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Abstract

We initiate the study of error correcting codes over the multi-party adversarial

broadcast channel. Specifically, we consider the classic information dissemination prob-

lem where n parties, each holding an input bit, wish to know each other’s input. For

this, they communicate in rounds, where, in each round, one designated party sends

a bit to all other parties over a channel governed by an adversary that may corrupt a

constant fraction of the received communication. We mention that the dissemination

problem was studied in the stochastic noise model since the 80’s.

While stochastic noise in multi-party channels has received quite a bit of attention,

the case of adversarial noise has largely been avoided, as such channels cannot handle

more than a 1
n -fraction of errors. Indeed, this many errors allow an adversary to

completely corrupt the incoming or outgoing communication for one of the parties and

fail the protocol. Curiously, we show that by eliminating these “trivial” attacks, one

can get a simple protocol resilient to a constant fraction of errors. Thus, a model that

rules out such attacks is both necessary and sufficient to get a resilient protocol.

The main shortcoming of our dissemination protocol is its length: it requires Θ(n2)

communication rounds whereas n rounds suffice in the absence of noise. Our main

result is a matching lower bound of Ω(n2) on the length of any dissemination protocol

in our model. Our proof first “gets rid” of the channel noise by converting it to a form

of “input noise”, showing that a noisy dissemination protocol implies a (noiseless)

protocol for a version of the direct sum gap-majority problem. We conclude the proof

with a tight lower bound for the latter problem, which may be of independent interest.
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1 Introduction

We initiate the study of error correcting codes over the multi-party adversarial broadcast

channel, where n parties take turns broadcasting a bit to all other parties, but an adversary

may corrupt a constant fraction of the received bits. Multi-party broadcast channels were

studied under various noise models in many recent works. However, almost all prior work

assumed that the noise is stochastic, meaning that each sent message is corrupted with some

small constant probability.

The reason the adversarial noise model has received considerably less attention is due

to the fundamental limitation that any scheme, regardless of its rate, cannot withstand an

adversarial noise rate exceeding 1
n
. To illustrate, with a budget of 1

n
-fraction of corruptions,

the adversary can corrupt all messages broadcast by the participant who communicates the

least, thereby obstructing the other parties from successfully computing a function that relies

on this individual’s input. Likewise, within the same budget, the adversary can disrupt all

messages received by one of the participants, preventing them from producing a correct

output.

The starting point of this paper is the observation that by excluding the two simple ad-

versarial attacks mentioned earlier, we can circumvent the nonexistence of protocols capable

of withstanding adversarial corruptions beyond a fraction of 1
n
. Specifically, we consider

the adversarial channel where the adversary can corrupt any number of messages, provided

that they do not corrupt more than a θ-fraction of the messages received by each party and

a θ-fraction of the messages sent by each party1, for some constant θ > 0. We call such

adversaries θ-limited.

Indeed, consider the following simple protocol for the information dissemination problem,

where the input to each party is a bit and all parties wish to know all inputs: in the first half

of the protocol, each party broadcasts their input bit the same number of times, and then

each party computes the majority of the bits they received from each of the other parties.

In the second half of the rounds, each party broadcasts an error correcting code of all the

majority bits they computed. It is not hard to show that this protocol is resilient to θ-limited

adversaries for some constant θ.2

Although our protocol exhibits good error resilience, a notable drawback is its rate,

which is at most 1
n
. This is because, in the second half of the protocol, each of the n parties

broadcasts the encoding of all n of their majority bits with an error correcting code, resulting

in a length of at least n2 bits. This situation prompts the following question:

1More formally, if a party broadcasts in t rounds, then the adversary may corrupt up to θtn out of the
tn messages received by the parties in those t rounds.

2The argument is that for every i ∈ [n], in each half of the protocol at most 2θ-fraction of the messages
received by party i are corrupted. Thus, party i correctly decodes at least (1 − O(θ))-fraction of the error
correcting codes sent in the second half. This means that if party i outputs a wrong guess for player j’s
input, then the bit for party j must be incorrect in at least ( 12 −O(θ))-fraction of the broadcast codes. This
means that at least θ′ = ( 14 −O(θ))-fraction of the transmissions of party j in the first half were corrupted.
By choosing θ such that θ′ > 2θ, we get that the output of all the parties is correct. See Section 4.
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Is there an information dissemination protocol robust to θ-limited adversaries

with constant rate, or at least ω( 1
n
) rate?

1.1 Our Result

We answer this question in the negative, showing that the above simple protocol is essentially

optimal.

Theorem 1.1 (Informal; see Theorem 3.4). Every protocol for information dissemination

that is resilient to a 0.01-limited adversary has length Ω(n2).

Technique. The proof of Theorem 1.1 consists of two steps. The first step converts the

noise in the channel to noise in the inputs. Roughly speaking, we show that any protocol

for information dissemination in our noisy model implies a protocol for solving a direct-sum

gap-majority problem in the absence of noise3. Here, one copy of the gap-majority problem,

denoted GapMajn, is the following: each party gets a bit with the promise that at least 0.9-

fraction of the parties received the same bit. The parties’ goal is to all output the majority

bit. In the direct sum gap-majority problem, denoted here GapMajmn , each party gets m

bits, and we are promised that, for all j, the j-th bits of all the parties are an instance for

GapMajn. Consider that one can view the majority bit for each copy j as the “true j-th bit”

and view the j-th input bit of each player as a noisy version of this bit. In this sense, this

indeed converts the noise in the channel to a noise in the inputs.

We then proceed to prove a lower bound on the communication cost of GapMajmn over

the noiseless channel. We show:

Theorem 1.2 (Informal; see Theorem 6.1). Every protocol for GapMajmn with m = Θ(n),

has length Ω(n2).

We note that our above definition of the direct sum problem is different from other

definitions in the literature on one crucial point: if the promise is violated, even for a single

copy, any output is accepted. In other words, as is usually the case, if all m copies satisfy the

promise, the parties need to solve all copies. However, if the promise is violated for some of

the copies, we don’t require the protocol to solve the copies on which the promise does hold.

Since our definition is easier to be satisfied by an algorithm, the lower bound in Theorem 1.2

is stronger. Because the relevant, known direct sum theorems only rule out algorithms that

solve all the copies where the promise is satisfied, they are insufficient for our purpose (see

more about this in Sections 1.2 and 2.2).

To prove our lower bound, we first note that Theorem 1.2 is essentially tight, as with

O(n2) communication, the parties can exchange their entire input. Moreover, as at least Ω(n)

3We mention that this step is inspired by the beautiful work of [GKS08] that gives a lower bound under
stochastic noise by lower bounding a different problem where the noise is in the inputs. However, our
implementation is largely different, see Section 2.1.
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parties need to speak to solve the single-copy problem, Theorem 1.2 implies that the best

protocol essentially solves each copy separately. Put differently, one can say that Theorem 1.2

is equivalent to the statement that trying to correlate the copies of gap-majority does not

help the parties in solving the GapMajmn problem. Interestingly, our proof establishes this in

a pretty strong sense, showing that even trying to correlate three copies does not help the

protocol, as it shows the result only assuming that the copies are pairwise independent at

the end of the protocol.

In other words, we prove that the only way to make progress towards solving the GapMajmn
problem is to try to create a lot of correlations between pairs of copies. However, as this is

only a constant factor away from giving a lot of information about individual copies (which

is bounded by the overall communication), the number of these correlations can also be

bounded by a constant times the overall communication, hence the lower bound. For more

details, see Section 2.

1.2 Related Work

Dissemination over the stochastic broadcast channel. El Gamal [Gam87] initiated

the study of the noisy broadcast model as a simple abstraction for the effect of noise on

highly distributed wireless systems. The noise in his model was stochastic – in each round

the bit received by each party is flipped with some constant probability ϵ > 0, independently.

El Gamal asked whether there is a communication-efficient information dissemination pro-

tocol over this channel. The answer came from Gallager [Gal88], who gave an elegant

O(n log log n)-round protocol, which was later proved to be optimal by the beautiful paper

[GKS08]. Variants of El Gamal’s stochastic noisy broadcast channel were studied in many

follow up works [Gal88, Yao97, KM05, FK00, New04, GKS08, CHHHZ17, EKS18, EKPS21a,

EKPS21b]. We mention that our initial motivation for the study in this paper was the ques-

tion of whether communication-efficient protocols like Gallager’s were also possible in the

presence of adversarial noise.

Interactive coding. In this work we consider the information dissemination problem,

which is, perhaps, the most basic multi-party problem. It can be viewed as a generalization

of the classical coding task to the multi-sender, multi-receiver setting (in traditional coding

there is a single sender and a single receiver and the goal is to transfer a message from the

sender to the receiver). It can be shown that a dissemination protocol with a certain resilience

implies a protocol for any other problem, as the parties can first exchange their inputs and

then compute the output themselves. Of course, this protocol is not always practical, as the

input size may be much greater than the communication required to compute a solution to

the problem.

The field of interactive coding aims to make this practical by converting (general) pro-

tocols designed to work over a noiseless channel to noise resilient protocols with a small

overhead in the communication. The study of interactive codes was initiated by a seminal
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paper of Schulman [Sch92] that considered two-party protocols and was the topic of many

works since. Interactive codes for multi-party distributed channels were also studied, includ-

ing codes for peer-to-peer networks [RS94, GMS11, JKL15, LV15, HS16, ABE+16, BEGH16,

ADHS16, GK19, CHGH19, GKR21b, GKR22] and codes for various types of broadcast chan-

nels [Gal88, Yao97, KM05, FK00, New04, GKS08, CHHHZ17, EKS18, CHHHZ19, EKS19,

EKS20b, EKPS21a, MG21, EKPS21b, EKPS23].

Peer-to-peer with adversarial noise. In this paper, we consider the broadcast channel

under adversarial noise. The case of adversarial noise was previously considered in different

peer-to-peer settings, where the parties are nodes in a graph and a node can send (potentially

different) messages to its neighbors.

The work of [HS16] gives an interactive coding result in the synchronous, “fully utilized”

model, where the communication is in rounds, and in each round each node sends a message

to all other nodes. They show a scheme for converting any noiseless protocol to a proto-

col that is robust against Θ( 1
n
)-fraction of adversarial errors with multiplicative overhead

of O((|E| log n)/n) in the communication, where |E| is the number of edges in the graph

and n is the number of vertices. [JKL15] consider the synchronous, non-fully-utilized model,

and show that if the network graph contains the star topology, then a noiseless protocol

can be converted to a protocol that is robust against Θ( 1
n
)-fraction of adversarial errors and

has length linear in the length of the original protocol. [LV15] improve the communication

balance of the [JKL15] scheme. [CHGH19] consider the asynchronous setting and give an in-

teractive coding scheme with error resilience Θ( 1
n
) and multiplicative overhead of O(n log2 n)

in the communication.

In all the above results, the noise tolerance of Θ( 1
n
) is optimal, up to constants. For

example, it is noted by [JKL15] that, “by investing 1
n
-fraction of error an adversary can

completely silence a party (the quietest party)”. Recall that we get around this attack by

forcing the adversary to not corrupt more than a constant fraction of the bits sent/received

by any party.

A more challenging peer-to-peer channel where the adversarial noise can insert, delete,

or alter communicated messages is considered in [GKR22]. However, the obtained noise

tolerance is Θ( 1
|E| log |E|), which is even smaller than Θ( 1

n
). Another line of work considers

oblivious adversaries in peer-to-peer models [ADHS16, GKR21b, GKR22]. Oblivious adver-

saries are not allowed to see the content of the communication channel when making their

decision of what messages to corrupt. See more about that in Section 1.3.

Direct sum. The direct sum problem in communication complexity asks whether the com-

munication required to solve k independent copies of a communication task is k times the

communication required for solving a single copy. This problem has a rich history and was

studied in several different settings (e.g., in the deterministic, non-deterministic, random-

ized, and distributional settings) and for different types of problems (relations, complete

functions).
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Currently, non-deterministic communication complexity is the best understood model in

this regard, and an “almost perfect” direct sum theorem is known. The work of [FKNN95]

and [KKN95] showed that solving k copies of a relation R takes almost k times the amount

of non-deterministic communication. More formally, N(Rk) ≥ k(N(R) − log n − O(1)),
where n is the number of bits required to describe an input for R, N(R′) denotes the non-

deterministic communication complexity of R′, and Rk is the problem of solving k instances

of R simultaneously. Note that if R represents a partial (or promise) problem, then solving

Rk means giving the correct output on all the copies where the promise is satisfied.

For deterministic communication complexity, denotedD, and total functions f , [FKNN95]

show a weaker direct sum theorem D(fk) ≥ k(
√
D(f)/2− log n−O(1)).

The direct sum problem (and related problems like the direct product and XOR lemmas)

were extensively studied in the randomized settings and are known to be related to other

questions in complexity theory, like parallel repetition theorems and interactive compres-

sion schemes, [CSWY01, JRS03, BYJKS04, HJMR07, Kla10, BR11, BBCR13, BRWY13b,

BRWY13a, Jai15, JPY16, GKR16, GKR21a, Yu22, to cite a few]. We mention that [GKR16,

GKR21a] show that perfect direct sum does not hold for randomized communication com-

plexity, however, weak direct sum theorems are known to hold, see, e.g., [BBCR13].

1.3 Additional Discussion and Future Directions

In this work we study the power and limitations of θ-limited adversaries in the broadcast

model. We next discuss some of our modeling decisions and suggest other related questions.

Non-adaptive vs. adaptive protocols. In this work we follow the footsteps of El Gamal

[Gam87] and the followup works and assume that the order of communication in the pro-

tocol is predetermined and is independent of the players’ inputs and the channel noise (and

therefore also independent of the parties’ received transcripts). Such protocols are called

non-adaptive. Non-adaptive protocols are widely studied as they model certain common

types of wireless networks, prevent signaling4, and can trivially ensure that exactly one

party is broadcasting in every round.

Inspired by the radio network models in distributed computing [CK85], many recent

works consider adaptive models, where a party decides whether to broadcast or not based on

their input and their received transcript, see, e.g., [Hae14, CHHHZ17, EKS18, CHHHZ19,

EKS19, EKS20a, EKS20b, EKS21, EKPS23]. As hinted above, such a model is prone to

collision rounds (where more than one party broadcasts) and silent rounds (where no party

broadcasts).

Note, however, that all the above mentioned adaptive models assume stochastic noise,

and that it is unclear how to adapt the definition of θ-limited adversaries to adaptive settings.

4Signaling is the situation in which information is inferred from whether a certain party has broadcast or
not, rather than from the content of their communicated message.
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The main issue is that, for every i, our limited adversaries are only allowed to corrupt a θ-

fraction of the total number of the messages received in rounds where party i broadcasts.

But for adaptive models this number may not be fixed. Extending the notion of θ-limited

adversaries to adaptive protocols is an intriguing question that may be motivated by the

fact that, in various settings, adaptive protocols were shown to be much “stronger” than

non-adaptive ones, see, e.g., [Hae14, EKS18, EKS20a, EKS21].

Interactive coding with limited adversaries. In this paper, we study the dissemination

problem with θ-limited adversaries. As discussed in Section 1.2, such dissemination protocols

imply a protocol for solving any other communication task with θ-limited adversaries, but

the blow-up in communication may be substantial. In other words, interactive codes (with

bad rate) are possible with θ-limited adversaries. It can likely be shown that, in some cases,

such blow-up cannot be avoided5. An interesting goal is to find the “minimum additional

restrictions” to be posed on the adversary that would allow for interactive coding with low

overhead.

Randomness in adversarial models. Our simple dissemination protocol and our lower

bound in Theorem 1.1, as well as most of the study of error correcting codes over adversarial

channels in the literature, assume the deterministic setting. One can also consider randomized

settings, where the parties share a random string. Note, however, that if this string is

known to the adversary at the beginning of the protocol, then the protocol is essentially

deterministic. On the other hand, if the random string is unknown to the adversary for

the entire duration of the protocol, then the parties may use parts of it as one-time pads

and ensure that the adversary is oblivious to the contents of the messages. Such adversaries

are known to be weak (at least in the peer-to-peer setting) and every noiseless protocol

can be simulated in the presence of such adversaries with only a constant overhead in the

communication, see, e.g., [ADHS16, GKR21b, GKR21b].

An interesting direction for future work is to consider “intermediate models” where, for

example, fresh randomness is sampled in every round, the adversary gets to see it immediately

after it is sampled, but the adversary does not get to see randomness in future rounds when

deciding on what corruptions to make. Can we design communication-efficient protocols in

such models?

5Consider, for example, the pointer chasing protocol on a tree of depth n, where party i has an edge
coming out from each of the vertices in level i in the tree and the parties wish to find the unique root-to-leaf
path contained in the union of their edges. While the parties can exchange their huge inputs and get constant
resilience, an attempt to simulate the noiseless chasing protocol directly will result in noise resilience o(1).
Indeed, the adversary that erases the communication to the second party in the first θ-fraction of the rounds,
then erases the third party for the next θ-fraction of the rounds, etc., is θ-limited, but prevents the parties
from computing the correct output. We mention that [JKL15] show similar limitations in the peer-to-peer
setting.
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The adversarial erasure channel. In this work we have allowed the adversary to corrupt,

or flip, some of the received bits. Can better protocols be designed for the easier setting

where the adversary is only allowed to erase some of the received bits?

Noise tolerance. What is the maximum noise tolerance of dissemination protocols in our

model? That is, what is the largest fraction of errors that can be handled by dissemination

protocols? What is the rate vs. tolerance tradeoff?

2 Proof Overview

In this section, we give a detailed overview of our proof for Theorem 1.1. For the rest of

this section we set θ = 0.01. Let GapMajn be the following n-party problem: each of the n

parties gets an input bit with the promise that at least (1 − 2θ)-fraction of the input bits

agree. The goal is for all parties to output the majority bit. Let GapMajmn be the problem

where each of the n parties gets m input bits with the promise that the j-th bit of all the

parties is an instance of GapMajn. In addition, it is promised that for every player i, there

exists a set consisting of (1 − 2θ)-fraction of the copies j, such that the bit of party i for

copy j is the majority bit of copy j (that is, (1 − 2θ)-fraction of the bits of each party are

“correct”).

Our proof consists of two main parts. We first show that any protocol for information

dissemination in our noisy model implies a protocol for GapMajmn with the same communica-

tion cost. Here and for the rest of the section we set m = Θ(n). As explained in Section 1.1,

this means that we can convert the noise in the channel to a type of noise in the inputs. We

then prove an Ω(n2) lower bound on the communication cost of GapMajmn .

2.1 Reducing Noiseless GapMajmn to Noisy Dissemination

The reduction for simple protocols. We first explain why “simple” information dissem-

ination protocols, structured like the simple dissemination protocol we described in Section 1

(also see Section 4), imply a protocol for GapMajnn with a similar number of rounds. Later

in the section, we show how to extend the reduction to general dissemination protocols.

Consider a protocol Π where all parties broadcast the same number of times. Additionally,

assume that the protocol Π consists of two phases: in the first phase, which is, say, the first

half of the rounds, the parties take turns broadcasting their input bits. Then, in the second

phase, consisting of the second half of the rounds, the messages broadcast by the parties are

only functions of their received transcript and are independent of their private input (i.e.,

players “forget” their inputs).

To best see the connection to GapMajnn, consider such a two-phase protocol Π in the

following weak noise model. In this model, the adversary is θ-limited, and, in addition,

it is only allowed to corrupt the messages received in the first phase, while the messages

7



broadcast in the second phase are always received correctly. Furthermore, the only type of

corruptions allowed in the first phase are as follows: for every two parties i and j, party i

receives only 0s from party j or receives only 1s for party j. Since party j only broadcasts

their input bit, this means that either party i receives all their transmissions correctly (j’s

input is b ∈ {0, 1} and i received only b bits), or party i received all the transmissions flipped

(party j’s input is b and i received only b̄ bits). Clearly, lower bounds in this weaker noise

model imply similar lower bounds for our noise model.

Next, observe that in the first phase of Π, for every party i, at least (1−2θ)-fraction of the

parties received (many repetitions of) the correct input of i. This is because the adversary can

only corrupt θ-fraction of the total outgoing messages of party i, since party i broadcasts in 1
n

faction of the rounds, and since the first phase is half of the total communication. Similarly,

since the adversary can only corrupt a θ-fraction of the total incoming messages of a party,

every party i receives the correct input of at least (1− 2θ)-fraction of the parties.

Next, we claim that in the second, noiseless, phase, the parties are left with solving an

instance of GapMajnn in the absence of noise. In this instance, the input of party i for the

j-th copy of GapMajn is the input that player i received from player j in the first phase. The

promise in the definition of GapMajnn is indeed satisfied: for every j, at least (1−2θ)-fraction

of the parties i have the majority bit as their input for copy j, and for every i, for at least

(1−2θ)-fraction of the j’s, party i’s input for copy j is the true majority bit of the j-th copy.

Removing the assumption of same number of broadcasts. So far we have considered

“simple” protocols. We next show how to handle general protocols. First, we wish to remove

the assumption that each party broadcasts in the same number of rounds. Note that this

assumption is needed for the above argument. For example, if party i broadcasts in all the

rounds of the second phase, then since the adversary is allowed to corrupt a θ-fraction of

the total received communication for rounds where this party broadcasts, the adversary can

corrupt all the messages received from this party in the first phase.

To rectify this situation, we “reveal” the input of all parties that broadcast in at least
3
n
-fraction of the rounds (this is 3 times the average communication). Note that since we

are working in the non-adaptive model, the number of times that each party broadcasts is

determined ahead of time. By Markov’s inequality, at least 2n
3

parties speak in less than
3
n
-fraction of the rounds and are not fixed by being revealed. Therefore, we end up with a

dissemination protocol that only needs to disseminate the input bits of m ≥ 2n
3

parties to

all n parties. Note that since our reduction converts the dissemination of the input of one

of the parties to one copy of GapMajn, applying the reduction to disseminate the value of m

parties results in an instance of GapMajmn (instead of GapMajnn).

Removing the rest of the assumptions. The other assumptions we made when consid-

ering simple protocols, were that the protocol had two phases of equal lengths. In the first

phase, parties only broadcast their inputs, and then, in the second phase, they “forget” their

inputs, meaning that the messages broadcast by a party are independent of their input.
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To handle general protocols Π, we use the following clever observation used by [GKS08]

to analyze protocols under stochastic noise: a message sent by player i in round t of Π given

that their received transcript for the t − 1 first rounds of Π is π, can be deduced from the

following three pieces of information:

1. the input bit of party i,

2. the message that party i would have sent had their input been a 0 (and their received

transcript was π), and

3. the message that party i would have sent had their input been a 1 (and their received

transcript was π).

This gives a way of converting any protocol Π to a two-phase protocol Π′ of our desired

structure: for rounds t = 1, 2, . . . , if player i broadcasts in round t of Π, add two rounds to

the first phase of Π′ where player i broadcasts their input. Additionally, add two rounds to

the second phase of Π′ where in the first, party i sends the message they would have sent

had their input been a 0, and in the second they send the message they would have sent had

their input been a 1.

2.2 Communication Lower Bound for GapMajmn

Our next goal is to prove a deterministic communication complexity lower bound for GapMajmn ,

as is promised by Theorem 1.2. One straightforward approach would be to prove a lower

bound for one copy of GapMajn and then use one of the known direct sum theorems6. While

it is not hard to prove a deterministic, or even a non-deterministic, communication lower

bound for GapMajn, and while a perfect direct sum theorem is known for non-deterministic

communication complexity [FKNN95, KKN95], this still does not give us the required bound.

The reason is that, as explained after Theorem 1.2, such direct sum theorems only rule out

“strong” communication protocols that solve all the copies that satisfy the promise, whereas

we also need to rule out protocols that only output correctly when the promise is satisfied

for all copies.

We also mention that the randomized communication complexity of GapMajmn is low, at

least when constant error probability is allowed. Consider the following protocol: each party

broadcasts t · m
n

random bits from their input, for some t ≤ n. So, the expected number

of bits communicated per copy is t, implying a total communication of tm and, using the

Chernoff bound, the success probability of the protocol is at least 1−2−
t
10 . By taking t = n

10
,

we get a protocol with mn
10

communication and success probability 1− 2−
n

100 .

We prove a randomized lower bound, showing that the latter tradeoff is optimal up to

constant factors in the exponent. Specifically, we show that the success probability cannot

6Since most direct sum theorems are for the two-party setting, one would first need to adapt the theorem
to the multi-party setting.
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be as high as 1 − 2−100n. Note that this is stronger than the deterministic lower bound we

need for the proof of Theorem 1.1 to go through.

Our hard distribution(s). To show our randomized lower bound, we prove a distribu-

tional lower bound and use Yao’s minimax theorem. Consider the following distribution D
on inputs for GapMajmn : for every i and j, party i gets the bit 0 for copy j with probability

1− θ′, independently, where θ′ = θ200.7 It may seem at first that our distribution is “easy”,

as the right answer is the all-zeros vector, except with exponentially small probability. How-

ever, while exponentially small, the error probability of this protocol is still too large (the

error probability is the probability that the promise is satisfied, but the correct answer is

not the all-zeros vector).

To show that, observe what happens when we fix the first copy (say) to be 1 for all the

players, which is an event whose probability is exponentially small. As the copies are mu-

tually independent, the distribution of the other copies is not affected by this conditioning.

Thus, for each one of the remaining copies, they satisfy the promise except with an expo-

nentially small probability. Using a union bound, we get that conditioned on this event, all

the copies satisfy the promise except with an exponentially small probability. This means

that conditioned on the event that the first copies is fixed to be all-ones, it is likely that

the the input is counted in the error probability, implying that the error probability of this

protocol is at least exponentially small (greater than our allowed error probability of 2−100n).

Also, observe that, as we union bounded over all the copies, the exact same argument can

be made even if the copies are only pairwise independent instead of mutually independent.

In fact, the same arguments can be used to show that GapMajmn cannot be solved by

a 0-communication protocol over a large set of other distributions. This set contains the

following distributions:

1. Distributions where the probability that party i gets the bit 1 for copy j is between θ′

2

and 2θ′, and, as in D, all input bits are independent.

2. Distributions where for every i, the input bits of party i are pairwise-independent

(while the inputs of different parties continue to be independent).

GapMajmn cannot be solved over such distributions with 0-communication protocols,

because, as in the case of the distribution D, the all-zeros vector is the correct solution
except with exponentially small probability (the argument for this fact does not use

independence, and therefore still holds). Meanwhile, our above argument for showing

that the correct solution is not the all-zeros vector with probability greater than the

allowed error probability only relied on pairwise independence, so it still holds.

7With an exponentially small probability, an instance sampled from this distribution does not satisfy the
promise in the definition of GapMajmn . If this is the case, we’ll accept any output by the protocol.
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3. Distributions where the bits for the same player may not be pairwise-independent, but

the distribution of each pair of input bits of the same party are close in total variation

distance to a distribution that is independent.

Lower bound over D. The arguments above only showed that protocols with 0-communication

will not solve GapMajmn when the inputs are sampled from any distribution in the large set of

distributions above. However, the lower bound we desire is for protocols with o(n2) commu-

nication. For this, our approach at a high level is to show that if the inputs of the parties are

sampled from the distribution D, then after o(n2) rounds of communication, the distribution

of the inputs of the parties conditioned on the observed transcript (with high probability

over the transcript), stays inside the set of distributions above. As distributions in the set

are hard for 0-communication protocols, it follows that the original distribution is hard for

o(n2) communication protocols.

Let D′ be the distribution D conditioned on the observed transcript (for a typical tran-

script that we omit from the notation for the purposes of this sketch). Our goal is to show

that D′ is in the set of distributions defined by Items 1 to 3. This requires showing that, for

any player, the marginal distribution for any pair of copies (and also for any single copy) is

close to the corresponding marginal in D in total variation distance. As it turns out to be

easier to handle, we actually measure the distance between these marginals in terms of the

KL-divergence (a.k.a, relative entropy) and move to total variation distance using Pinsker’s

inequality later in the proof.

Our goal therefore, is to show that for every party and every bit or pair of bits held by

this party, the marginal distribution for this bit or pair of bits in D and in D′ are close in

terms of KL-divergence. Unfortunately, it is easily seen that this goal is impossible: consider

the protocol where player 1 sends the bit in the first copy (and nothing happens after that).

This simple protocol already violates Item 1 as now the marginal of the first party’s bit of

the first copy in D′ is a point mass. Getting around this impossibility is the next main part

of the proof and we do it in two steps.

Revealing information and the use of pairwise independence. First, we show that

the chain rule of KL-divergence and the fact that the protocol has o(n2) communication

implies that the number of bits for which Item 1 fails is o(n2). For instance, the protocol

mentioned above satisfies this, as sending any bit requires a bit of communication. With

this bound, whenever a bit violates Item 1 (or a pair of bits violates Item 3), we “fix” the

concerned bit(s) (i.e., reveal it to the players for free). The knowledge of these bits changes

the marginal distribution of the remaining bits, and in particular, may cause more of them

to violate Item 1, causing us to fix even more bits. Nonetheless, as explained below, we are

able to show using the chain rule for KL-divergence that this iterative procedure of fixing

bits will terminate after o(n2) bits are fixed.

Indeed, as the protocol has o(n2) communication, we get that the KL-divergence be-

tween D and D′ before any of the bits are fixed is o(n2). Because we only fix bits or pairs of
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bits whose marginal distributions have KL-divergence Ω(1), every time a bit or pair of bits

is fixed, the chain rule for KL-divergence implies that the KL-divergence of the distributions

D and D′, when restricted to the unfixed bits, goes down by at least Ω(1). As the initial

KL-divergence is o(n2), this implies that the total number of fixed bits is o(n2).

The second step is to ensure that even after o(n2) bits are fixed, we still have the property

that 0-communication protocols cannot compute GapMajmn . To this end, let us carefully

examine the argument above. The crux of the argument above was that the same transcript

(which is the empty transcript for 0-communication protocols) is generated by two sets of

inputs for which the output of gap majority is different. As the output is determined by the

transcript, this means that the output of the protocol must be incorrect for at least one of

the two sets, giving us the lower bound. Specifically, we observed that a typical input from

the distribution D satisfied the promise of GapMajmn and resulted in the output being the

all-zeros vector. Moreover, once we fix one of the copies to be one for all the parties, the

remaining copies can still be fixed to satisfy the promise and have the majority value in the

copies be zero.

We claim that, except with small probability, we can make this exact argument even

after o(n2) of the bits have been fixed. This is because if the total number of bits fixed is

o(n2), then most of the copies have only o(n) fixed bits. Thus, regardless of the values these

bits are fixed to, their number is small enough to not affect the output of GapMajn, which is

determined by the other bits (with high probability). It remains to consider the copies that

have Θ(n) fixed bits.

For these copies, it is possible that the values of the fixed bits prohibit the promise of

gap majority from being satisfied, e.g., when n
2
of the bits are fixed to 0 and n

2
of the bits are

fixed to 1. However, as our distribution D is heavily biased towards 0 and likely to remain

this way for a typical transcript, this is an unlikely event and can be ignored. What cannot

be ignored on the other hand is the case where almost all, say 0.999-fraction, of the fixed

bits are fixed to 0, and the remaining 0.001-fraction are fixed to 1. Because the number of

fixed bits is large, when this happens, we can no longer fix the remaining bits in the copy

to satisfy the promise and have the majority value be 1, affecting the second of the two

properties we desire.

To tackle this, we recall the fact that the number of copies for which this can happen is

small, as most of the copies will have o(n) fixed bits. In our proof, we track these copies with

a large number of fixed entries and fix all their remaining bits. This makes sure that any

copy with even one unfixed bit, can be fixed to satisfy the promise and have the majority

value be 1, while also making sure that the total number of fixed bits stays o(n2), as we only

increase the number of fixed bits by a constant factor. Note that, as before, fixing any of the

bits changes the marginal distribution of the remaining bits, and this fixing must therefore

be done iteratively until there are no more bits that need to be fixed.
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3 Model and Preliminaries

3.1 Concentration Inequalities

Lemma 3.1 (Multiplicative Chernoff bound). Suppose X1, · · · , Xn are independent random

variables taking values in [0, 1]. Let X denote their sum and let µ = E[X] denote the sum’s

expected value. Then,

Pr (X ≥ (1 + δ)µ) ≤ e−
δ2µ
2+δ , ∀0 ≤ δ,

Pr (X ≤ (1− δ)µ) ≤ e−
δ2µ
2 , ∀0 ≤ δ ≤ 1.

In particular, we have that:

Pr (X ≥ (1 + δ)µ) ≤ e−
δµ
3
·min(δ,1), ∀0 ≤ δ,

Pr (|X − µ| ≥ δµ) ≤ 2 · e−
δ2µ
3 , ∀0 ≤ δ ≤ 1.

3.2 Error Correcting Codes

We use the following standard result about the existence of error correcting codes.

Lemma 3.2. Let δ > 0 and define K0 = ⌈10/δ2⌉. For all n > 0, there exists a function

ECCn,δ : {0, 1}n → {0, 1}K0n such that for all s ̸= t ∈ {0, 1}n, we have

∆(ECCn,δ(s),ECCn,δ(t)) >

(
1

2
− δ

)
·K0n.

3.3 The Adversarial Broadcast Channel

Protocols. Our communication model is the multi-party adversarial broadcast channel.

Throughout this paper, we use n to denote the number of parties. An n-party protocol in

this model is defined by a tuple:

Π =
({
X (i)

}
i∈[n],Y , T, σ, {Mj}j∈[T ], out

)
,

where

1. for all i ∈ [n], X (i) is set of inputs of party i. We also define X = X (1) × · · · × X (n).

2. Y is set of outputs of a protocol.

3. T = ∥Π∥ ∈ N is the length (number of rounds) in the protocol.

4. σ ∈ [n]T is a vector indicating for all rounds j ∈ [T ], which is the (unique) party

scheduled to speak in round j.
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5. for all j ∈ [T ], Mj : X σj × {0, 1}j−1 × ({0, 1}∗)j → {0, 1} is the message function used

by party σj that uses his input, the bits he received in the first j − 1 rounds, and the

randomness sampled in the first j rounds to output the bit he will broadcast in round

j.

6. out : {0, 1}T → Y is the function that the parties use to compute the output of the

protocol based on the bits they receive.

We will omit X (i) and Y when they are clear from context.

Adversaries. Let Π be a protocol as above. An adversary for Π is defined by a tuple

Adv = (Advi,j)i∈[n],j∈[T ], where Advi,j : X × ({0, 1}∗)j → {0, 1}. Here, for all i ∈ [n] and

j ∈ [T ], the function Advi,j takes as input the inputs of all the parties and the randomness

sampled in the first j rounds and outputs 1 if he wants to flip (corrupt) the bit party i

receives in round j, and outputs 0 otherwise. Our formulation thus, captures adversaries

that have knowledge of all the parties’ inputs and the randomness they sampled so far, but

are unaware of the randomness they will sample in the future.

Protocol execution. We next describe the execution of a protocol Π in the presence of

adversary Adv: Each party i ∈ [n] starts with an input x(i) ∈ X (i). Let x =
(
x(1), . . . , x(n)

)
.

The execution takes place in T rounds, maintaining the invariant that for all parties i ∈ [n]

and all rounds j ∈ [T ], party i has a transcript π
(i)
<j before the execution of round j. In

each round j ∈ [T ], the parties first sample a shared random string rj ∈ {0, 1}∗. The player

σj then computes πj = Mj

(
x(σj), π

(σj)
<j , r≤j

)
and broadcasts it over the channel. All parties

i ∈ [n] then receive a (potentially corrupted) bit π
(i)
j = πj ⊕ Advi,j(x, r≤j) and append it to

π
(i)
<j to get π

(i)
≤j. At the end of the protocol, all parties i ∈ [n] output out

(
π
(i)
≤T

)
. We say that

an execution is noiseless if Advi,j always outputs 0, and we call this adversary the noiseless

adversary.

Additional discussion of the model. We finish this section with a few remarks about

the above definition: Note that when Π is executed in the presence of Adv, the output of

any party i ∈ [n] is determined by the parties’ inputs x =
(
x(1), . . . , x(n)

)
and the sampled

randomness r≤T . Owing to this, we denote it using the notation ΠAdv,i(x, r≤T ). We will omit

writing Adv, i when the adversary is noiseless as in this case, all players compute the same

transcripts, and therefore, also the same output. We also omit r≤T from our notation when

talking about deterministic protocols. Also, as mentioned above, we define our adversaries

to have complete knowledge of the inputs of the parties and the randomness they sampled

so far but they are not aware of any future randomness the parties might have. Due to

their knowledge of the randomness sampled so far (and the inputs), the adversaries can also

compute all the bits sent and received over the channel so far, and we do not explicitly
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include this in our notation. Moreover, as our upper bound is deterministic, we will only

need this assumption in our lower bound, and it only makes our result stronger.

Next, note that, as defined, the output function out is the same for all parties and

depends only on the transcript of the protocol and not on the inputs of the parties. This is

without loss of generality, as we can always extend the protocol so that one of the parties

computes and sends the output over the channel (using an error correcting code) and all

the parties then decode it from the transcript. Finally, note that our definition allows us

to easily measure the number of bits corrupted by the adversary. As we are interested only

in adversaries that do not corrupt too many bits sent or received by any given party, we

define, for all i ∈ [n], the set σ−1(i) = {j ∈ [T ] : σ(j) = i} to contain rounds where party i

broadcast and also define:

Definition 3.3. Let Π be a protocol and Adv be an adversary for Π. Let θ > 0. We say that

Adv is θ-limited, if for all x =
(
x(1), . . . , x(n)

)
, all r≤T , and all i ∈ [n], we have:∑

j∈[T ]

Advi,j(x, r≤j) ≤ θT,

∑
j∈σ−1(i)

∑
i′∈[n]

Advi′,j(x, r≤j) ≤ θn ·
∣∣σ−1(i)

∣∣.
Computation over the model. Let Π be a protocol as above and f : X → Y be

a (possibly partial) function. Let θ, p > 0. We say that the protocol Π computes f with

probability p resilient to θ-adversarial noise if for all inputs x =
(
x(1), . . . , x(n)

)
in the domain

of f and all θ-limited adversaries, we have:

Pr(∀i ∈ [n] : ΠAdv,i(x, r≤T ) = f(x)) ≥ p. (1)

We omit writing “resilient to” when θ = 0. As there is only one adversary that is 0-limited,

we will also omit Adv from the subscript in this case.

The ID and GapMaj problems. We consider the n-party Information Dissemination

function, denoted IDn, that simply outputs its n-sized tuple of arguments. That is, IDn :

{0, 1}n → {0, 1}n, where IDn(x1, . . . , xn) = (x1, . . . , xn).

We also define the partial function GapMajδ,mϵ,n that is parametrized by numbers ϵ, δ > 0

and an integer m and is such that X (i) = Y = {0, 1}m for all i ∈ [n]. GapMajδ,mϵ,n is defined

only if there exists a x̂ ∈ {0, 1}m such that

1. for all i ∈ [n], the Hamming distance between x̂ and xi (the input vector for party i)

is at most δm,

2. for all j ∈ [m], we have x̂j ̸= x
(i)
j for at most ϵn values of i ∈ [n],
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and outputs the (unique, for small ϵ) vector x̂. For notational convenience, we will interpret

GapMajδ,mϵ,n as outputting a set of possible values, where the set is the singleton set {x̂} if the
conditions above are satisfied, and is {0, 1}m otherwise.

3.4 Our Result

We are now ready to state the formal version of Theorem 1.1.

Theorem 3.4. For all θ > 0, there exists κ > 0 such that for all integers n large enough,

any protocol Π that computes IDn with probability 1 resilient to θ-adversarial noise has length

∥Π∥ > κn2.

We will actually prove the following slightly stronger Theorem 3.5 that implies Theo-

rem 3.4:

Theorem 3.5. For all θ > 0, there exists κ > 0 such that for all integers n large enough,

any protocol Π that computes IDn with probability 1− κn resilient to θ-adversarial noise has

length ∥Π∥ > κn2.

The proof of Theorem 3.5 has two main parts. The first part is a reduction showing that

lower bounds for protocol computing Information Dissemination can be obtained from lower

bounds from protocols computing Gap Majority. This is described in Section 5. The next

part is a lower bound for protocols computing Gap Majority, which is written in Section 6.

4 Our Information Dissemination Protocol

In order to demonstrate that our result in Theorem 3.4 is tight, we provide a simple algorithm

with length O(n2), which is resilient to θ-adversarial noise, for all θ < 1/40.

High level description. To summarize, the idea is to proceed in two phases. In the

first phase, every player says their input bit O(n) times. Each other player then takes the

majority value of what they heard. Thus, each player now has a guess for each player’s

input. Then, in the second phase, every player encodes the string of guesses they have using

an error-correcting code, and broadcasts the result. Each player then takes all the error-

correcitng codes they’ve received, decodes them, and sets their guess for each player’s input

to be the majority value among the guesses they’ve decoded.

The reason this works is that in order to corrupt a player’s output, the adversary needs

to either corrupt a lot of the error-correcting codes received by that player, or they need

to corrupt a lot of players’ guesses about some specific party’s input. In either case, the

adversary ends up corrupting too many rounds of communication, thus showing that a θ-

limited adversary cannot possibly corrupt even a single player’s output, exactly as desired.

16



Algorithm 1 The algorithm computing IDn.

Input: Each party k ∈ [n] has an input xk ∈ {0, 1}.
Output: Each party i ∈ [n] outputs a x̂i,1, . . . , x̂i,n, such that x̂i,k = xk for all k ∈ [n].
1: for k ∈ [n] do
2: Party k broadcasts xk K0n times.
3: Each party j ∈ [n] sets yj,k equal to the majority value they received in the previous

K0n broadcasts.
4: end for
5: for j ∈ [n] do
6: Party j computes and broadcasts ECCn,δ(yj,1, . . . , yj,n). This takes K0n broadcasts.
7: Each party i ∈ [n] sets ŷi,j,1, . . . , ŷi,j,n to the minimize the distance of

ECCn,δ(ŷi,j,1, . . . , ŷi,j,n) to the messages they received in the previous K0n broadcasts.
8: end for
9: Each party i ∈ [n] sets x̂i,k to be the majority value between ŷi,1,k, . . . , ŷi,n,k for all k ∈ [n].
10: Each party i ∈ [n] outputs x̂i,1, . . . , x̂i,n.

The formal protocol. Our protocol is given in Algorithm 1. It uses an error correcting

code ECCn,δ as promised by Lemma 3.2, where δ = 1/10. We use K0 as given in that lemma.

Theorem 4.1. For all θ < 1/40, the protocol in Algorithm 1 solves IDn resilient to θ-

adversarial noise.

Proof. We begin by noting that this protocol is deterministic. As such, the behavior of the

protocol is completely determined by the inputs to the players and the adversary Adv, and

that, for simplicity, adversaries can be assumed to just be a function of the inputs x1, . . . , xn.

Fix some adversary Adv. We wish to demonstrate that if there exists some input

x1, . . . , xn such that executing the protocol in Algorithm 1 against Adv on inputs x1, . . . , xn

results in a player outputting an incorrect output, then the adversary Adv is not θ-limited.

To see this, suppose that a player outputs some incorrect value. In particular, suppose

that x̂i,k ̸= xk for some i ∈ [n] and k ∈ [n]. That means that the majority value among

ŷi,1,k, . . . , ŷi,n,k was not xk.

That implies that there must exist some set S ⊆ [n] such that |S| ≥ n/4, and that one

of the two following conditions must hold true:

1. For all j ∈ S, ŷi,j,k ̸= yj,k, or

2. for all j ∈ S, yj,k ̸= xk.

We claim that in order for either of these cases to occur, the adversary Adv must not be

θ-limited. First suppose that for all j ∈ S, ŷi,j,k ̸= yj,k. That implies that for each j ∈ S,

during iteration j of the loop at Line 5, at least 0.2K0n of the bits sent by player j are received

incorrectly by player i, by the properties promised about ECCn,δ in Lemma 3.2. That implies

that over all the iterations of the loop at Line 5, player i hears at least 0.2
4
K0n

2 = 1
20
K0n

2
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messages incorrectly. That means that at least 1/40 of all 2K0n
2 messages sent during the

protocol are misheard by player i. This, thus, shows that Adv is not θ-limited.

On the other hand, suppose that for all j ∈ S, yj,k ̸= xk. That implies that for all j ∈ S,

during iteration k of the loop at Line 1, at least 0.5K0n of the bits sent by player k are received

incorrectly by player j. That implies that there are at least 0.5
4
K0n

2 = 1/8K0n
2 corruptions

in messages from player k to other players, of a total of 2K0n
2 messages received in rounds

during which this player broadcasts. This, thus, shows that Adv is not θ-limited.

5 Reducing Gap Majority to Information Dissemina-

tion

This section has the first part of our proof, which is a reduction from Gap Majority to

Information Dissemination. Specifically, our reduction shows that noise resilient protocols

for Information Dissemination imply noiseless protocols for Gap Majority, as formalized next:

Theorem 5.1. Let parameters 0 < θ < 1
3
, 0 < p < 1 and n ∈ N be given. If there exists

a protocol Π computing IDn with probability p resilient to θ-adversarial noise, there exists

another protocol Π′ computing GapMajθ,θnθ,n with probability p such that ∥Π′∥ ≤ 2 · ∥Π∥+ n.

Proof. Fix θ, p, n, and Π as in the theorem statement. Let Π =
(
T, σ, {Mj}j∈[T ], out

)
.

Define the set I ′ =
{
i ∈ [n] | |σ−1(i)| ≤ T

θn

}
to be the set of parties that do not broadcast

too often. By Markov’s inequality, note that |I ′| ≥ (1− θ)n > θn. We let m = θn, I be the

first m elements of I ′ and assume without loss of generality that I = [m]. We are now ready

to define the protocol Π′. We note that throughout the description of Π′ and its analysis,

we will treat vectors in {0, 1}m also as vectors in {0, 1}n by padding with an appropriate

number of zeros.

Algorithm 2 The algorithm Π′ computing GapMajθ,mθ,n .

Input: Party i ∈ [n] has an input x′(i) ∈ {0, 1}m.
1: Each party i ∈ [n] sets π′(i) ← ε, the empty string.

2: for j ∈ [T ] do

3: The parties together sample a random string rj ∈ {0, 1}∗.
4: Party σj sets τj,b ←Mj

(
b, π′(σj), r≤j

)
for all b ∈ {0, 1}. ▷

∣∣π′(σj)
∣∣ = j − 1.

5: Party σj broadcasts τj,b for all b ∈ {0, 1} to all other players.

6: Each party i ∈ [n] extends π′(i) by appending τ
j,x

′(i)
σj

.

7: end for

8: Each party i ∈ [n] outputs the first m bits of out
(
π′(i)).

Observe that, as written, the output function of the protocol Π′ depends on the inputs of

the parties. However, as mentioned in Section 3, this can be easily corrected by adding an
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extra n rounds where one of the parties broadcasts its output over the channel. Together with

these n rounds, the 2T rounds in Line 5 imply that ∥Π′∥ ≤ 2 · ∥Π∥+ n. It remains to show

that Π′ computes GapMajθ,θnθ,n with probability p. For this, we have to show Equation (1).

We do this next.

Fix x′ =
(
x′(1), . . . , x′(n)) in the domain of GapMajθ,mθ,n as in Equation (1) and define

x̂ = GapMajθ,mθ,n (x
′). As IDn(x̂) = x̂ by definition, Equation (1) follows if we show a θ-limited

adversary Adv for Π such that for all r≤T and all i ∈ [n], we have that:

ΠAdv,i(x̂, r≤T ) = Π′
i(x

′, r≤T ),

where, as usual, we pad the output of Π′ with zeros to be of length n. Indeed, the above

implies ΠAdv,i(x̂, r≤T ) = x̂ ⇐⇒ Π′
i(x

′, r≤T ) = x̂, and Equation (1) follows from the fact that

Π computes IDn with probability p resilient to θ-adversarial noise.

To start, we first note that it suffices to define a different Adv for every randomness r≤T

as the property we want is determined solely by the value of Adv on the randomness r≤T .

Fix an arbitrary r≤T and note that, as we already fixed x′, fixing r≤T fixes the value of

all variables in the execution of Algorithm 2. Henceforth, we abuse notation and use the

name of the variable to also denote its fixed value at the end of the protocol. We define the

adversary Adv as:

Advi,j(x̂, r≤j) = π
′(i)
j ⊕ τj,x̂σj

,

and we set it to 0 everywhere else. We now show why this adversary satisfies ΠAdv,i(x̂, r≤T ) =

Π′
i(x

′, r≤T ) for all i ∈ [n]. Due to Line 8, this follows if we show that for all i, the transcript

π′(i) equals the transcript π(i) received by party i when Π is executed in the presence of

Adv. As both π′(i) and π(i) have length T , this follows if we show by induction that, for

all 0 ≤ j ≤ T , we have π
′(i)
≤j = π

(i)
≤j. The base case j = 0 is straightforward. To prove the

statement for j > 0, we assume it holds for j − 1 and prove that π
′(i)
j = π

(i)
j . We have:

π
(i)
j = Mj

(
x̂σj

, π
(σj)
<j , r≤j

)
⊕ Advi,j(x̂, r≤j)

= Mj

(
x̂σj

, π
(σj)
<j , r≤j

)
⊕ π

′(i)
j ⊕ τj,x̂σj

(Definition of Adv)

= Mj

(
x̂σj

, π
′(σj)
<j , r≤j

)
⊕ π

′(i)
j ⊕ τj,x̂σj

(Induction hypothesis)

= π
′(i)
j . (Line 4)

It remains to show that Adv is θ-limited. For this we show the two inequalities in Defini-

tion 3.3. As Adv is 0 everywhere else, it suffices to show it for the arguments (x̂, r≤T ). For

the first inequality, we have for all i ∈ [n] that:∑
j∈[T ]

Advi,j(x̂, r≤j) ≤
∑
j∈[T ]

1
(
x′(i)
σj
̸= x̂σj

)
(Definition of Adv and Line 6)
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=
n∑

i′=1

1
(
x
′(i)
i′ ̸= x̂i′

)
·
∣∣σ−1(i′)

∣∣
=

m∑
i′=1

1
(
x
′(i)
i′ ̸= x̂i′

)
·
∣∣σ−1(i′)

∣∣ (The other coordinates are paddings)

≤
m∑

i′=1

1
(
x
′(i)
i′ ̸= x̂i′

)
· T
θn

(Definition of I)

≤ θT. (Definition of m and GapMajθ,mθ,n )

For the second inequality, we have for all i ∈ [n] that:∑
j∈σ−1(i)

∑
i′∈[n]

Advi′,j(x̂, r≤j) ≤
∑

j∈σ−1(i)

∑
i′∈[n]

1
(
x′(i′)
σj
̸= x̂σj

)
(Definition of Adv and Line 6)

≤
∑

j∈σ−1(i)

θn (Definition of GapMajθ,mθ,n )

≤ θn ·
∣∣σ−1(i)

∣∣.

6 Lower Bound for Direct Sum Gap-Majority

The goal of this section is to show Theorem 3.5. As we already proved Theorem 5.1, it

suffices to show the following result.

Theorem 6.1. For all 0 < θ < 1
3
, there exists κ > 0 such that for all n > 0 large enough

and m = θn, any (possibly randomized) protocol Π computing GapMajθ,θnθ,n with probability

1− κn satisfies ∥Π∥ ≥ κn2.

Indeed, Theorem 3.5 follows easily from Theorems 5.1 and 6.1. Moreover, as GapMajθ,θnθ,n

is an easier problem than GapMaj1,θnθ,n , Theorem 6.1 implies the following result about the

direct-sum of gap-majority, that may be of independent interest.

Theorem 6.2. For all 0 < θ < 1
3
, there exists κ > 0 such that for all n > 0 large enough

and m = θn, any (possibly randomized) protocol Π computing GapMaj1,θnθ,n with probability

1− κn satisfies ∥Π∥ ≥ κn2.

Henceforth, we focus on proving Theorem 6.1, whose proof spans this entire section. Fix

θ as in the theorem statement and define κ = θ1000. Let n > 0 be sufficiently large and define

a distribution D over inputs for GapMajθ,mθ,n as follows: For all players i ∈ [n] and all j ∈ [m],

the bit xi,j is sampled independently of all other bits and is 1 with probability θ25 and 0

with probability 1 − θ25. We will show that, any deterministic protocol Π with ∥Π∥ < κn2

satisfies:

Pr
X∼D

(
Π(X) ∈ GapMajθ,mθ,n (X)

)
≤ 1− κn.
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Theorem 6.1 then follows from Yao’s minimax principle. For brevity sake, we henceforth

keep the distribution D implicit. To show this bound, we shall focus on a testing version of

Gap Majority, where the parties are only required to determine whether or not the output

is the all zeros vector 0m. Specifically, let flag : {0, 1}m → {0, 1} be the indicator function

that outputs 0 if and only if the Hamming weight of its input is at most θm
2

and 1 otherwise.

Next, define the set-valued function GapMaj′mθ,n as follows:

GM-Testmθ,n(x) =


{0, 1}m, if ∃i ∈ [n] : flag(xi) = 1

{0m}, else if GapMajθ,mθ,n (x) = {0m}
{0, 1}m \ {0m}, else if

∣∣∣GapMajθ,mθ,n (x)
∣∣∣ = 1

{0, 1}m, otherwise

. (2)

This definition implies that GapMajθ,mθ,n (x) ⊆ GM-Testmθ,n(x) for all x and thus, it suffices to

show that any deterministic protocol Π with ∥Π∥ < κn2.

Pr
(
Π(X) ∈ GM-Testmθ,n(X)

)
≤ 1− κn. (3)

Fix a protocol Π as above and let T = κn2 so that ∥Π∥ < T and T ′ = T/θ500. We first

augment Π to get another protocol Πaug that reveals some extra information about the

parties’ inputs. The protocol Πaug is defined below in Algorithm 3 where we use the symbol

⊥ to denote a special symbol saying “I skip”. Also, for a distribution D on the parties’

inputs and a subset S ⊆ [n]× [m], we use D|S to denote the marginal distribution of D over

the coordinates in S. If we are writing a set, say S = {(i1, j1), (i2, j2)}, explicitly, we may

omit the {} and simply write D|(i1,j1),(i2,j2).
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Algorithm 3 The protocol Πaug. All lines except Lines 8 and 11 executed by all the players.

Any message sent is automatically appended to πaug.

Input: Player i’s input is a vector xi ∈ {0, 1}m.
1: Run Π to get a transcript π ∈ {0, 1}T . Set πaug ← π.

2: All players i ∈ [n] speak. Player i sends flag(xi).

3: For all i ∈ [n], j ∈ [m], we set Ri,j ← 0.

4: for t ∈ [T ′] do

5: Compute the sets:

Scell =
{
(i, j) | Ri,j = 0 ∧ D

(
(D | πaug)|(i,j) || D|(i,j)

)
≥ θ200

}
,

Spair =
{
(i, j, j′) | j ̸= j′ ∧ Ri,j = Ri,j′ = 0 ∧ D

(
(D | πaug)|(i,j),(i,j′) || D|(i,j),(i,j′)

)
≥ θ100

}
,

Scol =
{
(i, j) | Ri,j = 0 ∧ |{i′ ∈ [n] | Ri′,j = 1}| ≥ θ100 · n

}
.

6: if Scell ∪ Scol ̸= ∅ then
7: Let (i1, j1) be the smallest element in Scell ∪ Scol. Set Ri1,j1 ← 1.

8: All players i ∈ [n] speak. If i ̸= i1, they send (⊥,⊥). Else, they send (xi1,j1 ,⊥).
9: else if Spair ̸= ∅ then
10: Let (i2, j2, j

′
2) be the smallest element in Spair. Set Ri2,j2 ,Ri2,j′2

← 1.

11: All players i ∈ [n] speak. If i ̸= i2, they send (⊥,⊥). Else, they send
(
xi2,j2 , xi2,j′2

)
.

12: else

13: All players send (⊥,⊥).
14: end if

15: end for

Intuitively, the protocol Πaug “cleans” the protocol Π by revealing the functions flag(·) and
then, iteratively revealing all coordinates, pairs of coordinates, etc. for which the marginal

distribution changed significantly. We describe this formally in the following section, but

before that, a word on the notations we use.

Throughout this proof, we will use sans-serif letters, e.g., X to denote random variables

and the corresponding lower case letters, e.g., x to denote their values. When it is clear

from context, we may abbreviate the event X = x as just x. Note that the protocol Πaug is

deterministic and the only randomness we have is the randomness of the distribution D of

inputs. All our random variables and probabilities are defined over this randomness.

For a variable var in Algorithm 3 and t ∈ [T ′], we use vart to denote the random variable

(over the randomness of the inputs in D) whose value equals the value of the variable at

the end of iteration t of the loop in Line 4. When t = 0, we mean the corresponding value

at the beginning of the loop, i.e., after Line 3. We may omit writing the subscript when

t = T ′. We also define the additional set-valued variable R = {(i, j) | Ri,j = 1} and use the

same notation. Note that the set R can only grow.
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6.1 Properties of Πaug

In this subsection, we establish some useful properties of Πaug.

Lemma 6.3. For all 0 ≤ t ≤ T ′, the value of πt−1
aug determines8 the values of R0,R1, . . . ,Rt.

Proof. Proof by induction on t. The base case t = 0 is because R0 = ∅ by definition. We

prove the lemma for t > 0 assuming it holds for t − 1. Consider iteration t for the loop in

Line 4 and let πt−1
aug be an arbitrary value of the variable πaug at the beginning of the iteration.

As πt−1
aug determines πt−2

aug , we have by the induction hypothesis that it also determines the

values of R0,R1, . . . ,Rt−1. In particular, it determines Rt−1, the value of R at the beginning

of this execution. Therefore, it also determines the value of the sets computed in Line 5.

Now, using Lines 6, 8, 9 and 11, we get that it also determines the value of Rt, as desired.

Observe from Algorithm 3 that that the variables St
cell, S

t
pair, S

t
col, (i

t
1, j

t
1), (i

t
2, j

t
2, j

′t
2 ) are

all determined by πt−1
aug and Rt−1. Thus, we get:

Corollary 6.4. For all 0 ≤ t ≤ T ′, the value of πt−1
aug determines the values of St

cell, S
t
pair,

St
col, (i

t
1, j

t
1), (i

t
2, j

t
2, j

′t
2 ).

Lemma 6.5. For all 0 ≤ t ≤ T ′, the value of πt
aug determines the values of xi,j for all

(i, j) ∈ Rt.

Proof. Proof by induction on t. The base case t = 0 is because R0 = ∅ by definition. We

prove the lemma for t > 0 assuming it holds for t − 1. Consider iteration t for the loop in

Line 4. As πt
aug determines πt−1

aug , we have by the induction hypothesis that πt
aug determines

the values of xi,j for all (i, j) ∈ Rt−1. Moreover, from Lines 8 and 11, we have that, for all

(i, j) ∈ Rt \ Rt−1, the value of xi,j is determined by πt
aug.

Lemma 6.6. For all 1 < t ≤ T ′, if St−1
cell = St−1

pair = St−1
col = ∅, then St

cell = St
pair = St

col = ∅
(with probability 1).

Proof. Recall from Corollary 6.4 that, for all 1 < t ≤ T ′, the value of πt−2
aug determines

the values of St−1
cell , S

t−1
pair , S

t−1
col . Fix an arbitrary 1 < t ≤ T ′ and an arbitrary πt−2

aug such

that St−1
cell = St−1

pair = St−1
col = ∅ and consider iteration t − 1 of the loop in Algorithm 3. As

Lines 8 and 11 are never executed in this iteration we get that Rt−2 = Rt−1 and that πt−2
aug

determines πt−1
aug . This means that both πt−2

aug and πt−1
aug determine each other implying that

D | πt−2
aug = D | πt−1

aug . Combine this with Rt−2 = Rt−1 and use Line 5 to finish the proof.

Lemma 6.7. For all 0 ≤ j ≤
∣∣πT ′

aug

∣∣, the random variables X1, . . . ,Xn are mutually indepen-

dent conditioned on πT ′
aug,≤j.

8We define πt−1
aug to be some dummy value when t = 0.
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Proof. Proof by induction on j. The base case j = 0 is trivial. We prove the lemma for j > 0

assuming it holds for j−1. By the induction hypothesis, we have that X1, . . . ,Xn are mutually

independent conditioned on πT ′
aug,<j. This means that for all i ∈ [n], and all functions f and

all values z in the range of f , we have that X1, . . . ,Xn are mutually independent conditioned

on πT ′
aug,<j, f(Xi) = z. As conditioned on πT ′

aug,<j, the value of πT ′
aug,j is just a function of

exactly one of X1, . . . ,Xn, the lemma follows.

Lemma 6.8. We have:

E
[
D
((
D | π0

aug

)
|R0 || D|R0

)]
= I
(
X : Π0

aug

)
≤ T + n ≤ 2T.

Proof. The inequality follows from Fact A.5 and Lemma A.3. We now show the equality.

As R0 = ∅ and π0
aug is just π appended with the values (flag(xi))i∈[n], we have:

E
[
D
((
D | π0

aug

)
|R0 || D|R0

)]
= E

[
D
((
D | π0

aug

)
|| D

)]
=
∑
π0
aug

∑
x

Pr
(
π0
aug

)
· Pr
(
x | π0

aug

)
· log

Pr
(
x | π0

aug

)
Pr(x)

(Definition A.7)

= I
(
X : Π0

aug

)
. (Lemma A.6)

Recall from Lemma 6.3 and Corollary 6.4 that fixing πt−1
aug fixes the values of many vari-

ables in Algorithm 3. We now show:

Lemma 6.9. For all t ∈ [T ′] and all πt−1
aug , we have:

D
((
D | πt−1

aug

)
|Rt−1 || D|Rt−1

)
= D

((
D | πt−1

aug

)
|Rt\Rt−1 || D|Rt\Rt−1

)
+E
[
D
((
D | πt

aug

)
|Rt || D|Rt

)
| πt−1

aug

]
.

Proof. This essentially is just from the chain rule for KL-divergence. We give the details

below. Note that:

D
((
D | πt−1

aug

)
|Rt−1 || D|Rt−1

)
=
∑
x
|Rt−1

Pr
(
x|Rt−1 | πt−1

aug

)
· log

Pr
(
x|Rt−1 | πt−1

aug

)
Pr
(
x|Rt−1

) (Definition A.7)

=
∑
x
|Rt−1

Pr
(
x|Rt−1 | πt−1

aug

)
· log

Pr
(
x|Rt | x|Rt\Rt−1 , πt−1

aug

)
Pr
(
x|Rt\Rt−1 | πt−1

aug

)
Pr
(
x|Rt | x|Rt\Rt−1

)
Pr
(
x|Rt\Rt−1

)
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= D
((
D | πt−1

aug

)
|Rt\Rt−1 || D|Rt\Rt−1

)
+
∑
x
|Rt−1

Pr
(
x|Rt−1 | πt−1

aug

)
· log

Pr
(
x|Rt | x|Rt\Rt−1 , πt−1

aug

)
Pr
(
x|Rt | x|Rt\Rt−1

) .

(Definition A.7)

To continue, recall that all the coordinates of all players are mutually independent in the

distribution D. Moreover, we have from Lines 6, 8, 9 and 11 that conditioned on πt−1
aug , the

event x|Rt\Rt−1 is the same as the corresponding event πt
aug. We get:

D
((
D | πt−1

aug

)
|Rt−1 || D|Rt−1

)
= D

((
D | πt−1

aug

)
|Rt\Rt−1 || D|Rt\Rt−1

)
+
∑
x
|Rt

∑
πt
aug

Pr
(
x|Rt , π

t
aug | πt−1

aug

)
· log

Pr
(
x|Rt | πt

aug

)
Pr
(
x|Rt

)
= D

((
D | πt−1

aug

)
|Rt\Rt−1 || D|Rt\Rt−1

)
+
∑
πt
aug

Pr
(
πt
aug | πt−1

aug

)
· D
((
D | πt

aug

)
|Rt || D|Rt

)
(Definition A.7)

= D
((
D | πt−1

aug

)
|Rt\Rt−1 || D|Rt\Rt−1

)
+ E

[
D
((
D | πt

aug

)
|Rt || D|Rt

)
| πt−1

aug

]
.

Lemma 6.10. Let 0 ≤ t ≤ T ′ and π0
aug be given. Let P t be any set of transcripts πt

aug that

all have π0
aug as a prefix. It holds that:∑

πt
aug∈P t

Pr
(
πt
aug | π0

aug

)
· ∇
(
πt
aug

)
≤ D

((
D | π0

aug

)
|R0 || D|R0

)
,

where:

∇
(
πt
aug

)
= D

((
D | πt

aug

)
|Rt || D|Rt

)
+

t∑
t′=1

D
((
D | πt′−1

aug

)
|Rt′\Rt′−1

|| D|Rt′\Rt′−1

)
.

Proof. We prove the lemma by induction on t. The base case t = 0 is straightforward.

We prove the lemma for t > 0 assuming it holds for t − 1. Fix a set P t as in the lemma

statement and define, for all 0 ≤ t′ < t, the set P t′ to be the set of all πt′
aug that are prefixes

of a πt
aug ∈ P t. We have:∑

πt
aug∈P t

Pr
(
πt
aug | π0

aug

)
· D
((
D | πt

aug

)
|Rt || D|Rt

)
=

∑
πt−1
aug ∈P t−1

Pr
(
πt−1
aug | π0

aug

)
· E
[
D
((
D | πt

aug

)
|Rt || D|Rt

)
| πt−1

aug

]
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=
∑

πt−1
aug ∈P t−1

Pr
(
πt−1
aug | π0

aug

)
·
(
D
((
D | πt−1

aug

)
|Rt−1 || D|Rt−1

)
− D

((
D | πt−1

aug

)
|Rt\Rt−1 || D|Rt\Rt−1

))
.

(Lemma 6.9)

To continue, we use the induction hypothesis on the first term. We get:∑
πt
aug∈P t

Pr
(
πt
aug | π0

aug

)
· D
((
D | πt

aug

)
|Rt || D|Rt

)

≤ D
((
D | π0

aug

)
|R0 || D|R0

)
−

∑
πt−1
aug ∈P t−1

Pr
(
πt−1
aug | π0

aug

)
·

t∑
t′=1

D
((
D | πt′−1

aug

)
|Rt′\Rt′−1

|| D|Rt′\Rt′−1

)

≤ D
((
D | π0

aug

)
|R0 || D|R0

)
−
∑

πt
aug∈P t

Pr
(
πt
aug | π0

aug

)
·

t∑
t′=1

D
((
D | πt′−1

aug

)
|Rt′\Rt′−1

|| D|Rt′\Rt′−1

)
.

Rearranging gives the result.

Corollary 6.11. Let π0
aug be given and P T ′

be any set of transcripts πT ′
aug that all have π0

aug

as a prefix. It holds that:

∑
πT ′
aug∈PT ′

Pr
(
πT ′

aug | π0
aug

)
·

T ′∑
t=1

D
((
D | πt−1

aug

)
|Rt\Rt−1 || D|Rt\Rt−1

)
≤ D

((
D | π0

aug

)
|R0 || D|R0

)
.

6.2 Many Clean Transcripts

Recall from Corollary 6.4 that fixing πaug fixes the values of the values computed in Line 5.

By definition, it also fixes the values computed in Line 2. Using this, we define the following

events that are just some subsets of all possible πT ′
aug:

1. Define the event Eclean,flag to be the set of all πT ′
aug such that for all i ∈ [n], we have:

flag(xi) = 0.

2. Define the event Eclean,x to be the set of all πT ′
aug such that for all j ∈ [m], we have:

Pr

(
n∑

i=1

xi,j ≥ θn | πT ′

aug

)
≤ 2−θ5n.

3. Define the event Eclean,S to be the set of all πT ′
aug such that:

ST ′

cell = ST ′

pair = ST ′

col = ∅.
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The goal of this section is to show that a randomly sampled transcript πT ′
aug is likely to

be clean. Namely, if we define Eclean = Eclean,flag ∧ Eclean,x ∧ Eclean,S, we have:

Lemma 6.12. It holds that:

Pr
(
Eclean

)
<

1

2
.

Lemma 6.12 follows from Lemmas 6.13 to 6.15 proven below.

Lemma 6.13. It holds that:

Pr
(
Eclean,flag

)
≤ θ30.

Proof. We have:

Pr(∃i ∈ [n] : flag(xi) = 1) ≤ n · Pr(flag(x1) = 1) (As xi are identically distributed)

≤ n · 2−θ4m (Lemma 3.1)

≤ 2−θ5m.

Lemma 6.14. It holds that:

Pr
(
Eclean,x

)
≤ θ30.

Proof. We have:

Pr

(
∃j ∈ [m] : Pr

(
n∑

i=1

xi,j ≥ θn | πT ′

aug

)
> 2−θ5n

)

≤
m∑
j=1

Pr

(
Pr

(
n∑

i=1

xi,j ≥ θn | πT ′

aug

)
> 2−θ5n

)
(Union bound)

≤ 2θ
5n ·

m∑
j=1

E

[
Pr

(
n∑

i=1

xi,j ≥ θn | πT ′

aug

)]
(Markov’s Inequality)

≤ 2θ
5n ·

m∑
j=1

Pr

(
n∑

i=1

xi,j ≥ θn

)
≤ 2θ

5n ·m · 2−θ4n (Lemma 3.1)

≤ 2−θ5n.

Lemma 6.15. It holds that:

Pr
(
Eclean,S

)
≤ θ30.
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Proof. To start, define the event E to be the set of all π0
aug such that D

((
D | π0

aug

)
|R0 || D|R0

)
≤

T · θ−40. By Markov’s inequality and Lemma 6.8, we have Pr
(
E
)
≤ θ35. Using the chain

rule, this implies that:

Pr
(
Eclean,S

)
≤ Pr

(
E
)
+ Pr

(
Eclean,S | E

)
≤ θ35 + Pr

(
Eclean,S | E

)
.

Thus, it suffices to show that the last term is bounded by θ35. We will show this holds even

under a stronger conditioning. Specifically, we fix an arbitrary π0
aug such that E happens and

show that Pr
(
Eclean,S | π0

aug

)
≤ θ35. Fix any such π0

aug. We first claim that:

Claim 6.16. For all πT ′
aug that extend π0

aug for which Eclean,S does not happen, we have:

T ′∑
t=1

D
((
D | πt−1

aug

)
|Rt\Rt−1 || D|Rt\Rt−1

)
≥ T ′θ400.

The lemma now follows as, defining P T ′
to be the set of all πT ′

aug that extend π0
aug for

which Eclean,S does not happen, we get:

Pr
(
Eclean,S | π0

aug

)
=

∑
πT ′
aug∈PT ′

Pr
(
πT ′

aug | π0
aug

)

≤ 1

T ′θ400

∑
πT ′
aug∈PT ′

Pr
(
πT ′

aug | π0
aug

)
·

T ′∑
t=1

D
((
D | πt−1

aug

)
|Rt\Rt−1 || D|Rt\Rt−1

)
(Claim 6.16)

≤ 1

T ′θ400
D
((
D | π0

aug

)
|R0 || D|R0

)
(Corollary 6.11)

≤ T

T ′θ440
(Choice of π0

aug)

≤ θ50.

It remains to show Claim 6.16

Proof of Claim 6.16. Fix an arbitrary πT ′
aug as in the statement of the claim. As Eclean,S does

not happen, we have that at least one of ST ′

cell, S
T ′
pair, S

T ′

col is non-empty. Applying Lemma 6.6,

we get that for all t ∈ [T ′], at least one of St
cell, S

t
pair, S

t
col is non-empty. Due to Lines 6

and 9, this means that in all iterations t ∈ [T ′], the parties either execute Line 8 or they

execute Line 11. Let Zcol ⊆ [T ′] be the set of all iterations t where parties execute Line 8

and (it1, j
t
1) ∈ St

col \ St
cell. We claim that |Zcol| ≤ T ′ · (1− θ120).

We prove this claim later, but assuming it for now, we have that either the parties

execute Line 11 or the execute Line 8 and (it1, j
t
1) ∈ St

cell. In either case, note from Line 5
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that D
((
D | πt−1

aug

)
|Rt\Rt−1 || D|Rt\Rt−1

)
≥ θ200. This means that:

T ′θ120 ≤ T ′ − |Zcol| ≤ θ−200 ·
∑

t∈[T ′]\Zcol

D
((
D | πt−1

aug

)
|Rt\Rt−1 || D|Rt\Rt−1

)
.

As the KL-divergence is non-negative, we have the claim. It remains to show that |Zcol| ≤
T ′ · (1− θ120). For this, consider the following relation M ⊆ Zcol × ([T ′] \ Zcol). For t ∈ Zcol

and t′ ∈ [T ′] \ Zcol, we have (t, t′) ∈ M if and only if there exists i′ ∈ [n] such that (i′, jt1) ∈
Rt′ \ Rt′−1. We will show that:

(a) For all t ∈ Zcol, there are at least θ100n values of t′ ∈ [T ′] \ Zcol such that (t, t′) ∈M .

(b) For all t′ ∈ [T ′] \ Zcol, there are at most 2n values of t ∈ Zcol such that (t, t′) ∈M .

Using Items a and b, we get:

|Zcol| · θ100n ≤ |M | ≤ (T ′ − |Zcol|) · 2n.

It follows that T ′ · (1− θ120). It remains to show Items a and b. For Item a, fix an arbitrary

t ∈ Zcol and, for all 0 ≤ t′ ≤ T ′, define the value Y (t′) =
∣∣∣{i′ ∈ [n] | Rt′

i′,jt1
= 1
}∣∣∣. Observe

that from Algorithm 3 that

1. Y (0) = 0.

2. For all t′ ∈ [T ′], we have Y (t′ − 1) ≤ Y (t′) ≤ Y (t′ − 1) + 1.

3. If t′ ∈ [T ′] is such that Y (t′) ≤ Y (t′ − 1) + 1, there exists i′ ∈ [n] such that (i′, jt1) ∈
Rt′ \ Rt′−1.

To see why Item a follows, consider the smallest t∗ ∈ Zcol such that jt1 = jt
∗
1 . As t∗ ∈ Zcol,

we have
(
it

∗
1 , j

t
1

)
∈ St∗

col. By Line 5, this means that Y (t∗ − 1) ≥ θ100 · n. Together with

Items 1 and 2, this means that there are at least θ100n values of t′ ∈ [t∗ − 1] such that

Y (t′) = Y (t′− 1)+1. Moreover, none of these values are in Zcol as otherwise, Item 3 implies

that jt
′
1 = jt1, a contradiction to the choice of t∗. Using Item 3 again, it follows that all these

values satisfy (t, t′) ∈M , as desired.

For Item b, fix an arbitrary t′ ∈ [T ′] \ Zcol and suppose for contradiction that there are

at least 2n + 1 values of t ∈ Zcol such that (t, t′) ∈ M . Each of these 2n + 1 values of t

has a corresponding value of (it1, j
t
1) which are all distinct (due to the fact that Line 5 only

adds (i, j) to Scol if Ri,j = 0). As all it1 ∈ [n], the fact that there are 2n + 1 distinct values

of (it1, j
t
1) imply that these values must contain at least 3 distinct values of jt1. This implies

that there are at least three distinct values of jt1 such that there exists i′ ∈ [n] for which

(i′, jt1) ∈ Rt′ \ Rt′−1. This is a contradiction as Algorithm 3 guarantees that
∣∣Rt′ \ Rt′−1

∣∣ ≤ 2.
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6.3 Properties of Clean Transcripts

Lemma 6.12 shows that the probability that a transcript is not clean is small. Thus, a

randomly sampled transcript is likely to be clean. We now establish some properties of clean

transcripts. Throughout this subsection, we fix a transcript πT ′
aug for which Eclean happens.

This also fixes the values of R0, . . . ,RT ′
and other variables that are determined by πT ′

aug. As

Eclean,S, Eclean,x and Eclean,flag happen, we have ST ′

cell = ST ′
pair = ST ′

col = ∅ and for all j ∈ [m], it

holds that Pr
(∑

i∈[n] xi,j ≥ θn | πT ′
aug

)
≤ 2−θ5n and that flag(xi) = 0 for all i ∈ [n]. Moreover,

as the size R increases by at most 2 in any iteration, we have that:∣∣∣RT ′
∣∣∣ ≤ 2T ′ ≤ θ250mn. (4)

We claim that:

Lemma 6.17. For all j ∈ [m], we have:∣∣∣RT ′ ∩ ([n]× {j})
∣∣∣ < n =⇒

∣∣∣RT ′ ∩ ([n]× {j})
∣∣∣ < θ100 · n.

Proof. Fix such a j. As ST ′

cell = ST ′
pair = ST ′

col = ∅, we have by Lines 6 and 9 that RT ′
= RT ′−1.

Also, as ST ′

col = ∅, we have by Line 5 that:∣∣∣RT ′−1 ∩ ([n]× {j})
∣∣∣ < θ100 · n ∨ ∀i′ ∈ [n] : (i′, j) ∈ RT ′−1.

As RT ′
= RT ′−1, we are done.

Due to Lemma 6.17, we can partition the values j ∈ [m] into two sets as follows:

Jfix =
{
j ∈ [m] |

∣∣∣RT ′ ∩ ([n]× {j})
∣∣∣ = n

}
.

Junfix =
{
j ∈ [m] |

∣∣∣RT ′ ∩ ([n]× {j})
∣∣∣ < θ100 · n

}
.

(5)

Recall from Lemma 6.5 that πT ′
aug determines the values of xi,j for all (i, j) ∈ RT ′

. We have:

Lemma 6.18. For all j ∈ Jfix, it holds that
∑n

i=1 xi,j < θn.

Proof. For all j ∈ Jfix, we have by Equation (5) that (i, j) ∈ RT ′
for all i ∈ [n]. By

Lemma 6.5, this means that πT ′
aug determines xi,j for all i ∈ [n]. The lemma then follows as

we have Pr
(∑

i∈[n] xi,j ≥ θn | πT ′
aug

)
≤ 2−θ5n.

Lemma 6.19. We have:

1. For all (i, j) /∈ RT ′
and all b ∈ {0, 1},

Pr
(
xi,j = b | πT ′

aug

)
≥ θ26.
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2. For all i ∈ [n], j ̸= j′ ∈ [m] such that (i, j), (i, j′) /∈ RT ′
, and all b ∈ {0, 1}:

Pr
(
(xi,j, xi,j′) = (1, b) | πT ′

aug

)
≤ θ20 · Pr

(
xi,j′ = b | πT ′

aug

)
.

Proof. Recall that ST ′

cell = ST ′
pair = ST ′

col = ∅ and also recall from Corollary 6.4 that these sets

are determined by πT ′−1
aug . The fact that these sets are empty imply that πT ′−1

aug also determines

πT ′
aug, which means that they both determine one another. It follows that the distributions

D | πT ′−1
aug and D | πT ′

aug are identical. We now prove each part in turn.

1. As RT ′−1 ⊆ RT ′
, we have (i, j) /∈ RT ′−1. Recall that ST ′

cell = ∅ implying from Line 5

that D
((
D | πT ′−1

aug

)
|(i,j) || D|(i,j)

)
< θ200. As the distributions D | πT ′−1

aug and D | πT ′
aug

are identical, we get D
((
D | πT ′

aug

)
|(i,j) || D|(i,j)

)
< θ200. By Fact A.9, this means that∥∥∥(D | πT ′

aug

)
|(i,j) −D|(i,j)

∥∥∥
TV

< θ100 which by Definition A.8 and the definition of D
implies the result.

2. As RT ′−1 ⊆ RT ′
, we have (i, j), (i, j′) /∈ RT ′−1. Recall that ST ′

pair = ∅ implying from Line 5

that D
((
D | πT ′−1

aug

)
|(i,j),(i,j′) || D|(i,j),(i,j′)

)
< θ100. As the distributions D | πT ′−1

aug and

D | πT ′
aug are identical, we get D

((
D | πT ′

aug

)
|(i,j),(i,j′) || D|(i,j),(i,j′)

)
< θ100. By Fact A.9,

this means that
∥∥∥(D | πT ′

aug

)
|(i,j),(i,j′) −D|(i,j),(i,j′)

∥∥∥
TV

< θ50. It follows that:

Pr
(
(xi,j, xi,j′) = (1, b) | πT ′

aug

)
≤ Pr((xi,j, xi,j′) = (1, b)) + θ50 (Definition A.8)

≤ θ25 · Pr(xi,j′ = b) + θ50

≤ θ24 · Pr(xi,j′ = b)

≤ θ24 ·
(
Pr
(
xi,j′ = b | πT ′

aug

)
+ θ50

)
(Definition A.8)

≤ θ20 · Pr
(
xi,j′ = b | πT ′

aug

)
. (Item 1)

Moreover, we have from Equation (4) that Junfix ̸= ∅. Fix an arbitrary j∗ ∈ Junfix. We

now use j∗ to define some important sets of the parties’ inputs. Let x′ be an input in the

support of D. We say that x′ is relevant if for all j ̸= j∗ ∈ [m], we have
∑n

i=1 xi,j ≤ θn. We

define Xrel to be the set of all relevant inputs. We say that x′ sets j∗ to zero (respectively,

one) if for all i ∈ [n], we have x′
i,j∗ = xi,j∗ if (i, j∗) ∈ RT ′

(recall from Lemma 6.5 that πT ′
aug

determines the values of xi,j for all (i, j) ∈ RT ′
) and x′

i,j∗ = 0 (resp. x′
i,j∗ = 1) otherwise. We

let Xzero and Xone be the set of all inputs that set j∗ to zero and one respectively. We claim

that:
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Lemma 6.20. For all x′ ∈ Xrel ∩Xone such that Pr
(
x′ | πT ′

aug

)
> 0, we have GM-Testmθ,n(x

′) =

{0, 1}m \{0m}. For all x′ ∈ Xrel∩Xzero such that Pr
(
x′ | πT ′

aug

)
> 0, we have GM-Testmθ,n(x

′) =

{0m}.

Proof. We only prove the former as the latter is analogous. For this, fix x′ ∈ Xrel ∩Xone and

examine the cases in Equation (2). Recall that Pr
(
x′ | πT ′

aug

)
> 0 implies that flag(x′

i) = 0

for all i ∈ [n]. We finish the proof by showing that:

GapMajθ,mθ,n (x
′) = {( 0, . . . , 0︸ ︷︷ ︸

j∗−1 times

, 1, 0, . . . , 0︸ ︷︷ ︸
m−j∗ times

)}. (6)

Indeed, we have from x′ ∈ Xrel that
∑n

i=1 x
′
i,j ≤ θn for all j ̸= j∗ ∈ [m]. We also have from

j∗ ∈ Junfix and x′ ∈ Xone that
∑n

i=1 x
′
i,j ≥ n−θ100n. Moreover, we also have from flag(x′

i) = 0

for all i ∈ [n] that the Hamming weight of x′
i is at most θm

2
for all i ∈ [n]. Combine these to

get Equation (6).

Lemma 6.21. For all X ∈ {Xone,Xzero}, it holds that:

Pr
(
X ∈ X ∩ Xrel | πT ′

aug

)
≥ θ30n.

Proof. We show the result for X = Xone as the proof for Xzero is analogous. For i ∈ [n],

define x∗
i,j∗ = xi,j∗ if (i, j∗) ∈ RT ′

(recall from Lemma 6.5 that πT ′
aug determines the values of

xi,j for all (i, j) ∈ RT ′
) and x∗

i,j∗ = 0 otherwise. Thus, we have:

Pr
(
X ∈ Xone | πT ′

aug

)
= Pr

(
∀i ∈ [n] : x′

i,j∗ = x∗
i,j∗ | πT ′

aug

)
=

n∏
i=1

Pr
(
x′
i,j∗ = x∗

i,j∗ | πT ′

aug

)
,

(7)

where the last step uses Lemma 6.7. We also have

Pr
(
X ∈ Xone ∩ Xrel | πT ′

aug

)
= Pr

(
∀i ∈ [n] : x′

i,j∗ = x∗
i,j∗ ∧ ∃j ̸= j∗ ∈ [m] :

n∑
i=1

x′
i,j > θn | πT ′

aug

)

≤
∑

j ̸=j∗∈[m]

Pr

(
∀i ∈ [n] : x′

i,j∗ = x∗
i,j∗ ∧

n∑
i=1

x′
i,j > θn | πT ′

aug

)
(Union bound)

≤
∑

j ̸=j∗∈[m]

∑
Z⊆[n]
|Z|=θn

Pr
(
∀i ∈ [n] : x′

i,j∗ = x∗
i,j∗ ∧ ∀i ∈ Z : x′

i,j = 1 | πT ′

aug

)
(Union bound)
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≤
∑

j ̸=j∗∈[m]

∑
Z⊆[n]
|Z|=θn

∏
i∈Z

Pr
(
x′
i,j∗ = x∗

i,j∗ | πT ′

aug

)∏
i∈Z

Pr
((

x′
i,j, x

′
i,j∗

)
=
(
1, x∗

i,j∗

)
| πT ′

aug

)
(Lemma 6.7)

≤
∑

j ̸=j∗∈[m]

∑
Z⊆[n]
|Z|=θn

θ20·θn ·
n∏

i=1

Pr
(
x′
i,j∗ = x∗

i,j∗ | πT ′

aug

)
. (Lemma 6.19, Item 2)

Now, note that there are at most n ·
(
3
θ

)θn ≤ (4
θ

)θn
terms in the sum (as

(
n
k

)
≤
(
en
k

)k
). We

get using θ < 1/2 that:

Pr
(
X ∈ Xone ∩ Xrel | πT ′

aug

)
≤
(
4

θ

)θn

· θ20·θn ·
n∏

i=1

Pr
(
x′
i,j∗ = x∗

i,j∗ | πT ′

aug

)
≤ 1

2
·

n∏
i=1

Pr
(
x′
i,j∗ = x∗

i,j∗ | πT ′

aug

)
.

Combining with Equation (7), we get:

Pr
(
X ∈ Xone ∩ Xrel | πT ′

aug

)
≥ 1

2
·

n∏
i=1

Pr
(
x′
i,j∗ = x∗

i,j∗ | πT ′

aug

)
=

1

2
·

∏
i:(i,j∗)/∈RT ′

Pr
(
x′
i,j∗ = x∗

i,j∗ | πT ′

aug

)
(As πT ′

aug determines xi,j for all (i, j) ∈ RT ′
)

≥ θ30n. (Lemma 6.19, Item 1)

6.4 Finishing the Proof

We are now ready to finish the proof of Theorem 6.1.

Proof of Theorem 6.1. Recall that it suffices to show Equation (3). We have:

Pr
(
Π(X) ∈ GM-Testmθ,n(X)

)
≤ Pr

(
Eclean

)
+ Pr(Eclean) · Pr

(
Π(X) ∈ GM-Testmθ,n(X) | Eclean

)
(Union bound)

= 1− Pr(Eclean) · Pr
(
Π(X) /∈ GM-Testmθ,n(X) | Eclean

)
≤ 1− 1

2
· Pr
(
Π(X) /∈ GM-Testmθ,n(X) | Eclean

)
. (Lemma 6.12)
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Thus, it suffices to lower bound the last probability by θ30n. We will show this holds even

under a stronger conditioning. Specifically, we fix an arbitrary πT ′
aug such that Eclean happens

and show that Pr
(
Π(X) /∈ GM-Testmθ,n(X) | πT ′

aug

)
≥ θ30n. Fix any such πT ′

aug and recall that

fixing πT ′
aug also fixes the output of the protocol. As the sets in the two cases of Lemma 6.20

are disjoint, we have:

Pr
(
Π(X) /∈ GM-Testmθ,n(X) | πT ′

aug

)
≥ min

(
Pr
(
Π(X) ∈ Xrel ∩ Xone | πT ′

aug

)
,Pr
(
Π(X) ∈ Xrel ∩ Xzero | πT ′

aug

))
≥ θ30n. (Lemma 6.21)
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A Information Theory Preliminaries

Recall that we use sans-serif letters to denote random variables. We reserve E to denote an

arbitrary event. All random variables will be assumed to be discrete and we shall adopt the

convention 0 log 1
0
= 0. When it is clear from context, we may abbreviate the event X = x

as just x. All logarithms are taken with base 2.

A.1 Entropy

Definition A.1 (Entropy). The (binary) entropy of X is defined as:

H(X) =
∑

x∈supp(X)

Pr(x) · log 1

Pr(x)
.
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The entropy of X conditioned on E is defined as:

H(X | E) =
∑

x∈supp(X)

Pr(x | E) · log 1

Pr(x | E)
.

Definition A.2 (Conditional Entropy). We define the conditional entropy of X given Y and

E as:

H(X | Y, E) =
∑

y∈supp(Y)

Pr(y | E) ·H(X | y, E).

Henceforth, we shall omit writing the supp(·) when it is clear from context.

Lemma A.3. It holds for all X and E that:

0 ≤ H(X | E) ≤ log(|supp(X)|).

The second inequality is tight if and only if X conditioned on E is the uniform distribution

over supp(X).

A.2 Mutual Information

Definition A.4 (Mutual Information). The mutual information between X and Y is defined

as:

I(X : Y) = H(X)−H(X | Y) = H(Y)−H(Y | X).

The mutual information between X and Y conditioned on Z is defined as:

I(X : Y | Z) = H(X | Z)−H(X | YZ) = H(Y | Z)−H(Y | XZ).

Fact A.5. We have 0 ≤ I(X : Y | Z) ≤ H(X).

Lemma A.6. We have:

I(X : Y | Z) =
∑
x,y,z

Pr(x, y, z) · log Pr(x, y | z)
Pr(x | z) Pr(y | z)

.

A.3 KL Divergence

Definition A.7 (KL Divergence). If µ, ν are two distributions over the same (finite) set Ω,

the Kullback-Leibler (KL) Divergence between µ and ν is defined as:

D(µ || ν) =
∑
ω∈Ω

µ(ω) · log µ(ω)

ν(ω)
.
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For a finite non-empty set S, we shall use U(S) to denote the uniform distribution over

S. We omit S from the notation when it is clear from the context. We use dist(X | E) to

denote the distribution of the random variable X conditioned on the event E.

A.4 Total Variation Distance

Definition A.8 (Total variation distance). Let µ, ν be two distributions over the same (fi-

nite) set Ω. The total variation distance between µ and ν is defined as:

∥µ− ν∥TV = max
Ω′⊆Ω

∑
ω∈Ω′

µ(ω)− ν(ω).

Fact A.9 (Pinsker’s inequality). Let µ, ν be two distributions over the same set Ω. It holds

that:

∥µ− ν∥TV ≤
√

1

2
· D(µ || ν).
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