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An exposition of recent list-size bounds of FRS Codes
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Abstract

In the last year, there have been some remarkable improvements in the combinatorial list-
size bounds of Folded Reed Solomon codes and multiplicity codes. Starting from the work on
Kopparty, Ron-Zewi, Saraf and Wootters [KRSW23] (and subsequent simplifications due to
Tamo [Tam?24]), we have had dramatic improvements in the list-size bounds of FRS codes' due
to Srivastava [Sri25] and Chen & Zhang [CZ24]. In this note, we give a short exposition of these

three results (Tamo, Srivastava and Chen-Zhang).

1 Introduction

We start by defining Folded Reed Solomon (FRS) codes and list decoding capacity. Folded Reed-
Solomon codes were introduced by Krachkovsky [Kra03], and then re-discovered by Guruswami
and Rudra [GRO8] in the context of list-decoding. Let F; be a finite field of ¢ elements, with ¢ > k.

Definition 1.1 (folded Reed-Solomon codes (FRS) [Kra03, GR08]). Let S = {aq,...,an} be a set
of n distinct elements in Fy and let v be a generator of Fy. The folded Reed-Solomon code with

parameters (k, S, s) is defined via the following map:

FRSy s ]F'q[:n]<k — (F;)”

flar) flam)
@) f(v:ou) . f(v’ozn)
f(y¥tan) f(r¥tan)

The parameter s is also referred to as the folding parameter of the FRS code.
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The rate of the above code shall be donoted by R, with R := k/ns, and it is known that the
fractional distance of the code is 1 — R. %

For the rest of the article, the set S = {a1,...,a,} will be fixed and we will just refer to the
FRS code as FRSy s code. We overload notation and use the same symbol to refer to both the

polynomials (which correspond to messages) and their encodings under the above map.

List-decodability: The notion of distance between codewords would be the standard Hamming

distance.

Definition 1.2 (Hamming balls). For any point y € X" for some alphabet ¥, we denote the
Hamming ball of fractional radius p around y by B(y, p) defined as

Bly.p):={z €S : |{ich]: a#y}| <pn} . 0

The primary objective in list-decodability is to understand up to what radius do Hamming balls

have “few” codewords.

Definition 1.3 (List-decodability). A code C C X" is said to be (p, L) list-decodable if for every
y € X" we have

|ICNB(y,p)| < L. O

Folded Reed-Solomon codes were shown to achieve list-decoding capacity by Guruswami and
Rudra [GRO8|. That is, the set of codewords in a ball of radius 1 — R — € around any point in the
code space is small.

Guruswami and Wang [GW13] re-proved this result in the following specific way: for FRS codes
with folding parameter O(1/¢2), for any point y in the code space, they show the existence of a linear
subspace A C F, [2]<" with dim A = O(1/e) such that every codeword in the ball B(y,1 — R — ¢)
is the encoding of a polynomial in A. This implies that the list size is at most ¢©(*/¢). Their proof

of the existence of the subspace is algorithmic. We state this as a lemma below.

Lemma 1.4 (Guruswami-Wang [GW13]). Let y € (F;)n be a received word for a FRSy s code of
rate R = k/ns. Then, for p=1— R —¢, if s = Q(1/?), there is an affine space A of dimension
O(1/e) that contains all codewords in B(y,p) N C. Furthermore, an affine basis for A can be

obtained in time polynomial in n,logq,1/e given the received word y.

Subsequently, Kopparty, Saraf, Ron-Zewi and Wootters [KRSW23] showed that the upper
bound on the list size at radius 1 — R — ¢ for such codes can be improved from polynomial ¢ /9
to constant (1/e)°(/2). A cleaner analysis of this upper bound was given by Tamo [Tam24]. These
proofs were also algorithmic: they build on the previous result by taking the subspace as input and

“pruning” the list size in a randomized fashion. In particular, if £ denotes the list of codewords in



the ball B(y,1 - R —¢), ie., L:=B(y,1 — R —¢) NFRS s, then the KRSW/Tamo improvement

can be written as follows, a further simplified proof of which is presented in Section 2.
Theorem 1.5 ([KRSW23, Tam24]). The size of L is upper-bounded by (1/¢)0(/%).

How small can the list-size bound be? Shangguan and Tamo [ST23] generalized the classical
Singleton bound to show that any code with rate R that is (1— R—e¢, L) list-decodable satisfies L >
1771;“5. Very recently, Srivastava [Sri25] and Chen & Zhang [CZ24] gave dramatic improvements
on this list-size to O(1/e) almost matching the generalized Singleton bound up to a constant

multiplicative factor.
Theorem 1.6 ([Sri25]). The size of L is upper-bounded by O(1/€?).
Theorem 1.7 ([CZ24]). The size of L is upper-bounded by O(1/e).

We will give simplified proofs of these improvements in Sections 4 and 5. It is to be noted that
these proofs are combinatorial and algorithmizing them (efficiently; in time nearly-linear or even
polynomial in the list size) remains open. The results of KRSW /Tamo also extend to list-recovery.
However, as Chen-Zhang observe the dramatic improvements on list-size bounds for list-decoding
FRS codes obtained by Srivastava and Chen & Zhang do not extend to list-recovery of FRS codes.

We (re-)present the Chen & Zhang counterexample in Section 6.

Agreement graphs: A key ingredient we will be using in the proofs of these improvements is

the notion of an agreement graph, which we define below.

Definition 1.8 (Agreement graph). For any code C C X", message y € X", and a set of distinct
codewords f1,..., fm € C, the agreement graph G({f1,... fm},y) is defined as the bipartite graph,
with m vertices on the left (corresponding to the list of codewords) and n wvertices on the right
(corresponding to the blocks), and an edge connecting i € [m] on the left with j € [n] on the right
if the encoding of f; agrees with y at coordinate j. %

All the proofs will essentially attempt to upper-bound the number of edges in any agreement
graph, and thereby infer that there cannot be “too many” left-vertices (codewords) with “large

degree” (agreement).

2 KRSW/Tamo’s upper bound for list size

The bounds due to Kopparty, Ron-Zewi, Saraf and Wootters work for any linear code, not neces-
sarily FRS codes and we will also state the results in that generality. Let F be any finite field, s a
positive integer and C C (F¥)" be an F-linear code over the alphabet F* with block length n and
fractional distance 4.

Let y € (Fg)n be an arbitrary point in the code space of C. Let £ :={f1,..., ft} = B(y,p)NC

be the list of codewords at distance at most p = § — ¢ from y.



Definition 2.1 (Certificates). Let A be an affine subspace of an F-linear code C C (F*)". A
certificate with respect to y is a sequence of coordinates (i1, ...,1,) (each ij € [n]) such that there
is a unique codeword f € A that agrees with y at the coordinates i1, ... ,1q; we shall say that this is
a certificate for f.
We shall call such a certificate a minimal certificate if i1,...,i, is not a certificate for any
a < a. O
Equivalently, if G = G(L,y) is the agreement graph, then a certificate for f identifies a set of

right vertices with unique common neighbour being f.

Theorem 2.2 ([KRSW23, Tam24]). Let C C (F*)" be an F-linear code with distance 6 and p = §—¢
and y € (F;)n an arbitrary message. Suppose L := B(y,p) NC is contained in an affine space of
dimension r.

Then there is a probability distribution on minimal certificates with respect to y such that for
any f € L, the set of of minimal certificates for f of length at most r has probability mass at least
r

3

In particular, the size of L is upper-bounded by (1/e").

Proof. Let A be the affine subspace of dimension r containing £. The distribution on minimal
certificates is the most natural one — start with Cy = () and extend it by choosing a uniformly
random coordinate, one coordinate at a time, until it becomes a minimal certificate. Fix any f € L
for the rest of the argument. The goal is to show that the probability mass on short certificates for

f is large. For a set of coordinates S = {i1,...,i;}, we will define A(S) as
A(S) :={f € A: f agrees with y at coordinate i, for all : € S} .

To begin with, A(® := A contains f. Assume that we have constructed a partial certificate
Cj = (i1,...,4;) so far with AY) := A(C;) being an affine space containing f. Whenever we have
AU = A(Cy) # {f} (e, Cj is not yet a certificate for f), let f' # f be any other element of
AW Since f’ and f are distinct codewords, they agree on at most (1 — d)n coordinates but f
agrees with y on more than (1 — 6 + €)n coordinates. Hence, if i;,; was chosen to be any of the
coordinates where that f agrees with y but disagrees with f’ on that coordinate, then we have that
AU = A({iy, ..., ij4+1}) continues to contain f but is a strictly smaller subspace of AW Thus,

with probability at least € on the choice of i;41 € [n], we have that for Cj11 = (i1,...,7j41)
fe AU and dim AUHY < dim AY).

where AUHY = A(Cjyq). Since dimA() < r, with probability at least e we get a minimal
certificate for f of length at most r. O



3 Dimension of typical subspaces obtained from restrictions

In the above proof, we started with an r-dimensional space A that included all our codewords of

interest, and we considered various subspaces A; defined as
A :={f € A: f agrees with y at coordinate i}

and let r; := dim A;. In the above proof, we mainly used the fact that r; < r for at least en many
choices of i. The following lemma of Guruswami and Kopparty [GK16] says that, for FRS codes,

the average r; is significantly smaller than 7.

Lemma 3.1 (Guruswami and Kopparty [GK16]). Let y € (F;)n and A be an affine subspace of
FRSi s of dimension r. For each i € [n], define

A, ={f €A f agrees withy at coordinate i}

with r; = dim A;. Then,

g r<r-T.n

i€[n]

for 7, = 8_35_1 where R = k/ns.

In other words, E;[r;] ~ r-R. More precisely, if s = ©(1/&2) and r = O(1/¢), then 7. = R-(1 + O(¢)).

For the sake of completeness, we add a proof of the above lemma in Appendix A. Using this

lemma, we can obtain significantly better bounds on the list size for FRS codes.

4 Srivastava’s improved list size bound

Srivastava’s [Sri25] main theorem is the following.

Theorem 4.1 (Better list size bounds for FRS codes [Sri25]). If y is any received word, and A is

an affine subspace of dimension r, then for any r <t < s we have

t S
[ - < — .
‘B(y,t+1<1 S_T+1R>>HA‘_(t Dr+41

sR

5= (as in Lemma 3.1), the above can be written as

Writing in terms of 1, =

t



Setting parameters: For any parameter ¢ > 0, we can set t = 2/¢, and s = 3/¢2. By Guruswami
and Wang [GW13], we know that

t
B — (1 — NFRS
<y7 t+ 1( Tt)) k,s
is contained in an affine subspace of dimension at most » = t — 1. Plugging these parameters in,

we can check that p = tj%l(l —1)>1—-R—e¢.

t sR
Sy (1 - —t+2>
(2/2) 3/

TRkt <1‘R'3/52—1/s+2)
1

1
1+3) (1 e <2/3>52)
=(1-5£0() (1-R(1+:26())

2
_ I R 2
_1R5<2+3>i9(5)
>1—-R—¢.

In that case, we get that FRS s codes are (1 — R — ¢, 0(1/e?))-list-decodable.

4.1 Proof of Theorem 4.1

The above theorem is proved by induction on the dimension r. The base case is when r = 1. The

following bound holds for any linear code.

Lemma 4.2. (Theorem 4.1 for r = 1) If y is any received word, and A is an affine subspace of

dimension 1, then for any t > 1 we have

t
'B <y,t+1(1 —R)> O.A‘ <t.
Proof. Let L = ‘B (y, H%l(l - R)) HA‘

Suppose the affine space A is of form {fo+ofi : o €F,}, with f; # 0. Let us use S :=
{i € [n] : (FRSks(f1))i # 0} to denote the support of the encoding of f;. Note that |S| > (1—-R)-n.

Notice also that two distinct codewords in the list have to disagree completely on S. Hence,
every right-side vertex in S has at most one outgoing edge.

We now count edges in the agreement graph, from both sides. From the codewords side, since

each codeword has agreement strictly more than n(1 — 1&4%1(1 — R)), the number of edges is more



than Ln(1 — (1 — R)).

From the locations side, each vertex in S contributes at most one edge. Each vertex outside S
may contribute up to L edges. This gives the total number of edges to be at most |S|+ L(n—1S|) =
Ln—(L—-1)|S| < Ln—(L—1)(1— R)n using the above lower bound on |S].

Combining the upper and lower bound on the number of edges,

Ln<1ti1ﬂlb><lm(L1X1Rm

Rearranging and cancelling out Ln on both sides,

@—DQ—RM<L£%O—RM

Solving for L gives L <t + 1. O

We now prove the main theorem.

Proof of Theorem 4.1. Let p := 1;4%1 (1 — 7,) and we wish to bound the size of B(y, p) N A.
L(r):= B NA|.
(r):=, max [|B(y,p)NA

We will prove a bound on L(r) by inducting on r.
Inductive claim: L; < L(r;) < o -r; + 1 for a constant o independent of r;.

We will eventually show o =t — 1 would be sufficient, giving us the requisite bound.

For each i, let A; be the subspace of A corresponding to agreement at coordinate i with y.
Let r; := dim A;. Let L be the number of codewords in B(y,p) N A, and let L; be the number
of codewords in B(y, p) N A;. By the induction hypothesis, for every i such that r; < r, we have
L; < L(r;) <or; + 1.

We count the number of edges in the agreement graph. Counting from the left, each codeword
has agreement at least (1 — p)n, therefore the number of edges is at least (1 — p)nL. Counting
from the right, coordinate ¢ is incident to at most L; codewords, therefore the number of edges is
at most ), L;. Combining this, we have the inequality >, L; > (1 — p)nL.

We cannot use induction to control the coordinates where r; = r, therefore for these coordinates
we use the trivial bound L; < L. Let B be the set of coordinates for which this is true. We therefore
have

S (o ri+1)> L((1—p)n—|B]) .
iZB
Every codeword in the list agrees with y on the set B, therefore in particular the codewords agree

with each other on this set. Since any two codewords can have agreement at most Rn, we have



|B| < Rn, which implies the term ((1 — p)n — |BJ) is positive. Therefore, we can deduce

g (0 Ti+1)
(L—pn—1B]

By Lemma 3.1, we have

Zri:Zri+\B|-T§rnTr

icln] igB
= Z(a'm—l—l)Sa‘rnTr—a-HB\—i—(n—|B|)
iB
=o-rnr,+n—|B|(c-r+1).
I < ornt, +n — |B| (or +1)
- (1—p)n—|B| '

To complete the induction, we have to show L < o -r + 1. From the above, it suffices to show

0<((1=pmn—1B|)-(or+1) = (ornt +n —|B| (or + 1))
={1-pn-(ocr+1)— (ornt +n) .

Indeed, using the fact that p = 7 - (1 — 7;), we have

1—=p)-(or+1)—(or -7 +1)=0r-(1—p)—7)+(1—p—1)
—or (=) =)~

since (t—1)r >tast>r>2. O

From the above proof, it feels like we could have perhaps taken o = f, thereby getting a list size
bound of L(r) < or+1 < t+ 1 instead of O(tr). However, note that the above proof used the fact
that o was independent of 7 (when we bounded Y __ L(r;) with o) r; + (n—|B|)). Nevertheless,
this perhaps suggests that there is some slack in the above analysis and one could perhaps improve
the analysis to obtain a list-size bound of O(t) instead of O(tr).

Chen and Zhang [CZ24] (independent and parallel to Srivastava [Sri25]) obtain an O(t) bound

by using induction to bound the number of edges of the agreement graph rather than bounding the

r; <T

list size directly.



5 Further improvements on the list size due to Chen and Zhang

Theorem 5.1 (Chen and Zhang [CZ24]). Let y € (Fg)n be an arbitrary received word for the
FRSy s code. For any 0 <t < s, we have
<t,

t
B — (1 - F
5 (g - m) nFRSL,

sR
s—t+1

where T, = (as in Lemma 3.1).

Setting parameters: As in the previous case, if t = 2/ and s = 3/¢? we once again have
p= tJ%l (1-m7)>1— R —e¢, the above theorem shows that FRSj ; codes are (1 — R — ¢, 2/¢)-list-
decodable.

Remark. Unlike the previous bound of Srivastava (Theorem 4.1), the above bound is oblivious
of any ambient space that the codewords lie in. In particular, the above list-size bound does not
rely on the fact from Guruswami and Wang [GW13] that all close-enough codewords lie in a low-

dimensional affine space. %

The above theorem will be proved by once again considering relevant agreement graphs and
upper-bounding the number of edges in it. For a set of distinct codewords {fi,..., fmn} and a
received word y € (]Fg)n, let G = G({f1,..., fm},y) be the agreement graph. We will use Eg to
denote the number of edges in G. For any subset H of left vertices in G, let Ey denote the number
of edges in the induced graph G(H,y).

Let ng be the number of right vertices of G that have degree at least 1 (these are the positions
where at least one of the codewords agrees with y). Similarly, for any subgraph induced by a set
H of left vertices, ny is the number of right vertices with degree at least 1 (we overload notation
and use H for both the subset of vertices and the induced subgraph).

The main technical lemma of Chen and Zhang can be stated as follows.

Lemma 5.2 (Chen and Zhang [CZ24]). Let A be the affine subspace spanned by fi,..., fm and sup-
pose r be the dimension of this affine space. Then, for any agreement graph G = G({f1,..., fm},v)

corresponding to a message y € (IFZ)”, we have

(m—1)k
Eao< — 72— .
¢ = 57T+1+nG

Recalling the parameter 7, from Lemma 3.1, the above can be restated as saying
Ec<(m-1)-n-7 +ng.

Before we see the proof of the above lemma, let us see how Lemma 5.2 implies Theorem 5.1.



Proof of Theorem 5.1. Assume on the contrary that there are ¢t + 1 distinct codewords fi, ..., fi+1

t —_t 1 i
m1(1—=7) = 77 — 777t Consider the

agreement graph G = G({f1,..., fi+1},y). By counting edges from the left, we have that

that with fractional distance less than p from y, where p =

|Eql| > 1 —pn-(t+1)=(tr+1)n.

On the other hand, note that any set of t 4+ 1 codewords is contained in an affine space of dimension

r < t. Thus, using Lemma 5.2 we have
|Eg|<(t+1-1)n-1i4+ng<({trn+1)-n
contradicting the above bound. Hence the size of the list must be at most ¢. O

5.1 Proof of Lemma 5.2

Recall that we have to prove that for G = G({f1,..., fm},y), the number of edges |E¢g| is upper-
bounded by

Ec<(m-1)-n-7.+n¢g.
where r is the dimension of the smallest affine space A containing f1, ..., fm.

The proof is by induction on m. The case of m = 1 is trivial, since Eg = ng when m = 1.

Now suppose m > 2. Hence r > 1. We partition the set of codewords as follows. Let
FO M f0) be r 4+ 1 codewords in the list {f1,.-., fm} such that the smallest affine space
generated by {f(o), . ,f(”)} is A. For i =0,...,r, let A®) be the smallest affine space generated
by {f(o), cee f(i)}. Observe that the affine dimension of A® is i and f® € A®\ A1 where we
have defined AV := 0. For i =0,...,r, define

H =AY {f1,. ., fm},
H; = H]\ AG7Y

Clearly (Hy, ..., H,) is a partition of {fi,..., f;n}. Furthermore, f()) € H; and hence H; # (). Let
m; := |H;|. We have Y m; = m and each 0 # m; < m since mp = 1 and r > 1. Let r® be the
affine dimension of H;.

We apply the inductive hypothesis on the subgraphs induced by Hy,...,H,. The induced
subgraphs are exactly the agreement graphs of the list of codewords in H;. Therefore by induction

we have
Eg, <(mi—1)-n- 7.0 +ng, < (mi—1)-n- 7 +nm,.

10



The total number of edges of G is the sum of the number of edges in each induced graph, therefore

T T
EGZZEHZ.SZ((mi—l)-n-TT—i-nHi):m-n-Tr—(r—i-l)-n-Tr—FZnHi
i=0 i=0 ,

7
:(m—l)-n-Tr—r-n-TT—i—ZnHi.
i

We now relate the quantities ) | ngy, with ng.

Consider any right vertex j € [n] of G. If j has degree 0 in G, then j does not contribute to ng
or to ng, for any 1.

For each j € [n] with degree at least 1 in G, let t; be the number of i’s such that there is an edge
from j to H;. Then j contributes ¢; to 3 np, and 1 to ng. Hence, we have 3, ny, —ng = 3_;(t;—1).

Using this in the equation above gives

EGS(m_l)'n'Tr"’nG_T'n'Tr‘i‘Z(t]‘—l).
J

For each such j € [n], let A; be the affine subspace of A containing all codewords that agree
with the message y at coordinate j, and let r; be its dimension. Note by our construction of the
partition Hy, ..., H, that any set of vectors chosen by picking at most one from each H; are affine
independent. Hence, since j has edges to t; different H;’s, we have that r; > (t; — 1).

By Lemma 3.1, we have > (t; —1) <> r; <r-n-7.. Combining this with the above equation,

we have
Ec<(m-1)-n-1+ng.

That completes the proof of Lemma 5.2. O

6 List-size lower bounds for list-recovery

Although Theorem 5.1 gives optimal bounds for list-decoding of FRS codes, Chen and Zhang also
show that an exponential dependence in € is unavoidable for the question of list-recovery. In this
section we give their counter-example.

Recall that the set of evaluation points for the FRSy ; code are a,...,a,, with v being the
generator of F; used for the folding. For each i € [n], define the polynomial Q;(z) defined as

Qi(z) = (z — a)(x —va) -~ (z =" a).

The i-th symbol of the FRS;, ; encoding of a polynomial g can equivalently also be thought of as
the residue (g(z) mod Q;(z)).

11



R

Define integer parameters m, p such that m ~ = + 1 and

m | E=L m
p:{ L8JJ: F_o() = n(r+2) —001).

m—1 m—1 s
Consider the following set of m polynomials:

Fori=1,....m—1, fi(x):= H Qi(x).

Jj€lpl
j#i mod m

By the choice of m and k, it follows that deg f; < (k — 1) for all i € [m] since each f; is a product
of at most =1 of the Q;’s for j € [p].

Lemma 6.1 (List-recovery for FRS codes [CZ24]). Let B be any set of £ distinct field elements.

Consider the set of polynomials

gi:{ﬁ1f1+"'+/8mfm : ﬁzEB} .

Then, |G| = ™ and, for each i € [p], we have

[{(FRSys(9)); : 9€G}| <.

(That is, the FRS encoding of any polynomial in G takes only one of £ possible values in the first

p coordinates.)

Since p =~ n(R + ¢), we have a particular instance of list-recover with each coordinate list-size

bounded by /¢, with ££/¢ codewords with fractional agreement of R + ¢.

Proof. To see that |G| has size {™, we observe that the polynomials fi,..., f,, are linearly inde-
pendent. Indeed, if ¢1f1 + -+ + ¢ fm = 0, with ¢; # 0 (without loss of generality), looking at the
equation modulo Q1 (z) yields a nonzero quantity on the left-hand side but zero on the right.

As for the second claim, let g = S1fi + -+ Bmfm. Then, observe that (FRSy s(g9)); = g mod
Qi(x) = By (fyr(x) mod Q;(x)) where i’ € [m] is the unique value such that i/ = i mod m (since all

other f;’s are divisible by Q;). As (;’s come from a set of size at most ¢, the i-th coordinate of

FRS, s(g) will be one of the ¢ scalings of (fy(x) mod Q;(x)). O
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A Proof of the Guruswami-Kopparty lemma

For the sake of completeness, we give a proof of the Lemma 3.1 (restated below):

Lemma 3.1 (Guruswami and Kopparty [GK16]). Let y € (F;)n and A be an affine subspace of
FRSy s of dimension r. For each i € [n], define

A;

={fe€eA: f agrees withy at coordinate i}

with r; = dim A;. Then,

g ST TN

1€[n]

for . =

sRR —
=1 where R =k/ns.
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Proof. Let the r-dimensional affine space A be fo+F-span{fi,..., f.}, where fi,..., f, are linearly
independent polynomials of degree less than k. The Folded- Wronskian, W.(fi,..., fr) of these

polynomials is defined as the following determinant of an r X r matrix.

fi(z) folz) o fr(@)
fi(yz) folyx) - fily)
W’y(fl’~'-7fr): . . . .
A le) () - Sy )

We will use W, (f1,..., fr) to refer to the r x r matrix above. The above polynomial has degree
at most rk, and since fi,..., f, are linearly independent, it is known that the Folded-Wronskian
is a nonzero polynomial. We will relate the r;’s with appropriate roots of W, (fi,..., fr) and their
multiplicities.

Fix a coordinate ¢ € [n] and «; being the correspondent element of F. The space A; can be
equivalently expressed as all polynomials form fo + 51 f1 + -+ + B, fr (where g1, ..., B, € F;) such
that

BifiltVes) + -+ Befr(Vew) = (yi)j — fo(h/ ;) for j=0,...,5s—1

In other words, (1,..., 5, are solutions to the linear system
files) o frlew) 5 (yi)o — foleu)
filyes) o fr(ya) : _ (yi)1 — fo(va)
s:—l ) s:—1 57" 1 : s—1
h(y =) - () | rx Wi)s—1 — fo(¥" ") |,

Hence, if dim A; = r;, then the rank of the s x r matrix on the LHS is at most » — ;. Furthermore,
note that for any o € {a;,va4,...,7°* "a;}, the matrix Wy (f1,..., fr) |s=c is an r X r submatrix
of the above s X r matrix. Since the above s X r matrix has a rank-deficit of r;, we have that each

such o must be a root of W, (fi,..., fr) of multiplicity at least ;. Hence,
Z ri(s —r+1) < deg(W,(f1,..., fr)) <rk
i€[n]

rk
:>Z?”i§m:7’~7}‘n. O
i€[n]
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