
Symmetric Perceptrons, Number Partitioning
and Lattices

Neekon Vafa
MIT

nvafa@mit.edu

Vinod Vaikuntanathan
MIT

vinodv@mit.edu

Abstract

The symmetric binary perceptron (SBP𝜅) problem with parameter 𝜅 ∶ ℝ≥1 → [0, 1] is an average-
case search problem defined as follows: given a random Gaussian matrix 𝐀 ∼ (0, 1)𝑛×𝑚 as
input where 𝑚 ≥ 𝑛, output a vector 𝐱 ∈ {−1, 1}𝑚 such that

||𝐀𝐱||∞ ≤ 𝜅(𝑚/𝑛) ⋅
√
𝑚 .

The number partitioning problem (NPP𝜅) corresponds to the special case of setting 𝑛 = 1. There
is considerable evidence that both problems exhibit large computational-statistical gaps.

In this work, we show (nearly) tight average-case hardness for these problems, assuming
the worst-case hardness of standard approximate shortest vector problems on lattices.

• For SBP𝜅, statistically, solutions exist with 𝜅(𝑥) = 2−Θ(𝑥) (Aubin, Perkins and Zdeborová,
Journal of Physics 2019). For large 𝑛, the best that efficient algorithms have been able
to achieve is a far cry from the statistical bound, namely 𝜅(𝑥) = Θ(1/

√
𝑥) (Bansal and

Spencer, Random Structures and Algorithms 2020). The problem has been extensively
studied in the TCS and statistics communities, and Gamarnik, Kızıldağ, Perkins and Xu
(FOCS 2022) conjecture that Bansal-Spencer is tight: namely, 𝜅(𝑥) = Θ̃(1/

√
𝑥) is the

optimal value achieved by computationally efficient algorithms.
We prove their conjecture assuming the worst-case hardness of approximating the
shortest vector problem on lattices.

• For NPP𝜅, statistically, solutions exist with 𝜅(𝑚) = Θ(2−𝑚) (Karmarkar, Karp, Lueker
and Odlyzko, Journal of Applied Probability 1986). Karmarkar and Karp’s classical
differencing algorithm achieves 𝜅(𝑚) = 2−𝑂(log2 𝑚) .
We prove that Karmarkar-Karp is nearly tight: namely, no polynomial-time algorithm can
achieve 𝜅(𝑚) = 2−Ω(log

3 𝑚), once again assuming the worst-case subexponential hardness
of approximating the shortest vector problem on lattices to within a subexponential
factor.

Our hardness results are versatile, and hold with respect to different distributions of the matrix
𝐀 (e.g., i.i.d. uniform entries from [0, 1]) and weaker requirements on the solution vector 𝐱.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 18 (2025)

mailto:nvafa@mit.edu
mailto:vinodv@mit.edu

1 Introduction
Symmetric Binary Perceptrons. The symmetric binary perceptron (SBP𝜅) problem, also called
the symmetric Ising perceptron problem [JH60, Win61, Cov65, APZ19, BDVLZ20, PX21, ALS21,
ALS22, GKPX22, GKPX23, BEAKZ24], is a search problem defined as follows: given a random
matrix 𝐀 ∼ (0, 1)𝑛×𝑚 with entries chosen i.i.d. from the normal distribution where 𝑚 ≥ 𝑛, find
a binary vector 𝐱 ∈ {−1, 1}𝑚 such that ‖𝐀𝐱‖∞ is minimized. More formally, SBP with parameter
𝜅 ∶ ℝ≥1 → [0, 1] asks us to find an 𝐱 ∈ {−1, 1}𝑚 such that

‖𝐀𝐱‖∞ ≤ 𝜅(𝑚/𝑛) ⋅
√
𝑚 .

Here, the quality of the solution is parameterized as a function of 𝑚/𝑛, the so-called (inverse)
aspect ratio of the problem.1

The problem is versatile, and can be defined with respect to different distributions of the matrix
𝐀 (i.i.d. uniform [0, 1] entries is another popular choice) and different requirements on the solution
vector 𝐱. The problem also has rich connections to several other fields including the classical
subset sum problem and its variants and the problem of discrepancy minimization.

Two natural questions arise: a statistical question and a computational one. The statistical
question asks for which 𝜅 do solutions exist (with high probability over the choice of the matrix
𝐀). Recent works by Aubin, Perkins and Zdeborová [APZ19], Perkins and Xu [PX21], and Abbe,
Li and Sly [ALS21] showed sharp statistical thresholds for this problem. In particular, they showed
that the threshold for the existence of solutions is

𝜅stat(𝑥) = 𝑂(2−𝑥).

On the other hand, the best solutions found by polynomial-time algorithms satisfy

𝜅comp(𝑥) = Ω(
1
√
𝑥)

.2

This comes from the breakthrough work of Bansal [Ban10] and Bansal and Spencer [BS20] from
the closely related field of combinatiorial discrepancy theory.3 Gamarnik, Kızıldağ, Perkins
and Xu [GKPX22, GKPX23] studied the large statistical-computational gap scenario in detail
and conjectured that no polynomial-time algorithms can achieve a guarantee much better than
𝜅comp(𝑥). In particular, they show that the so-called overlap gap property [MMZ05, AR06, Gl16],
which rules out a class of stable algorithms, sets in at

𝜅overlap(𝑥) = 𝑂
(

1√
𝑥 log 𝑥)

.

1The notation commonly used in the literature to parameterize SBP (and NPP) is slightly different than the notation
we choose to use. The aspect ratio is given by 𝛼 = 𝑛/𝑚, and instead of writing 𝜅 as a function of 𝛼 (or really, 𝑥 = 1/𝛼,
as we do), the roles are flipped, where 𝛼 is a function of 𝜅. For example, 𝜅(𝑥) = 2−𝑥 and 𝜅(𝑥) = 1/

√
𝑥 , in our notation,

correspond to 𝛼(𝜅) = 1/ log2(1/𝜅) and 𝛼(𝜅) = 𝜅2 in the notation of [GKPX22], respectively.
2In an extreme parameter regime where 𝑛 = 𝑂 (

√
log𝑚), [TMR20] gives a polynomial-time algorithm achieving

discrepancy 2−Ω(log2(𝑚)/𝑛), but throughout our paper, for SBP, we will only consider the regime where 𝑛 = 𝜔(log𝑚).
3Their result is established for the case of matrices 𝐀 with i.i.d. Rademacher entries. Nevertheless, [GKPX22]

conjecture that the same guarantee remains true for the case of i.i.d. standard normal entries.

2

We refer the reader to [GKPX22] for an extensive discussion of the rationale behind their conjecture.
A survey of Gamarnik on the overlap gap property [Gam21] points to the question of whether

average-case hardness of perceptron problems (and more) can be based on worst-case hardness
assumptions. Gamarnik explicitly states that worst-case to average-case reductions for these
problems “would be ideal for our setting, as they would provide the most compelling evidence of
hardness of these problems” [Gam21].

The first contribution of this work is a proof of the conjecture of [GKPX22] upto lower order
terms, under the assumption that standard, well-studied, lattice problems are hard to approximate
in the worst case.

Theorem 1 (Informal version of Corollary 2). Let 𝜀 > 0 be any constant. Assuming that 𝛾 -
approximate lattice problems in 𝑛 dimensions with 𝛾 (𝑛) = 𝑛𝑂(1/𝜀) are worst-case hard for polynomial-
time algorithms, SBP𝜅 with

𝜅(𝑥) =
1

𝑥1/2+𝜀

is hard for polynomial-time algorithms. Additionally, assuming near-optimal worst-case hardness
of lattice problems, we obtain near-optimal hardness of SBP. In particular, assuming that 𝛾 (𝑛)-
approximate lattice problems require 2𝜔(𝑛1/2−𝜀) time to solve in the worst case with 𝛾 (𝑛) = 2𝑛1/2−𝜀 , we
have that SBP𝜅 with

𝜅(𝑥) =
1

√
𝑥 ⋅ (log 𝑥)𝑐

is hard for some constant 𝑐 > 1.

Lattice problems such as the shortest vector problem and the shortest independent vectors
problem have been extensively studied for decades largely for their implications to combinatorial
optimization [LLL82, Kan83, Kan87, RR23] and even more so, to cryptography [Ajt96, MR07,
Reg09]. Time-approximation tradeoffs for lattice problems are well-known [Sch87]. The best
known algorithms for these lattice problems employ lattice reduction techniques, based on the LLL
and BKZ algorithms [LLL82, Sch87]. They currently all have the following time-approximation
trade-off: For a tunable parameter 𝑘, in dimension 𝑛, it is posible to solve lattice problems with
approximation factor 𝛾 = 2𝑂(𝑛/𝑘) in time 2𝑂(𝑘), where 𝑂(⋅) hides polylog factors in 𝑛. Equalizing
these terms gives a 2𝑂(

√
𝑛)-time algorithm to solve 2𝑂(

√
𝑛)-approximate lattice problems. Despite

extensive study in the lattice literature, no better algorithms are known (that improve the exponent
by more than a polylog factor). This motivates the assumptions in our theorem statement, both
the conservative one and the near-optimal one. (For more discussion on this, see Section 2.2).

Our reduction has several additional features: first, our reduction is versatile and works with
respect to different distributions of the matrix 𝐀 (e.g., i.i.d. uniform entries from [0, 1]); and
secondly, it shows the hardness not just of computing an SBP solution with 1 − 𝑜(1) probability,
but indeed with any non-trivial inverse polynomial probability. For more implications of our
reduction, we refer the reader to Section 3.2. Moreover, our full reduction is conceptually simple
and direct. We discuss the possibility of using other intermediate problems to establish these same
results in Section 1.1.3.

3

Number Partitioning (or Number Balancing). The (average-case) number partitioning prob-
lem is a special case of SBP and corresponds to setting 𝑛 = 1 in SBP. Given 𝑚 random numbers
𝑎1,… , 𝑎𝑚 ∼ (0, 1) with entries chosen i.i.d. from the standard normal distribution, the goal is
to find a binary vector 𝐱 ∈ {−1, 1}𝑚 such that | ∑𝑚

𝑖=1 𝑥𝑖𝑎𝑖| is minimized. More formally, NPP with
parameter 𝜅 ∶ ℤ≥1 → [0, 1] asks us to find an 𝐱 ∈ {−1, 1}𝑚 such that

|||||

𝑚

∑
𝑖=1

𝑥𝑖𝑎𝑖
|||||
≤ 𝜅(𝑚) ⋅

√
𝑚

Number partitioning, as a worst-case problem, was one of the six original NP-complete
problems in the classic book of Garey and Johnson [GJ79]. The worst-case version of the problem,
where 𝑎1,… , 𝑎𝑚 are arbitrary, is closely related to discrepancy problems and has been extensively
studied; see [Spe85, Ban10, LM15, LRR17, Rot14, HRRY17]. In particular, [HRRY17] show that
there are (worst-case to worst-case) reductions between NPP and worst-case lattice problems.4
Their reduction from worst-case lattice problems to NPP [HRRY17, Theorem 9] shows hardness
for 𝜅(𝑚) ≤ 2−𝑚/2. Looking ahead, we show computational hardness for the average-case version
of NPP and for the much tighter range of 𝜅(𝑚) = 2−polylog(𝑚).

An application of the pigeonhole principle shows that solutions exist, both in the worst case
and on average (even with high probability [KKLO86]), for

𝜅stat(𝑚) = 2−𝑚.

However, the best solutions found by polynomial-time algorithms satisfy

𝜅comp(𝑚) = 2−𝑂(log2 𝑚).

This comes from the beautiful “differencing algorithm” of Karmarkar and Karp [KK82] which starts
with a list; sorts it; replaces the largest and second largest element with their absolute difference;
and repeats until a single element is left which the algorithm outputs as the discrepancy of the set
of numbers. (An informed reader might already have observed the analogy of Karmarkar-Karp
with the Blum-Kalai-Wasserman [BKW03] algorithm, which came much later.) A subsequent
work of Yakir [Yak96] proved that their algorithm indeed achieves the claimed discrepancy of
𝜅comp(𝑚) = 2−𝑂(log2 𝑚). This remains the best algorithm known to date.

Gamarnik and Kızıldağ [GK21] studied the statistical-computational gap in depth, demon-
strated an overlap gap property at

𝜅∗(𝑚) = 2−𝜔(
√

𝑚 log𝑚),

implying that the class of stable algorithms will fail to find solutions for such small 𝜅. This leaves
open the question of the ground truth: are there improvements to Karmarkar-Karp, stable or not,
that efficiently solve NPP𝜅 with 𝜅(𝑚) = 2−𝑚Ω(1)?

4Technically, the problem they consider is the number balancing problem, where they require the weaker condition
on the solution 𝐱 that 𝐱 ∈ {−1, 0, 1}𝑚 ⧵ {𝟎} instead of 𝐱 ∈ {−1, 1}𝑚. As we explain later (Section 3.2), our reduction
works in this setting as well.

4

Our second contribution is proving that the answer to this question is no, in a quantitatively
strong way. In particular, under the assumption that standard, well-studied, lattice problems are
sub-exponentially hard to approximate in the worst case, we prove that Karmarkar-Karp is tight,
up to a logarithmic factor in the exponent.

Theorem 2 (Informal version of Corollary 3). Suppose 𝜅(𝑚) = 2− log3+𝜀 𝑚 for some constant 𝜀 > 0.
Assuming near-optimal hardness of worst-case lattice problems, then NPP𝜅 is hard for polynomial-
time algorithms. In particular, assuming that 𝛾 (𝑛)-approximate lattice problems in dimension 𝑛
require 2𝜔(𝑛1/2−𝜀) time to solve in the worst case with 𝛾 (𝑛) = 2𝑛1/2−𝜀 , we have that NPP𝜅 (in dimension
𝑚) is hard for poly(𝑚)-time algorithms.

Similar to the case of our SBP result, this theorem is quite versatile. We refer the reader to
the technical overview and Section 4 for more details. Like in the case SBP, our full reduction is
conceptually simple and direct, and we discuss the possibility of using other intermediate problems
to establish these same results in Section 1.1.3.

Adaptive Robustness of Johnson-Lindenstrauss. The Johnson-Lindenstrauss lemma [JL84]
states that for all fixed, small, finite sets 𝑆 ⊆ ℝ𝑚, for random 𝐀 ∼ (0, 1)𝑛×𝑚, the linear map
given by 𝐀 embeds 𝑆 into ℝ𝑛 in a way that approximately preserves all 𝓁2 norms (up to a √

𝑛
normalization term). Slightly more concretely,

∀ small, finite 𝑆 ⊆ ℝ𝑚, Pr
𝐀∼ (0,1)𝑛×𝑚

[∀𝐱 ∈ 𝑆, ‖𝐀𝐱‖2 ≈
√
𝑛 ‖𝐱‖2] = 1 − 𝑜(1).

This statement crucially relies on the fact the set 𝑆 that is defined independently of 𝐀. For example,
even considering only singleton sets 𝑆, one can ask whether the order of quantifiers can be
switched so that 𝐱 can be chosen adaptively based on 𝐀, in the following sense:

Pr
𝐀∼ (0,1)𝑛×𝑚

[∀𝐱 ∈ ℝ𝑚, ‖𝐀𝐱‖2 ≈
√
𝑛 ‖𝐱‖2]

?= 1 − 𝑜(1).

Or even weaker, for a function 𝜅 ∶ ℝ>1 → (0, 1],

Pr
𝐀∼ (0,1)𝑛×𝑚

[∀𝐱 ∈ ℝ𝑚, ‖𝐀𝐱‖2 ≥ ‖𝐱‖2 𝜅(𝑚/𝑛)
√
𝑛]

?= 1 − 𝑜(1).

However, this is impossible. For 𝑚 > 𝑛, one can find a vector 𝐱 ∈ ker(𝐀) (so 𝑆 = {𝐱}), making
‖𝐀𝐱‖2 = 0 while ‖𝐱‖2 can be arbitrarily large.

A natural question is whether this phenomenon could hold if we constrain 𝐱 ∈ ℝ𝑚 to some
structured set, e.g., {−1, 1}𝑚:

Pr
𝐀∼ (0,1)𝑛×𝑚

[∀𝐱 ∈ {−1, 1}𝑚, ‖𝐀𝐱‖2 ≥ 𝜅(𝑚/𝑛)
√
𝑛𝑚]

?= 1 − 𝑜(1).

This question is exactly the statistical capacity of SBP𝜅, with the exception that the norm on 𝐀𝐱
has changed from 𝓁∞ to 𝓁2 (which differ by only a √

𝑛 factor at most).

5

Therefore, we view SBP𝜅 as defining a natural adaptive robustness question about a certain
discretized version of the Johnson-Lindenstrauss lemma. In particular, since SBP𝜅 exhibits a
computational-statistical gap, so does this variant of the Johnson-Lindenstrauss lemma. Given
the utility of the Johnson-Lindenstrauss lemma in compressed sensing, dimensionality reduction,
and more, we believe that this interpretation may inspire connections between worst-case lattice
problems and adaptive robustness of downstream applications of the Johnson-Lindenstrauss
lemma.

OpenQuestions and Future Directions. A direct open question raised by our results is to
better understand the gap between Theorem 2 and Karmarkar-Karp [KK82]. Specifically, our result
shows hardness for 𝜅(𝑚) = 2− log3+𝜀 𝑚, but Karmarkar-Karp gives a polynomial time algorithm
that achieves 𝜅(𝑚) = 2−Θ(log2 𝑚). Can Karmarkar-Karp be improved to 𝜅(𝑚) = 2−Θ(log3 𝑚), can the
hardness shown in Theorem 2 be improved, or is the truth somewhere in the middle?

Another question one can ask is related to the asymmetric binary perceptron (ABP𝜅) problem,
also called the asymmetric Ising perceptron problem, which for 𝐀 ∼ (0, 1)𝑛×𝑚, asks to find
𝐱 ∈ {−1, 1}𝑚 such that

𝐀𝐱 ≥ 𝜅(𝑚/𝑛)
√
𝑚 ⋅ 𝟏,

in the sense that for every row 𝐚𝑗 ∈ ℝ𝑚 for 𝑗 ∈ [𝑛], we want 𝐚⊤𝑗 𝐱 ≥ 𝜅(𝑚/𝑛)
√
𝑚. (For more details,

see e.g., [GKPX22].) Note that unlike SBP𝜅, setting 𝜅(𝑥) = 0 still defines a meaningful problem.
Does ABP share similar hardness results (from worst-case problems)? If so, are lattice problems
the source of such hardness?

More generally, we can ask the converse questions of the ones raised in our paper. Can lattice
algorithms be used to improve algorithms for NPP or ABP?

We leave all of these as fascinating open questions and future directions of our work.

1.1 Technical Overview
For both of our reductions, we take direct inspiration from worst-case to average-case reductions
in the lattice literature [Ajt96, MR07]. Our exposition and proofs closely follow [MR07]. We
view our work as bringing techniques from worst-case to average-case reductions in the lattice
literature to closely related problems in statistics and discrete optimization.

1.1.1 Reduction to SBP

We outline the main ideas behind the reduction from the worst-case lattice problems to SBP. For
an invertible matrix 𝐁 ∈ ℝ𝑛×𝑛, let (𝐁) denote the lattice generated by (the columns of) 𝐁, i.e.,

(𝐁) = {𝐁𝐳 ∶ 𝐳 ∈ ℤ𝑛}.

Let (𝐁) denote the fundamental parallelepiped of 𝐁, given by the set 𝐁[0, 1)𝑛.
To illustrate the ideas in our reduction, consider the following (informal) worst-case lattice

problem: given some invertible lattice basis 𝐁 ∈ ℝ𝑛×𝑛, output a (non-zero) vector 𝐬 ∈ (𝐁) slightly
smaller than the columns in 𝐁. (While this is not quite the worst-case lattice problem we reduce

6

from, it is simpler to describe this way and captures all of the main ideas. See Definition 4 for
more precise details.)

The key idea we employ is smoothing using Gaussian measures, as introduced by Micciancio
and Regev [MR07]. Specifically, here is the critical point: For an arbitrary invertible 𝐁 ∈ ℝ𝑛×𝑛

and for 𝐮 ∼ (𝟎, 𝜎2𝐈𝑛), as long as 𝜎 is large enough, 𝐮 (mod (𝐁)) looks statistically close to
uniform over (𝐁). This holds as long as 𝜎 is larger than the smoothing parameter of the lattice
(𝐁), defined by [MR07], which is basis-independent. Transforming by 𝐁−1, we see that

𝐁−1𝐮 (mod ℤ𝑛) ≈ 𝑈 ([0, 1)𝑛),

where ≈ denotes small total variation distance, and 𝑈 (⋅) denotes the uniform distribution. Thus,
we have converted worst-case structure into average-case structure (that is independent of 𝐁).

We can repeat this process 𝑚 times as follows: sample 𝐔 ∼ (𝟎, 𝜎2𝐈𝑛)𝑚, where now

𝐁−1𝐔 (mod ℤ𝑛×𝑚) ≈ 𝑈 ([0, 1)𝑛×𝑚).

We then set 𝐀 = 𝐁−1𝐔 (mod ℤ𝑛×𝑚) and feed 𝐀 into the SBP solver. (For simplicity, in this overview,
we assume that SBP allows input matrices that are uniform over [0, 1)𝑛×𝑚 instead of Gaussian,
but in the proof, we resolve this distinction by sampling from an appropriate discrete Gaussian
distribution.) We get back some 𝐱 ∈ {±1}𝑚 so that ‖𝐀𝐱‖∞ ≤ 𝜅(𝑚/𝑛)

√
𝑚, or in other words,

𝐀𝐱 − 𝐞 = 𝟎,

where ‖𝐞‖∞ ≤ 𝜅(𝑚/𝑛)
√
𝑚. Since 𝐱 ∈ ℤ𝑚, this implies

𝐁−1𝐔𝐱 − 𝐞 = 𝟎 mod ℤ𝑛×𝑚.

Multiplying by 𝐁 on the left gives

𝐔𝐱 − 𝐁𝐞 = 𝟎 mod (𝐁),

or in other words, 𝐔𝐱 − 𝐁𝐞 ∈ (𝐁). To see that 𝐔𝐱 − 𝐁𝐞 is slightly smaller than the vectors in
𝐁, note that ‖𝐔𝐱‖2 can be upper-bounded by a basis-independent quantity, since 𝜎 was chosen
basis-independently. The bottleneck term is ‖𝐁𝐞‖2, which is smaller than columns of 𝐁 as long as
‖𝐞‖2 is sufficiently small. If 𝜅(𝑥) = 1/𝑥1/2+𝜀 for 𝜀 > 0, then

‖𝐞‖∞ ≤ 𝜅(𝑚/𝑛)
√
𝑚 =

𝑛1/2+𝜀

𝑚𝜀 ,

so as long as we set 𝑚 large enough so that 𝑚𝜀 ≫ 𝑛1/2+𝜀 , we can force ‖𝐁𝐞‖2 to be small enough to
produce a smaller lattice vector than anything in 𝐁, as desired.

Allowing 𝐱 ∈ {−1, 0, 1}𝑚 instead of 𝐱 ∈ {±1}𝑚. One could define a variant of SBP where we just
need 𝐱 ∈ {−1, 0, 1}𝑚 ⧵ {𝟎} instead of 𝐱 ∈ {±1}𝑚. This is an easier problem, as including zero entries
in 𝐱 is a simple way to decrease ‖𝐀𝐱‖∞. However, our reduction idea above actually still works in
this setting. For more details, see Section 3.2.

7

1.1.2 Reduction to NPP

The reduction to NPP is quite similar to the reduction to SBP, but with one additional trick that
converts between vectors and scalars. This trick has been used in [Reg04, BV15] for a similar
reason, and we follow their footsteps. Explicitly, it is the Chinese remainder theorem: for distinct
primes 𝑝1,… , 𝑝𝑛 and 𝑞 = ∏𝑖∈[𝑛] 𝑝𝑖, there is a group isomorphism

𝜑 ∶ ⨁
𝑖∈[𝑛]

ℤ/𝑝𝑖ℤ ⟶ ℤ/𝑞ℤ.

We will scale this isomorphism so that

𝜑 ∶ ⨁
𝑖∈[𝑛]

1/𝑝𝑖 ⋅ ℤ/𝑝𝑖ℤ ⟶ 1/𝑞 ⋅ ℤ/𝑞ℤ

is (a) invariant to integer shifts in the input and (b) ℤ-linear, in the sense that 𝜑(𝐱) = 𝐜⊤𝐱 (mod 1)
for some 𝐜 ∈ ℤ𝑛.

Following the SBP reduction above, we can set 𝐀 = 𝐁−1𝐔 (mod ℤ𝑛×𝑚) and then appropriately
“round” 𝐀 to get uniformly random 𝐀′ = ⌊𝐀⌋𝐩 ∈ (⨁𝑖∈[𝑛] 1/𝑝𝑖 ⋅ ℤ/𝑝𝑖ℤ)

𝑚. We then apply 𝜑 column-
wise to 𝐀′ to get 𝐚′ ∈ (1/𝑞 ⋅ℤ/𝑞ℤ)𝑚 ⊆ [0, 1)𝑚. By adding small uniform noise to 𝐚′, we can get some
𝐚 ∼ [0, 1)𝑚. We feed this into our NPP solver to get some 𝐱 ∈ {±1}𝑚 such that |𝐚⊤𝐱| ≤ 𝜅(𝑚)

√
𝑚.

By using ℤ-linearity of 𝜑, and assuming 𝜅 is sufficiently small so that there are no “wraparound”
errors in 𝜑−1, we can recover a somewhat smaller lattice vector 𝐬 ∈ (𝐁) than we started with,
just like in the SBP reduction.

1.1.3 Alternate Reduction Paths

We briefly mention other paths to reduce worst-case lattice problems to SBP and NPP, using
existing intermediate problems and known worst-case to average-case reductions.

SBP. Instead of starting from worst-case lattice problems, we could start with a noisy version
of the short integer solutions (SIS) problem in the 𝓁∞ norm, defined roughly as follows: Given
random 𝐀 ∼ (ℤ/𝑞ℤ)𝑛×𝑚, output 𝐱 ∈ ℤ𝑚 ⧵ {𝟎} such that ‖𝐱‖∞ and ‖𝐀𝐱 (mod 𝑞)‖∞ are small. The
original worst-case to average-case reductions for lattice problems indeed reduce worst-case lattice
problems to (average-case) SIS [Ajt96, MR07]. One can reduce (noisy) SIS to SBP by adding small
noise 𝐄 ∼ 𝑈 ([0, 1/𝑞)𝑛×𝑚) and setting

𝐀′ =
1
𝑞
𝐀 + 𝐄 ∼ 𝑈 ([0, 1)𝑛×𝑚) .

(For simplicity, we assume here that SBP allows matrices with i.i.d. 𝑈 ([0, 1)) entries instead of
standard normal, but we can remove this assumption by sampling from the appropriate discrete
Gaussian and scaling appropriately.) Feeding 𝐀′ into the SBP solver yields 𝐱 ∈ {±1}𝑚 such that
‖𝐀𝐱‖∞ is small, assuming 𝑞 ‖𝐄𝐱‖∞ is also sufficiently small.

8

NPP. Brakerski and Vaikuntanathan [BV15] define a problem called the one-dimensional short
integer solutions problem (1D-SIS), defined roughly as follows: Given 𝐚 ∼ (ℤ/𝑞ℤ)𝑚, output
𝐱 ∈ ℤ𝑚 ⧵ {𝟎} such that ‖𝐱‖∞ and |𝐚⊤𝐱 (mod 𝑞)| are small, where 𝑞 is a product of 𝑛 primes. [BV15]
shows a worst-case to average-case reduction from worst-case lattice problems in dimension 𝑛 to
1D-SIS. One can reduce 1D-SIS to NPP by adding small noise 𝐞 ∼ 𝑈 ([0, 1/𝑞)𝑚) and setting

𝐚′ =
1
𝑞
𝐚 + 𝐞 ∼ 𝑈 ([0, 1)𝑚) .

(For simplicity, we similarly assume here that NPP works for vectors with i.i.d. 𝑈 ([0, 1)) entries.)
Feeding 𝐚′ into the NPP solver yields 𝐱 ∈ {±1}𝑚 such that |𝐚⊤𝐱| is small, assuming 𝑞|𝐞⊤𝐱| is also
sufficiently small.

While these approaches would work, we view this introduction of parameter 𝑞 ∈ ℤ as extraneous
and misleading. To show hardness of a discrete optimization problem in continuous Euclidean
space (SBP and NPP), we should ideally start from a problem that is itself a discrete optimization
problem in continuous Euclidean space (worst-case lattice problems). There is no need to add
premature discretization by introducing the parameter 𝑞.

2 Preliminaries
For a predicate 𝜑, we use the notation 𝟏[𝜑] ∈ {0, 1} to denote the indicator variable of whether 𝜑
is true (1) or false (0). We use ln(⋅) to denote the natural logarithm (base 𝑒) and log(⋅) to denote
log2(⋅). We use ℝ>0 to refer to the set of all positive real numbers, and we use ℝ≥1 to refer to the set
of all real numbers that are at least 1. We say a function 𝑓 ∶ ℕ → ℝ>0 is negligible if for all 𝑐 ∈ ℕ,

lim
𝑛→∞

𝑛𝑐 ⋅ 𝑓 (𝑛) = 0.

We say a function 𝑓 ∶ ℕ → ℝ is non-negligible if there exists some 𝑐 ∈ ℕ such that 𝑓 (𝑛) ≥ 1/𝑛𝑐

for all sufficiently large 𝑛.
For two distributions 1, 2, we use the notation Δ(1,2) to denote the total variation

distance between 1 and 2, which we refer to simply as the statistical distance between the two
distributions. We say that two distributions are statistically close if their statistical distance is
negligible (in some implicit parameter, typically 𝑛 or 𝑚 for us).

For a set 𝑆, we let 𝑈 (𝑆) denote the uniform distribution over 𝑆. (If 𝑆 is not finite and 𝑆 ⊆ ℝ𝑛 is
Lebesgue measurable, this will be uniform with respect to the standard Lebesgue measure.)

2.1 Norms & Matrices
We use the notation 𝟎 to denote the all 0s vector in ℝ𝑛, where the dimension 𝑛 is clear from
context. We use 𝐈𝑛 ∈ ℝ𝑛×𝑛 to denote the 𝑛-dimensional identity matrix. We use the standard
𝓁1, 𝓁2, 𝓁∞ norms on ℝ𝑛. For a matrix 𝐀 ∈ ℝ𝑛×𝑚, we use the notation 𝜎max(𝐀) to denote the spectral

9

norm, or maximum singular value, of 𝐀. Explicitly,

𝜎max(𝐀) = max
𝐯≠𝟎

‖𝐀𝐯‖2
‖𝐯‖2

.

For a matrix 𝐀 ∈ ℝ𝑛×𝑚, we often write 𝐀 by its columns, as in 𝐀 = [𝐚1, 𝐚2,⋯ , 𝐚𝑚] for 𝐚𝑖 ∈ ℝ𝑛. We
sometimes abuse notation and move interchangeably between matrices 𝐀 ∈ ℝ𝑛×𝑚 and tuples of 𝑚
vectors in ℝ𝑛 (as defined by the columns of 𝐀). For a matrix 𝐀 ∈ ℝ𝑛×𝑚 given by 𝐀 = [𝐚1, 𝐚2,⋯ , 𝐚𝑚],
we use the notation

‖𝐀‖ = max
𝑗∈[𝑚]

‖‖𝐚𝑗 ‖‖2 .

We emphasize that ‖𝐀‖ does not refer to the standard spectral norm on matrices.

Lemma 1. For 𝐀 ∈ ℝ𝑛×𝑚 and 𝐯 ∈ ℝ𝑚, we have the inequality ‖𝐀𝐯‖2 ≤ ‖𝐀‖ ‖𝐯‖1.

Proof. Let 𝐀 = [𝐚1,⋯ , 𝐚𝑚], and let 𝐯 have entries 𝑣𝑗 ∈ ℝ. We have

‖𝐀𝐯‖2 =
‖‖‖‖‖

𝑚

∑
𝑗=1

𝑣𝑗𝐚𝑗
‖‖‖‖‖2
≤

𝑚

∑
𝑗=1

‖‖𝑣𝑗𝐚𝑗 ‖‖2 =
𝑚

∑
𝑗=1

|𝑣𝑗 | ‖‖𝐚𝑗 ‖‖2 ≤
𝑚

∑
𝑗=1

|𝑣𝑗 | ‖𝐀‖ = ‖𝐀‖ ‖𝐯‖1 .

We also use the following basic fact.

Lemma 2. For all 𝐯 ∈ ℝ𝑛, ‖𝐯‖1 ≤ 𝑛 ‖𝐯‖∞.

2.2 Lattices
For an invertible matrix 𝐁 ∈ ℝ𝑛×𝑛, an 𝑛-dimensional lattice generated by basis 𝐁, denoted (𝐁), is
given by all integer linear combinations of columns of 𝐁. That is,

(𝐁) ∶= {𝐁𝐳 ∶ 𝐳 ∈ ℤ𝑛}.

We define the (half-open) parallelepiped (𝐁) to be the set

(𝐁) ∶= {𝐁𝐯 ∶ 𝐯 ∈ [0, 1)𝑛}.

Note that for all 𝐱 ∈ ℝ𝑛, there exists unique 𝐲 ∈ (𝐁) such that 𝐱 − 𝐲 ∈ (𝐁). We use the
notation 𝐲 = 𝐱 (mod 𝐁) to denote the corresponding 𝐲 ∈ (𝐁) for a given 𝐱 ∈ ℝ𝑛. Note that 𝐲 is
computable in polynomial time given 𝐁 and 𝐱. For a lattice Λ, we denote the dual lattice of Λ as
Λ∗, defined by

Λ∗ = {𝐱 ∈ ℝ𝑛 ∶ ∀𝐯 ∈ Λ, ⟨𝐱, 𝐯⟩ ∈ ℤ}.

For 𝑖 ∈ [𝑛], we can define the 𝑖th successive minimum of a lattice Λ to be the smallest 𝜆𝑖 such
that there exist 𝑖 linearly independent lattice points of 𝓁2 norm at most 𝜆𝑖. Letting 𝐵 denote the
unit ball, this can be phrased as

𝜆𝑖(Λ) ∶= min{𝑟 ∶ dim(span(Λ ∩ 𝑟𝐵)) ≥ 𝑖}.

10

Note that 𝜆1(Λ) is the minimum distance of Λ.
We also define the covering radius 𝜈(Λ) of a lattice Λ, defined by

𝜈(Λ) = max
𝐱∈ℝ𝑛

min
𝐯∈Λ

‖𝐱 − 𝐯‖2 .

That is, 𝜈(Λ) is the smallest real number such that every element of ℝ𝑛 has distance at most 𝜈(Λ)
from (some point in) Λ.

We now define some fundamental (worst-case) lattice problems.

Definition 1 (Shortest Independent Vectors Problem). For a parameter 𝛾 ∶ ℕ → ℝ≥1, the shortest
independent vectors problem (SIVP𝛾) is a (worst-case) search problem defined as follows. Given an
invertible basis 𝐁 ∈ ℝ𝑛×𝑛 as input, output 𝑛 vectors 𝐒 = [𝐬1,⋯ , 𝐬𝑛] ∈ ℝ𝑛×𝑛 such that the following
hold:

• 𝐒 is linearly independent.

• For all 𝑖 ∈ [𝑛], 𝐬𝑖 ∈ (𝐁);

• ‖𝐒‖ ≤ 𝛾 (𝑛) ⋅ 𝜆𝑛((𝐁)).

Definition 2 (Covering Radius Problem). For a parameter 𝛾 ∶ ℕ → ℝ≥1, the gap covering radius
problem (GapCRP𝛾) is a (worst-case) decision problem defined as follows. Given an invertible basis
𝐁 ∈ ℝ𝑛×𝑛 and threshold 𝜃 ∈ ℝ>0 as input, output 1 if 𝜈((𝐁)) ≤ 𝜃 and 0 if 𝜈((𝐁)) > 𝛾 (𝑛) ⋅ 𝜃.

Definition 3 (Guaranteed Distance Decoding). For a parameter 𝛾 ∶ ℕ → ℝ≥1, the guaranteed
distance decoding (GDD𝛾) is a (worst-case) search problem defined as follows. Given an invertible
basis 𝐁 ∈ ℝ𝑛×𝑛 and target vector 𝐭 ∈ ℝ𝑛 as input, output a lattice point 𝐱 ∈ (𝐁) such that
‖𝐭 − 𝐱‖2 ≤ 𝛾 (𝑛) ⋅ 𝜆𝑛((𝐁)).

We note that GDD is often defined using 𝜈(⋅) instead of 𝜆𝑛(⋅), as using 𝜈(⋅) guarantees solutions
for all 𝛾 ≥ 1. However, throughout this paper, we will be in the regime where 𝛾 (𝑛) ≥ √

𝑛/2, which
guarantees a solution even with 𝜆𝑛(⋅) because 𝜆𝑛(Λ) ≥ 2√

𝑛𝜈(Λ) for all full-rank lattices Λ [GMR04,
Lemma 4.3].

We will also use an intermediate problem called Incremental Guaranteed Distance Decoding
(IncGDD) defined by [MR07].

Definition 4 (Incremental GDD, Definition 5.6 of [MR07]). For a parameter 𝛾 ∶ ℕ → ℝ≥1, the
incremental guaranteed distance decoding (IncGDD𝛾) problem is a (worst-case) search problem
defined as follows. Given as input:

• An invertible basis 𝐁 ∈ ℝ𝑛×𝑛,

• A set 𝐒 of 𝑛 linearly independent vectors in (𝐁) (represented as columns of 𝐒 ∈ ℝ𝑛×𝑛),

• A target point 𝐭 ∈ ℝ𝑛, and

• A parameter 𝑟 > 𝛾 (𝑛) ⋅ 𝜆𝑛((𝐁)),

output some vector 𝐬 ∈ (𝐁) such that ‖𝐬 − 𝐭‖2 ≤ 𝑟 +
‖𝐒‖
8
.

11

Comparison to [MR07]. Definition 4 differs from [MR07, Definition 5.6] in two ways. First,
instead of using 𝜆𝑛((𝐁)), [MR07] considers general functions 𝜙 mapping 𝑛-dimensional lattices
to ℝ>0. Second, instead of fixing the constant 8, [MR07] parametrizes this more generally by some
constant 𝑔 .

As shown in [MR07], there are reductions from these worst-case lattice problems to IncGDD.

Lemma 3 (Lemma 5.10 in [MR07]). For any 𝛾 (𝑛) ≥ 1, there is a reduction from SIVP8𝛾 to IncGDD𝛾 .

Lemma 4 (Combining Lemmas 5.11, 5.12 in [MR07]). For any 𝛾 (𝑛) ≥ 1, there is a (randomized)
reduction from GapCRP12𝛾 to IncGDD𝛾 .

Lemma 5 (Lemma 5.11 in [MR07]). For any 𝛾 (𝑛) ≥ 1, there is a reduction from GDD3𝛾 to IncGDD𝛾 .

The best known algorithms for these lattice problems employ lattice reduction techniques,
based on LLL and BKZ [LLL82, Sch87]. They currently all have the following time-approximation
trade-off: For a tunable parameter 𝑘, in dimension 𝑛, it is posible to solve lattice problems with
approximation factor 𝛾 = 2𝑂(𝑛/𝑘) in time 2𝑂(𝑘), where 𝑂(⋅) hides polylog factors in 𝑛. Equalizing
these terms gives a 2𝑂(

√
𝑛)-time algorithm to solve 2𝑂(

√
𝑛)-approximate lattice problems. Despite

extensive study in the lattice literature, no better algorithms are known (that improve the exponent
by more than a polylog factor). In particular, the following two assumptions stand:

Assumption 1 (Polynomial Hardness of Approximate Worst-case Lattice Problems). For every
polynomial 𝛾 (𝑛), at least one of SIVP𝛾 , GapCRP𝛾 , or GDD𝛾 requires super-polynomial time to solve.

Assumption 2 (Subexponential Hardness of Approximate Worst-case Lattice Problems). For all
constants 𝜀 > 0, at least one of SIVP𝛾 , GapCRP𝛾 , or GDD𝛾 requires time 2𝜔(𝑛1/2−𝜀) to solve, where
𝛾 (𝑛) = 2𝑛1/2−𝜀 .

2.3 Continuous and Discrete Gaussian Measures
For 𝜇 ∈ ℝ and 𝜎 ∈ ℝ>0, we use the notation (𝜇, 𝜎2) to denote the (univariate) Normal distribution
with mean 𝜇 and standard deviation 𝜎. More generally, in 𝑛 ∈ ℕ variables, for 𝝁 ∈ ℝ𝑛 and
positive semi-definite 𝚺 ∈ ℝ𝑛×𝑛, we use the notation (𝝁,𝚺) to denote the multivariate Gaussian
distribution with mean 𝝁 and covariance matrix 𝚺. For the special case where 𝚺 = 𝜎2𝐈𝑛 for some
𝜎 ∈ ℝ>0, let 𝜑𝜎,𝝁(⋅) denote the probability density function of (𝝁, 𝜎2𝐈𝑛), i.e.,

𝜑𝜎,𝝁(𝐱) =
1

(2𝜋𝜎2)𝑛/2
⋅ exp(−

‖𝐱 − 𝝁‖22
2𝜎2) .

We now recall standard Gaussian measure notions from the lattice literature (specifically,
[MR07]). For an input 𝐱 ∈ ℝ𝑛, we define the Gaussian function 𝜌𝑠,𝝁(⋅) centered at 𝝁 ∈ ℝ𝑛 with
scale parameter 𝑠 ∈ ℝ>0 to be

𝜌𝑠,𝝁(𝐱) = exp(−
𝜋 ‖𝐱 − 𝝁‖22

𝑠2) = 𝑠𝑛 ⋅ 𝜑𝑠/
√
2𝜋,𝝁(𝐱).

12

Therefore, 𝜌𝑠,𝝁(𝐱)/𝑠𝑛 is the density function for the probability distribution (𝝁, 𝑠2
2𝜋 𝐈𝑛).

For any discrete 𝑆 ⊆ ℝ𝑛, let 𝜌𝑠,𝝁(𝑆) denote the sum

∑
𝐯∈𝑆

𝜌𝑠,𝝁(𝐯) ∈ ℝ.

Let Λ be a full-rank 𝑛-dimensional lattice. We define the discrete Gaussian distribution 𝐷Λ+𝝁,𝑠
shifted by 𝝁 ∈ ℝ𝑛 and scale parameter 𝑠 ∈ ℝ>0 to be the distribution with probability mass function

𝐷Λ+𝝁,𝑠(𝐱) =
⎧⎪⎪
⎨⎪⎪⎩

𝜌𝑠,𝟎(𝐱)
𝜌𝑠,𝟎(Λ + 𝝁)

=
𝜌𝑠,𝟎(𝐱)
𝜌𝑠,−𝝁(Λ)

if 𝐱 ∈ Λ,

0 otherwise,

= 𝟏[𝐱 ∈ Λ] ⋅
exp (−𝜋 ‖𝐱 − 𝝁‖22 /𝑠2)

∑𝐯∈Λ exp (−𝜋 ‖𝐱 − 𝝁‖22 /𝑠2)
.

We will use the fact that there is an efficient sampler for the discrete Gaussian for the special case
where Λ = ℤ𝑛 (see, e.g., [BLP+13, Lemma 2.3]).

For an 𝑛-dimensional lattice Λ and 𝜖 > 0, we define the smoothing parameter 𝜂𝜖(Λ) to be the
smallest 𝑠 ∈ ℝ>0 such that 𝜌1/𝑠,𝟎(Λ∗ ⧵ {𝟎}) ≤ 𝜖. We now recall standard results about the smoothing
parameter.
Lemma 6 (Lemma 3.3 of [MR07]). For any 𝑛-dimensional lattice Λ and 𝜖 > 0,

𝜂𝜖(Λ) ≤

√
ln(2𝑛(1 + 1/𝜖))

𝜋
⋅ 𝜆𝑛(Λ).

Lemma 7 (Lemma 4.1 of [MR07]). For any lattice (𝐁) and any 𝜖 > 0, 𝑠 ≥ 𝜂𝜖((𝐁)), and 𝝁 ∈ ℝ𝑛,
we have the statistical distance bound

Δ((𝝁,
𝑠2

2𝜋
𝐈𝑛) mod (𝐁), 𝑈 ((𝐁))) ≤

𝜖
2
.

Corollary 1. For any full-rank 𝐁 ∈ ℝ𝑛×𝑛, 𝜖 > 0, and 𝝁 ∈ ℝ𝑛, if

𝜎 ≥

√
ln(2𝑛(1 + 1/𝜖))

2𝜋2 ⋅ 𝜆𝑛((𝐁)),

then we have the statistical distance bound

Δ ((𝝁, 𝜎2𝐈𝑛) mod (𝐁), 𝑈 ((𝐁))) ≤
𝜖
2
.

Proof. This follows by combining Lemmas 6 and 7, where we set 𝜎 = 𝑠/
√
2𝜋.

Lemma 8. For 𝜎 > 0, let 𝜎 denote the distribution of outputs when first sampling 𝐯 ∼ 𝑈 ([0, 1)𝑛)
and then outputting a sample from 𝐷ℤ𝑛+𝐯,𝜎

√
2𝜋 . For any 𝜖 ∈ (0, 1/2), if

𝜎 ≥

√
ln(2𝑛(1 + 1/𝜖))

2𝜋2 ,

then we have the statistical distance bound

Δ ((𝟎, 𝜎2𝐈𝑛) ,𝜎) ≤ 4𝜖.

13

Proof sketch of Lemma 8. Let 𝑠 = 𝜎
√
2𝜋. The analysis in [GVV22, Lemma 17] shows that the

distributions have statistical distance at most

sup
𝐯∈[0,1)𝑛

𝜌𝑠,𝟎(ℤ𝑛)
𝜌𝑠,𝟎(ℤ𝑛 + 𝐯)

− 1 = sup
𝐯∈[0,1)𝑛

𝜌𝑠,𝟎(ℤ𝑛)
𝜌𝑠,−𝐯(ℤ𝑛)

− 1.

Implicit in [MR07, Lemma 4.4] is that as long as 𝑠 ≥ 𝜂𝜖(ℤ𝑛), then

𝜌𝑠,𝟎(ℤ𝑛)
𝜌𝑠,−𝐯(ℤ𝑛)

∈ [1,
1 + 𝜖
1 − 𝜖]

⊆ [1, 1 + 4𝜖],

where the last inclusion comes from the bound 𝜖 < 1/2. Subtracting by 1 and invoking Lemma 6
with Λ = ℤ𝑛 gives the desired bound.

We now recall some standard spectral bounds for Gaussian matrices.

Lemma 9 (As in [RV10]). Let 𝐀 ∈ ℝ𝑛×𝑚 be such that 𝐴𝑖,𝑗 ∼i.i.d. (0, 1). For all 𝑡 > 0, we have

Pr [𝜎max(𝐀) ≤
√
𝑛 +

√
𝑚 + 𝑡] ≥ 1 − 2𝑒−𝑡

2/2.

In particular, for 𝑚 ≥ 16𝑛, by setting 𝑡 =
√
𝑛, we have

Pr [𝜎max(𝐀) ≤
3
√
𝑚
2] ≥ 1 − 2𝑒−𝑛/2.

We now recall standard tail bounds for the 𝜒 2(𝑛) distribution, corresponding to 𝓁2-norm bounds
on Gaussian vectors.

Lemma 10 (As in [LM00], Corollary of Lemma 1). For any 𝑡 ≥ 0, we have

Pr
𝐯∼ (𝟎,𝐈𝑛)

[‖𝐯‖22 ≥ 𝑛 + 2
√
𝑡𝑛 + 2𝑡] ≤ 𝑒−𝑡 .

In particular, setting 𝑡 = 𝑛/4, we get

Pr
𝐯∼ (𝟎,𝐈𝑛) [

‖𝐯‖2 ≥
√
5/2 ⋅

√
𝑛] ≤ 𝑒−𝑛/4.

2.4 Symmetric Perceptrons and Number Partitioning
Definition 5 (Symmetric Binary Perceptron Problem). For a parameter 𝜅 ∶ ℝ≥1 → [0, 1], the
symmetric binary perceptron (SBP𝜅) problem is an average-case search problem defined as follows.
Given a random Gaussian matrix 𝐀 ∼ (0, 1)𝑛×𝑚 as input where 𝑚 ≥ 𝑛, output a vector 𝐱 ∈ {−1, 1}𝑚
such that ‖𝐀𝐱‖∞ ≤ 𝜅(𝑚/𝑛) ⋅

√
𝑚.

Definition 6 (Number Partitioning Problem). For a parameter 𝜅 ∶ ℕ → [0, 1], the number
partitioning problem (NPP𝜅) is an average-case search problem defined as follows. Given a random
Gaussian vector 𝐚 ∼ (𝟎, 𝐈𝑚), output a vector 𝐱 ∈ {−1, 1}𝑚 such that |𝐚⊤𝐱| ≤ 𝜅(𝑚) ⋅

√
𝑚.

We emphasize that NPP𝜅 is exactly a special case of SBP𝜅 (when setting 𝑛 = 1).

14

2.5 Worst-case to Average-case Reductions
We recall basic notions of reductions between (search) worst-case and average-case computational
problems. Let 𝐴 ∈ FNP be a worst-case search problem, and let 𝐵 ∈ FNP be an average-case search
problem defined over some distribution family {𝑛}𝑛∈ℕ. We say that there is a 𝑇 (𝑛)-time reduction
from 𝐴 to 𝐵 if for all non-negligible functions 𝜇, there exists a randomized poly(𝑇)-time oracle
Turing machine 𝑀 (⋅) such that for all (possibly randomized) such that

Pr
𝑦←𝑛

[(𝑦,(𝑦)) ∈ 𝐵] ≥ 𝜇(𝑛),

for all 𝑛 ∈ ℕ, it holds that for all 𝑥 ∈ {0, 1}∗,

Pr
𝑟
[(𝑥,𝑀(𝑥; 𝑟)) ∈ 𝐴] ≥

2
3
,

where 𝑟 denotes the internal randomness of 𝑀 . We emphasize that the polynomial in the poly(𝑇)
run-time of 𝑀 (⋅) may depend on the non-negligible function 𝜇. Since 𝑥 is worst-case and 𝐴 ∈ FNP,
standard amplification applies to make the success probability of 𝑀 exponentially close to 1.

3 Reduction to Symmetric Binary Perceptrons
Theorem 3. Suppose 𝜅(𝑥) = 1/𝑥1/2+𝜀 for some constant 𝜀 > 0. There exists some polynomial
𝛾 (𝑛) = 𝑛𝑂(1/𝜀) such that there is a polynomial-time reduction from IncGDD𝛾 to SBP𝜅.

We now state our main corollary for symmetric binary perceptrons.

Corollary 2. Suppose there is a polynomial time algorithm for SBP𝜅 (on average) for 𝜅(𝑥) = 1/𝑥1/2+𝜀

for some constant 𝜀 > 0 that succeeds with non-negligible probability. Then, there are randomized
polynomial time algorithms for the (worst-case) lattice problems SIVP𝛾 , GapCRP𝛾 , and GDD𝛾 for
some polynomial 𝛾 (𝑛). In particular, Assumption 1 implies that there is no polynomial time algorithm
for SBP𝜅 (on average) for 𝜅(𝑥) = 1/𝑥1/2+𝜀 for some constant 𝜀 > 0 that succeeds with non-negligible
probability.

More generally, if there is a 𝑇 (𝑛,𝑚)-time algorithm for SBP𝜅 (on average) for 𝜅(𝑥) = 1/𝑥1/2+𝜀

for some constant 𝜀 > 0 that succeeds with non-negligible probability, then there are randomized
poly(𝑛, 𝑇 (𝑛, poly(𝑛)))-time algorithms for the (worst-case) lattice problems SIVP𝛾 , GapCRP𝛾 , and
GDD𝛾 for some polynomial 𝛾 (𝑛).

Proof of Corollary 2. This follows by directly composing Lemmas 3 to 5 and Theorem 3.

Remark 1. For a sharper bound on 𝜅 in Theorem 3 and Corollary 2, we can instead assume subexpo-
nential hardness of approximate worst-case lattice problems. Specifically, for 𝜅(𝑥) = 1√

𝑥 log1+𝑐(𝑥) where

𝑐 > 0, we can set 𝑚 = 2𝑂(𝑛3/(2𝑐)) and 𝛾 (𝑛) = 2𝑂(𝑛3/(2𝑐)) in the reduction from IncGDD. In particular,
for 𝑐 > 3, Assumption 2 implies that there is no polynomial time algorithm for SBP𝜅 (on average) for
𝜅(𝑥) = 1√

𝑥 log1+𝑐(𝑥) that succeeds with non-negligible probability.

15

3.1 Proof of Theorem 3
We now prove Theorem 3.

Proof of Theorem 3. Let (𝐁 ∈ ℝ𝑛×𝑛, 𝐒 ∈ ℝ𝑛×𝑛, 𝐭 ∈ ℝ𝑛, 𝑟 ∈ ℝ) be the given IncGDD instance. Let

𝜎2 = ln 𝑛,

𝑚 = ⌈(8𝜎2𝑛3/2+𝜀)
1/𝜀
⌉ = 𝑛1+Θ(1),

𝜎1 =
𝑟
4𝑚

,

𝛾 (𝑛) = 4𝑚 ln 𝑛 = 𝑛1+Θ(1).

Sample 𝐮1 ∼ (𝐭, 𝜎2
1𝐈𝑛), 𝐮2,⋯ , 𝐮𝑚 ∼i.i.d. (𝟎, 𝜎2

1𝐈𝑛). Let 𝐔 = [𝐮1, 𝐮2,⋯ , 𝐮𝑚] ∈ ℝ𝑛×𝑚. Sample 𝑚
uniformly random lattice vectors 𝐯𝑖 ∈ (𝐁) mod (𝐒) (see [Mic04, Proposition 2.9]), and let
𝐕 = [𝐯1, 𝐯2,⋯ , 𝐯𝑚] ∈ ℝ𝑛×𝑚. Define

�̃� = 𝐒−1(𝐕 + 𝐔) mod ℤ𝑛 ∈ [0, 1)𝑛×𝑚.

Proposition 1. The distribution of �̃� is statistically close to 𝑈 ([0, 1)𝑛×𝑚).

Proof of Proposition 1. Recall that by definition of IncGDD, we know

𝑟 > 𝛾 (𝑛) ⋅ 𝜆𝑛((𝐁)) = 4𝑚 ln 𝑛 ⋅ 𝜆𝑛((𝐁)).

In anticipation of applying Corollary 1, we observe that for sufficiently large 𝑛,

𝜎1 =
𝑟
4𝑚

≥ ln 𝑛 ⋅ 𝜆𝑛((𝐁)) ≥

√
ln (2𝑛 (1 + 1/𝑒− ln2(𝑛)))

2𝜋2 ⋅ 𝜆𝑛((𝐁)).

Therefore, we can invoke Corollary 1 𝑚 times (once with 𝝁 = 𝐭, 𝑚 − 1 times with 𝝁 = 𝟎) and the
triangle inequality to see that

Δ (𝐔 mod (𝐁), 𝑈 ((𝐁))𝑚) ≤ 𝑚 ⋅
𝑒− ln2(𝑛)

2
= negl(𝑛).

Since 𝐕 has columns that are uniform elements of (𝐁) mod (𝐒), and since (𝐒) ⊆ (𝐁), it
follows that

Δ (𝐔 + 𝐕 mod (𝐒), 𝑈 ((𝐒))𝑚) ≤ negl(𝑛).

Multiplying on the left by 𝐒−1 gives

Δ (�̃�, 𝑈 ((ℤ𝑛))𝑚) ≤ negl(𝑛),

or equivalently, that �̃� is statistically close to uniform over [0, 1)𝑛×𝑚.

16

For 𝑗 ∈ [𝑚], let �̃�𝑗 ∈ [0, 1)𝑛 denote the 𝑗th column of �̃�. For all 𝑗 ∈ [𝑚], sample 𝐰𝑗 ∼ 𝐷ℤ𝑛+�̃�𝑗 ,𝜎2
√
2𝜋 .

Let 𝐖 = [𝐰1,⋯ ,𝐰𝑚]. Note that by construction, 𝐰𝑗 ≡ �̃�𝑗 mod ℤ𝑛, i.e., 𝐖 ≡ �̃� mod ℤ𝑛. In
anticipation of applying Lemma 8, we observe that for sufficiently large 𝑛,

𝜎2 = ln(𝑛) ≥

√
ln (2𝑛 (1 + 1/𝑒− ln2(𝑛)))

2𝜋2 .

Therefore, by invoking Lemma 8 𝑚 times, the triangle inequality, and Proposition 1, we see that

Δ (𝐖, (0, 𝜎2
2)

𝑛×𝑚
) ≤ 4𝑚𝑒− ln2(𝑛) + negl(𝑛) = negl(𝑛).

Let 𝐀 = 1
𝜎2
𝐖. It follows that 𝐀 is statistically close to (0, 1)𝑛×𝑚.

Feed 𝐀 into the SBP𝜅 solver to receive some 𝐱 ∈ {−1, 1}𝑚 such that ‖𝐀𝐱‖∞ ≤ 𝜅(𝑚/𝑛) ⋅
√
𝑚. Let

𝐞 = −𝐀𝐱 ∈ ℝ𝑛 with ‖𝐞‖∞ ≤ 𝜅(𝑚/𝑛) ⋅
√
𝑚. Let 𝑥1 ∈ {−1, 1} be the first entry of 𝐱. Let 𝐞′ = 𝜎2𝐞 ∈ ℝ𝑛.

The reduction outputs 𝐬 = 𝑥1(𝐔𝐱 + 𝐒𝐞′) ∈ ℝ𝑛.
We first argue that 𝐬 ∈ (𝐁). Since 𝐀𝐱 + 𝐞 = 𝟎, by scaling up by 𝜎2, we have 𝐖𝐱 + 𝐞′ = 𝟎.

Since 𝐱 ∈ ℤ𝑚,
𝟎 = 𝐖𝐱 + 𝐞′ ≡ �̃�𝐱 + 𝐞′ ≡ 𝐒−1(𝐕 + 𝐔)𝐱 + 𝐞′ mod ℤ𝑛,

meaning that 𝐒−1(𝐕 + 𝐔)𝐱 + 𝐞′ ∈ ℤ𝑛, and thus

(𝐕 + 𝐔)𝐱 + 𝐒𝐞′ ∈ (𝐒) ⊆ (𝐁).

Since 𝐕 contains vectors in (𝐁) and 𝐱 ∈ ℤ𝑚, we can subtract by 𝐕𝐱 to get

𝐔𝐱 + 𝐒𝐞′ ∈ (𝐁).

Multiplying by the sign 𝑥1 ∈ {−1, 1} gives

𝐬 = 𝑥1(𝐔𝐱 + 𝐒𝐞′) ∈ (𝐁),

as desired.
We next argue that the norm of 𝐬 − 𝐭 is small. Decompose 𝐱 as 𝐱⊤ = [𝑥1||𝐱⊤−1], and decompose

𝐔 as 𝐔 = [𝐮1||𝐔−1]. We then have

𝐬 = 𝑥1(𝐔𝐱 + 𝐒𝐞′) = 𝑥1(𝐮1𝑥1 + 𝐔−1𝐱−1 + 𝐒𝐞′)
= 𝑥2

1𝐮1 + 𝑥1𝐔−1𝐱−1 + 𝑥1𝐒𝐞′

= 𝐮1 + 𝑥1𝐔−1𝐱−1 + 𝑥1𝐒𝐞′

= 𝐭 + 𝐮′
1 + 𝑥1𝐔−1𝐱−1 + 𝑥1𝐒𝐞′,

17

where the distribution of 𝐮′
1 is (𝟎, 𝜎2

1𝐈𝑛). It follows that with all but negligible probability,

‖𝐬 − 𝐭‖2 = ‖‖𝐮
′
1 + 𝑥1𝐔−1𝐱−1 + 𝑥1𝐒𝐞′‖‖2

≤ ‖‖𝐮
′
1
‖‖2 + ‖𝐔−1𝐱−1‖2 + ‖‖𝐒𝐞

′‖‖2

≤ 𝜎1

√
5𝑛
2

+ 𝜎max(𝐔−1) ‖𝐱−1‖2 + ‖‖𝐒𝐞
′‖‖2 (by Lemma 10)

≤ 𝜎1

√
5𝑛
2

+ 𝜎max(𝐔−1)
√
𝑚 − 1 + ‖𝐒‖ ‖‖𝐞

′‖‖1 (by Lemma 1)

≤ 𝜎1

√
5𝑛
2

+ 𝜎max(𝐔−1)
√
𝑚 − 1 + 𝑛 ‖𝐒‖ ‖‖𝐞

′‖‖∞ (by Lemma 2)

≤ 𝜎1

√
5𝑛
2

+
3𝜎1

√
𝑚

2
⋅
√
𝑚 − 1 + 𝑛 ‖𝐒‖ ‖‖𝐞

′‖‖∞ (by Lemma 9)

≤ 4𝜎1𝑚 + 𝑛 ‖𝐒‖ ‖‖𝐞
′‖‖∞

≤ 𝑟 + 𝑛 ‖𝐒‖ ‖‖𝐞
′‖‖∞ .

Therefore, it suffices to show that ‖𝐞′‖∞ ≤ 1/(8𝑛). Recall that we have

‖‖𝐞
′‖‖∞ = 𝜎2 ‖𝐞‖∞ ≤ 𝜎2 ⋅ 𝜅(𝑚/𝑛) ⋅

√
𝑚 = 𝜎2 ⋅ (

𝑛
𝑚)

1/2+𝜀 √
𝑚 = 𝜎2 ⋅

𝑛1/2+𝜀

𝑚𝜀 .

Since 𝑚 ≥ (8𝜎2𝑛3/2+𝜀)1/𝜀 , we have ‖𝐞‖∞ ≤ 1/(8𝑛), as desired.
Lastly, we note that the SBP𝜅 solver need only succeed with some non-negligible probability

𝜇. As a result, we can repeat this whole process 𝑂(1/𝜇) = poly(𝑛,𝑚) times, and since we can
efficiently verify whether the SBP𝜅 solver succeeded, the reduction will still go through.

3.2 Variants and Generalizations
We mention a few variants of SBP for which the reduction in Theorem 3 would also apply. As
they are not critical to our main result, for simplicity, we only sketch the justifications.

1. Uniform 𝐀. Instead of having 𝐀 ∼ (0, 1)𝑛×𝑚, if we had a SBP solver that worked with
𝐀 ∼ 𝑈 ([0, 1])𝑛×𝑚, our reduction would actually be simpler and more direct. In particular,
there would be no need for discrete Gaussian sampling.

2. Zero entries in 𝐱. Instead of requiring 𝐱 ∈ {±1}𝑚 from the SBP solver, if we instead allowed
𝐱 ∈ {−1, 0, 1}𝑚 with 𝐱 ≠ 𝟎 from the SBP solver, a similar reduction to the one in Theorem 3
would work as well. The main difference is that the reduction would instead “guess” a
coordinate 𝑗 ∈ [𝑚] for which 𝑥𝑗 ≠ 0 (with success probability at least 1/𝑚) and put the
vector 𝐭 in the mean of that coordinate, instead of the first coordinate. (See [MR07] for more
rigorous details.)
A priori, the version of SBP that allows zero-entries in 𝐱 is in fact a lot easier. In particular,
for 𝜅(𝑥) = 1/

√
𝑥 , setting 𝐱 = (1, 0,… , 0)⊤ would get ‖𝐀𝐱‖∞ ≤ 𝑂(1) ≪ 𝜅(𝑚/𝑛)

√
𝑚 =

√
𝑛

18

with high probability by standard Gaussian tail bounds. However, in our reduction, we have
𝜅(𝑥) = 1/𝑥1/2+𝜀 . The bound on ‖𝐀𝐱‖∞ is

‖𝐀𝐱‖∞ ≤ 𝜅(𝑚/𝑛)
√
𝑚 =

√
𝑚

(𝑚/𝑛)1/2+𝜀
=

𝑛1/2+𝜀

𝑚𝜀 .

In our reduction, we set 𝑚 so that 𝑚𝜀 ≫ 𝑛1/2+𝜀 , making ‖𝐀𝐱‖∞ ≪ 1, in particular, a stronger
requirement than ‖𝐀𝐱‖∞ ≤ 𝑂(1).

3. Larger 𝐱 ∈ ℤ𝑚. Instead of (in particular) requiring ‖𝐱‖∞ ≤ 1 from the SBP solver, one
could relax this requirement to ‖𝐱‖∞ ≤ 𝐵 for some larger bound 𝐵 ∈ ℕ. In addition to
the modifications discussed in Item 2, we would put the vector 𝐭/𝑧 in the mean of that
coordinate, where 𝑧 ∼ 𝑈 ({−𝐵,−𝐵 + 1,… , 𝐵 − 1, 𝐵} ⧵ {0}). The runtime, 𝛾 , and 𝜅 would now
worsen by a factor of Θ(𝐵). (See [MR07] for more rigorous details.)

4 Reduction to Number Partitioning
Lemma 11 (Chinese Remainder Theorem). Let 𝑝1,… , 𝑝𝑛 ∈ ℕ be distinct positive prime numbers.
For 𝑞 = ∏𝑖∈[𝑛] 𝑝𝑖, there is a group isomorphism

𝜑 ∶ ⨁
𝑖∈[𝑛]

ℤ/𝑝𝑖ℤ ⟶ ℤ/𝑞ℤ.

Moreover, this map can be written as

𝜑 ∶ (𝑦1,⋯ , 𝑦𝑛) ↦ ∑
𝑖∈[𝑛]

𝑐𝑖𝑦𝑖

for 𝑐𝑖 ∈ ℤ such that 𝑞/𝑝𝑖 divides 𝑐𝑖 for all 𝑖 ∈ [𝑛] (so that this map is well-defined). Furthermore, the
inverse map 𝜑−1 ∶ ℤ/𝑞ℤ → ⨁𝑖∈[𝑛] ℤ/𝑝𝑖ℤ can be written as

𝜑−1 ∶ 𝑧 ↦ (𝑧, 𝑧,… , 𝑧),

where for all 𝑖 ∈ [𝑛], 𝑧 ∈ ℤ/𝑞ℤ = {0,… , 𝑞 − 1} is interpreted directly as an element of ℤ/𝑝𝑖ℤ =
{0,… , 𝑝𝑖 − 1} by reduction modulo 𝑝𝑖.

Lemma 12 (Normalized CRT). Let 𝑝1,… , 𝑝𝑛 ∈ ℕ be distinct positive prime numbers. For 𝑞 =
∏𝑖∈[𝑛] 𝑝𝑖, there is a group isomorphism

𝜑 ∶ ⨁
𝑖∈[𝑛]

1/𝑝𝑖 ⋅ ℤ/𝑝𝑖ℤ ⟶ 1/𝑞 ⋅ ℤ/𝑞ℤ.

Moreover, there exists an integer vector 𝐜 ∈ ℤ𝑛 such that this map can be written as

𝜑 ∶ (𝑦1,⋯ , 𝑦𝑛) ↦ 𝐜⊤𝐲 = ∑
𝑖∈[𝑛]

𝑐𝑖𝑦𝑖.

Furthermore, the inverse map 𝜑−1 ∶ 1/𝑞 ⋅ ℤ/𝑞ℤ → ⨁𝑖∈[𝑛] 1/𝑝𝑖 ⋅ ℤ/𝑝𝑖ℤ can be written as

𝜑−1 ∶ 𝑧 ↦ (
𝑞
𝑝1

𝑧,
𝑞
𝑝2

𝑧,… ,
𝑞
𝑝𝑛

𝑧) .

19

Proof of Lemma 12. This follows directly by Lemma 11, by setting

𝜑(𝑦1,… , 𝑦𝑛) = 1/𝑞 ⋅ 𝜑(𝑝1𝑦1, 𝑝2𝑦2,… , 𝑝𝑛𝑦𝑛).

Letting 𝐩 = (𝑝1,… , 𝑝𝑛) ∈ ℤ𝑛, we use the notation ⌊⋅⌋𝐩 ∶ [0, 1)𝑛 → ⨁𝑖∈[𝑛] 1/𝑝𝑖 ⋅ℤ/𝑝𝑖ℤ to denote
the function

⌊⋅⌋𝐩 ∶ 𝐯 ↦ (
⌊𝑣1𝑝1⌋
𝑝1

,… ,
⌊𝑣1𝑝𝑛⌋
𝑝𝑛) .

More generally, for elements in [0, 1)𝑛×𝑚, we extend ⌊⋅⌋𝐩 ∶ [0, 1)𝑛×𝑚 → (⨁𝑖∈[𝑛] 1/𝑝𝑖 ⋅ ℤ/𝑝𝑖ℤ)
𝑚 to

operate column-wise.
We will use the following basic fact.

Lemma 13. For any 𝐀 ∈ [0, 1)𝑛×𝑚 and 𝐱 ∈ ℝ𝑚,

‖‖‖(𝐀 − ⌊𝐀⌋𝐩) 𝐱
‖‖‖1 ≤

𝑛
min𝑖∈[𝑛] 𝑝𝑖

‖𝐱‖1 .

Proof. Let 𝑝∗ = min𝑖∈[𝑛] 𝑝𝑖. Letting 𝐌 = 𝐀 − ⌊𝐀⌋𝐩, by properties of the floor function, we have
𝐌 ∈ [0,

1
𝑝∗)

𝑛×𝑚
. Let 𝐦1,⋯ ,𝐦𝑛 ∈ [0,

1
𝑝∗)

𝑚
be the rows of 𝐌. We have

‖𝐌𝐱‖1 = ∑
𝑖∈[𝑛]

||𝐦
⊤
𝑖 𝐱|| ≤ ∑

𝑖∈[𝑛]

‖𝐦𝑖‖∞ ‖𝐱‖1 ≤
𝑛
𝑝∗ ‖𝐱‖1 ,

as desired, where we have used Hölder’s inequality to see that |𝐦⊤
𝑖 𝐱| ≤ ‖𝐦𝑖‖∞ ‖𝐱‖1.

We also use the following fact about the density of prime numbers.

Lemma 14. For all sufficiently large 𝑁 ∈ ℕ, there exist at least 𝑁/ ln(𝑁) distinct prime numbers in
the interval [𝑁 , 10𝑁].

Proof. For 𝑁 ∈ ℕ, let 𝜋(𝑁) = |{𝑎 ∈ [𝑁] ∶ 𝑎 is prime}| denote the prime-counting function. By the
prime number theorem, we know that for all sufficiently large 𝑁 ,

𝑁
2 ln𝑁

≤ 𝜋(𝑁) ≤
2𝑁
ln𝑁

.

In particular,

𝜋(𝑁) ≤
2𝑁
ln𝑁

, 𝜋(10𝑁) ≥
10𝑁

2 ln(10𝑁)
=

10𝑁
2 ln(𝑁) + 2 ln(10)

>
4𝑁
ln𝑁

,

for sufficiently large 𝑁 . Therefore, for sufficiently large 𝑁 , by taking the difference of the two
quantities, there are at least 𝑁/ ln𝑁 primes in [𝑁 , 10𝑁].

20

Theorem 4. Suppose 𝜅(𝑚) = 2− log2+𝜀 𝑚 for some constant 𝜀 > 0. Then there exists 𝛾 (𝑛) = 2𝑂(𝑛
1

1+𝜀)

such that there is a poly(𝑚)-time reduction from IncGDD𝛾 in dimension 𝑛 = Ω((log𝑚)1+𝜀) to NPP𝜅
(in dimension 𝑚).

We now state our main corollary for number partitioning.

Corollary 3. Suppose there is a polynomial time algorithm for NPP𝜅 (on average) for 𝜅(𝑚) =
2− log2+𝜀 𝑚 for some constant 𝜀 > 0 that succeeds with non-negligible probability. Then, there are

randomized 2𝑂(𝑛
1

1+𝜀)-time algorithms for the (worst-case) lattice problems SIVP𝛾 , GapCRP𝛾 , and

GDD𝛾 in dimension 𝑛 for 𝛾 (𝑛) = 2𝑂(𝑛
1

1+𝜀). In particular, Assumption 2 implies that for all constant
𝜀 > 0, there is no polynomial time algorithm for NPP𝜅 (on average) for 𝜅(𝑚) = 2− log3+𝜀 𝑚 that succeeds
with non-negligible probability.

More generally, suppose there is a 𝑇 (𝑚)-time algorithm forNPP𝜅 (on average) for 𝜅(𝑚) = 2− log2+𝜀 𝑚

for some constant 𝜀 > 0 that succeeds with non-negligible probability. Then, there are randomized

𝑇 (2
𝑂(𝑛

1
1+𝜀)

)-time algorithms for the (worst-case) lattice problems SIVP𝛾 , GapCRP𝛾 , and GDD𝛾 in

dimension 𝑛 for 𝛾 (𝑛) = 2𝑂(𝑛
1

1+𝜀).

Proof of Corollary 3. This follows by directly composing Lemmas 3 to 5 and Theorem 4.

We now prove Theorem 4.

Proof of Theorem 4. Let (𝐁 ∈ ℝ𝑛×𝑛, 𝐒 ∈ ℝ𝑛×𝑛, 𝐭 ∈ ℝ𝑛, 𝑟 ∈ ℝ) be the given IncGDD instance. Let

𝑚 = 210𝑛
1

1+𝜀 ,

𝜎1 =
𝑟
4𝑚

,

𝜎2 = ln𝑚,

𝛾 (𝑛) = 4𝑚 ln𝑚 = 40 ln(2)210𝑛
1

1+𝜀 𝑛
1

1+𝜀 .

Let 𝑝1,… , 𝑝𝑛 be 𝑛 distinct prime numbers in the range [32𝑛𝑚, 320𝑛𝑚], which we know must
exist for sufficiently large 𝑛,𝑚 by Lemma 14 (since 𝑚 ≥ 𝑛). Let 𝑞 = ∏𝑛

𝑖=1 𝑝𝑖 ≤ (320𝑛𝑚)𝑛. Sam-
ple 𝐮1 ∼ (𝐭, 𝜎2

1𝐈𝑛), 𝐮2,⋯ , 𝐮𝑚 ∼i.i.d. (𝟎, 𝜎2
1𝐈𝑛). Let 𝐔 = [𝐮1, 𝐮2,⋯ , 𝐮𝑚] ∈ ℝ𝑛×𝑚. Sample 𝑚

uniformly random lattice vectors 𝐯𝑖 ∈ (𝐁) mod (𝐒) (see [Mic04, Proposition 2.9]), and let
𝐕 = [𝐯1, 𝐯2,⋯ , 𝐯𝑚] ∈ ℝ𝑛×𝑚. Define

𝐀 = 𝐒−1(𝐕 + 𝐔) mod ℤ𝑛 ∈ [0, 1)𝑛×𝑚.

Proposition 2. We have the inequality

Δ (𝐀, 𝑈 ([0, 1)𝑛×𝑚)) ≤ negl(𝑚).

21

Proof. This follows from the same analysis as in Proposition 1. Specifically, since for sufficiently
large 𝑛 and 𝑚,

𝜎1 =
𝑟
4𝑚

≥ ln𝑚 ⋅ 𝜆𝑛((𝐁)) ≥

√
ln (2𝑛 (1 + 1/𝑒− ln2(𝑚)))

2𝜋2 ⋅ 𝜆𝑛((𝐁)),

by Corollary 1 and the triangle inequality, we get a total statistical distance of 𝑚 ⋅ 𝑒− ln2(𝑚) =
negl(𝑚).

Let 𝜑 be the isomorphism guaranteed by Lemma 12, with 𝐜 ∈ ℤ𝑛 being the coefficients defining
the linear map 𝜑. Let 𝐲 ∈ ℝ𝑚 be defined by

𝐲 = 𝜑(⌊𝐀⌋𝐩) + 𝐟 mod ℤ𝑚 ∈ [0, 1)𝑚

where 𝐟 ∈ ℝ𝑚 is sampled as 𝐟 ∼ 𝑈 ([0, 1/𝑞)𝑚).
We argue that Δ(𝐲, 𝑈 ([0, 1)𝑚)) ≤ negl(𝑚) as follows. Since 𝐀 is (close to) 𝑈 ([0, 1)𝑛×𝑚), it follows

that ⌊𝐀⌋𝐩 is (close to) 𝑈 (⨁𝑖∈[𝑛] 1/𝑝𝑖 ⋅ ℤ/𝑝𝑖ℤ)𝑚. Moreover, since 𝜑 is a bijection, it follows that
𝜑(⌊𝐀⌋𝐩) is (close to) 𝑈 (1/𝑞 ⋅ ℤ/𝑞ℤ)𝑚. Since 𝐟 ∼ 𝑈 ([0, 1/𝑞)𝑚), we can see that Δ(𝐲, 𝑈 ([0, 1)𝑚)) ≤
negl(𝑚).

Sample 𝐰 ∼ 𝐷ℤ𝑚+𝐲,𝜎2
√
2𝜋 . Note that by construction, 𝐰 ≡ 𝐲 mod ℤ𝑚. In anticipation of

applying Lemma 8, we observe that for sufficiently large 𝑚,

𝜎2 = ln𝑚 ≥

√
ln (2𝑚 (1 + 1/𝑒− ln2(𝑚)))

2𝜋2 .

Therefore, by invoking Lemma 8, Δ(𝐲, 𝑈 ([0, 1)𝑚)) ≤ negl(𝑚), and the triangle inequality, we see
that

Δ ((𝟎, 𝜎2
2𝐈𝑚),𝐰) ≤ 𝑒− ln2(𝑚) + negl(𝑚) = negl(𝑚).

Let 𝐚 = 1
𝜎2
𝐰. It follows that 𝐚 is statistically close to (𝟎, 𝐈𝑚). Feed 𝐚 into the NPP solver to

receive some 𝐱 ∈ {−1, 1}𝑚 such that |𝐚⊤𝐱| ≤ 𝜅(𝑚)
√
𝑚. Let 𝑒 = −𝐚⊤𝐱 ∈ ℝ with |𝑒| ≤ 𝜅(𝑚)

√
𝑚. Let

𝑥1 ∈ {−1, 1} be the first entry of 𝐱. Let 𝑒′ = 𝜎2𝑒 ∈ ℝ, and let 𝑒′′ = 𝐟⊤𝐱 + 𝑒′ ∈ ℝ.
The reduction outputs

𝐬 = 𝑥1 (𝐔𝐱 − 𝐒(𝐀 − ⌊𝐀⌋𝐩)𝐱 + 𝐒𝜑−1(𝑒′′)) .

We first argue that 𝐬 ∈ (𝐁). Since 𝐚⊤𝐱 + 𝑒 = 0, by scaling up, we have 𝐰⊤𝐱 + 𝑒′ = 0. Since
𝐱 ∈ ℤ𝑚,

0 = 𝐰⊤𝐱 + 𝑒′ ≡ 𝐲⊤𝐱 + 𝑒′ = (𝜑(⌊𝐀⌋𝐩) + 𝐟)
⊤
𝐱 + 𝑒′ mod 1,

≡ 𝐜⊤ ⌊𝐀⌋𝐩 𝐱 + 𝐟⊤𝐱 + 𝑒′ mod 1,
≡ 𝜑(⌊𝐀⌋𝐩 𝐱) + 𝑒′′ mod 1.

By closure, we know 𝑒′′ ∈ 1/𝑞 ⋅ ℤ/𝑞ℤ, so we have

0 ≡ 𝜑(⌊𝐀⌋𝐩 𝐱) + 𝑒′′ ≡ 𝜑(⌊𝐀⌋𝐩 𝐱) + 𝜑 (𝜑−1(𝑒′′)) ≡ 𝜑 (⌊𝐀⌋𝐩 𝐱 + 𝜑−1(𝑒′′)) mod 1.

22

By applying 𝜑−1, it follows that

𝐀𝐱 − (𝐀 − ⌊𝐀⌋𝐩)𝐱 + 𝜑−1(𝑒′′) = ⌊𝐀⌋𝐩 𝐱 + 𝜑−1(𝑒′′) ∈ ℤ𝑛.

Plugging in the definition of 𝐀 and since 𝐱 ∈ ℤ𝑚,

𝐒−1(𝐕 + 𝐔)𝐱 − (𝐀 − ⌊𝐀⌋𝐩)𝐱 + 𝜑−1(𝑒′′) ∈ ℤ𝑛.

Multiplying by 𝐒 on the left gives

(𝐕 + 𝐔)𝐱 − 𝐒(𝐀 − ⌊𝐀⌋𝐩)𝐱 + 𝐒𝜑−1(𝑒′′) ∈ (𝐒) ⊆ (𝐁).

Since 𝐕 contains vectors in (𝐁) and 𝐱 ∈ ℤ𝑚, we can subtract by 𝐕𝐱 to get

𝐔𝐱 − 𝐒(𝐀 − ⌊𝐀⌋𝐩)𝐱 + 𝐒𝜑−1(𝑒′′) ∈ (𝐁).

Multiplying by the sign 𝑥1 ∈ {−1, 1} gives

𝐬 = 𝑥1 (𝐔𝐱 − 𝐒(𝐀 − ⌊𝐀⌋𝐩)𝐱 + 𝐒𝜑−1(𝑒′′)) ∈ (𝐁),

as desired.
We next argue that the norm of 𝐬 − 𝐭 is small. Decompose 𝐱 as 𝐱⊤ = [𝑥1||𝐱⊤−1], and decompose

𝐔 as 𝐔 = [𝐮1||𝐔−1]. We then have

𝐬 = 𝑥1𝐔𝐱 − 𝑥1𝐒(𝐀 − ⌊𝐀⌋𝐩)𝐱 + 𝑥1𝐒𝜑−1(𝑒′′)
= 𝑥1(𝐮1𝑥1 + 𝐔−1𝐱−1) − 𝑥1𝐒(𝐀 − ⌊𝐀⌋𝐩)𝐱 + 𝑥1𝐒𝜑−1(𝑒′′)
= 𝐮1 + 𝑥1𝐔−1𝐱−1 − 𝑥1𝐒(𝐀 − ⌊𝐀⌋𝐩)𝐱 + 𝑥1𝐒𝜑−1(𝑒′′)
= 𝐭 + 𝐮′

1 + 𝑥1𝐔−1𝐱−1 − 𝑥1𝐒(𝐀 − ⌊𝐀⌋𝐩)𝐱 + 𝑥1𝐒𝜑−1(𝑒′′),

where the distribution of 𝐮′
1 is (𝟎, 𝜎2

1𝐈𝑛). It follows that

‖𝐬 − 𝐭‖2 =
‖‖‖𝐮

′
1 + 𝑥1𝐔−1𝐱−1 − 𝑥1𝐒(𝐀 − ⌊𝐀⌋𝐩)𝐱 + 𝑥1𝐒𝜑−1(𝑒′′)‖‖‖2

≤ ‖‖𝐮
′
1
‖‖2 + ‖𝐔−1𝐱−1‖2 +

‖‖‖𝐒(𝐀 − ⌊𝐀⌋𝐩)𝐱
‖‖‖2 +

‖‖𝐒𝜑
−1(𝑒′′)‖‖2

≤ 4𝜎1𝑚 + ‖‖‖𝐒(𝐀 − ⌊𝐀⌋𝐩)𝐱
‖‖‖2 +

‖‖𝐒𝜑
−1(𝑒′′)‖‖2 (by Lemmas 9 and 10)

≤ 4𝜎1𝑚 + ‖𝐒‖ (
‖‖‖(𝐀 − ⌊𝐀⌋𝐩) 𝐱

‖‖‖1 +
‖‖𝜑

−1(𝑒′′)‖‖1) (by Lemma 1)

≤ 4𝜎1𝑚 + ‖𝐒‖ (
𝑛

min𝑖∈[𝑛] 𝑝𝑖
‖𝐱‖1 + ‖‖𝜑

−1(𝑒′′)‖‖1) (by Lemma 13)

= 𝑟 + ‖𝐒‖ (
𝑛𝑚

min𝑖∈[𝑛] 𝑝𝑖
+ ‖‖𝜑

−1(𝑒′′)‖‖1) .

≤ 𝑟 + ‖𝐒‖ (
1
16

+ ‖‖𝜑
−1(𝑒′′)‖‖1) .

23

It suffices to upper bound ‖𝜑−1(𝑒′′)‖1 by 1/16. Recall from Lemma 12 that

𝜑−1(𝑒′′) = (
𝑞
𝑝1

𝑒′′,
𝑞
𝑝2

𝑒′′,… ,
𝑞
𝑝𝑛

𝑒′′) ∈ ⨁
𝑖∈[𝑛]

1/𝑝𝑖 ⋅ ℤ/𝑝𝑖ℤ.

For of these entries to be small when viewed in ℝ, we want to ensure that there’s no “wraparound.”
In particular, if

𝑒′′ ≤
min𝑖∈[𝑛] 𝑝𝑖

16𝑞𝑛
,

then ‖𝜑−1(𝑒′′)‖1 ≤ 1/16, as desired. Since min𝑖∈[𝑛] 𝑝𝑖 ≥ 32𝑛𝑚, it suffices to show that

𝑒′′ ≤
2𝑚
𝑞
.

Recall that 𝑒′′ = 𝐟⊤𝐱 + 𝑒′ = 𝐟⊤𝐱 + 𝜎2𝑒, where 𝐟 ∼ 𝑈 ([0, 1/𝑞)𝑚) and |𝑒| ≤ 𝜅(𝑚)
√
𝑚. It follows that

|𝑒′′| ≤ ||𝐟
⊤𝐱|| + |𝑒′| ≤ ‖𝐟‖∞ ‖𝐱‖1 + 𝜎2|𝑒| ≤

𝑚
𝑞
+ 𝜎2 ⋅ 𝜅(𝑚)

√
𝑚.

Thus, it suffices to show 𝜎2 ⋅ 𝜅(𝑚)
√
𝑚 ≤ 𝑚/𝑞, or equivalently, 𝜅(𝑚) ≤ √

𝑚/(𝑞 ln𝑚). We have
√
𝑚

𝑞 ln𝑚
=

25𝑛
1

1+𝜀

𝑞10 ln(2)𝑛 1
1+𝜀

≥
25𝑛

1
1+𝜀

10 ln(2)(320𝑛𝑚)𝑛𝑛 1
1+𝜀

=
25𝑛

1
1+𝜀

10 ln(2)(320𝑛)𝑛210𝑛
2+𝜀
1+𝜀 𝑛 1

1+𝜀

≥
1

211𝑛
2+𝜀
1+𝜀

for sufficiently large 𝑛. On the other hand,

𝜅(𝑚) =
1

2(log𝑚)2+𝜀
=

1

2(10𝑛
1

1+𝜀)
2+𝜀 =

1

2102+𝜀𝑛
2+𝜀
1+𝜀

≤
1

2100𝑛
2+𝜀
1+𝜀

.

Therefore, 𝜅(𝑚) ≤ √
𝑚/(𝑞 ln𝑚), as desired.

Lastly, we note that the NPP𝜅 solver need only succeed with some non-negligible probability
𝜇(𝑚). As a result, we can repeat this whole process 𝑂(1/𝜇) = poly(𝑚) times, and since we can
efficiently verify whether the NPP𝜅 solver succeeded, the reduction will still go through.

Moreover, as NPP is a special case of SBP, all of the generalizations and variants discussed in
Section 3.2 apply here to NPP as well.

Acknowledgements. The authors are supported by DARPA under Agreement No. HR00112020023,
NSF CNS-2154149 and a Simons Investigator Award. The first author is also supported in part by
NSF DGE-2141064. We are particularly thankful to David Gamarnik for a stimulating conversation
where he described the symmetric perceptron and number partitioning problems to us and posed
the question of showing computational hardness for them.

24

References
[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems (extended abstract). In

Gary L. Miller, editor, Proceedings of the Twenty-Eighth Annual ACM Symposium on
the Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996, pages
99–108. ACM, 1996. 3, 6, 8

[ALS21] Emmanuel Abbe, Shuangping Li, and Allan Sly. Proof of the contiguity conjecture
and lognormal limit for the symmetric perceptron, 2021. 2

[ALS22] Emmanuel Abbe, Shuangping Li, and Allan Sly. Binary perceptron: efficient algo-
rithms can find solutions in a rare well-connected cluster. In Stefano Leonardi and
Anupam Gupta, editors, STOC ’22: 54th Annual ACM SIGACT Symposium on Theory
of Computing, Rome, Italy, June 20 - 24, 2022, pages 860–873. ACM, 2022. 2

[APZ19] Benjamin Aubin, Will Perkins, and Lenka Zdeborová. Storage capacity in symmetric
binary perceptrons. Journal of Physics A: Mathematical and Theoretical, 52(29):294003,
June 2019. 2

[AR06] Dimitris Achlioptas and Federico Ricci-Tersenghi. On the solution-space geometry
of random constraint satisfaction problems. In Jon M. Kleinberg, editor, Proceedings
of the 38th Annual ACM Symposium on Theory of Computing, Seattle, WA, USA, May
21-23, 2006, pages 130–139. ACM, 2006. 2

[Ban10] Nikhil Bansal. Constructive algorithms for discrepancy minimization. In 51th Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2010, October 23-26, 2010,
Las Vegas, Nevada, USA, pages 3–10. IEEE Computer Society, 2010. 2, 4

[BDVLZ20] Carlo Baldassi, Riccardo Della Vecchia, Carlo Lucibello, and Riccardo Zecchina.
Clustering of solutions in the symmetric binary perceptron. Journal of Statistical
Mechanics: Theory and Experiment, 2020(7):073303, 2020. 2

[BEAKZ24] Damien Barbier, Ahmed El Alaoui, Florent Krzakala, and Lenka Zdeborová. On
the atypical solutions of the symmetric binary perceptron. Journal of Physics A:
Mathematical and Theoretical, 57(19):195202, April 2024. 2

[BKW03] Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity
problem, and the statistical query model. J. ACM, 50(4):506–519, 2003. 4

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé.
Classical hardness of learning with errors. In Dan Boneh, Tim Roughgarden, and
Joan Feigenbaum, editors, Symposium on Theory of Computing Conference, STOC’13,
Palo Alto, CA, USA, June 1-4, 2013, pages 575–584. ACM, 2013. 13

[BS20] Nikhil Bansal and Joel H. Spencer. On-line balancing of random inputs. Random
Struct. Algorithms, 57(4):879–891, 2020. 2

25

[BV15] Zvika Brakerski and Vinod Vaikuntanathan. Constrained key-homomorphic prfs
from standard lattice assumptions - or: How to secretly embed a circuit in your PRF.
In Yevgeniy Dodis and Jesper Buus Nielsen, editors, Theory of Cryptography - 12th
Theory of Cryptography Conference, TCC 2015, Warsaw, Poland, March 23-25, 2015,
Proceedings, Part II, volume 9015 of Lecture Notes in Computer Science, pages 1–30.
Springer, 2015. 8, 9

[Cov65] Thomas M. Cover. Geometrical and statistical properties of systems of linear in-
equalities with applications in pattern recognition. IEEE Transactions on Electronic
Computers, EC-14(3):326–334, 1965. 2

[Gam21] David Gamarnik. The overlap gap property: A topological barrier to optimiz-
ing over random structures. Proceedings of the National Academy of Sciences,
118(41):e2108492118, 2021. 3

[GJ79] M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979. 4

[GK21] David Gamarnik and Eren C. Kızıldağ. Algorithmic obstructions in the random
number partitioning problem, 2021. 4

[GKPX22] David Gamarnik, Eren C. Kizildag, Will Perkins, and Changji Xu. Algorithms and
barriers in the symmetric binary perceptron model. In 63rd IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2022, Denver, CO, USA, October 31 - November
3, 2022, pages 576–587. IEEE, 2022. 2, 3, 6

[GKPX23] David Gamarnik, Eren C. Kizildag, Will Perkins, and Changji Xu. Geometric barriers
for stable and online algorithms for discrepancy minimization. In Gergely Neu and
Lorenzo Rosasco, editors, The Thirty Sixth Annual Conference on Learning Theory,
COLT 2023, 12-15 July 2023, Bangalore, India, volume 195 of Proceedings of Machine
Learning Research, pages 3231–3263. PMLR, 2023. 2

[Gl16] David Gamarnik and Quan li. Finding a large submatrix of a gaussian random matrix.
Annals of Statistics, 46, 02 2016. 2

[GMR04] Venkatesan Guruswami, Daniele Micciancio, and Oded Regev. The complexity of
the covering radius problem on lattices and codes. In 19th Annual IEEE Conference
on Computational Complexity (CCC 2004), 21-24 June 2004, Amherst, MA, USA, pages
161–173. IEEE Computer Society, 2004. 11

[GVV22] Aparna Gupte, Neekon Vafa, and Vinod Vaikuntanathan. Continuous LWE is as
hard as LWE & applications to learning gaussian mixtures. In 63rd IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2022, Denver, CO, USA, October
31 - November 3, 2022, pages 1162–1173. IEEE, 2022. 14

26

[HRRY17] Rebecca Hoberg, Harishchandra Ramadas, Thomas Rothvoss, and Xin Yang. Number
balancing is as hard as minkowski’s theorem and shortest vector. In Friedrich
Eisenbrand and Jochen Könemann, editors, Integer Programming and Combinatorial
Optimization - 19th International Conference, IPCO 2017, Waterloo, ON, Canada, June
26-28, 2017, Proceedings, volume 10328 of Lecture Notes in Computer Science, pages
254–266. Springer, 2017. 4

[JH60] Roger David Joseph and Louise Hay. The number of orthants in n-space intersected
by an s-dimensional subspace. 1960. 2

[JL84] William B Johnson and Joram Lindenstrauss. Extensions of lipschitz mappings into a
hilbert space. Contemporary Mathematics, 26:189–206, 1984. 5

[Kan83] Ravi Kannan. Improved algorithms for integer programming and related lattice
problems. In David S. Johnson, Ronald Fagin, Michael L. Fredman, David Harel,
Richard M. Karp, Nancy A. Lynch, Christos H. Papadimitriou, Ronald L. Rivest,
Walter L. Ruzzo, and Joel I. Seiferas, editors, Proceedings of the 15th Annual ACM
Symposium on Theory of Computing, 25-27 April, 1983, Boston, Massachusetts, USA,
pages 193–206. ACM, 1983. 3

[Kan87] Ravi Kannan. Minkowski’s convex body theorem and integer programming. Math.
Oper. Res., 12(3):415–440, 1987. 3

[KK82] Narendra Karmarkar and Richard M. Karp. The differencing method of set partitioning.
1982. 4, 6

[KKLO86] Narendra Karmarkar, Richard M Karp, George S Lueker, and Andrew M Odlyzko. Prob-
abilistic analysis of optimum partitioning. Journal of Applied probability, 23(3):626–
645, 1986. 4

[LLL82] Arjen K Lenstra, Hendrik Willem Lenstra, and László Lovász. Factoring polynomials
with rational coefficients. Mathematische annalen, 261:515–534, 1982. 3, 12

[LM00] Beatrice Laurent and Pascal Massart. Adaptive estimation of a quadratic functional
by model selection. Annals of Statistics, pages 1302–1338, 2000. 14

[LM15] Shachar Lovett and Raghu Meka. Constructive discrepancy minimization by walking
on the edges. SIAM J. Comput., 44(5):1573–1582, 2015. 4

[LRR17] Avi Levy, Harishchandra Ramadas, and Thomas Rothvoss. Deterministic discrepancy
minimization via the multiplicative weight update method. In Friedrich Eisenbrand
and Jochen Könemann, editors, Integer Programming and Combinatorial Optimization
- 19th International Conference, IPCO 2017, Waterloo, ON, Canada, June 26-28, 2017,
Proceedings, volume 10328 of Lecture Notes in Computer Science, pages 380–391.
Springer, 2017. 4

27

[Mic04] Daniele Micciancio. Almost perfect lattices, the covering radius problem, and ap-
plications to ajtai’s connection factor. SIAM J. Comput., 34(1):118–169, 2004. 16,
21

[MMZ05] M. Mézard, T. Mora, and R. Zecchina. Clustering of solutions in the random satisfia-
bility problem. Physical Review Letters, 94(19), May 2005. 2

[MR07] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on
gaussian measures. SIAM J. Comput., 37(1):267–302, 2007. 3, 6, 7, 8, 11, 12, 13, 14, 18,
19

[PX21] Will Perkins and Changji Xu. Frozen 1-rsb structure of the symmetric ising perceptron.
In Samir Khuller and Virginia Vassilevska Williams, editors, STOC ’21: 53rd Annual
ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25,
2021, pages 1579–1588. ACM, 2021. 2

[Reg04] Oded Regev. Lattices in computer science - average-case hardness. Lecture Notes for
Class (scribe: Elad Verbin). https://cims.nyu.edu/regev/teaching/
latticesfall2004/ln/averagecase.pdf, 2004. 8

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
J. ACM, 56(6):34:1–34:40, 2009. 3

[Rot14] Thomas Rothvoß. Constructive discrepancy minimization for convex sets. In 55th
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia,
PA, USA, October 18-21, 2014, pages 140–145. IEEE Computer Society, 2014. 4

[RR23] Victor Reis and Thomas Rothvoss. The subspace flatness conjecture and faster integer
programming. In 64th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2023, Santa Cruz, CA, USA, November 6-9, 2023, pages 974–988. IEEE, 2023. 3

[RV10] Mark Rudelson and Roman Vershynin. Non-asymptotic theory of random matrices:
extreme singular values. In Proceedings of the International Congress of Mathematicians
2010 (ICM 2010) (In 4 Volumes) Vol. I: Plenary Lectures and Ceremonies Vols. II–IV:
Invited Lectures, pages 1576–1602. World Scientific, 2010. 14

[Sch87] Claus-Peter Schnorr. A hierarchy of polynomial time lattice basis reduction algo-
rithms. Theor. Comput. Sci., 53:201–224, 1987. 3, 12

[Spe85] Joel Spencer. Six standard deviations suffice. Transactions of the American Mathemat-
ical Society, 289(2):679–706, 1985. 4

[TMR20] Paxton Turner, Raghu Meka, and Philippe Rigollet. Balancing gaussian vectors in
high dimension. In Jacob D. Abernethy and Shivani Agarwal, editors, Conference on
Learning Theory, COLT 2020, 9-12 July 2020, Virtual Event [Graz, Austria], volume 125
of Proceedings of Machine Learning Research, pages 3455–3486. PMLR, 2020. 2

28

https://cims.nyu.edu/~regev/teaching/lattices_fall_2004/ln/averagecase.pdf
https://cims.nyu.edu/~regev/teaching/lattices_fall_2004/ln/averagecase.pdf

[Win61] Robert O. Winder. Single stage threshold logic. In 2nd Annual Symposium on Switching
Circuit Theory and Logical Design (SWCT 1961), pages 321–332, 1961. 2

[Yak96] Benjamin Yakir. The differencing algorithm ldm for partitioning: A proof of a
conjecture of karmarkar and karp. Mathematics of Operations Research, 21(1):85–99,
1996. 4

29
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

