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Abstract

An oblivious bit-fixing source is a distribution over {0, 1}n, where k bits are uniform and
independent and the rest n− k are fixed a priori to some constant value. Extracting (close to)
true randomness from an oblivious bit-fixing source has been studied since the 1980s, with
applications in cryptography and complexity theory.

We construct explicit extractors for oblivious bit-fixing source that support k = Õ(log n),
outputting almost all the entropy with low error. The previous state-of-the-art construction that
outputs many bits is due to Rao [Rao, CCC ’09], and require entropy k ≥ logc n for some large
constant c. The two key components in our constructions are new low-error affine condensers for
poly-logarithmic entropies (that we achieve using techniques from the nonmalleable extractors
literature), and a dual use of linear condensers for OBF sources.
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1 Introduction

Whenever randomness is used in computations–whether because it is necessary or just because
it is faster and simpler in practice, access to unbiased bits is assumed. Because sources of perfect
randomness are notoriously hard to come by, ad hoc, very weak sources of randomness are used
instead. It is essential, therefore, that the crude randomness generated by such sources be purified,
thus driving the development of the beautiful theory of randomness extractors. This problem of
extracting randomness from imperfect sources can be traced back to von Neumann [vN51]. A
randomness extractor is a deterministic procedure that converts a weak random source into a random
source that is close to uniform.

Definition 1.1 (seedless extractor). Let X be a family of distributions over {0, 1}n. We say that
Ext : {0, 1}n → {0, 1}m is an extractor for X with error ε, if for every X ∈ X , Ext(X) is ε-close,
in total variation distance, to Um, the uniform distribution over m bits.

One common assumption is that each weak source X ∈ X has min-entropy.1 Unfortunately, if
all we assume is an entropy guarantee, it is easy to show that such an Ext does not exist. However,
seedless extraction is possible for some restricted classes of sources,2 and indeed, studying the
capabilities and limitations of extraction from natural families of structured sources has been a
fruitful endeavor for the past four decades (see [Goo23, Section 1.3] for a comprehensive up-to-date
survey of seedless extraction results).

One of the simplest and most natural families of weak sources of randomness is oblivious bit
fixing sources, wherein k bits are uniform and independent, while the rest n− k bits are fixed.

Definition 1.2 (OBF source). A distribution X ∼ {0, 1}n is an (n, k) oblivious bit-fixing source if there
exists a subset I ⊆ [n] of size k of “good indices”, such that the {Xi}i∈I -s are uniform and independent, and
the rest are fixed.3

In addition to simulating true randomness, extractors have been found to be useful, even
essential, in myriad applications, and extractors for oblivious bit-fixing sources are no exception. In
cryptography, a prominent application of OBF extractors is exposure resilient cryptography, where a
malicious adversary learns some bits of a secret string (see, e.g., [BBR85, Dod00, CDH+00, DSS01]).
Additional cryptographic applications include the related notion of all-or-nothing transforms
[Riv97, CDH+00, DSS01], generation of block ciphers [JSY99, Bla96], and reducing the number of
secret sharings in the distributed setting [DKM+06]. OBF extractors have also found applications
in complexity theory, mainly for lower bounds [KRT13, CKK+15].

Previous constructions. Extractors for OBF sources were first studied by Chor, Goldreich, Håstad,
Freidmann, Rudich, and Smolensky [CGH+85] in the zero-error setting (indeed, this is one of the
rare examples in which outputting exactly uniform bits is possible). They observed that the simple
XOR function outputs a uniform bit for any k ≥ 1, but also proved that k ≥ n/3 is necessary even

1We say that X ∼ {0, 1}n has min-entropy k, H∞(X) ≥ k, if maxx∼X Pr[X = x] ≤ 2−k. We call such X an (n, k)
source.

2To extract from general (n, k) sources, one can use an additional short uniform seed, driving the rich theory of seeded
extractors. See Definition 3.5 for the definition.

3To clarify the terminology, the word “oblivious” refers to the fact that the fixed bits are chosen before the random
bits are tossed. On the other hand, in nonoblivious bit fixing sources, the non-uniform bits can depend arbitrarily on the
values of the good ones (see Section 3.4).
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for the m = 2 case. More generally, via establishing connections to error correcting codes, Chor et al.
showed that when k = n− t, we can (explicitly) extract m ≈ n− t log(n/t) bits, but cannot extract
more than, roughly, n− (t/2) log(n/t) bits. Further lower bounds in this regime were obtained by
Friedman [Fri92].

What if we allow error, and wish to support lower entropies? Kamp and Zuckerman were
the first to go below linear entropy, achieving k ≥ n1/2+γ and m = Ω(n2γ), with error ε = 2−Ω(m).
The entropy loss in the [KZ06] construction was later improved by Gabizon, Raz, and Shaltiel
[GRS06], who achieved m = (1 − o(1))k and exponentially-small error. Gabizon et al. were also
able to reduce the entropy down to k ≥ poly(log n), but with a worse error of k−Ω(1). As we will
soon discuss, a large error is often prohibitive, especially in cryptographic applications. The first
low-error OBF extractor for poly-logarithmic entropy was constructed by Rao [Rao09], outputting
m = (1− o(1))k bits with error 2−kΩ(1)

. We will further discuss Rao’s construction in Section 2.1.
For even lower entropies, recent explicit constructions that support near-logarithmic entropy

already work for the more general family of affine sources.4 Using techniques from the nonmalleable
extractors literature, Chattopadhyay, Goodman, and Liao [CGL22] achieved k = Õ(log n), and this
was later improved by a recent work of Li [Li23] that gets k = O(log n). Unfortunately, the latter
two constructions work for constant error and one output bit, which is not relevant for OBF extractors.
However, one can think of applying techniques similar to the ones in [Sha08, Li16]. But these, to
the best of our knowledge, do not readily give a significant improvement on either m or ε.

Lastly, it is interesting to note that while a straightforward application of the probabilistic
method gives a non-explicit construction for (roughly) k ≥ log n+2 log(1/ε) and m = k−2 log(1/ε),
logarithmic entropy is not a lower bound. In [KZ06], they gave a construction that outputs only
Ω(log k) bits, has error k−Ω(1), but works for any k. In [CS15], Cohen and Shinkar gave a lower
bound for extraction, and showed that when k is a small enough function of n, Ω(log k) output
bits are all we can hope for. Moreover, they gave a “semi-explicit” construction, when the error is
large enough, for sub-logarithmic entropy. Their construction supports k = Ω(log log n), outputs
m = k −Oε(1) bits, and runs in time 2Õε(logn).

Our result. We give an explicit low-error construction for k ≥ Õ(log n) that outputs almost all the
entropy.

Theorem 1.3 (see also Theorem 5.4). There exist constants c > 1 and β ∈ (0, 1) such that the following
holds for any n ∈ N and k ≥ log n · (log log n)c. There exists an explicit function

OBFExt : {0, 1}n → {0, 1}m=(1−o(1))k

that is a (k, ε) extractor for OBF sources, where ε = 2−(k/ logn)β .

While the error guarantee does not meet the optimal 2−Ω(k) (or even 2−kΩ(1)
), both our construc-

tion and [Rao09] achieve ε = n−ω(1) starting from k = poly(log n). Importantly, our construction
is the first to extract almost all the entropy with vanishing error starting from k = Õ(log n). In
particular, our error guarantee surpasses a k−Ω(1)-type dependence for all ranges of k.

4An (n, k) affine source is a distribution that is flat over some affine subspace of Fn
2 of dimension k. Thus, an (n, k)

OBF source is simply an affine source whose basis consists of only elementary vectors.
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The low-error challenge. The recent decade has seen exciting progress in extractors that support
small entropies, most notably in constructions of two-source extractors5 ([CZ19, BADT19, Coh17,
Li19, Li23]), and the use of similar techniques to construct affine extractors [Li16, CGL22, Li23].
While these extractors, which generally follow the celebrated Chattopadhyay–Zuckerman frame-
work [CZ19], work for low entropies, their error is relatively high for reasons which will be
discussed in Section 2.2. Low-error constructions are crucial for the security of cryptographic
applications, as well as for good correlation bounds in lower bounds applications, but despite
numerous attempts, recent constructions do not obtain negligible error in polynomial time.6

Our construction uses key components of the [CZ19] framework (mainly towards constructing
new low-error affine condensers, see Section 2.2), and is able to outperform the error parameter in
most related constructions. We thus view this work also as a proof-of-concept for utilizing more
recent machinery to tackle low-error constructions.

2 Proof Overview

Our construction combines two new components: A low-error affine condenser with a small
gap, and a dual use of linear condensers for OBF sources. In Section 2.1, we will revisit Rao’s
construction [Rao09] and his use of linear condensers for OBF sources. In Section 2.2, we will
discuss the [CZ19] framework, the low-error adaptation of [BCDT19] to two-source condensers,
and our construction of affine condensers. In Section 2.3, we will give the full construction, after
discussing our use of linear condensers for OBF sources.

2.1 Rao’s Construction

Given an (n, k) OBF source X , Rao’s construction [Rao09] goes roughly as follows.7

1. Transform X into X ′ = P ·X , where P is a linear transformation, X ′ is much shorter than X ,
yet it preserves the entropy of X . Thus, this step can be seen as applying a linear condenser for
OBF sources, and we discuss this step a bit more thoroughly below. Note that X ′ is an affine
source.

2. Transform X ′ into an affine somewhere-random source. This is a source distributed over a table,
where one row is uniform, and every other row depends on the uniform one in an affine way.
Z has few rows, kΩ(1), but the length of each row is almost k. This transformation is done via
applying a (linear) seeded extractor on X ′ and every possible seed, i.e., Zi = Ext(X ′, i).8 This
is the part that requires X to have poly-logarithmic entropy.

5A two-source extractor for entropy k extracts from the family of sources X in which each X ∈ X comprises two
independent sources (X1, X2) ∼ {0, 1}n × {0, 1}n, each Xi satisfies H∞(Xi) ≥ k.

6For two-source extractors, the best low-error constructions require k ≥ (1/2 − α)n for a small constant α > 0
[Bou05, Lew19], whereas the [CZ19] construction gets k = poly(logn) with ε = k−Ω(1), and followup constructions
for even lower entropies only work for constant error. For affine extractors, the best low-error constructions require
k = ω(n/ log logn) [Yeh11, Li11, LZ24], whereas, again, recent constructions in the near-logarithmic regime only work
for constant error.

7The [Rao09] construction works not only for OBF sources, but more generally to low-weight affine sources. Our
result captures low-weight affine sources as well, and we discuss this in Section 5.3.

8More accurately, to make each row longer than kΩ(1), Rao injects more entropy to the table by performing an
additional extraction step, this time with X itself as the source, and Zi as the seed.
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3. Next, extract from Z. This step is done via repeatedly applying an affine somewhere-random
condenser, that halves the number of rows in the table, while only shortening each row by a
little bit.

Our construction makes use of Step (1) (in fact, more than once, see Section 2.3), and completely
dispenses with Step (3). In our construction, once we have our table Z from Step (2), we condense it
into a single string using a different mechanism. This is encapsulated under a new affine condenser,
which we discuss soon in Section 2.2.

Linear Condensers for OBF Sources. In [Rao09], Rao observed that parity check matrices of
binary error correcting codes are good linear condensers for OBF sources, and low-weight affine
sources in general.9 Specifically, let P ∈ Fn×t

2 be the parity check matrix of a linear code C ⊆ Fn
2

with co-dimension t and distance k + 1 (see Section 3.5 for the relevant definitions). Then, given an
(n, k) OBF source X , the affine source P ·X ∼ Ft

2 still has entropy k (see Lemma 5.2 for the easy
proof).

This (lossless) condensing allows Rao, and us, to apply affine primitives on sources of much
shorter lengths. Indeed, working with BCH codes, one can get t = O(k log n).10 In our construction,
we will also use a lossy instantiation of these linear OBF condensers, where t≪ k. We discuss this
further in Section 2.3.

2.2 Low-Error Affine Condensers

The [CZ19] Framework. We start by briefly describing the [CZ19] framework, originally geared
towards obtaining an extractor for two independent sources. The CZ construction uses two main
ingredients: A “correlation breaking” primitive,11 and a resilient function. For the former, we will
consider here a t-correlation breaker with advice,12 which is a function CB : {0, 1}n×{0, 1}d → {0, 1}m
that takes inputs from a weak source X1, a uniform seed Y , and a fixed advice string α, and the
guarantee is that

CB(X1, Y, α) ≈ Um

∣∣∣ {
CB

(
X1, Y

(1), α(1)
)
, . . . ,CB

(
X1, Y

(t), α(t)
)}

,

where Y (1), . . . , Y (t) are independent of X , and the α(i)-s are all different from α. Roughly speaking,
for a typical y ∼ Y , CB(X1, y, α) is close to uniform even given the value of CB on t other adversar-
ially chosen y(i)-s. Hence, if we were to build a table with D = 2d rows, and put, say, CB(X1, i, i) in
the i-th row, then rows of good seeds were not only close to uniform, but they’re also close to being
t-wise independent.

9It is interesting to note that relying on the distance property of error correcting codes alone cannot give optimal
linear OBF condensers. One can show that there exist condensers with output length t = O(k).

10[Rao09] uses an error correcting code that comes from small-bias sets, and achieve a worse distance-to-codimension
tradeoff. In fact, for our construction, BCH codes are necessary.

11The idea of constructing extractors via correlation breaking appeared prior to [CZ19], notably in [Li13a, Li13b, Li15,
Coh16].

12The actual definition offers much more flexibility than what we describe here, but it suffices for this discussion. Also,
the original CZ construction uses non-malleable extractors as the correlation breaking primitive, but there are known
reductions between the two objects.
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Yet, there are no one-source extractors, and [CZ19] need to use a second weak source X2, to sub-
sample from the seeds of CB. Specifically, take a seeded extractor Ext : {0, 1}n×{0, 1}d0 → {0, 1}d,13

and consider the table Z with r = 2d0 ≪ D rows, in which each row is given by

Zi = CB(X1,Ext(X2, i), i). (1)

An analogous way to view the construction of Z, which would be more beneficial towards our
construction, is to first create the table with r rows wherein the i-th row is simply Ext(X2, i). While
most of the rows in that table are marginally close to uniform, they are arbitrarily correlated. We
then use CB with an independent source X1 to (partially) break correlations.14

It turns out that Z itself, when the parameters are set correctly, is close to a table in which r − q
“good” rows are truly t-wise independent, and there are q “bad” rows that can depend arbitrarily
on the good ones. Indeed, many constructions following [CZ19] can also be divided into two steps,
where the first one transforms X1 and X2 into Z = Z(X1, X2) with the above structure, known
as a non-oblivious bit-fixing source, and the second one, which we now discuss, is where resilient
functions comes into play.

Concisely, a resilient function f : {0, 1}r → {0, 1} is an extractor for non-oblivious bit fixing
sources. That is, we want a nearly-balanced f whose output cannot be heavily influenced by any
small set of q bad bits (we’re considering m = 1 for now), and in our case f needs to be resilient
even when the good bits are only t-wise independent (and uniform), unlike the more standard case
in which the good bits are completely independent. The second step of the CZ framework then
amounts to applying a resilient function on Z, outputting W = f(Z).

While this beautiful approach does give us that W ≈ε U1, it is inherently bound to have runtime
which is polynomial in 1/ε. The Kahn–Kalai–Linial theorem [KKL88] tells us that no matter what f
is, there will always be a single bad bit that has influence p = Ω(log r/r), i.e., with probability p
over the good bits, the single corrupt bit can fully determine the result.15 Thus, the running time,
which is at least r, is also at least 1/ε. This is a common feature of almost all constructions that
follow the CZ approach.

The [BCDT19] Low-Error Adaptation. In [BCDT19], Ben-Aroya, Cohen, Doron, and Ta-Shma,
evaded the above resilient functions barrier by aiming for a weaker object – a two source condenser.
Namely, the output W is not ε-close to uniform, but ε-close to some random variable W ′ ∼ {0, 1}m
that has min-entropy m − g, where we call g the entropy gap (note that an extractor has gap
g = 0). While when m = 1, a single malicious bit can bias the result pretty significantly, the
key observation in [BCDT19] is that when m becomes large, the probability that the bad bits can
reduce g bits of entropy from the output can be exponentially-small in g. We call such a function
fs : Σ

r → Σ, Σ = {0, 1}m, an entropy-resilient function, which is essentially a condenser for non-
oblivious symbol-fixing sources (that is, the natural extension of bit-fixing sources to arbitrary
alphabets). In [BCDT19], they constructed an explicit such fs, and were able to conclude that
W = fs(Z) is ε-close to having gap g = o(log(1/ε)) provided that k is at least polynomial in
log(n/ε), and m = kΩ(1). Importantly, the construction’s runtime is polynomial in n, and not in 1/ε.

13See Definition 3.5 for the formal definition.
14This viewpoint was taken, e.g., in [Coh16, Li16, BADT20].
15In terms of explicit f -s, [CZ19] derandomized the Ajtai-Linial [AL93] randomized construction, supporting q = r1−δ

for any constant δ > 0. In a subsequent work, Meka obtained a derandomized version of [AL93] that matches the

randomized construction and can support q = O
(

r
log2 r

)
bad bits.
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Teleporting to the affine setting. Starting from the work of Li [Li16], and throughout a sequence
of followup works [CL22, CGL22, CL22, Li23], the correlation breaking framework was used to
extract from affine sources and other related families of weak sources such as sumset sources,
small-space sources, and interleaved sources. While in the affine case we don’t have two sources at
our disposal, our single source has structure we can utilize.

Specifically, recall our table {Ext(X, i)}i∈[r] above, and assume that Ext is linear, meaning
that for any fixed seed, the output is a linear function of the source. Here too, our table has
many good rows (in fact, the good rows are exactly uniform), but they are, again, arbitrarily
correlated. It turns out that we can use the same source X to break the correlation and make the
table close to a t-non-oblivious bit-fixing source. This heavily uses the (by now) standard “affine
conditioning” technique (see Lemma 3.4), in which given a linear function L : {0, 1}n → {0, 1}m,
we can decompose X = A + B, where both A and B are affine, and there is a bijection between
A and L(X), and B is independent of L(X).16 Conveniently, the intricate correlation breaking
constructions for linearly-correlated source and seed was made explicit in [CL22], coined affine
correlation breakers. The state-of-the-art affine correlation breakers follow from a recent work of Li
[Li23] (see Definition 3.10 and Theorem 3.11).

Our Low-Error Affine Condenser. Armed with a low-error two-source condenser, and a method
to adapt the two-source setting to the affine world, a low-error affine condenser follows rather
easily. Consider the table Z from Equation (1), but this time we form it as follows:

Zi = AffCB(X, LExt(X, i), i), (2)

where AffCB is an affine correlation breaker, and LExt is a linear seeded extractor. We then output

W = fs(Z),

where fs is the above entropy resilient function. We can then show that if our affine source X ∼ Fn
2

has at least k ≥ poly(log(n/ε)) entropy, W ∼ {0, 1}k
Ω(1)

is ε-close to having entropy gap o(log(1/ε)).
The formal construction is given in Section 4.

2.3 Our OBF Extractor

Equipped with a linear condenser for OBF sources P , and a low-error affine condenser for poly-
logarithmic entropies AffCB, one natural attempt would be to try and output

LExt(X,AffCB(P (X))),

where LExt is a linear seeded extractor. Note that P (X) is a short affine source with entropy k, so
the entropy lower bound of AffCB is now much lower! There are three potential problems with the
above construction:

1. We want AffCB to supply the seed for LExt, but Y = AffCB(P (X)) is not uniform – it is only
ε-close to having some entropy gap g. But since g is tiny, we can in fact use Y as a seed,
suffering only a small loss in the error. (This observation is by now standard.)

16In our case, the function L is chosen according to our linear seeded extractor Ext, and in fact bundles up t of them.
For a more detailed description of the correlation breaking mechanism, see, for example, [Li16].
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2. X has length n, and we don’t have linear seeded extractors outputting many bits with optimal
seed length. In particular, the entropy in Y cannot be greater than k, but all known extractors
require seed≫ log2 n.

To try and resolve the issue, one may change the construction to LExt(P (X),AffCB(P (X))),
thereby only working with the short P (X). Even then, we are still left with the challenge of
handling the correlations between the source and the seed.

3. Indeed, Y depends on P (X) (or X) – it’s a deterministic function of it! As mentioned
above, we will use the affine conditioning technique in order to handle the correlations. We
decompose X = A + B, where A and B are affine and independent, A is a deterministic
function of P (X), and B is independent of P (X).

Morally, after an appropriate “fixing”, the source we use for LExt is the affine source B. But
we can only guarantee that H∞(B) ≥ k−|P (X)|, which provides no useful bound if we want
to retain most of the entropy of X .

In order to make X shorter and guarantee that some entropy is left even after the affine
conditioning, we make use of linear OBF condensers in two ways:

OBFExt(X) = LExt(P1(X),AffCond(P2(X)))

Above,

• P1 is a lossless condenser for OBF sources, mapping n bits to n′ = O(k log n) bits.

• P2 is a lossy condenser for OBF sources, mapping n bits to γk bits for a small γ ∈ (0, 1), while
retaining k′ ≈ k

logn entropy. We construct P2 using error correcting codes as well, only with
different parameters.

For AffCB to condense, we need k′ ≥ poly(log(n′/ε)), and this sets our lower bound on k and
the bound on the error.

Finally, we need to show that we can apply LExt. Towards this end, we “affine condition” with
respect to P2(X), and so we can write

OBFExt(X) = LExt(P1(A), Y ) + LExt(P1(B), Y ), (3)

where Y = AffCB(P2(X)), A and B are independent, and P2(X) is a deterministic function of A.
Thus, B and Y are also independent, and furthermore, B still has enough entropy. This, in turn,
implies that P1(B) has enough entropy, and we can safely fix a good seed y ∼ Y , making the
first term in Equation (3) fixed, and the second one close to uniform. The full details appear in
Section 5.2.

3 Preliminaries

We use log(x) for log2(x). For an integer n, we denote by [n] the set {1, . . . , n}. The density of a
subset B ⊆ A is denoted by µ(B) = |B|

|A| . For a function f : Ω1 → Ω2, we say that f is explicit if there
exists a deterministic procedure that runs in time poly(log(|Ω1|)) and computes f .

8



Random variables, entropy. The support of a random variable X distributed over some domain Ω
is the set x ∈ Ω for which Pr[X = x] ̸= 0, which we denote by Supp(X). The total variation distance
(or, statistical distance) between two random variables X and Y over the same domain Ω is defined
as |X − Y | = maxA⊆Ω(Pr[X ∈ A] − Pr[Y ∈ A]). Whenever |X − Y | ≤ ε we say that X is ε-close
to Y and denote it by X ≈ε Y . We denote by Un the random variable distributed uniformly over
{0, 1}n. We say a random variable is flat if it is uniform over its support. Whenever we write x ∼ A
for A being a set, we mean x is sampled uniformly at random from the flat distribution over A.

For a function f : Ω1 → Ω2 and a random variable X distributed over Ω1, f(X) is the random
variable distributed over Ω2 obtained by choosing x according to X and computing f(x). For
a set A ⊆ Ω1, f(A) = {f(x) : x ∈ A}. For every f : Ω1 → Ω2 and two random variables X and
Y distributed over Ω1 it holds that |f(X) − f(Y )| ≤ |X − Y |, and is often referred to as a data-
processing inequality. Another property of statistical distance is the triangle inequality, which states
that for all distributions X,Y, Z, we have |X − Y | ≤ |X − Z|+ |Y − Z|.

The min-entropy of X is defined by

H∞(X) = min
x∈Supp(X)

log
1

Pr[X = x]
,

and it always holds that H∞(X) ≤ H(X), where H() is Shannon’s entropy. A random variable X
is an (n, k) source if X is distributed over {0, 1}n and has min-entropy at least k.

Limited Independence. We say that a distribution X ∼ {0, 1}n is (t, γ)-wise independent, if the
restriction of X to any t coordinates is γ-close to Ut. When γ = 0, we simply say that X is t-wise
independent.

Lemma 3.1 ([AGM03]). Let X ∼ {0, 1}n be (t, γ)-wise independent. Then, X is (nγt)-close to a t-wise
independent distribution.

3.1 OBF and Affine Sources

We repeat the definition of affine and OBF sources.

Definition 3.2 (affine source). An (n, k) affine source is a distribution X ∼ Fn
2 that is flat over some

(unknown) affine subspace of dimension k.

In other words, for any such X there exist independent v0, v1, . . . , vk ∈ Fn
2 such that sampling

x ∼ X amounts to sampling α1, . . . , αk ∼ F2 uniformly at random, and outputting x = v0 +∑k
i=1 αivi. Notice that when X is affine, H∞(X) = H(X).

Definition 3.3 (OBF source). An (n, k) oblivious bit-fixing (OBF) source is a distribution X ∼ {0, 1}n

for which there exists an (unknown) subset I ⊆ [n] of size k, and c ∈ {0, 1}n−k, such that XI = Uk, and
X[n]\I is fixed to c.

In other words, a bit-fixing source is a very structured affine source – one in which v1, . . . , vk are
indicator vectors. The following lemma will let us use linearly-correlated source and seed when
using linear seeded extractors.

Lemma 3.4 (affine conditioning, [GR08, Rao09, Li11]). Let X be an (n, k) affine source, and let
L : {0, 1}n → {0, 1}m be a linear function. Then, there exist independent affine sources A and B, over
{0, 1}n, such that:
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• X = A+B.

• There exists c ∈ {0, 1}m such that for every b ∈ Supp(B) it holds that L(b) = c.

• H(A) = H(L(A)) and there exists an affine function Linv : {0, 1}n → {0, 1}m such that A =
Linv(L(A)). In particular, H(A) ≤ m and H(B) ≥ k −m.

• For every ℓ ∈ Supp(L(X)), H(X| {L(X) = ℓ}) = H(B).

3.2 Seeded Extractors

Definition 3.5 (seeded extractor). A function Ext : {0, 1}n × {0, 1}n → {0, 1}m is a (k, ε) (seeded)
extractor if for every (n, k) source and an independent and uniform Y ∼ {0, 1}d, it holds that Ext(X,Y ) ≈ε

Um. Furthermore, we say that Ext is strong if (Ext(X,Y ), Y ) ≈ε (Um, Y ).
We say that Ext is linear if it is linear in the source, namely if for any x1, x2 ∈ {0, 1}n and y ∈ {0, 1}d,

it holds that Ext(x1 + x2, y) = Ext(x1, y) + Ext(x2, y).

Combining a (linear variant) of the GUV seeded condenser [GUV09, CI17] with the Shaltiel–
Umans extractor [SU05], we can get the following logarithmic-seed linear seeded extractor, that
outputs a constant power of the entropy.

Theorem 3.6 (linear seeded extractor, I [Li16]). There exists a constant c1 such that the following holds,
for any positive integers n and c1 log

8 n ≤ k ≤ n, and any ε ≥ n−2. There exists an explicit linear strong
(k, ε) extractor LExt1 : {0, 1}n × {0, 1}d → {0, 1}m with d = c1 · log n and m =

√
k.

Replacing the SU extractor with Trevisan’s extractor [Tre01], as analyzed in [RRV02], we can
output almost all the entropy, at the cost of a larger seed.

Theorem 3.7 (linear seeded extractor, II). There exists a constant c2 such that the following holds, for
any positive integers n and k ≤ n, and any ε, γ > 0. There exist an explicit linear strong (k, ε) extractor
LExt2 : {0, 1}n × {0, 1}d → {0, 1}m where m = (1− γ)k and

d = c2 ·
(
log n+ log2 k · log(1/ε) · log(1/γ)

)
.

We omit the easy proof, which is similar to the proof of Theorem 3.6 in [Li16].
When the extractor is linear and the source is affine, a good seed already implies perfect

uniformity, for any nontrivial error.

Lemma 3.8 ([Rao09]). Let LExt : {0, 1}n × {0, 1}d → {0, 1}m be a linear strong (k, ε) extractor with
ε < 1/2. Then, for every (n, k) affine source, it holds that

Pr
y∼Ud

[|LExt(X, y)− Um| = 0] ≥ 1− 2ε.

We will also need the following claim, that is often used when one wishes to use seeded
extractors with a non perfect seed.

Claim 3.9 (strong extractors with weak seeds). Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a strong (k, ε)
extractor, let X be an (n, k) source, and let Y be δ-close to a (d, d− g) source which is independent of X .
Then, with probability at least 1− 2g

√
ε− δ over y ∼ Y , it holds that Ext(X, y) ≈√

ε Um.
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Proof: By Markov’s inequality, there exists a set BAD ⊆ {0, 1}d of density ρ(BAD) ≤
√
ε such that

for every z /∈ BAD it holds that Ext(X, z) ≈√
ε Um. Let Y ′ be a (d, d− g) source that is δ-close to Y .

Then,

Pr[Y ∈ BAD] ≤ Pr[Y ′ ∈ BAD] + δ

=
∑

z∈BAD

Pr[Y ′ = z] + δ ≤ |BAD| · 2−(d−g) + δ ≤ 2g
√
ε+ δ.

3.3 Affine Correlation Breakers

We proceed with formally defining affine correlation breakers (with advice).

Definition 3.10 (affine correlation breaker). We say that AffCB : {0, 1}n × {0, 1}d × {0, 1}a →
{0, 1}m is a (t, k, ε) affine correlation breaker if for all distributions X,X(1), . . . , X(t) ∼ {0, 1}n,
B,B(1), . . . , B(t) ∼ {0, 1}n, A,A(1), . . . , A(t) ∼ {0, 1}n, Y, Y (1), . . . , Y (t) ∼ {0, 1}d, and all strings
α, α(1), . . . , α(t) ∈ {0, 1}a such that:

• X = A+B and X(i) = A(i) +B(i) for all i ∈ [t],

• H∞(B) ≥ k and Y is uniform,

•
(
B,B(1), . . . , B(t)

)
is independent of

(
A,A(1), . . . , A(t), Y, Y (1), . . . , Y (t)

)
, and,

• For all i ∈ [t], α ̸= α(i),

it holds that(
AffCB(X,Y, α),

{
AffCB

(
X(i), Y (i), α(i)

)}
i∈[t]

)
≈ε

(
Um,

{
AffCB

(
X(i), Y (i), α(i)

)}
i∈[t]

)
.

We say that AffCB is strong if the above holds also when we add Y, Y (1), . . . , Y (t).

We will use the following recent affine correlation breaker.

Theorem 3.11 ([Li23]). For any positive integers n,m, t, a, and any ε > 0, there exists an explicit
strong (t, k, ε) affine correlation breaker AffCB : {0, 1}n × {0, 1}d × {0, 1}a → {0, 1}m, where k =
O
(
tm+ ta+ t2 log2(t+ 1) log(nt/ε)

)
and d = O

(
m+ ta+ t log3(t+ 1) log(nt/ε)

)
.

3.4 Entropy-Resilient Functions

We summarize the required definitions and results given in [BCDT19].

Definition 3.12 (NOSF sources). Let Σ = {0, 1}m. A (q, t) non-oblivious Σ-fixing source X =

(X1, . . . , XD) is a random variable over ΣD = {0, 1}Dm for which there exists a set BAD ⊆ [D] of
cardinality q′ ≤ q such that:

• The joint distribution of {(Xi)j : i ∈ [D] \ BAD, j ∈ [m]}, denoted by GX , is t-wise independent
over {0, 1}(D−q′)m; and

11



• Each of the random variables in BX ≜ {(Xi)j} with i ∈ BAD and j ∈ [m] may depend arbitrarily on
all other random variables in GX and BX .

If t = (D − q′)m, we say that X is a q-non-oblivious Σ-fixing source. If m = 1, the definition coincides
with the standard definition of non-oblivious bit-fixing sources.

In [BCDT19], Ben-Aroya et al. constructed seedless condensers for NOSF sources, also known
as entropy-resilient functions.

Definition 3.13 (entropy-resilient functions). Let Σ = {0, 1}m. A function f : ΣD → Σ is a (q, t, g, ε)
entropy-resilient function if for every (q, t) non-oblivious Σ-fixing source X over ΣD, the output f(X) is
ε-close to an (m,m− g)-source.

Theorem 3.14 ([BCDT19]). For every constant 0 < γ < 1 there exist constants 0 < α < 1 and c′ ≥ 1 such
that the following holds. For all integers D, m ≤ Dα/2, every ε > 0, and for every integer t ≥ m · (logD)c

′ ,
there exists an explicit function EntRes : ΣD → Σ, for Σ = {0, 1}m, that is (q = D1−γ , t, g, ε) entropy-
resilient, with entropy gap g = o(log(1/ε)).

3.5 Error Correcting Codes

A binary code C ⊆ Fn
2 is linear if C is a linear subspace of Fn

2 . The dimension of C as a subspace is
called the dimension of the code. We will identify a linear code C ⊆ Fn

2 of dimension k with the image
of its encoding function C : Fk

2 → Fn
2 , which is given by a generator matrix A ∈ Fn×k

2 . A parity check
matrix of C is a generator matrix P ∈ F(n−k)×n

2 of the dual code C⊥ = {x ∈ Fn
2 : ⟨x, c⟩ = 0 ∀c ∈ C},

and thus Px = 0 if and only if x ∈ C.
We say that an error correcting code C ⊆ Fn

2 has distance d if for any distinct codewords x, y ∈ C
it holds that xi ̸= yi in at least d i-s. We say that C is an [n, k, d] code, if C ⊆ Fn

2 is a linear code of
dimension k and distance d. We will use the following explicit code, the BCH code.

Theorem 3.15 ([BRC60, Hoc59]). There exists a constant c > 0 such that the following holds. For every
positive integers n and d < n, there exists an [n, r, d] code CBCH with co-dimension n− r = ⌊c log n⌋ · d.17

Moreover, the parity-check matrix of CBCH can be constructed in time poly(n).

4 Low-Error Affine Condensers

In this section, we give our construction of low-error affine condensers with tiny entropy gap.

Theorem 4.1. There exist universal constants c ≥ 1 and α ∈ (0, 1) such that the following holds. For
any positive integers n, k, and any ε > 0 such that n ≥ k ≥ logc

(
n
ε

)
, there exists an explicit function

AffCond : {0, 1}n → {0, 1}m where m ≥ kα such that for any (n, k) affine source X , it holds that
AffCond(X) is ε-close to an (m,m− g) source, where g = o(log(1/ε)).

We will start by reducing an affine source to a non-oblivious symbol-fixing (NOSF) source.

17The original BCH code assumes n = 2m − 1 for some integer m, and then n− r ≤ md
2

. Standard manipulations let
us work for any n.
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Lemma 4.2. There exist constants c, c1 > 1 such that the following holds, for any positive integers n, t,m, k,
and any ε > 0, satisfying k ≥ (mt log(n/ε))c. There exists an explicit function AffToNOSF : {0, 1}n →
ΣD with Σ = {0, 1}m and D = nc1 such that for every (n, k) affine source X , AffToNOSF(X) is ε-close to
a (D1−1/c1 , t) NOSF source.

Proof: We use the following two building blocks.

• Let LExt : {0, 1}n × {0, 1}d0 → {0, 1}d be the linear strong (kExt, εExt = 1/2n) extractor given
by Theorem 3.6, where kExt = d2 ≥ c1 log

8 n, for c1 being the constant given in Theorem 3.6.
Note that we can take d0 = c1 · log n.

• Let AffCB {0, 1}n×{0, 1}d×{0, 1}d0 → {0, 1}m be the (t−1, kCB = k−td, εCB) affine correlation
breaker of Theorem 3.11 with εCB = ε

t(mD)tm , and

d = O
(
m+ td0 + t log3(t+ 1) log(nt/εCB)

)
= O

(
t5m log n+ t4 log(1/ε)

)
.

We need to make sure that k ≥ kCB + td where kCB = O(tm+ td0 + t2 log2(t+1) log(nt/εCB)),
and indeed, this is satisfied by taking k ≥ C ·

(
t6m log n+ t5 log(1/ε)

)
for a large enough

constant C. We also need to make sure that k ≥ d2 and k ≥ c log8 n, and both inequalities,
together with our previous lower bound on k, indeed holds whenever

k ≥ C · t10m2 log8 n log2(1/ε)

for a large enough constant C.

Our construction goes as follows. For simplicity, identify {0, 1}d0 with [D = nc1 ]. Given x ∈ {0, 1}n:

1. For every i ∈ [D], compute yi = LExt(x, i).

2. For every i ∈ [D], compute zi = AffCB(x, yi, i).

We’ll show that the table Z = (Z1, . . . , ZD) satisfies the requirement of the lemma. First, by
Lemma 3.8, we have a set BAD ⊆ [D] of density ρ(BAD) ≤ 1/n such that for any i /∈ BAD it
holds that Yi ∼ {0, 1}d is uniform. Next, fix t good rows {i1, . . . , it} ⊆ [D] \ BAD. Consider the
linear function L : {0, 1}n → {0, 1}t·d that is given by (LExt(·, i1), . . . , LExt(·, it)). Via the affine
conditioning lemma, Lemma 3.4, we can write X = A+B, where:

• A and B are affine and independent.

• H(B) ≥ H(X)− td = kCB.

• L(B) is constant, so Yi1 , . . . , Yit is independent of B, and moreover, B is independent of
(A, Yi1 , . . . , Yit).

Recalling that each Yij is uniform, all conditions are met to apply are affine correlation breaker,
which gives us (

Zij , {Zik}k∈[t]\{j}
)
≈εCB

(
Um, {Zik}k∈[t]\{j}

)
for every j ∈ [t]. Therefore,

(Zi1 , . . . , Zit) ≈t·εCB Utm,

and so by Lemma 3.1, Z itself is (mD)tm · tεCB = ε close to a (q, t) non-oblivious {0, 1}m-fixing

source for q = D
n = D

1− 1
c1 .
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Next, we can simply apply the low-error condenser for NOSF sources given by [BCDT19].

Proof of Theorem 4.1: Given n and ε > 0, let m be the number of bits we eventually output, and
the entropy of X will be determined according to that later on. Set γ = 1

c1
, and let α ∈ (0, 1) and

c′ ≥ 1 be the constants that are set according to γ, guaranteed to us by Theorem 3.14.
Let AffToNOSF : {0, 1}n → ΣD be the function from Lemma 4.2, where Σ = {0, 1}m and

D = nc1 , set with t← m · dc′0 and ε← ε/2. By that lemma, there exists a constant C > 1 such that
whenever k ≥ (m log(n/ε))C and X is an (n, k) affine source, it holds that AffToNOSF(X) is ε

2 -close
to an (D1−γ , t) NOSF source.

Now, let EntRes : ΣD → Σ be the (D1−γ , t, g, ε/2) entropy resilient function from Theorem 3.14.
Whenever m ≤ Dα/2, we are guaranteed that EntRes(AffToNOSF(X)) is ε-close to an (m,m − g)
source with g = o(log(1/ε)). To conclude, we have that there exist constants C ≥ 1 and δ ∈ (0, 1)
such that whenever m ≤ nδ and k ≥ (m log(n/ε))C , the function

AffCond(x) = EntRes(AffToNOSF(x))

is an affine condenser with entropy gap g = o(log(1/ε)). Putting it differently, there exist constants
C ′ ≥ 1 and δ′ ∈ (0, 1) such that whenever k ≥ (log(n/ε))C

′
, our condenser outputs kδ

′
bits.

5 Extractors for OBF Sources

5.1 Linear OBF Condensers

We begin by defining these condensers, and focus on the linear setting.

Definition 5.1 (OBF condenser). A matrix L ∈ Fm×n
2 is an (n, k)→ (m, t) linear condenser for OBF

sources if H∞(L(X)) ≥ t for any (n, k) OBF source X .

Rao showed that linear condensers for OBF sources can be obtained by parity check matrices of
binary codes. The next statement is a bit different than the one in [Rao09], so we provide the proof
for completeness.

Lemma 5.2 (following [Rao09]). Let X be an (n, k) OBF source, let k′ ≤ k be any positive integer, and let
C ⊆ Fn

2 be an [n, r, d] code with a parity check matrix P ∈ Fm×n
2 , where m = n− r and d ≥ k′ + 1. Then,

Z = P ·X ∼ {0, 1}m satisfies H∞(Z) ≥ k′.

Proof: Letting i1, . . . , ik ∈ [n] be the entropic coordinates of X , and let c ∈ Fn
2 be its constant shift.18

Consider
Vk′ = Span

({
ei1 , . . . , eik′

})
⊆ Supp(X) + c,

observing that each element of Vk′ has Hamming weight at most k′. Since C has distance greater
than k′, Vk′ ∩C = {0} and so P is injective on Vk′ and thus also on Vk′ + c. Let W be the subspace for
which Supp(X) + c = Vk′ ⊕W , and also refer to Vk′ and W as the corresponding flat distributions.
Thus, for each z ∈ {0, 1}m,

Pr[Z = z] = Pr[P · Vk′ = z + P ·W + c] = E
w∼W

[Pr[P · Vk′ = z + P · w + c]] ≤ 2−k′ ,

and we are done.

18We can assume that c is zero on i1, . . . , ik.
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Using the BCH codes from Theorem 3.15, we get the following linear condensers for OBF
sources.

Corollary 5.3. There exists a constant c > 0 such that the following holds. For every positive integers n,
k ≤ n, and k′ ≤ k, there exists an explicit linear function P : {0, 1}n → {0, 1}m for m = ck′ log n, such
that the following holds. For every (n, k) OBF source X , it holds that H∞(P (X)) ≥ k′. That is, P is an
(n, k)→ (ck′ log n, k′) linear condenser for OBF sources.

5.2 OBF Extractors for Almost-Logarithmic Entropy

We are given n, k ∈ N, and γ > 0. Let ε be our error guarantee, to be determined later on. We use
the following ingredients:

• Let P1 : {0, 1}n → {0, 1}n1 be the linear condenser for OBF sources given in Corollary 5.3, set
with k′ ← k, so n1 = c · k log n for some universal constant c > 0.

• Let P2 : {0, 1}n → {0, 1}n2 be the linear condenser for OBF sources given in Corollary 5.3, set
with k′ ← γk

2c logn ≜ kCond, so n2 = γk/2.

• Let AffCond : {0, 1}n2 → {0, 1}d be the affine condenser from Theorem 4.1, set with k ← kCond
and ε← ε/2.

• Let LExt : {0, 1}n1×{0, 1}d → {0, 1}m be the (kExt = (1−γ/2)k, εExt) extractor of Theorem 3.7,
where εExt = ε4/16 and m = (1− γ/2)kExt ≥ (1− γ)k. There exists a constant c2 such that a
seed of length d = c2

(
log(n1) + log2(k/ε) · log(1/γ)

)
suffices.

Now, given x ∈ {0, 1}n, our extractor OBFExt : {0, 1}n → {0, 1}m is given by

OBFExt(x) = LExt(P1(x),AffCond(P2(x)))

The fact that OBFExt is explicit readily follows from the explicitness of its components. The
correctness is established in the following theorem.

Theorem 5.4. There exist universal constants ck, cγ > 1 and β ∈ (0, 1) such that the following holds, assum-
ing k ≥ logn

γ ·(log
logn
γ )ck and γ ≥ logcγ k

k . For every (n, k) OBF source X it holds that OBFExt(X) ≈ε Um

for ε = 2−((γk)/ logn)β , recalling that m = (1− γ)k.

Proof: Denote X1 = P1(X), X2 = P2(X), Y = AffCond(X2), and Z = LExt(X1, Y ). We “affine
condition” (Theorem 4.1) according to P2, and so we can write X as X = A+B, where A and B are
affine and independent and there exists a linear bijection between A and X2 (so B is independent
of X2 and thus also of Y ). We can then write

Z = LExt(X1, Y ) = LExt(P1(A), Y ) + LExt(P1(B), Y ).

We know that H(X1) ≥ k, H(A) ≤ n2, and H(B) ≥ H(X) − n2 ≥ (1 − γ/2)k = kExt. Also,
X1 = P1(A) + P1(B), and P1(A) and P1(B) are independent. Thus, H(P1(B)) ≥ kExt as well,19 and
P1(B) is independent of Y .

19To see this, recall that B is a subspace of X (up to a shift), and P1 is injective on X .
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Claim 5.5. With probability at least 1− ε/2 over y ∼ Y it holds that LExt(P1(B), y) ≈ε/2 Um.

Proof: To apply our affine condenser, Theorem 4.1, we need to make sure that:

1. kCond ≥ logc
′
(n2/ε), where c′ > 1 is the constant guaranteed to us by Theorem 4.1. Recall that

logc
′
(n2

ε

)
= O

(
logc

′
(
k

ε

))
,

and that

kCond = Ω

(
γk

log n

)
,

so the inequality is met as long as k ≥ logn
γ · (log logn

γ )ck and ε ≥ 2−((γk)/ logn)β for some
constants ck > 1 and β ∈ (0, 1).

2. d ≤ kαCond, where α ∈ (0, 1) is the constant guaranteed to us by Theorem 4.1. Plugging in the
expression for d above, we get that similarly, we need to satisfy:

(a) k ≥ logn
γ · (log logn

γ )ck for some constants ck > 1,

(b) ε ≥ 2−((γk)/ logn)β for some constant β ∈ (0, 1), and,

(c) γ ≥ logcγ k
k for some constant cγ > 1.

So indeed, Theorem 4.1 tells us that Y itself is (ε/4)-close to an (d, d− g)-source for g = o(log(1/ε)),
and thus by Claim 3.9 we have that LExt(P1(B), y) ≈√

εExt Um except for probability

2g
√
εExt +

ε

4
≤ 1

ε
· ε

2

4
+

ε

4
≤ ε

2
.

Fix a good y (in the sense of the above claim), and observe that LExt(P1(A), y) is independent from
LExt(P1(B), y), making

LExt(X1, y) = LExt(P1(A), y) + LExt(P1(B), y)

close to uniform as well. Overall, Z ≈2·(ε/2) Um, and we are done.

Choosing γ = 1
logc k for any constant c, we obtain our Theorem 1.3.

5.3 Handling Low-Weight Affine Sources

We say that an (n, k) affine source X has weight w if each basis element of X has weight at most
w. This generalizes OBF sources (that have w = 1), and [Rao09] can handle w = kα for a small
constant α > 0. Note that the only place in the proof that we used the fact that X is an OBF source
(rather than a full-fledges affine source) is Lemma 5.2, where we argued that codes with sufficiently
large distance give linear condensers. This can easily be extended to the w > 1 case.

Lemma 5.6 (following [Rao09]). Let X be an (n, k) affine source of weight w, let k′ ≤ k be any positive
integer, and let C ⊆ Fn

2 be an [n, r, d] code with a parity check matrix P ∈ Fm×n
2 , where m = n − r and

d ≥ wk′ + 1. Then, Z = P ·X ∼ {0, 1}m satisfies H∞(Z) ≥ k′.
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Thus, as w grows, the co-dimension of the code we need to take grows too, and so the condensing
quality decreases. To modify our construction to handle w > 1, we need to set n1 = c · wk log n
and kCond = γk

2cw logn . Repeating the same analysis as in Section 5.2, we see that one can take
w = poly(log k) without significant loss in parameters.

Theorem 5.7. For any constant ℓ > 0 there exist constants c > 1 and β ∈ (0, 1) such that the following
holds for any n ∈ N and k ≥ log n · (log log n)c. There exists an explicit function

OBFExt : {0, 1}n → {0, 1}m=(1−o(1))k

that is a (k, ε) extractor for affine sources of weight w = logℓ k, where ε = 2−(k/ logn)β .
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