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Abstract

In the last year, there have been some remarkable improvements in the combinatorial list-

size bounds of Folded Reed Solomon codes and multiplicity codes. Starting from the work on

Kopparty, Ron-Zewi, Saraf and Wootters [KRSW23] (and subsequent simplifications due to

Tamo [Tam24]), we have had dramatic improvements in the list-size bounds of FRS codes1 due

to Srivastava [Sri25] and Chen & Zhang [CZ24]. In this note, we give a short exposition of these

three results (Tamo, Srivastava and Chen-Zhang).

1 Introduction

We start by defining Folded Reed Solomon (FRS) codes and list decoding capacity. Folded Reed-

Solomon codes were introduced by Krachkovsky [Kra03], and then re-discovered by Guruswami

and Rudra [GR08] in the context of list-decoding. Let Fq be a finite field of q elements, with q > k.

Definition 1.1 (folded Reed-Solomon codes (FRS) [Kra03, GR08]). Let S = {α1, . . . , αn} be a set

of n distinct elements in Fq and let γ be a generator of F∗
q. The folded Reed-Solomon code with

parameters (k, S, s) is defined via the following map:

FRSk,s : Fq[x]
<k → (Fs

q)
n

f(x) 7→




f(α1)

f(γα1)
...

f(γs−1α1)

 , . . . ,


f(αn)

f(γαn)
...

f(γs−1αn)


 .

The parameter s is also referred to as the folding parameter of the FRS code.
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1While all the results in this note refer to FRS codes, they extend to all affine FRS codes, which includes multiplicity

codes and additive-FRS codes.
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The rate of the above code shall be donoted by R, with R := k/ns, and it is known that the

fractional distance of the code is 1−R. ♢

For the rest of the article, the set S = {α1, . . . , αn} will be fixed and we will just refer to the

FRS code as FRSk,s code. We overload notation and use the same symbol to refer to both the

polynomials (which correspond to messages) and their encodings under the above map.

List-decodability: The notion of distance between codewords would be the standard Hamming

distance.

Definition 1.2 (Hamming balls). For any point y ∈ Σn for some alphabet Σ, we denote the

Hamming ball of fractional radius ρ around y by B(y, ρ) defined as

B(y, ρ) := {x ∈ Σn : |{i ∈ [n] : xi ̸= yi}| < ρn} . ♢

The primary objective in list-decodability is to understand up to what radius do Hamming balls

have “few” codewords.

Definition 1.3 (List-decodability). A code C ⊆ Σn is said to be (ρ, L) list-decodable if for every

y ∈ Σn we have

|C ∩B(y, ρ)| ≤ L . ♢

Folded Reed-Solomon codes were shown to achieve list-decoding capacity by Guruswami and

Rudra [GR08]. That is, the set of codewords in a ball of radius 1−R− ε around any point in the

code space is small.

Guruswami and Wang [GW13] re-proved this result in the following specific way: for FRS codes

with folding parameter O(1/ε2), for any point y in the code space, they show the existence of a linear

subspace A ⊂ Fq [x]
<k with dimA = O(1/ε) such that every codeword in the ball B(y, 1−R − ε)

is the encoding of a polynomial in A. This implies that the list size is at most qO(1/ε). Their proof

of the existence of the subspace is algorithmic. We state this as a lemma below.

Lemma 1.4 (Guruswami-Wang [GW13]). Let y ∈
(
Fs
q

)n
be a received word for a FRSk,s code of

rate R = k/ns. Then, for ρ = 1 − R − ε, if s = Ω(1/ε2), there is an affine space A of dimension

O(1/ε) that contains all codewords in B(y, ρ) ∩ C. Furthermore, an affine basis for A can be

obtained in time polynomial in n, log q, 1/ε given the received word y.

Subsequently, Kopparty, Saraf, Ron-Zewi and Wootters [KRSW23] showed that the upper

bound on the list size at radius 1−R− ε for such codes can be improved from polynomial qO(1/ε)

to constant (1/ε)O(1/ε). A cleaner analysis of this upper bound was given by Tamo [Tam24]. These

proofs were also algorithmic: they build on the previous result by taking the subspace as input and

“pruning” the list size in a randomized fashion. In particular, if L denotes the list of codewords in
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the ball B(y, 1− R − ε), i.e., L := B(y, 1− R − ε) ∩ FRSk,s, then the KRSW/Tamo improvement

can be written as follows, a further simplified proof of which is presented in Section 2.

Theorem 1.5 ([KRSW23, Tam24]). The size of L is upper-bounded by (1/ε)O(1/ε).

How small can the list-size bound be? Shangguan and Tamo [ST23] generalized the classical

Singleton bound to show that any code with rate R that is (1−R−ε, L) list-decodable satisfies L ≥
1−R−ε

ε . Very recently, Srivastava [Sri25] and Chen & Zhang [CZ24] gave dramatic improvements

on this list-size to O(1/ε) almost matching the generalized Singleton bound up to a constant

multiplicative factor.

Theorem 1.6 ([Sri25]). The size of L is upper-bounded by O(1/ε2).

Theorem 1.7 ([CZ24]). The size of L is upper-bounded by O(1/ε).

We will give simplified proofs of these improvements in Sections 4 and 5. It is to be noted that

these proofs are combinatorial and algorithmizing them (efficiently; in time nearly-linear or even

polynomial in the list size) remains open. The results of KRSW/Tamo also extend to list-recovery.

However, as Chen-Zhang observe the dramatic improvements on list-size bounds for list-decoding

FRS codes obtained by Srivastava and Chen & Zhang do not extend to list-recovery of FRS codes.

We (re-)present the Chen & Zhang counterexample in Section 6.

Agreement graphs: A key ingredient we will be using in the proofs of these improvements is

the notion of an agreement graph, which we define below.

Definition 1.8 (Agreement graph). For any code C ⊆ Σn, message y ∈ Σn, and a set of distinct

codewords f1, . . . , fm ∈ C, the agreement graph G({f1, . . . fm} , y) is defined as the bipartite graph,

with m vertices on the left (corresponding to the list of codewords) and n vertices on the right

(corresponding to the blocks), and an edge connecting i ∈ [m] on the left with j ∈ [n] on the right

if the encoding of fi agrees with y at coordinate j. ♢

All the proofs will essentially attempt to upper-bound the number of edges in any agreement

graph, and thereby infer that there cannot be “too many” left-vertices (codewords) with “large

degree” (agreement).

2 KRSW/Tamo’s upper bound for list size

The bounds due to Kopparty, Ron-Zewi, Saraf and Wootters work for any linear code, not neces-

sarily FRS codes and we will also state the results in that generality. Let F be any finite field, s a

positive integer and C ⊆ (Fs)n be an F-linear code over the alphabet Fs with block length n and

fractional distance δ.

Let y ∈
(
Fs
q

)n
be an arbitrary point in the code space of C. Let L := {f1, . . . , ft} = B(y, ρ) ∩ C

be the list of codewords at distance at most ρ = δ − ε from y.
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Definition 2.1 (Certificates). Let A be an affine subspace of an F-linear code C ⊆ (Fs)n. A

certificate with respect to y is a sequence of coordinates (i1, . . . , ia) (each ij ∈ [n]) such that there

is a unique codeword f ∈ A that agrees with y at the coordinates i1, . . . , ia; we shall say that this is

a certificate for f .

We shall call such a certificate a minimal certificate if i1, . . . , ia′ is not a certificate for any

a′ < a. ♢

Equivalently, if G = G(L, y) is the agreement graph, then a certificate for f identifies a set of

right vertices with unique common neighbour being f .

Theorem 2.2 ([KRSW23, Tam24]). Let C ⊆ (Fs)n be an F-linear code with distance δ and ρ = δ−ε

and y ∈
(
Fs
q

)n
an arbitrary message. Suppose L := B(y, ρ) ∩ C is contained in an affine space of

dimension r.

Then there is a probability distribution on minimal certificates with respect to y such that for

any f ∈ L, the set of of minimal certificates for f of length at most r has probability mass at least

εr

In particular, the size of L is upper-bounded by (1/εr).

Proof. Let A be the affine subspace of dimension r containing L. The distribution on minimal

certificates is the most natural one — start with C0 = ∅ and extend it by choosing a uniformly

random coordinate, one coordinate at a time, until it becomes a minimal certificate. Fix any f ∈ L
for the rest of the argument. The goal is to show that the probability mass on short certificates for

f is large. For a set of coordinates S = {i1, . . . , it}, we will define A(S) as

A(S) := {f ∈ A : f agrees with y at coordinate i, for all i ∈ S} .

To begin with, A(0) := A contains f . Assume that we have constructed a partial certificate

Cj = (i1, . . . , ij) so far with A(j) := A(Cj) being an affine space containing f . Whenever we have

A(j) = A(Cj) ̸= {f} (i.e., Cj is not yet a certificate for f), let f ′ ̸= f be any other element of

A(j). Since f ′ and f are distinct codewords, they agree on at most (1 − δ)n coordinates but f

agrees with y on more than (1 − δ + ε)n coordinates. Hence, if ij+1 was chosen to be any of the

coordinates where that f agrees with y but disagrees with f ′ on that coordinate, then we have that

A(j+1) := A({i1, . . . , ij+1}) continues to contain f but is a strictly smaller subspace of A(j). Thus,

with probability at least ε on the choice of ij+1 ∈ [n], we have that for Cj+1 = (i1, . . . , ij+1)

f ∈ A(j+1) and dimA(j+1) < dimA(j).

where A(j+1) = A(Cj+1). Since dimA(0) ≤ r, with probability at least εr we get a minimal

certificate for f of length at most r.
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3 Dimension of typical subspaces obtained from restrictions

In the above proof, we started with an r-dimensional space A that included all our codewords of

interest, and we considered various subspaces Ai defined as

Ai := {f ∈ A : f agrees with y at coordinate i}

and let ri := dimAi. In the above proof, we mainly used the fact that ri < r for at least εn many

choices of i. The following lemma of Guruswami and Kopparty [GK16] says that, for FRS codes,

the average ri is significantly smaller than r.

Lemma 3.1 (Guruswami and Kopparty [GK16]). Let y ∈
(
Fs
q

)n
and A be an affine subspace of

FRSk,s of dimension r. For each i ∈ [n], define

Ai = {f ∈ A : f agrees with y at coordinate i}

with ri = dimAi. Then,∑
i∈[n]

ri ≤ r · τr · n

for τr =
sR

s−r+1 where R = k/ns.

In other words, Ei[ri] ≈ r·R. More precisely, if s = Θ(1/ε2) and r = Θ(1/ε), then τr = R·(1 + Θ(ε)).

For the sake of completeness, we add a proof of the above lemma in Appendix A. Using this

lemma, we can obtain significantly better bounds on the list size for FRS codes.

4 Srivastava’s improved list size bound

Srivastava’s [Sri25] main theorem is the following.

Theorem 4.1 (Better list size bounds for FRS codes [Sri25]). If y is any received word, and A is

an affine subspace of dimension r, then for any r ≤ t ≤ s we have∣∣∣∣B(
y,

t

t+ 1

(
1− s

s− r + 1
R

))
∩ A

∣∣∣∣ ≤ (t− 1)r + 1.

Writing in terms of τr =
sR

s−r+1 (as in Lemma 3.1), the above can be written as∣∣∣∣B(
y,

t

t+ 1
(1− τr)

)
∩ A

∣∣∣∣ ≤ (t− 1)r + 1 .
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Setting parameters: For any parameter ε > 0, we can set t = 2/ε, and s = 3/ε2. By Guruswami

and Wang [GW13], we know that

B

(
y,

t

t+ 1
(1− τt)

)
∩ FRSk,s

is contained in an affine subspace of dimension at most r = t − 1. Plugging these parameters in,

we can check that ρ = t
t+1(1− τt) ≥ 1−R− ε.

ρ =
t

t+ 1
·
(
1− sR

s− t+ 2

)
=

(2/ε)

(2/ε+ 1)

(
1−R · 3/ε2

3/ε2 − 1/ε+ 2

)
=

1

(1 + ε
2)

(
1−R · 1

1− (ε/3) + (2/3)ε2

)
= (1− ε

2
±Θ(ε2)) ·

(
1−R

(
1 +

ε

3
±Θ(ε2)

))
= 1−R− ε

(
1

2
+

R

3

)
±Θ(ε2)

≥ 1−R− ε .

In that case, we get that FRSk,s codes are (1−R− ε,O(1/ε2))-list-decodable.

4.1 Proof of Theorem 4.1

The above theorem is proved by induction on the dimension r. The base case is when r = 1. The

following bound holds for any linear code.

Lemma 4.2. (Theorem 4.1 for r = 1) If y is any received word, and A is an affine subspace of

dimension 1, then for any t ≥ 1 we have∣∣∣∣B(
y,

t

t+ 1
(1−R)

)
∩ A

∣∣∣∣ ≤ t .

Proof. Let L =
∣∣∣B (

y, t
t+1(1−R)

)
∩ A

∣∣∣
Suppose the affine space A is of form {f0 + σf1 : σ ∈ Fq}, with f1 ̸= 0. Let us use S :=

{i ∈ [n] : (FRSk,s(f1))i ̸= 0} to denote the support of the encoding of f1. Note that |S| ≥ (1−R)·n.
Notice also that two distinct codewords in the list have to disagree completely on S. Hence,

every right-side vertex in S has at most one outgoing edge.

We now count edges in the agreement graph, from both sides. From the codewords side, since

each codeword has agreement strictly more than n(1 − t
t+1(1 − R)), the number of edges is more
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than Ln(1− t
t+1(1−R)).

From the locations side, each vertex in S contributes at most one edge. Each vertex outside S

may contribute up to L edges. This gives the total number of edges to be at most |S|+L(n−|S|) =
Ln− (L− 1)|S| ≤ Ln− (L− 1)(1−R)n using the above lower bound on |S|.

Combining the upper and lower bound on the number of edges,

Ln

(
1− t

t+ 1
(1−R)

)
< Ln− (L− 1)(1−R)n

Rearranging and cancelling out Ln on both sides,

(L− 1)(1−R)n < L
t

t+ 1
(1−R)n

Solving for L gives L < t+ 1.

We now prove the main theorem.

Proof of Theorem 4.1. Let ρ := t
t+1 (1− τr) and we wish to bound the size of B(y, ρ) ∩ A.

L(r) := max
A : dimA=r

|B(y, ρ) ∩ A| .

We will prove a bound on L(r) by inducting on r.

Inductive claim: Li ≤ L(ri) ≤ σ · ri + 1 for a constant σ independent of ri.

We will eventually show σ = t− 1 would be sufficient, giving us the requisite bound.

For each i, let Ai be the subspace of A corresponding to agreement at coordinate i with y.

Let ri := dimAi. Let L be the number of codewords in B(y, ρ) ∩ A, and let Li be the number

of codewords in B(y, ρ) ∩ Ai. By the induction hypothesis, for every i such that ri < r, we have

Li ≤ L(ri) ≤ σri + 1.

We count the number of edges in the agreement graph. Counting from the left, each codeword

has agreement at least (1 − ρ)n, therefore the number of edges is at least (1 − ρ)nL. Counting

from the right, coordinate i is incident to at most Li codewords, therefore the number of edges is

at most
∑

i Li. Combining this, we have the inequality
∑

i Li ≥ (1− ρ)nL.

We cannot use induction to control the coordinates where ri = r, therefore for these coordinates

we use the trivial bound Li ≤ L. Let B be the set of coordinates for which this is true. We therefore

have ∑
i ̸∈B

(σ · ri + 1) ≥ L ((1− ρ)n− |B|) .

Every codeword in the list agrees with y on the set B, therefore in particular the codewords agree

with each other on this set. Since any two codewords can have agreement at most Rn, we have
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|B| ≤ Rn, which implies the term ((1− ρ)n− |B|) is positive. Therefore, we can deduce

L ≤
∑

i ̸∈B (σ · ri + 1)

(1− ρ)n− |B|
.

By Lemma 3.1, we have∑
i∈[n]

ri =
∑
i/∈B

ri + |B| · r ≤ rnτr

=⇒
∑
i/∈B

(σ · ri + 1) ≤ σ · rnτr − σ · r |B|+ (n− |B|)

= σ · rnτr + n− |B| (σ · r + 1) .

=⇒ L ≤ σrnτr + n− |B| (σr + 1)

(1− ρ)n− |B|
.

To complete the induction, we have to show L ≤ σ · r + 1. From the above, it suffices to show

0 ≤ ((1− ρ)n− |B|) · (σr + 1)− (σrnτr + n− |B| (σr + 1))

= (1− ρ)n · (σr + 1)− (σrnτr + n) .

Indeed, using the fact that ρ = t
t+1 · (1− τr), we have

(1− ρ) · (σr + 1)− (σr · τr + 1) = σr · ((1− ρ)− τr) + (1− ρ− 1)

= σr · ((1− τr)− ρ)− ρ

= σr · ρ ·
(
t+ 1

t
− 1

)
− ρ

= ρ ·
(σr

t
− 1

)
≥ 0 for σ = (t− 1)

since (t− 1)r ≥ t as t > r ≥ 2.

From the above proof, it feels like we could have perhaps taken σ = t
r , thereby getting a list size

bound of L(r) ≤ σr+1 ≤ t+1 instead of O(tr). However, note that the above proof used the fact

that σ was independent of r (when we bounded
∑

ri<r L(ri) with σ
∑

ri+(n−|B|)). Nevertheless,
this perhaps suggests that there is some slack in the above analysis and one could perhaps improve

the analysis to obtain a list-size bound of O(t) instead of O(tr).

Chen and Zhang [CZ24] (independent and parallel to Srivastava [Sri25]) obtain an O(t) bound

by using induction to bound the number of edges of the agreement graph rather than bounding the

list size directly.
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5 Further improvements on the list size due to Chen and Zhang

Theorem 5.1 (Chen and Zhang [CZ24]). Let y ∈
(
Fs
q

)n
be an arbitrary received word for the

FRSk,s code. For any 0 ≤ t ≤ s, we have∣∣∣∣B(
y,

t

t+ 1
(1− τt)

)
∩ FRSk,s

∣∣∣∣ ≤ t ,

where τt =
sR

s−t+1 (as in Lemma 3.1).

Setting parameters: As in the previous case, if t = 2/ε and s = 3/ε2 we once again have

ρ = t
t+1 (1− τt) ≥ 1−R− ε, the above theorem shows that FRSk,s codes are (1−R− ε, 2/ε)-list-

decodable.

Remark. Unlike the previous bound of Srivastava (Theorem 4.1), the above bound is oblivious

of any ambient space that the codewords lie in. In particular, the above list-size bound does not

rely on the fact from Guruswami and Wang [GW13] that all close-enough codewords lie in a low-

dimensional affine space. ♢

The above theorem will be proved by once again considering relevant agreement graphs and

upper-bounding the number of edges in it. For a set of distinct codewords {f1, . . . , fm} and a

received word y ∈
(
Fs
q

)n
, let G = G({f1, . . . , fm} , y) be the agreement graph. We will use EG to

denote the number of edges in G. For any subset H of left vertices in G, let EH denote the number

of edges in the induced graph G(H, y).

Let nG be the number of right vertices of G that have degree at least 1 (these are the positions

where at least one of the codewords agrees with y). Similarly, for any subgraph induced by a set

H of left vertices, nH is the number of right vertices with degree at least 1 (we overload notation

and use H for both the subset of vertices and the induced subgraph).

The main technical lemma of Chen and Zhang can be stated as follows.

Lemma 5.2 (Chen and Zhang [CZ24]). Let A be the affine subspace spanned by f1, . . . , fm and sup-

pose r be the dimension of this affine space. Then, for any agreement graph G = G({f1, . . . , fm} , y)
corresponding to a message y ∈

(
Fs
q

)n
, we have

EG ≤ (m− 1)k

s− r + 1
+ nG .

Recalling the parameter τr from Lemma 3.1, the above can be restated as saying

EG ≤ (m− 1) · n · τr + nG .

Before we see the proof of the above lemma, let us see how Lemma 5.2 implies Theorem 5.1.
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Proof of Theorem 5.1. Assume on the contrary that there are t+1 distinct codewords f1, . . . , ft+1

that with fractional distance less than ρ from y, where ρ = t
t+1(1− τt) =

t
t+1 −

t
t+1τt. Consider the

agreement graph G = G({f1, . . . , ft+1} , y). By counting edges from the left, we have that

|EG| > (1− ρ)n · (t+ 1) = (tτt + 1)n .

On the other hand, note that any set of t+1 codewords is contained in an affine space of dimension

r ≤ t. Thus, using Lemma 5.2 we have

|EG| ≤ (t+ 1− 1) · n · τt + nG ≤ (tτt + 1) · n

contradicting the above bound. Hence the size of the list must be at most t.

5.1 Proof of Lemma 5.2

Recall that we have to prove that for G = G({f1, . . . , fm} , y), the number of edges |EG| is upper-
bounded by

EG ≤ (m− 1) · n · τr + nG .

where r is the dimension of the smallest affine space A containing f1, . . . , fm.

The proof is by induction on m. The case of m = 1 is trivial, since EG = nG when m = 1.

Now suppose m ≥ 2. Hence r ≥ 1. We partition the set of codewords as follows. Let

f (0), f (1), . . . , f (r) be r + 1 codewords in the list {f1, . . . , fm} such that the smallest affine space

generated by
{
f (0), . . . , f (r)

}
is A. For i = 0, . . . , r, let A(i) be the smallest affine space generated

by
{
f (0), . . . , f (i)

}
. Observe that the affine dimension of A(i) is i and f (i) ∈ A(i) \ A(i−1) where we

have defined A(−1) := ∅. For i = 0, . . . , r, define

H ′
i := A(i) ∩ {f1, . . . , fm} ,

Hi := H ′
i \ A(i−1) .

Clearly (H0, . . . ,Hr) is a partition of {f1, . . . , fm}. Furthermore, f (i) ∈ Hi and hence Hi ̸= ∅. Let
mi := |Hi|. We have

∑
mi = m and each 0 ̸= mi < m since m0 = 1 and r ≥ 1. Let r(i) be the

affine dimension of Hi.

We apply the inductive hypothesis on the subgraphs induced by H0, . . . ,Hr. The induced

subgraphs are exactly the agreement graphs of the list of codewords in Hi. Therefore by induction

we have

EHi ≤ (mi − 1) · n · τr(i) + nHi ≤ (mi − 1) · n · τr + nHi .
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The total number of edges of G is the sum of the number of edges in each induced graph, therefore

EG =
r∑

i=0

EHi ≤
r∑

i=0

((mi − 1) · n · τr + nHi) = m · n · τr − (r + 1) · n · τr +
∑
i

nHi

= (m− 1) · n · τr − r · n · τr +
∑
i

nHi .

We now relate the quantities
∑

nHi with nG.

Consider any right vertex j ∈ [n] of G. If j has degree 0 in G, then j does not contribute to nG

or to nHi for any i.

For each j ∈ [n] with degree at least 1 in G, let tj be the number of i’s such that there is an edge

from j toHi. Then j contributes tj to
∑

nHi and 1 to nG. Hence, we have
∑

i nHi−nG =
∑

j(tj−1).

Using this in the equation above gives

EG ≤ (m− 1) · n · τr + nG − r · n · τr +
∑
j

(tj − 1) .

For each such j ∈ [n], let Aj be the affine subspace of A containing all codewords that agree

with the message y at coordinate j, and let rj be its dimension. Note by our construction of the

partition H0, . . . ,Hr that any set of vectors chosen by picking at most one from each Hi are affine

independent. Hence, since j has edges to tj different Hi’s, we have that rj ≥ (tj − 1).

By Lemma 3.1, we have
∑

(tj − 1) ≤
∑

rj ≤ r ·n · τr. Combining this with the above equation,

we have

EG ≤ (m− 1) · n · τr + nG .

That completes the proof of Lemma 5.2.

6 List-size lower bounds for list-recovery

Although Theorem 5.1 gives optimal bounds for list-decoding of FRS codes, Chen and Zhang also

show that an exponential dependence in ε is unavoidable for the question of list-recovery. In this

section we give their counter-example.

Recall that the set of evaluation points for the FRSk,s code are α1, . . . , αn, with γ being the

generator of F∗
q used for the folding. For each i ∈ [n], define the polynomial Qi(x) defined as

Qi(x) = (x− α)(x− γα) · · · (x− γs−1α).

The i-th symbol of the FRSk,s encoding of a polynomial g can equivalently also be thought of as

the residue (g(x) mod Qi(x)).

11



Define integer parameters m, p such that m ≈ R
ε + 1 and

p =

⌊
m

⌊
k−1
s

⌋
m− 1

⌋
=

m

m− 1
· k
s
−O(1) = n(R+ ε)−O(1).

Consider the following set of m polynomials:

For i = 1, . . . ,m− 1, fi(x) :=
∏
j∈[p]

j ̸=i mod m

Qi(x).

By the choice of m and k, it follows that deg fi ≤ (k − 1) for all i ∈ [m] since each fi is a product

of at most m−1
m of the Qj ’s for j ∈ [p].

Lemma 6.1 (List-recovery for FRS codes [CZ24]). Let B be any set of ℓ distinct field elements.

Consider the set of polynomials

G := {β1f1 + · · ·+ βmfm : βi ∈ B} .

Then, |G| = ℓm and, for each i ∈ [p], we have

∣∣{(FRSk,s(g))i : g ∈ G
}∣∣ ≤ ℓ .

(That is, the FRS encoding of any polynomial in G takes only one of ℓ possible values in the first

p coordinates.)

Since p ≈ n(R + ε), we have a particular instance of list-recover with each coordinate list-size

bounded by ℓ, with ℓR/ε codewords with fractional agreement of R+ ε.

Proof. To see that |G| has size ℓm, we observe that the polynomials f1, . . . , fm are linearly inde-

pendent. Indeed, if c1f1 + · · ·+ cmfm = 0, with c1 ̸= 0 (without loss of generality), looking at the

equation modulo Q1(x) yields a nonzero quantity on the left-hand side but zero on the right.

As for the second claim, let g = β1f1 + · · ·βmfm. Then, observe that (FRSk,s(g))i = g mod

Qi(x) = βi′ (fi′(x) mod Qi(x)) where i′ ∈ [m] is the unique value such that i′ = i mod m (since all

other fj ’s are divisible by Qi). As βi’s come from a set of size at most ℓ, the i-th coordinate of

FRSk,s(g) will be one of the ℓ scalings of (fi′(x) mod Qi(x)).

References

[CZ24] Yeyuan Chen and Zihan Zhang. Explicit folded Reed-Solomon and multiplicity codes achieve

relaxed generalized singleton bound, 2024. (manuscript). arXiv:2408.15925. 1, 3, 8, 9, 12

12

http://arxiv.org/abs/2408.15925


[GK16] Venkatesan Guruswami and Swastik Kopparty. Explicit subspace designs. Comb.,

36(2):161–185, 2016. (Preliminary version in 54th FOCS, 2013). eccc:2013/060. 5, 13

[GR08] Venkatesan Guruswami and Atri Rudra. Explicit codes achieving list decoding capacity:

Error-correction with optimal redundancy . IEEE Trans. Inform. Theory, 54(1):135–150, 2008.

(Preliminary version in 38th STOC, 2006). arXiv:cs/0511072, eccc:2005/133. 1, 2

[GW13] Venkatesan Guruswami and Carol Wang. Linear-algebraic list decoding for variants of

Reed-Solomon codes. IEEE Trans. Inform. Theory, 59(6):3257–3268, 2013. (Preliminary version

in 26th IEEE Conference on Computational Complexity, 2011 and 15th RANDOM, 2011). eccc:

2012/073. 2, 6, 9

[Kra03] Victor Yu. Krachkovsky. Reed-Solomon codes for correcting phased error bursts. IEEE

Trans. Inform. Theory, 49(11):2975–2984, 2003. 1

[KRSW23] Swastik Kopparty, Noga Ron-Zewi, Shubhangi Saraf, and Mary Wootters. Improved

list decoding of Folded Reed-Solomon and Multiplicity codes. SIAM J. Comput., 52(3):794–840,

2023. (Preliminary version in 59th FOCS, 2018). arXiv:1805.01498, eccc:2018/091. 1, 2, 3, 4

[Sri25] Shashank Srivastava. Improved list size for folded Reed-Solomon codes. In Yossi Azar

and Debmalya Panigrahi, eds., Proc. 36th Annual ACM-SIAM Symp. on Discrete Algorithms

(SODA), pages 2040–2050. 2025. arXiv:2410.09031. 1, 3, 5, 8

[ST23] Chong Shangguan and Itzhak Tamo. Generalized Singleton bound and list-decoding Reed-

Solomon codes beyond the Johnson radius. SIAM J. Comput., 52(3):684–717, 2023. (Preliminary

version in 52nd STOC, 2020). arXiv:1911.01502. 3

[Tam24] Itzhak Tamo. Tighter list-size bounds for list-decoding and recovery of folded Reed-Solomon and

multiplicity codes. IEEE Trans. Inform. Theory, 70(12):8659–8668, 2024. arXiv:2312.17097. 1,

2, 3, 4

A Proof of the Guruswami-Kopparty lemma

For the sake of completeness, we give a proof of the Lemma 3.1 (restated below):

Lemma 3.1 (Guruswami and Kopparty [GK16]). Let y ∈
(
Fs
q

)n
and A be an affine subspace of

FRSk,s of dimension r. For each i ∈ [n], define

Ai = {f ∈ A : f agrees with y at coordinate i}

with ri = dimAi. Then,∑
i∈[n]

ri ≤ r · τr · n

for τr =
sR

s−r+1 where R = k/ns.
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Proof. Let the r-dimensional affine space A be f0+F-span {f1, . . . , fr}, where f1, . . . , fr are linearly
independent polynomials of degree less than k. The Folded-Wronskian, Wγ(f1, . . . , fr) of these

polynomials is defined as the following determinant of an r × r matrix.

Wγ(f1, . . . , fr) =

∣∣∣∣∣∣∣∣∣∣
f1(x) f2(x) · · · fr(x)

f1(γx) f2(γx) · · · fr(γx)
...

...
. . .

...

f1(γ
r−1x) f2(γ

r−1x) · · · fr(γ
r−1x)

∣∣∣∣∣∣∣∣∣∣
We will use Wγ(f1, . . . , fr) to refer to the r × r matrix above. The above polynomial has degree

at most rk, and since f1, . . . , fr are linearly independent, it is known that the Folded-Wronskian

is a nonzero polynomial. We will relate the ri’s with appropriate roots of Wγ(f1, . . . , fr) and their

multiplicities.

Fix a coordinate i ∈ [n] and αi being the correspondent element of F. The space Ai can be

equivalently expressed as all polynomials form f0 + β1f1 + · · ·+ βrfr (where β1, . . . , βr ∈ Fq) such

that

β1f1(γ
jαi) + · · ·+ βrfr(γ

jαi) = (yi)j − f0(γ
jαi) for j = 0, . . . , s− 1

In other words, β1, . . . , βr are solutions to the linear system
f1(αi) · · · fr(αi)

f1(γαi) · · · fr(γαi)
...

. . .
...

f1(γ
s−1αi) · · · fr(γ

s−1αi)


s×r


β1
...

βr


r×1

=


(yi)0 − f0(αi)

(yi)1 − f0(γαi)
...

(yi)s−1 − f0(γ
s−1αi)


s×1

.

Hence, if dimAi = ri, then the rank of the s× r matrix on the LHS is at most r− ri. Furthermore,

note that for any σ ∈ {αi, γαi, . . . , γ
s−rαi}, the matrix Wγ(f1, . . . , fr) |x=σ is an r × r submatrix

of the above s× r matrix. Since the above s× r matrix has a rank-deficit of ri, we have that each

such σ must be a root of Wγ(f1, . . . , fr) of multiplicity at least ri. Hence,∑
i∈[n]

ri(s− r + 1) ≤ deg(Wγ(f1, . . . , fr)) ≤ rk

=⇒
∑
i∈[n]

ri ≤
rk

s− r + 1
= r · τr · n.
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