
Collapsing Catalytic Classes

Michal Koucký∗

Charles University
koucky@iuuk.mff.cuni.cz

Edward Pyne†

MIT
epyne@mit.edu

Ian Mertz∗

Charles University
iwmertz@iuuk.mff.cuni.cz

Sasha Sami∗
Charles University

sashasami@iuuk.mff.cuni.cz

February 27, 2025

Abstract

A catalytic machine is a space-bounded Turing machine with additional access to a second,
much larger work tape, with the caveat that this tape is full, and its contents must be preserved
by the computation. Catalytic machines were defined by Buhrman et al. (STOC 2014), who,
alongside many follow-up works, exhibited the power of catalytic space (CSPACE) and in particular
catalytic logspace machines (CL) beyond that of traditional space-bounded machines.

Several variants of CL have been proposed, including non-deterministic and co-non-deterministic
catalytic computation by Buhrman et al. (STACS 2016) and randomized catalytic computation
by Datta et. al. (CSR 2020). These and other works proposed several questions, such as catalytic
analogues of the theorems of Savitch and Immerman and Szelepcsényi. Catalytic computation
was recently derandomized by Cook et al. (STOC 2025), but only in certain parameter regimes.

We settle almost all questions regarding randomized and non-deterministic catalytic com-
putation, by giving an optimal reduction from catalytic space with additional resources to the
corresponding non-catalytic space classes. One main consequence of this is

CL = CNL

i.e. with access to a large filled hard-drive, non-determinism provides no additional power.
Our results build on the compress-or-compute framework of Cook et al. (STOC 2025).

Despite proving broader and stronger results, our framework is simpler and more modular.

∗Partially supported by the Grant Agency of the Czech Republic under the grant agreement no. 24-10306S and by
Charles Univ. project UNCE 24/SCI/008.

†Supported by the NSF GRFP.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 19 (2025)

1 Introduction
The catalytic space model, introduced by Buhrman, Cleve, Koucký, Loff, and Speelman [BCK+14],
studies the question of whether full space can be useful to computation. In CSPACE[s, c] we consider
a typical SPACE[s] machine augmented with a second work tape, called the catalytic tape, which has
length c. We think of c to be much larger than s, often exponentially larger; however, this tape is
initialized to some arbitrary string τ , and at the end of the computation our machine must reset the
catalytic tape to the starting τ .

Despite this restriction, [BCK+14] show that such machines are unexpectedly powerful. Focusing
on the class called catalytic logspace (CL := CSPACE[O(log n),poly(n)]), they show that the catalytic
tape is at least as powerful as randomization and non-determinism (BPL and NL, respectively), and
contains problems (e.g. determinant) which are thought to be in neither.

Catalytic computation appeared in the context of composition for space-bounded functions, where
it was unknown whether computing multiple instances of a function causes the space complexity to
scale up linearly in tandem. Such techniques and insights were crucially used in the recent result of
Cook and Mertz [CM21, CM22, CM24] on the tree evaluation problem, which was later used in a
breakthrough by Williams [Wil25] showing TIME[t] can be simulated in only

√
t log t space.

In light of the surprising power of catalytic space, follow-up works have proposed several variants
of the base model, such as non-deterministic catalytic computation [BKLS18, GJST19, MS24],
randomized catalytic computation [DGJ+20, CLMP25], non-uniform catalytic computation [GKM15,
Pot17, RZ21, CM22], and error-prone catalytic computation [GJST24, FMST25], to name a few (see
surveys of Koucký [Kou16] and Mertz [Mer23] for an overview).

1.1 Non-Deterministic and Randomized Catalytic Computation
Non-deterministic space has a long yet unresolved history. The first major result, due to Savitch in
1970 [Sav70], states that determinism can simulate non-determinism with only a quadratic space
overhead. Much later, Nisan [Nis92] and Saks and Zhou [SZ99] proved that randomness can similarly
be simulated with an even smaller blowup showing BPSPACE[s] ⊆ SPACE[s3/2].

While derandomization continues to see vigorous work—the exponent has since been further
improved by Hoza [Hoz21] by a o(1) factor—Savitch’s Theorem remains the best known simulation
for non-determinism to date. Subsequent results by Immerman and Szelepscényi [Imm88, Sze88] and
Reinhardt and Allender [RA00] show progress from a different angle, namely by showing that NL
is closed under complement (NL = coNL), and NL can be made unambiguous (NL = UL) assuming
strong circuit lower bounds, respectively.

Non-deterministic catalytic space was introduced by Buhrman et al. [BKLS18], who showed that,
assuming pseudorandom generators, catalytic non-deterministic logspace (CNL) is also closed under
complement (CNL = coCNL). Later work of [GJST19] extended this by showing, again assuming
pseudorandom generators, that CNL can also be made unambiguous (CNL = CUL). The question of
proving such statements unambiguously, or of obtaining a catalytic analogue of Savitch’s Theorem,
was put forth several times as an open question [BKLS18, GJST19, Kou16, Mer23, CLMP25].

Randomized catalytic space was introduced by Datta et al. [DGJ+20], where they showed
that catalytic randomized logspace (CBPL) equals CL under similar pseudorandomness assumptions.
This was recently shown unconditionally by Cook et al. [CLMP25]; however, their result only
holds for CSPACE[s, c] when c = 2Θ(s), while the general case is of interest in other settings
[BDS22, Pyn24, FMST25].

1.2 Our Results
We settle essentially every question regarding non-deterministic and randomized catalytic computation.
Our most striking result is that, with access to a large pre-filled hard drive, access to non-determinism

1

gives no additional power:

Theorem 1.
CL = CNL.

Before our result there were no non-trivial connections between non-deterministic and deterministic
catalytic computation, even under assumptions. Combined with the result of [CLMP25] that
CBPL = CL, we have that in the context of space-bounded computation, catalytic space acts as one
resource to rule them all.

We also have a number of results for other values of s and c. First, a catalytic Savitch’s Theorem
holds, with overhead matching that of the non-catalytic case:

Theorem 2. For all s := s(n), c := c(n) such that log n ≤ s ≤ c ≤ 2s,

CNSPACE[s, c] ⊆ CSPACE[O(s2), O(c)].

No results of the above form were known before, even under assumptions.
Second, CNSPACE[s, c] is closed under complement:

Theorem 3. For all s := s(n), c := c(n) such that log n ≤ s ≤ c ≤ 2s,

coCNSPACE[s, c] ⊆ CNSPACE[O(s), O(c)].

This result was previously known to follow from strong lower bounds [BKLS18].
Finally, CBPSPACE[s, c] collapses to CSPACE[O(s), O(c)] for every c ≥ s2:

Theorem 4. For all s := s(n), c := c(n) such that log n ≤ s ≤ c ≤ 2s,

CBPSPACE[s, c] ⊆ CSPACE[O(s), O(c+ s2)].

This strongly extends the result of [CLMP25] as well as that of Pyne [Pyn24], which showed that
BPSPACE[s] ⊆ CSPACE[O(s), O(s2)].

2 Catalytic Machines
We first define catalytic Turing machines:

Definition 1 (Catalytic space). A catalytic Turing Machine with free space s := s(n) and catalytic
space c := c(n) is a Turing machine with the following tapes:

1. a read-only input tape of length n which is initialized to x ∈ {0, 1}n

2. a read-write work tape of length s which is initialized to 0s

3. a read-write catalytic tape of length c ≤ 2s which is initialized to some τ ∈ {0, 1}c

At each time step, a non-deterministic/randomized machine has two (not necessarily distinct) choices
for its transition: the 0-choice and 1-choice. Sometimes we can think of the choices as being selected
according to the content of an auxiliary non-deterministic/random tape that provides read-only
one-way access to its content. This view will be useful later to define the space bounded hierarchy.
For machines that compute binary functions we think of the machine as outputting 1 if it reaches an
accepting state, and outputting 0 if it reaches a rejecting state. We equip machines that output a
value from a larger range with an output tape that provides write-only one-way access. The machine
is expected to write its output on this output tape. Oracle machines are equipped with a write-only
one-way access oracle tape. To make an oracle query, the machine writes its query on the oracle
tape, issues a query request to its oracle, the tape is reset to empty and the machine transitions into
its next state depending on the query answer. A catalytic Turing machine M is said to be valid if for
every x and τ , the machine halts in finite time with the catalytic tape containing τ regardless of its
non-deterministic/random choices. (In particular, the machine is not allowed to loop forever.)

2

Definition 2 (Variants of catalytic space). For a boolean function f , we say a catalytic machine
computes f if

• (deterministic machine) for every x, the machine outputs f(x).

• (non-deterministic machine) for every x, if f(x) = 1 then there is a sequence on non-deterministic
choices where the machine accepts x, and if f(x) = 0 then for any sequence on non-deterministic
choices the machine rejects. A co-non-deterministic machine must always accept when f(x) = 1
and sometimes reject when f(x) = 0.

• (randomized machine) for every x, the machine outputs f(x) with probability at least 2/3 over
its random choices.

Definition 3 (Complexity classes). A catalytic Turing machine decides a language L if it computes
the characteristic function of L.

We define CSPACE[s, c] to be the class of languages which can be computed by a catalytic Turing
machine with free space s := s(n) and catalytic space c := c(n).

We define CNSPACE[s, c] (coCNSPACE[s, c]) to be the class of languages which can be computed
(co-computed) by a non-deterministic catalytic Turing machine with free space s := s(n) and catalytic
space c := c(n).

We define CBPSPACE[s, c] to be the class of languages which can be computed by a randomized
catalytic Turing machine with free space s := s(n) and catalytic space c := c(n).

As discussed above, our main focus is on class catalytic logspace, where we fix the parameters s
and c to be logarithmic and polynomial in n, respectively.

Definition 4 (Catalytic logspace classes). We define the following instantiations:

• CL :=
⋃

d∈N CSPACE[d log n, nd]

• CNL :=
⋃

d∈N CNSPACE[d log n, nd]

• coCNL :=
⋃

d∈N coCNSPACE[d log n, nd]

• CBPL :=
⋃

d∈N CBPSPACE[d log n, nd]

3 Main Technical Theorem
All of our results follow from a generic reduction from catalytic space with additional resource B, to
the corresponding non-catalytic space class:

Theorem 5. Let B ∈ {N, coN,BP}. Then for all s := s(n), c := c(n) such that log n ≤ s ≤ c ≤ 2s,

CBSPACE[s, c] ⊆ CSPACE[O(s), O(c)]BSPACE[O(s)]

where queries made to the oracle are on inputs of length 2O(s), and for B = BP the oracle is for the
corresponding promise class. Moreover, there is just a single oracle query, and regardless of the query
output, the machine still correctly resets the catalytic tape.

3.1 Derivation of Results
Then our main results follow directly from existing simulations of randomized and non-deterministic
(standard) space, which we now recall:

3

Theorem 6 ([BCK+14]). For all s := s(n) ≥ log n,

NSPACE[O(s)] ⊆ CSPACE
[
O(s), 2O(s)

]
.

Theorem 7 ([Sav70]). For all s := s(n) ≥ log n,

NSPACE[O(s)] ⊆ SPACE[O(s2)].

Theorem 8 ([Imm88, Sze88]). For all s := s(n) ≥ log n,

coNSPACE[O(s)] ⊆ NSPACE[O(s)].

Theorem 9 ([Pyn24]). For all s := s(n) ≥ log n,

BPSPACE[O(s)] ⊆ CSPACE
[
O(s), O(s2)

]
.

From this we can immediately derive all our corollaries using Theorem 5. In particular: Theorem 1
follows from Theorem 6; Theorem 2 follows from Theorem 7; Theorem 3 follows from Theorem 8;
and Theorem 4 follows from Theorem 9.

3.2 Discussion
Before going into the proof of Theorem 5, we note some corollaries and extensions of our main results.

Catalytic hierarchies. All our results can be scaled up to the non-deterministic catalytic hierarchy,
defined by classes ΣCSPACE

k and ΠCSPACE
k , as well as the randomized non-deterministic catalytic hierar-

chy, defined by classes MACSPACE
k and AMCSPACE

k . While ΣL
k = NL ⊆ CL for all k, and Sdroievski [MS24]

showed that MAL is contained in CL, there are no previously known results connecting the catalytic
non-deterministic hierarchies to CL, even under the assumption that CNL = coCNL.

Theorem 10.
CL =

⋃
k∈N

ΣCL
k =

⋃
k∈N

MACL
k (=

⋃
k∈N

ΠCL
k =

⋃
k∈N

AMCL
k).

Theorem 11. For all s := s(n), c := c(n) such that log n ≤ s ≤ c ≤ 2s and for all k ∈ N,

ΣCSPACE
k [s, c],ΠCSPACE

k [s, c] ⊆ CNSPACE[O(s), O(c)]

MACSPACE
k [s, c],AMCSPACE

k [s, c] ⊆ CNSPACE[O(s), O(c+ s2)].

Of note, space-bounded hierarchy machines need to be defined carefully, as too much access to
the various quantifiers at different points of time can result in a sharp increase in power. We define
these machines as taking quantified variables y1 . . . yk, with the appropriate notions of accepting or
rejecting over the choices of yi, but with the additional restriction that the quantified variables are
written from outermost to innermost on the non-deterministic tape, meaning each yj can be accessed
in a read-once fashion, and no yj can be read after yj′ for j′ > j.

Catalytic and non-catalytic space. While results in catalytic space have been more forthcoming
than their classical space counterparts in recent years, it is unclear whether proving connections
between ordinary space classes is formally any harder (or easier) than proving connections between
the corresponding catalytic space classes.

A corollary of our reduction is that ordinary space and catalytic space now share the same fate
with regards to the power of additional resources:

4

Corollary 12. Let B1,B2 ∈ {⊥,N, coN,U,BP}. Then

B1SPACE[O(s)] ⊆ B2SPACE[O(s)] iff
∀c ≥ s, B1CSPACE[O(s), O(c)] ⊆ B2CSPACE[O(s), O(c)]

where ⊥ indicates no additional resources.

We make a note about unambiguity here. The proof of Theorem 5 extends to CUSPACE as well, but
as this does not prove any new results we did not include it in our statement; however, it does allow
us to get the relevant extension in Corollary 12. This gives the consequence that NL = UL holds iff
CNSPACE[s, c] ⊆ CUSPACE[O(s), O(c)] for every s and c.

Lossy catalytic space. We lastly note one use of our result in the context of another catalytic
model, namely lossy catalytic space [GJST24, FMST25]. Folkertsma et al. [FMST25] showed that
allowing errors when resetting the catalytic tape of a non-deterministic or randomized catalytic
machine is equivalent to giving the machine extra free space instead; unfortunately they could not take
the further step of equating these error-free classes to deterministic ones, as 1) for non-determinism
no such connections were known, and 2) the results of [CLMP25] could no longer be applied to
derandomize after adding this extra space. Theorems 2 and 4 are robust to s ≫ ω(log c), however,
and so we immediately get the following results (for definitions and motivation see [FMST25]):

Corollary 13. For all s := s(n), c := c(n), e := e(n) such that log n ≤ s ≤ c ≤ 2s and e ≤
√
c,

LCNSPACE[s, c, e] ⊆ CSPACE[O((s+ e log c)2), O(c)]

LCBPSPACE[s, c, e] ⊆ CSPACE[O(s+ e log c), O(c+ (s+ e log c)2)]

4 Proof of Main Result
In this section we prove our central technical theorem. We begin with a discussion of the structure
of catalytic machines, followed by an overview of our approach, and lastly we fill in the details to
formally prove Theorem 5.

4.1 Configuration Graphs of Catalytic Machines
Let [n] = {0, 1, · · · , n− 1}. For a graph G, we denote its vertex set by V (G). We use x · y to represent
the concatenation of strings x and y.

Let M be a valid catalytic machine computing f . We will assume without loss of generality that
all auxiliary information about the current configuration of M, i.e. the state of M’s internal DFA,
the current positions of tape heads for the input, work, and catalytic tapes are all automatically
recorded in a designated part of the worktape.1 (The contents of the output/oracle tape and its head
position is not considered to be a part of a machine configuration.)

Definition 5. Let M be a catalytic machine with work space s and catalytic space c. We denote by
⟨π, u⟩ the configuration of M where π ∈ {0, 1}c is contained on the catalytic tape and u ∈ {0, 1}s is
on its work tape.

Consider the execution of M on some fixed input x and initial catalytic tape contents τ . Each
configuration of M can be uniquely represented by ⟨π, u⟩ for some π ∈ {0, 1}c and u ∈ {0, 1}s.
Without loss of generality we define startM,x,τ := ⟨τ, 0s⟩ to be the start configuration and accM,x,τ :=
⟨τ, 1 · 1 · 0s−2⟩ to be the unique accepting halt configuration, and rejM,x,τ := ⟨τ, 1 · 0 · 0s−2⟩ to be the
unique rejecting halt configuration.

It will often be useful to talk about the configuration graph defined by such executions.
1Altogether this additional information technically requires additional space logn+ log s+ log c+O(1) ≤ 3s, we

can handle this by replacing s with 4s throughout the proofs, which we omit for clarity.

5

Definition 6 (Configuration graphs). The configuration graph GM,x is the directed acyclic graph
where each node corresponds to a configuration of M on input x, where there is a directed edge from
⟨π, u⟩ to ⟨π′, u′⟩ iff ⟨π′, u′⟩ can be reached from ⟨π, u⟩ in one execution step of M. The out-degree of
every vertex in GM,x is at most 2, and there is some fixed constant dM depending only on M such
that each vertex in GM,x has in-degree at most dM − 2. We call the outgoing edges forward edges
of ⟨τ, v⟩. The remaining edges of ⟨τ, v⟩ are backward edges. A halting configuration has no forward
edges in GM,x.

We say an edge (v, v′) is labeled with b ∈ {0, 1} if it corresponds to a non-deterministic/randomized
b-choice of the machine. For deterministic transitions we label the edge with both 0 and 1.

For every catalytic tape τ let GM,x,τ be the subgraph of GM,x induced on configurations of GM,x

that are reachable from startM,x,τ . Clearly GM,x,τ has one source node, namely startM,x,τ , and up
to two sink nodes, namely accM,x,τ and rejM,x,τ .

Our main method of exploring non-deterministic graphs will be to simply set our non-deterministic
sequence to the all-zeroes string:

Definition 7 (0-graph of configuration graphs). Given a configuration graph GM,x, we let the
0-graph G0

M,x be the undirected graph where only edges with label 0 are retained, and we forget the
direction of each edge. Observe that for every τ and v ∈ GM,x,τ , G0

M,x(v) is a tree as each node has
at most one forward edge corresponding to the edge labeled 0 in GM,x. Given a configuration v, we
let G0

M,x(v) be the connected component of G0
M,x containing v.

The following fact is immediate:

Fact 14. Let v, v′ be such that v ∈ G0
M,x(v

′). Then G0
M,x(v) = G0

M,x(v
′) and hence v′ ∈ G0

M,x(v).

4.2 Proof Overview
Given a machine M, input x, and starting catalytic tape τ , our focus will be on the 0-graphs
reachable from our unique halting states accM,x,τ , rejM,x,τ . These graphs together include all states
reachable from the start configuration:

V (GM,x,τ) ⊆ V (G0
M,x(accM,x,τ)) ∪ V (G0

M,x(rejM,x,τ)). (1)

This follows as for every configuration v that can be reached from running forward from startM,x,τ ,
it must be the case that running forward from v on the all-0s auxiliary input reaches accM,x,τ or
rejM,x,τ (as otherwise the machine would not be valid). Moreover, we can deterministically and
reversibly explore G0

M,x(accM,x,τ) and G0
M,x(rejM,x,τ), since both subgraphs are trees and the roots,

which are halting configurations, can be identified by examining the worktape contents. If the total
size of G0

M,x(accM,x,τ) ∪ G0
M,x(rejM,x,τ) is bounded by 2O(s), then we could use our BSPACE oracle

to solve our function on this graph by identifying each node in the union with its index in the
exploration of the two graphs.

Unfortunately, if both graphs are large, this exploration may produce a graph which is too large
even to write to the query tape. To avoid this issue, we adopt an idea of Cook et al. [CLMP25] to
design what they dubbed a compress-or-compute argument. We observe that the average component
size is bounded:

Eτ [|V (G0
M,x(accM,x,τ)) ∪ V (G0

M,x(rejM,x,τ))|] ≤ 2s. (2)

Similar average-case bounds [BCK+14, DGJ+20, CLMP25] have been observed before, but with an
important difference – they all focused on bounding the average size of the forward-reachable graph
GM,x,τ .

The strategy of [CLMP25] for a deterministic CL machine worked as follows. We pad the catalytic
tape τ with s + 1 bits, producing a new tape (τ, i), and interpret i ∈ [2s+1] as a counter. They
then explore G0

M,x(startM,x,τ). If this exploration reaches a halt configuration within 2s+1 = poly(n)

6

steps, we successfully decide the language, and revert τ . Otherwise, let ⟨π, u⟩ be the i-th configuration
encountered on this traversal. Note that |π, u| = |τ, i| − 1, and hence we can compress our initial
catalytic tape by 1 bit by storing (π, u). To revert the tape, we run the machine backwards from
⟨π, u⟩ until we encounter the start state (which reverts τ), and count the number of steps to reach it
(which is i).

However, for a randomized catalytic machine traversing G0
M,x from the start state may not explore

all vertices required to decide the language, even if GM,x,τ is small, as it ignores all 1 transitions. To
prove CBPL = CL, Cook et al. [CLMP25] built a much more complicated argument based on taking
random walks from the start state, where these walks were themselves generated by a reconstructive
PRG [NW94, DPT24]. This added substantial complexity and limited their findings to the case
where c = poly(2s). Furthermore, their results could not accommodate nondeterministic catalytic
machines, as missing even a single state in the random walks could make it impossible to decide the
language.

We observe that all of this complexity can be completely removed if we instead reversibly traverse
from the halt states. For a tape τ , we explore G0

M,x(accM,x,τ) and G0
M,x(rejM,x,τ). If both graphs

are of size at most 2s+1, we can construct the union graph and determine connectivity in GM,x,τ (or
whatever else is required to decide the language) via our oracle. Otherwise, suppose WLOG that
|V (G0

M,x(accM,x,τ))| ≥ 2s+1. Then we adopt the strategy of [CLMP25]. We pad our tape to (τ, i)
and let ⟨π, u⟩ be the i-th configuration in this traversal. We compress

(τ, i) → (π, u, 0)

and revert essentially as in [CLMP25], by traversing backwards and counting steps until we reach a
halting configuration.

An iterative application of this idea either decides the language or frees c bits on the catalytic
tape. If the latter occurs, we can brute force over tapes τ ′ until we find one for which this graph is
small—such a τ ′ must exist by Equation (2)—which we can then provide to the oracle. The only
difference between models is that the oracle is solving a different problem on the configuration graph.

4.3 Formal Proof
We now formalize our discussion from Section 4.2. Fix a valid catalytic machine M using catalytic
space c and work space s computing a language L ∈ CBSPACE[s, c], and fix an n-bit input x. The
following fact is immediate:

Fact 15. Each tree in G0
M,x contains at most one halting configuration.

It follows, then, that the trees in G0
M,x are pairwise disjoint:

Fact 16. Let τ ̸= τ ′ ∈ {0, 1}c be two distinct contents of the catalytic tape of a catalytic machine M on
an input x. The vertex sets of G0

M,x(accM,x,τ), G0
M,x(accM,x,τ ′), G0

M,x(rejM,x,τ) and G0
M,x(rejM,x,τ ′)

are pairwise disjoint.

An immediate consequence of the above is that the average size of these components is bounded:

Lemma 17. Let M be a catalytic machine with work space s := s(n) and catalytic space c := c(n),
where log n ≤ s ≤ c ≤ 2s. Then

E
τ∈{0,1}c

[|V (G0
M,x(accM,x,τ))|] ≤ 2s and E

τ∈{0,1}c
[|V (G0

M,x(rejM,x,τ))|] ≤ 2s.

Finally, the forward-reachable graph from every state is contained in the trees rooted at the two
possible halt states:

7

Lemma 18. Let M be a valid catalytic machine, and let ⟨π, u⟩ be an arbitrary node in GM,x,τ . Then,
⟨π, u⟩ ∈ V (G0

M,x(accM,x,τ)) ∪ V (G0
M,x(rejM,x,τ)).

Proof. Since ⟨π, u⟩ is reachable by M on x from startM,x,τ , there exists some non-deterministic
sequence σ such that M reaches configuration ⟨π, u⟩. Now consider the non-deterministic sequence
σ · 0∗, which takes us to ⟨π, u⟩ and subsequently uses 0 as its non-deterministic choices. Since we
started from startM,x,τ , this must eventually either reach accM,x,τ or rejM,x,τ , and since the latter
part of this walk resides entirely inside G0

M,x(⟨π, u⟩), either G0
M,x(accM,x,τ) or G0

M,x(rejM,x,τ) must
contain ⟨π, u⟩.

Exploration of Graphs. We formally define the notation related to graphs for the purpose of
graph exploration. For an undirected graph G = (V,E) and v ∈ V , we let G(v) be the component of
v. Let d be the maximum degree of G.

We assume that there is a cyclic ordering of edges at each vertex that define a rotation map
Rot : V × [d] → V × [d], such that Rot(v, i) = (u, j) if the i-th edge of v is the j-th edge of u (if
i ≥ deg(v) then Rot(v, i) = (v, i)). If we identify the i-th directed edge leaving v by (v, i), then
Rot(v, i) flips the direction of the edge.

We will consider walks on G starting from a given edge (v, i) that follow an Eulerian tour of G(v).
For v ∈ V and i ∈ [deg(v)], the next edge of the walk is given by Next(v, i) = (u, j+1 mod deg(v))
where Rot(v, i) = (u, j). A step back is taken by StepBack(u, j) = Rot(u, j − 1 mod deg(u)).

We will index edges at each vertex (configuration) v in G0
M,x by [deg(v)] so that the forward edge

gets index 0 (if there is a forward edge). We fix the rotation map Rot0 of G0
M,x arbitrarily otherwise.

Defining Catalytic Subroutines. We can define a catalytic subroutine Rot(⟨π, u⟩, i) which
uses space O(s) that, given π ∈ {0, 1}c on the catalytic tape, and u ∈ {0, 1}s and i ∈ [dM] on
the worktape, replaces (⟨π, u⟩, i) by (⟨π′, u′⟩, j) = Rot0(⟨π, u⟩, i). Clearly, Next(⟨π, u⟩, i) and
StepBack(⟨π′, u′⟩, j) can be implemented by catalytic subroutines working in space O(s).

Let S = 2O(s) be a (easily computable) function of n. We can also define a catalytic subroutine
Walk(⟨τ, v⟩, i, t) which applies the subroutine Next(·) t times on (⟨τ, v⟩, i) where t ≤ S. The
procedure uses an additional work space of size O(s), and the input (⟨τ, v⟩, i) is replaced by the
output (⟨π, u⟩, j) on the respective tapes.

We will call the subroutine Walk(⟨τ, v⟩, i, t) for halting configurations ⟨τ, v⟩ and i = 0. For these
calls, we can define an inverse subroutine CountStepsBack(⟨π, u⟩, j) which calculates ℓ ≤ S, the
number of times we need to apply StepBack(·) on (⟨π, u⟩, j) before reaching (⟨τ, v⟩, 0) for some
halting configuration ⟨τ, v⟩. This subroutine uses extra O(s) work space, it replaces (⟨π, u⟩, j) by
(⟨τ, v⟩, 0), and returns the count to a designated area of the work space. If the count is bigger than S
it returns ∞.

Combining Walk(⟨τ, v⟩, i, t) with CountStepsBack(⟨π, u⟩, j) we can create a catalytic subrou-
tine ConfBit(b, ⟨τ, v⟩, t) which, given a halting configuration ⟨τ, v⟩, b ≤ c+ s and t ≤ S, determines
the b-th bit of the configuration reached by Walk(⟨τ, v⟩, 0, t). For a halting configuration ⟨τ, v⟩,
ConfBit(⟨τ, v⟩, t) preserves ⟨τ, v⟩ and t on its tape when it finishes its computation. Additionally, we
define a subroutine Canon(⟨τ, v⟩, i, t) which preserves ⟨τ, v⟩, i, t and returns 1, if the edge (⟨π, u⟩, j)
reached by Walk(⟨τ, v⟩, i, t) has j = 0, and it returns 0 otherwise. We think of t as the canonical
index of the configuration ⟨π, u⟩ within G0

M,x(⟨τ, v⟩).
Similarly, we can define a catalytic subroutine Size(⟨τ, v⟩), which, for a halting configuration

⟨τ, v⟩, determines the minimum number of steps t ≥ 1, such that Walk(⟨τ, v⟩, 0, t) returns back to
(⟨τ, v⟩, 0). If t is at most S, it outputs t; otherwise, it outputs ∞. Since G0

M,x(⟨τ, v⟩) forms a tree for
a halting configuration ⟨τ, v⟩, the subroutine returns twice the number of edges of G0

M,x(⟨τ, v⟩) iff
2 ≤ |V (G0

M,x(⟨τ, v⟩))| ≤ S
2 + 1. It returns 1 or ∞ otherwise. Additionally, the subroutine uses O(s)

extra work space.

8

Note that all the above procedures should ignore any portions of the machine tapes not directly
referenced therein.

The Main Subroutine. Our plan is to use the Compress-or-Compute strategy. Given a starting
catalytic tape τ for a machine M, we will either use G0

M,x(accM,x,τ) and G0
M,x(rejM,x,τ) to construct

a small graph that determines the outcome of the computation of M on x, or we will use vertices
in G0

M,x(accM,x,τ) and G0
M,x(rejM,x,τ) to compress the catalytic tape. We can state the main

Compress-or-Compute lemma:

Lemma 19. Let M be a catalytic machine with work space s := s(n) and catalytic space c := c(n),
where log n ≤ s ≤ c ≤ 2s, and let x ∈ {0, 1}n be an input for M written on the input tape. Let
B = 2s and S = 2B, and let τ ∈ {0, 1}c and tar ∈ {0, 1}B be given on the catalytic tape. There is a
catalytic subroutine ComputeOrCompress(τ, tar) which takes one of the following two actions:

1. Compute: If both G0
M,x(accM,x,τ) and G0

M,x(rejM,x,τ) are of size at most S/2 + 1, then it
outputs a directed graph G and two vertices r and t such that the forward reachable graph from
r is isomorphic to GM,x,τ , with startM,x,τ mapping to r and accM,x,τ mapping to t.

2. Compress: Otherwise, it replaces τ by π ∈ {0, 1}c and tar by (u, j, 0s−log dM), where u ∈ {0, 1}s
and j ∈ [dM] have the property that CountStepsBack(⟨π, u⟩, j) replaces π by τ and returns
tar as the number of steps.

The subroutine returns a bit indicating which action it took, and the procedure leaves other portions
of the tapes unchanged. Furthermore ComputeOrCompress(τ, tar) uses additional space O(s).

Proof. Recall that GM,x,τ is a the subgraph of GM,x induced on configurations of GM,x reachable
from startM,x,τ , and that by Lemma 18 we have

V (GM,x,τ) ⊆ V (G0
M,x(accM,x,τ) ∪ V (G0

M,x(rejM,x,τ)).

In brief, if both G0
M,x(accM,x,τ) and G0

M,x(rejM,x,τ) are of size at most S
2 + 1, we can explore

them completely using Walk(·), and reconstruct a graph G containing GM,x,τ . If G0
M,x(accM,x,τ)

or G0
M,x(rejM,x,τ) is large we can compress τ .

Initial check: We first check the sizes of G0
M,x(accM,x,τ) and G0

M,x(rejM,x,τ) using calls to Size(accM,x,τ)

and Size(rejM,x,τ). Since accM,x,τ = ⟨τ, 1 · 1 · 0s−2⟩ and rejM,x,τ = ⟨τ, 1 · 0 · 0s−2⟩, both states are
easy to prepare given startM,x,τ , and Size can be run in O(s) space. If either of the sizes exceeds
S/2 + 1, meaning if either call to Size returns ∞, we move to the compress case; otherwise, we
proceed to the compute case.

Compute case: If both the graphs have a size of at most S/2 + 1, we can explore configurations of
G0
M,x(accM,x,τ) and G0

M,x(rejM,x,τ) using ConfBit(·). We will index the configurations of G by
[S] × [2]. The configuration indexed (i, b) is the configuration reached by Walk(accM,x,τ , 0, i) if
b = 0 and by Walk(rejM,x,τ , 0, i) otherwise.

For each (i, b), (j, d) ∈ [S]× [2], we can check whether there is an edge from the configuration (i, b)
to (j, d) in GM,x by comparing them bit-by-bit using ConfBit(·). If i and j are canonical indexes
of their respective configurations (which can be checked by calling Canon(·)) we connect them by
an edge in G. Hence, we output a graph G on [S]× [2] where the connectivity between the canonical
indexes of configurations from GM,x,τ is the same as in GM,x,τ . By checking each (i, b) ∈ [S]× [2], we
can locate a canonical copy of a configuration startM,x,τ and accM,x,τ , and output them as r and t.

This computation will use at most O(s) space on the work tape to run Walk and ConfBit, and
it will preserve τ and tar on the catalytic tape.

Compress case: Consider without loss of generality the case where Size(accM,x,τ) returns ∞. We
prepare accM,x,τ = ⟨τ, v⟩ where v = 1 · 1 · 0s−2, and run Walk(accM,x,τ , i, tar) with i set to 0,

9

treating tar as a natural number evaluated in base-2, plus one. The result of Walk will be to replace
τ by some π, v by some u ∈ {0, 1}s, and i by some j. We replace tar by (u, j, 0s−log dM) and end
the procedure.

This computation utilizes at most O(s) workspace, which is all that is needed for the subroutine
Walk. Since Size(accM,x,τ) returns ∞, it indicates that during the first S steps prescribed by
Walk, we do not return to the edge (accM,x,τ , 0). Therefore, given that tar ≤ S (with tar treated
as a natural number), calling CountStepsBack(⟨π, u⟩, j) replaces π with τ and returns tar as the
number of steps taken. Consequently, the output possesses the required properties.

We now finish the proof of Theorem 5 using the compression and decompression procedures from
above.

Proof of Theorem 5. Let M be our CBSPACE[c, s] machine and fix an n-bit input x. Define B := 2s
and S := 2B .

Our goal is to output a directed graph G and two vertices r and t where t is reachable from
r in G iff M accepts x. The graph G will be obtained by the Compress-or-Compute subroutine
of Lemma 19 which will be run for a suitable choice of τ . Given such a graph G, we can clearly
obtain the answer to our function by appealing to our oracle, as it will be a graph of size at most
2S = 22s+1—thus it can be analyzed by a BSPACE[O(s)] machine—which represents GM,x,τ .

We let k ≥ 2 + 2c/s, and we think of our catalytic tape as consisting of blocks

(τ, tar0, tar1, . . . , tark−1)

where τ ∈ {0, 1}c and tari ∈ {0, 1}B . Note that this gives a total catalytic length of c+(2+2c/s)·2s ≤
10c as desired.

We iterate over i ∈ [k] and call ComputeOrCompress(τi, tari), where τi is the first c bits
of the catalytic tape at the time when we begin the i-th iteration; thus τ0 := τ . Each call
ComputeOrCompress(τi, tari) either outputs the desired graph G or compresses tari. In the
former case, we obtain the graph G on which we can run our oracle to obtain the solution to our
original function, at which point we can decompress (see below). In the latter case, τi is replaced by
some π, which we refer to as τi+1, and tari is replaced by some (ui, ji, 0

s−log dM); we then move on
to the (i+ 1)-st iteration.

If none of the calls gives the desired graph, then since we free at least s/2 bits of the catalytic
tape during each iteration, we free at least c + s bits of space on the catalytic tape in total. We
can use this space to iterate over all possible τk ∈ {0, 1}c and set tark = 1B, and see for which
one ComputeOrCompress(τk, tark) falls into the compute case. Whenever it does not do so, i.e.
whenever it falls into the compress case, then it replaces the current τk by some π and tark by
some (u, j, 0s−log dM); we will revert it back to τk and tark by running CountStepsBack(⟨π, u⟩, j),
which will replace π by τk and return tark as the number of steps. We increment τk viewed as a
binary counter and continue for our new τk.

By Lemma 17, Eτ∈{0,1}c [|V (G0
M,x(accM,x,τ))|] ≤ 2s and Eτ∈{0,1}c [|V (G0

M,x(rejM,x,τ))|] ≤ 2s.
Thus, for at least half of the possible starting states τ , we have that |V (G0

M,x(accM,x,τ))| ≤ 4 · 2s
and |V (G0

M,x(accM,x,τ))| ≤ 4 · 2s. In particular, there must exist some τ ∈ {0, 1}c for which both
V (G0

M,x(accM,x,τ)) and V (G0
M,x(rejM,x,τ)) are smaller than S

2 , and on this τk = τ we reach the
compute case and output the desired graph G.

Recall that once we find a graph G in the compute case, we can appeal to our oracle to obtain the
answer to our function. If we do so via the τk loop above we then erase (τk, tark) on our tape. We
are now left at the state immediately following ComputeOrCompress(τi, tari) for some i ∈ [k];
our last step is to decompress each round of ComputeOrCompress(τi, tari), in reverse order, that
we executed until the final call.

To decompress π = τi+1 and (ui, ji, 0
s−log dM), we call CountStepsBack(⟨τi+1, ui⟩, ji) which

will replace τi+1 by τi and return tari as the number of steps. Hence we can restore tari, and τi,

10

and then we move on to i− 1. Our final state will once again be the initial catalytic tape

(τ, tar0, tar1, . . . , tark−1)

at which point we return our saved answer and halt.

Acknowledgements
We thank Ninad Rajgopal for discussions relating to the catalytic hierarchies.

References
[BCK+14] Harry Buhrman, Richard Cleve, Michal Koucký, Bruno Loff, and Florian Speelman.

Computing with a full memory: catalytic space. In ACM Symposium on Theory of
Computing (STOC), pages 857–866, 2014. doi:10.1145/2591796.2591874.

[BDS22] Sagar Bisoyi, Krishnamoorthy Dinesh, and Jayalal Sarma. On pure space vs catalytic space.
Theoretical Computer Science (TCS), 921:112–126, 2022. doi:10.1016/J.TCS.2022.04.005.

[BKLS18] Harry Buhrman, Michal Koucký, Bruno Loff, and Florian Speelman. Catalytic space:
Non-determinism and hierarchy. Theory of Computing Systems (TOCS), 62(1):116–135,
2018. doi:10.1007/S00224-017-9784-7.

[CLMP25] James Cook, Jiatu Li, Ian Mertz, and Edward Pyne. The structure of catalytic space:
Capturing randomness and time via compression. In ACM Symposium on Theory of
Computing (STOC), 2025.

[CM21] James Cook and Ian Mertz. Encodings and the tree evaluation problem. Electronic
Colloquium on Computational Complexity (ECCC), TR21-054, 2021. URL: https://eccc.
weizmann.ac.il/report/2021/054.

[CM22] James Cook and Ian Mertz. Trading time and space in catalytic branching programs. In
IEEE Conference on Computational Complexity (CCC), volume 234 of Leibniz Interna-
tional Proc. in Informatics (LIPIcs), pages 8:1–8:21, 2022. doi:10.4230/LIPIcs.CCC.2022.8.

[CM24] James Cook and Ian Mertz. Tree evaluation is in space O(log n · log log n). In
ACM Symposium on Theory of Computing (STOC), pages 1268–1278. ACM, 2024. doi:
10.1145/3618260.3649664.

[DGJ+20] Samir Datta, Chetan Gupta, Rahul Jain, Vimal Raj Sharma, and Raghunath Tewari.
Randomized and symmetric catalytic computation. In CSR, volume 12159 of Lecture Notes
in Computer Science (LNCS), pages 211–223, 2020. doi:10.1007/978-3-030-50026-9_15.

[DPT24] Dean Doron, Edward Pyne, and Roei Tell. Opening up the distinguisher: A hardness to
randomness approach for BPL = L that uses properties of BPL. In ACM Symposium on
Theory of Computing (STOC), pages 2039–2049, 2024.

[FMST25] Marten Folkertsma, Ian Mertz, Florian Speelman, and Quinten Tupker. Fully charac-
terizing lossy catalytic computation. In Innovations in Theoretical Computer Science
Conference (ITCS), volume 325 of LIPIcs, pages 50:1–50:13, 2025.

[GJST19] Chetan Gupta, Rahul Jain, Vimal Raj Sharma, and Raghunath Tewari. Unambiguous cat-
alytic computation. In Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS), volume 150 of Leibniz International Proc. in Informatics
(LIPIcs), pages 16:1–16:13, 2019. doi:10.4230/LIPIcs.FSTTCS.2019.16.

11

https://doi.org/10.1145/2591796.2591874
https://doi.org/10.1016/J.TCS.2022.04.005
https://doi.org/10.1007/S00224-017-9784-7
https://eccc.weizmann.ac.il/report/2021/054
https://eccc.weizmann.ac.il/report/2021/054
https://doi.org/10.4230/LIPIcs.CCC.2022.8
https://doi.org/10.1145/3618260.3649664
https://doi.org/10.1145/3618260.3649664
https://doi.org/10.1007/978-3-030-50026-9_15
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.16

[GJST24] Chetan Gupta, Rahul Jain, Vimal Raj Sharma, and Raghunath Tewari. Lossy catalytic
computation. Computing Research Repository (CoRR), abs/2408.14670, 2024.

[GKM15] Vincent Girard, Michal Koucký, and Pierre McKenzie. Nonuniform catalytic space and
the direct sum for space. Electronic Colloquium on Computational Complexity (ECCC),
TR15-138, 2015.

[Hoz21] William M. Hoza. Better pseudodistributions and derandomization for space-bounded
computation. In Proceedings of the 25th International Conference on Randomization and
Computation (RANDOM), pages 28:1–28:23, 2021.

[Imm88] Neil Immerman. Nondeterministic space is closed under complementation. SIAM Journal
on Computing (SICOMP), 17(5):935–938, 1988.

[Kou16] Michal Koucký. Catalytic computation. Bulletin of the EATCS (B.EATCS), 118, 2016.

[Mer23] Ian Mertz. Reusing space: Techniques and open problems. Bulletin of the EATCS
(B.EATCS), 141:57–106, 2023.

[MS24] Nicollas Mocelin Sdroievski. Derandomization vs. Lower Bounds for Arthur-Merlin
Protocols. PhD thesis, University of Wisconsin–Madison, Madison, WI, 2024.

[Nis92] Noam Nisan. Pseudorandom generators for space-bounded computation. Combinatorica,
12(4):449–461, 1992.

[NW94] Noam Nisan and Avi Wigderson. Hardness vs. randomness. Journal of Computer and
System Sciences (J.CSS), 49(2):149–167, 1994.

[Pot17] Aaron Potechin. A note on amortized branching program complexity. In IEEE Confer-
ence on Computational Complexity (CCC), volume 79 of Leibniz International Proc. in
Informatics (LIPIcs), pages 4:1–4:12, 2017. doi:10.4230/LIPIcs.CCC.2017.4.

[Pyn24] Edward Pyne. Derandomizing logspace with a small shared hard drive. In IEEE Conference
on Computational Complexity (CCC), volume 300 of LIPIcs, pages 4:1–4:20, 2024.

[RA00] Klaus Reinhardt and Eric Allender. Making nondeterminism unambiguous. SIAM Journal
on Computing (SICOMP), 29(4):1118–1131, 2000.

[RZ21] Robert Robere and Jeroen Zuiddam. Amortized circuit complexity, formal complexity
measures, and catalytic algorithms. In IEEE Symposium on Foundations of Computer
Science (FOCS), pages 759–769. IEEE, 2021. doi:10.1109/FOCS52979.2021.00079.

[Sav70] Walter J. Savitch. Relationships between nondeterministic and deterministic tape
complexities. Journal of Computer and System Sciences (J.CSS), 4(2):177–192, 1970.
doi:10.1016/S0022-0000(70)80006-X.

[SZ99] Michael E. Saks and Shiyu Zhou. BPHSPACE[S] ⊆ DSPACE[S3/2]. JCSS, 58(2):376–403,
1999.

[Sze88] Róbert Szelepcsényi. The method of forced enumeration for nondeterministic automata.
Acta Informatica, 26(3):279–284, 1988. URL: http://dx.doi.org/10.1007/BF00299636, doi:
10.1007/bf00299636.

[Wil25] Ryan Williams. Simulating time in square-root space. Electron. Colloquium Comput.
Complex., TR25-017, 2025. URL: https://eccc.weizmann.ac.il/report/2025/017/.

12
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

https://doi.org/10.4230/LIPIcs.CCC.2017.4
https://doi.org/10.1109/FOCS52979.2021.00079
https://doi.org/10.1016/S0022-0000(70)80006-X
http://dx.doi.org/10.1007/BF00299636
https://doi.org/10.1007/bf00299636
https://doi.org/10.1007/bf00299636
https://eccc.weizmann.ac.il/report/2025/017/

