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Abstract

We show how to convert any circuit of poly-logarithmic depth and polynomial size
into a functionally equivalent circuit of polynomial size (and polynomial depth) that is
resilient to adversarial short-circuit errors. Specifically, the resulting circuit computes
the same function even if up to ϵd gates on every root-to-leaf path are short-circuited,
i.e., their output is replaced with the value of one of its inputs, where d is the depth of
the circuit and ϵ > 0 is a fixed constant.

Previously, such a result was known for formulas (Kalai-Lewko-Rao, FOCS 2012).
It was also known how to convert general circuits to error resilient ones whose size is
quasi-polynomial in the size of the original circuit (Efremenko et al. STOC 2022). The
reason both these works do not extend to our setting is that there may be many paths
from the root to a given gate, and the resilient circuits needs to “remember” a lot of
information about these paths, which causes it to be large. Our main idea is to reduce
the amount of this information at the cost of increasing the depth of the resilient circuit.
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1 Introduction

Constructing error-resilient circuits is one of the most fundamental problems in theoretical
computer science, dating back to von Neumann [vN56a]. In the study of error resilient
circuits, the goal is to convert any circuit C into a circuit C ′ that computes the same
function as C even if some of the gates of C ′ are faulty. Moreover, the goal is to do so with a
small overhead in size, i.e., constructing a circuit C ′ whose size is bounded by a polynomial
in the size of C.

In this paper, we show how to convert any polynomial size circuit of poly-logarithmic
depth into a polynomial size circuit that is functionally equivalent and is resilient to short-
circuit errors, an error model that was introduced by Kleitman, Leighton, and Ma [KLM97],
and was soon adopted as a central model in the study of error-resilient circuits [KLR12,
BEGY19, EHK+22]. In this error model, the adversary can replace any gate in the circuit
with an arbitrary gate g : {0, 1}2 → {0, 1} as long as g(0, 0) = 0 and g(1, 1) = 1 (and in
particular can replace an AND gate with an OR gate, and vice versa)1. Equivalently, we
can say that the value of the gate g is replaced by the value of one of its children (the wire
to the other child is “cut out”). This model is motivated by applications; indeed, as noted
in [KLM97], “stuck-at” and “power-ground” failures resulting from short-circuits or broken
connections are more common than other types of errors.

Similar to the works of [KLR12, BEGY19, EHK+22], we consider omniscient adversaries
that have full information about the entire circuit, and can corrupt ϵd of the gates on every
root-to-leaf path, where d is the depth of the circuit and ϵ > 0 is some fixed constant.
These prior works were either restricted to formulas, i.e., logarithmic depth circuits [KLR12,
BEGY19], or incurred a quasi-polynomial blowup to the circuit size [EHK+22]. Moreover, it
was conjectured in [EHK+22] that, unlike the case of formulas [KLR12, BEGY19], a quasi-
polynomial blowup in the circuit size is necessary when converting general circuits into noise
resilient ones.

1.1 Our Results

We show that how to convert any circuit of polynomial size and poly-logarithmic depth (i.e.,
any NC circuit) into a functionally equivalent circuit of polynomial size (and polynomial
depth) that is error resilient.

Theorem 1.1 (Informal, see formal version in Theorem 3.6). Let C be a Boolean circuit in
the class NC that2 computes a function f . There exists a Boolean circuit C ′ whose size and

1Note that the restriction that g(b, b) = b for all b ∈ {0, 1} is necessary since otherwise an adversary can
simply flip the result of the output gate, and thus no circuit can be resilient to even a single error.

2Thus, if f takes n variables as input, the number of gates in C is bounded by a polynomial in n and
the depth of C is bounded by a polynomial in log n. The other constants in the theorem statement depend
on the degree of these polynomials; see the formal version of the theorem (Theorem 3.6) for the precise
dependence.
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depth are polynomial in the size of C that computes f even when a constant fraction of gates
in any input to output path in C ′ are short-circuited.

In terms of comparison, Theorem 1.1 improves on the main result of [KLR12] in the
sense that it works for all circuits with polynomial size and poly-logarithmic depth while
[KLR12] only works for formulas. It also improves upon [EHK+22] in the sense that it gets a
polynomial blowup in the size instead of the quasi-polynomial blowup obtained in [EHK+22].
However, it does not subsume either of these results. For example, [KLR12] also preserve the
depth of the original formula up to constant factors but we do not provide such a guarantee,
and [EHK+22] works for general circuits, including those not in the class NC.

We also mention that [EHK+22] believed that the quasi-polynomial blowup they obtain
is inherent and conjectured that a polynomial blowup will not suffice like it does in the case
of formulas [KLR12, BEGY19]. Theorem 1.1 disproves this conjecture for the restricted
case of circuits in NC. Proving/disproving the conjecture for general circuits is an amazing
problem that we leave open. However, proving this conjecture, even in an existential manner,
would imply P/poly ̸⊆ NC, and thus may be extremely hard. Indeed, if P/poly ⊆ NC, then
a general polynomial size circuit has a functionally equivalent circuit in NC and we can use
Theorem 1.1 to make it error resilient with only a polynomial blowup.

Error-resilient dag-protocols. Computation and communication have a deep connec-
tion. Just like prior work [KLR12, BEGY19, EHK+22], the current work also exploits
this connection via the Karchmer-Wigderson transformation. Specifically, Karchmer and
Wigderson [KW88] show that any circuit computing a function f can be converted into a
communication protocol for a related search problem KWf such that the depth of the circuit
matches the length of the communication protocol, and vice versa. An analogous transfor-
mation can be shown in the reverse direction, i.e. a transformation that takes error-resilient
communication protocols to error resilient circuits, and was used in [KLR12, BEGY19] to
build error resilient formulas.

The Karchmer-Wigderson transformation does not preserve the size of the circuit and
in fact, blows it up to be exponential in the depth. To circumvent this blowup in size,
[Raz95, Sok17] showed how to convert any circuit into a “dag-protocol” that preserves both
its size and depth. dag-protocols are a generalization of communication protocols, and can
be represented by the following pebble game: There is a rooted directed acyclic graph, and
each non-sink node in the graph belongs to one of the two parties, while each sink node is
associated with an output. The game starts with a “pebble” at the root of graph, that is
moved along the edges of the graph. At every step, if the pebble is not already at a sink
node, the party who owns that node will move the pebble along one of its out-edges. This
will end when the pebble reaches a sink node, and the output will be the output of the sink
node.

[Raz95, Sok17] showed that every circuit computing a function f can be converted to
a dag-protocol with the same size and depth that solves KWf with a strong correctness
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guarantee called rectangular correctness (see Definition 3.3 for a precise definition). The
reverse direction also holds, and in fact even holds in the error-resilient setting. This direction
was used to get error-resilient circuits from error-resilient dag-protocols in [EHK+22]. We
adopt a similar approach and use the [Raz95, Sok17] transformation to go from circuits to
dag-protocols and back. Indeed, our main technical result is the following theorem about
error-resilient dag-protocols.

Theorem 1.2 (Informal, see formal version in Theorem 3.7). Let S be a search problem and
Π be a dag-protocol that solves S with rectangular correctness. Assume that the depth of
Π is poly-logarithmic in the size. There exists a dag-protocol Π′ with a polynomially larger
size that solves S with rectangular correctness even if a constant fraction of nodes on any
root to leaf path in the protocol Π′ are adversarially corrupted.

1.2 Related Work

The works most closely related to ours are the works [KLR12, BEGY19, EHK+22] cited
above. We discuss additional related work below.

Other noise models for circuits. Even though the short-circuit error model we consider
is the most studied one, other models have also been considered. For example, von Neumann
[vN56b] initiated the study of the stochastic noise model, where the noise flips the value of
each gate in the circuit independently with some small fixed probability. Von Neumann’s
model was studied by a long sequence of works, including [DO77, Pip85, Pip88, Fed89, EP98,
ES99, HW91, Gál91, GG94, ES03]. In this model, it is known that a circuit of size s can
converted to a noise resilient circuit of size O(s log s), and that a function with sensitivity s′

requires a resilient circuits of size Ω(s′ log s′) [vN56b, DO77, Pip85, Gál91, GG94].
In this paper, we study the short-circuit error model of [KLM97] but there is also a

different adversarial model studied by [GS95], where the adversary may corrupt the output
of a small constant fraction of the gates at each layer of the circuit in an arbitrary way.
They show how to construct error resilient circuits for symmetric functions in this model, by
exploiting interesting connections between their model and probabilistically checkable proofs.
However, the obtained circuit is only guaranteed to compute, what they call, a “loose version”
of the function, and may err on many inputs. Lastly, we mention the orthogonal direction
of constructing testable circuits which are circuits on which errors can detected (but not
necessarily corrected) efficiently [BCD+23b, BCD+23a].

Codes for interactive communication. As our work develops error-resilient circuits via
error-resilient dag-protocols, it is also connected with the vast literature on codes for inter-
active communication, or simply “interactive codes”, that are used to make communication
protocols resilient to noise. This field, initiated by the seminal works [Sch92, Sch93, Sch96]
has received a lot of attention over the last three decades, and various aspects of interactive

3



codes have been extensively studied. A work loosely related to circuits is [CLPS20] but see
[Gel17] for an excellent survey. We note that all constructions of error resilient dag-protocols
are heavily inspired by an underlying interactive coding scheme (recall that dag-protocols
are a generalization of communication protocols).

dag-protocols. Razborov [Raz95] introduced a model of PLS communication protocols,
and used it generalize the Karchmer-Wigderson transformation [KW88] in a way that pre-
serves both the size and the depth of the circuit. This connection was used by Kra-
jícek [Kra97], who introduced the technique of monotone feasible interpolation, which be-
came a popular method for proving lower bounds on the refutation size in propositional
proof systems such as Resolution, and Cutting Planes [BB94], by reducing to monotone
circuit lower bounds. The notion of PLS communication protocols was simplified by Pud-
lak [Pud10] and Sokolov [Sok17] to the notion of dag-like communication protocols, which
we call dag-protocols. Subsequently, a “converse” to monotone feasible interpolation was
established in [GGKS18] to prove new lower bounds on monotone circuits by lifting lower
bounds on Resolution refutations. To the best of our knowledge, our work is the only work,
other than [EHK+22], to use the notion of dag-protocols in a “positive” manner, namely to
construct error-resilient circuits, in contrast to prior work which mainly used this notion to
prove lower bounds in proof complexity and circuit complexity.

1.3 Additional Discussion

An obvious problem left open by our work is whether general circuits can be made error
resilient with only a polynomial overhead. As mentioned above, the only work in this regard
is [EHK+22], that showed that general circuits can be made error-resilient by incurring a
quasi-polynomial overhead. Specifically, if the original circuit has size s and depth d, they
construct a resilient version of this circuit that has size sO(log d) and depth O(d). [EHK+22]
further say that the power of O(log d) seems inherent.

The current work manages to get around the O(log d) in the exponent, at the cost of
increasing depth to be a polynomial (note that d = (log s)O(1) in our setting). It is interesting
to see if our techniques can be combined with [EHK+22] to shave off a small factor off of this
exponent for general circuits, at the expense of a larger depth. We leave this investigation to
future work. Another great question for future research is whether the polynomial blowup
in depth that we suffer is inherent, or is there a way to make circuits in NC error resilient
while preserving their depth up to a constant factor.

Another interesting direction for future work is whether the resilient circuit can be com-
puted efficiently, say in time polynomial in the size of the circuit. The initial work of [KLR12]
guaranteed efficiency when the initial circuit is a formula although the later work [EHK+22]
was not able to generalize it to circuits3. The current work for circuits in NC also leaves this

3Note that the error-resilient circuit of [EHK+22] is of quasi-polynomial size, and thus polynomial in this
size of this circuit means that it is quasi-polynomial in the size of the original circuit.
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direction open. Finally, even though we get resilience to some constant fraction of adversarial
errors, we make no efforts to optimize this constant. Finding the right constant is a great
question for future work (see [BEGY19]).

2 Technical Overview

We now overview the ideas behind Theorem 1.1 and contrast it with prior work [KLR12,
BEGY19, EHK+22]. Roughly speaking, Theorem 1.1 says that there exist polynomial sized
resilient circuits for every circuit C in NC. We let s and d be the size and the depth of C,
respectively, and use f to denote the Boolean function computed by C. We will also assume
without loss of generality that the circuit C is layered and alternating. Just like prior work,
our construction is in three-steps via dag-protocols4:

1. Circuits → dag-protocols. This step is the same as prior work, and uses the
Karchmer-Wigderson transformation [KW88] to transform the circuit that computes
f to a dag-protocol that solves the Karchmer-Wigderson game KWf associated with
f with rectangular correctness. This transformation satisfies the property that short-
circuit errors in the original circuit correspond to running the protocol over a channel
with corruption noise and perfect feedback. We will call such channels feedback chan-
nels for simplicity and use this property in the Step 3 below.

2. dag-protocols → error-resilient dag-protocols. This is the main step in the proof
where the input is a dag-protocol and the goal is to output a functionally equivalent
dag-protocol that works on feedback channels. This is the main contribution of this
work and is detailed below.

3. Error-resilient dag-protocols → error-resilient circuits. Having constructed a
protocol that solves KWf with rectangular correctness even on feedback channels, we
use the “inverse” Karchmer-Wigderson transformation to transform it to a Boolean
circuit computing f that is resilient to short-circuit errors. This step in our proof can
also be found in prior work.

The main contribution of this work is Step 2 above, which transforms dag-protocols to
error-resilient dag-protocols. Analogous transformations in prior work were usually done
using interactive coding schemes, an area of research initiated by the seminal works [Sch92,
Sch93, Sch96] that is dedicated to making communication protocols resilient to errors. At
an extremely high level, this is done by designing mechanisms to detect errors fast and then
using rewind mechanisms to rewind to a point in the communication history that was before
these errors occurred.

4Readers not familiar with dag-protocols may find it useful to first go over Section 2.1 of [EHK+22].
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However, to rewind to a point in the communication history before the errors occurred,
the resilient protocol needs to remember the state at that point. After the Karchmer-
Wigderson transformation, this extra memory shows up as a blowup in the size of the
resilient circuit, which we want to minimize. To be more specific, prior work on resilient
circuits [EHK+22], remembers O(log d) different states at every point in the resilient protocol
which means that each layer in the resilient circuit is quasi-polynomially larger (i.e., has size
sO(log d)) than each layer in the original circuit. Thus, even though [EHK+22] increase the
number of layers by only a constant factor, the blowup in the size of each layer makes the
overall blowup quasi-polynomial.

Our approach is to greatly reduce the size of every layer, at the expense of the increasing
the total number of layers. This means that we cannot even afford to remember O(log d)

many states at any point. As any interactive coding scheme we are aware of remembers at
least logarithmically many states, they would not suit us, and new ideas are needed.

2.1 Our Approach For NC1

We start by considering a restricted case where the original circuit C lies in NC1. Even
though circuits in NC1 can be transformed into formulas with only a polynomial blowup,
we will stick with the circuit view as it will allow us to generalize later on. Note that prior
work already gives a resilient circuit for this case that has size polynomial in s and has depth
O(d). We construct a different resilient circuit that has the same size guarantee but relaxes
the depth guarantee5. This alternate construction allows us to extend to all of NC.

Our approach. We devise a way to make dag-protocols corresponding to NC1 circuits
resilient while remembering only a constant number (in fact, 2) states at each point, at
the cost of blowing up the number of layers exponentially. As the depth of NC1 circuits
is logarithmic in n, this exponential blowup is still polynomial in n. Moreover, as we only
remember a constant number of states at each point, the blowup in the size of each layer
is also polynomial, and combining this with the blowup in the number of layers still gives a
polynomial blowup.

Note that any protocol must at least remember the current state, and thus a protocol
that remembers only 2 states actually remembers only 1 extra state! Interestingly, for our
protocol, this extra state is not a state in the past but actually the next state in the future
that the protocol is considering going to. Specifically, if the protocol is currently in state
in layer i − 1 (for some i > 0), and wants to advance to a state in layer i, then instead of
jumping to that state directly, it is remembered as a “candidate” state until the protocol
has enough “confidence” in the candidate to advance. This confidence is implemented via a
variable cnf that is incremented every time the parties want to advance and decremented
every time they suspect that the states in memory are incorrect. Only after the confidence
cnf hits a certain threshold Ci does the protocol actually advance to the state in layer i.

5The depth is at most the size, so it must still be polynomial in s.

6



We will view the thresholds as being cumulative, i.e., Ci is the total confidence required
to go from layer 0 to layer i. This means that Ci − Ci−1 is the additional confidence needed
to advance from layer i − 1 to layer i. With this said, the obvious question is how large
does Ci − Ci−1 need to be? In other words, how much confidence should the protocol have
in the candidate before they advance to a state in layer i? To answer this question, one
needs to consider the total “loss” of the protocol in case it advances wrongly and reaches
an incorrect state. As no state in the past is remembered, the only way the protocol can
recover from this incorrect state is if it starts all over again and reaches the state in layer
i− 1, which requires a total increase in confidence of Ci−1. Thus, the increase (which equals
Ci − Ci−1) of the confidence required to jump from layer i− 1 to layer i should be the same
order of magnitude as the confidence Ci−1 needed to reach layer i− 1 from the beginning of
the protocol. Solving, we get that Ci should be (at least) exponential in i. This is the choice
that we make, setting Ci = ci for some suitable constant c > 1.

Protocol details. We now provide more details of our protocol and argue its correctness.
The protocol starts at the initial (root) node in layer 0 with confidence cnf = C0 = 0. At
any given time, the protocol is in some layer, say layer i− 1 with some confidence cnf, and
trying to continue the simulation from some state in this layer. For this, the protocol first
checks6 if the current state has any errors. If so, the protocol decreases the confidence cnf by
1. This may cause cnf to hit 0, which is taken as a signal to forget all progress and restart
the simulation. If no errors are found, then the current state is assumed to be correct and
the action to be taken is determined by the value of the confidence cnf.

If we have cnf < Ci−1, then it must be the case that the confidence was decreased after
reaching layer i − 1. The protocol simply increases it by 1 trying to get it back to cnfi−1

so that further progress can be made. If the confidence cnf = Ci−1, the confidence in layer
i− 1 is high enough for the protocol to compute a candidate in layer i. A candidate nxt for
the state to advance to is computed and the confidence is further increased by 1.

Finally, if the confidence cnf > Ci−1, then the protocol must already have a candidate
nxt that it is considering going to. The protocol then checks if this candidate was caused
due to errors, and if so, decreases the confidence by 1. If the confidence is lowered all the
way back to Ci−1, the protocol “forgets” about the candidate nxt (and will compute a new
one in the future if needed). On the other hand, if the candidate nxt was not due to errors,
the protocol increases the confidence cnf by 1. If this increased confidence reaches cnfi, it
is high enough to advance. The protocol forgets about the current state in layer i − 1 and
continue the rest of the simulation from the state nxt in layer i.

6As in prior work, assuming that the original dag-protocol is rectangular correct is crucial for the protocol
to be able to check whether or not there are errors. As this is not a novel idea for the current work, we omit
a precise description in this sketch. (Very) roughly speaking (see formal definition in Definition 3.3), a state
is said to be rectangular correct for inputs x and y for Alice and Bob respectively, if there exists inputs x′

for Alice and y′ for Bob such that the protocol reaches that state when executed with inputs x and y′ and
also reaches it with inputs x′ and y. This means that the parties can go over all possible inputs of the other
party in order to check if the state is (rectangular) correct or not.
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Arguing correctness. We now show that the above protocol indeed simulates the original
protocol correctly. For this, we first show that if the protocol has high confidence at the end
of the protocol, specifically, if cnf ≥ Cd, where d is the total number of layers (depth) of the
original protocol, then the output of the protocol must be correct. Indeed, if the confidence
is that high, the protocol is in a state in layer d or higher7, and the only reason this state
would not be correct is if the protocol advanced to it incorrectly. However, this means that
there must have been at least Cd − Cd−1 errors while this state was the next candidate. As
the confidence thresholds are exponential, we have that the total number of errors is at least
Cd − Cd−1 = Ω(Cd), which is more than a constant fraction and therefore, unaffordable.

Now, all we need to show is that the confidence is indeed high at the end of the protocol.
For this, we fix any execution of the protocol and partition the rounds into rounds where
the protocol wants to “go back” and decrease the confidence cnf (this happens when either
the current state or the next state nxt has any errors) and rounds where it does not. We
collect the former type of rounds in the set Back. By definition, the confidence will increase
in any round not in Back unless there are errors, and will decrease in any round in Back

unless there are errors. As the total number of errors is only a small constant fraction, this
means that all we need to do to show that the confidence is high at the end of the protocol
is to show that the size of Back is small.

To show this, we argue that the size of Back is at most a constant factor more than the
number of rounds in Back where the protocol did not go back. To see why, note that the
first round in Back must be a round where the protocol added an incorrect next state as
their candidate nxt. As mentioned above, if the next state is in layer i, this only happens
when the confidence is exactly Ci−1.

As long as the protocol does not advance to this next state (in other words, it remains
a candidate), the confidence must stay above Ci−1, as otherwise the protocol will forget the
incorrect candidate and look for a new one. This means that the total number of rounds
where the protocol does not go back and increase the confidence exceeds the total number
of rounds where the protocol did go back, and we are done. On the other hand, if the
protocol does advance to the candidate, there must have been at least Ci − Ci−1 errors, and
by definition of C, these are high enough (up to constant factors) for Ci rounds of progress.
Thus, the protocol can wait until the confidence hits 0 and restart the simulation from there.

2.2 From NC1 to NC

We now show how we can extend the ideas above to get a simulation for all of NC. Note that
the Karchmer-Wigderson transformation transforms general NC circuits to dag-protocols
of poly-logarithmic depth. As our arguments above increase the depth exponentially, using
them on general NC circuits would make the depth super-polynomial.

To reduce the depth, we extend our protocol above to also remember some states in the
past. Specifically, if the current state is layer i− 1, the protocol also remembers the state it

7We append the original protocol with dummy states to get states beyond layer d.
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encountered in the most recent layer that was a multiple of (log s)j, for all j ∈ N. As the
total number of layers we have is poly-logarithmic, we get that when j is larger than some
fixed constant, the most recent layer that is a multiple of (log s)j is just layer 0. This means
that the parties only remember a constant number of distinct states, implying as above that
the blowup in the size of each layer is still polynomial.

We now argue why remembering these extra states (“meeting points”) in the past will
also reduce the total number of layers back to polynomial. The reason is that if the protocol
remembers meeting point in the near future, then, when the confidence is too low, the
protocol does not have to forget all progress and restart the simulation from scratch. Instead,
the protocol only has to forget the progress since the last meeting point and restart the
simulation from said meeting point. Because of the loss in progress is now smaller, we
can allow the confidence increase (which equals Ci − Ci−1) required to advance to also be
smaller. As this happens for almost all i, the value of Cd, the highest confidence threshold
is significantly smaller, and we can bound it by a polynomial.

The new confidence thresholds. We are yet to specify the precise increase in confidence
(which equals Ci − Ci−1) required to advance to a state in layer i. For this, we look at the
representation of i as an integer8 in base log s. If a1, a2, . . . are the digits in this representa-
tion, we set Ci − Ci−1 to be proportional to c

∑
i ai . As there is a meeting point in memory

for every power of log s, it can be seen that c
∑

i ai takes into account the distance from all
the meeting points stored in memory, while maintaining the exponential growth required
between two meeting points. We defer the remaining details to the proof.

Getting rectangular correctness. Just like prior work, for Step 2 above to work, it
is crucial that our simulation protocol is rectangular correct, which is a stronger notion of
correctness than standard correctness, and is necessary for Step 3 to work. Without going
into the precise definition, this means that we need to account for the errors in the rounds
where the parties (Alice and Bob) are talking separately. That is, the errors in rounds where
Alice is talking cannot be used to offset the rounds where Bob is going back and decreasing
the confidence, and vice versa.

Other than doubling the notation we use (e.g., we now need to remember a pair of meeting
points, one for Alice and one for Bob, etc.), this also introduces a more subtle challenge
regarding the fraction of errors that we can be resilient to. To understand this, recall that
the layers in the original circuit, and therefore the layers in the original dag-protocol, are
alternating. This means that the party controlling the layer changes every time the protocol
advances a layer. Now, imagine what happens when the adversary spends Ci − Ci−1 errors
in a layer controlled by Alice to advance it incorrectly to a layer controlled by Bob.

As the errors for the both the parties are accounted for separately, Bob cannot detect
and correct these errors, and the protocol will run as if there were no errors till the next time

8The actual proof uses the representation of i− 1 for technical reasons.
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Alice gets to speak. This happens only after Ci+1 − Ci rounds, which due to our definition
of C, may be a factor of c larger than Ci − Ci−1, the total number of errors inserted by
the adversary. Thus, it is possible for the adversary to waste c rounds of simulation per
error, implying that there has to be a multiplicative 1/c loss in the overall error resilience.
Moreover, c cannot be too small, as then the parties will not be able to correctly maintain
their meeting points. We are able to show that this loss is a constant proportional to the
total number of meeting points; see the formal version of our main theorem (Theorem 3.6).

3 Model and Preliminaries

We now describe the model and our result more formally. Note that our description closely
follows [EHK+22].

3.1 Circuits and dag-protocols

Circuits. We will consider Boolean circuits with negations at the inputs. That is, a
Boolean circuit will be a directed acyclic graph C where each non-source node (or gate)
is labelled as an ∧ gate or an ∨ gate, while each source node is labelled with an input vari-
able or the negation of the input variable. The source nodes are also called input gates and
one designated node in C is called the output gate. We use V∧ and V∨ to denote the set of
all the nodes in C that are labelled ∧ and ∨ respectively. We define how computation over
a circuit C takes place by inductively defining the functions fC,v computed at each gate v.
We have:

fC,v =


z, if v is an input gate with label z∨

u:(u,v) is an edge in C fC,u, if v ∈ V∨∧
u:(u,v) is an edge in C fC,u, if v ∈ V∧

. (1)

When v is the output gate, we omit it from the notation and simply write fC , which we call
the function computed by C. We will assume that every gate in C that is not an input gate
has at least one edge coming to it. We define the size of C to be the number of nodes in C

and the depth of C to be the length of the longest path in C starting from an input gate
and ending at the output gate. We use ∥C∥ to denote the size of C.

Note that edges in C are going “up” from the inputs to the output gate. This contrasts
with the edges in dag-protocols that are going “down” from the root to the leaves as defined
below. These two directions, although different, follow the conventions for both circuits and
dag-protocols.

Search problems and KW-games. Let X and Y be input sets for Alice and Bob re-
spectively and O be a set of outputs. A search problem on these input and output sets is
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defined by a relation S ⊆ X × Y ×O, and the goal of Alice and Bob is to determine, given
inputs x ∈ X and y ∈ Y respectively, an element o ∈ O such that (x, y, o) ∈ S.

KW-games are special type of search problems that are defined using a Boolean function f

on n variables (for some n). Here, the set X is the set f−1(1) of all inputs for which f

evaluates to 1, Y is the set f−1(0) of all inputs for which f evaluates to 0, and O is the set
[n]. As X and Y are disjoint by definition, for any x ∈ X , y ∈ Y , there exists o ∈ [n] such
that xo ̸= yo. The search problem KWf is the problem of finding such an o, namely, it is the
subset:

KWf = {(x, y, o) ∈ X × Y ×O | xo ̸= yo}.

dag-protocols. We now define the notion of dag-protocols. Let X , Y , and O be input
and output sets as above. A dag-protocol is defined by a tuple:

Π =
(
G = (VA ∪ VB ∪ VO, E), rt, {hv}v∈VA∪VB

, {ov}v∈VO

)
.

Here, G is a directed acyclic graph with vertices partitioned into VA, VB, and VO respectively,
and edges E. We will use V = VA ∪ VB ∪ VO to be the set of all vertices in G and rt ∈ V is
a special vertex called the root. For all v ∈ VA, the function hv is a “message function” that
maps Alice’s input set X to a vertex in V that v has an edge to. Similarly, for all v ∈ VB, the
function hv maps Bob’s input set Y to a vertex in V that v has an edge to. We often conflate
the two and write hv : X × Y → V with the understanding that the second argument is
redundant if v ∈ VA and the first argument is redundant if v ∈ VB. Finally, for all v ∈ VO,
the value ov ∈ O is the output value for the vertex v. We will assume that vertices in VO do
not have any out-edges, all other vertices have at least one outgoing edge (as otherwise the
message functions will not be defined) and rt does not have any incoming edges. We define
the size of Π to be |V |, the number of nodes in Π, and the depth of Π to be the length of
the longest path in G starting from rt. We use ∥Π∥ to denote the size of Π.

As mentioned above, edges in a dag-protocol go “down” from the root to the leaves, and
are thus opposite to our convention for circuits. We are explicit about the direction in our
exposition whenever there is room for ambiguity.

Execution of a dag-protocol. A dag-protocol Π as above is executed by start with
inputs x ∈ X , y ∈ Y and a vertex v = rt, and continuing as follows: If v ∈ VA ∪ VB then
the execution simply uses the message function and updates the current vertex to hv(x, y)

9.
Otherwise, we have v ∈ VO, and the execution terminates with the output ov. As this
output is determined by x and y, we will denote it using Π(x, y). For a search problem
S ⊆ X × Y ×O, we say that Π solves S if for all x ∈ X , y ∈ Y , we have (x, y,Π(x, y)) ∈ S.

9Recall that hv(x, y) is independent of y if v ∈ VA and is independent of x if v ∈ VB .
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3.2 Rectangular Correctness & Equivalence of Circuits and dag-protocols

The models of Boolean circuits and dag-protocols described above have a deep connec-
tion. To understand this connection, we first define the notion of rectangular correctness for
dag-protocols.

Definition 3.1 (Rectangles for dag-protocols). Let Π be a dag-protocol with input sets
X , Y, and output set O. We inductively define the (combinatorial) rectangle associated with
each vertex. For the root rt, define the rectangle to Rrt = X × Y. For a node v ̸= rt,
define the (combinatorial) rectangle Rv ⊆ X × Y to be the smallest rectangle containing⋃

u:(u,v)∈E{(x, y) ∈ Ru | hu(x, y) = v}.

For a combinatorial rectangle R ⊆ X ×Y , we will use RA to denote the projection of the
rectangle on the set X and RB to denote the projection on the set Y . As we defined Rv to
be the smallest rectangle in Definition 3.1, we have the following observation.

Observation 3.2. Let Π be a dag-protocol with input sets X , Y, and output set O and
{Rv}v∈V be the associated rectangles. For all v ̸= rt and all x ∈ (Rv)A, there exists a u ∈ V

such that (u, v) ∈ E and y ∈ Y such that (x, y) ∈ Ru and hu(x, y) = v. An analogous claim
holds with the roles of x and y reversed.

Additionally, observe that for all vertices v, the rectangle Rv contains all the pairs (x, y)
such that the execution of Π goes to v on inputs x and y. Thus, the following notion of
rectangular correctness is stronger than the “standard” notion of correctness.

Definition 3.3 (Rectangular Correctness). Let Π be a dag-protocol with inputs sets X ,
Y, and output set O, and {Rv}v∈V be the associated rectangles. For a search problem S ⊆
X × Y × O, we say that Π solves S with rectangular correctness if for all v ∈ VO and all
(x, y) ∈ Rv, we have (x, y, ov) ∈ S.

We are now ready to state the equivalence between circuits and dag-protocols formally.
This theorem can also be found in [EHK+22]. We include a proof for completeness.

Theorem 3.4 ([Raz95, Sok17]). Let f : {0, 1}n → {0, 1} be a Boolean function.

1. For any circuit C that computes f , there is a dag-protocol Π with the same size and
depth as C that solves KWf with rectangular correctness.

2. For any dag-protocol Π that solves KWf with rectangular correctness, there is a circuit
C with ∥C∥ ≤ ∥Π∥ that computes f .

Proof. We only prove Item 1 as Item 2 is implied by Theorem 3.5 proved later. Fix a circuit
C and define a dag-protocol Π for KWf by setting the graph G to be the same graph as
C except that the directions of all the edges are reversed. Let VA be the set of all ∨ gates
in C, VB be the set of all the ∧ gates in C and VO be the set of all the inputs gates. Let
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rt be the output gate of C. For all v ∈ VO, we define ov to be the variable that (possibly
after negation) is input at that gate. It remains to define the message transmission functions
{hv}v∈VA∪VB

.
Fix v ∈ VA ∪ VB and recall that the input set X = f−1(1) and Y = f−1(0). For x ∈ X

and y ∈ Y , we define hv(x, y) as follows: If v ∈ VA, then hv(x, y) is just a function of
x. If fC,v(x) = 1, then, as v is a ∨ gate10, by Equation (1), there exists a neighbor u

(in-neighbor in C and out-neighbor in G) of v such that fC,u(x) = 1, and we set hv(x, y)

to be the lexicographically smallest such neighbor u. Otherwise, we set hv(x, y) to be the
lexicographically smallest neighbor u of v. Observe that such a neighbor always exists as v

is not an input gate. Similarly, if v ∈ VB, then hv(x, y) is just a function of y. If fC,v(y) = 0,
then, as v is a ∧ gate, by Equation (1), there exists a neighbor u (in-neighbor in C and
out-neighbor in G) of v such that fC,u(y) = 0, and we set hv(x, y) to be the lexicographically
smallest such neighbor u. Otherwise, we set hv(x, y) to be the lexicographically smallest
neighbor u of v. As before, such a neighbor always exists as v is not an input gate.

We clearly have ∥Π∥ = ∥C∥ and we just have to show that Π solves KWf with rectangular
correctness. By Definition 3.3, we have to show that, if {Rv}v∈V are the rectangles associated
with Π as in Definition 3.1, then, for all v ∈ VO and all (x, y) ∈ Rv, we have (x, y, ov) ∈ KWf .
In fact, we will show the stronger statement that for all v ∈ V and all (x, y) ∈ Rv, we have:

fC,v(x) = 1 and fC,v(y) = 0.

This is indeed stronger, as if v ∈ VO, then Equation (1) says that fC,v is just the (possibly
negated) input variable ov implying that (x, y, ov) ∈ KWf . We show this by induction
starting from the root rt downwards to the nodes reachable from it11. For the root rt, we
use the fact that it corresponds to the output gate of C implying that fC,rt = f . The result
follows as X = f−1(1) and Y = f−1(0).

We now show it for v ̸= rt assuming it holds for all u that have edges to v in Π (equiv-
alently, all u that v has an edge to in the circuit C). Let (x, y) ∈ Rv be arbitrary. We
only show that fC,v(x) = 1 as the proof that fC,v(y) = 0 is analogous. As (x, y) ∈ Rv, we
have by Observation 3.2 that there exists u that has an edge to v in Π and a y′ ∈ Y such
that (x, y′) ∈ Ru and hu(x, y

′) = v. Applying the induction hypothesis on u, it follows that
fC,u(x) = 1. Now, if u ∈ V∧, then the fact that v has an edge to u in C together with
Equation (1) implies that fC,v(x) = 1, as desired. On the other hand, if u ∈ V∨, then, use
the fact that hu(x, y

′) = v to get that fC,v(x) = 1, finishing the proof.
10We abuse notation and use v to denote both the vertices in G and the corresponding vertices in C.
11Observe that if v is not reachable from rt, then Definition 3.1 says that Rv = ∅ and there is nothing to

show.
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3.3 Error Models

Circuits. We consider short-circuit errors. Let C be a Boolean circuit as above. An error
pattern for C is defined by a function e : V → V ∪ {∗} satisfying the property that e(v)

maps v to an in-neighbor of v, i.e. to a neighbor of v that is “below” it, or to ∗, for all v ∈ V .
In particular, if v /∈ V∧ ∪ V∨, we have e(v) = ∗. It will often be convenient to separate e into
two functions and write e = (e∨, e∧), where e∨ is the function e restricted to the vertices in
V∨ and e∧ is the function e restricted to the vertices in V∧. Let C be a circuit and e be an
error pattern for C. Let v ∈ C be a gate. We define how computation takes place in C in
the presence of errors e by inductively defining the functions fC,e,v computed at each gate v.
We have12:

fC,e,v =


z, if v is an input gate with label z∨

u:(u,v) is an edge in C fC,e,u, if v ∈ V∨ and e(v) = ∗∧
u:(u,v) is an edge in C fC,e,u, if v ∈ V∧ and e(v) = ∗

fC,e,e(v), if e(v) ̸= ∗

. (2)

We omit v from the notation if v is the output gate of C. Let C be a circuit and E be
a set of error patterns for C. For a function f , we say that C computes f despite E , if for
all e ∈ E , we have fC,e = f . We say that E is rectangular if viewing every e ∈ E as a pair
e = (e∨, e∧) gives a combinatorial rectangle. When this happens, we use E∨ to denote the
projection of this rectangle on the first coordinate and E∧ to denote the projection on the
second coordinate (thus, E = E∨ × E∧)

We now define the set of error patterns that we work with. Let Θ ≥ 0 be an integer
parameter. For a circuit C, define the set EΘ(C) to be the set of all error patterns e such
that for any path in C that starts at an input gate and ends the output gate, at most Θ

gates v ∈ V∧ on the path satisfy e(v) ̸= ∗ and at most Θ gates v ∈ V∨ on the path satisfy
e(v) ̸= ∗. Observe that the set EΘ(C) is rectangular for all Θ ≥ 0.

dag-protocols. Let Π be a dag-protocol as above. An error pattern ξ for Π is defined
by a function ξ : V → V ∪ {∗} satisfying the property that ξ(v) maps v to an out-neighbor
of v, i.e. to a neighbor of v that is “below” it13, or to ∗. In particular, if v ∈ VO, we have
ξ(v) = ∗. It will often be convenient to separate ξ into two functions ξ = (ξA, ξB), where
ξA is the function ξ restricted to the vertices in VA, and ξB is the function ξ restricted to
the vertices in VB. The error pattern ξ affects the execution of Π as follows: If the current
vertex is v and ξ(v) = ∗, the execution proceeds as before. On the other hand, if ξ(v) ̸= ∗
(observe that this can only happen if v ∈ VA∪VB), the execution updates the current vertex
to ξ(v) instead of updating using the function hv as before.

Let Π be a dag-protocol and Ξ be a set of error patterns for Π. Similarly to before, we
12Recall that the label of an input gate is either an input variable or the negation of an input variable.
13Recall that our conventions for the directions of edges in circuits is opposite that in dag-protocols.
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say that Ξ is rectangular if viewing every ξ ∈ Ξ as a pair ξ = (ξA, ξB) gives a combinatorial
rectangle. When this happens, we use ΞA to denote the projection of this rectangle on the first
coordinate and ΞB to denote the projection on the second coordinate (thus, Ξ = ΞA × ΞB).
For a rectangular Ξ, define the dag-protocol ΠΞ to be the same as Π except that the input
sets are now X × ΞA and Y × ΞB and the message functions hΞ,v are defined as (recall that
ξ = (ξA, ξB)):

hΞ,v((x, ξA), (y, ξB)) =

{
hv(x, y), if ξ(v) = ∗
ξ(v), if ξ(v) ̸= ∗

. (3)

For a search problem S ⊆ X × Y × O and a rectangular Ξ, we say that Π solves S

with rectangular correctness despite Ξ if ΠΞ solves SΞ with rectangular correctness, where
SΞ ⊆ (X × ΞA)×(Y × ΞB)×O is the search problem satisfying ((x, ξA), (y, ξB), o) ∈ SΞ ⇐⇒
(x, y, o) ∈ S for all values of x, y, o, ξA, ξB.

We now define the set of error patterns that we work with. Let Θ ≥ 0 be an integer
parameter. For a dag-protocol Π, define the set ΞΘ(Π) to be the set of all error patterns
ξ such that for any path in G that starts at rt and ends at a node in VO, at most Θ nodes
v ∈ VA on the path satisfy ξ(v) ̸= ∗ and at most Θ nodes v ∈ VB on the path satisfy
ξ(v) ̸= ∗. Observe that the set ΞΘ(Π) is rectangular for all Θ ≥ 0. For convenience, we will
often abbreviate ΠΞΘ(Π) to ΠΘ.

3.4 Connecting the Error Models

We now show that error resilient dag-protocols are stronger than error-resilient circuits.
Observe that the theorem below implies Item 2 of Theorem 3.4 as can be seen by setting
Θ = 0. Additionally, note that the theorem below differs from the analogous theorem in
[EHK+22] in that the number of allowed errors Θ is the same for every path, while in
[EHK+22], it was a constant fraction of the length of the path. Having it as a constant
fraction creates some minor complications while trimming the “empty edges” (in the first
paragraph of the proof), that were overlooked in [EHK+22]. These complications do not
affect the rest of the proof of [EHK+22], as [EHK+22] actually works even when the allowed
number of errors is the same for every path (and equals a constant fraction of the length of
the longest path). Nonetheless, we flesh out the details of trimming for our model formally
in Appendix A. We also mention that having the same number of errors on all the paths,
irrespective of their length, is a stronger error model than having the number of errors on
each path be proportional to its length.

Theorem 3.5. Let Θ ≥ 0 be given and f : {0, 1}n → {0, 1} be a Boolean function. For
any dag-protocol Π that solves KWf with rectangular correctness despite ΞΘ(Π), there is a
circuit C with size and depth at most that of Π that computes f despite EΘ(C).

Proof. Fix a protocol Π that solves KWf with rectangular correctness despite ΞΘ(Π). By
repeatedly applying Theorem A.6 and removing some edges from Π, we can assume without
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loss of generality that there are no empty edges in Π, as defined in Definition A.2. Equiv-
alently, if {RΘ,v}v∈V are the rectangles associated with ΠΘ according to Definition 3.1 and
{hΘ,v}v∈VA∪VB

are the message functions, for all edges e = (u, v) ∈ E we have:

RΘ,u = ∅ or ∃((x, ξA), (y, ξB)) ∈ RΘ,u : hΘ,u((x, ξA), (y, ξB)) = v. (4)

As Π that solves KWf with rectangular correctness despite ΞΘ(Π), we have that ΠΘ solves
KWf,ΞΘ(Π) with rectangular correctness. From Definition 3.3, we get that for all v ∈ VO and
all ((x, ξA), (y, ξB)) ∈ RΘ,v, we have ((x, ξA), (y, ξB), ov) ∈ KWf,ΞΘ(Π). Simplifying using the
definition of KWf,ΞΘ(Π), we get:

∀v ∈ VO, ((x, ξA), (y, ξB)) ∈ RΘ,v : xov ̸= yov . (5)

We now define the circuit C. The gates in the circuit C are exactly the nodes in V and we
abuse notation slightly by using u, v etc. to refer to both. For any edge (u, v) ∈ E, we add
the flipped edge (v, u) to the circuit C. We define all gates in VA to be ∨ gates and all gates
in VB to be ∧ gates while rt is chosen as the output gate. The remaining gates are in VO

are input gates whose labels are defined next. As RΘ,v in Equation (5) is a combinatorial
rectangle, we get that there exists b ∈ {0, 1} such that

∀((x, ξA), (y, ξB)) ∈ RΘ,v : xov = b and yov = b.

If b = 1, we label the input gate v by the variable ov unnegated, and we label it by the
negated variable ov otherwise. This finishes the description of C. As the claim about the
size ∥C∥ is straightforward, we focus on showing that C computes f despite EΘ(C). As
both C and Π have the same graph upto the directions of the edges, observe that any error
pattern for C can also be seen as a pattern for Π and that EΘ(C) = ΞΘ(Π). Because of this,
we interpret any error pattern ξ = (ξA, ξB) as an error pattern e = (e∨, e∧) for C and we ξ

and subscripts A and B to refer to both. We also define the error patterns ∗A and ∗B to be
those that map all gates in VA (equivalently, V∨) and VB (equivalently, V∧) respectively to ∗.
To show that C computes f despite EΘ(C), we show inductively that for all u ∈ V , we have:

∀((x, ξA), (y, ξB)) ∈ RΘ,u : fC,(ξA,∗B),u(x) = 1 and fC,(∗A,ξB),u(y) = 0. (6)

This suffices as plugging v = rt and using the definition of RΘ,rt = (f−1(1)× (ΞΘ(Π))A) ×
(f−1(0)× (ΞΘ(Π))B) from Definition 3.1, we get that:

∀((x, ξA), (y, ξB)) ∈ RΘ,rt : fC,(ξA,∗B)(x) = f(x) and fC,(∗A,ξB)(y) = f(y).

As short-circuiting a gate in V∧ can never change the output from 1 to 0 and short-circuiting
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a gate in V∨ can never change the output from 0 to 1, we get that:

∀((x, ξA), (y, ξB)) ∈ RΘ,rt : fC,ξ(x) = f(x) and fC,ξ(y) = f(y).

Thus, we get that fC,ξ = f for all ξ ∈ ΞΘ(Π). As EΘ(C) = ΞΘ(Π), we get that C computes
f despite EΘ(C), as desired. Having shown that Equation (6) is sufficient, we now prove
that Equation (6) holds by induction. For the base case, when u ∈ VO, this follows by our
labels and Equations (2) and (5). We show the results for u /∈ VO assuming it holds for all
v that have edges to u in C. If RΘ,u = ∅, there is nothing to show, so we assume otherwise.
As the proof in the other case is similar, assume without loss of generality that u ∈ VA.
From Equation (4), we get that for all v that have edges to u in C, we have that there exists
((x, ξA), (y, ξB)) ∈ RΘ,u such that hΘ,u((x, ξA), (y, ξB)) = v. As u ∈ VA, the message function
is determined by the first argument and we get from Definition 3.1 that:

(RΘ,u)A ⊆
⋃

v:(v,u) is an edge in C

(RΘ,v)A and (RΘ,u)B ⊆
⋂

v:(v,u) is an edge in C

(RΘ,v)B. (7)

We now show Equation (6). Fix ((x, ξA), (y, ξB)) ∈ RΘ,u.

• Showing that fC,(ξA,∗B),u(x) = 1 when ξ(u) ̸= ∗: By Equation (3), we get that
hΘ,u((x, ξA), (y, ξB)) = ξ(u) implying from Definition 3.1 that ((x, ξA), (y, ξB)) ∈ RΘ,ξ(u).
By the induction hypothesis on ξ(u), we get that fC,(ξA,∗B),ξ(u)(x) = 1. From Equa-
tion (2), we get:

fC,(ξA,∗B),u(x) = fC,(ξA,∗B),ξ(u)(x) = 1.

• Showing that fC,(ξA,∗B),u(x) = 1 when ξ(u) = ∗: We have from ((x, ξA), (y, ξB)) ∈
RΘ,u that (x, ξA) ∈ (RΘ,u)A. From Equation (7), there exists an in-neighbor v′ of u in
C and (yv′ , ξB,v′) such that ((x, ξA), (yv′ , ξB,v′)) ∈ RΘ,v′ . By the induction hypothesis
on v′, we have fC,(ξA,∗B),v′(x) = 1. From Equation (2), we get:

fC,(ξA,∗B),u(x) =
∨

v:(v,u) is an edge in C

fC,(ξA,∗B),v(x) = 1.

• Showing that fC,(∗A,ξB),u(y) = 0: We have from ((x, ξA), (y, ξB)) ∈ RΘ,u that (y, ξB) ∈
(RΘ,u)B. It follows from Equation (7) that for all in-neighbors v of u in C, we have
that there exists (xv, ξA,v) such that ((xv, ξA,v), (y, ξB)) ∈ RΘ,v. From the induction
hypothesis on v, we get that fC,(∗A,ξB),v(y) = 0 for all such v. From Equation (2), we
get:

fC,(∗A,ξB),u(y) =
∨

v:(v,u) is an edge in C

fC,(∗A,ξB),v(y) = 0.
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3.5 Our Results

We are now ready to state our main result formally. We show that:

Theorem 3.6 (Formal version of Theorem 1.1). Let c > 1, n > 0 be integers and f :

{0, 1}n → {0, 1} be a Boolean function. Let C be a Boolean circuit of size ∥C∥ = s and
depth14 d < (log n)c−1 that computes f . There exists Θ ≤ sO(c log c) and a Boolean circuit C ′

with size at most sO(c log c) and depth O(c) ·Θ that computes f despite EΘ(C ′).

To prove Theorem 3.6, we need the following result about dag-protocols, which forms
the technical core of Theorem 3.6.

Theorem 3.7 (Formal version of Theorem 1.2). Let S be a search problem and Π be a
dag-protocol of size s and depth d that solves S with rectangular correctness. Let c > 1 be
an integer satisfying15 d < (log s)c−1. There exists Θ ≤ sO(c log c) (defined in Section 4.1) and
a dag-protocol Π′ (as defined in Section 4.2) with size s′ = sO(c log c) and depth O(c) ·Θ that
solves S with rectangular correctness despite ΞΘ(Π

′).

We prove Theorem 3.7 in Section 4, but use it here to prove Theorem 3.6.

Proof of Theorem 3.6 assuming Theorem 3.7. Fix a circuit C as in the theorem statement.
Applying Theorem 3.4, we get that there exists a dag-protocol Π with size s and depth
d that solves KWf with rectangular correctness. Applying Theorem 3.7, we get that there
exists Θ ≤ sO(c log c) and a dag-protocol Π′ with size s′ = sO(c log c) and depth O(c) · Θ that
solves KWf with rectangular correctness despite ΞΘ(Π

′). Now, applying Theorem 3.5 on Π′,
we get that there exists a circuit C ′ with size at most sO(c log c) and depth at most O(c) · Θ
that computes f despite EΘ(C ′), as desired.

4 Resilient dag-protocols for NC

The goal of this section is to show Theorem 3.7. For two integers x and y, we write x | y
if x divides y and x ∤ y otherwise. Fix S and Π as in the theorem statement for the rest of
this section and let

Π =
(
G = (VA ∪ VB ∪ VO, E), rt, {hv}v∈VA∪VB

, {ov}v∈VO

)
,

as in Section 3.1. Also, let Rv be the rectangles associated with Π as in Definition 3.1. We
assume without loss of generality that d and log s are both even and that rt ∈ VA. We
first remove from E all edges (u, v) for which there does not exist any (x, y) ∈ Ru such
that hu(x, y) = v. Observe from Definition 3.1 that this preserves the rectangles Rv and
therefore, also preserves rectangular correctness. In addition, as we only delete edges and

14The “−1” in this expression is for technical convenience.
15The “−1” in this expression is for technical convenience.
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keep the vertices intact (even if they become isolated), the size s stays the same and the
depth can only decrease. Thus, we can work with the same c as before. Rename E to be
the set after all such edges have been removed. We have that for all (u, v) ∈ E, there exists
(x, y) ∈ Ru such that hu(x, y) = v. By Definition 3.1 and the fact that hu only depends on
the first (respectively, second) argument if u ∈ VA (respectively, u ∈ VB), this means that,
for all (u, v) ∈ E:

u ∈ VA =⇒ (Ru)B ⊆ (Rv)B and u ∈ VB =⇒ (Ru)A ⊆ (Rv)A. (8)

Next, we modify Π as follows. For every vertex v ∈ V , let d′v be the length of the longest
path from rt to v. If no such path exists, we set d′v = 0. Note that, as G is a (finite) directed
acyclic graph, the length of the longest path, and therefore the value d′v, is well defined and
satisfies 0 ≤ d′v ≤ d, with the latter inequality being tight only if v ∈ VO is a leaf.

We use the values d′v to partition the vertices V into 2d+ 1 “layers” indexed from [0, 2d]

as follows: All vertices in VO go to layer 2d (the last layer). A vertex v ∈ VA goes to the
layer 2d′v, which is an even number less than 2d as d′v = d only if v ∈ VO. Similarly, a vertex
v ∈ VB goes to the odd layer 2d′v + 1. Observe that, with this partition, edges only go from
lower layers to higher layers, but may potentially “skip” some layers, i.e., go from layer d1
to layer d2 > d1 + 1.

We augment the protocol further by adding some “dummy” layers. For all multiples κ of
(log s− 2) starting from 0, we add two dummy layers (containing no vertices), right before
layer κ. After adding these layers, we get that or all multiplies κ of log s starting from 0,
layer κ and layer κ + 1 are dummy layers. We also add two dummy layers right before the
last layers. As these layers contain no vertices, what this does is it lets us pretend that the
edges going from layer κ− 1 to layer κ (for non-zero κ) “skip” two layers. This allows us to
modify these edges as described next. As this arrangement of layers does increase d by a
small multiplicative factor that is < 5, we also have to increase c by a small additive constant
for the bound in Theorem 3.7 to work. This increase gets absorbed in the O(·) notation and
we disregard it henceforth. In fact, by adding even more dummy layers right before the last
layer assume that the inequality about c in Theorem 3.7 is satisfied with equality.

Next, we describe how we add some extra vertices to avoid the aforementioned “skipping”.
Specifically, we ensure that all edges connect vertices in adjacent layers by adding extra
vertices to any edge that skips a layer so that we can convert it to a path that intersect all
layers. This means that the in-degree and out-degree of these extra vertices is 1. Moreover,
if the added vertex is in an even layer, we include it in VA and if it is in an odd layer, we
include it in VB. Finally, as the out-degree is 1, the message function simply sends all inputs
to the (unique) out-neighbor. This ensures the desired property for all layers except for the
two (dummy) layers we added before (what was) layer 0. Due to these dummy layers, the
‘root’ of the graph is now in layer 2 instead of being in layer 0. To fix this, we simply add
one extra vertex in both these layers and connect them to each other and also connect the
vertex in layer 1 to the (former) root. This makes the vertex in layer 0 the new root.
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Observe from Definition 3.1 that adding these extra vertices preserves the rectangles of
the existing vertices and also preserves Equation (8). In addition, it preserves the depth d

and can only increase the size s. Thus, we can work with the same value of c as before.
Henceforth, when we refer to Π, s, d, c, we refer to this modified protocol. The protocol Π
satisfies Equation (8) as argued above. For v ∈ V , we let d(v), denote the layer in [0, d] that
contains the vertex v. Equivalently, d(v) is the length of (any) path from the root rt to v.
Because our edges do not skip any vertices, we have that:

∀(u, v) ∈ E : d(v) = d(u) + 1,

∀v ∈ VO : d(v) = d = (log s)c−1 ≥ 4,

∀v ∈ VA ∪ VB : d(v) < d = (log s)c−1,

∀v ∈ V : 2 ∤ d(v) ⇐⇒ v ∈ VB.

(9)

Finally, due to our dummy layers, we have that for all v ∈ V for which log s divides either
d(v) or d(v)− 1 or for which d(v) ∈ {d− 1, d− 2}, the out degree of v is 1. That is,

|{v′ | (v, v′) ∈ E}| = 1. (10)

4.1 Defining Parameters

For integers z ≥ 0, we define:

∀i ≥ 0 : z(i) = (log s)i ·
⌊

z

(log s)i

⌋
,

∀i > 0 : {z}i =
1

(log s)i−1 ·
(
z(i−1) − z(i)

)
.

(11)

That is, {z}i is the i-th digit in the expansion of z using base log s, where i = 1 corresponds
to the least significant digit, i = 2 corresponds to the next least significant digit, and so on.
Thus, {z}i is non-zero for only finitely many values of i. We define the function:

C(z) =

{
0, if z = 0

C(z − 1) + c1+
∑

i>0{z−1}i , if z > 0
. (12)

The following lemmas are the main properties we need about C.

Lemma 4.1. For all integers z, i ≥ 0, it holds that:

C(z)− C
(
z(i)
)
=

i∑
j=1

c1+
∑

i′>j{z}i′ · c
{z}j − 1

c− 1
·
(
clog s − 1

c− 1

)j−1

.
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Proof. Observe that z = z(0) ≥ z(1) ≥ · · · ≥ z(i). Using Equation (12), this means that:

C(z)− C
(
z(i)
)
=

i∑
j=1

∑
z′∈[z(j),z(j−1))

(C(z′ + 1)− C(z′)) =
i∑

j=1

∑
z′∈[z(j),z(j−1))

c1+
∑

i′>0{z′}i′ .

Next, observe that for all j ∈ [i], we have that z′ ∈
[
z(j), z(j−1)

)
if and only if {z′}j < {z}j

and for all j′ > j, we have {z′}j′ = {z}j′ . This means that going over all z′ ∈
[
z(j), z(j−1)

)
is the same as going over all {z′}j ∈

[
0, {z}j

)
and all {z′}j′ ∈ [0, log s) for all j′ < j. This

gives:

C(z)− C
(
z(i)
)
=

i∑
j=1

c1+
∑

i′>j{z}i′ ·
∑

aj∈[0,{z}j)

· · ·
∑

a1∈[0,log s)

c
∑j

i′=1
ai′

=
i∑

j=1

c1+
∑

i′>j{z}i′ ·

 ∑
aj∈[0,{z}j)

caj

 ·
j−1∏
i′=1

 ∑
ai′∈[0,log s)

cai′


=

i∑
j=1

c1+
∑

i′>j{z}i′ · c
{z}j − 1

c− 1
·
(
clog s − 1

c− 1

)j−1

.

Corollary 4.2. For all integers z ≥ 0, it holds that:

C(z) =
∑
j>0

c1+
∑

i′>j{z}i′ · c
{z}j − 1

c− 1
·
(
clog s − 1

c− 1

)j−1

.

Lemma 4.3. Consider an integer z ≥ 0 and let i∗ > 0 be the smallest such that {z + 1}i∗ ̸= 0.
We have:

C(z)− C
(
z(i

∗)
)
≤ c1+

∑
i>0{z}i ·

(
c

c− 1

)i∗

= (C(z + 1)− C(z)) ·
(

c

c− 1

)i∗

.

Proof. The equality follows from Equation (12). We only show the inequality. By Lemma 4.1
with i = i∗, we get:

C(z)− C
(
z(i

∗)
)
=

i∗∑
j=1

c1+
∑

i′>j{z}i′ · c
{z}j − 1

c− 1
·
(
clog s − 1

c− 1

)j−1

= c1+
∑

i′>i∗{z}i′ ·
i∗∑
j=1

c
∑i∗

i′=j+1{z}i′ · c
{z}j − 1

c− 1
·
(
clog s − 1

c− 1

)j−1
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≤ c1+
∑

i′>i∗{z}i′ ·
i∗∑
j=1

c
∑i∗

i′=j+1{z}i′ · c
{z}j

c− 1
·
(
clog s

c− 1

)j−1

≤ c1+
∑

i′>i∗{z}i′ ·
i∗∑
j=1

c
∑i∗

i′=1{z}i′ · 1

c− 1
·
(

c

c− 1

)j−1

(Definition of i∗)

≤ c1+
∑

i′>0{z}i′ ·
i∗∑
j=1

1

c− 1
·
(

c

c− 1

)j−1

≤ c1+
∑

i′>0{z}i′ ·
(

c

c− 1

)i∗

.

Corollary 4.4 (Corollary of Lemma 4.3). We have:

C((log s)c) ≤ c1+c·(log s−1) ·

(
1 +

(
c

c− 1

)c+1
)

≤ 30 · sc log c.

Lemma 4.5. It holds that:

C
(
(log s)c−1) ≤ 3 · C

(
(log s)c−1 − 1

)
.

Proof. We have

C
(
(log s)c−1 − 1

)
=
∑
0<j<c

c1+
∑

j<i′<c(log s−1) · c
log s−1 − 1

c− 1
·
(
clog s − 1

c− 1

)j−1

≥
∑
0<j<c

c1+
∑

0<i′<c(log s−1) ·
(
1− c1−log s

)j · 1

c− 1
·
(

c

c− 1

)j−1

≥ c
∑

0<i′<c(log s−1) ·
∑
0<j<c

(
c ·
(
1− c1−log s

)
c− 1

)j

≥ c
∑

0<i′<c(log s−1) · (c− 1) (As log s is even implying log s ≥ 2)

≥ 1

2
·
(
C
(
(log s)c−1)− C

(
(log s)c−1 − 1

))
. (Equation (12))

Rearranging gives the result.

Owing to the foregoing corollary we can define:

∇ = 4 · C
(
(log s)c−1 − 1

)
,

Θ =
∇
5c

·
(
c− 1

c

)c

≤ 25

c
· sc log c.

(13)
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4.2 The Simulation Protocol

We now define the simulation protocol Π′.

The set of vertices V ′ = V ′
A ∪ V ′

B ∪ V ′
O. We define the set V ′ to be:

V ′ = V × V × (VA × (VB ∪ {rt}))c × ([0,∇]× [0,∇]× [0,∇]). (14)

For a vertex v′ ∈ V ′, we define the following notation for the different coordinates of v′

v′ =
(
v(v′), nxt(v′), ((vi,A(v

′), vi,B(v
′)))i∈[c], (cnf(v

′), rewA(v
′), rewB(v

′))
)
. (15)

That is, the first element is denoted by v(v′), the second is denoted by nxt(v′), and so on.
Intuitively, (1) v(v′) denotes the vertex currently being simulated, (2) nxt(v′) denotes the
next vertex the simulation is considering going to, with nxt(v′) = rt if and only if no such
vertex is under consideration, (3) ((vi,A(v′), vi,B(v′)))i∈[c] is a tuple of c pairs of vertices stored
in memory to which the simulation may rewind to in case it is needed, (4) cnf(v′) denotes
the confidence in the current and the next vertex, and (5) rewA(v

′) and rewB(v
′) are the

number of rewinds so far due to Alice and Bob respectively. We also define the following
shorthand notation: For all i ∈ [c], we will denote the pair (vi,A(v

′), vi,B(v
′)) by vi(v

′). We
will let S(v′) denote the set S(v′) = {v(v′)} ∪ {vi,A(v′) | i ∈ [c]} ∪ {vi,B(v′) | i ∈ [c]}. Finally,
we let nums(v′) denote the triple (cnf(v′), rewA(v

′), rewB(v
′)).

We define V ′
A to be the set of v′ ∈ V ′ for which v(v′) ∈ VA and max(rewA(v

′), rewB(v
′)) <

∇. We define V ′
B analogously and set V ′

O = V ′ \ (V ′
A ∪ V ′

B). Note that v′ ∈ V ′
O if and only if

v(v′) ∈ VO or max(rewA(v
′), rewB(v

′)) = ∇. Finally, we define the root rt′ as:

rt′ =
(
rt, rt, ((rt, rt))i∈[c], (0, 0, 0)

)
. (16)

The set of edges E ′. We now specify the set of edges in the graph. For this, we first
define edges from a vertex v′ ∈ V ′

A. Let 0 ≤ i′ ≤ c be the largest such that (log s)i
′
divides

d(v(v′)). This is well defined as i′ = 0 is one such value. Such a vertex has a forward edge
for every forward edge (v(v′), u) from v(v′) (in the original graph G) that goes to the vertex:

v′u =


(
v(v′), u, (vi(v

′))i∈[c], nums
′
)
, if cnf(v′) = C(d(v(v′)))(

nxt(v′), rt,
(
((v(v′), nxt(v′)))i∈[i′], (vi(v

′))i∈(i′,c]

)
, nums′

)
, if C(d(v(v′)) + 1) ≤ cnf(v′) + 1(

v(v′), nxt(v′), (vi(v
′))i∈[c], nums

′
)
, otherwise

,

where: nums′ = (cnf(v′) + 1, rewA(v
′), rewB(v

′)).

(17)
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Note that, in the last two cases, the vertex v′u is the same for all u. The vertex v′ also has
a rewind edge. Let i′′1 ∈ [c] be the smallest such that d

(
vi′′1 ,A(v

′)
)
< d(v(v′)). If no such i′′1

exists, we set i′′1 = c. Define C′ = C
(
d
(
vi′′1 ,A(v

′)
))

+ 1. Also, let i′′1 ≤ i′′2 < c be the smallest
such that d

(
vi′′2+1,A(v

′)
)
< d
(
vi′′1 ,A(v

′)
)
. If no such i′′2 exists, we set i′′2 = c. The rewind edge

goes to:

v′r =



(
vi′′1 ,A(v

′), rt,

(((
vi′′1 ,A(v

′), rt
))

i∈[i′′2 ]
, (vi(v

′))i∈(i′′2 ,c]

)
, nums′

)
, if cnf(v′) ≤ C′(

v(v′), rt, (vi(v
′))i∈[c], nums

′
)
, if C′ < cnf(v′) ≤ C(d(v(v′))) + 1(

v(v′), nxt(v′), (vi(v
′))i∈[c], nums

′
)
, otherwise

,

where: nums′ = (max(C′, cnf(v′))− 1, rewA(v
′) + 1, rewB(v

′)).

(18)

We now define edges from a vertex v′ ∈ V ′
B. These definitions are analogous to the above,

except for the fact that the roles of Alice and Bob are interchanged. We define a forward
edge for every forward edge (v(v′), u) from v(v′) (in the original graph G). Let 0 ≤ i′ ≤ c be
the largest such that (log s)i

′
divides d(v(v′)) + 1. This is well defined as i′ = 0 is one such

value. The forward edge goes to:

v′u =


(
v(v′), u, (vi(v

′))i∈[c], nums
′
)
, if cnf(v′) = C(d(v(v′)))(

nxt(v′), rt,
(
((nxt(v′), rt))i∈[i′], (vi(v

′))i∈(i′,c]

)
, nums′

)
, if C(d(v(v′)) + 1) ≤ cnf(v′) + 1(

v(v′), nxt(v′), (vi(v
′))i∈[c], nums

′
)
, otherwise

,

where: nums′ = (cnf(v′) + 1, rewA(v
′), rewB(v

′)).

(19)

As before, in the last two cases, the vertex v′u is the same for all u. For the rewind edge, let
i′′ ∈ [c] be the smallest such that d(vi′′,B(v′)) < d(v(v′)). If no such i′′ exists, we set i′′ = c.
Define C′ = C(d(vi′′,B(v

′))) + 1. The rewind edge goes to:

v′r =


(
vi′′,B(v

′), rt,
(
vmax(i,i′′)(v

′)
)
i∈[c], nums

′
)
, if cnf(v′) ≤ C′(

v(v′), rt, (vi(v
′))i∈[c], nums

′
)
, if C′ < cnf(v′) ≤ C(d(v(v′))) + 1(

v(v′), nxt(v′), (vi(v
′))i∈[c], nums

′
)
, otherwise

,

where: nums′ = (max(C′, cnf(v′))− 1, rewA(v
′), rewB(v

′) + 1).

(20)

The message functions {h′
v′}v′∈V ′

A∪V ′
B
. Recall that h′

v′ : X × Y → V ′ is the message
function for the vertex v′ and is determined by the first (respectively, second) argument if
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v′ ∈ V ′
A (resp. v′ ∈ V ′

B). Recall that {Rv}v∈V are the rectangles associated with Π as in
Definition 3.1, where Rv = (Rv)A × (Rv)B. For v′ ∈ V ′

A, define:

h′
v′(x, y) =

v′hv(v′)(x,y)
, if x ∈

(
Rnxt(v′)

)
A
∩
⋂

v∈S(v′)(Rv)A

v′r, otherwise
(21)

Similarly, for v′ ∈ V ′
B, define:

h′
v′(x, y) =

v′hv(v′)(x,y)
, if y ∈

(
Rnxt(v′)

)
B
∩
⋂

v∈S(v′)(Rv)B

v′r, otherwise
(22)

The output values {o′v′}v′∈V ′
O
. Recall that we have v′ ∈ V ′

O if and only if v(v′) ∈ VO or
max(rewA(v

′), rewB(v
′)) = ∇. If the former holds, we define o′v′ = ov(v′) and if not, we define

it to be an arbitrary value in the set O.

4.2.1 Some Lemmas

We now list some lemmas about our definitions above. The proofs, though long, are a simple
inductive argument starting from rt′ and using Equations (17) to (20).

Lemma 4.6. For all v′ ∈ V ′ reachable from rt′, it holds that:

1. For all i ∈ [c], we have:

d(vi,A(v
′)) = (log s)i ·

⌊
d(v(v′))

(log s)i

⌋
d(vi,B(v

′)) =

{
d(vi,A(v

′)) + 1, if d(vi,A(v′)) < d(v(v′))

0, otherwise
.

As a corollary, we get d(v) ≤ d(v(v′)) for all v ∈ S(v′) and that vc,A(v′) = rt ∈ S(v′)

and:
0 = d(vc,A(v

′)) ≤ d(vc−1,A(v
′)) ≤ · · · ≤ d(v1,A(v

′)) ≤ d(v(v′))

We also get that, if v′ ∈ V ′
B, then d(vi,B(v

′)) > 0 for all i ∈ [c].

2. We have cnf(v′) < C(d(v(v′)) + 1). If v(v′) ∈ VB, we also have that cnf(v′) ≥ C(1).

3. For all i ∈ [c] satisfying d(vi,A(v
′)) + 1(v(v′) ∈ VB) < d(v(v′)), we have:

C(d(vi,A(v
′)) + 1(v(v′) ∈ VB)) < cnf(v′).

4. We have:

cnf(v′) ≤ C(d(v(v′))) ⇐⇒ nxt(v′) = rt ⇐⇒ d(v(v′)) + 1 ̸= d(nxt(v′)).
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Before we continue, observe that for Equations (17) to (20) to be well defined, we have to
show that the value of cnf on the right hand side is at most ∇. Due to Lemma 4.5, this follows
if we show that for all v′ ∈ V ′

A∪V ′
B, we have that cnf(v′)+1, rewA(v

′)+1, rewB(v
′)+1 ≤ ∇.

The last two follows from the definition of V ′
A and V ′

B while the first one follows from Item 2
above and Lemma 4.5. We now prove Lemma 4.6.

Proof of Lemma 4.6. Proof by induction on the length ℓ of the shortest path from rt′ to v′.
For the base case ℓ = 0, we have v′ = rt′ and the lemma follows from Equation (16). We
now prove the lemma for ℓ > 0 assuming it holds for smaller values of ℓ. Let v′ ∈ V ′ be
arbitrary such that the shortest path from rt′ to v′ has length ℓ. Let u′ ∈ V ′ be the vertex
immediately before v′ on (an arbitrary such path) so that (u′, v′) ∈ E ′. By the induction
hypothesis, we have that Lemma 4.6 applies to u′. Consider the following cases:

When u′ ∈ V ′
A and v′ ̸= u′

r. In this case, Equation (17) applies. For Item 1, note that it
is direct from the induction hypothesis unless we are in Case 2 of Equation (17). If we are
in Case 2 of Equation (17), we have d(v(v′)) = d(nxt(u′)) = d(v(u′)) + 1 by Item 4 of the
induction hypothesis on u′. As u′ ∈ V ′

A implying that v(u′) ∈ VA, we get from Equation (9)
that d(v(v′)) = d(v(u′)) + 1 is odd. As log s is even, this means that for all i ∈ [c], we have
that (log s)i ∤ d(v(u′)) + 1. Letting i′ be as defined before Equation (17), this gives, for all
i ∈ [c]:

(log s)i ·
⌊
d(v(v′))

(log s)i

⌋
= (log s)i ·

⌊
d(v(u′))

(log s)i

⌋
= d(vi,A(u

′)) (Induction hypothesis)

=

{
d(v(u′)), if i ∈ [i′]

d(vi,A(u
′)), if i ∈ (i′, c]

(Induction hypothesis)

= d(vi,A(v
′)). (Equation (17))

In addition, from the penultimate step and Item 1 of the induction hypothesis, it follows
that d(vi,A(v

′)) ≤ d(v(u′)) < d(v(v′)). Thus, to finish our proof of Item 1, we have to
show that for all i ∈ [c], it holds that d(vi,B(v

′)) = d(vi,A(v
′)) + 1. For i ∈ [i′], this is

because d(nxt(u′)) = d(v(u′)) + 1. For i ∈ (i′, c], we use the definition of i′ to get that
(log s)i ∤ d(v(u′)). By Item 1 of the induction hypothesis, we get that d(vi,A(u′)) < d(v(u′))

implying that d(vi,B(u
′)) = d(vi,A(u

′)) + 1 and the result follows from Equation (17). This
finishes the proof of Item 1. For Item 2, note from Equation (17) and Item 2 of the induction
hypothesis that:

cnf(v′) = cnf(u′) + 1 ≤ C(d(v(u′)) + 1).

If we are in Case 1 or in Case 3 of Equation (17), we have that the above inequality is strict
and d(v(u′)) = d(v(v′)) and Item 2 follows. On the other hand, if we are in Case 2 of Equa-
tion (17), we have that the above inequality is tight and d(v(v′)) = d(nxt(u′)) = d(v(u′))+1

26



by the argument above. This means that cnf(v′) = C(d(v(u′)) + 1) < C(d(v(v′)) + 1), as
desired for Item 2.

For Item 3, note that it is direct from the induction hypothesis unless we are in Case
2 of Equation (17). If we are in Case 2 of Equation (17), we have d(v(v′)) = d(nxt(u′)) =

d(v(u′)) + 1 is odd as above. From Equation (9), we get v(v′) ∈ VB. To prove Item 3, let
i ∈ [c] be such that d(vi,A(v′))+1 < d(v(v′)). This rearranges to d(vi,A(v

′)) < d(v(u′)) which
implies that d(vi,A(u

′)) < d(v(u′)) by our derivation above. From the induction hypothesis
on Item 3, we get that.

C(d(vi,A(v
′)) + 1) = C(d(vi,A(u

′)) + 1) < C(d(v(u′)) + 1) ≤ cnf(u′) + 1 ≤ cnf(v′),

as we are in Case 2 of Equation (17). Thus, Item 3 follows. For Item 4, if we are in Case
1 of Equation (17), we have that cnf(v′) = cnf(u′) + 1 > C(d(v(u′))) = C(d(v(v′))) from
Equation (17). We also have that nxt(v′) ̸= rt and that (v(u′), nxt(v′)) ∈ E is an edge in the
original graph. It follows from Equation (9) that d(nxt(v′)) = d(v(u′)) + 1 = d(v(v′)) + 1,
as desired for Item 4. Next, if we are in Case 2 of Equation (17), we have that nxt(v′) = rt

implying that d(v(v′)) + 1 ̸= d(nxt(v′)). From Item 2 of the induction hypothesis, we also
have that cnf(v′) = cnf(u′)+1 = C(d(v(u′)) + 1) = C(d(v(v′))), finishing the proof. Finally,
if we are in Case 3 of Equation (17), we must have cnf(u′) ̸= C(d(v(u′))). Thus, we have
cnf(u′) ≤ C(d(v(u′))) ⇐⇒ cnf(v′) ≤ C(d(v(v′))). The rest is straightforward from the
induction hypothesis.

When u′ ∈ V ′
A and v′ = u′

r. In this case, Equation (18) applies. Item 1 is straightforward
from the induction hypothesis unless we are in Case 1 of Equation (18). If we are in Case
1 of Equation (18), letting i′′1, i

′′
2 be as in Equation (18), we have by Item 1 of the induction

hypothesis that d(v(v′)) = d
(
vi′′1 ,A(u

′)
)
= (log s)i

′′
1 ·
⌊
d(v(u′))

(log s)i
′′
1

⌋
. This means that, for all i ∈ [i′′1],

we have:

(log s)i ·
⌊
d(v(v′))

(log s)i

⌋
= (log s)i ·

⌊
(log s)i

′′
1−i ·

⌊
d(v(u′))

(log s)i
′′
1

⌋⌋

= (log s)i
′′
1 ·

⌊
d(v(u′))

(log s)i
′′
1

⌋
= d(v(v′))

= d(vi,A(v
′)).

Next, consider i ∈ (i′′1, i
′′
2]. We claim that for all such i, we have d(vi,A(u

′)) = d
(
vi′′1 ,A(u

′)
)
.

Indeed, the ≥ direction is because of the choice of i′′2 and the ≤ direction is because of Item 1
of the induction hypothesis. This means that for i ∈ (i′′1, c], we have:

d(vi,A(v
′)) = d(vi,A(u

′)) (As d(vi,A(u′)) = d
(
vi′′1 ,A(u

′)
)

for all i ∈ (i′′1, i
′′
2])

27



= (log s)i ·
⌊
d(v(u′))

(log s)i

⌋
(Induction hypothesis)

= (log s)i ·

⌊
(log s)i

′′
1

(log s)i
· d(v(u

′))

(log s)i
′′
1

⌋

= (log s)i ·

⌊
(log s)i

′′
1

(log s)i
·

⌊
d(v(u′))

(log s)i
′′
1

⌋⌋
(As i ∈ (i′′1, c] and ⌊⌊x⌋/n⌋ = ⌊x/n⌋ for integers n ≥ 1 and x ≥ 0)

= (log s)i ·
⌊
d(v(v′))

(log s)i

⌋
.

Combining, we get the first equation in Item 1. Observe from Equation (18) that the second
equation is straightforward if i ∈ [i′′2], and that for i ∈ (i′′2, c], we have by the choice of i′′2
and the first equation that max(d(vi,A(u

′)), d(vi,A(v
′))) ≤ d

(
vi′′2+1,A(v

′)
)
= d

(
vi′′2+1,A(u

′)
)
<

d
(
vi′′1 ,A(u

′)
)
= d(v(v′)) ≤ d(v(u′)). The second equation now follows from the induction

hypothesis.
For Item 2, note that v(v′) /∈ VB and thus, Item 2 is straightforward from the induction

hypothesis unless we are in Case 1 of Equation (18). If we are in Case 1 of Equation (18),
letting i′′1,C

′ be as in Equation (18), we have:

cnf(v′) = C′ − 1 = C
(
d
(
vi′′1 ,A(u

′)
))

= C(d(v(v′))) < C(d(v(v′)) + 1).

We now prove Item 3. Observe that v(u′), v(v′) /∈ VB and fix any i ∈ [c] satisfying
d(vi,A(v

′)) < d(v(v′)). By Equation (18), we get that i ∈ (i′′2, c]. For these i, we have:

C(d(vi,A(v
′))) = C(d(vi,A(u

′))) (Equation (18))

≤ C
(
d
(
vi′′2+1,A(u

′)
))

(Item 1 of the induction hypothesis)

< C
(
d
(
vi′′1 ,A(u

′)
))

(As d
(
vi′′2+1,A(u

′)
)
< d
(
vi′′1 ,A(u

′)
)
< d(v(u′)))

< cnf(u′)

(As d
(
vi′′2+1,A(u

′)
)
< d
(
vi′′1 ,A(u

′)
)
< d(v(u′)) and Item 3 of the induction hypothesis)

≤ max(C′, cnf(u′))

≤ cnf(v′) + 1.

We are done as all quantities are integers. It remains to show Item 4. In case of Case
1 of Equation (18), we have that nxt(v′) = rt. It follows that d(v(v′)) + 1 ̸= d(nxt(v′)).
Letting i′′1,C

′ be as in Equation (18), we also have cnf(v′) ≤ C′ − 1 = C
(
d
(
vi′′1 ,A(u

′)
))

≤
C(d(v(v′))). In case of Case 2 of Equation (18), we have that nxt(v′) = rt. It follows that
d(v(v′)) + 1 ̸= d(nxt(v′)). Letting i′′1,C

′ be as in Equation (18), we also have cnf(v′) ≤
cnf(u′) − 1 ≤ C(d(v(u′))) = C(d(v(v′))) as we are in Case 2 of Equation (18). Finally,
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we are in Case 3 of Equation (18), we have cnf(u′) > C(d(v(u′))) + 1. This means that
cnf(u′) > C(d(v(u′))) if and only if cnf(v′) > C(d(v(v′))). Item 4 now follows from Item 4
of the induction hypothesis.

When u′ ∈ V ′
B and v′ ̸= u′

r. In this case, Equation (19) applies. For Item 1, note that it
is direct from the induction hypothesis unless we are in Case 2 of Equation (19). If we are
in Case 2 of Equation (19), we have d(v(v′)) = d(nxt(u′)) = d(v(u′)) + 1 by Item 4 of the
induction hypothesis on u′. As u′ ∈ V ′

B implying that v(u′) ∈ VB, we get from Equation (9)
that d(v(v′)) = d(v(u′)) + 1 is even. Letting i′ be as defined before Equation (19), we have
that (log s)i

′
| d(v(v′)) for all i ∈ [i′]. Item 1 is now straightforward for all i ∈ [i′]. For

i ∈ (i′, c], we have that (log s)i ∤ d(v(v′)) by our choice of i′. we get:

d(vi,A(v
′)) = d(vi,A(u

′))

= (log s)i ·
⌊
d(v(u′))

(log s)i

⌋
(Induction hypothesis)

= (log s)i ·
⌊
d(v(v′))

(log s)i

⌋
. (As (log s)i ∤ d(v(v′)))

This show the first equation in Item 1. Observe from Equation (19) that the second equation
is straightforward when i ∈ [i′]. For i ∈ (i′, c], we have d(vi,A(v

′)) = d(vi,A(u
′)) = (log s)i ·⌊

d(v(u′))

(log s)i

⌋
< d(v(u′)) by the choice of i′. The second equation now follows from the induction

hypothesis. For Item 2, note from Equation (19) and Item 2 of the induction hypothesis
that:

cnf(v′) = cnf(u′) + 1 ≤ C(d(v(u′)) + 1).

If we are in Case 1 or in Case 3 of Equation (19), we have that the above inequality is strict
and d(v(u′)) = d(v(v′)) and Item 2 follows. On the other hand, if we are in Case 2 of Equa-
tion (19), we have that the above inequality is tight and d(v(v′)) = d(nxt(u′)) = d(v(u′))+1

by the argument above. This means that cnf(v′) = C(d(v(u′)) + 1) < C(d(v(v′)) + 1), as
desired for Item 2.

For Item 3, note that it is direct from the induction hypothesis unless we are in Case 2
of Equation (19). Suppose that we are in Case 2 of Equation (19) and that i ∈ [c] is such
that d(vi,A(v′)) < d(v(v′)). By Equation (19), this means that i ∈ (i′, c] and we have:

C(d(vi,A(v
′))) = C(d(vi,A(u

′))) ≤ C(d(v(u′))) < C(d(v(u′)) + 1) ≤ cnf(u′) + 1 = cnf(v′).

For Item 4, if we are in Case 1 of Equation (19), we have that cnf(v′) = cnf(u′) + 1 >

C(d(v(u′))) = C(d(v(v′))) from Equation (19). We also have that nxt(v′) ̸= rt and that
(v(u′), nxt(v′)) ∈ E is an edge in the original graph. It follows from Equation (9) that
d(nxt(v′)) = d(v(u′)) + 1 = d(v(v′)) + 1, as desired for Item 4. Next, if we are in Case 2 of
Equation (19), we have that nxt(v′) = rt implying that d(v(v′))+1 ̸= d(nxt(v′)). From Item 2
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of the induction hypothesis, we also have that cnf(v′) = cnf(u′) + 1 = C(d(v(u′)) + 1) =

C(d(v(v′))), finishing the proof. Finally, if we are in Case 3 of Equation (19), we must have
cnf(u′) ̸= C(d(v(u′))). Thus, we have cnf(u′) ≤ C(d(v(u′))) ⇐⇒ cnf(v′) ≤ C(d(v(v′))).
The rest is straightforward from the induction hypothesis.

When u′ ∈ V ′
B and v′ = u′

r. In this case, Equation (20) applies. Item 1 is straightforward
from the induction hypothesis unless we are in Case 1 of Equation (20). If we are in Case 1
of Equation (20), letting i′′ be as in Equation (20), for all i ∈ [i′′], we have:

d(vi,A(v
′)) = d(vi′′,A(u

′))

= (log s)i
′′
·

⌊
d(v(u′))

(log s)i
′′

⌋
(Induction hypothesis)

= (log s)i ·

⌊
(log s)i

′′−i ·

⌊
d(v(u′))

(log s)i
′′

⌋⌋

= (log s)i ·
⌊
d(vi′′,A(u

′))

(log s)i

⌋
.

Also, for i ∈ (i′′, c], we have:

d(vi,A(v
′)) = d(vi,A(u

′))

= (log s)i ·
⌊
d(v(u′))

(log s)i

⌋
(Induction hypothesis)

= (log s)i ·

⌊
(log s)i

′′

(log s)i
· d(v(u

′))

(log s)i
′′

⌋

= (log s)i ·

⌊
(log s)i

′′

(log s)i
·

⌊
d(v(u′))

(log s)i
′′

⌋⌋
(As i ∈ (i′′, c] and ⌊⌊x⌋/n⌋ = ⌊x/n⌋ for integers n ≥ 1 and x ≥ 0)

= (log s)i ·
⌊
d(vi′′,A(u

′))

(log s)i

⌋
. (Item 1 of the induction hypothesis)

Thus, in either case, we have d(vi,A(v
′)) = (log s)i ·

⌊
d(vi′′,A(u′))

(log s)i

⌋
. For all i ∈ [c], we finish

the proof as follows:

d(vi,A(v
′)) = (log s)i ·

⌊
d(vi′′,A(u

′)) + 1

(log s)i

⌋
(As (log s)i and d(vi′′,A(u

′)) is even)

= (log s)i ·
⌊
d(vi′′,B(u

′))

(log s)i

⌋
(Item 1 of the induction hypothesis and 2 | d(vi′′,A(u′)) and that u′ ∈ V ′

B =⇒ 2 ∤ d(v(u′)))
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= (log s)i ·
⌊
d(v(v′))

(log s)i

⌋
.

Thus, we get the first equation in Item 1. For the second equation, note from Item 1 of the
induction hypothesis that for all i ∈ [c], we have 2 | d(vi,A(u′)) and that u′ ∈ V ′

B =⇒ 2 ∤
d(v(u′)). From Item 1 of the induction hypothesis, this means that, for all i ∈ [c], we have
d(vi,A(u

′)) < d(v(u′)). Moreover, it means that d(v(v′)) = d(vi′′,B(u
′)) = d(vi′′,A(u

′)) + 1 is
odd. By the first equation for v′, this gives that for all i ∈ [c], we have d(vi,A(v′)) < d(v(v′)).
The second equation now follows directly from the induction hypothesis, finishing the proof
of Item 1.

For Item 2, note that it is straightforward from the induction hypothesis unless we are
in Case 1 of Equation (20). If we are in Case 1 of Equation (20), letting i′′,C′ be as in
Equation (20), we have:

cnf(v′) = C′ − 1 = C(d(vi′′,B(u
′))) = C(d(v(v′))) < C(d(v(v′)) + 1).

We now prove Item 3. Observe that v(u′), v(v′) ∈ VB and fix any i ∈ [c] for which we
have d(vi,A(v

′)) + 1 < d(v(v′)). By Equation (20), we get that d(vi,A(v
′)) + 1 < d(v(v′)) =

d(vi′′,B(u
′)) = d(vi′′,A(u

′)) + 1. It follows that i ∈ (i′′, c]. As i ∈ (i′′, c], we further get that
d(vi′′,A(u

′)) + 1 = d(vi′′,B(u
′)) < d(v(u′)). Thus, we have:

C(d(vi,A(v
′)) + 1) < C(d(v(v′)))

= C(d(vi′′,A(u
′)) + 1)

< cnf(u′)

(As d(vi′′,A(u′)) + 1 < d(v(u′)) and Item 3 of the induction hypothesis)

≤ max(C′, cnf(u′))

≤ cnf(v′) + 1.

We are done as all quantities are integers. It remains to show Item 4. In case of Case
1 of Equation (20), we have that nxt(v′) = rt. It follows that d(v(v′)) + 1 ̸= d(nxt(v′)).
Letting i′′,C′ be as in Equation (20), we also have cnf(v′) ≤ C′ − 1 = C(d(vi′′,B(u

′))) ≤
C(d(v(v′))). In case of Case 2 of Equation (20), we have that nxt(v′) = rt. It follows that
d(v(v′)) + 1 ̸= d(nxt(v′)). Letting i′′,C′ be as in Equation (20), we also have cnf(v′) ≤
cnf(u′) − 1 ≤ C(d(v(u′))) = C(d(v(v′))) as we are in Case 2 of Equation (20). Finally,
we are in Case 3 of Equation (20), we have cnf(u′) > C(d(v(u′))) + 1. This means that
cnf(u′) > C(d(v(u′))) if and only if cnf(v′) > C(d(v(v′))). Item 4 now follows from Item 4
of the induction hypothesis.

Lemma 4.7. Let u′, v′ ∈ V ′ be reachable from rt′ such that (u′, v′) ∈ E ′ and v′ ̸= u′
r.

1. It holds that:

cnf(v′) = cnf(u′) + 1 rewA(v
′) = rewA(u

′) rewB(v
′) = rewB(u

′).
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2. We have S(v′) \ {v(v′)} ⊆ S(u′) and also that v(v′) /∈ S(u′) implies:

d(v(v′)) = d(v(u′)) + 1 cnf(v′) = cnf(u′) + 1 = C(d(v(v′))).

Proof. As v′ ̸= u′
r, one of Equations (17) and (19) applies. Item 1 is straightforward from

Equations (17) and (19). For Item 2, S(v′) \ {v(v′)} ⊆ S(u′) again follows from straightfor-
wardly from Equations (17) and (19). For the rest of Item 2, assume that v(v′) /∈ S(u′). This
means that either Case 2 of Equation (17) or Case 2 of Equation (19) applies. In either case,
the second equation is direct from Item 2 of Lemma 4.6 and the fact that it is Case 2 and
the first equation is because of Item 4 of Lemma 4.6.

Lemma 4.8. Let u′, v′ ∈ V ′ be reachable from rt′ such that v′ = u′
r (and thus (u′, v′) ∈ E ′).

1. It holds that:

rewA(v
′) = rewA(u

′) + 1(u′ ∈ V ′
A),

rewB(v
′) = rewB(v

′) + 1(u′ ∈ V ′
B),

cnf(v′) + 1 = cnf(u′) + 1(d(v(u′)) < 2 ∧ cnf(u′) = C(d(v(u′)))).

2. We have nxt(v′) ∈ {nxt(u′), rt}.

3. We have S(v′) ⊆ S(u′).

Proof. As v′ = u′
r, one of Equations (18) and (20) applies. Items 2 and 3 are straightforward

from Equations (18) and (20). For Item 1, the equations about rewA(v
′) and rewB(v

′)

are straightforward. For the equation about cnf(v′), assume first that u′ ∈ V ′
A so that

Equation (18) applies. Let i′′1,C
′ be as defined in Equation (18). If d(v(u′)) ≥ 2, we have

by Item 1 of Lemma 4.6 that d
(
vi′′1 ,A(u

′)
)
< d(v(u′)). Putting this in Item 3 of Lemma 4.6,

we get that C′ − 1 = C
(
d
(
vi′′1 ,A(u

′)
))

< cnf(u′). From Equation (18), this means that
cnf(v′) + 1 = cnf(u′), as desired. Assume now that d(v(u′)) < 2, we have by u′ ∈ V ′

A that
v(u′) ∈ VA implying by Equation (9) that d(v(u′)) = 0. This means that i′′1 = c and C′ = 1.
We get:

cnf(v′) + 1 = max(C′, cnf(u′))

= cnf(u′) + max(1− cnf(u′), 0)

= cnf(u′) + 1(cnf(u′) = 0)

= cnf(u′) + 1(d(v(u′)) < 2 ∧ cnf(u′) = C(d(v(u′)))).

Now, assume that u′ ∈ V ′
B so that Equation (20) applies. Let i′′,C′ be as defined in

Equation (20). If d(v(u′)) ≥ 2, we have by Item 1 of Lemma 4.6 that d(vi′′,B(u
′)) =

d(vi′′,A(u
′)) + 1 < d(v(u′)). Putting this in Item 3 of Lemma 4.6, we get that C′ − 1 =

C(d(vi′′,B(u
′))) < cnf(u′). From Equation (20), this means that cnf(v′) + 1 = cnf(u′), as
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desired. Assume now that d(v(u′)) < 2, we have by u′ ∈ V ′
B that v(u′) ∈ VB implying by

Equation (9) that d(v(u′)) = 1. This means that i′′1 = c and C′ = C(1) + 1. We get:

cnf(v′) + 1 = max(C′, cnf(u′))

= cnf(u′) + max(C(1) + 1− cnf(u′), 0)

= cnf(u′) + 1(cnf(u′) = C(1)) (Lemma 4.6, Item 2)

= cnf(u′) + 1(d(v(u′)) < 2 ∧ cnf(u′) = C(d(v(u′)))).

Lemma 4.9. Let u′, v′ ∈ V ′ be reachable from rt′ such that (u′, v′) ∈ E ′.

1. It holds that:

(2 · (rewA(v′) + rewB(v
′)) + cnf(v′))− (2 · (rewA(u′) + rewB(u

′)) + cnf(u′))

= 1 + 1(v′ = u′
r ∧ d(v(u′)) < 2 ∧ cnf(u′) = C(d(v(u′)))).

2. It holds that:

1(v′ ̸= u′
r)− 1(v′ = u′

r) = cnf(v′)− cnf(u′)

− 1(v′ = u′
r ∧ d(v(u′)) < 2 ∧ cnf(u′) = C(d(v(u′)))).

3. It holds that d(v(v′)) ≤ d(v(u′))+1 and d(v(v′)) ̸= d(v(u′))−1. Moreover, if d(v(v′)) ̸=
d(v(u′)), we have:

cnf(v′) = C(d(v(v′))).

4. We have S(v′) ⊆ S(u′) ∪ {nxt(u′)}.

Proof. We prove each part in turn.

1. If v′ ̸= u′
r, this simplifies to showing that

(2 · (rewA(v′) + rewB(v
′)) + cnf(v′))− (2 · (rewA(u′) + rewB(u

′)) + cnf(u′)) = 1.

This follows from Item 1 of Lemma 4.7. If v′ = u′
r, this simplifies to showing that:

(2 · (rewA(v′) + rewB(v
′)) + cnf(v′))− (2 · (rewA(u′) + rewB(u

′)) + cnf(u′))

= 1 + 1(d(v(u′)) < 2 ∧ cnf(u′) = C(d(v(u′)))),

which follows from Item 1 of Lemma 4.8.
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2. If v′ ̸= u′
r, this simplifies to showing that 1 = cnf(v′) − cnf(u′). This follows from

Item 1 of Lemma 4.7. If v′ = u′
r, this simplifies to showing that:

−1 = cnf(v′)− cnf(u′)− 1(d(v(u′)) < 2 ∧ cnf(u′) = C(d(v(u′)))),

which follows from Item 1 of Lemma 4.8.

3. We first show that d(v(v′)) ≤ d(v(u′)) + 1. If v′ = u′
r, we have that v(v′) ∈ S(v′) ⊆

S(u′) by Item 3 of Lemma 4.8, and the statement follows from Item 1 of Lemma 4.6.
On the other hand, if v′ ̸= u′

r, we will show the stronger statement that d(v(u′)) ≤
d(v(v′)) ≤ d(v(u′)) + 1. By Equations (17) and (19), it suffices to consider the case
when C(d(v(u′)) + 1) ≤ cnf(u′)+1 but in this case, the statement follows from Item 4
of Lemma 4.6. We now show that d(v(v′)) ̸= d(v(u′))− 1. By our stronger statement
above, it suffices to consider the case when v′ = u′

r. Observe from Equations (18)
and (20) and Item 1 of Lemma 4.6 that, in this case, we have d(v(v′)) − d(v(u′)) is
even and the claim follows.

It remains to show that if d(v(v′)) ̸= d(v(u′)), we have cnf(v′) = C(d(v(v′))). This is
direct from Equations (18) and (20) if v′ = u′

r so we assume that v′ ̸= u′
r. From our

stronger statement above, we get that d(v(v′)) = d(v(u′))+1. By Item 1 of Lemma 4.6,
we get that v(v′) /∈ S(u′) and the proof is complete using Item 2 of Lemma 4.7.

4. We first show that S(v′) ⊆ S(u′)∪{nxt(u′)}. As this is direct from Item 3 of Lemma 4.8
if v′ = u′

r, we assume without loss of generality that v′ ̸= u′
r. From Item 2 of Lemma 4.7,

we get that it suffices to show that v(v′) ∈ S(u′) ∪ {nxt(u′)}. This follows from
Equations (17) and (19).

Corollary 4.10 (Corollary of Item 1 of Lemma 4.9 and Equations (13) and (14)). The depth
of Π′ is at most 5 · ∇ ≤ 150c ·Θ.

4.3 Proof of Theorem 3.7

Proof of Theorem 3.7. The claim about the size is straightforward and the claim about the
depth of Π′ is proved in Corollary 4.10. We show that Π′ solves S with rectangular cor-
rectness despite ΞΘ(Π

′). By definition, this amounts to showing that Π′
Θ solves SΞΘ(Π′) with

rectangular correctness, where Π′
Θ and SΞΘ(Π′) are as defined in Section 3.3. By Defini-

tion 3.3 and the definition of SΞΘ(Π′), this amounts to showing that for all v′ ∈ V ′
O and all

((x, ξA), (y, ξB)) ∈ R′
Θ,v′ , we have (x, y, o′v′) ∈ S, where R′

Θ,v′ are the rectangles associated
with Π′

Θ according to Definition 3.1. Fix an arbitrary v′ ∈ V ′
O. By definition of V ′

O, we
have that either v(v′) ∈ VO or max(rewA(v

′), rewB(v
′)) = ∇. This means that the following

lemmas together imply the theorem.
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Lemma 4.11. If v(v′) ∈ VO, then, for all ((x, ξA), (y, ξB)) ∈ R′
Θ,v′, we have (x, y, o′v′) ∈ S.

Lemma 4.12. If max(rewA(v
′), rewB(v

′)) = ∇, we have R′
Θ,v′ = ∅.

We now prove the two lemmas. As our proof of Lemma 4.11 is shorter, we include it
here. The longer proof of Lemma 4.12 forms the following section.

Proof of Lemma 4.11. Proof by contradiction. Suppose that there exists ((x, ξA), (y, ξB)) ∈
R′

Θ,v′ such that (x, y, o′v′) /∈ S. By definition of o′v′ , we get that
(
x, y, ov(v′)

)
/∈ S. As Π

solves S with rectangular correctness, this means that16 (x, y) /∈ Rv(v′), implying that either
x /∈

(
Rv(v′)

)
A

or y /∈
(
Rv(v′)

)
B
. We assume henceforth that x /∈

(
Rv(v′)

)
A

as the proof in the
case y /∈

(
Rv(v′)

)
B

is similar.
As ((x, ξA), (y, ξB)) ∈ R′

Θ,v′ , we can apply Observation 3.2 repeatedly to get that there
exists an ℓ > 0 and a sequence of vertices rt′ = v′(0), v′(1), . . . , v′(ℓ) = v′ such that for all
l ∈ [ℓ], we have

(
v′(l−1), v′(l)

)
∈ E ′ and:

∃
(
(x, ξA),

(
y(l−1), ξ

(l−1)
B

))
∈ R′

Θ,v′(l−1) : h′
Θ,v′(l−1)

(
(x, ξA),

(
y(l−1), ξ

(l−1)
B

))
= v′(l). (23)

We define
(
y(ℓ), ξ

(ℓ)
B

)
= (y, ξB) for convenience. Henceforth, to simplify notation for the

terms in Equation (15), we will abbreviate v
(
v′(l)
)

to v(l), nxt
(
v′(l)
)

to nxt(l), cnf
(
v′(l)
)

to
cnf(l) etc. for all 0 ≤ l ≤ ℓ. From Equation (9), we have that d

(
v(ℓ)
)
= (log s)c−1 ≥ 4 is an

even number.
Define α (respectively β) to be the largest value l ∈ [ℓ] such that d

(
v(l−1)

)
< (log s)c−1−2

(respectively, d
(
v(l−1)

)
< (log s)c−1 − 1). As l = 0 is one such value, both α and β are well

defined. By our choice of α and β and Item 3 of Lemma 4.9, we have that:

d
(
v(α−1)

)
= (log s)c−1 − 3 d

(
v(α)
)
= (log s)c−1 − 2,

d
(
v(β−1)

)
= (log s)c−1 − 2 d

(
v(β)
)
= (log s)c−1 − 1.

(24)

Observe from these and the definition of α and β that we must have α < β. We next claim
that, for all l ∈ (α, β], we have that d

(
v(l−1)

)
= (log s)c−1 − 2 implying that v′(l−1) ∈ V ′

A.
Indeed, the ≥ direction directly follows from the definition of α. Assuming for the sake of
contradiction that the ≤ direction does not hold, we have an l ∈ (α, β] such that d

(
v(l−1)

)
>

(log s)c−1−2. Pick the largest such l. Note that l < β because of Equation (24) and that the
≥ direction with our choice of l implies that d

(
v(l−1)

)
= (log s)c−1−1 > d

(
v(l)
)
= (log s)c−1−2

(as a larger value would imply that v′(l−1) is a leaf node, see Equation (9)). This contradicts
Item 3 of Lemma 4.9.

16Recall that {Rv}v∈V be the rectangles associated with Π as in Definition 3.1.
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In addition to the claim above, by Equations (17) to (20) and Item 2 of Lemma 4.6,
Equation (24) also says that cnf(α) = C

(
d
(
v(α)
))

and cnf(β) = C
(
d
(
v(β)
))

. This means that:

C
(
d
(
v(β)
))

− C
(
d
(
v(α)
))

= cnf(β) − cnf(α)

≤
∑

l∈(α,β]

1
(
cnf(l) = cnf(l−1) + 1

)
(Lemma 4.9, Item 2)

≤
∑

l∈(α,β]

1
(
v′(l) ̸= v′(l−1)

r

)
. (Lemma 4.8, Item 1)

To continue, we show that for all l ∈ (α, β], we have that v′(l) ̸= v
′(l−1)
r only if ξA

(
v′(l−1)

)
̸= ∗

(recall that v′(l−1) ∈ V ′
A for all l ∈ (α, β]). Indeed, suppose for the sake of contradiction that

we have l ∈ (α, β] such that v′(l) ̸= v
′(l−1)
r and ξA

(
v′(l−1)

)
= ∗. This means that:

v′(l−1)
r ̸= v′(l)

= h′
Θ,v′(l−1)

(
(x, ξA),

(
y(l−1), ξ

(l−1)
B

))
(Equation (23))

= h′
v′(l−1)

(
x, y(l−1)

)
(Equation (3) and ξA

(
v′(l−1)

)
= ∗)

From Equation (21), we get that x ∈ (Rv(l−1))A. However, as d
(
v(l−1)

)
= (log s)c−1 − 2,

Equation (10) says that has exactly one outgoing edge in V , and so does the vertex that edge
leads to. By Definition 3.1, we get that Rv(l−1) ⊆ Rv(ℓ) implying that x ∈ (Rv(ℓ))A =

(
Rv(v′)

)
A
,

a contradiction. This allows us to continue as:

C
(
d
(
v(β)
))

− C
(
d
(
v(α)
))

≤
∑

l∈(α,β]

1
(
ξA
(
v′(l−1)

)
̸= ∗
)

≤
∑

l∈(α,β]

1
(
v′(l−1) ∈ V ′

A ∧ ξA
(
v′(l−1)

)
̸= ∗
)
.

(As v′(l−1) ∈ V ′
A for all l ∈ (α, β])

Using Equations (12) and (24), we get:

C
(
(log s)c−1)− C

(
(log s)c−1 − 1

)
≤ c ·

∑
l∈(α,β]

1
(
v′(l−1) ∈ V ′

A ∧ ξA
(
v′(l−1)

)
̸= ∗
)
.

Using Lemma 4.3 and Equation (13), we get:

∇
4

= C
(
(log s)c−1 − 1

)
≤ c ·

(
c

c− 1

)c

·
∑

l∈(α,β]

1
(
v′(l−1) ∈ V ′

A ∧ ξA
(
v′(l−1)

)
̸= ∗
)
.
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Using Equation (13) again, this gives:

5

4
·Θ ≤

∑
l∈[ℓ]

1
(
v′(l−1) ∈ V ′

A ∧ ξA
(
v′(l−1)

)
̸= ∗
)
,

a contradiction as ξA ∈ (ΞΘ(Π
′))A.

4.4 Proof of Lemma 4.12

We now prove Lemma 4.12.

Proof of Lemma 4.12. Proof by contradiction. Suppose that max(rewA(v
′), rewB(v

′)) = ∇
and R′

Θ,v′ ̸= ∅. As the proof is similar otherwise, we assume that rewA(v
′) = ∇. Fix an

arbitrary pair ((x, ξA), (y, ξB)) ∈ R′
Θ,v′ , noting that such a pair must exist as R′

Θ,v′ ̸= ∅.
Applying Observation 3.2 repeatedly, we get that there exists an ℓ > 0 and a sequence of
vertices rt′ = v′(0), v′(1), . . . , v′(ℓ) = v′ such that for all l ∈ [ℓ], we have

(
v′(l−1), v′(l)

)
∈ E ′ and:

∃
(
(x, ξA),

(
y(l−1), ξ

(l−1)
B

))
∈ R′

Θ,v′(l−1) : h′
Θ,v′(l−1)

(
(x, ξA),

(
y(l−1), ξ

(l−1)
B

))
= v′(l). (25)

We define
(
y(ℓ), ξ

(ℓ)
B

)
= (y, ξB) for convenience. Henceforth, to simplify notation for the

terms in Equation (15), we will abbreviate v
(
v′(l)
)

to v(l), nxt
(
v′(l)
)

to nxt(l), cnf
(
v′(l)
)

to
cnf(l) etc. for all 0 ≤ l ≤ ℓ. We have from the definition of rt′ in Equation (16) and
Lemmas 4.7 and 4.8 that:

∇ = rew
(ℓ)
A = rew

(ℓ)
A − rew

(0)
A =

ℓ∑
l=1

1
(
v′(l−1) ∈ V ′

A ∧ v′(l) = v′(l−1)
r

)
. (26)

In words, this means that the total number of rewinds from nodes in V ′
A is ∇. The set

defined next captures when these rewinds are legitimate, i.e. not a result of errors (see
Equation (21)).

Back =

l ∈ [ℓ] | x /∈ (Rnxt(l−1))A ∩
⋂

v∈S(l−1)

(Rv)A

. (27)

We now formalize the claim that any illegitimate rewinds must be due to errors. We also
show that any forward edges in rounds where rewinds are legitimate must be due to errors.

Lemma 4.13. For all l ∈ [ℓ] \ Back, we have that:

1
(
v′(l−1) ∈ V ′

A ∧ v′(l) = v′(l−1)
r

)
≤ 1

(
v′(l−1) ∈ V ′

A ∧ ξA
(
v′(l−1)

)
̸= ∗
)
.

Proof. We have:

1
(
v′(l−1) ∈ V ′

A ∧ v′(l) = v′(l−1)
r

)
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= 1
(
v′(l−1) ∈ V ′

A ∧ h′
Θ,v′(l−1)

(
(x, ξA),

(
y(l−1), ξ

(l−1)
B

))
= v′(l−1)

r

)
(Equation (25))

≤ 1

(
v′(l−1) ∈ V ′

A ∧ h′
Θ,v′(l−1)

(
(x, ξA),

(
y(l−1), ξ

(l−1)
B

))
̸= v

′(l−1)

h
v(l−1)(x,y(l−1))

)
≤ 1

(
v′(l−1) ∈ V ′

A ∧ h′
Θ,v′(l−1)

(
(x, ξA),

(
y(l−1), ξ

(l−1)
B

))
̸= h′

v′(l−1)

(
x, y(l−1)

))
(Equation (21) and l ∈ [ℓ] \ Back)

≤ 1
(
v′(l−1) ∈ V ′

A ∧ ξA
(
v′(l−1)

)
̸= ∗
)
. (Equation (3))

Lemma 4.14. For all l ∈ Back, we have that:

1
(
v′(l−1) ∈ V ′

A ∧ v′(l) ̸= v′(l−1)
r

)
≤ 1

(
v′(l−1) ∈ V ′

A ∧ ξA
(
v′(l−1)

)
̸= ∗
)
.

Proof. We have:

1
(
v′(l−1) ∈ V ′

A ∧ v′(l) ̸= v′(l−1)
r

)
= 1

(
v′(l−1) ∈ V ′

A ∧ h′
Θ,v′(l−1)

(
(x, ξA),

(
y(l−1), ξ

(l−1)
B

))
̸= v′(l−1)

r

)
(Equation (25))

= 1
(
v′(l−1) ∈ V ′

A ∧ h′
Θ,v′(l−1)

(
(x, ξA),

(
y(l−1), ξ

(l−1)
B

))
̸= h′

v′(l−1)

(
x, y(l−1)

))
(Equation (21) and l ∈ Back)

= 1
(
v′(l−1) ∈ V ′

A ∧ ξA
(
v′(l−1)

)
̸= ∗
)
. (Equation (3))

Lemma 4.13 is all we need about l /∈ Back. For l ∈ Back, we further analyze:

Claim 4.15. For all l ∈ Back, we have that:

1
(
d
(
v(l−1)

)
< 2 ∧ cnf(l−1) = C

(
d
(
v(l−1)

)))
= 0.

Proof. Suppose for the sake of contradiction that l ∈ Back and we have d
(
v(l−1)

)
< 2 and

cnf(l−1) = C
(
d
(
v(l−1)

))
. From the former with Item 1 of Lemma 4.6, we get that d(v) < 2 for

all v ∈ S(l−1). From Equation (10), this means that (Rv)A = X for all v ∈ S(l−1). Plugging
into Equation (27), we get that x /∈ (Rnxt(l−1))A implying that nxt(l−1) ̸= rt. Using Item 4 of
Lemma 4.6, this gives a contradiction.

Corollary 4.16 (Corollary of Claim 4.15 and Item 2 of Lemma 4.9). For all l ∈ Back, we
have that:

1
(
v′(l) ̸= v′(l−1)

r

)
− 1

(
v′(l) = v′(l−1)

r

)
= cnf(l) − cnf(l−1).

Next, we partition the set Back into disjoint intervals. Specifically, let J ≥ 0 and

−1 = β0 < α1 < β1 < · · · < αJ < βJ < αJ+1 = ℓ+ 1, (28)
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be the unique values such that Back =
⋃

j∈[J ](αj, βj]. The main lemma we need is the
following:

Lemma 4.17. For all j ∈ [J ], it holds that:

1. We have αj > 0 and v′(αj−1) ∈ V ′
A and ξA

(
v′(αj−1)

)
̸= ∗.

2. We have:

βj∑
l=αj+1

1
(
v′(l−1) ∈ V ′

A

)
·
(
cnf(l−1) − cnf(l)

)

≤ 3c ·
(

c

c− 1

)c

·

1 +

βj∑
l=αj+1

1
(
v′(l−1) ∈ V ′

A ∧ v′(l) ̸= v′(l−1)
r

).

We defer the proof of Lemma 4.17 to later, but use it now to finish the proof of Lemma 4.12.
We have:

∇ ≤
ℓ∑

l=1

1
(
v′(l−1) ∈ V ′

A ∧ v′(l) = v′(l−1)
r

)
(Equation (26))

≤
∑

l∈[ℓ]\Back

1
(
v′(l−1) ∈ V ′

A ∧ v′(l) = v′(l−1)
r

)
+
∑

l∈Back

1
(
v′(l−1) ∈ V ′

A ∧ v′(l) = v′(l−1)
r

)
≤

∑
l∈[ℓ]\Back

1
(
v′(l−1) ∈ V ′

A ∧ ξA
(
v′(l−1)

)
̸= ∗
)
+
∑

l∈Back

1
(
v′(l−1) ∈ V ′

A ∧ v′(l) = v′(l−1)
r

)
(Lemma 4.13)

≤
∑

l∈[ℓ]\Back

1
(
v′(l−1) ∈ V ′

A ∧ ξA
(
v′(l−1)

)
̸= ∗
)
+

J∑
j=1

βj∑
l=αj+1

1
(
v′(l−1) ∈ V ′

A ∧ v′(l) = v′(l−1)
r

)
≤

∑
l∈[ℓ]\Back

1
(
v′(l−1) ∈ V ′

A ∧ ξA
(
v′(l−1)

)
̸= ∗
)

+
J∑

j=1

βj∑
l=αj+1

1
(
v′(l−1) ∈ V ′

A

)
·
(
1
(
v′(l) ̸= v′(l−1)

r

)
+ cnf(l−1) − cnf(l)

)
(Corollary 4.16)

≤
∑

l∈[ℓ]\Back

1
(
v′(l−1) ∈ V ′

A ∧ ξA
(
v′(l−1)

)
̸= ∗
)

+ 4c ·
(

c

c− 1

)c

·
J∑

j=1

βj∑
l=αj+1

1
(
v′(l−1) ∈ V ′

A ∧ v′(l) ̸= v′(l−1)
r

)
+ 3c ·

(
c

c− 1

)c

·
J∑

j=1

1
(
v′(αj−1) ∈ V ′

A ∧ ξA
(
v′(αj−1)

)
̸= ∗
)

(Lemma 4.17)
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≤ 4c ·
(

c

c− 1

)c

·
∑

l∈[ℓ]\Back

1
(
v′(l−1) ∈ V ′

A ∧ ξA
(
v′(l−1)

)
̸= ∗
)

+ 4c ·
(

c

c− 1

)c

·
∑

l∈Back

1
(
v′(l−1) ∈ V ′

A ∧ v′(l) ̸= v′(l−1)
r

)
≤ 4c ·

(
c

c− 1

)c

·
ℓ∑

l=1

1
(
v′(l−1) ∈ V ′

A ∧ ξA
(
v′(l−1)

)
̸= ∗
)
. (Lemma 4.14)

This means that:
Θ ≤ 4

5
·
∑
l∈[ℓ]

1
(
v′(l−1) ∈ V ′

A ∧ ξA
(
v′(l−1)

)
̸= ∗
)
,

a contradiction as ξA ∈ (ΞΘ(Π
′))A.

4.5 Proof of Lemma 4.17

We now prove Lemma 4.17.

Proof of Lemma 4.17. Fix an arbitrary j ∈ [J ]. We first claim that αj > 0. Indeed, if
αj = 0, then αj +1 ∈ Back would imply by Equation (27) that x /∈ (Rnxt(0))A∩

⋂
v∈S(0)(Rv)A,

a contradiction as v′(0) = rt′ =
(
rt, rt, ((rt, rt))i∈[c], (0, 0, 0)

)
by Equation (16). Because

αj > 0 /∈ Back and αj + 1 ∈ Back, we have from Equation (27) that:

x ∈

(R
nxt

(αj−1)

)
A
∩

⋂
v∈S(αj−1)

(Rv)A

 \

(R
nxt

(αj)

)
A
∩
⋂

v∈S(αj)

(Rv)A

. (29)

Now, we use Equation (29) to show some useful properties about αj, that in particular imply
Item 1 of Lemma 4.17.

Claim 4.18. It holds that cnf(αj−1) = cnf(αj) − 1 = C
(
d
(
v(αj−1)

))
and v(αj) = v(αj−1) ∈ VA

and log s ∤ d
(
v(αj)

)
and v′(αj−1) ∈ V ′

A and ξA
(
v′(αj−1)

)
̸= ∗.

Proof. Together with Item 4 of Lemma 4.9, Equation (29) implies that x ∈
(
R

nxt
(αj−1)

)
A
\(

R
nxt

(αj)

)
A
. It follows that nxt(αj) /∈

{
nxt(αj−1), rt

}
. By Equations (17) to (20), this is

possible only if cnf(αj−1) = cnf(αj)−1 = C
(
d
(
v(αj−1)

))
. This also means that v(αj) = v(αj−1)

and
(
v(αj), nxt(αj)

)
∈ E is an edge in the original graph G. Using Equation (29) again, this

means that x ∈
(
R

v
(αj)

)
A
\
(
R

nxt
(αj)

)
A
. Because of Definition 3.1 and Equation (8), this is

only possible if v(αj−1) ∈ VA =⇒ v′(αj−1) ∈ V ′
A and nxt(αj) ̸= h

v
(αj−1)

(
x, y(αj−1)

)
. From the

latter, we have log s ∤ d
(
v(αj−1)

)
and:

nxt(αj) ̸= h
v
(αj−1)

(
x, y(αj−1)

)
=⇒ v′(αj) = v

′(αj−1)

nxt
(αj)

̸= v
′(αj−1)

h
v
(αj−1)(x,y(αj−1))

(Equation (17))
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=⇒ v′(αj) ̸= h′
v′(αj−1)

(
x, y(αj−1)

)
(Equations (21) and (29))

=⇒ h′
Θ,v′(αj−1)

(
(x, ξA),

(
y(αj−1), ξ

(αj−1)
B

))
̸= h′

v′(αj−1)

(
x, y(αj−1)

)
(Equation (25))

=⇒ ξA
(
v′(αj−1)

)
̸= ∗. (Equation (3) and v′(αj−1) ∈ V ′

A)

It now remains to prove Item 2 of Lemma 4.17. Using Claim 4.18 (which implies that
v′(αj) ̸= v

′(αj−1)
r by Item 1 of Lemma 4.8), this follows if we show:

βj∑
l=αj+1

1
(
v′(l−1) ∈ V ′

A

)
·
(
cnf(l−1) − cnf(l)

)
≤ 3c ·

(
c

c− 1

)c

·
βj∑

l=αj

1
(
v′(l−1) ∈ V ′

A ∧ v′(l) ̸= v′(l−1)
r

)
. (30)

We show Equation (30) by showing Claims 4.21 and 4.22 below, which when added together
imply Equation (30). However, we first prove two helper claims:

Claim 4.19. For all l ∈ [αj, βj), the following hold:

1. For all v ∈ S(l) such that d(v) ≤ d
(
v(αj)

)
, we have v ∈ S(αj−1).

2. We have d
(
v(αj)

)
≤ d
(
v(l)
)
.

3. If d
(
v(αj)

)
= d
(
v(l)
)
, then we have cnf(αj) ≤ cnf(l).

Proof. Proof by induction. For the base case l = αj, Items 2 and 3 are straightforward.
Item 1 follows from Claim 4.18 and Item 2 of Lemma 4.7. We now prove the lemma for
l ∈ (αj, βj) assuming it holds for l − 1. For Item 1, because of the induction hypothesis, we
can assume that v ∈ S(l)\S(l−1). By Item 3 of Lemma 4.8 and Item 2 of Lemma 4.7, this means
that v = v(l) and d(v) = d

(
v(l)
)
= d
(
v(l−1)

)
+ 1 > d

(
v(αj)

)
by the induction hypothesis, and

the statement is vacuously true. For Items 2 and 3, note that Back =
⋃

j∈[J ](αj, βj] implies
from Equation (27) that:

x ∈

(R
nxt

(αj−1)

)
A
∩

⋂
v∈S(αj−1)

(Rv)A

 \

(Rnxt(l))A ∩
⋂

v∈S(l)
(Rv)A

.

This implies that either nxt(l) ̸= rt or S(l) ̸⊆ S(αj−1). If the former holds, Item 3 follows from
Item 4 of Lemma 4.6 as we get cnf(l) > C

(
d
(
v(l)
))

= C
(
d
(
v(αj)

))
= cnf(αj) − 1, where we

use Claim 4.18 in the last step. Item 2 also follows as cnf(l) > C
(
d
(
v(l)
))

implies by Item 3
of Lemma 4.9 that d

(
v(l)
)
= d
(
v(l−1)

)
and we can get Item 2 using the induction hypothesis.
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If the latter holds, Item 1 says we have v ∈ S(l) such that d(v) > d
(
v(αj)

)
. This implies

d
(
v(l)
)
> d
(
v(αj)

)
using Item 1 of Lemma 4.6 and Items 2 and 3 follow.

Claim 4.20. Let l′′ ∈ [ℓ] satisfy d
(
v(l

′′)
)
= d
(
v(l

′′−1)
)
+ 1 is odd and 0 ≤ l′ ≤ l′′ be such that

cnf(l
′) ≤ C

(
d
(
v(l

′′−1)
))

. We have:

C
(
d
(
v(l

′′)
))

− C
(
d
(
v(l

′′)
)
− 1
)
≤
∑

l∈(l′,l′′]

1
(
v′(l−1) ∈ V ′

A ∧ v′(l) ̸= v′(l−1)
r

)
.

An analogous result with Alice replaced by Bob holds if d
(
v(l

′′)
)

is even.

Proof. As it only makes the lemma stronger, we can assume without loss of generality that
0 ≤ l′ ≤ l′′ is the largest such that cnf(l′) ≤ C

(
d
(
v(l

′′−1)
))

. We claim that for all l′ < l ≤ l′′,
if d
(
v(l)
)
= d

(
v(l

′′−1)
)
, then we also have d

(
v(l−1)

)
= d

(
v(l

′′−1)
)
. Indeed, if not, we have

d
(
v(l)
)
= d

(
v(l

′′−1)
)
̸= d

(
v(l−1)

)
. From Item 3 of Lemma 4.9, this means that cnf(l) =

C
(
d
(
v(l

′′−1)
))

, a contradiction to the choice of l′. From this claim, it follows that for all
l′ < l ≤ l′′, we have d

(
v(l−1)

)
= d

(
v(l

′′−1)
)

implying (as d
(
v(l

′′−1)
)

is even) that v(l−1) ∈ VA

and v′(l−1) ∈ V ′
A. This gives:∑
l∈(l′,l′′]

1
(
v′(l−1) ∈ V ′

A ∧ v′(l) ̸= v′(l−1)
r

)
=
∑

l∈(l′,l′′]

1
(
v′(l) ̸= v′(l−1)

r

)
.

Thus, it suffices to bound C
(
d
(
v(l

′′)
))

−C
(
d
(
v(l

′′−1)
))

by the right hand side above. For this,
note that as d

(
v(l

′′)
)
= d
(
v(l

′′−1)
)
+1, we have from Item 1 of Lemma 4.6 that v(l′′) /∈ S(l

′′−1).
From Item 3 of Lemma 4.8 and Item 2 of Lemma 4.7, we get that cnf(l′′) = cnf(l

′′−1) + 1 =

C
(
d
(
v(l

′′)
))

. This gives the desired inequality as follows:

C
(
d
(
v(l

′′)
))

− C
(
d
(
v(l

′′)
)
− 1
)
= C

(
d
(
v(l

′′)
))

− C
(
d
(
v(l

′′−1)
))

≤ cnf(l
′′) − cnf(l

′)

=
∑

l∈(l′,l′′]

(
cnf(l) − cnf(l−1)

)
≤
∑

l∈(l′,l′′]

1
(
cnf(l) − cnf(l−1) = 1

)
≤
∑

l∈(l′,l′′]

1
(
v′(l) ̸= v′(l−1)

r

)
. (Lemma 4.8, Item 1)

Claim 4.21. We have:

cnf(αj) − cnf(βj) ≤ 2c ·
(

c

c− 1

)c

·
βj∑

l=αj

1
(
v′(l−1) ∈ V ′

A ∧ v′(l) ̸= v′(l−1)
r

)
.
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Proof. Because of Item 2 of Lemma 4.9, it suffices to show that cnf(αj) − cnf(βj−1) is at
most half of the second term on the right hand side. This is trivial if cnf(αj) ≤ cnf(βj−1),
so we assume without loss of generality that cnf(βj−1) < cnf(αj). It follows from Items 2
and 3 of Claim 4.19 that d

(
v(αj)

)
< d
(
v(βj−1)

)
. As v(αj−1) ∈ VA by Claim 4.18 implying that

d
(
v(αj−1)

)
is even, this means that there must exists a pair (l′, j′) ∈ (αj, βj)× [0, c) such that

d
(
v(l

′)
)
= d
(
v(l

′−1)
)
+ 1 is odd and (log s)j

′
| d
(
v(l

′−1)
)
+ 2. Let (l∗, j∗) be the maximizer of

j′ over all such pairs, breaking ties arbitrarily.
We claim that d

(
v
(βj−1)
j∗+1,A

)
= d

(
v
(αj)
j∗+1,A

)
. Indeed, assume it is not, and let l ∈ (αj, βj)

be the smallest such that d
(
v
(l)
j∗+1,A

)
̸= d

(
v
(αj)
j∗+1,A

)
. This is well defined as l = βj − 1 is

one such value by assumption. By choice of l, we have that d
(
v
(l)
j∗+1,A

)
̸= d

(
v
(l−1)
j∗+1,A

)
=

d
(
v
(αj)
j∗+1,A

)
. From Item 2 of Claim 4.19 and Item 1 of Lemma 4.6, we get that

⌊
d(v(l))

(log s)j
∗+1

⌋
>⌊

d(v(l−1))
(log s)j

∗+1

⌋
=

⌊
d(v(αj))
(log s)j

∗+1

⌋
. From Item 3 of Lemma 4.9, this implies that (log s)j

∗+1 | d
(
v(l)
)
.

From Claim 4.18, we get that d
(
v(αj)

)
+ 2 ≤ d

(
v(l)
)
. Using Item 3 of Lemma 4.9 again, this

contradicts the choice of (l∗, j∗).
Having shown that d

(
v
(βj−1)
j∗+1,A

)
= d
(
v
(αj)
j∗+1,A

)
, we combine it with Claim 4.18 and Item 1

of Lemma 4.6 to get that d
(
v
(βj−1)
j∗+1,A

)
= d

(
v
(αj)
j∗+1,A

)
< d

(
v(αj)

)
< d

(
v(βj−1)

)
. We emphasize

that the first inequality is strict. Using the fact that these are all integers, we deduce that
d
(
v
(βj−1)
j∗+1,A

)
+ 1 < d

(
v(βj−1)

)
. We derive:

cnf(αj) − cnf(βj−1) ≤ C
(
d
(
v(αj)

))
− cnf(βj−1) + 1 (Claim 4.18)

≤ C
(
d
(
v(αj)

))
− C

(
d
(
v
(αj)
j∗+1,A

))
(Lemma 4.6, Item 3)

≤ C
(
d
(
v(l

∗)
))

− C
(
d
(
v
(αj)
j∗+1,A

))
(Claim 4.19, Item 2)

≤
(
C
(
d
(
v(l

∗)
)
+ 1
)
− C

(
d
(
v(l

∗)
)))

·
(

c

c− 1

)c

(Lemma 4.3)

≤
(
C
(
d
(
v(l

∗)
))

− C
(
d
(
v(l

∗)
)
− 1
))

· c ·
(

c

c− 1

)c

(Equation (12) and the fact that d
(
v(l

∗)
)
> 0)

≤ c ·
(

c

c− 1

)c

·
∑

l∈[αj ,l∗]

1
(
v′(l−1) ∈ V ′

A ∧ v′(l) ̸= v′(l−1)
r

)
(Claim 4.20)

≤ c ·
(

c

c− 1

)c

·
βj∑

l=αj

1
(
v′(l−1) ∈ V ′

A ∧ v′(l) ̸= v′(l−1)
r

)
.
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Claim 4.22. We have:

βj∑
l=αj+1

1
(
v′(l−1) ∈ V ′

B

)
·
(
cnf(l) − cnf(l−1)

)
≤ c ·

βj∑
l=αj

1
(
v′(l−1) ∈ V ′

A ∧ v′(l) ̸= v′(l−1)
r

)
.

Proof. To start, define the set Bob =
{
l ∈ (αj, βj] | v′(l−1) ∈ V ′

B

}
. We partition the set Bob

into disjoint intervals as follows. Let Z ≥ 0 and:

αj − 1 = ν0 < µ1 < ν1 < · · · < µZ < νZ < µZ+1 = βj + 1, (31)

be such that Bob =
⋃

z∈[Z](µz, νz]. We get that for all z ∈ [Z], we have µz + 1 ∈ Bob and
µz /∈ Bob. For z > 1 ∈ [Z], we also get νz−1+1 /∈ Bob and νz−1 ∈ Bob. Using αj < µ1 (which
follows from Claim 4.18), we get that for all z ∈ [Z], we have v′(µz) ∈ V ′

B and v′(µz−1) /∈ V ′
B

and if z > 1, also have v′(νz−1−1) ∈ V ′
B and v′(νz−1) /∈ V ′

B.
From Equations (17) to (20) and Item 2 of Lemma 4.6, we get that this implies that for

all z ∈ [Z], we have that C
(
d
(
v(µz)

))
= cnf(µz) and C

(
d
(
v(νz−1)

))
= cnf(νz−1), where the

latter for z = 1 follows from Claim 4.18. We also get that that d
(
v(µz)

)
, d
(
v(νz−1)

)
> 0 for

all z ∈ [Z]. As the protocol Π is alternating and as we have Item 3 of Lemma 4.9, for all
z ∈ [Z], we get that d

(
v(νz−1)

)
≤ d
(
v(µz)

)
= d
(
v(µz−1)

)
+ 1 ≤ d

(
v(νz−1)

)
+ 1. This gives:

βj∑
l=αj+1

1
(
v′(l−1) ∈ V ′

B

)
·
(
cnf(l) − cnf(l−1)

)
=

Z∑
z=1

∑
l∈(µz ,νz ]

(
cnf(l) − cnf(l−1)

)
=

Z∑
z=1

(
cnf(νz) − cnf(µz)

)
≤

Z∑
z=1

(
cnf(νz−1) + 1− C

(
d
(
v(µz)

)))
≤

Z∑
z=1

(
C
(
d
(
v(µz)

)
+ 1
)
− C

(
d
(
v(µz)

)))
(Lemma 4.6, Item 2)

≤ c ·
Z∑

z=1

(
C
(
d
(
v(µz)

))
− C

(
d
(
v(µz)

)
− 1
))

(Equation (12) and the fact that d
(
v(µz)

)
> 0)

≤ c ·
Z∑

z=1

∑
l∈(νz−1,µz ]

1
(
v′(l−1) ∈ V ′

A ∧ v′(l) ̸= v′(l−1)
r

)
(Claim 4.20 and the fact that d

(
v(µz−1)

)
≤ d
(
v(νz−1)

)
)

≤ c ·
βj∑

l=αj

1
(
v′(l−1) ∈ V ′

A ∧ v′(l) ̸= v′(l−1)
r

)
.
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A Trimming dag-protocols

The goal of this appendix to define a notion of empty edges for a dag-protocol and show
that they can be trimmed away, without affecting the dag-protocol. We start with an easy
technical lemma, showing that the rectangle at a given node does not depend on the errors
after the node.

Lemma A.1. Let Π be a dag-protocol with inputs sets X , Y, and output set O, and let Ξ
be a rectangular set of error patterns for Π. Let w ∈ V , x ∈ X , and ξA, ξ

′
A ∈ ΞA be error
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patterns that only differ on vertices v ∈ VA that are reachable from w. Then, if {RΞ,v}v∈V
be the rectangles associated with ΠΞ according to Definition 3.1, we have:

(x, ξA) ∈ (RΞ,w)A ⇐⇒ (x, ξ′A) ∈ (RΞ,w)A.

An analogous statement holds with the roles of Alice and Bob reversed.

Proof. We show that =⇒ direction as the other direction is symmetric. Assume that
(x, ξA) ∈ (RΞ,w)A. This means that there exists a pair (y, ξB) such that ((x, ξA), (y, ξB)) ∈
RΞ,w. Applying Observation 3.2 repeatedly, we get that there exists an ℓ ≥ 0 and a sequence
of vertices rt = w(0), w(1), . . . , w(ℓ) = w such that for all l ∈ [ℓ], we have

(
w(l−1), w(l)

)
∈ E

and:

∃
(
(x, ξA),

(
y(l−1), ξ

(l−1)
B

))
∈ RΞ,w(l−1) : hΞ,w(l−1)

(
(x, ξA),

(
y(l−1), ξ

(l−1)
B

))
= w(l). (32)

We define
(
y(ℓ), ξ

(ℓ)
B

)
= (y, ξB) for convenience. To prove the lemma, we prove by induction

that, for all 0 ≤ l ≤ ℓ, we have
(
(x, ξ′A),

(
y(l), ξ

(l)
B

))
∈ RΞ,w(l) . The lemma then follows

by setting l = ℓ. For the base case l = 0, this is because RΞ,w(0) = (X × ΞA) × (Y × ΞB)

by Definition 3.1. We show the result for l > 0 assuming it holds for l − 1. By our
induction hypothesis, we have

(
(x, ξ′A),

(
y(l−1), ξ

(l−1)
B

))
∈ RΞ,w(l−1) . We now claim that

hΞ,w(l−1)

(
(x, ξ′A),

(
y(l−1), ξ

(l−1)
B

))
= w(l). If w(l−1) ∈ VB, this follows from Equation (32)

and the fact that the message function for nodes in VB only depends on the second argu-
ment. Otherwise, it is because of Equation (3) and the fact that ξA and ξ′A match on w(l−1)

as w(l−1) is not reachable from w. It follows that
(
(x, ξ′A),

(
y(l−1), ξ

(l−1)
B

))
∈ RΞ,w(l) . As(

(x, ξA),
(
y(l), ξ

(l)
B

))
∈ RΞ,w(l) (see Equation (32)) and RΞ,w(l) is a combinatorial rectangle,

we have that
(
(x, ξ′A),

(
y(l), ξ

(l)
B

))
∈ RΞ,w(l) , as desired.

Let Π be a dag-protocol with inputs sets X , Y , and output set O and let Θ ≥ 0. Let
{RΘ,v}v∈V be the rectangles associated with ΠΘ according to Definition 3.1 and {hΘ,v}v∈VA∪VB

be the message functions.

Definition A.2. We say that an edge e = (u, v) ∈ E is empty if RΘ,u ̸= ∅ and for all
((x, ξA), (y, ξB)) ∈ RΘ,u, we have:

hΘ,u((x, ξA), (y, ξB)) ̸= v.

Let e = (u, v) be an empty edge in Π. We define a dag-protocol Π-e with the same
input and output sets that does not have this edge. The graph G-e for Π-e is the same as
G except that the edge e is removed. The output functions are unchanged and so are the
message functions for all vertices other than u. For the vertex u, we have to ensure that the
new message function h-e

u does not map anything to v. For this, we first claim that u must
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have another out neighbor v′ ̸= v, as otherwise the condition in Definition A.2 is impossible.
We define:

h-e
u (x, y) =

{
hu(x, y), if hu(x, y) ̸= v

v′, if hu(x, y) = v
. (33)

Let
{
R-e

Θ,v

}
v∈V be the rectangles associated with Π-e

Θ according to Definition 3.1 and
{
h-e
Θ,v

}
v∈VA∪VB

be the message functions. Lemma A.5 is our main result about Π-e, which says that the rect-
angles

{
R-e

Θ,v

}
v∈V and {RΘ,v}v∈V have the same “projection” on the inputs in the sets X and

Y . Before stating it, we need the following definition:

Definition A.3. Let C ∈ {A,B} and ξ-
C : VC → V ∪ {∗}. Let W be a path in G that starts

from rt. Define the error pattern curbC,ξ-C
(W ) to match ξ-

C on all vertices in VC ∩ W and
equal ∗ on all vertices in VC \W .

Lemma A.4. Let e = (u, v) be an empty edge, C ∈ {A,B}. For all ξ-
C ∈ (ΞΘ(Π

-e))C and
all paths W in G-e starting from rt, we have curbC,ξ-C

(W ) ∈ (ΞΘ(Π))C.

Proof. Define ξC = curbC,ξ-C
(W ) for convenience. For any path P in G that starts at rt and

ends at a node in VO, all the nodes w ∈ VC ∩ P that satisfy ξC(w) ̸= ∗ must also be in W .
Thus, the number of such nodes in P is at most the number on W which is at most Θ, by
the fact that W is a path in G-e and ξ-

C ∈ (ΞΘ(Π
-e))C . The lemma follows.

Lemma A.5. Let e = (u, v) be an empty edge and w ∈ V . We have:

1. Let x ∈ X be given. For all ξ-
A ∈ (ΞΘ(Π

-e))A such that (x, ξ-
A) ∈

(
R-e

Θ,w

)
A
, there exists a

path W in G-e starting from rt and ending at w such that
(
x, curbA,ξ-A

(W )
)
∈ (RΘ,w)A.

2. Let y ∈ Y be given. For all ξ-
B ∈ (ΞΘ(Π

-e))B such that (y, ξ-
B) ∈

(
R-e

Θ,w

)
B
, there exists a

path W in G-e starting from rt and ending at w such that
(
y, curbB,ξ-B

(W )
)
∈ (RΘ,w)B.

Proof. If w is not reachable from rt in the graph G-e, and we have from Definition 3.1 that
R-e

Θ,w = ∅, and the lemma is true vacuously. For vertices w that are reachable from rt in
the graph G-e, we prove by induction. For the base case, note that w = rt implies from
Definition 3.1 that RΘ,w = (X × (ΞΘ(Π))A)× (Y × (ΞΘ(Π))B). The result now follows from
Lemma A.4.

We now consider the case w ̸= rt. We only show Item 1 as the proof of Item 2 is anal-
ogous. Fix an arbitrary ξ-

A ∈ (ΞΘ(Π
-e))A such that (x, ξ-

A) ∈
(
R-e

Θ,w

)
A
. By Observation 3.2,

there w′ ∈ V such that (w′, w) is an edge in G-e and (y, ξ-
B) ∈ Y × (ΞΘ(Π

-e))B such that
((x, ξ-

A), (y, ξ
-
B)) ∈ R-e

Θ,w′ and h-e
Θ,w′((x, ξ-

A), (y, ξ
-
B)) = w. Consider the following cases:

• When w′ ∈ VA: By Item 1 of the induction hypothesis on w′ to get that there exists a
path W ′ in G-e starting from rt and ending at w′ such that

(
x, curbA,ξ-A

(W ′)
)
∈ (RΘ,w′)A.

As e = (u, v) is an empty edge, we get from Definition A.2 that either w′ ̸= u or
hΘ,w′

(
x, curbA,ξ-A

(W ′)
)
̸= v.
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Define the path W to be W ′ appended with the edge (w′, w). To show the lemma,
it suffices to show that

(
x, curbA,ξ-A

(W )
)
∈ (RΘ,w)A. Observe from Definition A.3

and Lemma A.4 that the error patterns curbA,ξ-A
(W ′) and curbA,ξ-A

(W ) are in (ΞΘ(Π))A
and only differ on vertices v ∈ VA that are reachable from w (in fact, they can only differ
on the vertex w itself). By Lemma A.1 this means that showing

(
x, curbA,ξ-A

(W )
)
∈

(RΘ,w)A is the same as showing
(
x, curbA,ξ-A

(W ′)
)
∈ (RΘ,w)A, which we do next.

By Definition 3.1 and the fact that w′ ∈ VA implies that hΘ,w′ is only a function of the
first argument, this follows if we show that hΘ,w′

(
x, curbA,ξ-A

(W ′)
)
= w. Owing to the

definition of w′, this is the same as showing hΘ,w′
(
x, curbA,ξ-A

(W ′)
)
= h-e

Θ,w′(x, ξ-
A). If

ξ-
A(w

′) ̸= ∗, then, as curbA,ξ-A
(W ′) matches ξ-

A on w′, this follows from Equation (3).
Otherwise, Equation (3) says that hΘ,w′

(
x, curbA,ξ-A

(W ′)
)
= hw′(x) and h-e

Θ,w′(x, ξ-
A) =

h-e
w′(x) implying that this is the same as showing hw′(x) = h-e

w′(x), which is true by
Equation (33) as either w′ ̸= u or hw′(x) = hΘ,w′

(
x, curbA,ξ-A

(W ′)
)
̸= v.

• When w′ ∈ VB: By Items 1 and 2 of the induction hypothesis on w′, we get that
there exist paths W ′, W ′′ in G-e, both starting from rt and ending at w′ such that(
x, curbA,ξ-A

(W ′)
)
∈ (RΘ,w′)A and

(
y, curbB,ξ-B

(W ′′)
)
∈ (RΘ,w′)B. As e = (u, v) is an

empty edge, we get from Definition A.2 that either w′ ̸= u or hΘ,w′
(
y, curbB,ξ-B

(W ′′)
)
̸=

v. Moreover, as RΘ,w′ is a combinatorial rectangle, we conclude that:((
x, curbA,ξ-A

(W ′)
)
,
(
y, curbB,ξ-B

(W ′′)
))

∈ RΘ,w′ . (34)

We now claim that hΘ,w′
(
y, curbB,ξ-B

(W ′′)
)
= h-e

Θ,w′(y, ξ-
B), which also equals w by the

definition of w′ (recall that w′ ∈ VB implies that the message function is only a function
of the second argument). If ξ-

B(w
′) ̸= ∗, then as curbB,ξ-B

(W ′′) matches ξ-
B on w′, this

follows from Equation (3). Otherwise, Equation (3) says that hΘ,w′
(
y, curbB,ξ-B

(W ′′)
)
=

hw′(y) and h-e
Θ,w′(y, ξ-

B) = h-e
w′(y) implying that this is the same as showing that

hw′(y) = h-e
w′(y), which is true by Equation (33) as either w′ ̸= u or hw′(y) =

hΘ,w′
(
y, curbB,ξ-B

(W ′′)
)
̸= v. From Equation (34) and hΘ,w′

(
y, curbB,ξ-B

(W ′′)
)
= w,

conclude using Definition 3.1 that:((
x, curbA,ξ-A

(W ′)
)
,
(
y, curbB,ξ-B

(W ′′)
))

∈ RΘ,w.

It follows that
(
x, curbA,ξ-A

(W ′)
)
∈ (RΘ,w)A. Define the path W to be W ′ appended

with the edge (w′, w). As w′ ∈ VB, we have by Definition A.3 that curbA,ξ-A
(W ′) =

curbA,ξ-A
(W ) implying that

(
x, curbA,ξ-A

(W )
)
∈ (RΘ,w)A, as desired.

The above lemma implies the main theorem of this section, showing that one can remove
empty edges without affecting correctness.
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Theorem A.6. Let Π be a dag-protocol that solves a search problem S with rectangular
correctness despite ΞΘ(Π). Let e be an empty edge in Π and let the dag-protocol Π-e be as
define above. Then, Π-e solves S with rectangular correctness despite ΞΘ(Π

-e).

Proof. We have to show that Π-e
Θ solves SΞΘ(Π-e) with rectangular correctness, where SΞΘ(Π-e) ⊆

(X × (ΞΘ(Π
-e))A)×(Y × (ΞΘ(Π

-e))B)×O is the search problem satisfying ((x, ξ-
A), (y, ξ

-
B), o) ∈

SΞΘ(Π-e) ⇐⇒ (x, y, o) ∈ S for all values of x, y, o, ξ-
A, ξ

-
B. By Definition 3.3, have to show

that for all v ∈ VO and all ((x, ξ-
A), (y, ξ

-
B)) ∈ R-e

Θ,v, we have (x, y, ov) ∈ S.
Fix an arbitrary v ∈ VO and an arbitrary ((x, ξ-

A), (y, ξ
-
B)) ∈ R-e

Θ,v. By Lemma A.5,
we get that there exists paths W ′, W ′′, both starting from rt and ending at v such that(
x, curbA,ξ-A

(W ′)
)
∈ (RΘ,v)A and

(
y, curbB,ξ-B

(W ′′)
)
∈ (RΘ,v)B. As RΘ,v is a combinatorial

rectangle, it follows that:((
x, curbA,ξ-A

(W ′)
)
,
(
y, curbB,ξ-B

(W ′′)
))

∈ RΘ,v.

Now, as Π solves S with rectangular correctness despite ΞΘ(Π), we get that ΠΘ solves SΞΘ(Π)

with rectangular correctness, where SΞΘ(Π) ⊆ (X × (ΞΘ(Π))A)× (Y × (ΞΘ(Π))B)×O is the
search problem satisfying ((x, ξA), (y, ξB), o) ∈ SΞΘ(Π) ⇐⇒ (x, y, o) ∈ S for all values of
x, y, o, ξA, ξB. By Definition 3.3, it follows that (x, y, ov) ∈ S, as desired.
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