . , d + 1} as input and outputs the type
of gates on layer i.

• For every i ∈ {2, . . . , d + 1}, the functions INi,0 : {0, 1}log T → {0, 1}log T and INi,1 : {0, 1}log T →
{0, 1}log T that maps a gate index on layer i to the index of its first and second inputs can be
computed by P-uniform O(loglogT) depth circuits.22

22In more detail, there is an algorithm that runs in O(polylog(T)) time, takes i ∈ {2, . . . , d} and α ∈ {0, 1} as input,
outputs an O(loglogT)-depth circuit computing INα. The same holds for the OUTi,α below.
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Similarly, for every i ∈ [d] the functions OUTi,0 : {0, 1}log T → {0, 1}log T and OUTi,1 : {0, 1}log T →
{0, 1}log T that maps a gate index on layer i to the index of its first and second output destination
can be computed by P-uniform O(loglogT) depth circuits.

The main theorem we will prove in this section is the following.

Theorem 4.2 (superfast Chen-Tell generator). Let T, d, ℓ : N→ N be computable in linear time such
that T(n) is always a power of 2. Let {Cn : {0, 1}n → {0, 1}ℓ(n)}n∈N be a sufficiently uniform circuit
family of width T(n) and depth d(n). Then, for every sufficiently small constant δ ∈ (0, 1) there is a
deterministic algorithm SPRGC and a probabilistic oracle algorithm RecC that for every z ∈ {0, 1}n they
satisfy the following:

1. Somewhere Generator. When SPRGC gets input z ∈ {0, 1}n it runs in time d · T1+O(
√

δ) and
outputs d′ = d(n) · polylog(T) lists of M-bit strings, denoted by L(1)

z , . . . , L(d′)
z , where M = Tδ.

2. Reconstruction. Suppose that RecC gets input z ∈ {0, 1}n and oracle access to a function
D : {0, 1}M → {0, 1} such that the following holds:

• For every i ∈ [d′],∣∣∣∣∣ Pr
r∈{0,1}M

[D(r) = 1]− Pr
r∈[|L(i)|]

[D(L(i)
z [r]) = 1]

∣∣∣∣∣ ≥ 1/M ,

where L(i)
z [r] denotes the r-th element in the list L(i)

z . Then RecC(z) runs in time (d + n) · TO(
√

δ)

and space O(n) + TO(
√

δ), makes at most TO(
√

δ) queries to D, and with probability at least 2/3
outputs Cn(z).

4.1 Polynomial decomposition

In this section we present a highly efficient polynomial decomposition of the computation of any
sufficiently uniform circuit. This is essentially the same notion as the bootstrapping system that
was described in Section 2.1. We begin with some notation.

Notation. Let F be a finite field. When we say a function P : Fm → Fk is a polynomial of
maximum individual degree at most d, we simply mean that for every i ∈ [k], the coordinate
function Pi(x) = P(x)i is a polynomial of maximum individual degree at most d.

Lemma 4.3 (Polynomial decomposition). Let T, d, ℓ : N → N be computable in linear time such
that T(n) is always a power of 2. Let {Cn : {0, 1}n → {0, 1}ℓ(n)}n∈N be a sufficiently uniform circuit
family of width T(n) and depth d(n). Let h = h(n) and m = m(n) be such that h(n) is a power of 2,
log T ≤ h(n) ≤ T and hm = 2T. Let F = F(n) be a finite field such that |F| ≥ h and |F| is a power of
2.

Then, there is a universal constant c1 > 1 such that for every input z ∈ {0, 1}n, there is a list of
polynomials {P(z)

i : Fm → Flog T+1}i∈[τ] where τ = d · polylog(T) such that the following holds (for

brevity, below we use Pi to denote P(z)
i when there is no confusion):

• (Arithmetic setting.) Each Pi has maximum individual degree at most ∆ = h · polylog(T).

• (Input layer.) There is an algorithm that takes z ∈ {0, 1}n and x ∈ Fm as input, and outputs
P1(x) in n · hc1 time and O(n) + hc1 space.
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• (Output layer.) There is an algorithm that takes i ∈ [ℓ(n)] as input, makes a query to P(z)
τ , and

outputs C(z)i in hc1 time, for every z ∈ {0, 1}n.

• (Downward self-reducibility.) There is an algorithm that takes i ∈ {2, . . . , τ} and x ∈ Fm as
input, makes at most hc1 queries to Pi−1, and outputs Pi(x) in hc1 time.

• (Printing time of polynomials.) There is an algorithm that takes i ∈ {1, . . . , τ} and z ∈ {0, 1}n

as input, and prints the truth-table of P(z)
i in O (τ · hc1 · |F|m) time.

Proof. We begin with some notation.

Notation. From now on, we will assume F has characteristic number 2. Let H ⊆ F be an F2-
subspace of F with size h. That is, there are ξ1, . . . , ξlog h ∈ F such that H =

{
∑

log h
i=1 zi · ξi : z ∈ {0, 1}log h

}
.

Note that in our constructions, we will explicitly pick an H such that the corresponding bases
ξ1, . . . , ξlog h ∈ F can be found efficiently (i.e., in Õ(log h · |F|) time).

We then have a natural bijection κh : {0, 1}log h → H where κh(z) = ∑
log h
i=1 zi · ξi for z ∈

{0, 1}log h. We can then construct another bijection κ : {0, 1}log T+1 → Hm by taking a direct
product of κh (note that 2T = hm implies log T + 1 = m · log h).

Note that since |F| is a power of 2, by identifying {0, 1}log T+1 with F
log T+1
2 , κ is a group

homomorphism. That is, for every α, β ∈ F
log T+1
2 , we have

κ(α + β) = κ(α) + κ(β) ,

where the additions on two sides are over F
log T+1
2 and over Fm, respectively. This property will

be crucial for us later in the constructions.
For every ω ∈ H, let eω : F → F be the degree-(h − 1) polynomial such that eω(ω) = 1

and eω(x) = 0 for every x ∈ H \ {ω}; eω can be constructed in poly(h) time via a standard
interpolation.

In the proof, we will encode [T] by {0, 1}log T via a natural bijection that maps i ∈ [T] to the
i-th lexicographically smallest string from {0, 1}log T. When we say g ∈ {0, 1}log T is a gate index,
we mean it denotes the (integer) index of a gate via this natural bijection.

Let c1 > 1 be a sufficiently large universal constant. We say a list of polynomial {Q1, . . . , Qk : Fm →
F∗} is downward self-reducible,23 if there is an algorithm that takes i ∈ {2, . . . , k} and x ∈ Fm as
input, makes at most hc1 queries to Qi−1, and outputs Qi(x) in hc1 time.

Let L = log T + 1. We also need the following two lemmas, which will be used a lot in the
rest of this subsection.

Lemma 4.4. Let C : {0, 1}M → {0, 1} be an O(log L)-depth circuit, where M is a multiple of L. Given
C as input, we can in polylog(T) time compute an arithmetic circuit C̃ : FM/L·m → F such that the
following statements hold:

• For every x ∈ {0, 1}M, we have C(x) = C̃(κ⊗(M/L)(x)).24

• C̃ has maximum individual degree polylog(T) · h.
23By F∗ we mean that these polynomials can have different output lengths.
24Here, κ⊗(M/L)(x) is obtained by first partitioning x ∈ {0, 1}M into M/L blocks x1, . . . , xM/L ∈ {0, 1}L, then

compute x̃i = κ(xi) for every i ∈ [M/L], and finally output the concatenation x̃1 ◦ x̃2 ◦ · · · ◦ x̃M/L ∈ F(M/L)·m.
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Proof. We first arithmetize C in the standard way (replacing AND,OR,NOT by their correspond-
ing multi-linear extension polynomial) to obtain an arithmetic circuit D : FM → F with individual
degree at most polylog(T), in polylog(T) time.

Next, consider the inverse of the bijection κ : {0, 1}m → H, τ = κ−1, that maps H to {0, 1}m.
We consider the extension of τ from H to F, τ̃ : F→ Fm, defined as follows:

τ̃(z) = ∑
ω∈H

τ(ω) · eω(z) .

Note that τ̃ and τ agrees on all inputs from H, and τ̃ has degree at most h.
Finally, for z1, . . . , zM/L ∈ Fm, we define

C̃(z1, . . . , zM/L) = D(τ̃(z1), . . . , τ̃(zM/L)) .

The two conditions follow directly from the construction of C̃ and τ̃.

Corollary 4.5. Let C : {0, 1}M → {0, 1}L be an O(log L)-depth circuit, where M is a multiple of L.
Given C as input, we can in polylog(T) time compute an arithmetic circuit C̃ : F(M/L)·m → Fm such
that the following statements hold:

• For every x ∈ {0, 1}L, we have κ(C(x)) = C̃(κ⊗(M/L)(x)).

• C̃ has maximum individual degree polylog(T) · h.

Proof. For every i ∈ [L], let C[i] : {0, 1}L → {0, 1} be the circuit that outputs the i-th output bit of
C. We first apply lemma 4.4 to every C[i] to obtain an arithmetic circuit D : F(M/L)·m → Fm. We
then define

C̃(z) = κ(D(z)) ,

where z ∈ F(M/L)·m.

In the following we will give several constructions of polynomial lists. Our final list of poly-
nomials will be a concatenation of these constructions.

4.1.1 Construction: Degree Reduction List

First, we will make use of the standard linearization construction (introduced by [She92]) that
reduces the maximum individual degree of a given polynomial from ∆ to h− 1 while preserving
its values on Hm.

DegReduction(P)

• Input: A polynomial P : Fm → Fµ with maximum individual degree at most ∆ and
µ ≤ log T + 1.

• Output: A list of polynomial DegReductionList(P) = {Q1, . . . , Qm : Fm → Fµ} such
that the following holds:

1. For every j ∈ [m], Qj has maximum individual degree at most ∆.

2. Qm agrees with P on Hm and has maximum individual degree at most h− 1.

3. {P} ◦DegReductionList(P) is downward self-reducible.a
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• We also set DegReduction(P) = Qm to be the last element of DegReductionList(P).

aHere, {P} ◦DegReductionList(P) is the list obtained by adding P to the beginning of DegReductionList(P).

Let Q0 = P. For every i ∈ [m], we define Qi : Fm → Fµ by

Qi(x1, . . . , xi−1, xi, xi+1, . . . , xm) = ∑
ω∈H

eω(xi) ·Qi−1(x1, . . . , xi−1, ω, xi+1, . . . , xm).

Note that by the definition of eω, Qi and Qi−1 agree on Hm. Moreover, by a simple induction,
we can show for every i ∈ [m], the maximum individual degree of variables x1, . . . , xi in Qi is
at most h− 1. Therefore, the maximum individual degree of Qm is h− 1. The requirement that
P ◦DegReductionList(P) is downward self-reducible follows from the definition of the Qi.

4.1.2 Construction: Routing List

The next construction is the crux of our proof. We arithmetize the Bitonic sorter (a sorting
network with O(log2 n) depth) to “route” the gate values at layer i into correct places to feed the
gates on layer i + 1.

RoutingListi(P)

• Input: A polynomial P : Fm → F with maximum individual degree at most h− 1 that
represents the gate values at layer i. Formally, for every gate index g ∈ {0, 1}log T,
P(κ(g ◦ α)) equals the (Boolean) value of gate g for α ∈ {0, 1}).

• Output: A list of polynomials RoutingListi(P) = {Q1, . . . , Qℓrt−1 : Fm →
Flog T+1, Qℓrt : Fm → F} where ℓrt = polylog(T) such that the following holds:

1. For every j ∈ [ℓrt], Qj has maximum individual degree at most ∆.

2. Qℓrt has maximum individual degree at most h− 1.

3. For every g ∈ {0, 1}log T and α ∈ {0, 1}, Qℓrt(κ(g ◦ α)) = P(κ(INi+1,α(g) ◦ 0)).

4. {P} ◦ RoutingListi(P) is downward self-reducible.

• We also set Routingi(P) = Qℓrt to be the last element of RoutingListi(P).

Recall that L = log T + 1. We will define RoutingListi using the Bitonic sorter [Bat68], which
is a construction of sorting network with O(log2 n) depth. We first define several auxiliary poly-
nomials to help us arithmetize this sorting network.

Comparison polynomials. Let MAX : {0, 1}L × {0, 1}L → {0, 1}L be the function that compares
two input strings α, β ∈ {0, 1}L and outputs the larger one in lexicographic order. We also
define MIN : {0, 1}L × {0, 1}L → {0, 1}L similarly. Note that (α, β) 7→ (MIN(α, β),MAX(α, β))
implements a comparator gate in a sorting network.

Both MAX and MIN can be implemented by O(log L)-depth circuits. By Corollary 4.5, there
are polylog(T)-time computable polynomials M̃IN, M̃AX : FL → FL of polylog(T) maximum in-
dividual degree such that M̃AX agrees with MAX on all Boolean inputs (similarly, M̃IN agrees
with MIN on all Boolean inputs).
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Algorithm 1: Bitonic sorter
Input: An array arr of length n, indexed starting from 0
Output: The array arr sorted in place

1 for k = 2 to n with k← 2k do
2 for j = k/2 downto 1 with j← j/2 do
3 for i = 0 to n− 1 do
4 ℓ = i⊕ j
5 if ℓ > i then
6 if ((i & k) == 0 and arr[i] > arr[ℓ]) or ((i & k) ̸= 0 and arr[i] < arr[ℓ])

then
7 Swap arr[i] and arr[ℓ]

Figure 1: Pseudocode for the non-recursive implementation of the bitonic sorter.

Constructing the input polynomial to the sorting network. Given a polynomial P : Fm → F

with maximum individual degree at most h− 1 that represents the gate values at layer i.
Note that since for every α ∈ {0, 1}, OUTi,α can be computed by O(loglogT)-depth circuits,

there are polylog(T)-time computable polynomials ÕUTi,α : Flog T → Flog T of polylog(T) degree
such that ÕUTi,α agrees with OUTi,α on all Boolean inputs.

Via standard interpolation, we can construct polylog(T) · poly(h)-time computable polyno-
mials P̃OUTi : Fm → Flog T with maximum individual degree h · polylog(T) such that for every
g ∈ {0, 1}log T and α ∈ {0, 1}, P̃OUTi(κ(g ◦ α)) = OUTi,α(g).

Now, we define the polynomial W1(z) = P̃OUTi(z) ◦ P(z) for z ∈ Fm. Note that W1 : Fm → FL

has maximum individual degree ∆. Also, for g ∈ {0, 1}log T and α ∈ {0, 1}, W1(κ(g ◦ α)) =
OUTi,α(g) ◦ P(κ(g ◦ α)). That is, on Hm, W1 encodes a list of 2T pairs of a destination gate index
and an outgoing value. Our goal is to sort them so that we can apply the gates of the next layer
in a straightforward way.

Arithmetization of the sorting network. To arithmetize the Bitonic sorter, we recall its (non-
recursive) pseudo-code below [Bat68]. In the description below, operation ⊕ and & denotes
bit-wise XOR and bit-wise AND, respectively.

Now we apply the algorithm above to sort an array of length 2L. Fix k and j in the algorithm
above. In the loop for i, the algorithm partitions all indices into groups {i, ℓ} such that i and ℓ
only differs at the log2 j-th bit. Assuming i < ℓ, the algorithm makes sure arr[i] < arr[ℓ] if the
log2 k-th bit of i is 0, and arr[i] > arr[ℓ] otherwise. We also note that the log2 k-th bit of i and ℓ are
the same.

Let arr be the array before the start of this i-loop, and narr be the array after the end of this
i-loop. Given the discussions above, we can define narr[i] as follows: for i ∈ {0, 1}L, we have

narr[i] =

{
MIN(arr[i], arr[i⊕ j])

[
(ilog2 k = 0) and (i < (i⊕ j))

]
or
[
(ilog2 k = 1) and (i > (i⊕ j))

]
MAX(arr[i], arr[i⊕ j]) otherwise

Let Auxk,j : {0, 1}L → {0, 1} be such that

Auxk,j(i) =
[
(ilog2 k = 0) and (i < (i⊕ j))

]
or
[
(ilog2 k = 1) and (i > (i⊕ j))

]
.
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Since Auxk,j can be computed in O(log L) = O(loglogT) depth. By Lemma 4.4, we can get
a poly(h) · polylog(T)-time computable polynomial Ãuxk,j : Fm → F with maximum individual
degree h · polylog(T) such that Ãuxk,j(κ(i)) = Auxk,j(i) for every i ∈ {0, 1}L.

Let W1 = DegReduction(W1). Now we can implement the Bitonic sorter in drt = O(log2 T)
steps as follows: for every t ∈ [drt], let j = jt and k = kt be the corresponding j and k for the
t-th i-loop of the algorithm. Let γ = κ(j) (here, we interpret j as a log L-bit string via the natural
bijection).

We set

Wt+1(i) = Ãux(i) · M̃IN(Wt(i), Wt(i + γ)) +
(

1− Ãux(i)
)
· M̃AX(Wt(i), Wt(i + γ)) .

In the above, we crucially make use of the fact that since κ is an F2-homomorphism, Wt(i + γ)
has the same maximum individual degree as Wt. Note that over Hm, Wt+1 agrees with narr if
arr encodes the values of Wt on Hm. Note that Wt+1 has maximum individual degree at most
h · polylog(T) + (h− 1) · poly(L) ≤ ∆. We then set Wt+1 = DegReduction(Wt+1). By the property
of this sorting network, we know that Wdrt encodes the sorted length-2T list of 2T pairs of a
destination gate index and an outgoing value encoded in W1. Because each gate on layer i + 1
has fan-in exactly 2, this means that for every g ∈ {0, 1}log T, Wdrt(κ(g ◦ 0)) and Wdrt(κ(g ◦ 0)) are
the values on two input wires to the gate g on layer i + 1.

Now we are ready to define RoutingListi(P) as

RoutingListi(P) =⃝j∈[drt+1]
(
W j ◦DegReductionList(W j)

)
.

We also modify the last element of RoutingListi(P) by deleting its first log T outputs to get a
polynomial from Fm → F.

Verifying the conditions. Now we are ready to verify the properties of RoutingListi(P). The
third conditions follows from our discussions above on Wdrt (which is the last element of RoutingListi(P)).
The other three conditions follow directly from the properties of DegReductionList and the defi-
nition of the W j.

4.1.3 Construction: Evaluation List

Finally we construct a list of polynomials that evaluate gates on layer i.

EvaluationListi(P)

• Input: A polynomial P : Fm → F with maximum individual degree at most h − 1
that represents the wire values coming to layer i (meaning, for every gate index
g ∈ {0, 1}log T, P(κ(g ◦ α)) for α ∈ {0, 1} equal the (Boolean) wire values coming to
the gate g).

• Output: A list of polynomials EvaluationListi(P) = {Q1, . . . , Qm+1 : Fm → F} such
that the following holds:

1. For every j ∈ [m + 1], Qj has maximum individual degree at most ∆.

2. For every g ∈ {0, 1}log T and α ∈ {0, 1}, Qm+1(κ(g ◦ α)) = GATE(P(κ(g ◦
0)), P(κ(g ◦ 1))), where GATE ∈ {AND,OR,NAND} is the gate type of layer
i.
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3. Qm+1 has maximum individual degree at most h− 1.

4. {P} ◦ EvaluationListi(P) is downward self-reducible.

• We also set Evaluation(P) = Qm+1 to be the last element of EvaluationListi(P).

Let γ = κ(0log T ◦ 1). It follows that for every g ∈ {0, 1}log T and α ∈ {0, 1}, κ(g ◦ (1 −
α)) = κ(g ◦ α) + γ. Let ÃND, ÕR, ÑAND : F2 → F be the multi-linear extension of the functions
AND,OR,NAND : {0, 1}2 → {0, 1}. Given the layer index i, in polylog(T) time we can compute
the gate type of this layer, we let G̃ATE be the corresponding multi-linear extension.

We then define W : Fm → F as

W(z) = G̃ATE(P(z), P(z + γ)) .

Now, we set EvaluationListi(P) = {W} ◦ DegReductionList(W). Note that W has maximum
individual degree at most (h− 1) ·O(1) ≤ ∆. All conditions can be verified straightforwardly.

4.1.4 The Final Construction

Let Base : Fm → F be the interpolation of the input z ∈ {0, 1}n. That is, let w1, . . . , wn be the first
n elements from {0, 1}log T and ωi,α = κ(wi ◦ α) for every i ∈ [n] and α ∈ {0, 1}.

For ω ∈ Hm, we define the polynomial

EQω(x) =
m

∏
i=1

eωi(xi)

where x ∈ Fm, note that EQω has maximum individual degree h − 1 and it is computable in
poly(h) time. Note that for all z ∈ Hm, EQω(z) = 1 if z = ω and 0 otherwise.

Then, Base is defined as

Base(x) =
n

∑
i=1

∑
α∈{0,1}

zi · EQωi,α(x) .

We set V1 = Base. For every i ∈ {2, . . . , d + 1}, we define Vi = Evaluationi(Routingi−1(Vi−1)).
The list is then

V1 ◦⃝i∈[d] (RoutingListi(Vi) ◦ EvaluationListi+1(Routingi(Vi))) .

We note that by the definitions of the Vi, RoutingListi, and EvaluationListi, the list above is
downward self-reducible and all polynomials in it have maximum individual degree ∆. The
conditions on input/output layers follow directly from the definition of V1 and Vd+1. We also
remark that some polynomials in the list may have less than log T + 1 outputs, but we can
add dummy outputs that always outputs 0 to make sure all polynomials always have log T + 1
outputs.

Finally, we verify the printing time of the polynomials. Computing the truth-table directly
from the definition of Base takes at least n · |F|m time, so we need a faster algorithm.25 Let
B0 : Hm → {0, 1} be the function such that, for every i ∈ [n] and α ∈ {0, 1}, we have B0(κ(wi, α)) =

25Indeed we just need an almost-linear time encoding algorithm for Reed-Muller codes, which is standard. We
include a proof here just for completeness.
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zi, and all other entries of B0 are set to 0. From its definition, we know that Base agrees with B0 on
Hm. Since Base has maximum individual degree |H| − 1, Base is indeed the unique polynomial
extension of B0 from Hm to Fm maximum individual degree |H| − 1.

Therefore we can compute the truth-table of Base as follows: For each i ∈ [m], we define a
function Bi : Fi × Hm−i → F such that

Bi(x1, . . . , xi−1, xi, xi+1, . . . , xm) = ∑
ω∈H

eω(xi) · Bi−1(x1, . . . , xi−1, ω, xi+1, . . . , xm) ,

where x1, . . . , xi ∈ F and xi+1, . . . , xm ∈ H. We can see that Bm agrees with B0 on Hm and Bm is
a polynomial with maximum individual degree at most h− 1. Therefore, Bm is the truth-table of
Base. The algorithm above runs in hc1 · |F|m time and hc1 + O(|F|m) space.

Finally, the truth-table of polynomials P(z)
i for i > 1 can be computed via the downward

self-reducibility (first compute the truth-table of P(z)
2 , then P(z)

3 , and so on). The total running
time can thus be bounded by τ · hc1 · |F|m.

4.2 From polynomial decomposition to a targeted generator

In this section we use the polynomial decomposition to prove Theorem 4.2. We first present
some necessary standard technical tools, in Section 4.2.1, and then present the proof itself, in Sec-
tion 4.2.2.

4.2.1 Standard technical tools

The following statements present versions of standard technical tools: The Nisan-Wigderson
generator [NW94], the Goldreich-Levin local list-decoder of the Hadamard code [GL89], the
local list-decoder for the Reed Muller code of Sudan, Trevisan, and Vadhan [STV01], and the
local unique decoder for the Reed-Muller code.

The proof in Section 4.2.2 will use these tools. Readers who are familiar with these tools can
safely skip the precise technical statements, and jump to Section 4.2.2.

Theorem 4.6 (the PRG of [NW94] with small output length and reconstruction as a learning
algorithm; see, e.g., [CT21a, Theorem A.4]). There exists a universal constant cNW such that for every
sufficiently small constant ϵNW > 0 there exist an oracle machine G and a probabilistic oracle machine R
that satisfy the following:

• Generator: When given input f ∈ {0, 1}N , the machine G runs in time N1+cNW·ϵNW and outputs
2ℓNW(N) strings in {0, 1}NϵNW , where ℓNW(N) = (1 + cNW · ϵNW) · log(N).

• Reconstruction: When given input N (i.e., in binary) and oracle access to f , the machine R
runs in time NcNW·ϵNW and prints an oracle circuit C such that the following holds. For every
N−ϵNW-distinguisher D : {0, 1}NϵNW → {0, 1} for G( f ), with probability at least N−ϵNW over the
randomness of R it holds that Prx∈[N][CD(x) = f (x)] ≥ 1/2 + N−3ϵNW .

Theorem 4.7 (local list-decoding of the Hadamard code [GL89]; see, e.g., [CT21a, Theorem 4.9]).
There is a universal constant c2 > 1 such that the following holds. Let ϵ : N → (0, 1) and a : N → N

be time-computable functions. Then, there exists a probabilistic algorithm (local list-decoder) Dec that gets
input 1ℓ0 , runs in time poly(ℓ0/ϵ) and outputs an oracle circuit C that satisfies the following. For every
function P : {0, 1}ℓ0 → {0, 1}a(ℓ0), and every oracle H̃ad(P) : {0, 1}ℓ0+a(ℓ0) → {0, 1} that agrees with
Had(P) on at least 1/2 + ϵ(ℓ0) of the inputs, with probability at least ϵc2 over the random coins of Dec it
holds that Prx∈{0,1}ℓ0

[
CH̃ad(P)(x) = P(x)

]
≥ ϵc2 .
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Theorem 4.8 (local list-decoding of the Reed-Muller code [STV01]; see, e.g., [Vad12, Section
7.6.3]). There is a constant c3 > 1 and a probabilistic algorithm (local list-decoder) that acts as follows.
The algorithm gets as input a representation of a field F and parameters m, ∆, and gets oracle access to
P̃ : Fm → F that agrees with a degree-∆ polynomial P : Fm → F on at least c3 ·

√
∆/|F| of the inputs. The

algorithm runs in time (|F|, m)c3 , and outputs a circuit C such that with probability at least 1/(c3 · |F|)
it holds that CP̃(x) = P(x) for all x ∈ Fm.

Theorem 4.9 (local unique decoding of the Reed-Muller code; see, e.g., [AB09, Theorem 19.19]).
There is a constant c4 > 1 and a probabilistic algorithm (local decoder) that acts as follows. The algorithm
gets as input a representation of a field F and parameters m, ∆, η, runs in time (|F| ·m · log(1/η))c4 , and
outputs an oracle circuit C. For every P̃ : Fm → F that agrees with a degree-∆ polynomial P : Fm → F

on at least 1− (1− ∆/|F|)/6 of the inputs, with probability at least 1− η it holds that CP̃(x) = P(x)
for all x ∈ Fm.

4.2.2 Proof of Theorem 4.2

Let c > 1 be a sufficiently large universal constant (the constraints on c will be pointed out
throughout the proof), and let ϵ = c ·

√
δ be sufficiently small (relying on the assumption that

δ > 0 is sufficiently small). We first describe the generator, and then the reconstruction algorithm.

Generator. Given input z ∈ {0, 1}n, let P1, ..., Pd′ be the polynomial decomposition of Cn(z)
from Lemma 4.3, with h = Tϵ and |F| = h1+ϵ, where d′ = d · polylog(T). For this parameter
setting we have that m = (1/ϵ) · (1 + 1/ log(T)) and |F|m = 2T · Tϵ2·m < T1+2ϵ.

For each i ∈ {2, ..., d′}, the generator acts as follows. Let fi : {0, 1}ℓ′ → {0, 1} be the Hadamard
encoding of Pi, where ℓ′ = (m + 1) · log(|F|); that is, fi parses its input x ∈ {0, 1}(m+1)·log(|F|) as
x0 ∈ Fm and r ∈ F and outputs ⟨Pi(x0), r⟩ = ∑j∈[log(|F|)] Pi(x0)j · rj mod 2, where Pi(x0)j (resp., rj)
is the jth bit in the binary representation of Pi(x0) (resp., of r). The generator computes the truth-
table of fi, and gives it as input to G from Theorem 4.6 (instantiated with parameter ϵNW = δ).
The list Li is the output list of G( fi).

Let us bound the running time of the generator. For i ∈ {2, ..., d′}, computing the truth-
table of Pi can be done in time d′ · |F|m · hc1 < d · T1+2c1·ϵ (by Lemma 4.3), and transforming this
truth-table to the truth-table of fi can be done in time O(|F|m · |F|) < T1+3c1·ϵ. The generator G
from Theorem 4.6 runs in time 2(1+cNW·ϵNW)·ℓ′ < (T1+3c1·ϵ)1+cNW·ϵNW < T1+4c1cNW·ϵ. Accounting for
the d′ = d · polylog(T) iterations, the total running time of the generator is at most d · T1+c·ϵ.

Reconstruction. Given input z ∈ {0, 1}n and oracle access to D as in the hypothesis. The recon-
struction algorithm works in phases: For each phase i ∈ {2, ..., d′}, the algorithm will compute a
circuit Ci of size T(c/8)·ϵ such that CD

i computes the polynomial Pi.
The base case i = 2 and the inductive step i > 2 are essentially identical (with only one

difference poined out below), so we now describe a generic phase for a fixed i ∈ {2, ..., d′}.
Throughout the step, we will repeatedly use the following fact:

Fact 4.9.1. Given any input x = (x0, r) ∈ {0, 1}ℓ′ and access to the oracle D, we can compute fi(x) in

time

{
n · T(c/4)·ϵ i = 2
T(c/4)·ϵ o.w.

and in space at most O(n) + T(c/4)·ϵ.

Proof. We first compute Pi(x0) using the downward self-reducibility of the polynomial decom-
position, which runs in time hc1 = Tc1·ϵ. Whenever the downward self-reducibility queries Pi−1,
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we answer as follows: When i > 2, we use the circuit Ci−1 and the oracle D, which takes time
Tc1·ϵ · Õ(T(c/8)·ϵ) < T(c/4)·ϵ; and when i = 2 we use the algorithm for the input polynomial P1,
which uses time n · hc1 < n · T(c/4)·ϵ and space O(n) + hc1 < n + T(c/4)·ϵ. We output ⟨Pi(x0), r⟩. □

Description of each iterative step. The ith phase in the reconstruction is as follows:

1. We run the NW reconstruction R from Theorem 4.6 for tNW = O(log(d′) · 2ϵNW·ℓ′) times.
Whenever R queries fi at point x = (x0, r) we use Fact 4.9.1 to answer. The tNW iterations
yield a list of oracle circuits, denoted by C(1)

i , ..., C(tNW)
i .

2. For each j ∈ [tNW], we run the local list-decoder for the Hadamard code with parameter
ϵGL = 2−3ϵNW·ℓ′ , for tGL = O(log(d′)/ϵc2

GL) times.26 For each j ∈ [tNW] and j′ ∈ [tGL], the

decoder outputs a circuit CGL, and we denote by C(j,j′)
i the circuit that executes CGL while

answering its oracle queries using C(j)
i (i.e., C(j,j′)

i = CC(j)
i

GL ). This yields a list of oracle circuits{
C(j,j′)

i

}
j∈[tNW],j′∈[tGL]

.

3. For each (j, j′) ∈ [tNW]× [tGL], we run the local list-decoder of the Reed-Muller code with
parameter ∆, for tRM = O(log(d′) · |F|) times (see Theorem 4.8). For each (j, j′, j′′) (where
j′′ ∈ [tRM]), the decoder outputs a circuit CRM, and we denote by C(j,j′,j′′)

i the circuit that

executes CRM while answering its queries using C(j,j′)
i . This yields a list

{
C(j,j′,j′′)

i

}
(j,j′,j′′)

.

4. Now we weed the list of candidate circuits to find a circuit that agrees with Pi on at least
0.99 of the inputs. For t = tNW · tGL · tRM, we identify [t] with the set of triplets (j, j′, j′′). For
each k = (j, j′, j′′) ∈ [t], we uniformly sample ℓt = O(log(t) · log(d′)) points x1, ..., xℓt ∈ Fm

and compute vk = Pru∈[ℓt]

[
CD

k (xu) = Pi(u)
]

(where we compute Pi using Fact 4.9.1, and
use our oracle access to D to compute CD

k ). Let k∗ = argmax {vk}k∈[t].

5. We run the local (unique) decoder for the Reed-Muller code, with confidence parameter
η = 1/(c · d′) (see Theorem 4.9). It outputs an oracle circuit CuRM, and our final circuit Ci is
an oracle circuit Ci that implements CuRM while resolving its queries using C(k∗)

i .

After all phases are complete, the algorithm has a circuit Cd′ such that (hopefully) CD
d′ com-

putes Pd′ exactly. We execute the output layer algorithm with Cd′ (and oracle D) on inputs
1, ..., ℓ(n), we output the corresponding ℓ(n)-bit string.

Complexity analysis. Let us first bound the running time of computing Ci (i.e., of a single phase).
The NW decoder runs in time 2cNW·ϵNW·ℓ′ , the local list-decoders of Had and of RM run in times
(log(|F|)/ϵGL)

c2 and |F|c3 (respectively), and thus the size of each C(j,j′,j′′)
i is at most 2cNW·ϵNW·ℓ′ ·

(|F|/ϵGL)
c2+c3 . Denoting the time it takes to compute fi (using Fact 4.9.1) by Ti, the running time

of the ith phase is at most

tNW · tGL · tRM · tℓ ·O
(

2cNW·ϵNW·ℓ′ · (|F|/ϵGL)
c2+c3 + Ti

)
< T4ϵ+6c2ϵ+2ϵ ·

(
T6cNWc2c3·ϵ + Ti

)
< Tc/2·ϵ · Ti ,

26Specifically, we use Theorem 4.7 while considering Pi as a Boolean function and fi as its Hadamard encoding.
The domain of Pi as a Boolean function is of length ℓ0 = m · log(|F|) and its range is of length a(ℓ0) = log(|F|). The
constant c2 > 1 is the universal constant from Theorem 4.7.
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where we used the fact that 2ℓ
′
< T1+3c1ϵ < T2 for a sufficiently small ϵ.

Since there are d′ − 1 < d · polylog(T) < d · Tϵ phases, and using the bound on Ti (i.e.,
Ti = n · Tc1·ϵ when i = 2, and Ti = Tc1·ϵ otherwise), the total running time of the reconstruction
algorithm is at most (d + n) · Tc·ϵ.

For space complexity, observe that each iteration i can be modeled as a time-T(c/2)·ϵ algorithm
with oracle access to D and to Ci−1. Resolving each query to Ci−1 takes space O(n) + T(c/4)·ϵ

(using Fact 4.9.1), but this space can be discarded and reused after resolving each query. Thus,
the algorithm runs in space at most O(T(c/2)·ϵ + n).

Correctness. Finally, let us argue correctness. We claim that for each of the d′ − 1 phases, with
probability at least 1− 1/O(d′) it holds that CD

i computes Pi. This follows by a simple union-
bound on the error probabilities of the individual steps in the phase, as follows:

1. By Theorem 4.6, with probability at least 1− 1/O(d′) there is j ∈ [tNW] such that (C(j)
i )D

agrees with fi on at least 1/2 + 2−3ϵNW·ℓ′ of the inputs.

2. By Theorem 4.7 with the choice of ϵGL = 2−3ϵNW·ℓ′ , with probability at least 1− 1/O(d′)
there is j′ ∈ [tGL] such that (C(j,j′)

i )D agrees with Pi on at least 2−3c2ϵNW·ℓ′ of the inputs.

3. To argue correctness using Theorem 4.8, we need to verify that 2−3c2·ϵNW·ℓ′ > c2 ·
√

∆/|F|,
which holds due to our choice of ϵ = Θ(

√
δ).27 Hence, with probability at least 1− 1/O(d′)

there is j′′ ∈ [tRM] such that C(j,j′,j′′)
i computes Pi exactly.

4. With probability at least 1− o(1) it holds that C(k∗)
i agrees with Pi on at least 0.99 > 1−

(1− ∆/|F|)/6 of the inputs, and in this case with probability at least 1− 1/O(d′) it holds
that CD

i computes Pi exactly.

Union-bounding over all d′ − 1 phases, with probability at least 2/3 the final circuit Cd′ com-
putes Pd′ exactly when given oracle access to D, in which case the output of the reconstruction
algorithm is correct.

5 Superfast derandomization from hardness over all polytime sam-
plable distributions

In this section we prove Theorem 1.2 Theorem 1.3 and Theorem 1.4. The proof of the first two
appear in Sections 5.1 and 5.2.1 and rely on the generator construction from Section 4. The proof
of Theorem 1.4 relies on the Nisan-Wigderson generator, and appears in Section 5.2.2.

5.1 Hardness for uniform medium-depth circuits

The following result is the main one needed to prove Theorem 1.2. The result assumes hardness
for a fixed time bound T, and deduces derandomization of prRT IME [T] (i.e., derandomiza-
tion of algorithms with one-sided error). After proving the result we explain how Theorem 1.2
follows, which is basically a black-box application of Theorem 3.5.

27Specifically, recall that ∆ = h · polylog(T), and thus c2 ·
√

∆/|F| < h−ϵ/3 = T−ϵ2/6. On the other hand, 2ℓ
′
< T2

and ϵNW = δ, so 2−3c2ϵNW ·ℓ′ > T−6c2δ. Thus, for ϵ = c ·
√

δ the condition is satisfied.
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Theorem 5.1 (superfast and free-lunch derandomization from hardness on all polytime sam-
plable distributions). For every ϵ > 0 there is δ = Θ(ϵ) such that the following holds. Suppose
that the near-linear-time PRG assumption is true. Let T(n) ≥ n be a polynomial, let T̄ = T1+δ, and
let f : {0, 1}∗ → {0, 1}∗ be computable by a sufficiently uniform family of circuits of size T̄(n) and
depth d(n) = no(1). Assume that for every probabilistic algorithm A running in time T̄1−δ/2, and every
polynomial-time samplable distribution x = {xn}n∈N, and every sufficiently large n ∈ N, we have that
Prx∼xn [A(x) = f (x)] ≤ n−ω(1). Then,

prRT IME [T] ⊆ heur-prDT IME [T2+ϵ]

prRT IME [T] ⊆ heur-prDT IME [T1+ϵ]/Õ(log n) .

Furthermore, if we assume the generalized near-linear-time PRG (which is stronger than the near-
linear-time PRG), then

prRT IME [T] ⊆ heur-prDT IME [T1+ϵ] .

Proof. Let Π = (ΠY, ΠN) ∈ prRT IME [T], let A be a probabilistic time-T algorithm deciding Π,
and let ϵ > 0. Let δ = Θ(ϵ) be sufficiently small, and let δNW = Θ(δ2) be sufficiently small. Define
A′ that gets input x ∈ {0, 1}n and random coins s ∈ {0, 1}TδNW , and outputs A(x, Glin(s)). Note
that A′ decides Π, since for any x ∈ {0, 1}n it holds that Prr[A(x, r) = 1] ≈1/10 Prs[A′(x, s) = 1]
(this is true since Glin (1/10)-fools the distinguisher Dx(u) = A(x, u), which implies that if
x ∈ ΠY there is s such that Dx(Glin(s)) = 1). Also note that A′ runs in time O(T1+δNW).

Derandomization in quadratic time. Given input x ∈ {0, 1}n, we use the targeted generator
from Theorem 4.2 with the function f and with output length M = TδNW . The generator outputs
T̄1+o(1) lists of TδNW-bit strings, and their union yields a set W(x) of d · T̄1+O(

√
δNW) strings. We

output A′′(x) = ∨w∈W(x)A′(x, w). Note that A′′ runs in time at most T̄1+O(
√

δNW) · T1+δNW <

T(1+δ)(1+O(
√

δNW))+1+δNW < T2+ϵ.
Assume towards a contradiction that there is a polynomial-time samplable distribution x =

{xn}n∈N such that for infinitely many n ∈ N, with noticeable probability over x ∼ xn it holds
that x ∈ ΠY and A′′(x) = 0. For every such fixed x, the function Dx(u) = A′(x, u) satisfies
Pr

r∈{0,1}TδNW [Dx(r)] ≥ 1/2 but Dx rejects all strings in W(x). In particular, Dx is a (1/M)-
distinguisher for each list that the generator outputs. Thus, when we use the algorithm Rec
from Theorem 4.2 and answer its queries using Dx(u) = A′(x, u), we obtain an algorithm R =
RecDx that prints f (x) (with probability at least 2/3) in time

(d + n) · T̄O(
√

δNW) + T̄O(
√

δNW) · T1+δNW < n · T̄δ/4 + T̄δ/4 · T1+δNW

= O(T̄(1+δNW)/(1+δ)+δ/4)

< T̄1−δ/2 .

It follows that for infinitely many n ∈ N, the algorithm Rec computes f successfully with
noticeable probability over x ∼ xn, in time T̄1−δ/2. This contradicts our assumption.

Derandomization in near-linear time with logarithmic advice. Let c ∈ N. Given input x ∈
{0, 1}n, we use the targeted generator as above, but instead of A′′ we consider the following
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algorithm B. Let |W(x)| be the number of outputs of the generator, and let ℓ = log(|W(x)|).28

Let

Ext : {0, 1}ℓ̄ × [D]→ {0, 1}ℓ

be the extractor from Theorem 3.12, instantiated with a sufficiently small constant α > 0, and
with error ϵ = 1

d(n)·polylog(T) and min-entropy k = k(ℓ̄) such that 2k−ℓ̄ = n−ω(1). Specifically, we

can choose ℓ̄ = 2ℓ · log(ℓ) and k = ℓ · log(ℓ), in which case 2k−ℓ̄ = 2−ℓ·log(ℓ) < n−ω(1). Note
that for these parameters we have [D] = poly(ℓ̄, d(n), log(T)) = no(1), and note that Ext(z, i) (for
z ∈ {0, 1}ℓ̄, i ∈ [D]) is computable in time poly(ℓ̄) = polylog(n).

We define B(x, z) = ∨i∈[D]A′(x, W(x)Ext(z,i)), where W(x)Ext(z,i) denotes the vth string in W(x)
where v is the integer whose binary representation is Ext(z, i). Note that B runs in time

T̄1+O(
√

δNW) + no(1) · T1+δNW < T1+ϵ ,

and uses ℓ̄ = Õ(log n) random coins.
Let R = RecDx be the algorithm defined above, and let us call an input x good if Pr[R(x) ̸=

f (x)] < 2/3, where the probability is over the random coins of R (i.e., R(x) does not compute
f (x)). We claim that for every good x ∈ ΠY, the algorithm B accepts x with high probability over
z. We prove this statement in two steps:

Claim 5.1.1. For every good x ∈ ΠY it holds that Prw∈W(x)[A′(x, w) = 1] ≥ 1
3d′ , where d′ = d(n) ·

polylog(T).

Proof. Let L(1), ..., L(d′) be the d′ lists that the generator outputs on x, and observe that W(x) =
∪i∈[d′]Li. If for every i ∈ [d′] it holds that Prw∈L(i) [A′(x, w) = 1] < 1/3, then for every i ∈ [d′] we
have that Dx is a (1/6)-distinguisher for the uniform distribution on L(i); by Theorem 4.2, in this
case Pr[R(x) = f (x)] ≥ 2/3, contradicting the goodness of x. Hence, there is i ∈ [d′] such that
Prw∈L(i) [A′(x, w) = 1] ≥ 1/3. □

Claim 5.1.2. For every good x ∈ ΠY it holds that Prz∈{0,1}ℓ̄ [B(x, z) = 1] ≥ 1− n−ω(1).

Proof. Let Tx(u) = A′(x, W(x)u). By Claim 5.1.1, we have that Pru∈{0,1}w [Tx(u) = 1] ≥ 1/3d′.
Since we instantiated Ext with error 1/O(d′), and using Theorem 3.13, with probability at least
1− n−ω(1) over z there is at least one i ∈ [D] such that Tx(Ext(z, i)) = 1, in which case B(z) = 1.
□

Now, recall that for every polynomial-time samplable x = {xn}n∈N and every large enough
n ∈ N, with all but negligible probability over x ∼ xn it holds that x is good. For every input
length n, consider the first t = log(n) Turing machines according to some predetermined enu-
meration. These t machines induce at most t polynomial-time samplable distributions x(1)n , ..., x(t)n

28We assume wlog that |W(x)| is a power of two.
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on {0, 1}n. By a union-bound, we have that

Pr
z∈{0,1}ℓ̄,x1∼x(1)n ...xt∼x(t)n

[
∃j ∈ [t] : xj ∈ ΠY ∧ B(xj, z) = 0

]
≤ t ·max

j∈[t]

{
Pr

z,x∼x(j)
n

[x ∈ ΠY ∧ B(x, z) = 0]

}

≤ t ·max
j∈[t]

{
Pr

x∼x(j)
n

[x is not good] + max
x that is good

{
Pr
z
[x ∈ ΠY ∧ B(x, z) = 0]

}}
≤ n−ω(1) .

Hence, for every input length n there is a fixed zn such that for all j ∈ [t] it holds that
Pr

x∼x(j)
n
[B(x, zn) = L(x)] ≥ 1− n−ω(1). Our algorithm receives this zn as advice, and given x it

outputs B(x, zn). Indeed, this algorithm runs in time T1+ϵ and receives ℓ̄ = Õ(log n) advice bits.

The “furthermore” part. Let B be the algorithm above. Recall that for every good x ∈ ΠY it
holds that Pry[B′(x, y) = 1] ≥ 1− n−ω(1), and that B runs in time at most T1+ϵ/3.29

Consider the algorithm Ggenlin = Ggenlin
ℓ with running time T′ = T1+ϵ/3, with ℓ(T′) = ℓ̄,

and with error ϵ/3; that is, Ggenlin stretches ℓ̄ϵ/3 bits to ℓ̄ bits in time T(1+ϵ/3)2
< T1+ϵ and

fools size-T1+ϵ/3 circuits that are samplable in time poly(T) (see Assumption 3.9). Let B′′(x) =
∨s∈{0,1}ℓ̄ϵ/3 B′(x, Ggenlin(s)), and observe that B′′ runs in time T1+ϵ.

Assume towards a contradiction that there is a polynomial-time samplable x = {xn} such
that with noticeable probability over x ∼ xn it holds that

Pr
s∈{0,1}ℓ̄ϵ/3

[B(x, Ggenlin(s)) = 1] < Pr
z∈ℓ̄

[B′(x, z) = 1]− 1/10 .

Then, using x we can sample in polynomial time and with noticeable success probability a
(1/10)-distinguisher Dx(r) = B′(x, r) for Ggenlin that runs in time T1+ϵ/3, a contradiction. Hence,
for every polynomial-time samplable x = {xn}n∈N it holds that Prx∼xn

[
x ∈ ΠY ∧ B′′(x) = 0

]
≤

n−ω(1).

We now restate Theorem 1.2 and prove it. Compared to Theorem 5.1, we now assume that for
every polynomial T(n) there is a corresponding hard function f , and deduce derandomization
of prBPT IME [T] for every polynomial T(n).

Theorem 5.2 (Theorem 1.2, restated). For every ϵ > 0 there is δ = Θ(ϵ) such that the following holds.
Suppose that the near-linear-time PRG assumption is true, and that for every polynomial T(n) ≥ n we
have the following. For T̄ = T1+δ, there is f : {0, 1}∗ → {0, 1}∗ computable by a sufficiently uniform
family of circuits of size T̄(n) and depth d(n) = no(1) such that for every probabilistic algorithm A running
in time T̄1−δ/2, and every polynomial-time samplable distribution x = {xn}n∈N, and every sufficiently
large n ∈N, we have that Prx∼xn [A(x) = f (x)] ≤ n−ω(1). Then,

prBPT IME [T] ⊆ heur-prDT IME [T1+ϵ]/Õ(log n) .

29The running time of B ist at most T̄1+O(
√

δNW) + no(1) · T1+δNW . Previously we upper-bounded the latter expression
by T1+ϵ, but taking δNW to be sufficiently small, we can also upper-bound the expression by T1+ϵ/3.
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Furthermore, if we assume the generalized near-linear-time PRG (which is stronger than the near-
linear-time PRG), then

prBPT IME [T] ⊆ heur-prDT IME [T1+ϵ] .

Proof. By our hypothesis, for every polynomial T(n), the assumption of Theorem 5.1 holds.
The proof of Theorem 5.1 constructs a targeted HSG H that gets input x and outputs a set
H(x) ⊆ {0, 1}T of size To(1) such that for every T-time probabilistic algorithm A with one sided
error, and every polynomial-time samplable distribution x = {xn}n∈N, with all but negligible
probability over x ∼ xn, the targeted HSG fools A(x, ·). (That is, if Pr[A(x, ·) = 1] ≥ 1/2 then
there is an output r of the targeted HSG such that A(x, r) = 1.)

Specifically, in the setting of derandomization with Õ(log n) bits of advice zn, we have

H(x) =
{

Glin(W(x)Ext(zn,i))
}

i∈[no(1)]

and in the setting of derandomization without advice we have

H(x) =
{

Glin(W(x)Ext(Ggenlin(s),i))
}

s∈{0,1}ℓ̄ϵ/3 ,i∈[no(1)]
.

The conclusions then follow from Theorem 3.5.

5.2 Variations: Time-space tradeoffs, hardness of learning

In Section 5.2.1 we prove Theorem 1.3, and in Section 5.2.2 we prove Theorem 1.4.

5.2.1 Time-space tradeoffs

Similarly to Section 5.1, we first state and prove a derandomization of prRT IME [T] for a fixed
polynomial time bound T, and then obtain derandomization of algorithms with two-sided error
using Theorem 3.5.

Theorem 5.3 (free lunch derandomization from time-space tradeoffs). For every ϵ > 0 there is
δ = Θ(ϵ) such that the following holds. Suppose that the near-linear-time PRG assumption is true.
Let T(n) ≥ n be a polynomial, let T̄ = T1+δ, and let f : {0, 1}∗ → {0, 1}∗ be computable in time
T̄(n). Assume that for every probabilistic algorithm A running in time T̄1+δ and space T̄1−δ, and every
polynomial-time samplable distribution x = {xn}n∈N, and every sufficiently large n ∈ N, we have that
Prx∼xn [A(x) = f (x)] ≤ n−ω(1). Then,

prRT IME [T] ⊆ heur-prDT IME [T2+ϵ]

prRT IME [T] ⊆ heur-prDT IME [T1+ϵ]/Õ(log n) .

Furthermore, if we assume the generalized near-linear-time PRG (which is stronger than the near-
linear-time PRG), then

prRT IME [T] ⊆ heur-prDT IME [T1+ϵ] .

Proof. Let Π = (ΠY, ΠN) ∈ prRT IME [T], let A be a probabilistic time-T algorithm deciding
Π, and let ϵ > 0. Let δ = Θ(ϵ), δNW = Θ(δ2), and A′ be as in the proof of Theorem 5.1. Since f
is computable in time T̄, it is also computable by sufficiently uniform circuits of size Õ(T̄). The
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derandomization algorithm A′′ is identical to the one in Theorem 5.1, using the circuits for f of
size (and depth) Õ(T).

For the analysis, assume that there is a polynomial-time samplable x = {xn}n∈N such that
for infinitely many n ∈ N, with noticeable probability over x ∼ xn it holds that x ∈ ΠY and
A′′(x) = 0. For every such x, when running Rec from Theorem 4.2 with the distinguisher
Dx(u) = A′(x, u), it outputs f (x) with high probability. The running time of Rec is

(d + n) · T̄O(
√

δNW) + T̄O(
√

δNW) · T1+δNW < T̄1+δ/4 + T̄δ/4 · T1+δNW (d = T̄)

< T̄1+δ/4 ,

and the space that it uses is at most O(n) + T̄O(
√

δ) + T1+δNW < T̄1−δ/2, a contradiction.
The extensions of the conclusion (i.e., to derandomization in near-linear-time with Õ(log n)

advice, and to derandomization in near-linear-time without advice based on the generalized
near-linear-time PRG hypothesis) follow identically to the proof of Theorem 5.1.

Theorem 1.3 now follows as a corollary:

Theorem 5.4 (Theorem 1.3, restated). For every ϵ > 0 there is δ = Θ(ϵ) such that the follow-
ing holds. Suppose that the near-linear-time PRG assumption is true, and that for every polynomial
T(n) ≥ n we have the following. For T̄ = T1+δ, there is f : {0, 1}∗ → {0, 1}∗ be computable in time
T̄(n) such that for every probabilistic algorithm A running in time T̄1+δ and space T̄1−δ, and every
polynomial-time samplable distribution x = {xn}n∈N, and every sufficiently large n ∈ N, we have that
Prx∼xn [A(x) = f (x)] ≤ n−ω(1). Then,

prBPT IME [T] ⊆ heur-prDT IME [T1+ϵ]/Õ(log n) .

Furthermore, if we assume the generalized near-linear-time PRG (which is stronger than the near-
linear-time PRG), then

prBPT IME [T] ⊆ heur-prDT IME [T1+ϵ] .

Proof. The proof is identical to the proof of Theorem 5.2. Specifically, note that the hitting-set
generators constructed in the proofs of Theorem 5.1 and Theorem 5.3 are identical, so we can
apply Theorem 3.5 in the exact same way as in the proof of Theorem 5.2.

5.2.2 Hardness of learning

The following result is a straightforward adaptation of the classical Nisan-Wigderson PRG, in-
stantiated for small output length (see, e.g., [CT21a, Appendix A] and [LP22b, Appendix B]).

Definition 5.5 (learning from membership queries). Let f ∈ {0, 1}k. We say that a probabilistic
algorithm A learns f from membership queries with accuracy 1− δ if, when given input k (in binary) and
oracle access to f , with probability at least 2/3 the algorithm A prints a circuit C such that Pri∈[k][C(i) =
fi] ≥ 1− δ. We also extend the notion to settings in which A has an additional oracle D, and the circuit
C satisfies Pri∈[k][CD(i) = fi] ≥ 1− δ; in this case we say A learns f from membership queries with a

D-oracle. We sometimes give A an input x (instead of k in binary), in which case we say that A learns f
from membership queries with input x.

Theorem 5.6. For every two constants ϵNW, δNW ∈ (0, 1) there is an oracle machine G and a probabilistic
oracle machine R such that for every f ∈ {0, 1}k:
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• Generator. The machine G( f ) runs in time poly(k) and outputs a set of strings in {0, 1}m, where
m = kϵNW .

• Reconstruction. For every (1/m)-distinguisher D for G( f ), the machine R learns f from mem-
bership queries with a D-oracle and accuracy 1− δNW in time poly(m).

The proof of Theorem 1.4 amounts to a straightforward application of Theorem 5.6, recasting
the generator G as a targeted generator (i.e., computing x 7→ f (x) and using f (x) as a truth-table
for G; see, e.g., [CT21a; LP22a; LP22b]).

Theorem 5.7 (free lunch derandomization and hardness of learning). Suppose that the near-linear-
time PRG assumption is true. Then, the following two statements are equivalent:

1. For every sufficiently small ϵ > 0 every δ ∈ (0, 1/2) and every polynomial T(n) ≥ n there exists
f : {0, 1}∗ → {0, 1}∗ mapping n bits to k = nϵ bits that is computable in time O(T1+4ϵ), and that
for some constant η > 0 satisfies the following. For every probabilistic oracle machine M, and every
polynomial-time samplable distribution x = {xn}n∈N, and every sufficiently large n ∈ N, with
all but negligible probability over x ∼ xn, the machine M does not learn f (x) from kη membership
queries with input x and accuracy 1− δ in time T1+ϵ.

2. For every ϵ > 0 and polynomial T(n) ≥ n it holds that prBPT IME [T] ⊆ heur-prDT IME [T1+ϵ].

Proof. We first prove that Item (1) implies Item (2). Let Π ∈ prBPT IME [T], let A be a
probabilistic time-T algorithm deciding L, and let ϵ > 0.

Let us first fix appropriate parameters. We instantiate the hypothesis with a sufficiently small
ϵ′ = Θ(ϵ) and with δ = .01, to obtain a function f : {0, 1}n → {0, 1}k where k = nϵ′ . Let G be
the algorithm from Theorem 5.6, instantiated with ϵNW = η/c and δNW = .01 where c > 1 is a
sufficiently large universal constant. For δ = ϵ′ · ϵNW, we instantiate Glin with stretch nδ 7→ T and
define A′ be as in the proof of Theorem 5.1. Note that A′ runs in time O(T1+ϵ′·ϵNW).

• The algorithm: Given input x, we compute f (x) ∈ {0, 1}k, compute R = G( f (x)) (which
is a list of strings of length m = kϵNW = nδ), and output MAJr∈R {A′(x, r)}. We denote this
algorithm by A′′, and note that A′′ runs in time O(T1+4ϵ) + poly(k) · T1+δ < T1+ϵ.

• The analysis: Assume that there is a polynomial-time samplable x = {xn}n∈N such that
for infinitely many n ∈ N, with noticeable probability over x ∼ xn it holds that A′′(x) ̸=
L(x). For every such x, the algorithm R learns f (x) from membership queries with oracle
Dx(u) = A′(x, u) and accuracy 0.99 in time poly(m) = kO(ϵNW) < kη . Simulating RDx

in the obvious way, we obtain an algorithm that learns f (x) with accuracy .99 in time
O(kη · T1+ϵ′·ϵNW) < T1+ϵ, a contradiction.

Let us now show that Item (2) implies Item (1). Let ϵ > 0 be sufficiently small, let δ ∈ (0, 1/2),
and let η < 1 (indeed, any choice of η < 1 suffices). We describe an algorithm that gets x ∈ {0, 1}n

and outputs f (x) ∈ {0, 1}k=nϵ
.

We say that z ∈ {0, 1}k is good for x if for every i ∈ [log(n)], the ith probabilistic oracle machine
equipped with input x does not learn z from kη membership queries with accuracy 1− δ in time
T1+ϵ. Let Π = (ΠY

i , ΠN
i ) where

ΠY =

{
(x ∈ {0, 1}n, i ∈ {0, ..., k} , τi ∈ {0, 1}i) : Pr

σ∈{0,1}k−i
[τi ◦ σ is good for x] ≥ 2/3− (i− 1)/k− 1/2k

}
,

ΠN =

{
(x ∈ {0, 1}n, i ∈ {0, ..., k} , τi ∈ {0, 1}i) : Pr

σ∈{0,1}k−i
[τi ◦ σ is good for x] ≤ 2/3− (i− 1)/k− 1/k

}
.
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Observe that Π ∈ prBPT IME [Õ(T1+ϵ · k)], and hence by our assumption Π ∈ heur-prDT IME [T1+3ϵ].
Let D be the corresponding deterministic time-T1+3ϵ algorithm for Π.

Let τ0 = λ be the empty string. For i = 1, ..., k, we enter the ith iteration with τi−1 ∈ {0, 1}i−1,
hoping that there exists b ∈ {0, 1} such that (x, i, τi−1b) ∈ ΠY. If D(x, i, τi−10) = 1 we define
τi = τi−10, otherwise we define τi = τi−11. At the end we output f (x) = τk.

The algorithm above runs in time O(k · T1+3ϵ) ≤ O(T1+4ϵ). Turning to the analysis, note that
for each i ∈ [k], if τi−1 /∈ ΠN, then there exists b ∈ {0, 1} such that (x, i, τi−1b) ∈ ΠY; this is since
Prσ[τi−1σ is good for x] > 2/3− (i− 1)/k− 1/k > 2/3− i/k− 1/2k. In particular, assuming that
D correctly solves Π on {(x, i, τi−1b)}b∈{0,1} , there exists b ∈ {0, 1} such that D(x, i, τi−1b) = 1,
and for any such b we have τi−1b /∈ ΠN. Also note that τ0 ∈ ΠY (in particular, τ0 /∈ ΠN):

Claim 5.7.1. For any x ∈ {0, 1}n it holds that (x, 0, λ) ∈ ΠY.

Proof. For any fixed i ∈ [log(n)], let Mi be the ith probabilistic oracle machine. Consider

Pr
σ∈{0,1}k ,r

[Mi(x, r)σ learns σ with accuracy 1− δ] (5.1)

where r are random coins for Mi.
We first argue that Eq. (5.1) is upper bounded by 2−Ω(k). To do so, fix r to coins that maximize

Eq. (5.1), and let M′i be the corresponding deterministic procedure such that Prσ[M′i(x)σ learns σ]
upper bounds Eq. (5.1).30 Consider a choice of σ made by first answering the kη queries of M′i ,
choosing random values on-the-fly, and then choosing the rest of the k− kη bits of σ. Since the
query answers determine an output C of M′i , with high probability the truth-table of C agrees
with approximately half of the remaining k− kη entries of σ; specifically, for any δ′ < 1/2, with
probability at least 1− 2−Ω((k−kη)) = 1− 2−Ω(k) it holds that σ disagrees with the truth-table of
C on at least δ′ · (k− kη) = (δ′ − o(1)) · k of the k entries. When instantiating the latter fact with
δ′ ∈ (δ, 1/2), the truth-table of C disagrees with σ on more than δ · k of the k entries.

By a union-bound over the first log(n) machines,

Pr
σ
[∃i ∈ [log(n)] : Mσ

i learns σ with input x and accuracy 1− δ] ≤ log(n) · 2−Ω(k)

which is upper bounded by 1/3. □

Hence, for every x ∈ {0, 1}n, as long as D does not err on the inputs {(x, i, τi−1b)}b∈{0,1} that
arise during the execution of the algorithm for f , we have that f (x) is good for x.

The only missing part is to claim that for any polynomial-time samplable x = {xn}, with
all but negligible probability over x ∼ xn it holds that D does not err on the inputs that arise
during the execution of the algorithm. To see this, assume otherwise, and consider an algorithm
that samples x ∼ xn, simulates the algorithm for f (x), and uniformly outputs one of the strings
{(x, i, τi−1b)}b∈{0,1} . With noticeable probability, this algorithm finds an input on which D errs
in deciding Π – a contradiction.

6 Nondeterministic superfast derandomization

In this section we present our results concerning non-deterministic superfast derandomization.
Throughout the section, we will considerMA protocols with perfect completeness.

30The subscript M′i does not indicate that this is the ith machine in the efficient enumeration of TMs, but that M′i is
the procedure obtained by fixing the coins for the ith machine Mi.
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Recall that we will be derandomizing MA protocols into cs-NP protocols, as defined by
Chen and Tell [CT23b] and studied further by Chen, Rothblum, and Tell [CRT25]. Let us recall the
definition of cs-NP protocols, while specifically considering cs-NP protocols forMA languages
(in which case the honest prover receives a witness in anMA-relation for the language).31

Definition 6.1 (computationally soundNP protocols forMA languages). Let L ∈ MAT IME [T],
decided by a T-time verifier VL. We say that L ∈ cs-NT IME [TV ] if there is a uniform deterministic
verifier V and a uniform deterministic honest prover P such that:

1. (Completeness.) For every x ∈ {0, 1}∗ and every w ∈ {0, 1}T(|x|) such that Pr[VL[(x, w) = 1] =
1 it holds that V(x, P(x, w)) = 1.

2. (Computational soundness.) For every uniform probabilistic adversary P̃ running in time poly-
nomial in T, and every sufficiently large n ∈ N, the probability that P̃(1n) prints (x, π) such that
|x| ∈ {0, 1}n \ L and V(x, π) = 1 is negligible in T(n).

3. (Efficiency.) On input (x, w) the honest prover P runs in deterministic time poly(|x|+ |w|) =
poly(T(|x|)). On input (x, π), the verifier runs in deterministic time TV(|x|).

In Section 6.1 we prove Theorem 1.5, and in Section 6.2 we prove the extension of the latter
theorem that was described in Section 2.2.

6.1 Warm-up: Hardness of FP forMA over all polytime distributions

We first present the targeted generator that the proof of Theorem 1.6 will rely on, and then restate
the theorem and prove it.

6.1.1 A superfast non-deterministic targeted generator: Basic version

The following construction is the superfast “bare-bones” version of the generator of van Melke-
beek and Sdroiveski [MS23] that was described in Section 2.2.

Theorem 6.2 (superfast non-deterministic targeted generator). Let f be a function mapping n bits to
m = m(n) ≤ n bits such that f is computable in time T. Then, for every sufficiently small constant δ > 0
there is a deterministic verifier NGen f and a probabilistic oracle machine NRec f that satisfy the following:

1. Somewhere-PRG. When NGen f gets input z ∈ {0, 1}n, it runs in time T̄ = T1+O(
√

δ) and prints
a list of M-bit strings, where M = Tδ.

2. Reconstruction. The algorithm NRecV gets input z ∈ {0, 1}n and oracle access to a function
D : {0, 1}M → {0, 1}. It runs in time T1−O(

√
δ), guesses a witness w′, tosses random coins r,

makes at most TO(
√

δ) queries to its oracle, and for every z ∈ {0, 1}n satisfies the following.

(a) (Completeness.) For every (1/M)-distinguisher D for NGen f (z) there is w′ such that
Prr′ [NRec

D
f (z, r, w′) = f (z)] = 1.

(b) (Soundness.) For any D and any w′ it holds that Prr[NRec
D
f (z, r, w′) ∈ { f (x),⊥}] ≥ 1/2.

31Recall that supplying the honest prover with a witness (when deciding problems inNP or inMA) is the standard
approach in argument systems, dating back to the 1990s (see, e.g., [Gol01, Section 4.8]).

40



The construction will rely on two standard technical tools: The Nisan-Wigderson generator,
instantiated with small output length; and quasilinear PCPs.

Theorem 6.3 (quasilinear PCP [BSGH+06]). Let L ∈ DT IME [T]. Then, there exist two algorithms
PPCP, VPCP that satisfy the following.

1. (Honest prover.) When PPCP gets input x ∈ L it runs in time Õ(T) and prints a string PPCP(x).

2. (Verifier complexity.) On input x ∈ {0, 1}n and when given oracle access to π ∈ {0, 1}Õ(T), the
verifier VPCP draws random coins r ∈ {0, 1}log(T)+O(loglogT), runs in time Õ(n) + polylog(T),
and makes polylog(T) queries.

3. (Completeness.) For every x ∈ L, when given oracle access to P(x) ∈ Õ(T), the verifier VPCP

accepts with probability one.

4. (Soundness.) For every x /∈ L and every π ∈ {0, 1}Õ(T), when given input x and oracles access
to π, the verifier VPCP accepts with probability at most 1/n.

We instantiate Theorem 3.10 with parameters N = Õ(T) and ϵNW = δ. For simplicity we
denote NGen = NGen f ,NRec = NRec f .

Generator. The algorithm NGen gets input z ∈ {0, 1}n and computes f (z). Let Vcheck be the
time-O(T) algorithm that gets (z, y) ∈ {0, 1}n × {0, 1}m and accepts iff y = f (z). Note that
Vcheck(z, f (z)) = 1. Let PPCP be the honest prover for Vcheck from Theorem 6.3. The generator
NGen computes w′′ = PPCP(z, f (z)), and outputs GNW(w′′). Note that NGen outputs strings of
length Nδ > Tδ (and we can truncate them to length Tδ without any loss), and that the running
time of NGen is dominated by the time it takes to run GNW, which is T1+O(

√
δ).

Reconstruction. On input z ∈ {0, 1}n, the reconstruction NRec non-deterministically guesses
an output y′ ∈ {0, 1}m, and non-deterministically guesses advice adv for the algorithm RNW

from Theorem 3.10. For ℓ = log(Õ(T)), define R : {0, 1}ℓ → {0, 1} by such that R(i) equals the
output of RNW with input i and advice adv and oracle access to D. The reconstruction NRec runs
the PCP verifier VPCP for Vcheck with input (z, y′), answering its oracle queries with R. If VPCP

accepts then NRec outputs y′, otherwise it outputs ⊥.
The running time of NRec is

O
(

m + N1−O(
√

δ) + polylog(n) · NO(
√

δ)
)
≤ T1−O(

√
δ) .

Also, since VPCP makes at most polylog(T) queries to R and R runs in time TO(
√

δ), the total
number of queries that NRec makes is at most TO(

√
δ).

For completeness, fix z ∈ {0, 1}n, and let D be a 1/M-distinguisher for NGen f (z) = GNW(w′′).
By Theorem 3.10, there is a string adv such that R(i) = w′′i for all i ∈ {0, 1}ℓ ≡ [|w′′|]. When
NRec guesses y′ = y and the correct advice adv, the PCP verifier gets oracle access to r ≡ w′′, and
hence has acceptance probability one. In this case NRec outputs f (z) with probability 1.

For soundness, fix z ∈ {0, 1}n and D and w′ = (y′, adv). Without loss of generality assume
that y′ ̸= f (x), otherwise we are done (as NRec always outputs either its guess y′ or ⊥). Hence,
Vcheck(z, y′) = 0, and so by the properties of the PCP verifier, for any π, the PCP verifier rejects
with probability at least 1− 1/n when given input (z, y′) and oracle π. This applies in particular
to the witness R defined by adv and RNW, and so NRec f outputs ⊥ with high probability.
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6.1.2 The derandomization algorithm

We now restate Theorem 1.5 and prove it. The proof follows the outline that was presented
in Section 2.2, while obtaining near-linear-time derandomization (rather than quadratic time)
using ideas similar to the ones in the proof of Theorem 5.1.

Theorem 6.4 (free lunch derandomization of MA). For every ϵ > 0 there is δ > 0 such that the
following holds. Suppose that the near-linear-time PRG assumption is true. Let f : {0, 1}∗ → {0, 1}∗

mapping n bits to m = no(1) such that f is computable in deterministic time Tf (n) = n1+O(
√

δ), and

for everyMA verifier V running in time T1−
√

δ
f , and every polynomial-time samplable distribution x =

{xn}n∈N, and every sufficiently large n ∈ N, we have that Prx∼xn [V(x) computes f (x)] ≤ n−ω(1).32

Then, for every polynomial T(n) ≥ n,

MAT IME [T] ⊆ cs-NT IME [T2+ϵ]

MAT IME [T] ⊆ cs-NT IME [T1+ϵ]/Õ(log n) .

Furthermore, if we assume the generalized near-linear-time PRG, then

MAT IME [T] ⊆ cs-NT IME [T1+ϵ] .

Proof. Let δ = Θ(ϵ2). Let L ∈ MAT IME [T], and let VL be a T-timeMA verifier for L. We first
present the derandomization in near-quadratic time, and later explain how to improve it to near-
linear time (with small advice, or relying on the generalized near-linear-time PRG assumption).

Let Glin be the near-linear-time PRG, instantiated with stretch Tδ 7→ T, and let V ′L be the
verifier V ′L(x, w, r) = VL(x, w, Glin(r)). Note that V ′L uses only Tδ random coins and accepts any
(x, w) if and only if VL accepts (x, w).33 We will use the generator NGen f from Theorem 6.2 with
parameter δ > 0.

The construction. We now define a derandomized cs-NT IME verifier V and an honest prover
P for L. The verifier gets input x and acts as follows:

• Receives a witness w for V ′L.

• Computes the targeted generator NGen f from Theorem 6.2 on input z = (x, w) (outputting
⊥ if NGenVf rejects). The generator outputs a list R ⊆ {0, 1}M of strings of length M =

|z|δ > Tδ, which we truncate to be of length M.

• If there is r ∈ R such that V ′L(x, w, r) = 0, reject; otherwise, accept.

The prover P gets input x and w such that Pr[VL(x, w) = 1] = 1, and sends w to the verifier.

Analysis. The running time of P is O(T(|x|)), as claimed. For the running time of V, observe
that it runs NGenVf on an input of length |z| = O(T) and with a witness w′ of length Tf (|z|) =
T1+δ; thus, V runs in time at most

Tf (T)1+O(
√

δ) · T1+δ < T1+δ+(1+O(
√

δ))(1+O(
√

δ)) < T2+ϵ .

32The notion of “V(x) computes f (x)” here is the standard one for computing functions in MA: There is w such
that Pr[V(x, w) = 1] ≥ 2/3, and for every w it holds that Pr[V(x, w) /∈ { f (x),⊥}] ≤ 1/3.

33To be fully formal, we can assume wlog that either VL or V′L uses naive error-reduction, so that the error of V′L on
each (x, w) is sufficiently small.
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For completeness, note that when x ∈ L and the prover P gets w such that Pr[V ′L(x, w) =
1] = 1, the verifier V gets w and hence outputs

∧
r∈R V ′L(x, w, r) = 1. As for soundness, assume

towards a contradiction that there is a poly(T)-time adversary P̃ such that for infinitely many
input lengths n ∈N it holds that

Pr
(x,w)←P̃(1n)

[x ∈ {0, 1}n \ L ∧V(x, w) = 1] ≥ 1/poly(T) .

For every (x, w) satisfying the above we have that Prr∈NGen f [V
′
L(x, w, r) = 1] = 1 whereas

Prr∈{0,1}M [V ′L(x, w, r) = 1] ≤ 1/2. Hence, Dx,w(r) = V ′L(x, w, r) is a (1/3)-distinguisher for

NGen f (x, w). By the properties of NRec f from Theorem 6.2 we have that NRec
Dx,w
f (x, w) is an

MA-verifier that correctly computes f (x, w) in time at most

T1−O(
√

δ) + Tc·
√

δ · T1+δ < T1+2c
√

δ < T1−
√

δ
f , (6.1)

where c > 1 is a universal constant (from Theorem 6.2) and we relied on a choice of sufficiently
large constant c′ > 1 in the time bound Tf (n) = n1+c′·

√
δ and on δ = Θ(ϵ2) being sufficiently

small. This contradicts the hardness of f .

Derandomization in near-linear time with advice. The extension to a near-linear-time algo-
rithm is similar to the one in the proof of Theorem 5.1.

Consider the following modification V ′ of V. Instead of outputting
∧

r∈R V ′L(x, w, r), let

Ext : {0, 1}ℓ̄ × [D]→ {0, 1}ℓ

be the extractor from Theorem 3.12, instantiated with ℓ = log(|R|) < (1 + ϵ) · log(T), and with
a sufficiently small α > 0, error ϵ = 1/10 and min-entropy k = k(ℓ̄) such that 2k−ℓ̄ = n−ω(1).
Specifically, we choose ℓ̄ = 2ℓ · log(ℓ) and k = ℓ · log(ℓ), in which case D = no(1), and Ext(z, i)
is computable in time polylog(n). We define V ′ similarly to V except that it gets random coins
z ∈ {0, 1}ℓ̄, and in the last step it outputs

V ′(x, w, z) =
∧

i∈[D]

V ′L(x, w, RExt(z,i)) .

Note that V ′ runs in time Tf (T)1+O(
√

δ) + no(1) · Õ(T1+δ) < T1+ϵ, and uses ℓ̄ = Õ(log n)
random coins. The proof above shows that for every poly(T)-time P̃, with all but negligible
probability it holds that P̃(1n) outputs (x, w) such that Dx,w is not a (1/3)-distinguisher for
R = NGen f (x, w). We call such (x, w) good, and note that by the properties of Ext, for every good
(x, w) we have Prz[V ′(x, w, z) ̸= V(x, w)] ≤ n−ω(1)

For every input length n + T, consider the first t = log(n) Turing machines, which induce at
most t polynomial-time samplable distributions x(1)n , ..., x(t)n on {0, 1}n+T. By a union-bound,

Pr
z∈{0,1}ℓ̄,(x1,w1)∼x(1)n ...(xt,wt)∼x(t)n

[
∃j ∈ [t] : V ′(xj, wj, z) ̸= V(xj, wj)

]
≤ t ·max

j∈[t]

{
Pr

z,(x,w)∼x(j)
n

[V ′(x, w, z) ̸= V(x, w)]

}

≤ t ·max
j∈[t]

{
Pr

(x,w)∼x(j)
n

[(x, w) is not good] + max
(x,w) that is good

{
Pr
z
[V ′(x, w, z) ̸= V(x, w)]

}}
≤ n−ω(1) .
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Hence, for every input length n there is a fixed zn ∈ {0, 1}ℓ̄ such that for all j ∈ [t] it holds that
Pr

(x,w)∼x(j)
n
[V ′(x, w, zn) = V(x, w)] ≥ 1− n−ω(1). Our verifier V ′′ receives this zn as advice, and

given (x, w) it outputs V ′(x, w, zn). Indeed, this verifier runs in time T1+ϵ, receives ℓ̄ = Õ(log n)
advice bits, and agrees with V on 1− n−ω(1) of the inputs, over any polynomial-time samplable
distribution.

Derandomization in near-linear time without advice from the generalized near-linear-time
PRG assumption. Consider V ′ from above. We instantiate the generalized near-linear-time PRG
with time bound T1+ϵ, with output length ℓ̄, and with parameter ϵ, to obtain G = Ggenlin

ℓ̄
: {0, 1}ℓ̄ϵ →

{0, 1}ℓ̄ computable in time less than T1+3ϵ. Let V ′′ be a verifier that gets (x, w), behaves iden-
tically to V ′ except that it gets ℓ̄ϵ = o(log(n)) random coins denoted by z′, and it outputs
V ′((x, w), G(z′)). Note that V ′′ indeed runs in time at most O(T1+3ϵ).

Let V ′′′ be identical to V ′′ except that it enumerates over the 2ℓ̄
ϵ
= To(1) choices for ran-

dom coins, and V ′′′ runs in time at most T1+4ϵ. We argue that for every polynomial-time sam-
plable distribution x = xn where xn is over {0, 1}n+T and every sufficiently large n it holds
that Pr(x,w)∼xn [V

′′′(x, w) ̸= V(x, w)] ≤ n−ω(1). Indeed, assuming otherwise, x gives rise to a
polynomial-time algorithm S such that S(1n) finds a circuit Dx,w(z) = V ′(x, w, z) of size T1+ϵ

satisfying

Pr
z∈{0,1}ℓ̄

[Dx,w(z) = 1] /∈ Pr
z∈{0,1}ℓ̄ϵ

[Dx,z(G(z)) = 1]± .01 ,

which contradicts the assumption.

6.2 Hardness of cs-NP for cs-MA over all polytime distributions

The goal in this section is to formally state and prove the extension of Theorem 1.5 that was
described in Section 2.2. Let us first formally state the result.

We first define a functional version of computationally sound NP . Here we do not supply
the honest prover with a witness, because we are not concerned with functions in NT IME or
inMAT IME (and hence the notion of a witness does not exist for these functions). Instead, as
in [CT23b; CRT25], we bound the running time of the honest prover.

Definition 6.5 (computationally sound NP). Let f : {0, 1}∗ → {0, 1}∗ mapping n bits to m = m(n)
bits. We say that f ∈ cs-NT IME [TV , TP] if there is a uniform deterministic verifier V and a uniform
deterministic honest prover P such that:

1. (Completeness.) For every x ∈ {0, 1}∗ it holds that V(x, P(x)) = f (x).

2. (Computational soundness.) For every uniform probabilistic adversary P̃ running in time poly-
nomial in TP, and every sufficiently large n ∈N, the probability that P̃(1n) prints (x, π) such that
|x| = n and V(x, π) /∈ { f (x),⊥} is negligible in TP(n).

3. (Efficiency.) On input x ∈ {0, 1}∗ the honest prover P runs in deterministic time TP(|x|). On
input (x, π), the verifier runs in deterministic time TV(|x|).

The next notion refers to cs-MAT IME protocols that compute functions, and these proto-
cols can be defined analogously to Definition 6.5. However, we will be interested in hardness for
cs-MAT IME protocols, so we need to define exactly what it means for a cs-MAT IME proto-
col to fail. We believe that the definition below is the natural one: We consider anMA verifier V
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that has computational soundness (i.e., soundness is guaranteed against all efficient adversaries),
and an honest prover P running in some bounded time, and say that the protocol fails on input
x if the honest P does not manage to convince V to output f (x).

Definition 6.6 (hardness for sound cs-MAT IME protocols). Let f : {0, 1}∗ → {0, 1}∗, let V be a
probabilistic verifier running in time T, and let P be a deterministic prover running in time TP. We say
that V and P are a sound cs-MAT IME [T, TP] protocol for f if for every probabilistic P̃ running in
time polynomial in TP, the probability that P̃(1n) outputs (x, π) such that Pr[V(x, π) /∈ {⊥, f (x)}] ≥
1/2 is at most TP(n)−ω(1). We say that (V, P) successfully computes f (x) when P gets witness w if
Pr[V(x, P(x, w)) = f (x)] ≥ 2/3.

We are now ready to state the extension of Theorem 1.5. We will assume f ∈ cs-NT IME [Tf , TP]

that is hard for sound cs-MAT IME [T1−ϵ
f , T2+ϵ

f ] over all polynomial-time samplable distribu-
tions, where Tf is a near-linear-time function, and deduce free lunch derandomization ofMA.

Theorem 6.7 (free lunch derandomization of MA). For every ϵ > 0 there is δ > 0 such that
the following holds. Suppose that the near-linear-time PRG assumption is true. Let T(n) ≥ n be a
polynomial, let Tf = n1+O(

√
δ), and let f : {0, 1}∗ → {0, 1}∗ mapping n bits to m = no(1) such that

f ∈ cs-NT IME [Tf , TP]. Assume that for every sound cs-MAT IME [T1−
√

δ
f , T2

f ] protocol (V, P),
and every polynomial-time samplable distribution z = {zn}n∈N, and every sufficiently large n ∈ N, the
probability over (x, w) ∼ zn that (V, P) successfully computes f (x) when P gets witness w is at most
Tf (T)−ω(1). Then,

MAT IME [T] ⊆ cs-NT IME [T2+ϵ, TP(T)]

MAT IME [T] ⊆ cs-NT IME [T1+ϵ, TP(T)]/Õ(log n) .

Furthermore, if we assume the generalized near-linear-time PRG, then

MAT IME [T] ⊆ cs-NT IME [T1+ϵ, TP(T)] .

In Section 6.2.1 we construct a superfast targeted generator that will be used in the proof
of Theorem 6.7, and in Section 6.2.2 we prove the theorem.

6.2.1 A superfast non-deterministic targeted generator: Refined version

We restate the targeted generator from Theorem 2.2 and construct it.

Theorem 6.8 (superfast non-deterministic targeted generator). Let V be a linear-time algorithm that
parses its input as pairs (z, w′) ∈ {0, 1}n × {0, 1}T, and either rejects or outputs a string of length
m = m(n) ≤ n, and for every z there is w′ such that V(z, w′) does not reject. Then, for every sufficiently
small constant δ > 0 there is a deterministic verifier NGenV and a probabilistic oracle machine NRecV
that for every z ∈ {0, 1}N satisfy the following:

1. Somewhere-PRG. When NGenV gets input (z, w′) ∈ {0, 1}n × {0, 1}T, it runs in time T̄, and
either rejects, or prints a list of M-bit strings, where T̄ = T1+O(

√
δ) and M = Tδ. The generator

NGenV rejects (z, w′) if and only if V rejects (z, w′).

2. Reconstruction. The algorithm NRecV gets input z ∈ {0, 1}n and oracle access to a function
D : {0, 1}M → {0, 1}. It runs in time T1−O(

√
δ), guesses a witness w′′, tosses random coins r,

makes at most TO(
√

δ) oracle queries, and satisfies the following.
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(a) (Efficient honest prover.) There is a probabilistic oracle machine PrvV that satisfies the
following. For every (z, w′) such that NGenV(z, w′) does not reject, and every (1/M)-
distinguisher D for NGenV(z, w′), the algorithm PrvD

V (z, w′) runs in time T1+O(
√

δ) and with
probability at least 2/3 outputs w′′ such that Prr′ [NRec

D
V (z, r, w′′) = V(z, w′)] = 1.

(b) (Witnessable soundness.) There is a probabilistic polynomial-time oracle machine Ext′ sat-
isfying the following. For any D and any w′′, if Prr[NRec

D
V (z, r, w′′) = y] ≥ 1/2 for some

y ∈ {0, 1}∗, then with probability at least 2/3 the algorithm Ext′(z, w′′) outputs w′ such that
V(z, w′) = y.

Our targeted generator will rely on the following construction of a PCP that has proofs of
near-linear size computable by a prover in near-linear time, and such that convincing PCP wit-
nesses can be “translated back” into proofs for the original verifier. Specifically, we use the
construction of Ben-Sasson et al. [BSCG+13].34

Theorem 6.9 (quasilinear PCP with effective soundness [BSCG+13]). For T(n) ≥ n, let V be a
linear-time algorithm that parses its input as a pair (x, w) ∈ {0, 1}n × {0, 1}T(n), and either accepts or
rejects. Then, there exist two algorithms PPCP, VPCP that satisfy the following.

1. (Honest prover.) When PPCP gets input (x, w) ∈ {0, 1}n × {0, 1}T such that V(x, w) does not
reject, it runs in time Õ(T) and prints a string PPCP(x, w) ∈ {0, 1}Õ(T).

2. (Verifier complexity.) On input x ∈ {0, 1}n and when given oracle access to π ∈ {0, 1}Õ(T), the
verifier VPCP draws random coins r ∈ {0, 1}log(T)+O(loglogT), runs in time Õ(n) + polylog(T),
and makes polylog(T) queries.

3. (Completeness.) On input x ∈ {0, 1}n and when given oracle access to P(x, w) ∈ Õ(T) for some
w such that V(x, w) = 1, the verifier VPCP accepts with probability one.

4. (Proofs of knowledge.) There is a probabilistic poly(T)-time algorithm Ext satisfying the follow-
ing. Assume that on input x ∈ {0, 1}n and when given oracle access to π ∈ {0, 1}Õ(T), the verifier
VPCP accepts with probability at least 1/2. Then, Ext(x, π) outputs w such that V(x, w) accepts,
with probability at least 2/3.

We instantiate the NW generator from Theorem 3.10 with parameters N = Õ(T) and ϵNW = δ.
For simplicity we denote NGen = NGen f ,NRec = NRec f ,Prv = Prv f .

Generator. The algorithm NGen gets input (z, w′) ∈ {0, 1}n × {0, 1}T, and simulates V(z, w′) to
obtain a string y ∈ {0, 1}m (if V rejects, then NGen rejects). Let Vcheck be the algorithm that gets
((z, y), w) ∈ {0, 1}n×{0, 1}m×{0, 1}T, simulates V(z, w′), and accepts iff V(z, w′) = y. Note that
Vcheck((x, y), w′) = 1. Note that Vcheck runs in time linear in its input length, i.e. O(n + m + T).

Let PPCP be the honest prover for Vcheck from Theorem 6.9. The generator NGen computes
π = PPCP((z, y), w′) ∈ {0, 1}N=Õ(T), and outputs GNW(π). Note that NGen outputs strings of
length Nδ > Tδ (and we can truncate them to length Tδ without any loss), and that the running
time of NGen is dominated by the time it takes to run GNW, which is T1+O(

√
δ).

34This is the main construction in their paper, and the property of having proofs of knowledge is explicitly stated
in [BSCG+13, Definition 12.35 and Claim 12.36].
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Reconstruction. On input z ∈ {0, 1}n, the reconstruction NRec non-deterministically guesses
an output y′ ∈ {0, 1}m, and non-deterministically guesses advice adv for the algorithm RNW

from Theorem 3.10. For ℓ = log(N), define R : {0, 1}ℓ → {0, 1} by such that R(i) equals the
output of RNW with input i and advice adv and oracle access to D. The reconstruction NRec
runs the PCP verifier VPCP for Vcheck with input (z, y′), answering its oracle queries with R. If
VPCP accepts then NRec outputs y′, otherwise it outputs ⊥. The running time of NRec on input
z ∈ {0, 1}n is

O
(

m + N1−O(
√

δ) + polylog(T) · NO(
√

δ)
)
≤ T1−O(

√
δ)

and it makes at most polylog(T(n)) · T(n)O(
√

δ) < TO(
√

δ) oracle queries.
For an efficient honest prover, let (z, w′) such that V(z, w′) = y, and let π = PPCP((z, y), w′)

(where PPCP is the honest prover for Vcheck, as above), so that NGenV(z, w′) = GNW(π). Fix any
1/M-distinguisher D for NGenV(z, w′) = GNW(π). The honest prover gets (z, w′) and computes
π. It then uses the probabilistic oracle machine PNW from Theorem 3.10. Recall that this machine
gets oracle access to D and to the hard truth-table π, runs in time T1+O(

√
δ), and with high

probability outputs advice adv such that RD
NW correctly computes π. The proof that Prv sends

to R consists of w′′ = (y, adv). Note that VPCP accepts (z, y) with probability 1 when given
oracle access to π, and that with high probability R(i) = πi for all i ∈ [|π|]. Hence, with high
probability Prv sends w′′ to NRec so that Pr[NRecD

V (z, r, w′′) = V(z, w′)] = 1. The running time of
Prv is dominated by the running time of PNW, and is thus at most T1+O(

√
δ).

For soundness, fix z ∈ {0, 1}n and assume that for some D and non-deterministic guesses
y′, adv it holds that NRecV outputs y′ with probability more than 1/2. Then, VPCP accepts the
input (z, y′) with probability at least 1/2 when using oracle R. By the effective soundness of
the PCP, when Ext gets input ((z, y′), R), with probability at least 2/3 it outputs w′ such that
Vcheck((z, y′), w′) = 1. Since the witnesses for Vcheck and for V are identical, for every such w′ we
have that V(z, w′) = y′. The oracle machine Ext′ gets input (z, (y′, adv)) and oracle access to D;
and it simulates Ext((z, y′), adv), while giving Ext virtual access to its input R by simulating RNW

and answering queries using the oracle D.

6.2.2 Proof of Theorem 6.7

Let δ = Θ(ϵ2). Let L ∈ MAT IME [T], and let VL be a T-timeMA verifier for L. We first explain
how to obtain derandomization in near-quadratic time.

As in the proof of Theorem 6.4, let V ′L(x, w, r) = VL(x, w, Glin(r)) where Glin is the near-linear-
time PRG, instantiated with stretch Tδ 7→ T, and observe that V ′L accepts if and only if VL accepts.
Let Vf and Pf be the cs-NT IME [Tf , TP] verifier and prover for f , respectively. We will use the
generator NGenVf from Theorem 6.8 with verifier Vf and parameter δ > 0.

The construction. We now define a derandomized cs-NT IME verifier V and an honest prover
P for L. The verifier gets input x and acts as follows:

• Receives a witness w for V ′L and another witness w′ for Vf .

• Computes the targeted generator NGenVf from Theorem 6.8 on input z = (x, w) and with
witness w′ (outputting ⊥ if NGenVf rejects). The generator outputs a list R ⊆ {0, 1}M of
strings of length M = |z|δ > Tδ, which we truncate to length M.

47



• If there is r ∈ R such that V ′L(x, w, r) = 0, reject; otherwise, accept.

The prover P gets input x and w such that Pr[VL(x, w) = 1] = 1, sends w to the verifier, and
simulates Pf on input (x, w) to obtain a witness w′ and send it to the verifier.

Analysis. The running time of P is O(T(|x|) + TP(|z|) = O(TP(T)), as claimed. For the running
time of V, observe that it runs NGenVf on an input of length |z| = O(T) and with a witness w′ of
length Tf (|z|) = T1+δ; thus, V runs in time at most

Tf (T)1+O(
√

δ) · T1+δ < T1+δ+(1+O(
√

δ))(1+O(
√

δ)) < T2+ϵ .

Completeness is straightforward: When x ∈ L and the prover P gets w such that Pr[V ′L(x, w) =
1] = 1, the prover Pf (x, w) will output a string w′ such that Vf ((x, w), w′) does not reject, and
hence NGenVf does not reject. Since V ′L accepts (x, w) with every random string, it will accept
(x, w) with every random string in the output of NGenVf .

As for soundness, assume towards a contradiction that there is a poly(TP(T))-time adversary
P̃ such that for infinitely many input lengths n ∈N it holds that

Pr
(x,(w,w′))←P̃(1n)

[
x ∈ {0, 1}n \ L ∧V(x, (w, w′)) = 1

]
≥ 1/poly(TP(T(n))) .

We say that (x, (w, w′)) is a violating pair if x /∈ L and V(x, (w, w′)) = 1. For every violating
pair (x, (w, w′)), since V does not reject, it is necessarily the case that NGenVf did not reject (x, w)

with witness w′. Recall that NGenVf rejects iff Vf rejects, and hence for every violating pair we
can define y(x, (w, w′)) = Vf ((x, w), w′). Also, for every violating pair we have

V(x, (w, w′)) =
∧

r∈NGenVf ((x,w),w′)

V ′L(x, w, r) = 1

whereas Prr∈{0,1}Tδ [V ′L(x, w, r) = 1] ≤ 1/3, and so Dx,w(r) = V ′L(x, w, r) is a (1/2)-distinguisher
for NGen f (x, (w, w′)).

Relying on the above, we deduce that for every violating pair (x, (w, w′)), the reconstruction
NRecVf from Theorem 6.8 satisfies:

1. The algorithm Prv
Dx,w
Vf

((x, w), w′) runs in time O(Tf (T(|x|)))2 and outputs w′′ such that

Prr′ [NRec
Dx,w
Vf

((x, w), r′, w′′) = y((x, w), w′)] = 1.

2. For any w′′ and y such that Prr′ [NRec
Dx,w
Vf

((x, w), r′, w′′) = y] ≥ 1/2, the algorithm Ext′((x, w), w′′)
outputs, with probability at least 2/3, a witness w′ such that Vf ((x, w), w′) = y.

3. When plugging in Dx,w(r) = V ′L(x, w, r), on input (x, w) ∈ {0, 1}n × {0, 1}T the algorithm
NRec

Dx,w
f (x, w) runs in time

Tf (n + T)1−O(
√

δ) + Tf (n + T)c·
√

δ · T(n)1+δ < Tf (T)1−
√

δ ,

where c > 1 is a universal constant (from Theorem 6.8) and the calculation is essentially
identical to Eq. (6.1), relying on a sufficiently large constant c′ > 1 in the definition of
Tf (T) = T1+c′·

√
δ.
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Lemma 6.9.1. There is a sound cs-MAT IME [T1−
√

δ
f , T2

f ] protocol (P, V) for f such that for every
violating pair (x, (w, w′)) satisfying Vf ((x, w), w′) = f (x, w), the protocol successfully computes f (x, w)
when P gets witness w′.

Proof. The verifier V is defined to be NRec
Dx,w
Vf

(i.e., the verifier gets input (x, w), runs NRecVf ,
and implements the oracle by Dx,w(r) = V ′L(x, w, r)). By Item (3) above, the verifier runs in time
Tf (T)1−

√
δ on input length n + T.

The honest prover P uses Prv
Dx,w
Vf

. By Item (1) above, when Prv
Dx,w
Vf

is given input (x, w) and

witness w′, it outputs w′′ such that Pr[V((x, w), w′′) = f (x, w)] = 1. The running time of PrvDx,w
Vf

(while accounting for simulating Dx,w) is at most Tf (T)1+ϵ · T < Tf (T)2 on input length n + T.
Let us now show that (V, P) is computationally sound, following Definition 6.6. Assume

towards a contradiction that there is P̃(1n+T) running in time poly(Tf ) = poly(T) such that for
infinitely many input lengths n, with noticeable probability over P̃(1n+T) = ((x, w), w′′) it holds
that Pr[V((x, w), w′′) /∈ {⊥, f (x)}] ≥ 1/2. Without loss of generality we can assume that there is
y such that Pr[V((x, w), w′′) = y] ≥ 1/2.35 By combining P̃ with Ext′ from Item (2), we obtain an
algorithm running in polynomial time poly(T) that, with noticeable probability, outputs w′ such
that Vf ((x, w), w′) ̸= f (x). This contradicts the computational soundness of Vf . □

The proof proceeds by a case-analysis. The first case is that for infinitely many n, with
probability at least 1/poly(TP(T(n))) the algorithm P̃(1n) outputs a violating pair (x, (w, w′))
such that Vf ((x, w), w′) ̸= f (x, w). In this case we break the computational soundness of Vf .
Specifically, consider an algorithm that gets input 1n+T(n), simulates P̃(1n) to get (x, (w, w′)) and
outputs ((x, w), w′); with probability at least 1/poly(TP(T(n))) this algorithm finds an input
(x, w) and proof w′ such that Vf ((x, w), w′) ̸= f (x, w), a contradiction.

Hence, we must be in the second case: For infinitely many n, with probability at least
1/poly(TP) the algorithm P̃(1n) outputs a violating pair (x, (w, w′)) such that Vf ((x, w), w′) =
y((x, w), w′) = f (x, w). In particular, considering the sound protocol from Lemma 6.9.1, this
algorithm finds an input (x, w) and auxiliary input w′ such that the sound protocol (P, V) suc-
cessfully computes f (x, w) when P is given witness w′. That is also a contradiction.

The extensions to derandomization in near-linear-time (with advice, or using the generalized
near-linear-time PRG) are identical to the proof of Theorem 6.4, and we omit them for brevity.

Remark 6.10. We explain why hardness assumptions for cs-MAT IME arise naturally in this context,
and in particular when using a black-box-MA-reconstructive targeted PRG to compute f ∈ cs-NP .
Let us recall the key problem, as explained in Section 2.2. The efficient algorithm concerning f that V can
use within its time bounds is the cs-NP verifier Vf . However, when V on input z guesses witness for Vf
it may guess a hard-to-find witness w such that Vf (z, w) ̸= f (z). In this case, on input z the verifier V
does not compute anMA-function, since it has several possible outputs.

The assumption under which the reconstruction procedure works, which asserts that there is an efficient
distinguisher D for the targeted PRG, does not seem helpful in avoiding this problem. To see this, assume
that the targeted PRG uses Vf to verify the value of f , and bases its pseudorandom output list on this
value. Then, D could be a distinguisher either for a correct value of f given by Vf or for an incorrect one,
or both. In this case, using D does not help the reconstruction procedure avoid the issue.

The point is that the foregoing assumptions on the behavior of these algorithms reflect a broad set of
black-box techniques in constructing PRGs (and targeted PRGs). Specifically, we run into the obstacle

35That is, we can modify V to run multiple times and output ⊥ unless it always sees the same output. Note that
this does not hurt the completeness of V, which is perfect.
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above whenever the targeted PRG uses the computational device guaranteed to exist for the hard function
(i.e., Vf ) to produce pseudorandomness, and whenever the reconstruction relies on this device and on the
distinguisher D as a black-box. Targeted PRGs that do not use the distinguisher D as a black-box do exist,
but known ones rely either on hardness for conditional time-bounded Kolmogorov complexity [LP22a], or
work only for specific weak distinguishers [PRZ23; DPT24; LPT24].

7 Non-batch-computability using downward self-reducibility

In this section, we show that non-batch-computability follows from worst-case hardness, for any
problem that has two natural properties with a long history of utility:

1. Downward self-reducibilty: Solving a single instance of the problem efficiently reduces to
solving many smaller instances.

2. Efficient low-degree extension: The problem admits an efficient representation as a low-
degree multivariate polynomial.

Examples of problems with these properties (and tight hardness conjectures) include Perma-
nent [Val79; CPS99] and Orthogonal Vectors [Wil18].

The worst-case to batch-computability reduction that we show is, essentially, a strong di-
rect product theorem for functions with the properties above. A strong direct product theorem
(roughly) says if every time t algorithm fails to correctly evaluate f on a small fraction of in-
puts, then every time k · t algorithm fails to evaluate the k-wise direct product of f on almost
all k-tuples of instances. Recall that strong direct product theorems do not hold for general
functions [Sha03], and thus some assumption on the properties of f is necessary.

We will in fact show something even stronger: We (roughly) show that any k · t-time algo-
rithm fails to evaluate correctly evaluate f on even a fraction of most k-tuples of instances. This
stronger form of non-batch-computability is the one needed in [CT21a], where the key difference
is that they assumed such hardness over all polynomial-time samplable distributions, whereas
we deduce such hardness over the uniform distribution.

7.1 Preliminaries: Definitions and known results

Let us first recall the notion of non-batch-computability from [CT21a]:

Definition 7.1 (non-batch-computability). A function g : {0, 1}n → {0, 1}k(n) is computable in
time T and (ϵ, δ)-non-batch-computable in time k′ · T (with respect to the uniform distribution) if

1. There is an algorithm that on input (x, i) ∈ {0, 1}n × [k(n)] outputs the ith bit of g(x) in time
T(n).

2. For every probabilistic algorithm A that runs in time T(n) · k′(n), with probability at least δ over
x u← {0, 1}n,

Pr
i∈[k],A

[A(x)i ̸= g(x)i] ≥ ϵ

To parse the definition, observe that no function g : {0, 1}n → {0, 1}k computable in time T
can be (01.01)-non-batch-computable in time k · T (i.e., k′ = k is too much to hope for), since we
can trivially compute all k output bits of g in time k · T. We will be interested in values of, say,
k′ = k.01.
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Downward self-reducibility. Loosely speaking, a problem is downward self-reducible if solv-
ing a single instance efficiently reduces to solving many smaller instances. We use a more general
definition from Ball et al. [BRS+18], which allows reducing one function F to another function
F ′, where we think of F ′ as functions over smaller instances.

Definition 7.2 (downward reducibility). A function family F = { fn : Xn → Yn} is (s, ℓ)-downward
reducible in time t to a function family F ′ = { f ′n : X ′n → Y ′n} if there is a pair of algorithms
(Divide, Assemble) satisfying:

• For all large enough n, s(n) < n.

• Divide on input x ∈ Xn outputs ℓ(n) instances from X ′s(n); that is,

Divide(x) = (x1, . . . , xℓ(n))

• Given the value of F ′ at these ℓ(n) instances, Assemble computes the value of F at x; that is,

Assemble(x, f ′s(n)(x1), . . . , f ′s(n)(xℓ(n))) = fn(x)

• The combined running time of Divide and Assemble on input x ∈ {0, 1}n is at most t(n).

If F ′ = F , we say that F is downward self-reducible.

Efficient low-degree extension. We next define what it means for a decision problem to admit
an efficient low-degree extension. Intuitively, a Boolean function f admits a (t, d)-low-degree
extension if there is a degree d polynomial P over a finite field that can be computed in time t
and effectively agrees with f on inputs from the Boolean hypercube; specifically, we require that
P(x) = 0 when f (x) = 0, and P(x) ̸= 0 otherwise.

In the following statement, we think of the input as of length m. This foresees the application
of low-degree extensions on inputs of length m = m(n) that are obtained by applying downward
self-reducibility on inputs of length n.

Definition 7.3 (efficient low-degree extensions). A family of functions { f : {0, 1}m → {0, 1}} admits
a (t1, t2, d)-low-degree extension if there exists a pair of algorithms A, B such that the following holds:

• On input 1m, the algorithm A outputs a representation of a field of size q = q(m) ≤ 2mo(1)
in time

t1(m), where q(m) is increasing. The remaining items hold with respect to q = q(m).

• On input x ∈ Fm
q , the algorithm B(x) runs in time t2(m) and computes a polynomial of degree

d = d(m). (That is, there exists P : Fm
q → Fq of degree d such that B(x) = P(x) for all x ∈ Fm

q .)

• For every x ∈ {0, 1}m ⊆ Fm
q it holds that B(x) = 0 ⇐⇒ f (x) = 0.

An example: orthogonal vectors. Ball et al. [BRS+17; BRS+18] observed that the k-Orthogonal-
Vectors problem of dimension ( k

k+c )
2d is downward reducible to k-Orthogonal-Vectors of dimen-

sion d, which in turn reduces to evaluating a family of degree kd polynomials (that can themselves
be evaluated in time Õ(nkd).

Proposition 7.4 ([BRS+17; BRS+18]). For any constant integer k and any constant c > 0, the problem
k-Orthogonal Vectors of size n and dimension ( k

k+c )
2d has the following properties:
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1. It is (m, mc)-downward reducible, where m = nk/(c+k), in time Õ(mc+1).

2. It admits a (Õ(nk/2), Õ(nkd), kd)-low-degree extension.

The randomized Orthogonal Vectors conjecture asserts that k-orthogonal vectors requires nk prob-
abilistic time to solve when d = ω(log n). This conjecture follows from the randomized strong
exponential time hypothesis [IPZ01; Wil18], which asserts that for any constant ϵ > 0, there exists
a k such that k-SAT requires time Ω(2(1−ϵ)n). See [Wil18] for further details.

7.2 Weak non-batch-computability from worst-case hardness

We are now ready to state our main theorem for this section, which gives a weak form of
non-batchability: any fast algorithm fails to approximately compute the batch with probabil-
ity bounded away from zero. In the next subsection, we will see how to amplify this result such
that any fast algorithm fails to approximately compute almost every batch.

Theorem 7.5 (weak non-batch-computability from worst-case hardness). Let γ > γ′ ∈ (0, 1) be
sufficiently small, and let α, β > 0. Assume that there exist f : {0, 1}∗ → {0, 1} and t(n) ≥ n such that:

1. (Upper bound.) f admits a (t(n)1−α, t(n), no(1))-low-degree extension.36

2. (Lower bound.) f is hard for randomized time O(t(n)1−α) (in the worst-case) on all input lengths.

3. (Downward self-reducibility.) f is (m, nγ′)-downward self reducible in time t(n)1−α, where
m = m(n) is such that t(m) · n3β ≤ t(n)1−α.

Then, there is a direct product function g mapping m1+o(1) · nγ bits to nγ bits such that g is computable
in time O(t(m)) and (ϵ, δ)-non-batch-computable in time O(nβ · t(m)), where ϵ, δ > 0 are small universal
constants.

The proof of this theorem is in two steps. First, the main lemma, Lemma 7.7, effectively
shows that batch polynomial evaluation is no harder than approximate batch polynomial evalu-
ation. This immediately gives non-batch-computability over a large alphabet. We then apply the
Goldreich-Levin predicate to reduce to a binary alphabet. (The analysis of this latter transforma-
tion only works in the low-error regime, and we show how to generically boost this result to the
high-error regime in the next subsection.)

The main lemma: Batch polynomial evaluation from approximate batch polynomial evalua-
tion. The following is the main lemma underlying the proof of Theorem 7.5. Before stating it,
we recall the standard Berlekamp-Welch unique decoding algorithm for the Reed-Solomon code.

Theorem 7.6 (unique decoding of RS [WB86]; see, e.g., [AB09, Theorem 19.15]). There is a polynomial-
time algorithm that gets as input a list (a1, b1), . . . , (am, bm) of pairs of elements of a finite field F

and satisfies the following. For any d < m, if there is a degree-d polynomial P : F → F such that
Pri∈[m][P(ai) = bi] ≥ 1/2 + d/2m, then the algorithm outputs P.

Lemma 7.7. Let d = d(n), m = m(n), m′ = m(n) such that m > 2(m′ − 1)d. Let ϵ = ϵ(n), δ =
δ(n) > 0 such that ϵ + 2δ < 1/16.

36Note that this implies that f is computable in time t.
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Assume that there exists a randomized algorithm A that on an input tuple in (Fn)m runs in time
T(n, m), and for some polynomial p : Fn → F of degree d satisfies

Pr
x1,...,xm

u←(Fn)m

[
Pr

A,i∈[m]
[A(x1, . . . , xm)i = p(xi)] ≥ 1− ϵ

]
≥ 1− δ ,

where |F| ≥ max {4m′d, m}.
Then, for any δ′ = δ′(n) > 0, there exists a randomized algorithm B that gets input x1, ..., xm′ ∈

(Fn)m′ , runs in time poly(m/(δ · δ′), log |F|) + O(d/δ · δ′) · T(n, m), and satisfies

Pr
B
[B(x1, . . . , xm′) = (p(x1), . . . , p(xm′)] ≥ 1− δ′ .

A similar result was recently shown in Ball et al. [BGH+24], but for a different parameter
regime (arbitrarily large polynomial size batches and subconstant error/approximation toler-
ance). We provide a new and more straightforward reduction in the parameter regime of interest
here. In addition to its simplicity, one advantage of this direct reduction over the recursive one
presented in Ball et al. [BGH+24] is that it does not rely on approximate batch solvers that work
for a range of parameters.

Proof of Lemma 7.7. Let A be as in our hypothesis. Let t def
== 4d/(δ · δ′). Let B behave as follows

on input x1, . . . , xm′ ∈ Fn×m′ :

1. Let h : F → Fn be the degree (m′ − 1) curve such that h(i) = xi for all i ∈ [m′]. Let
y = (y1, . . . , ym) = (h(1), . . . , h(m)).

(Note: q(i) def
== p(h(i)) is a degree D = d(m′− 1) polynomial such that q(i) = p(xi) for i ∈ [m′].)

2. Now sample uniformly random r = (r1, . . . , rm), s = (s1, . . . , sm) ∈ Fn×m. For j = 1, . . . , t,
define (y1,j, . . . , ym,j) = y + j · r + j2 · s.

(Note (a): For any i ∈ [m], qi(j) = p(yi + j · ri + j2 · ri) is a degree 2d univariate polynomial such
that qi(0) = p(yi).)

(Note (b): For any j ̸= j′ ∈ [t], the marginal distribution of (y1,j, . . . , ym,j), (y1,j′ , . . . , ym,j′) is
uniformly random.)

3. For each j ∈ [t], compute (z1,j, . . . , zm,j)← A(y1,j, . . . , ym,j).

4. For each i ∈ [m], run the algorithm from Theorem 7.6 on input (1, zi,1), . . . , (t, zi,t) to get a
polynomial q̂i of degree 2d. Let zi = q̂i(0).

5. Run the Reed-Solomon decoding algorithm from Theorem 7.6 on input (1, z1), . . . , (m, zm)
to get a degree D = d(m′ − 1) polynomial q̂. Output (q̂(1), . . . , q̂(m′)).

Complexity. Notice that B uses t invocations of A on inputs in (Fn)m, and m invocations of the
algorithm from Theorem 7.6 on tuples of length t = O(d/(δ · δ′)), and one additional invocation
of the latter algorithm on a tuple of length m. Thus the total complexity of B is poly(m/(δ ·
δ′), log |F|) + O(d/(δ · δ′)) · T(n, m).
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Correctness. By our observation below Item (1) above, it suffices to show that the polynomial
q̂ obtained in the last step is precisely q, with probability at least 1− δ′. By the correctness of
Theorem 7.6 and the observation below Item (2), it suffices to show that with probability at least
1− δ′, for a 1/2 + D/2m fraction of the indices i ∈ [m], the degree-d polynomial q̂i obtained in
the penultimate step is precisely qi.

In turn, to show this, it suffices to show that with probability at least 1 − δ′, for at least
(m + D)/2 indices i ∈ [m] we have

Pr
j∈[t]

[
zi,j = p(yi,j)

]
≥ 1/2 + (2d)/(2t) .

Finally, to prove the statement above, it suffices to prove that zi,j ̸= p(yi,j) for at most m−D
2 · t−2d

2
pairs (i, j) ∈ [m]× [t]. By our choice of D < m/2 and 2d < t/2, it suffices to show that zi,j ̸=
p(yi,j) for at most mt

16 pairs (i, j).
Now, for each j ∈ [t], let Ej denote the event that |{i : zi,j ̸= p(yi,j)| > ϵm. Because for each

j ∈ [t] the marginal distribution of (y1,j, . . . , ym,j) is uniformly random, we have that Pr
[
Ej
]
≤ δ.

Moreover, because (y1,j, . . . , ym,j) and (y1,j′ , . . . , ym,j′) are independent for any j′ ̸= j, it follows

that Ej and Ej′ are independent. By Chebyshev’s inequality, Pr[∑j∈[t] Ej > 2δt] ≤ δ−δ2

δ2t < 1/δt.
Finally, notice that if ∑j∈[t] Ej ≤ 2δt, then the total number of (i, j) such that zi,j ̸= p(yi,j)

is strictly less than ϵmt + 2δtm = mt(ϵ + 2δ). By our assumption that ϵ + 2δ < 1/16, with
probability at most 1/δt, the number of pairs (i, j) such that zi,j ̸= p(yi,j) is at most mt

16 . Hence,
the algorithm B is correct with probability at least 1− 1/δt > 1− δ′.

Proof of Theorem 7.5. Now that we proved Lemma 7.7, for the rest of this section we prove The-
orem 7.5.

Let ϵ′, δ′ > 0 be constants such that ϵ′ + 2δ′ < 1/16. Let ϵ, δ > 0 be sufficiently small such
that δ/δ′ + ϵ < ϵ′/8. (Note that, for example, ϵ = δ = 2−16 and ϵ′ = δ′ = 1/64 suffice.)

Let (A, B) be the algorithms for the low-degree extension of f , let ℓ′ = ℓ′(n) = nγ, and let q =

q(m) be the size of the field that A produces on inputs of length m. Let g′ =
{

g′m : Fm×ℓ′
q → Fℓ′

q

}
be the partial function represented by ℓ′-fold direct product of the low-degree extension of f on
inputs with m bits; that is, g′(x1, . . . , xℓ′) = B(x1), . . . , B(xℓ′).

Claim 7.7.1. There is no randomized algorithm A that gets input (x1, ..., xℓ′) ∈ Fm×ℓ′
q , where ℓ′ =

ℓ′(n) = nγ, runs in time t(m) · n2β, and with probability more than δ′ over choice of (x1, ..., xℓ′) satisfies

Pr
A

[
Pr

i∈[ℓ′]

[
A(x1, ..., xℓ′)i = g′(x1, ..., xℓ′)i

]
≥ 1− ϵ′

]
≥ 2/3 ,

where the outer probability PrA is over the internal randomness of A.

Proof. Assume towards a contradiction that there exists such an algorithm A. By Lemma 7.7,
instantiated with input length m and parameters d = d(m) = deg(B) and m = ℓ′ and m′ = ℓ and
δ′ = 1/3 and ϵ = ϵ′ and δ = δ′, there is an algorithm B that, for every input x1, ..., xℓ, successfully
computes B with probability at least 2/3 in time

poly(ℓ′, log(q)) + O(d) · t(m) · n2β .

(To invoke Lemma 7.7 with these parameters we need to ensure that ϵ′ + 2δ′ < 1/16 and that
ℓ′ > 2ℓd, which hold by our hypotheses that d = d(n) = no(1) and γ > γ′.)

Now consider the algorithm F for f , that on input x does the following:
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1. Run Divide(x)→ (y1, . . . , yℓ) where ℓ = nγ′ and |yi| = m.

2. Run A(m) to get a representation of Fq where q = q(m) ≤ 2mo(1)
and encode yi as ŷi ∈ Fm

q ,
for all i ∈ [ℓ]. Note that ŷi is of length m′ = m1+o(1).

3. Run B(ŷ1, . . . , ŷℓ)→ ẑ1, . . . , ẑk.

4. For i ∈ [ℓ], set zi = 0 if ẑi = 0 and set zi = 1 otherwise.

5. Output Assemble(z1, . . . , zℓ).

By the correctness of B and (Divide, Assemble), the algorithm F succeeds in computing f
with probability 2/3. The runtime of F is at most

O(t(n)1−α) + poly(ℓ′, log(q)) + O(d) · t(m) · n2β ,

which is at most O(t(n)1−α) by our hypotheses that t(m) · n3β ≤ t(n)1−α and that γ > 0 is
sufficiently small (this ensures that poly(nγ) < n1−α ≤ t(n)1−α, where the “poly” notation refers
to a universal polynomial). □

The non-batch-computable function g is the Goldreich-Levin predicate applied to each out-
put symbol of g′; that is, g(r1, x1, . . . , rℓ′ , xℓ′) = (⟨r1, B(x1)⟩, . . . , ⟨rℓ′ , B(xℓ)⟩) where each xi ∈
{0, 1}m·log(q) ≡ Fm

q , and ℓ′ = nγ, and ⟨x, y⟩ is the inner product modulo 2. Note that:

1. The function g maps ℓ′ · (m + 1) · log(q) = m1+o(1) · nγ bits to ℓ′ = nγ bits.

2. Each output bit of g is computable in time O(t(m) + log(q)) = O(t(m)), since B is com-
putable in time t(m) ≥ m.

We now claim that if g is batch-computable, then g′ is batch-computable, which contra-
dicts Claim 7.7.1. Let G be a probabilistic algorithm that violates non-batch-computability of
g; that is, G runs in time t(m) · nβ on inputs of length m1+o(1) · nγ, and satisfies

Pr
r1,...,rℓ,x1,...,xℓ

[
Pr

i∈[ℓ],G
[G(r1, x1, . . . , rℓ, xℓ)i ̸= ⟨ri, B(xi)⟩}] ≥ ϵ

]
< δ . (7.1)

To show our claim, we first make two observations.

Claim 7.7.2. At least 1− δ′ of the tuples x1, . . . , xℓ ∈ {0, 1}m·log(q) are good, in the sense that

Pr
r1,...,rℓ

[
Pr

G,i∈[ℓ]
[G(r1, x1, . . . , rℓ, xℓ)i ̸= ⟨ri, B(xi)⟩}| ≥ ϵ]

]
< δ/δ′.

Proof. Let X be the random variable that chooses x1, . . . , xℓ and outputs the LHS of the inequality
above. By Eq. (7.1), we have E[X] < δ, and thus by Markov’s inequality Pr[X ≥ δ/δ′] ≤ δ′. □

Claim 7.7.3. We say that i ∈ [ℓ] is good for x = (x1, . . . , xℓ) if

Pr
G,r1,...,rℓ

[G(r1, x1, . . . , rℓ, xℓ)i ̸= ⟨ri, B(xi)⟩] < 1/8 .

Then, for every good x, at least 1− 8(δ/δ′ + ϵ) of the indices i ∈ [ℓ] are good.
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Proof. Let Y be the random variable that chooses a random i and outputs the LHS of the in-
equality above. Since x is good we have E[Y] ≤ δ/δ′ + ϵ, and thus by Markov’s inequality,
Pr[Y ≥ 1/8] < δ/δ′+ϵ

1/8 . □

Now, to batch-compute g′, we run the naive Hadamard local decoder on each inner product.
Specifically, given x1, ..., xℓ ∈ Fm

q , we sample r(1), ..., r(a) uniformly at random, where each r(j) =

(r(j)
1 , ..., r(j)

ℓ ) ∈ ({0, 1}log(q))ℓ and a will be determined later, and we compute

z(j) = G(r(j)
1 , x1, . . . , r(j)

ℓ , xℓ) ,

z(j,k) = G(r(j)
1 ⊕ ek, x1, . . . , r(j)

ℓ ⊕ ek, xℓ) ∀k ∈ [log(q)] ,

where ek is the kth standard basis vector in {0, 1}log(q). For i ∈ [ℓ] and j ∈ [a] and k ∈ [log(q)],
let bi,j,k = z(j)

i ⊕ z(j,k)
i . For each i ∈ [ℓ] and k ∈ [log(q)], let yi,k = MAJj∈[a]

{
bi,j,k

}
, and output the

string (y1,1, ..., y1,k), ..., (yℓ,1, ..., yℓ,k), where each k bits are parsed as a symbol in Fq.

Claim 7.7.4. Fix any good x, and any i ∈ [ℓ] that is good for x. Then, with probability at least 1−
2−Ω(a) · log(q) it holds that (yi,1, ..., yi,k) = B(xi).

Proof. Fix any k ∈ [log(q)]. With probability at least 3/4 over choice of r(j)
i it holds that z(j)

i =〈
r(j)

i , B(xi)
〉

and z(j,k)
i =

〈
(r(j)

i ⊕ ek)i, B(xi)
〉

, in which case bi,j,k = B(xi)k. Thus, with probability

at least 1− 2−Ω(a) it holds that yi,j,k = B(xi)k. The claim follows by a union-bound over k ∈
[log(q)]. □

Letting a = O(log(ℓ · log(q)/δ)), on any good x, with probability at least 1− δ, for every good
i the ith output of the algorithm above is B(xi). In particular, with probability at least 1− δ′ over
x, the algorithm computes g′ correctly on 1− 8(δ/δ′ + ϵ) > 1− ϵ′ of the indices.

Finally, the algorithm for batch-computing g′ runs in time

O(a · log(q) · t(m) · nβ) ≤ Õ(t(m) · nβ) < t(m) · n2β ,

a contradiction.

7.3 Approximate direct product amplification

We show how to amplify the success probability of a (approximate) batch solver. This ultimately
allows us to generically amplify the result from the last section to show the function is hard for
a fast (approximate) batch solver to be correct with even small probability. The only property of
the hard function we are using is that it does not take to long to evaluate on a single instance,
giving us the ability to locally check a few evaluations (in the non-uniform setting, this can likely
be avoided using advice following the techniques of [IJK+10]).

We adopt a clever proof due to Impagliazzo, Jaiswal, and Kabanets [IJK07] for proving
chernoff-type direct products in our setting. [IJK07] essentially showed that if a function f is
hard to compute correctly with say constant probability, then any algorithm running in essen-
tially the same time fails to compute f correctly on even a fraction of k independent instances
with very small probability. We, on the other hand, show that if one can quickly compute f on a
fraction of a large batch of instances, then one can efficiently compute f on a similar fraction of
a slightly smaller batch of instances with high probability.
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Impagliazzo et al.’s reduction works by repeatedly embedding the input instance in a random
batch of instances, running the efficient batch solver, testing if the solver is sufficiently correct on
the generated batch, and outputting the solution to input instance if the test passes. Their proof
works by considering a hybrid experiment where the input is simply sampled from the set of
tuples on which the batch solver is successful.

Our reduction follows the same template, except that instead of embedding a single instance,
we embed a smaller batch of instances (instead of just one). Modulo a generalization of the key
lemma and the use of a concentration bound on hypergeometric distributions, the proof is very
similar.

The key lemma in our approximate direct product amplification is a generalization of [IJK07]’s
“sampling lemma” to our batched setting.

Lemma 7.8 (Generalized Sampling Lemma). Let k|ℓ and G ⊆ {0, 1}ℓn be such that |G| ≥ α2ℓn.
Consider the distribution DG generated by first sampling an ℓ-tuple (x1, . . . , xℓ)

u← G and a k-set
{i1, . . . , ik} ⊆ [ℓ] (such that i1, i2, · · · , ik are distinct) and then outputting (xi1 , . . . , xik).

Then,

∆(Ukn; DG) ≤
√

2 ln(2) · k log(1/α)

ℓ

where Ukn denotes the uniform distribution on kn bits and the ∆ -operator corresponds to total variation
distance.

The proof follows from the same techniques as that of [Raz98; IJK06] but we include it in
full for convenience. Before beginning, we note the following corollary that generalizes the
above to distributions with bounded min-entropy, distributions X such that H∞(X) ≤ 2−ℓn/α
(where H∞(X) ≥ k ⇐⇒ ∀x, Pr[X = x] ≤ 2−k). The corollary follows from the above because
any distribution with min-entropy k can be written as a convex combination of sources that are
uniformly distributed over sets of size 2k.

Corollary 7.9. Let G ⊆ {0, 1}ℓn be a distribution such that forall g ∈ {0, 1}ℓn, Pr[G = g] ≤ 1
α2ℓn .

Consider the distribution DG generated by first sampling an ℓ-tuple (x1, . . . , xℓ) ← G and a k-set
{i1, . . . , ik} ⊆ [ℓ] (such that i1, i2, · · · , ik are distinct) and then outputting (xi1 , . . . , xik).

Then,

∆(Ukn; DG) ≤
√

2 ln(2) · k log(1/α)

ℓ

where Ukn denotes the uniform distribution on kn bits and the ∆ -operator corresponds to total variation
distance

The proof of Lemma 7.8 relies on the following proposition:

Proposition 7.10. For any distribution D over {0, 1}kn,

∆(D;Ukn)
2 ≤ 2 ln 2(kn− H(D))

where H(D) is the Shannon entropy of D.

Proof. We first calculate the KL divergence between D and Ukn as

KL(D||Ukn) = ln(2kn) + ∑
x

D(x) ln(D(x)) = ln 2 · (kn− H(X)) .

The proposition then directly follows from Pinsker’s inequality ∆(P, Q)2 ≤ 2 ·KL(P||Q).
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Proof of Lemma 7.8. Let X̂ = (X1, . . . , Xℓ) be the joint random variables corresponding to a uni-
form draw from G. Let S = {i1, . . . , ik} ⊆ [ℓ] be a uniformly random k-set. Consider X =

(Xi1 , . . . , Xik). By the proposition above, it suffices to show that H(X) ≥ kn− k log(1/α)
ℓ .

Now we consider another equivalent random process for generating X, and we will ana-
lyze that instead. We first randomly partition the variables X1, . . . , Xℓ into ℓ/k size-k subsets
S1, S2, . . . , Sℓ/k, and then output a random subset Si. This process also generates the same X by a
simple symmetry argument.

Moreover, note that for every fixed partition, we know that the average entropy of X condi-
tioned on this partition is

1
ℓ/k

ℓ/k

∑
i=1

H(X̂Si) ≥
1
ℓ/k

H(X̂) ,

where the inequality follows from the sub-additivity of entropy. Since X is a convex combination
of its conditioning on all partitions, it follows that

H(X) ≥ 1
ℓ/k

H(X̂) .

Because H(X̂) = log |G| = ℓn− log(1/α), we can thus deduce what we need:

H(X) ≥ kn− k log(1/α)

ℓ
.

Next we observe a simple testing proposition that follows immediately from a (multiplicative)
Chernoff bound.

Proposition 7.11. Suppose f (x) can be evaluated in time t(n) where n = |x|.
Given any (x1, . . . , xk) ∈ {0, 1}nk and y1, . . . , yk ∈ {0, 1}k such that either:

• Case 0: for at least 2ϵk indices i ∈ [k], f (xi) ̸= yi,

• Case 1: for at most ϵk indices i ∈ [k], f (xi) ̸= yi

There exists a probabilistic test, testϵ,γ, that runs in time O(t(n) log(1/γ)/ϵ) that correct correctly
determines which case holds with probability at least 1− γ.

Finally, we are ready to state our hardness amplification result.

Theorem 7.12. For every three constants α, β, ϵ > 0 there are constants c, c′ such that the following
holds. Let f be computable in time t(n), and suppose that for a large enough k it holds that f k is (ϵ, α)-
non-batch-computable in time k′ · t. Then for ℓ > c · k such that k|ℓ, the function f ℓ is (ϵ/10, 1− β)
non-batch computable in time ℓ′ · t, where ℓ′ = c′ · k′.

Proof. Let ϵ′ = ϵ/10. Other parameters, such as γ, will be defined later.
We will prove the contrapositive of the theorem.
Let A violate the non-batch-computability of f ℓ. We say A(x1, . . . , xℓ; r) is ϵ′-close-to-correct

if for at most an ϵ′-fraction i ∈ [ℓ] A(x1, . . . , xℓ; r)i ̸= f (xi).
Consider the reduction that B(x1, . . . , xk; r, r′) that does the following (we differentiate the

randomness r used by A from the other randomness used by B, r′):
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1. Sample a uniformly random k-set S = {i1, . . . , ik} ⊆ [ℓ]. For j = 1, . . . , k, set xij = xi.

2. For j /∈ S, sample a uniformly random xj ∈ {0, 1}n.

3. Let ŷ1 . . . ŷℓ = A(x1, . . . , xℓ; r).

4. Run test4ϵ′,γ to check that y1, . . . , yℓ are at most 8ϵ′ incorrect (for γ < 1/50). If so output
yi1 , . . . , yik , otherwise output ⊥.

Our ultimate batch-solver, B′, will run B repeatedly until an output is found (if no output found
before a timeout, B′ will give up).

To analyze B, we will consider its behavior on fixed sequences of internal random coins.
For any fixed sequence of random coins r, we will striate input sequences into 3 different sets
according to how many instances A(·; r) solves correctly: Gr,“Good” inputs x where A(x; r)
is 4ϵ′-close-to-correct; Mr, “Medium ” inputs x where A(x; r) is not 8ϵ′-close-to-correct but is
4ϵ′-close-to-correct; Br, “Bad” inputs x where A(x; r) is not 8ϵ′-close-to-correct.

Gr := {(x1, . . . , xℓ) ∈ {0, 1}ℓn : Pri[A(x1, . . . , xℓ)i ̸= f (xi)] ≤ 4ϵ′}
Mr := {(x1, . . . , xℓ) ∈ {0, 1}ℓn : Pri[A(x1, . . . , xℓ)i ̸= f (xi)] ∈ (4ϵ′, 8ϵ′]}
Br := {x1, . . . , xℓ) ∈ {0, 1}ℓn : Pri[A(x1, . . . , xℓ)i ̸= f (xi)] > 8ϵ′}

Note that for any x ∈ Gr ∪ Br, testϵ′,γ will correctly distinguish except with probability γ.
(We do not say anything about the behavior of test on Mr.)

x ∈ Gr =⇒ Pr[test4ϵ′,γ(x,A(x; r)) = 0] ≤ γ

x ∈ Br =⇒ Pr[test4ϵ′,γ(x,A(x; r)) = 1] ≤ γ

Next, define R to be the set of “good” random coins for A, random strings r such that Gr is
large (containing a β/2 fraction of ℓ-tuples):

r ∈ R ⇐⇒ Pr
x u←Uℓn

[x ∈ Gr] ≥ β/2.

We critically note that by a standard averaging argument37 the set of “good” random coins is not
too small,

Pr
r u←U

[r ∈ R] ≥ β/4.

We want to show that if r ∈ R: (1) B will not output ⊥ with reasonably high probability
and (2) if B does not output ⊥ it is very likely to output something that is ϵ-close-to-correct. We
will also observe that if r /∈ R there remains relatively small probability of B making a mistake
(outputting a non-⊥ output that is not ϵ-close-to-correct).

Before analyzing the success of our subroutine B conditioned on it outputting something
(besides ⊥), we will first analyze a related experiment. This experiment will output k-tuples
with candidate solutions. We will define the experiment such that if we condition on the pre-
fix output being a fixed tuple x1, . . . , xk, the probability that the solution is ϵ-close-to-correct,

37On at least a β fraction of the inputs x̄ we have Prr,i[A(x̄; r)i ̸= f ℓ(x)i] < ϵ′. Denote this set of in-
puts by X. On each x̄ ∈ X, by Markov’s inequality we have Prr[Pri[A(x̄; r)i ̸= f ℓ(x)i] > 4 · ϵ′] < 1/4. So
Prx̄,r[A(x̄; r) is 4 · ϵ′-close to correct] ≥ Pr[x̄ ∈ X] · (1− 1/4). On the other hand, Prx̄,r[A(x̄; r) is 4ϵ′-close to correct] ≤
Pr[r ∈ R] · Pr[x̄ ∈ Gr] + Pr[r /∈ R] · β/2 ≤ Pr[r ∈ R] + β/2. Thus, Pr[r ∈ R] ≥ Prx̄,r[A(x̄; r) is 4ϵ′-close to correct]−
β/2 ≥ 3β/4− β/2.
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i.e. the experiment was successful, is identical to the probability that our subroutine was success-
ful, i.e. outputs solutions that are ϵ-close-to-correct, for that particular input x1, . . . , xk (with fixed
internal random coins r for A).

The experiment, Expr, behaves as follows:

1. Sample x = (x1, . . . , xℓ)
u← {0, 1}ℓn.

2. Sample uniformly random k-set with universe [ℓ], S = {i1, . . . , ik}.

3. Evaluate A(x1, . . . , xℓ; r) = (y1, . . . , yℓ) = y.

4. If test4ϵ′,γ(x, y) = 1, output (xS, yS). Otherwise, output ⊥.

Note that if we condition on the first output of Expr being (x1, . . . , xk) = xS, then the second
output of Expr is identically distributed to B(x1, . . . , xk; r,U ) conditioned on B not outputting ⊥.

Now let E̸⊥ denote the event that Expr does not output ⊥ and let Ec denote the event that
Expr outputs a 9ϵ′-close to correct pair. We will now analyze Pr[Ec|E̸⊥]. Let X denote the random
tuple chosen in step 1 of Expr.

First, consider what happens if x sampled in step 1 is not in Br, i.e. y output by A(·; r) is
8ϵ′-close-to-correct, and Expr outputs a non-⊥ value (i.e. E̸⊥ happens). Let Z denote the random
variable corresponding to the number of j ∈ [k] such that yij = f (xij) is distributed according
to a hypergeometric distribution where there is a population of size ℓ with (1− 8ϵ′)ℓ successes
and k draws. Consequently, E[Z] ≥ (1− 2ϵ′)k and concentration bounds for hypergeoemtric
distributions38 give the following, if ϵ′ < 1/3:

∀x /∈ Br, Pr[¬Ec|X = x, E̸⊥] ≥ Pr[Z ≤ (1− 9ϵ′)k] ≤ exp(−2(ϵ′)2k).

38The following is taken from [Ska13]: For Z that is hypergeometic with parameters N,M,n (i.e. draw n balls without
replacement from a bag of N balls containing M black ones, output the number of black balls drawn), and expectation
µ = E[Z] = nM

N and any t > 0, Pr[Z ≤ µ− tn] ≤ e−2t2n.

60



Now, for r ∈ R, we can bound the success probability of Expr (conditioned on E̸⊥) as follows:

Pr[Ec|E̸⊥] = Pr[Ec, E̸⊥]/ Pr[E̸⊥]

= ∑
x∈{0,1}ℓn

Pr[Ec|E̸⊥, X = x]Pr[E̸⊥, X = x]/ Pr[E̸⊥]

≥ ∑
x/∈Br

Pr[Ec|E̸⊥, X = x]Pr[E̸⊥, X = x]/ Pr[E̸⊥]

≥
(

1− e−2(ϵ′)2k
)

∑
x/∈Br

Pr[E̸⊥, X = x]
Pr[E̸⊥]

=
(

1− e−2(ϵ′)2k
) Pr[E̸⊥]− Pr[E̸⊥, X ∈ Br]

Pr[E̸⊥]

=
(

1− e−2(ϵ′)2k
)(

1−
Pr[E̸⊥, X ∈ Br]

Pr[E̸⊥]

)

≥
(

1− e−2(ϵ′)2k
)(

1−
Pr[E̸⊥|X ∈ Br]Pr[X ∈ Br]

Pr[E̸⊥, X ∈ Gr]

)

≥
(

1− e−2(ϵ′)2k
)(

1− γ · 1
β/2

)
≥ 1− e−2(ϵ′)2k − 2γ

β
.

Let X be the random variable corresponding to the first output of Expr. (Recall that X is the
ℓ-tuple sampled at the outset of Expr.) Define Dr to be the distribution of the first output of Expr
conditioned on E̸⊥: for x ∈ {0, 1}kn, Dr(x) := Pr[X = x|E̸⊥].

We now will show that B(·; r,U ) correctly solves a large fraction of its input, conditioned
on it not outputting ⊥. We will do this by comparing the behavior of the joint distribution of
(Ukn, B(Ukn; r,U )) to the output of Expr, conditioning both on not outputting ⊥.

To invoke Corollary 7.9 on Dr, show that we can equivalently sample Dr in a manner that
matches the syntax there. Observe that we can equivalently sample Dr by appropriately sampling
from the right distribution over ℓ-tuples (that implicitly incorporates test) and then directly
down-sampling.

In particular, consider Dr the distribution on ℓ-tuples such that Dr can be sampled by (a)
sampling x ← Dr, (b) sampling a random k-set S, and (c) outputting xS.

Recall that:

Dr(x) = Pr[X = x|E̸⊥] =
∑x Pr[X = x] · Pr[test(x) = 1] · PrS[xS = x]

Pr[E̸⊥]

= ∑
x

Pr[X = x] · Pr[test(x) = 1]
Pr[E̸⊥]︸ ︷︷ ︸
D(x)

·Pr
S
[xS = x]

Thus, we can see that (because X is uniform over {0, 1}ℓn)

Dr(x) :=
Pr[X = x] · Pr[test(x) = 1]]

Pr[E̸⊥]
=

Pr[X = x] · Pr[test(x) = 1]]

∑x′ Pr[X = x′]Pr[test(x′) = 1]
=

Pr[test(x) = 1]
∑x′ Pr[test(x′) = 1]

.
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Note that if r ∈ R, then for any x, we can upper-bound Dr(x) using a lower bound on total
mass on Gr. We can deduce such a bound via (a) any x ∈ Gr passes test (and will not produce
⊥) with probability at least 1− γ , (b) |Gr| ≥ β/2 · 2ℓn:

Dr(x) =
Pr[test(x) = 1]

∑x′ Pr[test(x) = 1]
≤ 1

(1− γ)|Gr|
≤ 2

(1− γ)β2ℓn .

Hence, by our note on sampling Dr using Dr, can invoke Corollary 7.9 to deduce that for
r ∈ R:

∆(Dr;Ukn) <

√√√√
2 ln(2)

k log
(

2
(1−γ)β

)
ℓ

=: ρ.

Recall our observation that the distribution of the second output of Expr conditioned on
the first input being x is identical to the distribution of the output of B(x; r,U ) conditioned
on it not being ⊥. Hence, by post-processing39 both distributions via the functionality x 7→
(x, B(x; r,U ′))|B(x; r,U ′) ̸= ⊥), we can deduce that for r ∈ R,

∆(Expr|E̸⊥; (Ukn, B(Ukn; r,U ′))|B(Ukn; r,U ′) ̸= ⊥) ≤ ρ.

It follows from the definition of total variation distance that the output of the statistical test
that outputs 1 if the pair is 9ϵ′-close-to-correct differs by at most ρ between the two joint distri-
butions above. Thus it follows,

Pr
x,r′

[B(x; r, r′) is 9ϵ′-close-to-correct|B(x; r, r′) ̸= ⊥] ≥ 1− e2(ϵ′)2k − 2γ

β
− ρ.

Next, we would like to show that for most x, Prr′ [B(x; r, r′) ̸= ⊥] is noticeable (when r ∈ R).
Let DR denote the distribution induced by sampling Dr when r u← R. Similarly define the
correlated random variable GR, corresponding to Gr for the same r in Dr.

Define H := {x : DR(x) ≤ 2−(kn+1)}. By our bound on the distance of D from uniform we
can deduce that |H| ≤ 2kn+1ρ.

Let px denote the probability of E̸⊥ (w.r.t. r u← R) conditioning on X containing x . Note that

Ex[px] ≥ Pr[X ∈ GR]− Pr[test(X,A(X; r) = 0|X ∈ GR] ≥ β/2− γ.

Moreover, DR(x) = px
∑x′ px′

= px
2nE[px′ ]

. So, if x /∈ H, then px ≥ β/4− γ/2. Thus, if r ∈ R then
for x /∈ H,

Pr
r′
[B(x; r, r′) ̸= ⊥] ≥ β/4− γ/2.

Finally, r /∈ R, we can show that nothing catastrophic is likely to happen. In particular, note
that we can still bound the probability of the following events using the claims above. For any
x ∈ {0, 1}kn,

Pr[ B(x; r,U ) does not output ⊥|X ∈ Br] ≤ γ

Pr[B(x; r,U ) is not 9ϵ′-close-to-correct or ⊥|X /∈ Br] ≤ exp(−2(ϵ′)2k) ≤ γ;

where we abuse notation and take X to denote the tuple input to A in step 3. Thus for r /∈ R and
any x ∈ {0, 1}kn,

Pr[B(x; r,U ) is neither 9ϵ′-close-to-correct nor ⊥] ≤ γ.

39A key fact about statistical distance is that it cannot be increased by post-processing: for any randomized func-
tionality f and any random variables A, B, ∆( f (A); f (B)) ≤ ∆(A; B).
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We are now prepared to show that repeated trials will allow us to amplify the success proba-
bility of B. In particular, B′ will run B q times, outputting the first non-⊥ output from B.

We show the probability that some trial with r /∈ R produces a bad (non-9ϵ′-close-to-correct
and non-⊥) output is at most qγ. For any given trial, the probability that B samples r ∈ R and
does not output ⊥ is at least β/4 · (β/4− γ/2) ≥ (β/4)2.

Hence, for x /∈ H, the probability that either B′ fails to output on some round where r ∈ R or
outputs incorrectly on a round with r /∈ R, is at most

(1− β/4 · (β/4− γ/2))q + qγ

Thus, for q := O(1/β2 log(1/α)) and γ := Θ(αβ2/ log(1/α)), B′ will fail to output (something
other than ⊥) on a round where r ∈ R with probability at most α/3.

So, combining this, with our bound on the correctness of B for r ∈ R conditioned on B not
outputting ⊥, as well as the bound on |H| we get the following:

Pr
x
[B′(x) is 9ϵ′-close-to-correct] ≥ 1− α/3− e2(ϵ′)2k − 2γ

β
− 3

√√√√
2 ln(2)

k log
(

2
(1−γ)β

)
ℓ

.

Thus, by our choice of γ = Θ(αβ2/ log(1/α)), taking kto be appropriately large, ℓ to be appro-
priately larger ℓ ≥ Θ(k log(2/(1− γ)β)/α2), we can bound

Pr
x
[B′(x) is 9ϵ′-close-to-correct] > 1− α.

Finally, note that B runs in time tB = O(tℓ′ + t log(1/γ)/ϵ), and B′ runs in time O(q · tB).
Thus, if α, β, ϵ are constants, then so are γ and q. As a result, the runtime of B′ is simply O(tℓ′).

7.4 Putting it all together

Our main theorem for this section is an immediate corollary of Theorem 7.5 (weak non-batch-
computability for tightly hard downward-self-reducible functions with efficient low-degree ex-
tension) and Theorem 7.12.

Theorem 7.13. There is an absolute constant c > 1 such that the following holds. If there exists a boolean
function f , a function t : N→N, and constants α, β > 0 and γ′ < 1 such that

1. f is hard for randomized O(t(n)1−α) time (on the worst-case),

2. f admits a (t(n)1−α, t(n), no(1))-low-degree extension (in particular, f is computable in time t),

3. f is (m, nγ′)-downward self reducible in time t(n)1−α, where m = m(n) is such that t(m) · n3β ≤
t(n)1−α.

then for some γ ∈ (γ′, 1) there is a direct product function g mapping n bits to nγ bits such that each
output bit of g is computable in time t, and g is (.01, .99)-non-batch-computable in time nαγ · t.

From these observations, we have the following corollary to the theorem above:

Corollary 7.14. If either the (randomized) strong exponential time hypothesis or the (randomized) k-
orthogonal vectors conjecture for dimension d ≤ polylog(n) are true, then there is a function g mapping
n bits to nγ bits such that each output bit of g is computable in time t = Õ(nk), but g is (1/100, 99/100)-
non-batchable in time nαγ · t, for some constants γ, α ∈ (0, 1).
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Proof. Recall that t(n) = Õ(nk). For any α < 1/2 and γ′ > 0, by Proposition 7.4, the prob-
lem k-OV admits an (nk(1−α), Õ(nk · d), kd)-low-degree extension, which (plugging in t) yields a
(t(n)1−α, t(n), no(1))-low-degree-extension. Also, by Proposition 7.4 again with c = γ′, k-OV is
(nk/(k+γ′), nγ′)-downward self-reducible in time n(1+γ′)k/(γ′+k).

We now use Theorem 7.13 with sufficiently small α, β > 0. Specifically, we take α > 0 to be
sufficiently small to satisfy Item (1), relying on the k-OV conjecture (or on SETH). To satisfy Item
(3), we need t(m) · n3β ≤ t(n)1−α, or equivalently

nk2/(k+γ′)+3β ≤ n(1−α)·k ;

this can be satisfied by taking α, β > 0 that are sufficiently small (as functions of γ′).
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