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Abstract

We study the communication complexity of multiplying k x ¢ elements from the
group H = SL(2, ¢) in the number-on-forehead model with k parties. We prove a lower
bound of (tlog H)/cF. This is an exponential improvement over previous work, and
matches the state-of-the-art in the area.

Relatedly, we show that the convolution of k¢ independent copies of a 3-uniform
distribution over H™ is close to a k-uniform distribution. This is again an exponential
improvement over previous work which needed ¢* copies.

The proofs are remarkably simple; the results extend to other quasirandom groups.

We also show that for any group H, any distribution over H" whose weight-k
Fourier coefficients are small is close to a k-uniform distribution. This generalizes
previous work in the abelian setting, and the proof is simpler.

1 Introduction and our results

Iterated multiplication of elements in a group is a fundamental problem that has a long history
and wide-ranging applications, and is linked to long-standing open problems. Already in
[LZ77] it has been pivotal to provide space-efficient algorithms for Dyck languages. Depending
on the underlying group, iterated multiplication is complete for various complexity classes
[KMR66, MC87, Mix89, BC92, 11.95, Mill4]. For example, Barrington’s famous result [Mix89]
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shows that it is complete for NC! if and only if the underlying group is non-solvable. This in
particular disproved a conjecture about the complexity of majority [BDFP83]. This type of
results has then been taken further in the study of catalytic computation [BCKT14], leading
to other surprising discoveries [BCK*14, CM20].

The focus of this paper is on number-on-forehead communication complexity [CFL83].
For a survey on the communication complexity of group products, see [Viol9], and see
[KN97, RY19] for general background on communication complexity. Concretely, the input
is a matrix of £ x ¢ elements a;; from a group H, and the goal is computing H;zl Ay Q.
There are k collaborating parties, with Party ¢« knowing all the input except row 1.

This problem is also linked to central open problems in communication complexity.
Specifically, [GV19] conjectured that over certain groups this problem remains hard even for k
larger than logn. Establishing such bounds is arguably the most significant open problem in
the area. A number of candidates have been put forward over the years, but many have been
ruled out via ingenious protocols, e.g. in [PRS97, BGKL03, BC08, ACFN15]. Interestingly,
for the iterated-product candidate proposed in [GV19], no non-trivial protocol is known.

Iterated group products are also candidate for providing strong separations between
randomized and deterministic number-on-forehead communication. The current bounds (see
[Viol9]) give a separation matching one in [BDPWO7]. Stronger bounds could simplify and
strengthen the recent exciting separation [KLM23].

Returning to the problem, we note that its complexity heavily depends on the underlying
group. If it is abelian, then the problem can be solved with constant communication, using
the public-coin protocol for equality. Over certain other groups a communication lower bound
of t/c* follows via [Mix89] from the landmark lower bound in [BNS92] for generalized inner
product; cf. [MV13]. However, this bound does not improve with the size of the group. In
particular it is far from the (trivial) upper bound of ¢tlog H, and it gives nothing when ¢ is
constant. Motivated by a cryptographic application, [MV13] asked whether a lower bound
that grows with the size of the group, ideally ctlog H, can be established over some group H.

Gowers and Viola [GV15, GV19] proved a bound of (tlog H)/c?" for the group SL(2, )
of 2 x 2 invertible matrices over F,, which enables the motivating application from [MV13].
Subsequent work [DV23] simplified the proof and generalized it to any quasi-random group
[Gow(08], see also [GV19, Shal6]. While such bounds do grow with the size of the group, thus
answering the question in [MV13] and enabling the motivating application in cryptography,
the dependency on the number k of parties is weak: One can only afford k& doubly-logarithmic
in the input length.

In this work we give an exponential improvement and obtain bounds of the form
(tlog H)/c*, thus matching the state-of-the-art in number-on-forehead communication [BNS92].
As in [GV19], we prove stronger results that even bound the advantage such protocols have
when the input is promised to multiply to one of two fixed elements.

Theorem 1. Let H = SL(2,q). Let P: H** — [2] be a number-on-forehead communication
protocol with k parties and communication b bits. For g € H denote by py the probability that
P outputs 1 over a uniform input (a; ;)i<k j<t such that H§:1 aij---ag; = g. For any k and

any two g,h € H, if t > c* then |p, — pn| < 2°- Ht"
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The high-level proof technique is the same as in [GV19]. They reduced the problem to
boosting uniformity over m copies of H.

Definition 2. A distribution p over a set S is e-uniform if [p(z) — 1/5| <¢/S. If S = H*
and k <t we say p is (¢, k)-uniform if for any k coordinates, the induced distribution over
those coordinates is e-uniform. We say p is k-uniform if it is (0, k)-uniform.

[GV19] showed that if s is a 2-uniform distribution over H™ then the convolution (a.k.a.
component-wise product) of some ¢ independent copies of s is H~™-uniform over the whole
space H™. Note that such a result is false for abelian groups — the convolution can remain
only 2-uniform. Quantitatively, they show that ¢ = ¢™ copies suffice. In the application to
Theorem 1 one has m = 2*, which gives the doubly logarithmic dependence on k.

In this work we give a corresponding exponential improvement on the number of copies
required to boost uniformity: we show that in fact ¢ = m¢ copies suffice. Our proof is
remarkably simple, especially if we start with 3-uniform distributions, which we note suffices
for Theorem 1. (We discuss below extensions to 2-uniform and other groups.) We state this
result next.

Theorem 3. Let H = SL(2,q). Let p be a 3-uniform distribution over H™. The convolution
of m¢ independent copies of p is H™ " -uniform.

Our approach allows us to double the uniformity, i.e., go from k-uniform to 2k-uniform
using only a constant number of convolutions, independently of k, whereas [GV19] would
use > k convolutions. This points to a key difference in the techniques. In [GV19], boosting
uniformity is achieved by reduction to interleaved products, and appears tailored to going
from 2-uniform to 3-uniform. Our approach is different, and simpler, even taking into account
the simple proof of interleaved mixing from [DV23]. Tt can be seen as a k-uniform version of
the flattening lemmas discovered in [Gow08, BNP08, GV19]. In a nutshell, the k-uniformity
assumption allows us to remove all “low-degree” Fourier coefficients, leaving only those of
degree > k. Then the quasi-randomness assumption, combined with the tensor-product
structure of the Fourier coefficients allows us to “flatten” distributions at a rate proportional
to H=°, instead of H~°¢ as in previous work. We note that while using k-uniformity to
remove low-degree coefficients is a common proof technique, we are not aware of previous
work where this is done in the non-abelian setting. This might indicate that our techniques
might find other applications, and in general we advocate a systematic study of non-abelian
analogues of the Fourier toolkit. Another step in this direction is discussed next.

(€, k)-uniformity vs. k-uniformity. Extending the classic work [AGMO03], Rubinfeld and
Xie [RX13] showed that every almost k-uniform distribution over any Abelian product group
is statistically close to some k-uniform distribution. We generalize their result to any product
group. Our approach is significantly simpler. [RX13] decomposes the given k-uniform
distribution in a real orthogonal basis instead of the Fourier basis; we show that in fact the
same argument can be carried out directly over the Fourier basis. A critical observation is
that removing Fourier coefficients of a fixed weight from a real function keeps the function
real.



This generalization, in combination with Theorem 3, gives a refinement of Theorem 3
where the number of copies is k£ and the final distribution is statistically close to a k-uniform
distribution (whereas a direct application of Theorem 3 would just give an (H~*°, k)-uniform
distribution).

Extensions. Theorem 1 and Theorem 3 above can be generalized to any quasi-random
group and to distributions which are 2-uniform. This can be done by first using the results
in [GV19, DV23] to boost 2-uniformity to v-uniformity for a sufficiently large constant v
depending on the quasirandomness of the group (for SL(2, q), v = 3 suffices). This requires a
number of convolutions that is exponential in v, but since v is constant it can be afforded.
After that, our results kick in and allow to boost faster.

2 Preliminaries

In this section we fix some notation, especially about representation theory.

For a set X, we also write X for its size |X|. We write [i] for the set {0,1,...,7 — 1}.
Every occurrence of “c” denotes a possibly different universal constant. Replacing “c¢” with
O(1) everywhere is consistent with a common interpretation of the latter. For a function
f: G — C we denote by |f[3 the un-normalized quantity > _. [f(x)|*.

Next we present the standard framework of representation theory. The books by Serre
[Ser77], Diaconis [Dia88], and Terras [Ter99] are good references for representation theory
and non-abelian Fourier analysis. The Barbados notes [Wigl0] or Section 13 of [Gow17] or
[GV22] provide briefer introductions. The exposition in these sources is not always consistent,
and often has different aims from ours. So let us give a quick account of the theory that is
most relevant for this work.

Matrices. Let M be a square complex matrix. We denote by tr(M) the trace of M, by M
the conjugate of M, by M7T the transpose of M, and by M* the conjugate transpose MT (aka
adjoint, Hermitian conjugate, etc.). The matrix M is unitary if the rows and the columns
are orthonormal; equivalently M~ = M*.

We denote by

M3 = [M;;* = tr(MM").
2
This is known as the Frobenius norm, or Schatten 2-norm, or Hilbert-Schmidt operator, etc.

If M = AB we have
= O[S A,
i k

where the inequality is Cauchy—Schwarz.

TS (S 1l (X 1Bl = 1438 (1)

1]



Representation theory. Let G be a group. A representation p of G with dimension d
maps elements of G to d X d unitary, complex matrices so that p(zy) = p(z)p(y). Thus, p is
a homomorphism from G to the group of linear transformations of the vector space C?. We
denote by d, the dimension of p.

If there is a non-trivial subspace W of C¢ that is invariant under p, that is, p(z)W C W
for every x € G, then p is reducible; otherwise it is srreducible. Irreducible representations are
abbreviated irreps and play a critical role in Fourier analysis. We denote by G' a complete
set of inequivalent irreducible representations of G.

In every group we have
Y & =G (2)

peG
We have the following fundamental orthogonality principle.

Lemma 4 (Schur’s lemma, see [Dia88], Page 11 or Lemma 2.3.3 in [Wigl0]). Let p, 1 be
irreps. Then E,p(x)gpib(z); ; is 0 unless p =+ and k =i and h = j, in which case it is 1/d,.
In particular, E,|p(x); ;|* = 1/d,.

Let f: G — C. The p-th Fourier coefficient of f is

~ R

f(p) == E.f(z)p(x).

The Fourier inversion formula is then

7o) = 3 dytr(Fpp(a)").

pE@

We define the convolution as follows:

pq() =Y )y o).

Y

Note that if p and ¢ are distributions then p * ¢ is the distribution obtained by sampling
x from p, y from ¢, and then outputting zy.
We note that under this normalization we have

p*qla) =G - pla)ga).
Combining this with 1 we obtain

pxa(e)l; < G* - [p(e)2]a(a)]3: (3)

Parseval’s identity is

In case f = g this becomes

Elf(@) =Y dtr(f(0)f(p)) = Y d,| ()5



Fact 5 (Theorem 10 in Section 3.2 in [Ser77|, or Theorem 9 in [Dia88]). Any irrep p of H™
15 the tensor product QI ,p; of n wrreps p; of H. In particular, the dimension of p is the

=

product of the dimensions of the p;.
For p = ®!_,p; we denote by |p| the number of i s.t. p; is not the trivial representation 1.

Definition 6 ([Gow08]). A group H is d-quasirandom if every non-trivial irrep of H has
dimension > d.

3 Boosting uniformity

In this section we prove Theorem 3. The proof follows by repeated applications of the
following theorem.

Theorem 7. Let H = SL(2,q). Let p be a distribution over H' that is (H ™, k)-uniform for
k>3 and m = [(1+c)k]|. Then the convolution of ¢ independent copies of p is H =" -uniform.

Note for small £ we may have m = k 4+ 1. But if kK > ¢ then m is a constant factor larger
than k.

The choice of the error parameter is not too important because it can be boosted with
convolutions:

Lemma 8 (Lemma 3.3 in [GV19]). Let p and q be (e, k)-uniform distributions over H™.
Then p * q is (€2, k)-uniform.

Proof. 1t is enough to consider the case m = k. We have

[peate) = 178 = Y (0™ = 1/H) (alyr) = 1/H) | < D (e/G) = /. O

Y

In the rest of this section, we prove Theorem 7. The proof involves an excursion to
2-norms. The main step is the following new flattening lemma which can be seen as a k-wise
variant of the flattening lemmas discovered in [Gow08, BNP08, GV19].

Lemma 9. Let p be a distribution over H™ where H is d-quasirandom. Suppose p s
(H™*, k)-uniform. Then |p*p—ul|? < |p—ul}-2- H" Fd-(k+),

We need the following couple of claims to go back-and-forth between e-uniform and
2-norms.
Claim 10. [p*p — u|o < |p — ul3.

Proof. (pxp—1/G)(z) =3, (p(y) = 1/G)(p(y~'z) — 1/G) < 3, (p(x) — 1/G)*. The last
inequality is Cauchy—Schwarz. m

Claim 11. Let p be an e-uniform distribution over a group G, and let p be a non-trivial
representation of p with dimension d,. Then |p(p)[3 < d,e*G~2

6



Proof. The LHS is
le (p)igl* = ZIE )i

= Z‘E‘” (G +e *I)M}M‘Q (for some €, with |e,| <€)

— Z‘Ex [GIG’IMM] |2 (by Lemma 4 with 1) := 1, using that p is non-trivial)
1,J

<G Y B[ o)1)

<G~ ’ngﬂ":x\mmf

=G? i e/d, (by Lemma 4, see “in particular” part)

= G*dee? m
Proof of Lemma 9. Write G for the group H™. For any distribution ¢ we have
g —uly =1qgl3 - 1/G = sz 7(p)l3 —1/G =G d,|q(p)
p#1
In our case ¢ = p * p, and using 3 and the above equality we bound the RHS by
<G dlplp)ls < G- p — uls - max [p(p) 3
p#1

It remains to bound G? max,.; [p(p)|3. We consider two cases:
If |p| > k, then d, > d**! by Fact 5, so we simply use Parseval to bound

G*plp)l; < Glpl3/d, < Glpl3/d™*".
We also have [p|3 < (max, p(z)) - Y., p(x) = max, p(xr) < 2/H*, because p is in particular
(1, k)-uniform. Hence, we get a bound of G - 2 - H=*d~*+1) as desired.
If |p| < k, then restrict to the non-trivial coordinates of p. On those coordinates, p induces
a distribution that is H~*-uniform. By Claim 11, we have
Cp(p) 2 < d, H .
Note d, < Hk/? by 2. Thus, we obtain a bound of H %% < P mlands O

We can now present the proof of Theorem 7.

Proof of Theorem 7. It is known that H is > c¢H'/3-quasirandom, a proof can be found in
[DSV03]. Hence, the parameter d~**1) in Lemma 9 is < cH~*+V/3 < H=< for any k > 3.
Also, we have |p —u|3 = |p|3 — 1/G. If p is (H™*, k)-uniform then |p|3 < max, p(z) < 2/H".
Moreover, the uniformity parameter is maintained when taking convolutions. So one can
apply the lemma a constant number of times to drive the L, norm to H~", and then convolve
one more time to obtain a distribution that is H~"-uniform via Claim 10. O]



4 Proof of Theorem 1

Let m := 2. As noted in [GV19], an application of the box norm (Corollary 3.11 in [VWO08])
shows that the LHS in the conclusion is < ¢cH?2% times the statistical distance between the
uniform distribution over H™ and the convolution of ¢ independent copies of the following
distribution s over H™.

Definition 12. Pick u?,u} for i € [k] uniformly from H. For z € [2]* the x coordinate s(x)

1) 7

of s is defined to be [,y w"
Claim 13. s is 3-uniform.

Proof. Pick a coordinate i s.t. x; # y;. W.l.og. let : =0, xg = 0, and yo = 1. Now zj is equal
to either zy or yp. Assume w.l.o.g. that zy = yo. Consider a coordinate j where z; # y;.
Assume again w.l.o.g. that j = 1. We can fix all other u; with ¢ > 2 and prove 3-uniformity
just considering those two coordinates. For concreteness, details follow.

Up to swapping y and z there are only two cases to consider. The first is

z =00
y =10
z = 11.

In this case we can fix arbitrarily the u corresponding to y, and then x is uniform because
of u and z because of ui.

Alternatively,
r =01
y =10
z =11.
In this case we can similarly fix arbitrarily the u corresponding to z. ]

We note that s is not 4-uniform, again just considering two coordinates.

To conclude the proof of Theorem 1, note that the convolution of m¢ copies of s is (H =", m)-
uniform by Theorem 3. By Lemma 8 the convolution of ¢ copies is then (H~™%™" m)-uniform,
and the result follows.

m

5 From (¢, k)-uniform to k-uniform

In this section we prove the following generalization of [RX13].

Theorem 14. Let p be a distribution on G = H™ s.t. |p(p)|2 < €/G for every p:|p| € [1,k].
Then p has distance at most 3(mH)*e¢ from a k-uniform distribution.

First we note the following converse to Claim 11.

8



Claim 15. Let p be a distribution over H™. Suppose p(p) = 0 whenever |p| € {1,...,k}.
Then p is k-uniform.

Proof. Consider any k coordinates; assume they are the first £ w.l.o.g. The probability of a

string x € H is
> play).

yeHm—k

By the inversion formula and the assumption this is

S Y du@oeley)) = Y50+ Y dotr(Bl0) Y plew) ).

pilpl>k Y

We have p(1) = E,p(z) = 1/H™ and so the first summand is 1/H*. We show that the second
summand is 0 by showing that Zy p(xy) is the zero matrix. To verify this, write p as a tensor
product of p; using Fact 5. Then one entry of p(zy) is the product of the entries of the p;.
There is a non-trivial p; corresponding to a y coordinate. The sum over that coordinate of y
yields 0 by Lemma 4. O

Proof of Theorem 14. Let

be the “low-degree” part of p, and let

V(@)= pla) —Lx)= ) dytr(plp)p()").

pilpl€[1,k]

We first observe that ¢ and hence p’ is real. This is because the conjugate p of an irrep is
also an irrep, and over H® the number of non-trivial coordinates is the same. Hence the sum

over p is the same as the sum over p. Moreover, p(p) - o = p(p) - p. Therefore, we can write

26(@) = > (dyta(@lp)p(x)") + d, tr(Bl)p()7) ).

pilpl€lL K]

The expression inside the brackets is real and so p/(x) is real as well.

Also, >~ p'(z) =G /(1) = G- p(1) = 1 by Lemma 4.

However, p’ may be < 0 on some x. To remedy that, following previous work, we will
“mix” p" with the uniform distribution so that the mixture becomes a distribution. Note that
the mixture is k-uniform by Claim 15 as the low-degree non-trivial Fourier coefficients of
both p’ and uniform are zero.

Concretely, let

4= (= B0 + B

for 5 to be determined. Note that ¢ sums to 1 as p’ and 1/H™ both do.

9



To determine f, first note that by definition

p(x) > —Ll(x).

Crudely, ¢(z) < (mH)" max, d,| tr(p(p)p(z)")|. Now, each absolute value is < |p(p)|2|p(z)la-
The first term is €/G by assumption. For the second, we use the fact that p(z) is unitary,
and so |p(z)]2 = |I|2 = \/d,. So d,|tr(p(p)p(x)")| < d3/%e/G < H3/*¢/G, using, in the last
inequality, 2 over the underlying group H*.

Hence, |[((z)| < (mH)*¢/G and we can set 8 := (tH)?*¢/G and obtain that ¢ > 0. As
remarked earlier, ¢ sums to 1, and so ¢ is a distribution. It remains to bound the distance
between p and q. We have

p—dqli=|p— (=B +B/G|, <|l(x)+ Bl + 8- |1/G]1.

The last two summands are 3 each. The first one is < (mH)?*e = 8 by the bound on |{(z)]
above. Hence the distance is < 33 = 3(mH)?"e. [
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