
Another way to show BPL ⊆ CL and BPL ⊆ P

James Cook

February 9, 2025

We present a new technique for using catalytic space to simulate space-
bounded randomized algorithms. Allocate one bit on the catalytic tape for
each configuration of a randomized machine. Simulate the machine several
times. Each time it requests a random bit, use the bit from the catalytic
tape corresponding to its current configuration, and then flip the bit on
the tape. Because the bit is flipped each time, every configuration of the
randomized machine will receive a 0 in the same number of simulations as it
receives a 1, up to a difference of 1. It follows that the simulation visits each
configuration approximately the same number of times as it would if it used
true randomness. Finally, the catalytic tape can be restored by re-running
the simulations with a small change that reverses their effect. This yields
that BPL ⊆ CL and BPL ⊆ P, both of which were already known.

In fact, the technique has so far given no new results. However, we believe
it merits further study, because it is simple, and because it is different from
all previous catalytic techniques, which, broadly speaking, fall into two cat-
egories: either attempt to compress the catalytic tape (deriving something
useful when it is incompressible) or treat the tape as registers for a pre-
determined sequence of mathematical operations. Our technique is different
from both, suggesting an opportunity for finding new catalytic algorithms,
or for combining techniques to get stronger results.

↑
↓

↑

↓

↑

↓

↓
↑

↑

↓

↓

↓

↑
↑

↓

↓

↑

↓

Figure 1: A simulation of a randomized computation, using one bit of catalytic space
(represented as ↑, ↓) per configuration to alternate between random choices.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 16 (2025)

1 Introduction

1.1 Catalytic space

In the catalytic space model, an algorithm has two tapes to use as memory: a smaller
ordinary tape, and a larger “catalytic” tape which starts out filled with arbitrary data.
The algorithm may freely write to and read from both tapes, but when it finishes,
the catalytic tape’s original content must be restored. Often the working tape has
size O(log n) and the catalytic tape has size poly(n), defining the decision class CL.
Buhrman, Cleve, Koucký, Loff and Speelman [1] initiated the study of this model with
their surprising result that TC1 ⊆ CL, from which it follows for example that NL and
BPL are in CL.

Broadly speaking, two ways to take advantage of catalytic space have been explored
previously: compression-based techniques are able to make use of incompressible cat-
alytic tapes (as randomness, for example); and algebra-based techniques treat the tape
as an array of registers which they use to execute a “straight-line program”, a pre-
determined sequence of mathematical operations. The original TC1 ⊆ CL result is
an example of the algebraic approach. The compression-based approach began with a
“compress-or-random” argument that BPL ⊆ CL (Mertz [4] gives a sketch of it). Doron,
Pyne and Tell [3] showed this can be combined with Nisan and Wigderson’s pseudoran-
dom generator [6] to give a new proof that BPL ⊆ CL; Pyne [7] showed that much less
than poly(n) catalytic space is required; and Cook, Li, Mertz and Pyne [2] used it to
derandomize the class CL itself.

1.2 Our technique

We present a third technique distinct from the compression-based and algebraic ap-
proaches. It can be summarized as follows. For a full description, see Section 3.

Take a randomized Turing machine M which we want to simulate and an input x ∈
{0, 1}n. We will distinguish between the case that M accepts with probability ≥ 2

3 , and
that it accepts with probability ≤ 1

3 .
Let N be the number of possible configurations of M — for example, if M is limited

to O(log n) space, then N = poly(n). Allocate one bit of the catalytic tape for each
possible configuration of M , for a total of N bits of catalytic space.

Run 6N + 1 simulations of M , using the catalytic tape as a source of randomness in
the following way. Each time M requests a random bit, move the catalytic tape head
to the index corresponding to M ’s current configuration. Supply M with whatever bit
is currently written there, and then overwrite it with the opposite bit. In this way,
as M reaches that same configuration over the course of the 6N + 1 simulations, an
alternating sequence of random bits 0, 1, 0, 1, . . . or 1, 0, 1, 0, . . . is supplied. Figure 1
shows an example of this process, with the configurations of M laid out as nodes in a
graph, and the bits of the catalytic tape drawn directly on the corresponding nodes as
↑ or ↓.

Now we can argue that the number of visits to each configuration approximately equals
the expected number of visits if we had supplied M with truly random bits. A common

2

way to prove this kind of result is with a “local consistency check” — see for example
Nisan’s Lemma 2.6 [5]. The general idea is that if every configuration of the machine
is given a pseudorandom bit of 0 approximately as many times as it is given a 1, then
each configuration is visited approximately the right number of times. Our version of
this argument appears in the proof of Lemma 3. By a careful analysis we show that the
number of visits to each state is within N of its expected value, regardless of the number
of simulations. Therefore, after 6N + 1 simulations, if M ’s accept probability was ≥ 2

3 ,
more than 3N of our simulations will accept, and if it was ≤ 1

3 , at most 3N simulations
will accept. So, a majority vote suffices.
Finally, we must restore the catalytic tape. This is done by running the “reverse”

of our 6N + 1 simulations. We do not literally run the machine M backward; rather,
we run it forward as before, but slightly change the way we supply its random bits, so
that each “reverse” simulation exactly undoes the effect of one normal simulation. For
details, see Algorithm 2 and the proof of Corollary 4.
This proves the following theorem. It is restated more precisely in Section 3.

Theorem 1 (informal). Any language in BPSPACE[s(n)] can be computed catalytically
in time 2O(s(n)), working space O(s(n)), and one bit of catalytic space for every possible
configuration of the BPSPACE[s(n)] machine.

Corollary 1. BPL ⊆ CL.

Corollary 2. BPL ⊆ P.

1.3 Summary of Contributions

• We introduce a simple new technique which can be used in catalytic algorithms.

• We use it to re-prove BPL ⊆ CL and BPL ⊆ P, and more generally that languages
in BPSPACE[s(n)] can be decided in space O(s(n)), catalytic space 2O(s(n)), and
time 2O(s(n)).

• Since the technique is simple, we are able to analyze its performance somewhat
precisely. If N is the number of confurations of the randomized machine being
simulated, our algorithm uses exactly N bits of catalytic space, and requires no
more than 6N + 1 simulations.

2 Preliminaries

We denote N = {0, 1, 2, . . . } the natural numbers, and for n ∈ N we denote [n] =
{0, 1, . . . , n− 1} the natural numbers less than n.

0s denotes an s-bit string of zeroes.
For a, b ∈ {0, 1}, define a⊕ b = (a+ b) mod 2 and ¬a = 1− a.

Definition 1. A function f is space constructible if f(n) can be computed in space
O(f(n)).

3

2.1 Randomized and Catalytic Turing Machines

Our goal is to simulate randomized Turing machines with catalytic ones, so we define
both here. We assume familiarity with Turing machines generally, but specify details
here so that we may simulate randomized Turing machines and count their configurations
precisely. In particular:

• All tapes (input, working, catalytic) use the alphabet {0, 1}.

• A randomized Turing machine consumes one bit of randomness at every step of its
computation, which is made directly available to its transition function.

Definition 2 (Randomized Turing machine, BPSPACE, BPL). A randomized Turing
machine is a tuple (Q, q0, qaccept, qreject, δ), consisting of: a number Q ∈ N of states
(we may consider the states themselves to be [Q] = {0, 1, . . . , Q − 1}); distinct states
q0, qaccept, qreject ∈ [Q]; and a transition function δ : [Q] \ {qaccept, qreject} × {0, 1}3 →
[Q] × {L,R}2. The transition function receives the current state, the symbols on the
input and work tapes, and a random bit, and produces a new state and directions (Left
or Right) to move the input and work tape heads.
For a function s : N→ N, a language L is in BPSPACE[s(n)] if there is a randomized

Turing machine which on input x ∈ {0, 1}n always halts, never moves its work tape head
beyond the first s(n) cells, and correctly decides x ∈ L with probability at least 2/3; we
say M decides L with bounded error probability.
A language is in BPL if it is in BPSPACE[s(n)] for some s(n) = O(log n).

For some discussion of the choices made in the definition of BPSPACE, see Nisan [5].

Definition 3 (Configuration of a space-bounded Turing machine). A configuration of
a (randomized) Turing machine with state count Q, input size n ∈ N and space limit
s ∈ N is a tuple g = (state(g), input head(g),work head(g),work tape(g)) ∈ [Q]× [n]×
[s]×{0, 1}s: the state, the positions of the input and work tape heads, and the contents
of the work tape.

Note that there are Qns2s possible configurations.
Our simulation algorithm is catalytic, meaning it makes use of a tape which may be

decsribed as already full : the tape begins with some arbitrary content which must be
restored at the end of the computation.

Definition 4 (Catalytic Turing machine, CL, CTISP). A catalytic Turing machine
(Q, q0, qaccept, qreject, δ) is described by the same parts as a randomized Turing machine
(Definition 2), except that the transition function is δ : [Q] \ {qaccept, qreject}× {0, 1}3 →
[Q]×{L,R}3; it receives the current state and the symbols on three tapes (input, working
and catalytic) and moves all three tape heads.
We say M decides a language L ⊆ {0, 1}∗ in working space s(n) and catalytic space

c(n) if for every x ∈ {0, 1}n and every τ ∈ {0, 1}c(n), if the catalytic tape is initialized to
τ , then M correctly decides whether x ∈ L, restores τ to the catalytic tape, and never

4

moves its work and catalytic tape heads beyond the first s(n) or c(n) cells of its work
and catalytic tapes, respectively.
If s(n) = O(log n) and c(n) = poly(n), we say L ∈ CL. If M always runs for at most

t(n) steps and c(n) = 2O(s(n)), we say L ∈ CTISP[t(n), s(n)].

Space-bounded catalytic Turing machines were proposed by Buhrman, Cleve, Koucký,
Loff and Speelman [1]. The class CTISP[t(n), s(n)] which limites both space and time
was introduced by Cook, Li, Mertz and Pyne [2].

3 Simulating BPSPACE

Theorem 1. BPSPACE[s(n)] ⊆ CTISP[2O(s(n)), O(s(n))] for every space-constructible
function1 s(n) ≥ log n.

Specifically, if M is a randomized Turing machine deciding a language L in space
s(n) with bounded error probability, then there is a catalytic Turing machine M ′ which
decides L and uses O(s(n)) working space, uses exactly one bit of catalytic space for each
possible configuration of M (amounting to Qn · s(n) · 2s(n) bits, where Q is the size of
M ’s state machine), and has runtime polynomial in the runtime of M .

The catalytic machine M ′ is described by simulate (Algorithm 1) and its subroutine
simulate once (Algorithm 2). To prove Theorem 1, it suffices to prove two things for
every x ∈ {0, 1}n: in Section 3.1, we show that simulate(M,x, s(n)) gives the correct
output, and in Section 3.2, we show that it restores the catalytic tape at the end of the
computation. Section 3.3 ties the proof together.

3.1 The output is correct

To evaluate how well simulate simulates M , we will compare the number of times
simulate once visits each configuration to the probability a true random run of M
would reach that configuration. We will argue that the next random bit r ∈ {0, 1} splits
its time fairly between being 0 or 1 when the step function is evaluated on line 13, from
which it will follow that our simulation is sufficiently accurate.
Throughout this section, fix a randomized machine M and input x ∈ {0, 1}n. Let

N = Qn · s(n) · 2s(n) be the number of configurations of M , and fix an initial content of
the catalytic tape. Let K = 6Qn · s(n) · 2s(n) + 1 as in simulate.
The following definition establishes some notation to help reason about the accuracy

of the simulation. It is illustrated in Figure 2.

Definition 5 (visit probability pg, visit count vg, error eg, transition count vrg , transition
error erg). For a configuration g, let pg be the probability that the randomized machine
M reaches configuration g during its computation on input x.

1If s(n) = o(logn), the result still holds, except the working space becomes O(logn) and the catalytic
space and runtime become poly(n).

5

Algorithm 1: simulate(M,x, s). Parameters: randomized Turing machine
M = (Q, q0, qaccept, qreject, δ), input x ∈ {0, 1}n, space limit s ∈ N. (s = s(n)
is length of work tape M is permitted to use.)

1 Let K = 6Qns2s + 1.
2 naccept ← 0
/* Forward phase: estimate accept probability */

3 for i← 1 to K do
4 naccept ← naccept + simulate once(M,x, s, forward)
5 end
/* Reverse phase: reset the catalytic tape */

6 for i← 1 to K do
7 simulate once(M,x, s, reverse)
8 end
9 if naccept ≥ 1

2K then
10 accept
11 else
12 reject
13 end

Let vg be the number of times simulate once visits configuration g during the for-
ward phase of simulate (lines 3–5). (A “visit” to the configuration stored in the variable
g occurs whenever simulate once evaluates the while loop condition on line 4.)

Define the error eg = |vg −Kpg|.
For r ∈ {0, 1}, let vrg be the number of those visits for which the variable r had the given

value on line 13 of simulate once (so vg = v0g + v1g unless state(g) ∈ {qaccept, qreject}).
Define the transition error erg = |vrg − K

2 pg|.

Lemma 1. For every configuration g and r ∈ {0, 1}, erg ≤ 1
2 + 1

2eg.

Proof. The values of the bit r alternate on successive visits to the configuration g, since
the corresponding bit of the catalytic tape is flipped (simulate once line 8) each time.
Therefore |v0g − v1g | ≤ 1. Since vg = v0g + v1g it follows that |vrg − 1

2vg| ≤
1
2 , so

erg = |vrg − K
2 pg| ≤ |v

r
g − 1

2vg|+ |
1
2vg −

K
2 pg| ≤

1
2 + 1

2eg

Lemma 2. For a configuration g∗, let (g1, r1), . . . , (gm, rm) be all of the possible (con-
figuration, next random bit) pairs which cause g∗ to be the next configuration reached.
Then eg∗ ≤

∑m
i=1 e

ri
gi.

Proof. Using the facts that vg∗ =
∑m

i=1 v
ri
gi and pg∗ =

∑m
i=1

1
2pgi , we have:

eg∗ = |vg∗ −Kpg∗ | =

∣∣∣∣∣
m∑
i=1

(vrigi −
K
2 pgi)

∣∣∣∣∣ ≤
m∑
i=1

|vrigi −
K
2 pgi | =

m∑
i=1

erigi

6

Algorithm 2: simulate once(M,x, s,m). Parameters: randomized Turing
machine M = (Q, q0, qaccept, qreject, δ), input x ∈ {0, 1}n, space limit s ∈ N,
mode m ∈ {forward, reverse}. Returns 0 or 1. (This algorithm modifies the
catalytic tape, so it is not a catalytic algorithm. However, the changes are
reversible, so it can be used as a subroutine in a catalytic algorithm.)

1 Notation: w[i] is the i-th cell of the catalytic tape.
2 Notation: step(M,x, g, r) is the new configuration of M after one step of

computation starting in configuration g on input x, with randomness
r ∈ {0, 1}.

3 g ← (q0, 0, 0, 0
s)

4 while state(g) ̸∈ {qaccept, qreject} do
/* Encode the current configuration g as an integer i ∈ [Qns2s].

*/

5 i← state(g) · ns2s + input head(g) · s2s +work head(g) · 2s +work tape(g)
/* Get the next random bit from cell i of the catalytic tape

and flip the bit on the tape. */

6 if m = forward then
7 r ← w[i]
8 w[i]← ¬w[i]
9 else /* m = reverse */

10 w[i]← ¬w[i]
11 r ← w[i]

12 end
13 g ← step(M,x, g, r)

14 end
15 return 1 if state(g) = qaccept or 0 if state(g) = qreject

7

↑
↓

↑

↓

↑

↓

↓
↑

↑

↓

↓

↓

↑
↑

↓

↓

↑

↓

1

1
2

1
2

1
4

1
2

1
4

1
2

1
2

probability pg

3

2

1

1

2

0

1

2

2

1

1

1

1

0

0

1

1

1

0

0

count vg, v
r
g

0

1
2

1
2

1
4

1
2

3
4

1
2

1
2

1
2

1
2

1
4
1
4

1
4

3
4

3
8

5
8
1
4
1
4
3
8

3
8

error eg, e
r
g

Figure 2: An illustration of Definition 5. Top row: an example simulation, copied from
Figure 1 for reference. Bottom left: visit probabilities pg. Bottom centre: visit
counts vg and transition counts vrg specific to this simulation. Bottom right:

errors specific to this simulation, taking K = 3: eg = |vg−3pg|, erg = |vrg− 3
2pg|.

Lemma 3. Let paccept be the probability M accepts on input x. When simulate reaches
line 9, |naccept −Kpaccept| ≤ N .

Proof. We prove this from Lemmas 1 and 2 using an induction argument.
Let G = (V,E) be the configuration graph of M on input x, defined as follows. The

nodes g ∈ V are the configurations of M . If state(g) ∈ {qaccept, qreject}, then g is a sink.
Otherwise, it has two outgoing edges in E corresponding to the configurations reached if
the next random bit is 0 or 1. (Recall that we fixed the input x throughout this section,
so only the random bits remain undetermined in the course of M ’s computation.)
Let G′ = (V ′, E′) be the subgraph of nodes in G that are reachable from the starting

configuration g0, and let N ′ ≤ N be the number of such nodes.
Note that G′ has no cycles, since by assumption M always halts.
(At this point, it would be convenient if G′ were arranged in layers, so that each node

in layer i had edges only to layer i+ 1. We could convert M to such a layered machine
by adding a clock, but this would increase the number of possible configurations. Instead,
we go to slightly more effort to avoid this inefficient conversion.)
Let H ⊆ V ′ be the sink nodes of G′: that is, configurations g ∈ V ′ where state(g) ∈
{qaccept, qreject}.
Let g0, g1, . . . , gN ′ be a topological order on the nodes of G′ such that the sink nodes

appear at the end of the order. That is, for any edge g → g′ in G′, g appears before g′

in the order, and H = {gN ′−|H|+1, . . . , gN ′}.
For i ∈ {0, 1, . . . , N ′−|H|}, consider the cut of G′ with nodes g0, . . . , gi on the left and

8

g0

g1

g2

g3

g4

g5

g6

g7

g0

g1

g2

g3

g4

g5

g6

g7

Figure 3: Two steps in the induction argument in the proof of Lemma 3. On the left,
i = 2 and on the right, i = 3. In each case, Fi consists of the edges that cross
the dashed line, and σi is the sum of the errors on those edges.

gi+1, . . . , gN ′ on the right. We are interested in the total error over all the transitions
which cross each such cut.

Let Fi ⊆ V ′×{0, 1} be the set of transitions which cross the cut. That is, a pair (g, r)
is in Fi if g is on the left of the cut and reading random bit r moves the computation to
a configuration on the right of the cut. See Figure 3.
Let σi =

∑
(g,r)∈Fi

erg, recalling from Definition 5 that erg = |vrg − K
2 pg|.

By induction, we can show that σi ≤ i+ 1.
Base case: σ0 = e0g0 + e1g0 . We know vg0 = 1 and pg0 = 1, so eg0 = 0 and so by

Lemma 1, σ0 ≤ 1.
Induction step: Fix i ∈ [N ′ − 1] and assume σi ≤ i + 1. Let (gj1 , r1), . . . , (gjm , rj) be

the transitions leading to configuration gi. Those are the transitions that contribute to
σi but not σi+1, so we have σi+1 = σi + e0gi + e1gi −

∑m
k=1 e

rk
gjk

. Applying Lemmas 1 and

2, we have

σi+1 ≤ σi + 1 + egi −
m∑
k=1

erkgjk
≤ σi + 1 ≤ i+ 2

completing the induction.
In particular, σN ′−|H| ≤ N ′−|H|+1. The corresponding set of transitions FN ′−|H| are

exactly the transitions leading to (reachable) halting configurations of M . Therefore, by
Lemma 2, the total error over all halting configurations of M is at most∑

g∈H
eg ≤

∑
(g′,r)∈FN′−|H|

erg′ = σN ′−|H| ≤ N ′ − |H|+ 1

Let A ⊆ H be the accepting configurations, and let paccept be the probability that
machine M accepts. Noting that on line 9 of simulate, naccept equals the number of
visits to configurations in A, we have

|naccept −Kpaccept| =
∣∣∣∑
g∈A

vg −Kpg

∣∣∣ ≤∑
g∈A
|vg −Kpg| ≤

∑
g∈H

eg ≤ N ′ − |H|+ 1 ≤ N

Corollary 3. If M accepts with probability at least 2/3, then simulate accepts, and
similarly it rejects if M rejects with probability at least 2/3.

9

Proof. If paccept ≥ 2/3, then by Lemma 3, naccept ≥ 2
3K − N > 1

2K, and similarly if
paccept ≤ 1/3, then naccept <

1
2K.

3.2 The catalytic tape is restored.

simulate restores its catalytic tape when it finishes. To see this, the following is enough:

Lemma 4. Running simulate once(M,x, s, forward) then simulate once(M,x, s,
reverse) leaves the catalytic tape unchanged.

Proof. It is enough to show both calls to simulate once visit the same sequence of
configurations g, since then each bit of the catalytic tape is flipped an even number of
times. (We say simulate once “visits” the configuration stored in variable g each time
the loop condition on line 4 is evaluated.)
Loosely speaking, this is true because every time simulate once(M,x, s, reverse)

decides which random bit r to feed to M , it first (line 10) undoes the change made
by simulate once(M,x, s, forward), and so ends up reading the same bit from the
catalytic tape.
This argument relies on the fact that a single run of simulate once never modifies

the same cell w[i] of the catalytic tape more than once, which follows from the fact that
M always halts: if a cell could be modified twice, that would imply a cycle in M ’s
configuration graph.
To make this all a bit more precise, let g0, . . . , gt be the configurations visited by

simulate once(M,x, s, forward), and g′0, . . . , g
′
t′ be the configurations visited by the

subsequent call to simulate once(M,x, s, reverse). We show by induction that gi = g′i
for each i, so that in particular the main loop ends with the same final configuration in
each case and so t = t′.
To begin with, g0 = g′0 = (q0, 0, 0, 0

s). Now assume gi = g′i. If state(gi) ∈ {qaccept,
qreject}, both subroutine calls halt and we are finished. Otherwise, we must show the
same bit r is read from w[i] on the catalytic tape both times. Since neither subroutine
call made any other changes to w[i], when the second subroutine call flips w[i] on line 10,
it exactly cancels out the only change made by the first subroutine call on line 8, and so
the same bit r is recovered, and so the same next step is taken: gi+1 = g′i+1.

Corollary 4. simulate leaves its catalytic tape unchanged.

Proof. By induction on K, we can see that K calls to simulate once(M,x, s, forward)
followed by K calls to simulate once(M,x, s, reverse) has no net effect on the tape.
For K = 0 this is clear. Lemma 4 provides the induction step. That is, K + 1 calls
to each can be decomposed as (1) K calls to simulate once(M,x, s, forward), then
(2) a single call to each, which by Lemma 4 has no net effect, then (3) K calls to
simulate once(M,x, s, reverse). Since (2) has no effect, we are left with K calls
each.

10

3.3 Proof of Theorem 1

On input x, the catalytic machine M ′ runs simulate(M,x, s(n)). (Here, we have used
the fact that s is space-constructible.) Corollary 3 shows the output is correct, and
Corollary 4 shows M ′ restores its catalytic tape.
M ′ uses O(s(n)) working space to hold the loop variable i of simulate and the

variables g, i, r of simulate once, and simulate once requires the catalytic tape to
have one bit for every configuration of M . The runtime is the time needed for O(N) =
2O(s(n)) simulations of M by simulate once, each taking time 2O(s(n)).

Acknowledgements

The author thanks Ian Mertz for helpful discussions, and Michal Koucký for pointing
out that this technique is also a new way to show BPL ⊆ P (and not just BPL ⊆ CL).

References

[1] Harry Buhrman, Richard Cleve, Michal Koucký, Bruno Loff, and Florian Speelman.
Computing with a full memory: catalytic space. In Proceedings of the Forty-Sixth
Annual ACM Symposium on Theory of Computing, STOC ’14, page 857–866, New
York, NY, USA, 2014. Association for Computing Machinery.

[2] James Cook, Jiatu Li, Ian Mertz, and Edward Pyne. The structure of catalytic
space: Capturing randomness and time via compression. Electronic Colloquium on
Computational Complexity: ECCC, 2024.

[3] Dean Doron, Edward Pyne, and Roei Tell. Opening up the distinguisher: A hardness
to randomness approach for BPL=L that uses properties of BPL. In Proceedings
of the 56th Annual ACM Symposium on Theory of Computing, STOC 2024, page
2039–2049, New York, NY, USA, 2024. Association for Computing Machinery.

[4] Ian Mertz. Reusing space: Techniques and open problems. Bulletin of EATCS,
141(3), 2023.

[5] Noam Nisan. On read once vs. multiple access to randomness in logspace. Theoretical
Computer Science, 107(1):135–144, 1993.

[6] Noam Nisan and Avi Wigderson. Hardness vs randomness. Journal of Computer
and System Sciences, 49(2):149–167, 1994.

[7] Edward Pyne. Derandomizing Logspace with a Small Shared Hard Drive. In Rahul
Santhanam, editor, 39th Computational Complexity Conference (CCC 2024), volume
300 of Leibniz International Proceedings in Informatics (LIPIcs), pages 4:1–4:20,
Dagstuhl, Germany, 2024. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

11

Source code for this document

This document was built using LATEX and a Perl script to generate TikZ diagrams. The
source code is available at https://www.falsifian.org/a/1KwN.

12

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

https://www.falsifian.org/a/1KwN

