
Simulating Time With Square-Root Space*

Ryan Williams†

MIT

February 24, 2025

Abstract

We show that for all functions t(n) ≥ n, every multitape Turing machine running in time t can
be simulated in space only O(

√
t log t). This is a substantial improvement over Hopcroft, Paul, and

Valiant’s simulation of time t in O(t/ log t) space from 50 years ago [FOCS 1975, JACM 1977]. Among
other results, our simulation implies that bounded fan-in circuits of size s can be evaluated on any input
in only

√
s · poly(log s) space, and that there are explicit problems solvable in O(n) space which require

n2−ε time on a multitape Turing machine for all ε > 0, thereby making a little progress on the P versus
PSPACE problem.

Our simulation reduces the problem of simulating time-bounded multitape Turing machines to a
series of implicitly-defined Tree Evaluation instances with nice parameters, leveraging the remarkable
space-efficient algorithm for Tree Evaluation recently found by Cook and Mertz [STOC 2024].

*To appear in STOC 2025.
†Work supported in part by NSF CCF-2127597 and NSF CCF-2420092.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 17 (2025)

1 Introduction

One of the most fundamental questions in theoretical computer science is: how does time relate to space,
in computation? For instance, can every problem solvable in polynomial space (PSPACE) also be solved in
polynomial time (P)? Although it is widely believed that P ̸= PSPACE, there has been scant progress on
separating time and space over the decades [SHL65, HU68, SM73, HPV75, PR81, HLMW86]. In particular,
for general models of computation (beyond one-tape models), only time lower bounds of the form Ω(n log n)
have been reported for linear-space problems, whereas P ̸= PSPACE requires showing that there is a linear-
space problem that cannot be solved in O(nk) time for every constant k ≥ 1.

In this paper, we make another step towards separating P from PSPACE, by showing that there are
problems solvable in O(n) space that cannot be solved in n2/ logc n time for some constant c > 0. This
is the first generic polynomial separation of time and space in a robust computational model (namely, the
multitape Turing machine). The separation is accomplished by exhibiting a surprisingly space-efficient
simulation of generic time-bounded algorithms. More formally, let TIME[t(n)] be the class of decision
problems decided by O(t(n))-time multitape Turing machines, and let SPACE[s(n)] the class decided by
O(s(n))-space multitape Turing machines.

Theorem 1.1. For every function t(n) ≥ n, TIME[t(n)] ⊆ SPACE[
√
t(n) log t(n)].

We find Theorem 1.1 to be very surprising. It appears to have been a common belief for decades that t
time cannot be simulated in t1−ε space, for any constant ε > 0. For example, assuming that t time cannot
be simulated in t1−ε space, Sipser gave a poly-time derandomization of RP [Sip88]1 and Nisan-Wigderson
gave a subexponential-time derandomization of BPP ([NW94, Section 3.6]).2

Given the power of multitape Turing machines, Theorem 1.1 has many interesting consequences. Along
with the ability to evaluate generic straight-line programs of length n (over a bounded domain) in only
Õ(

√
n) space (see Section 4.1), Theorem 1.1 immediately implies by diagonalization that there are s(n)-

space problems that cannot be solved in s(n)2−ε time for all ε > 0: a “truly-polynomial” time lower bound.

Corollary 1.2. For space constructible s(n) ≥ n, and all ε > 0, SPACE[s(n)] ̸⊂ TIME[s(n)2−ε].

Similarly, if Theorem 1.1 could be extended to show for all ε > 0 that every time-t(n) Turing machine
can be simulated in O(t(n)ε) space, then P ̸= PSPACE would follow (see the arguments in Section 4). We
discuss this possibility at the end of the paper, in Section 5. It follows from Corollary 1.2 that any complete
problem for linear space requires quadratic time to be solved. For example:

Corollary 1.3. The language L = {⟨M,x, 1k⟩ | |M | ≤ k and M(x) halts in space k} requires n2−ε time
to solve on a multitape Turing machine, for every ε > 0.

Another consequence is that there are context-sensitive languages which need essentially n2 time to be
recognized by multitape Turing machines. This follows from the fact that NSPACE[n] (nondeterministic
linear space) is equivalent to the class of context-sensitive languages [Kur64].

Since multitape Turing machines can evaluate any circuit of size s (and fan-in two) on any given input
of length n ≤ s in only s · poly(log s) time [Pip77], it follows that arbitrary subquadratic-size circuits can
be simulated by subexponential-size branching programs.3

1Sipser also assumed explicit constructions of certain bipartite expander graphs, which were later constructed [SSZ98].
2Note that the derandomization of Nisan and Wigderson can also be based on assuming the weaker hypothesis TIME[t] ̸⊂

Σ2TIME[t1−ε], which remains open and almost certainly cannot be refuted using the ideas of this paper.
3Unfortunately, the reference [Pip77] does not seem to be available online. See Section 4.1 for an alternative sketch of the

argument.

1

Corollary 1.4. There is a universal k ≥ 1 such that for all s ≥ n, every bounded fan-in circuit of size s and
n inputs has a branching program of size at most 2k

√
s logk s.

It is an interesting question whether the simulation of Theorem 1.1 can be extended beyond multitape
Turing machines, to more powerful computational models. We can generalize Theorem 1.1 to d-dimensional
multitape Turing machines, as follows:

Theorem 1.5. Every decision problem solvable by a t(n)-time d-dimensional multitape Turing machine can
be decided in O((t(n) log t(n))1−1/(d+1)) space (on a typical one-dimensional multitape Turing machine).

The space bound of Theorem 1.5 matches the best known space bounds for simulating time-t machines
with one d-dimensional tape [Lou81, LL90]. See Section 2.1 for more references on prior simulations.

Remark 1.6 (Extension to Oblivious Random-Access Models). At the present time, we do not know how to
extend Theorem 1.1 to arbitrary random-access models of computation. The main issue is that the indegree
of the resulting computation graph (defined in Section 3) is so high that the computation graph cannot be
stored in O(t1−ε) memory. However, we remark that if the pattern of reads and writes of a given random-
access machine model is oblivious, in the sense that given a step-count i = 1, . . . , t specified in O(log t)
bits, the names of the registers being accessed in step i can be computed in O(

√
t) space, then Theorem 1.1

does apply, with only a poly(log t) extra space factor. This is because such machines can be simulated by
circuits of t · poly(log t) size, which can in turn be simulated efficiently by multitape Turing machines in
t · poly(log t) time (see Section 4.1).

1.1 Intuition

The key idea behind Theorem 1.1 is to reduce the problem of simulating arbitrary time-bounded compu-
tations to particular instances of the TREE EVALUATION problem, defined by S. Cook, McKenzie, Wehr,
Braverman, and Santhanam [CMW+12]. In this problem, one is given a complete d-ary tree of height h,
where each leaf of the tree is labeled with a b-bit string, and each inner node of the tree is labeled with a
function from d · b bits to b bits.4 (Each function is presented as a table of 2d·b values, each of which are b
bits.) Each inner node computes its value by evaluating its function on the values of its d children. The task
of TREE EVALUATION is to determine the value of the root of the tree. To make this a decision problem, we
will decide whether the first bit of the root’s value equals 1 or not.

The obvious depth-first algorithm for TREE EVALUATION uses O(d · b · h) space, to store intermediate
results at each level of the tree. The authors of [CMW+12] conjectured that TREE EVALUATION is not in
NL, which would separate NL from P (in fact, stronger separations would hold). Recent algorithmic work
has led to significant skepticism that this conjecture is true. In a line of work, J. Cook and Mertz have found
surprisingly space-efficient methods for TREE EVALUATION [CM20, CM21, CM22, CM24], culminating
in a marvelous algorithm using space only O(d · b+ h log(d · b)) ([CM24, Theorem 7], see Appendix A).

Utilizing the old notion of “block-respecting” Turing machines [HPV75], we show how to reduce time-t
computations to (implicitly defined) TREE EVALUATION instances of height h = Θ(t/b), bit-length b, and
fan-in d, where b is a parameter from 1 to t that we can choose, and d is a fixed constant depending on
the machine. In particular, one can generate arbitrary bits of our TREE EVALUATION instance in a space-
efficient way as needed.

4Our notation is slightly different from the usual setup, where there is a parameter k = 2b. Here, our notation more closely
follows Goldreich’s exposition [Gol24].

2

Very roughly speaking, each level of the tree will correspond to a “time block” of b steps, and the value
of each node v of the tree will be a “block of tape” of length Θ(b) (a sequence of Θ(b) contiguous cells)
from some particular tape of a k-tape Turing machine; the value of the root will contain the contents of the
final tape block of the computation, including the relevant accept/reject state. The evaluation function Fv at
node v will simulate the Turing machine for Θ(b) steps, using the contents of k tape blocks of length Θ(b)
from previous time blocks; this Fv can be computed in O(b) time and space, given the relevant contents of
O(b)-length tape blocks from all k tapes and the state from the previous time block. (The leaves of the tree
roughly correspond to strings of Θ(b) blank symbols, or a block of Θ(b) symbols from the input x.) We end
up with a TREE EVALUATION instance of height h = O(t/b) and fan-in d = O(1), where Θ(b) steps of the
Turing machine are processed at each node, and where each node is labeled with a string of about Θ(b) bits.
(There are several technical details to worry over, such as the problem of knowing which tape blocks to use
at each time step, but this is the high-level idea.)

Observe that, under the above parameter settings, the obvious depth-first TREE EVALUATION procedure
would yield an algorithm running in Θ(h · b) = Θ(t) space. Applying the Cook-Mertz procedure, and
setting d · b = h log(d · b) = Θ(t · log(d · b)/b) to optimize the space usage, we find b = Θ(

√
t log t) and

obtain the O(
√
t log t) space bound of Theorem 1.1.

Organization. Section 2 discusses preliminaries (which we do not recommend skipping, but it is short).
Section 3 begins by proving a short “warm-up” simulation (Theorem 3.1) which already achieves O(

√
t log t)

space and gives many of the key ideas. Section 3.2 proves Theorem 1.1, discusses the possibility of improve-
ment, and proves Theorem 1.5. Section 4 discusses various corollaries mentioned earlier, and Section 5
concludes with a number of new directions to consider.

2 Preliminaries

We assume the reader is familiar with basic notions in time and space bounded complexity [Gol08, AB09].
There are a few pieces not covered in the usual complexity textbooks which are important for this work.

Robustness of Space Complexity. It is important to recall that the class of problems SPACE[s(n)] is
robust under changes in the definition of the underlying machine model. For essentially any model (with
sequential access versus random access, or tapes versus registers) that measures space usage by the total
number of bits needed to represent the storage, SPACE[s(n)] is the same complexity class. This is part of
what is known as the “invariance thesis” [SvEB88, vEB90]. As a consequence, we do not have to worry
much about machine models when we’re trying to design a space s(n) algorithm and we’re ignoring time
complexity. This allows us to be more lax in our exposition.

Block-Respecting Turing Machines. In our main simulation (Theorem 1.1) we will utilize a construction
to simplify the analysis of multitape Turing machines. The construction was originally used by Hopcroft,
Paul, and Valiant [HPV75] in their O(t/ log t)-space simulation of t time, and it has been used in many
subsequent works to “decompose” time-bounded computations (such as [PPST83, KLV03, KLRS12, LW13,
MW17]). A time-t(n) block-respecting multitape Turing machine with blocks of length b(n) has the property
that on all inputs of length n, the computation is partitioned into O(t(n)/b(n)) time blocks of length b(n),
while each tape is partitioned into O(t(n)/b(n)) contiguous tape blocks of length b(n). The key property
is that for every time block, each tape head is in exactly one tape block during that time block, so that

3

tape heads can switch between tape blocks only at the end of a time block. In particular, every tape head
only crosses from one tape block to another, on time steps that are integer multiples of b(n). A key lemma
of [HPV75] is that every multitape Turing machine can be made block-respecting with low overhead.

Lemma 2.1 ([HPV75]). For every time-constructible b(n), t(n) such that log t(n) ≤ b(n) ≤ t(n) and
every t(n)-time ℓ-tape Turing machine M , there is an equivalent O(t(n))-time block-respecting (ℓ + 1)-
tape Turing machine M ′ with blocks of length b(n).

The Tree Evaluation Problem. As mentioned earlier, we will reduce time-t computations to the TREE

EVALUATION problem. Our formulation of TREE EVALUATION will be relaxed from the original notion:
we allow a tree of height at most h, where each inner node v of the tree has kv ≤ d children for some integer
kv ≥ 2 depending on v, and v is labeled with a function from kv · b bits to b bits. As before, each leaf is
labeled with a b-bit string, and we wish to determine the first bit of the root’s value. Prior work on TREE

EVALUATION assumed a complete d-ary tree where all root-to-leaf paths have length equal to h; in our
setting, we allow some paths to have length than h, and some nodes to have fewer than d children. However,
the algorithm of Cook and Mertz works just as well in our relaxed formulation:

Theorem 2.2 ([CM24], Theorem 7). TREE EVALUATION on trees of bit-length b, maximum height h, and
fan-in at most d, can be computed in O(d · b+ h log(d · b)) space.

In Appendix A, we give an overview of how the Cook-Mertz algorithm works, and describe why it
extends to our case.

2.1 More Related Work

As mentioned earlier, Hopcroft, Paul, and Valiant showed that time-t multitape Turing machines can be
simulated in O(t/ log t) space [HPV75]. This simulation was later extended beyond the multitape model,
yielding a more space-efficient simulation for essentially all common models of computation used in al-
gorithms and complexity [PR81, HLMW86]. Paterson and Valiant [PV76] showed that circuits of size s
can be simulated by depth O(s/ log s) circuits, implying a space-efficient simulation of circuits. Similarly,
Dymond and Tompa [DT85] showed that time t can be simulated in alternating time O(t/ log t).

For decades, a square-root space simulation of the form in Theorem 1.1 has been known for one-tape
Turing machines: Hopcroft and Ullman [HU68] showed that time-t Turing machines with one read-write
tape can be simulated in space O(

√
t). Other improvements on this simulation (e.g., improving the time of

the simulation, improving the model(s) slightly) include [Pat72, IM83, LL90].
Paul, Pippenger, Szemerédi, and Trotter [PPST83] proved the separation NTIME[n] ̸= TIME[n] for

multitape Turing machines. Unfortunately, their proof only works for (one-dimensional) multitape Turing
machines, and it is infamously still open to prove NTIME[n] ̸= TIME[n] in more general models. We prove
Theorem 1.5 (an extension to the d-dimensional case) to illustrate that our approach via TREE EVALUATION

is more broadly applicable.

3 A More Space-Efficient Simulation of Time

In this section, we prove Theorem 1.1, showing that any multitape Turing machine M running in time t
can be simulated in space O(

√
t log t). We will proceed by reducing the computation of M on an input x

(of length n) to an instance of TREE EVALUATION with particular parameters. (In fact, in the full proof of
Theorem 1.1, we will reduce computing M on x to a series of TREE EVALUATION instances.)

4

One initial remark is in order. First, note that we did not specify in the statement of Theorem 1.1 that the
time function t(n) is time constructible, in that there is a Turing machine that can print the value of t(n) on
1n in O(t(n)) steps. This is because in our space-bounded simulation, we can simply try increasing values
t(n) = n, n+ 1, n+ 2, . . ., one at a time, and not worry about constructibility issues. (This trick is used in
other space-bounded simulations, such as [HPV75].)

Assume M has ℓ tapes which are infinite in one direction, and all tape heads are initially at the leftmost
cell. We also assume that the input x is received on tape 1.

3.1 A Warm-up Result

Before describing the full O(
√
t log t) space simulation, first we present a slightly worse algorithm which

uses O(
√
t log t) space and requires t(n) ≥ n2, but is simpler to describe. This bound is already extremely

surprising (to the author), and the simulation gives most of the key intuition as well.

Theorem 3.1. For every function t(n) ≥ n2, TIME[t(n)] ⊆ SPACE[
√
t(n) log t(n)].

The proof of Theorem 3.1 will utilize the well-known oblivious two-tape simulation of multitape Turing
machines. A multitape Turing machine M is oblivious if for every n, and every input x of length n, the tape
head movements of M on x depend only on n, and not on x itself.

Theorem 3.2 ([HS66, PF79, FLvMV05]). For every time-t(n) multitape Turing machine M , there is an
equivalent time-T (n) two-tape Turing machine M ′ which is oblivious, with T (n) ≤ O(t(n) log t(n)). Fur-
thermore, given n and i ∈ [T (n)] specified in O(log t(n)) bits, the two head positions of M ′ on a length-n
input at time step i can be computed in poly(log t(n)) time.

Let M ′ be the machine obtained from Theorem 3.2. The first idea behind our simulation is to conceptu-
ally partition the computation of M ′ on a length-n input x into time and tape “blocks” of length b(n), for a
parameter b(n) ≥ log t(n) to be set later. In particular, the two tapes of M ′ are split into tape blocks of b(n)
contiguous cells, and the T (n) steps of M ′ on x are split into B := B(n) = O(T (n)/b(n)) contiguous time
blocks of length up to b(n). Observe that, for any block of b(n) steps on M ′, and any given tape h ∈ {1, 2},
there are at most two tape blocks of tape h that may have been accessed during the time block (moreover,
they are adjacent tape blocks on tape h). We will construct a TREE EVALUATION instance where the func-
tions at each node of the tree evaluate a single time block, taking as input some relevant tape blocks from
previous time blocks. In fact, the same time block may be recomputed many times over the entire TREE

EVALUATION instance, in order to evaluate the last time block at the root of the tree.

A Computation Graph. To this end, we define a computation graph GM ′,x on B + 1 = O(T (n)/b(n))
nodes, a directed acyclic graph whose edges model the information flow from earlier time blocks in the
computation to later time blocks: the reads and writes of M ′ and the head movements across blocks of
tape. Our notion is very similar to the computation graphs defined in [HPV75, PR80]. Eventually, the
computation being performed on the (B + 1)-node graph GM ′,x will be viewed as a TREE EVALUATION

instance of height B + 1.
Our graph GM ′,x has a node i for each time block i ∈ {0, 1, . . . , B}, and the edges will indicate which

previous time block contents need to be read in order to compute the content of the tape blocks accessed
during time block i. In particular, we say that all tape blocks on the two tapes are active during time block 0,
and for i > 0, a tape block is active during time block i if the tape head visits some cell of the block during
time block i. We put an edge from (i, j) in GM ′,x with i < j if and only if:

5

• either j = i+ 1, or

• when M ′ is run on input x, there is some tape block active during time block i that is not active again
until time block j. That is, for some tape head h, it reads the same tape block C in both time blocks
i and j, but h does not read tape block C during any time blocks i + 1, . . . , j − 1. (Alternatively, if
some tape block is being accessed for the first time in time block i, we have an edge (0, i) to reflect
the fact that all tape blocks are defined to be active in time block 0.)

Observe that each node i has indegree at most 5: one edge from i − 1, and at most four other edges for (at
most) four active tape blocks during time block i (two active tape blocks for each of the two tapes).

The key insight behind the computation graph notion is that the information needed to simulate M ′

during a time block j only requires knowing the information computed in previous time blocks i, where
(i, j) is an edge in GM ′,x. In particular, the state and head positions of M ′ at the start of time block j may
be obtained from the state and head positions at the end of time block j − 1, so we have the edge (j − 1, j),
and we have an edge (i, j) for each of those blocks of tape accessed during a time block i which are not
accessed again until time block j.

Due to the obliviousness of M ′ (Theorem 3.2), we have the following claim:

Claim 3.3. Given the indices of any two nodes i, j in GM ′,x, we can determine if there is an edge from i to
j in poly(log t(n)) additional space.

The claim follows because determining whether (i, j) is an edge just requires us to keep track of the
locations of the two tape heads, from some time block i to a later time block j. By Theorem 3.2, we can
calculate the two tape head locations at any point in time using only poly(log t(n)) time, so we only have to
use poly(log t(n)) space to keep track of whether a tape block accessed during time block i is only accessed
later at time block j.

The Functions at the Nodes. Now we define what is being computed at each node of GM ′,x. The content
of time block i, denoted by content(i), is defined as follows:

• content(0) is the initial configuration of M ′ running on the input x of length n, encoded in n+O(1)
bits. (Recalling we have t(n) ≥ n2, we will eventually set b(n) ≥ n. Thus the initial configuration of
M ′ on x can “fit” in one tape block.)

• For i ∈ {1, . . . , B}, content(i) encodes information about the status of M ′ on x at the end of time
block i: the state of M ′, the two tape head positions, and a list of the contents of those tape blocks
accessed during time block i. As there are at most four such tape blocks which may have been
accessed during time block i, content(i) can be encoded in O(b(n) + log t(n)) ≤ O(b(n)) bits.

Note that for every fixed j ∈ [B], if we are given content(i) for all edges (i, j) in GM ′,x, then we can
compute content(j) in O(b(n)) time and space, by simply simulating M ′ for b(n) steps on the tape blocks
of the relevant content(i) values.

Our goal is to determine content(B), the content of the final time block, which will contain either an
accept or reject state and determine the answer.

A Tree Evaluation Instance. To do this, we construct a TREE EVALUATION instance in which the root
node computes content(B), its children compute content(i) for all i such that (i, B) is an edge in GM ′,x,
and so on; the leaves of our TREE EVALUATION instance will compute content(0), the initial configuration

6

of M ′ on x. This transformation is analogous to how depth-d Boolean circuits of fan-in F can be modeled
by formulas of depth-d and size at most O(F d), by tracing over all possible paths from the output gate of
the circuit to an input gate of the circuit; see for example [Juk12, Chapter 6].

More precisely, we define a tree RM ′,x of height at most B + 1 and fan-in at most 5, with a root node
that will evaluate to content(B). Each node v of RM ′,x is labeled by a distinct path from some node j in
GM ′,x to the node B of GM ′,x. Inductively, we define the labels as follows:

• the root node of RG′ is labeled by the empty string ε (the empty path from B to itself), and

• for every node v in RM ′,x labeled by a distinct path P from j to B, and for every node i with an edge
to j in GM ′,x, the node v has a child w in RM ′,x labeled by the path which takes the edge (i, j) then
the path P to B.

Observe that paths P of length ℓ from a node j to node B can be encoded in O(ℓ) bits, since the indegree of
each node is at most 5. Furthermore, given such a path P encoded in this way, observe we can determine the
node j at the start of P in poly(log t) space, by making repeated calls to the edge relation (as in Claim 3.3).

The desired value to be computed at node v (labeled by a path from j to B) is precisely content(j). For
j = 0, this value is just the initial configuration of M ′ on x, which can be produced immediately in O(n)
time and space. For j > 0, content(j) can be computed in O(b(n)) time and space given the values of the
children of v. Since GM ′,x has at most B+1 total nodes, the height of RM ′,x is at most B+1. By induction,
the value of the root of RM ′,x is precisely content(B).

While the tree RM ′,x has 2Θ(B) ≤ 2Θ(T (n)/b(n)) nodes, observe that for any given node v of RM ′,x

(labeled by a path to B), we can easily compute the labels of the children of v in poly(log t(n)) space, using
Claim 3.3 to compute the edges of the graph GM ′,x. Thus, it takes only poly(log t(n)) additional space to
determine the children of any given node of RM ′,x, and this space can be immediately reused once these
children are determined. So without loss of generality, we may assume we have random access to the tree
RM ′,x, its leaves, and its functions at each node.

Finally, we call the Cook-Mertz TREE EVALUATION algorithm (Theorem 2.2) in its most general form
on RM ′,x. Recall that the space bound of this algorithm, for trees of height at most h, fan-in at most d,
computing b-bit values at each node, is

O(d · b+ h log(d · b)).

For us, d = 5, b = b(n), and h = O(T (n)/b(n)) ≤ O(t(n) log t(n))/b(n). We only use O(b(n)) additional
time and space for each function call to compute some content(j), and we can reuse this space for every
separate call. Therefore our space bound is optimized up to constant factors, by setting b(n) such that

b(n)2 = Θ(t(n) log t(n) · log b(n)),

so b(n) =
√
t(n) · log t(n) suffices. This completes the proof of Theorem 3.1.

3.2 The Main Result

Now we describe how to improve the bound of the space simulation, by avoiding the t log t blowup of the
oblivious simulation. This will establish Theorem 1.1. The main difficulty is that without the oblivious
guarantee of Theorem 3.2, we do not know how to determine the edges of computation graph GM,x in an
efficient way. To remedy this, we will use more space: we will enumerate over possible computation graphs
G′, and introduce a method for checking that G′ = GM ′,x in the functions of our TREE EVALUATION

7

instance. Our graph enumeration will be performed in a particularly space-efficient way, so that if TREE

EVALUATION turns out to be in logspace, the simulation of this paper will yield an O(
√

t(n)) space bound.
As before, we start with a multitape M which runs in t(n) time, and let x be an input of length n.
First, we make M block-respecting as in Lemma 2.1 with block-length b = b(n) on inputs of length n,

for a parameter b to be set later. The new multitape machine M ′ has p := ℓ+ 1 tapes, runs in time O(t(n)),
and has B := O(t(n)/b(n)) time and tape blocks.5

The Computation Graph. We start by refining the computation graph notion from Theorem 3.1. Here,
our computation graph GM ′,x is similar but not identical to that of [HPV75] and the warm-up Theorem 3.1.
Because we will allow for space bounds which are smaller than the input length n = |x|, we have to make
several modifications to GM ′,x to fit the specifications of TREE EVALUATION. We define the set of nodes in
GM ′,x to be

S = {(h, i), (h, 0, i) | h ∈ [p], i ∈ [B]}.

Intuitively, each (h, i) ∈ [p] × [B] will correspond to the content of the relevant block of tape h after time
block i, while each (h, 0, i) will be a source node in GM ′,x corresponding to the content of the i-th block of
tape h when it is accessed for the first time, i.e., the initial configuration of the i-th block of tape h.6 (We
imagine that on each tape, the tape blocks are indexed 1, 2, . . . starting from the leftmost block, with up to
B tape blocks for each tape.) We think of all (h, 0, i) nodes as associated with “time block 0”.

Each node (h, i) ∈ [p] × [B] is labeled with an integer m(h,i) ∈ {−1, 0, 1}, indicating the tape head h
movement at the end of time block i:

m(h,i) =


1 if the head h moves one tape block to the right of the current tape block,
−1 if h moves one tape block to the left, and
0 if h stays in the same tape block for both time blocks i and i+ 1.

Next, we describe the edges of GM ′,x; there are two types. For each h, h′ ∈ [p] and i, j ∈ [B] with
i < j, the edge ((h′, i), (h, j)) is put in GM ′,x if either:

• j = i+ 1, or

• while M ′ is running during time block j, the tape block accessed by h′ during time block i is not
accessed again until time block j. That is, tape head h′ reads the same tape block T in both time
blocks i and j, but head h′ does not read tape block T during any of the time blocks i+ 1, . . . , j − 1.

For h, h′ ∈ [p] and i, j ∈ [B], the edge ((h′, 0, i), (h, j)) is put in GM ′,x if, while M ′ is running during time
block j, the tape head h′ accesses its i-th tape block for the first time in the computation. (For example, note
that , for all h, h′, ((h′, 0, 1), (h, 1)) is an edge.)

Observe that the indegree of each node (h, j) ∈ [p] × [B] is at most 2p for all j > 0: for all h′ ∈ [p],
there is an edge from (h′, j − 1) to (h, j) for j > 1 (and from (h′, 0, 1) to (h, 1) for j = 1), and there is

5Strictly speaking, we do not have to make M block-respecting, but it does make aspects of the presentation a little cleaner: we
do not have to reason about “active” tape blocks as we did in the warm-up (Theorem 3.1). Foreshadowing a bit, we will not use a
block-respecting notion in the later extension to d-dimensional Turing machines (Theorem 1.5) and again use “active” tape blocks.

6A little explanation may be in order. In the warm-up Theorem 3.1, we assumed t(n) ≥ n2, so that the entire initial configuration
of the machine on x could fit in a length-b(n) block. This made the leaf nodes of our TREE EVALUATION instance RG′ particularly
easy to describe. For t(n) ≪ n2, we may have |x| = n ≪ b(n), so the input x may not fit in one tape block. To accommodate this
possibility and obtain a clean reduction to TREE EVALUATION in the end, we define multiple source nodes in GM′,x to account
for different b(n)-length blocks of input x in the initial configuration of M ′ on x, along with b(n)-length blocks of all-blank tape
when these blocks are accessed for the first time.

8

an edge from a node labeled by h′ (either of the form (h′, ih′,j) or (h′, 0, ih′,j)) to (h, j), indicating which
block of tape h′ is needed to compute the block of tape h during time block j. (Note that some of these
edges might be double-counted, so the indegree is at most 2p.)

A Succinct Graph Encoding. The obvious way to store the computation graph GM ′,x uses O(B logB)
bits. To save space, we will be more careful, and use additional observations on the structure of such
computation graphs. (These observations are similar but not identical to those used in the separation of
NTIME[n] and TIME[n], of Paul-Pippenger-Szemerédi-Trotter [PPST83].)

Recall that each node (h, i) is labeled by a head movement m(h,i) ∈ {−1, 1, 0} indicating whether the
tape block of head h is decremented by 1, incremented by 1, or stays the same, at the end of time block i.
Our key observation is that the numbers m(h,i) alone already tell us the entire structure of the graph GM ′,x.
This immediately implies that every possible guess of GM ′,x can be encoded in only O(B) bits: we only
need a constant number of bits for each of the O(B) nodes.

In particular, for an index i ∈ [B], we define block(h, i) ∈ [B] to be the index of the tape block of tape
h being accessed at the start of time block i. For all h ∈ [p], we have block(h, 1) = 1, and for i > 1, by
definition of the m(h,i) we have

block(h, i) = 1 +
i−1∑
j=1

m(h,j). (1)

Equation (1) is true because each m(h,j) tells us how the index of the tape block of tape h changes at the end
of time block j, which is the same as the tape block index at the start of time block j + 1.

For i < j, observe that there is an edge from (h′, i) to (h, j) in GM ′,x if and only if either:

• j = i+ 1, or

• block(h′, i) = block(h′, j) and for all k ∈ {i+ 1, . . . , j − 1}, block(h′, k) ̸= block(h′, i). (The tape
block accessed by h′ in time block i is not accessed again until time block j.)

Furthermore, there is an edge from (h′, 0, i) to (h, j) in GM ′,x if and only if i = block(h′, j) and for all
k ∈ {1, . . . , j − 1}, block(h′, j) ̸= block(h′, k). (The tape block accessed by h′ in time block j was never
accessed before, and its index is equal to i.)

We will use a few claims about the block function and the computation graph.

Claim 3.4. Given (h′, i′) ∈ [p] × [B] and the claimed sequence {m(h,i)}, we can compute block(h′, i′) in
O(log t(n)) additional space.

Proof. Given any h′, i′, each block(h′, i′) can be computed in logspace using (1), by maintaining a counter
and streaming over the sequence m(h,i).

Claim 3.5. Given the indices of a pair of nodes u, v in GM ′,x, and the claimed sequence {m(h,i)}, we can
determine if (u, v) is an edge in the encoded graph in O(log t(n)) additional space.

Proof. We can easily check if j = i+1 in logspace. By Claim 3.4, we can compute block(h′, j) for any h′, j
in logspace as well. Therefore the three possible conditions for an edge in the computation graph GM ′,x can
each be checked in logspace.

To summarize, we can encode GM ′,x in O(B) bits, and given such an encoding, we can determine any
desired edge (u, v) of the graph in logspace.

9

Values of Nodes. Similarly to our warm-up Theorem 3.1, we define contents for each of the nodes of
GM ′,x. For all h ∈ [p] and i ∈ [B], we define content(h, 0, i) for the source nodes (h, 0, i) as follows:

• If h > 1, then we are reading a tape h that does not contain the input. In this case, content(h, 0, i) is
defined to be all-blank tape content: b(n) blanks, with the tape head at the leftmost cell of the block,
and head position equal to (i − 1) · b(n). (Note that, assuming we start numbering tape cells at 0,
(i− 1) · b(n) is the leftmost cell of the i-th block of tape.)

• If h = 1, then we may need to read portions of the input x of length n. If i > ⌈n/b(n)⌉, then the i-th
tape block of tape 1 does not contain any symbol of x, and content(1, 0, i) is defined to be all-blank
tape content as above. Otherwise, if i ≤ ⌈n/b(n)⌉, then content(1, 0, i) is defined to be the relevant
b(n)-length substring of x (possibly padded with blanks at the end) with the tape head at the leftmost
cell of the block, head position equal to (i− 1) · b(n), and the initial state of M ′ included if i = 0.

Note that the source nodes of our GM ′,x will eventually be the leaf nodes of the TREE EVALUATION

instance; in the above, we are also defining the values of those leaves.
For h ∈ [p] and i ∈ [B], we define content(h, i) of node (h, i) similarly as in Theorem 3.1: it is a string

encoding the pair (h, i), the state of M ′ and the head position of tape h at the end of time block i, and the
content of the tape block read by head h at the end of time block i. With a reasonable encoding, content(h, i)
can be represented in O(b(n)+ log t(n)) ≤ O(b(n)) bits, and our computation graph GM ′,x has been set up
(just as in Theorem 3.1) so that given the strings content(u) for all nodes u with edges to (h, j), the string
content(h, j) can be computed in O(b(n)) time and space.

Computation Graph Enumeration. In what follows, we enumerate over all possible O(t(n)/b(n))-bit
choices G′ of the encoding of the computation graph GM ′,x on O(B) ≤ O(t(n)/b(n)) nodes. For each
G′, we construct a TREE EVALUATION instance RG′ based on G′, which will attempt to simulate M ′ on x
assuming G′ = GM ′,x. We will set up RG′ so that the following conditions hold:

• If G′ ̸= GM ′,x, this means that at the end of some time block i, some tape head h of M ′ on x moves
inconsistently with the guessed label m(h,i) in G′. In this case, evaluating RG′ will result in a special
FAIL value at the root.

• If G′ = GM ′,x, then RG′ will evaluate to content(1, B) at the root, which will include either an accept
or reject state at the end of the computation of M ′ on x. Thus we will be able to conclude decisively
whether M accepts or rejects x after this call to TREE EVALUATION.

Finally, if we exhaust all computation graphs G′ and always receive FAIL from all TREE EVALUATION

calls, we then increase our guess of t(n) by 1 (starting from t(n) = n), and restart the entire process. (Recall
that we do not assume t(n) is constructible.) Eventually, we will choose an appropriate t(n), in which case
the above enumeration of graphs G′ will result in either acceptance or rejection.

The Functions At The Nodes. We now define the functions at the nodes of our TREE EVALUATION

instance RG′ . These functions will allow us to detect when the current graph G′ we are considering has
an error. We have to be a little careful here, as the Cook-Mertz algorithm is only guaranteed to produce
the value of the root of a given tree, and not the values of any intermediate nodes along the way. (Indeed,
the values of other nodes may become quite “scrambled” from evaluating a low-degree extension of the
functions involved.)

10

For each tape h ∈ [p] and time block i ∈ [B], we define a time block function Fh,i which attempts to
simulate M ′ over time block i, and to output content(h, i), the content of the relevant block of tape h at the
end of time block i.

First, we choose an encoding of content(h, i) strings so that there is also a special FAIL string of length
O(b(n)), which is distinct from all valid content strings.

• The input to Fh,i consists of up to 2p strings of length O(b(n)). Some strings may be O(b(n))-bit
FAIL strings. In the case where G′ = GM ′,x, p of the input strings have the form content(h′, i − 1)
(or content(h′, 0, 1) if i = 1) for all h′ ∈ [p]. These content strings contain the index of the node in
G′ they correspond to, the state q of M ′ at the start of time block i, the content of the relevant tape
blocks at the end of time block i − 1, and the head positions of all p tapes at the start of time block
i, where each head position is encoded in O(log b(n)) bits. When some of the tape blocks accessed
in time block i were not accessed in the previous time block, there are also (up to) p other strings
content(u1), . . . , content(up) which contain tape block content c1, . . . , cp for each of the p tapes at
the start of time block i.

• The output of Fh,i is defined as follows. First of all, if some input string is a FAIL string, then Fh,i

immediately outputs FAIL as well. In this way, a single FAIL detection at any node will propagate
to the root value of RG′ .

Assuming no FAIL strings have been given as input, Fh,i attempts to simulate M ′ for time block i,
using the given content strings. While simulating, Fh,i checks that for all h′ ∈ [p], the tape head h′

moves consistently with the integer m(h′,i) ∈ {0, 1,−1}. In particular, if m(h′,i) = −1 then it checks
tape head h′ moves to its left-adjacent tape block at the end of time block i, if m(h′,i) = 1 then it
checks h′ moves to its right-adjacent tape block, and if m(h′,i) = 0 then it checks h′ remains in the
same tape block. If all heads h′ move consistently with the integers m(h′,i), then the output of Fh,i is
set to be content(h, i). Otherwise, the output of Fh,i is FAIL.

Observe that Fh,i can be computed in O(b(n)) time and space, by simply simulating M ′ for b(n) steps,
starting from the contents c1, . . . , cp for each of the tapes, and the state and head information given. Further-
more, by setting b′(n) = Θ(b(n)) appropriately, we may think of each Fh,i as a function from an ordered
collection of 2p separate b′(n)-bit strings, to a single b′(n)-bit string. These will be the functions at the
nodes of our TREE EVALUATION instance.

Construct a Tree Evaluation Instance. Observe that the depth of every G′ is at most B + 1: for every
edge (u, v) in G′, the time block of u is always smaller than the time block of v, and there are B + 1 time
blocks. For each possible computation graph G′, we will construct an equivalent and implicitly-defined
TREE EVALUATION instance RG′ of height at most B + 1 ≤ O(t(n)/b(n)), such that the edge relation
of the tree can be determined in small space. The idea is analogous to that described in the warm-up
(Theorem 3.1); for completeness, we will be a little more formal than Theorem 3.1.

Recall that each candidate G′ is defined so that each non-source node (h, i) has indegree at most 2p. Let
V be the set of all O((2p)B+1) sequences of the form h1 · · ·hℓ for all ℓ = 0, . . . , B, where each hi ∈ [2p],
and let ε denote the empty string (also in V). The nodes of RG′ will be indexed by sequences in V . For all
ℓ = 0, . . . , B − 1, each node h1 · · ·hℓ ∈ V has at most 2p children h1 · · ·hℓhℓ+1 for some hℓ+1 ∈ [2p].

Each node of RG′ is directly associated with a path from a node v to the node (1, B) in the guessed
graph G′, as follows.

11

• The node ε ∈ V corresponds to the node (1, B) in G′ (tape 1, in the last time block), and we associate
the function F1,B with this node.

• Inductively assume the node h1 · · ·hℓ ∈ V corresponds to some node (h, j) in G′. We associate the
function Fh,j with this node.

For every h′ ∈ {1, . . . , p}, the node h1 · · ·hℓh′ ∈ V corresponds to a node (h′, i) (or (h′, 0, i)) in
G′ with an edge to (h, j), for some i. This corresponds to the case where the tape block of tape h′

accessed in time block i is accessed later in time block j (or when h′ is reading tape block i for the
first time in time block j).

For every h′ ∈ {p+ 1, . . . , 2p}, let h′′ = h′ − p, so h′′ ∈ [p]. The node h1 · · ·hℓh′ ∈ V corresponds
to the node (h′′, j − 1) with an edge to (h, j) when j > 1, and the node (h′′, 0, 1) with an edge to
(h, j) when j = 1. This corresponds to the case where the state and head position of tape h′′ at the
end of time block j − 1 is passed to the start of time block j, and to the case where the initial state
and head position is passed to the start of time block 1.

If there is an edge from (h′, 0, i) to (h, j) for some i, then the tape head h′ has never previously visited
the tape block i that is used to compute time block j. In that case, we set h1 · · ·hℓh′ to be a leaf node
in the tree. The value of that leaf node is set to be content(h′, 0, i).

Finishing up. We call TREE EVALUATION on RG′ . If the current guessed G′ is not equal to GM ′,x,
then some guessed integer m(h,i) ∈ {−1, 1, 0} is an incorrect value (recall that G′ is specified entirely by
the integers {m(h,i)}). This incorrect head movement will be detected by the function Fh,i, which will then
output FAIL. This FAIL value will propagate to the root value of RG′ by construction. When RG′ evaluates
to FAIL, we move to the next possible G′, encoded in O(B) bits.

Assuming the current graph G′ is correct, i.e., G′ = GM ′,x, then the value of the root of RG′ is
content(1, B), the output of F1,B on the final time block B. This value contains the correct accept/reject
state of M ′ on x. This follows from the construction of the functions Fh,i, and can be proved formally by
an induction on the nodes of G′ in topological order. Therefore if our TREE EVALUATION call returns some
content with an accept/reject state, we can immediately return the decision.

Space Complexity. Observe that, by Claim 3.4 and Claim 3.5, any bits of the TREE EVALUATION instance
RG′ defined above can be computed in O(B) space, given the computation graph G′ encoded in O(B) space.
In particular, given the index of a node of RG′ of the tree as defined above (as a path from a node v to (1, B)
in G′), we can determine the corresponding node of G′ and its children in O(B) space.

Therefore, we can call the Cook-Mertz algorithm (Theorem 2.2) on this implicitly-defined instance of
TREE EVALUATION, using O(B) space plus O(d′ · b′ + h′ · log(d · b′)) space, where

• b′ = Θ(b(n)) is the bit-length of the output of our functions Fh,i,

• d′ = 2p = Θ(1), the number of children of each inner node, and

• h′ = B = Θ(t(n)/b(n)), the maximum height of the tree.

At each node, each call to one of the functions Fh,i requires only O(b(n)) space. Therefore the overall space
bound is

O

(
b(n) +

t(n)

b(n)
· log(b(n))

)
.

12

Setting b(n) =
√

t(n) log t(n) obtains the bound O(
√
t(n) log t(n)). This completes the proof of Theo-

rem 1.1.
Given that we have reduced to TREE EVALUATION, it may be instructive to think about what is hap-

pening in the final algorithm, conceptually. At a high level, for our instances of TREE EVALUATION, the
Cook-Mertz procedure on RG′ uses O((t(n)/b(n)) · log b(n)) space to specify the current node v of G′

being examined (given by a path from that node v to the node (1, B)) as well as an element from a field of
size poly(b(n)) for each node along that path. The algorithm also reuses O(b(n)) space at each node, in
order to compute low-degree extensions of the function Fh,i by interpolation over carefully chosen elements
of the field. For our setting of b(n), we are using equal amounts of space to store a path in the graph G′

labeled with field elements, and to compute a low-degree extension of the “block evaluation” function Fh,i

at each node (with aggressive reuse of the latter space, at every level of the tree).

3.3 On Possibly Removing the Square-Root-Log Factor

We observe that, if TREE EVALUATION turns out to be in LOGSPACE = SPACE[log n], then we would
obtain a simulation that runs in O(b′ + t(n)/b′) space when the number of children is upper bounded by a
constant. This is due to our succinct encoding of the computation graph, which only needs O(b′) space to
be stored. Setting b′ =

√
t(n), this would remove the pesky O(

√
log t) factor from our space bound above:

Corollary 3.6. If TREE EVALUATION is in LOGSPACE, then TIME[t(n)] ⊆ SPACE[
√
t(n)].

There may be a path to removing the
√
log t factor that does not require solving TREE EVALUATION

in logspace. The simulations of time t building on Hopcroft-Paul-Valiant [HPV75, PV76, PR81, DT85,
HLMW86], which save a log t factor in space and alternating time, utilize strategies which seem orthogonal
to our approach via TREE EVALUATION. Roughly speaking, there are two kinds of strategies: a pebbling
strategy on computation graphs which minimizes the total number of pebbles needed [HPV75, PR81], and
a recursive composition strategy which cuts the graph into halves and performs one of two recursive ap-
proaches based on the cardinality of the cut [PV76, DT85, HLMW86].7 Neither of these seem comparable
to the Cook-Mertz algorithm. However, so far we have been unable to merge the TREE EVALUATION

approach and the other strategies. The following hypothesis seems plausible:

Hypothesis 3.7. For “reasonable” b(n) and t(n), time-t(n) multitape computations can be space-efficiently
reduced to TREE EVALUATION instances with constant degree d, height O(t(n)/b(n))/ log(t(n)/b(n)), and
functions from O(b)-bits to b-bits at each inner node.

Results such as [PV76, DT85] which show that TIME[t] ⊆ ATIME[t/ log t] and that circuits of size
t can be simulated in depth O(t/ log t), prove that the hypothesis is actually true for b = Θ(1). If the
hypothesis is also true for b =

√
t, then we could conclude TIME[t] ⊆ SPACE[

√
t], by applying Cook and

Mertz (Theorem 2.2).

3.4 Extension to Higher Dimensional Tapes

The simulation of Theorem 1.1 extends to Turing machines with higher-dimensional tapes. The proof is
very similar in spirit to Theorem 1.1, but a few crucial changes are needed to carry out the generalization.

Reminder of Theorem 1.5. Every decision problem solvable by a t(n)-time d-dimensional multitape
Turing machine can be decided in O((t log t)1−1/(d+1)) space.

7There is even a third strategy, based on an “overlap” argument [AL81].

13

Proof. (Sketch) As there is no d-dimensional version of block-respecting Turing machines, we have to take
a different approach. Similarly to Theorem 3.1 and Paul-Reischuk [PR80], we upper-bound the number of
tape blocks that may be relevant to any given time block, and use that information to construct a series of
TREE EVALUATION instances.

Suppose our time-t(n) Turing machine M has p tapes which are d-dimensional, and we wish to simulate
M on an input x of length n. We assume x is written on the first tape in a single direction starting from the
cell indexed by (0, . . . , 0) ∈ Nd. (For concreteness, for i = 1, . . . , n we may assume the i-th bit of x is
written in the cell (0, . . . , 0, i− 1) ∈ Nd.)

For a parameter c, we partition the time t(n) into time blocks of length c, so there are B = ⌈t(n)/c⌉
total time blocks. Besides time blocks 1, . . . , B, we also define a time block 0 (similarly to Theorem 3.1
and Theorem 1.1). Each d-dimensional tape is partitioned into tape blocks of b = cd contiguous cells: in
particular, each tape block is a d-dimensional cube with side-length c in each direction. Observe that each
tape block has up to 3d − 1 adjacent tape blocks in d dimensions. We define a tape block T to be active in
time block i > 1 if some cells of T are accessed during time block i, and all tape blocks are defined to be
active in time block 0. Since each time block is only for c steps and each tape block has side-length c in
each direction, observe that for each i ∈ [B] and each tape h ∈ [p], there are at most 2d blocks of tape h
that may be active during time block i. Therefore across all p tapes, the total number of active blocks is at
most 2d · p. Note that each active tape block of tape h during time block i can be indexed by some vector in
{−1, 0, 1}d indicating its position relative to the tape block in which tape h started the time block.

Similar to the proofs of Theorem 3.1 and Theorem 1.1, we define a computation graph GM,x. The set of
nodes will be the set S = {(h, i) | h ∈ [p], i ∈ [B]} unioned with a subset T ⊆ {(h, 0, v) | h ∈ [p], v ∈ Nd},
where |T | ≤ p ·B.

Each node will have a content value as before. The content(h, 0, v) nodes will store a portion of the
input, or the all-blank content, depending on the vector v ∈ Nd. The vector v gives the index of a block of
tape h. (In the one-dimensional case, the tape blocks were simply indexed by N.) The content(h, i) nodes
will store information at the end of time block i: the state of M ′, the head position of tape h, and a list of the
contents of those blocks of tape h that are active during time block i. Note that content(h, i) can be encoded
in O(2d · b(n)) bits.

As before, we label each node (h, i) ∈ [p] × [B] to indicate the head movements between time blocks,
but our labels are more complicated than before. We use a d-dimensional vector m(h,i) ∈ {−1, 0, 1}d to
indicate the difference between the index of the tape block u(h,i) ∈ Nd that tape head h is in at the start of
time block i, and the index of the tape block v(h,i) ∈ Nd that head h is in at the end of time block i. We
have v(h,i) − u(h,i) ∈ {−1, 0, 1}d, since every time block takes c steps and the side-length of a tape block
is c cells. We also label each node with a list L(h,i) of up to 2d other vectors in {−1, 0, 1}d, describing the
indices of all other blocks of tape h that are active in time block i. Observe that the vectors m(h,i) and the
lists L(h,i) over all nodes can be encoded in O(d · 2d ·B) ≤ O(B) bits. Moreover, given the vectors m(h,i)

and the lists L(h,i), we can reconstruct any v(h,i) and u(h,i) in only logspace by maintaining counters.
As before, we put an edge from (h, i) to (h′, j) if either

• j = i+ 1, or

• i < j and there is some tape block active on tape h in both time blocks i and j that is not active for
all time blocks i+ 1 through j − 1.

We put an edge from (h, 0, v) to (h′, j) if during time block j, the tape head h accesses the tape block
indexed by v for the first time in the computation.

14

We observe that the indegree of each (h, i) is at most (2d+1) · p: there are at most 2d active tape blocks
for each of the p tapes, each of which may require information from a different previous node, and there are
also p edges from the previous time block providing the state and head positions at the start of time block i.

Generalizing Claim 3.4 and Claim 3.5, we claim that the edges of GM,x can be determined in logspace,
given the vectors m(h,i) and the lists L(h,i) encoded in O(B) bits. We enumerate over all possible computa-
tion graphs G′, using this encoding. Note that the encoding also allows us to determine which source nodes
(h, 0, v) appear in G′, by tracking the tape head movements as claimed by the vectors m(h,i) and the lists
L(h,i), and noting when a tape head h enters a new block that has not been accessed before.

For each node (h, i), the evaluation function Fh,i is defined similarly as in the proofs of Theorem 3.1
and Theorem 1.1. Given all the necessary information at the start of a time block: the state q, the contents
of the (at most) 2d · p active blocks, and each of the p head positions encoded in O(d log t) bits, the function
Fh,i computes content(h, i): it simulates M for c steps on the active blocks, then outputs updated contents
of all O(2d) active blocks on tape h, in b′ ≤ O(2d · cd +2d · d log t) bits for some b′ = Θ(cd), including the
head position of tape h at the end of the time block and the state q′ reached.

As before, Fh,i checks that the claimed active tape blocks in L(h,i) and the claimed vector m(h,i) are
consistent with the simulation of time block i; if they are not, then Fh,i outputs FAIL and we design the
Fh,i as before so that a single FAIL value is propagated to the root of RG′ . We can think of each Fh,i as a
mapping from (2d+1) ·p · b′ bits to b′ bits, where we allow a special encoding to “pad” the input and output
when the number of active blocks on some tape is less than 2d.

Finally, for each guessed graph G′ we define a TREE EVALUATION RG′ instance analogously as in
the proof of Theorem 1.1. The root of the tree corresponds to the node (1, B), where we wish to check if
content(1, B) contains the accept or reject state. The children of a given node in the tree RG′ are deter-
mined directly by the predecessors of the corresponding node in GM,x. The leaves correspond to the nodes
(h, 0, v) in GM,x such that content(h, 0, v) contains either an all-blank d-dimensional cube of cd cells, or a
d-dimensional cube of cd cells which includes up to c symbols of the input x and is otherwise all-blank.

As before, if a call to TREE EVALUATION for some RG′ ever returns an answer other than FAIL, we
return the appropriate accept/reject decision. If all calls FAIL, we increment the guess for the running time
t(n) and try again.

Our TREE EVALUATION instance RG′ has height at most B = ⌈t(n)/c⌉, where each inner node has at
most (2d+1) ·p children, working on blocks of bitlength 2d ·b′ ≤ O(cd+d log t). Applying the Cook-Mertz
algorithm for TREE EVALUATION, recalling that d and p are both constants, and including the O(B) bits
we use to encode a candidate graph G′, we obtain a simulation running in space

O

(
cd + d log t+

t(n)

c
· log(cd)

)
≤ O

(
cd +

t(n)

c
· log t(n)

)
,

since c ≤ t(n) and d is constant.
Setting c = (t(n) log t(n))1/(d+1), the resulting space bound is O((t(n) log t(n))1−1/(d+1)).

We remark that putting TREE EVALUATION in LOGSPACE would also directly improve the above sim-
ulation as well, to use O(t(n)1−1/(d+1)) space.

4 Some Consequences

First, we describe some simple lower bounds that follow by diagonalization. We will use the following form
of the space hierarchy theorem:

15

Theorem 4.1 ([SHL65]). For space constructible s′(n), s(n) ≥ n such that s′(n) < o(s(n)), we have
SPACE[s(n)] ̸⊂ SPACE[s′(n)].

Reminder of Corollary 1.2. For space constructible s(n) ≥ n and all ε > 0, SPACE[s(n)] ̸⊂
TIME[s(n)2−ε].

Proof. Assume to the contrary that SPACE[s(n)] ⊆ TIME[s(n)2−ε] for some ε > 0 and some space con-
structible s(n). By Theorem 1.1, we have

SPACE[s(n)] ⊆ TIME[s(n)2−ε] ⊆ SPACE[(s(n)2−ε log s(n))1/2] ⊆ SPACE[s′(n)]

for a function s′(n) which is o(s(n)). This contradicts Theorem 4.1.

Reminder of Corollary 1.3. The language L = {⟨M,x, 1k⟩ | |M | ≤ k and M(x) halts in space k}
requires n2−ε time to solve on a multitape Turing machine, for every ε > 0.

Proof. Suppose L can be solved in n2−ε time for some ε > 0. We show every language in SPACE[n] could
then be solved in time O(n2−ε), contradicting Corollary 1.2. Let L′ ∈ SPACE[n] be decided by a Turing
machine M using space cn for a constant c ≥ 1. Given an input x to M , we call our n2−ε time algorithm
for L on the input ⟨M,x, 1c|x|⟩ of length n = O(|x|). This takes O(|x|2−ε) time, a contradiction.

Observe the same proof also shows a time lower bound of the form n2/ logc n, for a constant c > 0.

4.1 Subexponential Size Branching Programs for Circuits

Here, we observe that Theorem 1.1 implies that subquadratic size circuits can be simulated with subexpo-
nential size branching programs:

Reminder of Corollary 1.4. There is a universal k ≥ 1 such that for all s ≥ n, every bounded fan-in
circuit of size s and n inputs has a branching program of size at most 2k

√
s logk s.

Recall the CIRCUIT EVALUATION problem: given the description of a Boolean circuit C of fan-in two
with one output, and given an input x, does C on x evaluate to 1? We assume C is encoded in topological
order: the gates are numbered 1, . . . , s, and for all i ∈ [s], the i-th gate in the encoding only takes inputs
from gates appearing earlier in the encoding. For simplicity, we further assume each gate i provides a correct
list of all future gates j1, . . . , jk > i that will consume the output of gate i. Note that when s(n) is at least the
number of input bits, we can still afford an encoding of size-s(n) circuits in O(s(n) log s(n)) bits, carrying
this extra information. An old result commonly credited to Pippenger is that CIRCUIT EVALUATION on
topologically-ordered circuits can be efficiently solved on multitape Turing machines:

Theorem 4.2 (Pippenger [Pip77]). CIRCUIT EVALUATION ∈ TIME[n · poly(log n)].

The reference [Pip77] is difficult to find, however the PhD thesis of Swamy ([Swa78, Chapter 2, The-
orem 2.1]) gives an exposition of an O(n · (log n)3) time bound.8 Swamy describes his construction as
simulating oblivious RAMs / straight-line programs; it readily applies to circuits. The high-level idea is
to solve a more general problem: given the description of a circuit C and input x, we wish to insert the
output values of each gate of C(x) directly into the description of C. To solve this problem on C of size

8Available at http://static.cs.brown.edu/research/pubs/theses/phd/1978/swamy.pdf.

16

http://static.cs.brown.edu/research/pubs/theses/phd/1978/swamy.pdf

s, we first recursively evaluate the circuit on the first ⌊s/2⌋ gates (in topological order) which sets values
to all those gates. We pass over those values, and collect the outputs of all gates among the first ⌊s/2⌋ that
will be used as inputs to the remaining ⌈s/2⌉ gates. We sort these outputs by gate index, then recursively
evaluate the remaining ⌈s/2⌉ gates on x plus the list of outputs. This leads to a runtime recurrence of
T (n) ≤ 2 · T (n/2) +O(n · (log n)2) (using the fact that n = Θ(s log s)).

Combining Theorem 4.2 and Theorem 1.1, we directly conclude that CIRCUIT EVALUATION can be
solved in

√
n · poly(log n) space. Now, given any circuit C of size s, we hardcode its description into

the input of a multitape Turing machine using s′(n) =
√
s · poly(log s) space for CIRCUIT EVALUATION.

Applying the standard translation of s′(n)-space algorithms into branching programs of 2O(s′(n)) size (see
for instance the survey [Raz91]), Corollary 1.4 follows.

5 Discussion

We have shown that multitape Turing machines and circuits have surprisingly space-efficient evaluation
algorithms, via a reduction to the TREE EVALUATION problem. Two reflective remarks come to mind.

First, we find it very interesting that TREE EVALUATION, which was originally proposed and studied in
the hopes of getting a handle on LOGSPACE ̸= P, may turn out to be more useful for making progress on
P ̸= PSPACE. In any case, it is clear that TREE EVALUATION is a central problem in complexity theory.

Second, we find it fortunate that the main reduction of this paper (from time-t multitape Turing machine
computations to TREE EVALUATION) was found after the Cook-Mertz procedure was discovered. Had our
reduction been found first, the community (including the author) would have likely declared the following
theorem (a cheeky alternative way of presenting the main reduction of Theorem 1.1) as a “barrier” to further
progress on TREE EVALUATION, and possibly discouraged work on the subject:

“Theorem.” Unless the 50-year-old [HPV75] simulation TIME[t] ⊆ SPACE[t/ log t] can be
improved, TREE EVALUATION instances of constant arity, height h, and b-bit values cannot be
solved in o(h · b/ log(h · b)) space.9

Theorem 1.1 and its relatives open up an entirely new set of questions that did not seem possible to ask
before. Here are a few tantalizing ones.

Can the simulation of Theorem 1.1 be improved to show TIME[t] ⊆ SPACE[
√
t]? We discussed

some prospects for a yes-answer in Section 3.3 (e.g., showing TREE EVALUATION is in LOGSPACE). An
interesting secondary question is whether the longstanding O(

√
t)-space simulation of one tape time-t Tur-

ing machines [HU68, Pat72] can be improved to O(t1/2−ε) space, for some ε > 0.

Is there an ε > 0 such that TIME[t] ⊆ ATIME[t1−ε]? Is there a better speedup of time t, using
alternating Turing machines? Recall the best-known simulation is TIME[t] ⊆ ATIME[t/ log t] [DT85]. A
yes-answer to this question would imply (for example) a super-linear time lower bound on solving quantified
Boolean formulas (QBF), which is still open [Wil08, LW13]. Note that if Theorem 1.1 could be improved
to TIME[t] ⊆ SPACE[t1/2−ε] for some ε > 0, then we would have TIME[t] ⊆ ATIME[t1−2ε].

Can time-t random-access Turing machines be simulated in space O(t1−ε), for some ε > 0? As
mentioned in Remark 1.6, the answer is yes for “oblivious” models in which data access patterns can be
calculated in advance. In both Theorem 1.1 and Theorem 1.5, we exploit the locality of low-dimensional
tape storage: without that property, the indegrees of nodes in the computation graph would be rather high,

9Here, we think of o(h · b/ log(h · b)) as shorthand for O(h · b/(f(h · b) · log(h · b))) for some unbounded function f .

17

and (as far as we can tell) the resulting simulation would not improve the known O(t/ log t) space bounds
for simulating t time in random-access models [PR81, HLMW86]. Similarly to the previous question, if
TIME[t] ⊆ SPACE[t1/2−ε] for some ε > 0, then for those random-access models where time t can be
simulated by time-O(t2) multitape Turing machines, the answer to the question would be yes. On the other
hand, if the answer to the question is no, then we would separate linear time for multitape Turing machines
and linear time for random-access models, another longstanding open question (see for example [GS02]).

Is a time-space tradeoff possible? For example, is TIME[t] ⊆ TIMESPACE[2Õ(tε), Õ(t1−ε)], for
all ε > 0? The Cook-Mertz procedure needs to compute a low-degree extension of the function at each
node, which is time-consuming: for time blocks of b steps, it takes 2Θ(b) time to compute the low-degree
extension at a given point. If low-degree extensions of time-t computations could be computed more time-
efficiently, then such a time-space tradeoff may be possible. Note that if the multilinear extension of a
given CNF on n variables and m clauses could be evaluated over a large field in 1.999n · 2o(m) time, then
the Strong Exponential Time Hypothesis would be false: the multilinear extension is the identically-zero
polynomial if and only if the CNF is unsatisfiable, so one could use a version of Schwartz-Zippel to test
for unsatisfiability. However, this observation does not apparently rule out the possibility of evaluating
low-degree but non-multilinear extensions efficiently.

Can the simulation be applied recursively, to show that TIME[t] ⊆ SPACE[tε] for all ε > 0? Note
that a yes-answer would imply P ̸= PSPACE. At first glance, a recursive extension of Theorem 1.1 seems
natural: we decompose a time-t computation into O(t/b) blocks, each of which are time-b computations.
(This property was successfully exploited recursively in [LW13], for example, to show some weak lower
bounds on QBF.) However, we cannot directly apply recursion to time blocks, because in the Cook-Mertz
procedure, the task at each function evaluation is not just to simulate for b steps, but to compute a low-
degree extension of the function (as noted in the previous question). If low-degree extensions of time-t
computations can be computed in small space, then there is a possibility of recursion. However, given the
discussion on the previous question, there is reason to think this will be difficult.

Is there a barrier to further progress? Perhaps lower bounds for the Node-Named Jumping Automata
on Graphs (NNJAG) model (a popular model for restricted space lower bounds) [Poo93, Poo00, EPA99]
could demonstrate a barrier. Many complex algorithms such as Reingold’s [Rei08] can be simulated in the
NNJAG model [LZPC05]; does the Cook-Mertz algorithm have this property as well? We believe the answer
is probably no: NNJAG is fundamentally a node-pebbling model, and the Cook-Mertz procedure definitely
breaks space lower bounds for pebbling DAGs and trees [LT82, CMW+12]. Pebbling lower bounds were a
major bottleneck to improving [HPV75].

While Theorem 1.1 and Theorem 3.1 are non-relativizing, the simulations do permit a restricted form
of relativization, as do all prior simulations of time in smaller space. Define TIME-LENGTHA[t(n), ℓ(n)]
to be the class of problems solvable in O(t(n)) time with queries to the oracle A, where all oracle queries
are restricted to have length at most ℓ(n). Similarly define SPACE-LENGTHA[s(n), ℓ(n)]. We observe the
following extension of Theorem 3.1:

Theorem 5.1. For every oracle A and t(n) ≥ n, TIME-LENGTHA[t(n),
√
t(n) log t(n)] is contained in

SPACE-LENGTHA[
√
t(n) log t(n),

√
t(n) log t(n)].

The theorem follows because each oracle query can be arranged to be written in a single tape block of
length O(

√
t(n) log t(n)), and the Cook-Mertz procedure treats the evaluation functions as black boxes.

(Tretkoff [Tre86] made a similar observation for the simulation of TIME[t] in Σ2TIME[o(t)], of Paul-
Pippenger-Szemerédi-Trotter [PPST83]. Such a length-restricted oracle model was also studied in [CW06].)

18

Is there a barrier to improving such (restricted) relativizing results to obtain P ̸= PSPACE? This seems re-
lated to the fact that Cai and Watanabe [CW06] were unable to collapse PSPACE to P with “random access
to advice” (length-restricted access to oracles).

Acknowledgments. I am grateful to Rahul Ilango, Egor Lifar, Priya Malhotra, Danil Sibgatullin, and Vir-
ginia Vassilevska Williams for valuable discussions on TREE EVALUATION and the Cook-Mertz procedure.
I am also grateful to Shyan Akmal, Paul Beame, Lijie Chen, Ce Jin, Dylan McKay, and the anonymous
STOC reviewers for helpful comments on an earlier draft of this paper.

References

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach. Cam-
bridge University Press, 2009. URL: http://www.cambridge.org/catalogue/catalogue.
asp?isbn=9780521424264.

[AL81] Leonard M. Adleman and Michael C. Loui. Space-bounded simulation of multitape tur-
ing machines. Math. Syst. Theory, 14:215–222, 1981. URL: https://doi.org/10.1007/
BF01752397.

[CM20] James Cook and Ian Mertz. Catalytic approaches to the tree evaluation problem. In Proceed-
ings of STOC, pages 752–760. ACM, 2020. URL: https://doi.org/10.1145/3357713.
3384316.

[CM21] James Cook and Ian Mertz. Encodings and the tree evaluation problem. Electron. Colloquium
Comput. Complex., TR21-054, 2021. URL: https://eccc.weizmann.ac.il/report/2021/
054.

[CM22] James Cook and Ian Mertz. Trading time and space in catalytic branching programs. In
37th Computational Complexity Conference, CCC, volume 234 of LIPIcs, pages 8:1–8:21.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.

4230/LIPIcs.CCC.2022.8.

[CM24] James Cook and Ian Mertz. Tree evaluation is in space O(log n · log log n). In Proceedings of
the 56th Annual ACM Symposium on Theory of Computing (STOC), pages 1268–1278. ACM,
2024. URL: https://doi.org/10.1145/3618260.3649664.

[CMW+12] Stephen A. Cook, Pierre McKenzie, Dustin Wehr, Mark Braverman, and Rahul Santhanam.
Pebbles and branching programs for tree evaluation. ACM Trans. Comput. Theory, 3(2):4:1–
4:43, 2012. URL: https://doi.org/10.1145/2077336.2077337.

[CW06] Jin-yi Cai and Osamu Watanabe. Random access to advice strings and collapsing results.
Algorithmica, 46(1):43–57, 2006. URL: https://doi.org/10.1007/s00453-006-0078-8.

[DT85] Patrick W. Dymond and Martin Tompa. Speedups of deterministic machines by synchronous
parallel machines. J. Comput. Syst. Sci., 30(2):149–161, 1985. URL: https://doi.org/10.
1016/0022-0000(85)90011-X.

[EPA99] Jeff Edmonds, Chung Keung Poon, and Dimitris Achlioptas. Tight lower bounds for st-
connectivity on the NNJAG model. SIAM J. Comput., 28(6):2257–2284, 1999.

19

http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
https://doi.org/10.1007/BF01752397
https://doi.org/10.1007/BF01752397
https://doi.org/10.1145/3357713.3384316
https://doi.org/10.1145/3357713.3384316
https://eccc.weizmann.ac.il/report/2021/054
https://eccc.weizmann.ac.il/report/2021/054
https://doi.org/10.4230/LIPIcs.CCC.2022.8
https://doi.org/10.4230/LIPIcs.CCC.2022.8
https://doi.org/10.1145/3618260.3649664
https://doi.org/10.1145/2077336.2077337
https://doi.org/10.1007/s00453-006-0078-8
https://doi.org/10.1016/0022-0000(85)90011-X
https://doi.org/10.1016/0022-0000(85)90011-X

[FLvMV05] Lance Fortnow, Richard J. Lipton, Dieter van Melkebeek, and Anastasios Viglas. Time-space
lower bounds for satisfiability. J. ACM, 52(6):835–865, 2005. URL: https://doi.org/10.
1145/1101821.1101822.

[Gol08] Oded Goldreich. Computational complexity - a conceptual perspective. Cambridge University
Press, 2008. URL: https://doi.org/10.1017/CBO9780511804106.

[Gol24] Oded Goldreich. On the Cook-Mertz Tree Evaluation procedure. Electron. Colloquium Com-
put. Complex., TR24-109, 2024. URL: https://eccc.weizmann.ac.il/report/2024/109.

[GS02] Etienne Grandjean and Thomas Schwentick. Machine-independent characterizations and
complete problems for deterministic linear time. SIAM J. Comput., 32(1):196–230, 2002.
doi:10.1137/S0097539799360240.

[HLMW86] Joseph Y. Halpern, Michael C. Loui, Albert R. Meyer, and Daniel Weise. On time versus space
III. Math. Syst. Theory, 19(1):13–28, 1986. URL: https://doi.org/10.1007/BF01704903.

[HPV75] John E. Hopcroft, Wolfgang J. Paul, and Leslie G. Valiant. On time versus space. J. ACM,
24(2):332–337, 1977. Conference version in FOCS’75. URL: https://doi.org/10.1145/
322003.322015.

[HS66] F. C. Hennie and Richard Edwin Stearns. Two-tape simulation of multitape turing machines.
J. ACM, 13(4):533–546, 1966. URL: https://doi.org/10.1145/321356.321362.

[HU68] John E. Hopcroft and Jeffrey D. Ullman. Relations between time and tape complexities. J.
ACM, 15(3):414–427, 1968. URL: https://doi.org/10.1145/321466.321474.

[IM83] Oscar H. Ibarra and Shlomo Moran. Some time-space tradeoff results concerning single-tape
and offline TM’s. SIAM J. Comput., 12(2):388–394, 1983. URL: https://doi.org/10.
1137/0212025.

[Juk12] Stasys Jukna. Boolean Function Complexity - Advances and Frontiers, volume 27 of
Algorithms and combinatorics. Springer, 2012. URL: https://doi.org/10.1007/

978-3-642-24508-4.

[KLRS12] Subrahmanyam Kalyanasundaram, Richard J. Lipton, Kenneth W. Regan, and Farbod
Shokrieh. Improved simulation of nondeterministic turing machines. Theor. Comput. Sci.,
417:66–73, 2012. URL: https://doi.org/10.1016/j.tcs.2011.05.018.

[KLV03] George Karakostas, Richard J. Lipton, and Anastasios Viglas. On the complexity of intersect-
ing finite state automata and NL versus NP. Theor. Comput. Sci., 302(1-3):257–274, 2003.
URL: https://doi.org/10.1016/S0304-3975(02)00830-7.

[Kur64] S.-Y. Kuroda. Classes of languages and linear-bounded automata. Information and control,
7(2):207–223, 1964.

[LL90] Maciej Liskiewicz and Krzysztof Lorys. Fast simulations of time-bounded one-tape turing
machines by space-bounded ones. SIAM J. Comput., 19(3):511–521, 1990. URL: https:
//doi.org/10.1137/0219034.

20

https://doi.org/10.1145/1101821.1101822
https://doi.org/10.1145/1101821.1101822
https://doi.org/10.1017/CBO9780511804106
https://eccc.weizmann.ac.il/report/2024/109
https://doi.org/10.1137/S0097539799360240
https://doi.org/10.1007/BF01704903
https://doi.org/10.1145/322003.322015
https://doi.org/10.1145/322003.322015
https://doi.org/10.1145/321356.321362
https://doi.org/10.1145/321466.321474
https://doi.org/10.1137/0212025
https://doi.org/10.1137/0212025
https://doi.org/10.1007/978-3-642-24508-4
https://doi.org/10.1007/978-3-642-24508-4
https://doi.org/10.1016/j.tcs.2011.05.018
https://doi.org/10.1016/S0304-3975(02)00830-7
https://doi.org/10.1137/0219034
https://doi.org/10.1137/0219034

[Lou81] Michael C. Loui. A space bound for one-tape multidimensional turing machines. Theor. Com-
put. Sci., 15:311–320, 1981. URL: https://doi.org/10.1016/0304-3975(81)90084-0.

[LT82] Thomas Lengauer and Robert Endre Tarjan. Asymptotically tight bounds on time-space trade-
offs in a pebble game. J. ACM, 29(4):1087–1130, 1982. doi:10.1145/322344.322354.

[LW13] Richard J. Lipton and Ryan Williams. Amplifying circuit lower bounds against polynomial
time, with applications. Comput. Complex., 22(2):311–343, 2013. URL: https://doi.org/
10.1007/s00037-013-0069-5.

[LZPC05] Pinyan Lu, Jialin Zhang, Chung Keung Poon, and Jin-yi Cai. Simulating undirected st-
connectivity algorithms on uniform JAGs and NNJAGs. In Proceedings of 16th International
Symposium on Algorithms and Computation (ISAAC), volume 3827 of Lecture Notes in Com-
puter Science, pages 767–776. Springer, 2005. URL: https://doi.org/10.1007/11602613_
77.

[MW17] Cody D. Murray and R. Ryan Williams. Easiness amplification and uniform circuit lower
bounds. In 32nd Computational Complexity Conference (CCC), volume 79 of LIPIcs, pages
8:1–8:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. URL: https://doi.
org/10.4230/LIPIcs.CCC.2017.8.

[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. J. Comput. Syst. Sci., 49(2):149–
167, 1994. URL: https://doi.org/10.1016/S0022-0000(05)80043-1.

[Pat72] Mike Paterson. Tape bounds for time-bounded turing machines. J. Comput. Syst. Sci.,
6(2):116–124, 1972. URL: https://doi.org/10.1016/S0022-0000(72)80017-5.

[PF79] Nicholas Pippenger and Michael J. Fischer. Relations among complexity measures. J. ACM,
26(2):361–381, 1979. URL: https://doi.org/10.1145/322123.322138.

[Pip77] Nicholas Pippenger. Fast simulation of combinational logic networks by machines without
random-access storage. In Proceedings of the Fifteenth Annual Allerton Conference on Com-
munication, Control and Computing, pages 25–33, 1977.

[Poo93] Chung Keung Poon. Space bounds for graph connectivity problems on node-named jags and
node-ordered jags. In 34th Annual Symposium on Foundations of Computer Science (FOCS),
pages 218–227. IEEE Computer Society, 1993. URL: https://doi.org/10.1109/SFCS.
1993.366865.

[Poo00] Chung Keung Poon. A space lower bound for st-connectivity on node-named jags. Theor.
Comput. Sci., 237(1-2):327–345, 2000. URL: https://doi.org/10.1016/S0304-3975(00)
00019-0.

[PPST83] Wolfgang J. Paul, Nicholas Pippenger, Endre Szemerédi, and William T. Trotter. On deter-
minism versus non-determinism and related problems (preliminary version). In 24th Annual
Symposium on Foundations of Computer Science (FOCS), pages 429–438. IEEE Computer
Society, 1983.

[PR80] Wolfgang J. Paul and Rüdiger Reischuk. On alternation II. A graph theoretic approach to
determinism versus nondeterminism. Acta Informatica, 14:391–403, 1980. URL: https:
//doi.org/10.1007/BF00286494.

21

https://doi.org/10.1016/0304-3975(81)90084-0
https://doi.org/10.1145/322344.322354
https://doi.org/10.1007/s00037-013-0069-5
https://doi.org/10.1007/s00037-013-0069-5
https://doi.org/10.1007/11602613_77
https://doi.org/10.1007/11602613_77
https://doi.org/10.4230/LIPIcs.CCC.2017.8
https://doi.org/10.4230/LIPIcs.CCC.2017.8
https://doi.org/10.1016/S0022-0000(05)80043-1
https://doi.org/10.1016/S0022-0000(72)80017-5
https://doi.org/10.1145/322123.322138
https://doi.org/10.1109/SFCS.1993.366865
https://doi.org/10.1109/SFCS.1993.366865
https://doi.org/10.1016/S0304-3975(00)00019-0
https://doi.org/10.1016/S0304-3975(00)00019-0
https://doi.org/10.1007/BF00286494
https://doi.org/10.1007/BF00286494

[PR81] Wolfgang J. Paul and Rüdiger Reischuk. On time versus space II. J. Comput. Syst. Sci.,
22(3):312–327, 1981. URL: https://doi.org/10.1016/0022-0000(81)90035-0.

[PV76] Mike Paterson and Leslie G. Valiant. Circuit size is nonlinear in depth. Theor. Comput. Sci.,
2(3):397–400, 1976. URL: https://doi.org/10.1016/0304-3975(76)90090-6.

[Raz91] Alexander A. Razborov. Lower bounds for deterministic and nondeterministic branching pro-
grams. In Lothar Budach, editor, 8th International Symposium on Fundamentals of Computa-
tion Theory (FCT), volume 529 of Lecture Notes in Computer Science, pages 47–60. Springer,
1991. URL: https://doi.org/10.1007/3-540-54458-5_49.

[Rei08] Omer Reingold. Undirected connectivity in log-space. J. ACM, 55(4):17:1–17:24, 2008. doi:
10.1145/1391289.1391291.

[SHL65] Richard Edwin Stearns, Juris Hartmanis, and Philip M. Lewis II. Hierarchies of memory
limited computations. In 6th Annual Symposium on Switching Circuit Theory and Logical
Design, pages 179–190. IEEE Computer Society, 1965. URL: https://doi.org/10.1109/
FOCS.1965.11.

[Sip88] Michael Sipser. Expanders, randomness, or time versus space. J. Comput. Syst. Sci.,
36(3):379–383, 1988. URL: https://doi.org/10.1016/0022-0000(88)90035-9.

[SM73] Larry J. Stockmeyer and Albert R. Meyer. Word problems requiring exponential time: Prelim-
inary report. In Proceedings of STOC, pages 1–9. ACM, 1973. URL: https://doi.org/10.
1145/800125.804029.

[SSZ98] Michael E. Saks, Aravind Srinivasan, and Shiyu Zhou. Explicit or-dispersers with polyloga-
rithmic degree. J. ACM, 45(1):123–154, 1998. URL: https://doi.org/10.1145/273865.
273915.

[SvEB88] Cees F. Slot and Peter van Emde Boas. The problem of space invariance for sequen-
tial machines. Inf. Comput., 77(2):93–122, 1988. URL: https://doi.org/10.1016/

0890-5401(88)90052-1.

[Swa78] Sowmitri Swamy. On Space-Time Tradeoffs. PhD thesis, Brown University, USA, 1978. URL:
https://cs.brown.edu/research/pubs/theses/phd/1978/swamy.pdf.

[Tre86] Carol Tretkoff. Bounded oracles and complexity classes inside linear space. In Alan L. Sel-
man, editor, Proceedings of Structure in Complexity Theory, volume 223 of Lecture Notes
in Computer Science, pages 347–361. Springer, 1986. URL: https://doi.org/10.1007/
3-540-16486-3_110.

[vEB90] Peter van Emde Boas. Machine models and simulation. In Jan van Leeuwen, editor, Handbook
of Theoretical Computer Science, Volume A: Algorithms and Complexity, pages 1–66. Elsevier
and MIT Press, 1990.

[Wil08] Ryan Williams. Non-linear time lower bound for (succinct) quantified boolean formulas. Elec-
tron. Colloquium Comput. Complex., TR08-076, 2008. URL: https://eccc.weizmann.ac.
il/eccc-reports/2008/TR08-076/index.html.

22

https://doi.org/10.1016/0022-0000(81)90035-0
https://doi.org/10.1016/0304-3975(76)90090-6
https://doi.org/10.1007/3-540-54458-5_49
https://doi.org/10.1145/1391289.1391291
https://doi.org/10.1145/1391289.1391291
https://doi.org/10.1109/FOCS.1965.11
https://doi.org/10.1109/FOCS.1965.11
https://doi.org/10.1016/0022-0000(88)90035-9
https://doi.org/10.1145/800125.804029
https://doi.org/10.1145/800125.804029
https://doi.org/10.1145/273865.273915
https://doi.org/10.1145/273865.273915
https://doi.org/10.1016/0890-5401(88)90052-1
https://doi.org/10.1016/0890-5401(88)90052-1
https://cs.brown.edu/research/pubs/theses/phd/1978/swamy.pdf
https://doi.org/10.1007/3-540-16486-3_110
https://doi.org/10.1007/3-540-16486-3_110
https://eccc.weizmann.ac.il/eccc-reports/2008/TR08-076/index.html
https://eccc.weizmann.ac.il/eccc-reports/2008/TR08-076/index.html

A Appendix: An Overview of The Cook-Mertz Procedure

The goal of this appendix is to describe the Cook-Mertz procedure for TREE EVALUATION, and how it
extends to arbitrary d-ary trees of maximum height h, and not just complete d-ary trees of height h, with the
full set of (dh − 1)/(d − 1) possible nodes. In particular, any tree with every inner node having at most d
children and depth at most h can be evaluated using their algorithm.

Reminder of Theorem 2.2. [CM24, Theorem 7] TREE EVALUATION on trees of bit-length b, maximum
height h, and fan-in at most d, can be computed in O(d · b+ h log(d · b)) space.

Our description below heavily draws from Goldreich’s exposition of the Cook-Mertz procedure [Gol24].
Let us stress that we make absolutely no claims of originality in the exposition below; we are only including
the following in order to make our paper more self-contained.

First, let us describe how to handle inner nodes in the tree which have less than d children. Letting
deg(u) denote the number of children of u, for all j ∈ [b] we let fu,j : {0, 1}deg(u)·b → {0, 1} be the function
which returns the j-th bit of the function fu computed at node u. For every node u with deg(u) < d, we
add extra children to u which are simply leaves with value 0b, so that u has exactly d children. The resulting
new functions fu,j : {0, 1}d·b → {0, 1} at node u are defined to simply ignore all bits of input with index
larger than deg(u) · b. Now all inner nodes of the tree have exactly d children, and all values of inner nodes
remain the same as before. For our intended application to an implicit TREE EVALUATION instance, we note
that the reduction of this paragraph can also be implemented in a space-efficient way: we only need to be
able to check the number of children of the current node u, which we can easily do in our applications (e.g.,
Theorem 3.1 and Theorem 1.5). In particular, in our reduction the memory stores the entire computation
graph which defines the tree, so we know the number of children of every tree node.

Let F be a field of characteristic two such that |F| ≥ db2. For a node u and index j ∈ [b], let f̃u,j be
the multilinear extension (over F) of the function fu,j : {0, 1}d·b → {0, 1} which returns the j-th bit of the
function fu computed at node u. In particular, f̃u,j is a polynomial of degree d · b on d · b variables. Letting
x⃗i denote a block of b variables for i = 1, . . . , d,

f̃u,j(x⃗1, . . . , x⃗d) =
∑

a1,...,ad∈{0,1}b
χa1,...,ad(x⃗1, . . . , x⃗d) · fu,j(a1, . . . , ad), (2)

where χa1,...,ad(x⃗1, . . . , x⃗d) is the unique multilinear polynomial of degree d · b such that

χa1,...,ad(a1, . . . , ad) = 1,

and χa1,...,ad(a
′
1, . . . , a

′
d) = 0 for all (a′1, . . . , a

′
d) ∈ ({0, 1}b)d such that (a′1, . . . , a

′
d) ̸= (a1, . . . , ad).

Let [d]⋆ be the set of all strings over the alphabet {1, . . . , d} (including the empty string). Observe that
for every node with label u ∈ [d]⋆, its children have labels u1, . . . , ud. Thus by definition, the value of u is

vu = fu(vu1, . . . , vud) = (fu,1(vu1, . . . , vud), . . . , fu,b(vu1, . . . , vud)) (3)

= (f̃u,1(vu1, . . . , vud), . . . , f̃u,b(vu1, . . . , vud)). (4)

The TREE EVALUATION procedure has two types of storage:

• One storage type is “local”, holding the index of the current node (O(h log d) bits), as well as a
recursion stack of height at most h with O(log(d · b)) bits stored at each level of recursion, which is
O(h log(d · b))) bits in total.

23

• The other type of storage is “catalytic” or “global” storage ([Gol24]). This O(d · b) space is used to
store d + 1 separate b-bit blocks. In the final version of the algorithm that we describe, each b-bit
block corresponds to storing O(b/ log |F|) elements of F. These blocks are repeatedly reused at every
node of the tree, to evaluate the functions at each node.

In the following, for simplicity, we will describe an O(d · b log(d · b)) space bound using multilinear
extensions; with minor modifications, Cook-Mertz [CM24] (see also Goldreich [Gol24]) show how
relaxing to merely low-degree extensions allows us to use only O(d · b) space. At the end, we will
discuss how to achieve this space bound.

At any point in time, we will denote the entire storage content of the algorithm by (u, x̂1, . . . , x̂d, ŷ), where

• u ∈ [d]⋆, |u| ≤ h, is the label of a node in the tree, denoting the path from root to that node. (ε denotes
the root node, i ∈ [d] denotes the i-th child of the root, etc.),

• each x̂i is a collection of b registers x̂(1)i , . . . , x̂
(b)
i holding b elements of F, and

• ŷ is a collection of b registers ŷ(1), . . . , ŷ(b), also holding b elements of F.

Initially, we set the storage content to be
(ε, 0⃗, . . . , 0⃗),

i.e., all-zeroes, starting at the root node.
For a node label u, let vu ∈ {0, 1}b be the value of u; we think of vu as an element of Fb. Our goal is to

compute vε, the value of the root of the tree. We will give a recursive procedure ADD which takes storage
content (u, x̂1, . . . , x̂d, ŷ) and returns the content (u, x̂1, . . . , x̂d, ŷ+ vu). That is, ADD adds the value vu to
the last register, over the field F. Observe that, if ADD works correctly, then calling ADD on (ε, 0⃗, . . . , 0⃗)
will put the value of the root node into the last register.

Now we describe ADD. Let m be such that |F| = m + 1 ≥ d · b, and let ω be an m-th root of unity in
F. The following page gives pseudocode for ADD.

24

ADD: Given the storage content (u, x̂1, . . . , x̂d, ŷ),
If u is a leaf, look up the value vu in the input, and return (u, x̂1, . . . , x̂d, ŷ + vu).
For i = 1, . . . ,m,

For r = 1, . . . , d,
Rotate registers, so (x̂r, . . . , x̂d, ŷ, x̂

′
1, . . . , x̂

′
r−1) shifts to (x̂r+1, . . . , x̂d, ŷ, x̂

′
1, . . . , x̂

′
r−1, x̂r).

Multiply x̂r by ωi, and call ADD on (ur, x̂r+1, . . . , x̂d, ŷ, x̂
′
1, . . . , x̂

′
r−1, ω

i · x̂r),
which returns (ur, x̂r+1, . . . , x̂d, ŷ, x̂

′
1, . . . , x̂

′
r−1, x̂

′
r), where x̂′r = ωi · x̂r + vur.

(here, ur is just the concatenation of the string u with the symbol r)
(at this point, the storage has the form: (ud, ŷ, ωi · x̂1 + vu1, . . . , ω

i · x̂d + vud))
Update ud back to u.
For all j = 1, . . . , b,

Compute f̃u,j(ω
i · x̂1 + vu1, . . . , ω

i · x̂d + vud) using O(b) extra space.
Update ŷ(j) = ŷ(j) + f̃u,j(ω

i · x̂1 + vu1, . . . , ω
i · x̂d + vud).

Erase the O(b) space used to compute f̃u,j .
For r = d, . . . , 1,

Call ADD on (ur, x̂r+1, . . . , x̂d, ŷ, ω
i · x̂1 + vu1, . . . , ω

i · x̂r + vur),
which returns (ur, x̂r+1, . . . , x̂d, ŷ, ω

i · x̂1+ vu1, . . . , ω
i · x̂r−1+ vu(r−1), x̂

′′
r), where x̂′′r = ωi · x̂r.

(note: here we use the fact that F is characteristic two)
Divide x̂′′r by ωi, so that x̂′′r = x̂r.
Rotate registers, so (x̂r+1, . . . , x̂d, ŷ, ω

i · x̂1 + vu1, . . . , ω
i · x̂r−1 + vu(r−1), x̂r) shifts to

(x̂r, x̂r+1, . . . , x̂d, ŷ, ω
i · x̂1 + vu1, . . . , ω

i · x̂r−1 + vu(r−1)).
Update u1 back to u.

(claim: now the storage has the form (u, x̂1, . . . , x̂d, ŷ + f̃u(vu1, . . . , vud)))
(note that vu = f̃u(vu1, . . . , vud), by (3) and (4))
Return (u, x̂1, . . . , x̂d, ŷ + vu).

Recall that F is characteristic two, so that adding vur twice to the register x̂r has a net contribu-
tion of zero. The key to the correctness of ADD (and the claim in the pseudocode) is the following
polynomial interpolation formula (proved in [CM24]): for every m-th root of unity ω over F, for every
x̂1, . . . , x̂d, vu1, . . . , vud ∈ Fb, and for every polynomial P of degree less than m,

m∑
i=1

P (ωi · x̂1 + vu1, . . . , ω
i · x̂d + vud) = P (vu1, . . . , vud). (5)

(Note that our formula is slightly simpler than Cook-Mertz [CM24] and Goldreich [Gol24], because we
assume F is a field of characteristic two.) Equation (5) ensures that the content of ŷ is indeed updated to be
ŷ + f̃u(vu1, . . . , vud), which equals ŷ + vu by equations (3) and (4).

Let us briefly compare ADD to the “obvious” algorithm for TREE EVALUATION. The “obvious” algo-
rithm allocates fresh new space for each recursive call to store the values of the children, traversing the tree
in a depth-first manner. Each level of the stack holds O(d · b) bits, and this approach takes Θ(h · d · b) space
overall. In contrast, the algorithm ADD adds the values of the d children to the existing O(d ·b log b) content
of the d registers, and uses polynomial interpolation to add the correct value of the node to the last register.

More prescisely, while ADD has no initial control over the content of x̂1, . . . , x̂d, equation (5) allows
ADD to perform a type of “worst-case to arbitrary-case” reduction: in order to add the value of function fu

25

on specific vu1, . . . , vud to the register ŷ, given that the initial space content is some arbitrary x̂1, . . . , x̂d, ŷ,
it suffices to perform a running sum from i = 1 to m, where we multiply the x̂1, . . . , x̂d content by ωi, add
vu1, . . . , vud into the current space content, then evaluate the functions f̃u,j on that content, storing the result
of the running sum into ŷ, which (after summing from i = 1, . . . ,m) results in adding the value vu into ŷ.
That is, starting from any arbitrary values in the registers which are beyond our control, we can compute fu
on any desired input registers.

The overall space usage of the above procedure is

O(h · log(d · b) + d · b log(d · b)).

The “local” storage is used to store current values i ∈ [m], r ∈ [d], and O(1) bits to store a program counter
(storing which of the two sets of recursive calls we’re at), at each level of the tree. This takes O(log(d · b))
bits for each level of recursion, and O(h · log(d · b)) space overall. The node index u ∈ [d]⋆ is also stored,
which takes O(h · log d) bits.

The “global” storage holds the content (x̂1, . . . , x̂d, ŷ). Each x̂i and y consist of b elements of F, which
take O(b log(d·b)) bits each. To compute the multilinear extension f̃u,j on (ωi·x̂1+vu1, . . . , ω

i·x̂d+vud), we
follow equation (2): we use O(b) bits of space to sum over all a1, . . . , ad ∈ {0, 1}b, and we use O(log |F|) ≤
O(log(d · b)) extra space to evaluate the expression χa1,...,ad(ω

i · x̂1 + vu1, . . . , ω
i · x̂d + vud) and multiply

it with the value fu,j(a1, . . . , ad) ∈ {0, 1}.
Finally, we describe how to improve the space usage to O(h log(d · b) + d · b). The idea is to use

“low-degree extensions” of fu, rather than multilinear extensions, and to group the b-bit output of fu into
approximately ⌈b/ log |F|⌉ blocks, instead of b blocks. In more detail, we modify the polynomials f̃u,j over
F so that they have O(d · (b/ log |F|)) variables instead of O(d · b) variables, and the j ranges over a set
{1, . . . , ⌈cb/ log |F|⌉} for a constant c > 0, instead of [b] = {1, . . . , b}. To accommodate this, we will need
to adjust the order of F slightly.

Let |F| = 2q, for an even integer q to be determined later (recall F is characteristic two). Let S ⊆ F
be a set of cardinality 2q/2, which is put in one-to-one correspondence with the elements of {0, 1}q/2, and
let t = ⌈b/ log |S|⌉. We can then view the function fu : {0, 1}d·b → {0, 1}b as instead having domain
(St)d, and co-domain St. That is, we can think of the output of fu as the concatenation of t subfunctions
(fu,1, . . . , fu,t), with each fu,j : (St)d → S. For each j = 1, . . . , t, the multilinear polynomial f̃u,j of
equation (2) can then be replaced by another polynomial in d · t variables over F:

f̃u,j(x⃗1, . . . , x⃗d) =
∑

a1,...,ad∈St

χa1,...,ad(x⃗1, . . . , x⃗d) · fu,j(a1, . . . , ad), (6)

where again χa1,...,ad(x⃗1, . . . , x⃗d) is a polynomial over F such that χa1,...,ad(a1, . . . , ad) = 1, and χa1,...,ad

vanishes on all a′1, . . . , a
′
d ∈ St such that (a′1, . . . , a

′
d) ̸= (a1, . . . , ad). Such a polynomial χa1,...,ad can be

constructed with degree d · (|S| − 1) · t = d · (
√

|F| − 1) · t. As long as this quantity is less than |F|, we can
pick an m-th root of unity ω with m = |F| − 1 and we may apply the polynomial interpolation formula of
equation (5). WLOG, we may assume d and b are even powers of two (otherwise, we can round them up to
the closest such powers of two). Setting 2q = d2b2, we have

d · (|S| − 1) · t ≤ d · (d · b− 1) · b < d2b2 = |F|.

As a result, each of the registers x̂1, . . . , x̂d, ŷ can now be represented with t = ⌈b/ log |S|⌉ elements
of F, rather than b elements of F as before. Since log |S| = Θ(log |F|), each such register can now be
represented with O(d · b) bits instead, and the new polynomials of (6) can still be evaluated in O(b) space.

26

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

