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Abstract

We consider a subclass of AC0[2] circuits that simultaneously captures DNF ∘ XoR and depth-3 AC0

circuits. For this class we show a technique for proving lower bounds inspired by the top-down approach.
We give lower bounds for the middle slice function, inner product function, and affine dispersers.

1 Introduction
Constant-depth (or AC0) de Morgan circuits is one of the circuit classes that is reasonably well-studied,
even though strong exponential lower bounds of the form 2Ω(𝑛) are still out of reach. This model can
use unbounded ∧, ∨ and ¬ gates, and the underlying graph of a computation is a constant-depth tree;
intuitively, these circuits represent computations that can be efficiently parallelized. There are known
hard examples of functions that cannot be computed with small-size AC0 circuits. The most notable ones
include XoR and Maj:

XoR(𝑥1, … , 𝑥𝑛) ≔ 𝑥1 ⊕ ⋯ ⊕ 𝑥𝑛; Maj(𝑥1, … , 𝑥𝑛) ≔ 1[𝑥1+⋯+𝑥𝑛>𝑛/2].

These functions require size 2Ω(𝑛1/(𝑑−1)) depth-𝑑 AC0 circuits, and the lower bounds for them are
achieved mainly with two techniques: random restrictions, or switching lemma, [FSS84; Ajt83; Yao85;
Hås86; Hås87] and polynomial approximation [Raz87; Smo87]. In particular, for circuits of depth 3, there
is a lower bound of 2Ω(√𝑛) for both of these functions (for XoR it is known to be tight), and breaking
through the

√𝑛 barrier in the exponent for any explicit function is a major open question. Proving strong
exponential lower bounds for depth-3 circuits would essentially give a superpolynomial lower bound for
general circuits [Val77; GKW21] which is a major open problem in complexity theory. Both switching
lemma and polynomial approximation seem unable to give us such strong lower bounds.

Circuits with MOD Gates The situation becomes more challenging in terms of lower bounds, when
we plug-in hard functions for AC0 into our computational model. One of the most natural generalisations
of AC0 circuits that follow this concept is AC0[𝑚] circuits, that can also utilise gates computing MOD𝑚
defined as

MOD𝑚(𝑥1, … , 𝑥𝑛) ≔ 1[(𝑥1+⋯+𝑥𝑛) mod 𝑚=0].

On one hand, a lower bound for this model is necessary if we want to show lower bounds for general
circuits. On the other hand, showing such lower bounds is a challenging problem. For example, techniques
based on random restrictions, such as switching lemma application, do not work quite as they do in AC0,
since MOD𝑚 gates are not simplified after an application of a restriction. However, when 𝑚 is a prime
power, polynomial approximation achieves lower bounds of the form 2𝑛1/2𝑑 for Maj [Raz87; Smo87], as
well as for computing MOD𝑞 for a prime power 𝑞 that is relatively prime with 𝑚.

When 𝑚 is not a prime power, very little is known. In fact, utilising non-prime 𝑚 with many divi-
sors, it is possible to compute any symmetric function in subexponential size even in depth 3 [CW22].
The “minimal example” of the non-prime regime is AC0[6]. It is still an open question to prove lower
bounds for AC0[6], and the known techniques fail at resolving that. The reason for that is that polynomial
approximation only works over fields, and there is no field with 6 elements.
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Even for the simplest example of MOD𝑝 gates: MOD2, or XoR, we are very far from understanding
the exact power of AC0[2] circuits. Allowing to use the XoR function in the gates of the circuit increases
its computational power; for example, depth-4 AC0[2] circuits can compute Maj in size 2𝑂(𝑛1/4) [OSS19],
whereas in plain AC0 there is a lower bound 2Ω(𝑛1/3).

The drawbacks of Razborov–Smolensky polynomial approximation method translate to the gaps in
our understanding of AC0[2] class. In particular, we do not have strong correlation bounds against these
circuits even for one of the simplest subclasses of these circuits: DNF ∘ XoR (depth-3 unbounded fan-in
circuits of (∧ ∘ ∨ ∘ XoR)-type) [HIV22]. Here, ∘ denotes composition, and this essentially means that XoR
gates can be used only in the bottom layer of the circuit. Moreover, the polynomial approximation method
only applies to functions that require a large degree over F2. Thus it is unknownwhether the inner product
IP𝑛(𝑥, 𝑦) ≔ 𝑥1𝑦1 ⊕ 𝑥2𝑦2 ⊕ ⋯ ⊕ 𝑥𝑛𝑦𝑛 requires large AC0 circuits with an additional layer of parity gates
in the bottom (AC0 ∘ XoR). It is known that IP requires exponentially large DNF ∘ XoR circuits [Juk06;
CS16a], but even for (∨ ∘ ∧ ∘ ∨ ∘ XoR)-circuits the best known lower bound is 𝑛2−𝑜(1) [CGJWX18].

1.1 Top-down Approach

Overall, there is a clear shortage of new techniques in circuit complexity and, by extension, in adjacent
areas, while the well-known ones also have the well-known drawbacks. In this work, we focus on studying
another circuit lower bound technique, which falls under the umbrella of top-down methods.

Top-down lower bounds start from the output gate of a candidate circuit and move down the circuit
in search of a mistake. While such an approach has been known for a long time, and there is a long line
of work on top-down lower bounds for depth-3 AC0 circuits [BS79; San89; Ko90; HJP95; RS98; PPZ99;
PSZ00; IPZ01; PPSZ05; Wol06; BGM06; MW19; GKW21; FGT22; GGM23], it still remains largely underde-
veloped. So far top-down lower bounds against AC0 are known only for circuits up to depth-4 [GRSS23],
while bottom-up methods yield lower bounds for arbitrary constant depth (or even log𝑛/ log log𝑛 in
some cases). The motivation for studying top-down comes from the fact that this method is complete for
AC0 circuits (see discussion in [Hir17; GGM23; GRSS23]). In other words, there are no formal barriers
that would prevent such an approach from being able to prove lower bounds in the regimes where other
known methods cannot.

The main model to which top-down techniques are applicable is AC0 circuits, and the main example
of a hard function is XoR. In this work, we attempt to adapt such techniques to be able to prove lower
bounds for circuits with parity gates. We consider a subclass of AC0 ∘ XoR which is strictly stronger than
DNF ∘XoR and prove lower bounds for it in a top-down fashion. In particular, we prove a lower bound for
an affine disperser, which does not follow from Razborov–Smolensky method.

1.2 The Model and Results

In a recent paper Huang, Ivanov, and Viola [HIV22] give an explanation of why the class ∨ ∘ ∧ ∘ ∨ ∘ XoR
resists known lower bound techniques. They show that there is a circuit of this type that computes a very
strong affine extractor: a function that is close to be balanced on all large enough affine subspaces. On
the other hand, it is known that affine extractors are hard for AC0 (by definition we know upper bounds
on Fourier coefficients, which contradicts with spectrum concentration of small AC0 circuits obtained
from switching lemma or polynomial approximation, see, for example [Tal17]) and DNF ∘ XoR [CS16b].
Moreover, [HIV22] show that DNF ∘ XoR can compute a one-sided affine extractor: a balanced function
that is never too biased towards zero on large enough affine subspaces. They then use the latter result to
separateDNF∘XoR fromAC0∘XoR that has at most 𝑛 distinct XoR gates (here 𝑛 is the number of variables).
In other words, such a circuit is a composition ofAC0 circuit and a non-singular affine transformation over
F2, or an AC0 ∘ B circuit.

This type of circuit can already compute arbitrary linear forms, but we consider a stronger model. Our
model is essentially a union of AC0 and AC0 ∘ B within ∨ ∘ ∧ ∘ ∨ ∘ XoR.
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Definition 1.1

Let 𝐶1, … , 𝐶𝑁 be some constant depth de Morgan circuits and 𝐴1, … , 𝐴𝑁 be non-singular affine
transformations. We then say that OR ∘ (Π0 ∘ B)-circuit is ⋁𝑖∈[𝑁] 𝐶𝑖 ∘ 𝐴𝑖, i.e. the disjunction of
compositions of a constant-depth circuit and an affine map. The depth of a OR ∘ (Π0 ∘ B)-circuit
is the depth of 𝐶1 ∨ … ∨ 𝐶𝑁 . The size of a OR ∘ (Π0 ∘ B) circuit is the total number of gates in
𝐶1, … , 𝐶𝑁 . If 𝑁 = 1 we denote the corresponding circuit type as AC0 ∘ B.

We remark that the choice of ∨ as the top gate is arbitrary, all the arguments could be handled with ∧
on top (with hard functions changing appropriately).

Our primary motivation for studying this class is to develop a line of attack on subclasses of AC0 ∘XoR
circuits. Along the way, we establish lower bounds for the class, making concrete progress in this direction.
As a subclass of AC0 ∘ XoR, OR ∘ (Π0 ∘B) also has a natural interpretation in a top-down framework, as it
corresponds to specific assumptions allowed in the proof strategy. We discuss this in section 2. It is worth
noting that as DNF ∘ XoR is a subclass of depth-3 OR ∘ (Π0 ∘ B), ∨ ∘ ∧ ∘ ∨ ∘ XoR is a subclass of depth-4
OR ∘And ∘ (Σ0 ∘B). So, strong average-case lower bounds against depth-3 OR ∘ (Π0 ∘B) would also imply
∨ ∘ ∧ ∘ ∨ ∘ XoR lower bounds. In section 4, we propose a roadmap of intermediate open questions which
aims to extend this approach to eventually achieve lower bounds for stronger subclasses of AC0 ∘XoR and
even AC0[6].

As a main result we present a general approach for proving lower bound for this model of computation.
We give the highlights of the technique in Section 2. We now show the comparison of this model with
classical models and state the lower bounds that we get.

The Comparison of the Models Let us first observe that depth-3 OR ∘ (Π0 ∘B) is properly larger than
depth-3 AC0 ∘ B. Observe that DNF ∘ XoR is a special case of depth-3 OR ∘ (Π0 ∘ B). The strict inclusion
is then implied by the following.

Theorem 1.2 ([HIV22])

A function that admits a polynomial DNF ∘XoR circuit may require an exponential AC0 ∘B circuit.

Proof sketch. Implied by the combination of Corollary 5 and Claim 21 in [HIV22], the former shows that
DNF∘XoR can compute functions for which there is a correlation bound for (𝑛−poly(log𝑛))-depth parity
decision trees (PDT), while the latter observes that the switching lemma applied to a AC0 ∘B-circuit yields
a (𝑛 − log𝜔(1) 𝑛)-depth PDT approximating the function.

On the other hand, depth-3 OR ∘ (Π0 ∘ B) is properly larger than DNF ∘ XoR. Since OR ∘ (Π0 ∘ B)
contains CNF this statement is implied by the following Theorem.

Theorem 1.3

Let 𝑓 : {0, 1}𝑛×3 → {0, 1} defined as 𝑓(𝑥) ≔ ⋀𝑖∈[𝑛](𝑥𝑖1 + 𝑥𝑖2 + 𝑥𝑖3 = 1) where the sum is over
R. Then any DNF ∘ XoR circuit computing 𝑓 has size Ω(1.5𝑛).

To the best of our knowledge, this is the simplest existing lower bound for DNF ∘XoR. We include the
proof in section 3.4.

Affine Dispersers 𝑓 : {0, 1}𝑛 → {0, 1} is a (𝑘, 𝜀)-affine extractor if for every affine subspace 𝐴 ⊆
{0, 1}𝑛 (where we equate {0, 1}𝑛 and F𝑛

2 ) of dimension at least 𝑘 we have | Pr𝒂∼𝐴[𝑓(𝒂) = 1] − 1/2| < 𝜀.
We say that 𝑓 is a 𝑘-affine disperser if it is a (𝑘, 1/2) affine extractor, i.e. Pr𝒂∼𝐴[𝑓(𝒂) = 1] ∉ {0, 1} for
every 𝑘-dimensional affine subspace 𝐴.

In our first result, we confirm that depth-3 OR ∘ (Π0 ∘B) is smaller than ∨ ∘ ∧ ∘ ∨ ∘ XoR. Theorem 3 in
[HIV22] shows that polynomial-size ∨∘∧∘∨∘XoR circuit computes affine extractors with polylogarithmic
dimension (i.e. the function is close to being balanced in every affine subspace of at least polylogarithmic
dimension). On the other hand, we show in section 3.2 the following Theorem.
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Theorem 1.4 (informal)

If a function is not constant on any 𝑛1/3−𝑜(1)-dimension affine subspace (i.e. it is an 𝑛1/3−𝑜(1)-affine
disperser) then it requires depth-3 OR ∘ (Π0 ∘ B) circuits of exponential size.

Theorem 3 in [HIV22] implies that the polynomial approximation method can not prove Theorem 1.4,
since it can not distinguish between a depth-3 OR ∘ (Π0 ∘ B)-circuit and a ∨ ∘ ∧ ∘ ∨ ∘ XoR-circuit, which
contains some affine extractors.

Inner Product The inner product function IP𝑛 : {0, 1}𝑛 × {0, 1}𝑛 → {0, 1} defined as follows
IP𝑛(𝑥, 𝑦) = ∑𝑖∈[𝑛] 𝑥𝑖 ⋅ 𝑦𝑖 mod 2. It is a big open problem to get a lower bound for the inner product
in ∨ ∘ ∧ ∘ ∨ ∘XoR. In section 3.3 that inner product requires exponentially large OR ∘ (Π0 ∘B) circuits. The
technique there is a combination of random restrictions with a top-down step.

Middle Slice The middle slice function Mid𝑛 : {0, 1}𝑛 → {0, 1} is defined as Mid𝑛(𝑥) = 1[|𝑥|=𝑛/2], i.e.
it equals 1 iff the input contains exactly 𝑛/2 ones. In section 3.1 we prove via a top-down argument that
this function requires 2Ω(√𝑛)-size depth-3 OR ∘ (Π0 ∘ B) circuits.

2 Technique

2.1 AC0 Top-down Lower Bounds

The general sketch of an AC0 top-down proof looks as follows.

• Consider a circuit 𝐶 = ⋁𝑠
𝑖=0 𝐶𝑖 (the case of ⋀ is treated analogously). Suppose we want to prove

that 𝐶 cannot distinguish certain sets of inputs 𝐴 and 𝐵. Assume that, on the contrary, 𝐶(𝐴) = 1
and 𝐶(𝐵) = 0.

• Note that ⋃𝑖 𝐶−1
𝑖 (1) ⊇ 𝐴 and also for every 𝑖 it holds that 𝐶−1

𝑖 (0) ⊇ 𝐵. We pick some 𝐶𝑖 such that
𝐴𝑖 ≔ 𝐶−1

𝑖 (1). Now, this is a circuit that separates 𝐴𝑖 and 𝐵, and it has ⋀ as the top gate.
• We repeat the procedure until we arrive at a shallow enough circuit 𝐶′ that is supposed to separate

the sets 𝐴′ and 𝐵′.
• We prove that 𝐶′ cannot separate these sets. Note that if the original circuit 𝐶 made an error in

computing 𝐴 and 𝐵, there always exists a sequence of choices of subcircuits such that the error is
traced until 𝐶′.

A “shallow enough circuit” could be, in principle, even a variable, but it turns out that there is a con-
venient way to argue about circuits of depth 2 in this context. Moreover, for now we assume that these
circuits of depth 2 are CNFs/DNFs of width bounded by some parameter 𝑘. At the end of this section, we
discuss why this assumption is acceptable for the proper choice of 𝑘.

The central notion for this for analyzing 𝑘-CNFs/DNFs is a 𝑘-limit. The notion comes from [HJP95],
inspired by “limit vectors” from [Sip84] as well as communication complexity techniques [KW90].

Definition 2.1 ([HJP95])

Let 𝐴 ⊆ {0, 1}𝑛. 𝑥 ∈ {0, 1}𝑛 is a 𝑘-limit of 𝐴, if for any subset of indices 𝐼 ∈ ([𝑛]
𝑘 ) there is 𝑦 ∈ 𝐴

such that 𝑥𝐼 = 𝑦𝐼 .

Claim 2.2 ([HJP95; MW19; GRSS23])

If a CNF formula 𝐶 of width 𝑘 accepts a set 𝐴, then it accepts every 𝑘-limit of 𝐴.

At the same time, it is known that a 𝑘-limit is a complete notion in the following sense.

Claim 2.3 ([HJP95])

Let 𝐴 ⊆ {0, 1}𝑛 be a set such that for its any 𝑘-limit 𝑥 it holds that 𝑥 ∈ 𝐴. Then there exists a
𝑘-CNF formula 𝐶 such that 𝐶−1(1) = 𝐴.
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Proof. We start from an empty CNF formula 𝐶 and gradually add clauses to it. Consider any 𝑦 ∉ 𝐴. As
it is not a 𝑘-limit of 𝐴, there exists a set 𝐼 ∈ ([𝑛]

𝑘 ) such that 𝑦𝐼 ≠ 𝑎𝐼 for any 𝑎 ∈ 𝐴. Let us add into 𝐶 a
clause 𝐷 = ⋁𝑖∈𝐼 𝑥1−𝑦𝑖

𝑖 . This clause evaluates to 0 on 𝑦 and evaluates to 1 on any 𝑎 ∈ 𝐴.
We repeat the procedure for every 𝑦 ∉ 𝐴. The resulting CNF evaluates to 0 on every 𝑦 ∉ 𝐴 and

evaluates to 1 on any 𝑎 ∈ 𝐴, which proves the claim.

Note that a 𝑘-CNF on 𝑛 variables has at most (2𝑛)𝑘 = 2𝑂(𝑘 log𝑛) clauses. The standard assumption
for AC0 is that the bottom fan-in of the circuit is bounded by the logarithm of its size, so 𝑘-limits are
a tool that helps to prove lower bounds of the form 2𝑘. So there is a multiplicative gap of log𝑛 in the
exponent between related lower bound and upper bound, which follow from existence and non-existence
of a 𝑘-limit, respectively. In most cases, this is a negligible difference, but for some examples this might be
important: for example, Maj function has a lower bound of 2Ω(√𝑛) in depth-3 AC0 and an upper bound of
2𝑂(√𝑛 log𝑛) in the same model. Proving a 2𝜔(√𝑛) lower bound for Maj would beat all state-of-the-art lower
bounds for depth-3 AC0 circuits.

Reducing Bottom Fan-in Bottom-up AC0 lower bounds usually use the fact that bottom fan-in is
bounded by a parameter 𝑘. In most cases, 𝑘 can be made as small as log 𝑠, where 𝑠 is the size of the
circuit. This is done by random restrictions, which kill the bottom layer gates with a big fan-in. In case of
AC0 ∘ XoR, this becomes more of a problem, since XoR survives under small restrictions.

In fact, handling the bottom fan-in can be done using top-down techniques. In [GRSS23], the lower
bound is fully top-down in the sense that no random restrictions are used even for reducing the bottom
fan-in, and we follow the same path. With the use of XoR gates, this becomes crucial. The idea is that
instead of just one 𝑘-limit, one needs to find many, so that wide clauses in a CNF could not reject all of
them. We make this intuition precise:

Lemma 2.4

Let 𝐶 be a CNF over 𝑛 variables of size 𝑠 and 𝐴 ⊆ 𝐶−1(1). Let 𝐿 ⊆ 𝐶−1(0) be a set of 𝑘-limits
for 𝐴. Then 𝑠 > |𝐿|/2𝑛−𝑘.

Proof. Let 𝐶 = 𝐷1 ∧ … ∧ 𝐷𝑠. Then 𝐶−1(0) = ⋃𝑖∈[𝑠] 𝐷−1
𝑖 (0). Let 𝑖 ∈ [𝑠] be the clause with the largest

size of 𝐷−1
𝑖 (0) ∩ 𝐿, this size is at least |𝐿|/𝑠 since 𝐿 ⊆ 𝐶−1(0). Now the width of 𝐷𝑖 must be larger than

𝑘, since it distinguishes all 𝑘-limits in 𝐿 ∩ 𝐶−1(0) from 𝐴, hence |𝐿|/𝑠 ≤ |𝐷−1
𝑖 (0)| < 2𝑛−𝑘. The claim

then follows.

2.2 Extending the Approach to Parity Gates

We can define the analogous notion for AC0 ∘ XoR circuits.

Definition 2.5 (𝑘-parity limit)

Let 𝐴 ⊆ {0, 1}𝑛. 𝑥 is a 𝑘-parity limit of 𝐴, if for any affine subspace 𝐿 ⊆ {0, 1}𝑛 of co-dimension
𝑘 such that 𝑥 ∈ 𝐿 it holds that 𝐴 ∩ 𝐿 ≠ ∅.

The proof of the following claim is analogous to Theorem 2.2.

Claim 2.6

If a 𝑘-CNF ∘ XoR circuit 𝐶 accepts a set 𝐴, then it accepts any 𝑘-parity limit of 𝐴.

As there are much more linear subspaces of co-dimension 𝑘 than clauses of width 𝑘, while we can
prove the analogue of Theorem 2.3 for 𝑘-parity limits, the resulting circuit would have huge size.

Open Problem. Is 𝑘-parity limit complete in the following sense: if there is no 𝑘-parity limit of set 𝐴
outside of the set itself, then there is a CNF ∘ XoR circuit 𝐶 of width 𝑘 and size 2𝑘𝑂(1) such that it accepts
exactly set 𝐴?

For proving lower bounds against AC0 ∘XoR, it is sufficient to find 𝑘-parity limits only with respect to
a fixed set of linear forms present in a circuit (subcircuit), but it would be interesting to know if the more
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general statement is true. Again, the existence of a 𝑘-parity limit with respect to a fixed set of linear forms
is a necessary condition for a lower bound.

The proof of the next claim is, again, analogous to Theorem 2.2.

Claim 2.7

Let 𝐶 = ⋀𝑠
𝑖=1 𝐿𝑖 be a (𝑘-CNF) ∘ XoR (here 𝐿𝑖 is such that 𝐿−1

𝑖 (0) is a co-dimension-𝑘 affine
subspace) and let 𝒮 be a collection of affine subspaces of co-dimension 𝑘 such that 𝐿−1

𝑖 (0) ∈ 𝒮 for
all 𝑖 ∈ [𝑠]. Suppose that 𝐶 accepts 𝐴. Consider 𝑦 such that for any 𝐿 ∈ 𝒮, 𝑦 ∈ 𝐿 implies that there
exists 𝑥 ∈ 𝐴 such that 𝑥 ∈ 𝐿. Then 𝐶 accepts 𝑦.

Here 𝒮 can be a collection of all affine subspaces of co-dimension 𝑘, or it can be a smaller family of
subspaces that still contains all linear systems used in a (𝑘-CNF) ∘ XoR. In other words, as the number of
linear systems used in a circuit is bounded by its size, one can relax the definition of a 𝑘-parity limit to be
able to fool only these linear systems. One can also prove a variant of completeness for this weaker notion
of 𝑘-parity limits analogous to Theorem 2.3.

Exponential size depth-3 OR ∘ (Π0 ∘ B), in particular, can use exponential number of different linear
forms, with the restriction that inside each CNF ∘ XoR subcircuit there are only 𝑛 different linear forms.
Our results can be seen as finding 𝑘-parity limits under these restrictions on the model. In top-down
language, the extra OR on top symbolises that the first step down in the proof is oblivious to the actual
parity gates that are used in the circuit. Now, just two such oblivious steps would imply lower bounds for
∨ ∘ ∧ ∘ ∨ ∘ XoR.

When comparing top-down lower bounds for plainAC0 andOR∘(Π0∘B), themost important difference
(and our main technical contribution) is the following: for OR ∘ (Π0 ∘ B), we should be able to construct
sets such that we can find their 𝑘-limits after any change of basis in F𝑛

2 . Note that the hard functions in
this case should be uncorrelated with affine subspaces, which, in particular, is not true for XoR: after the
appropriate change of basis, we could encode the value of the function in the first bit of the string in the
new basis.

This seems like a natural step towards fully adapting the top-down approach for circuits with XoR
gates. We discuss this more in section 4.

2.3 Unpredictability and Local Limits

One of the most successful to date ways to find local limits is via unpredictability from partial information.
Let 𝑋 ⊆ {0, 1}𝑛 and 𝑅 ⊆ [𝑛]. A pair (𝑄, 𝑎) with 𝑄 ⊆ [𝑛] ∖ 𝑅 and 𝑎 ∈ {0, 1}𝑄 is a certificate for

𝑅 if there exists 𝑏 ∈ {0, 1}𝑅 such that whenever 𝑥𝑄 = 𝑎 for 𝑥 ∈ 𝑋, 𝑥𝑅 ≠ 𝑏. In this case, we say that
𝑥 contains a certificate for 𝑅, and the size of such certificate is 𝑞 ≔ |𝑄|. This notion was introduced in
[MW19] who proved the following result for |𝑅| = 1.

Lemma 2.8 (Bit unpredictability [MW19])

Let 𝑋 ⊆ {0, 1}𝑛 have density |𝑋|/2𝑛 ≥ 2−𝑑. Then for any 𝑞 ≥ 1,

Pr
(𝒙,𝒊)∼𝑋×[𝑛]

[ 𝒙 contains a size-𝑞 certificate for 𝒊 wrt 𝑋 ] ≤ 𝑂(𝑑𝑞/𝑛).

More recently [GRSS23] generalized this result for |𝑅| > 1.

Lemma 2.9 (Block unpredictability [GRSS23])

Let 𝑋 ⊆ {0, 1}𝑛 have density |𝑋|/2𝑛 ≥ 2−𝑑. Then for any 𝑞, 𝑟 ≥ 1,

Pr
(𝒙,𝑹)∼𝑋×(𝑛

𝑟)
[ 𝒙 contains a size-𝑞 certificate for 𝑹 wrt 𝑋 ] ≤ 𝑂(𝑑𝑞𝑟/𝑛)1/6.

Bit and block unpredictability were used in top-down lower bounds for low-depth AC0 circuits as a
way to extract local limits (theorem 2.1).
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Lemma 2.10 ([MW19; GRSS23])

Suppose 𝑥 ∈ 𝑋 does not contain any 𝑞-certificates for 𝑅 wrt to 𝑋. Then every 𝑥′ such that
𝑥[𝑛]∖𝑅 = 𝑥′

[𝑛]∖𝑅 is a 𝑞-limit of 𝑋.

Proof. Suppose that there exists 𝑥′ with 𝑥′
[𝑛]∖𝑅 = 𝑥[𝑛]∖𝑅 that is not a 𝑞-limit for 𝑋, i.e. there exists a set

𝑆 ⊆ [𝑛] of size 𝑞 such that for every 𝑦 ∈ 𝑋 we have 𝑥′
𝑆 ≠ 𝑦𝑆 . Observe that (𝑆 ∖ 𝑅, 𝑥𝑆∖𝑅) is then a

certificate for 𝑅: indeed for any 𝑏 ∈ {0, 1}𝑅 that agrees with 𝑥′
𝑆∩𝑅 we have that for every 𝑦 ∈ 𝑋 we have

𝑦𝑅 ≠ 𝑏.

3 Lower Bounds

3.1 Middle Slice

In this section we prove the following.

Theorem 3.1

Let 𝐶 be a circuit of the following form. 𝐶 ≔ 𝐶1 ∨ 𝐶2 ∨ … ∨ 𝐶𝑁 where 𝐶𝑖 is a composition of a
CNF 𝐷𝑖 and an affine transformation 𝐴𝑖 of full rank. Suppose that 𝐶 computes the characteristic
function of the middle slice ( [𝑛]

𝑛/2). Then the total size of CNFs 𝐷1, … , 𝐷𝑁 is at least 2Ω(√𝑛).

The key ingredient in our proof is a density boosting lemma for affine subspaces. Following a similar
definition for boolean subcubes in [ALWZ20] we say that a set 𝑋 ⊆ 𝑆 where 𝑆 is a vector space is
𝜃-linearly spread in 𝑆 if for every affine subspace 𝐴 ⊆ 𝑆 of co-dimension 𝑑 we have

Pr
𝒙∼𝑋

[𝒙 ∈ 𝐴] ≤ 𝜃−𝑑.

A similar, but different notion was used in [KM23]. The following is a new density boosting lemma,
generalized for affine subspaces, which might be of independent interest. For boolean cubes, such a lemma
was introduced in [GLMWZ16] and appears among others in [CDGS18].

Lemma 3.2

For every set 𝑋 ⊆ {0, 1}𝑛 of size at least 2𝑛−𝑑 there exists an affine subspace 𝐴 of {0, 1}𝑛 of co-
dimension at most 𝑑/(1− log2 𝜃) such that 𝑋 ∩𝐴 is 𝜃-spread in 𝐴 and |𝑋 ∩𝐴| ≥ |𝑋|𝜃−𝑑/(1−log2 𝜃).

Proof. Suppose that 𝑋 is not 𝜃-spread in {0, 1}𝑛. Then consider the affine subspace of largest co-dimension
𝐴 that witnesses the lack of 𝜃-spreadness of 𝑋: suppose that 𝐴 has co-dimension ℓ then we have |𝑋 ∩
𝐴|/|𝑋| > 𝜃−ℓ.

We claim then that 𝑋 ∩ 𝐴 is 𝜃-spread in 𝐴. Indeed, suppose that it is not, i.e. there exists an affine
subspace 𝐵 of 𝐴 of co-dimension ℓ′ (in 𝐴) such that |𝑋 ∩ 𝐵|/|𝑋 ∩ 𝐴| > 𝜃−ℓ′ . Then |𝑋 ∩ 𝐵|/|𝑋| > 𝜃−ℓ′−ℓ

which contradicts the maximality of the co-dimension of 𝐴.
Now it remains to bound the co-dimension of 𝐴. On the one hand

Pr
𝒙∼𝑋

[𝒙 ∈ 𝐴] = ∑
𝑦∈𝐴

Pr[𝒙 = 𝑦] ≤ |𝐴| ⋅ 2𝑑−𝑛 = 2(𝑛−ℓ)+𝑑−𝑛 = 2𝑑−ℓ.

On the other hand Pr𝒙∼𝑋[𝒙 ∈ 𝐴] > 𝜃−ℓ. Hence 𝑑 > ℓ(1−log2 𝜃). The lower bound on |𝑋∩𝐴| follows.

Proof of Theorem 3.1. Suppose for contradiction that 𝐶−1(1) = ( [𝑛]
𝑛/2), 𝑁 ≤ 2𝛾√𝑛 where 𝛾 is a constant to

choose later. Since 𝐶−1(1) = ⋃𝑖∈[𝑁] 𝐶−1
𝑖 (1), there exists 𝑖0 ∈ [𝑁] such that |𝐶−1

𝑖0
(1)| ≥ |( [𝑛]

𝑛/2)| ⋅ 2−𝛾√𝑛.
Thus, there exists a CNF 𝐷 and a full-rank linear transformation 𝐴 such that 𝑋 ≔ (𝐷 ∘ 𝐴)−1(1) has

size at least ( 𝑛
𝑛/2) ⋅ 2−𝛾√𝑛 ≥ 2𝑛−𝛾√𝑛−log𝑛 and 𝑋 ⊆ ( [𝑛]

𝑛/2). Let us identify the linear transformation 𝐴 with
the matrix in {0, 1}𝑛×𝑛 defining it: 𝐴(𝑥) ≔ 𝐴𝑥.

First we apply Theorem 3.2 to the set 𝑋 with the parameter 𝜃 =
√

2. We get that there exists an
affine space 𝐵 of co-dimension at most 2(𝛾√𝑛 + log𝑛) such that 𝑋 ∩ 𝐵 is 𝜃-linearly spread in 𝐵 and
|𝑋 ∩ 𝐵| ≥ |𝑋|/2𝛾√𝑛+log𝑛.
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Applying Theorem 2.8 to the set 𝐴(𝑋 ∩ 𝐵) = {𝐴𝑥 ∣ 𝑥 ∈ 𝑋 ∩ 𝐵} with 𝑞 = 5𝛾√𝑛 we get:

Pr
(𝒙,𝒊)∼(𝑋∩𝐵)×[𝑛]

[𝐴𝒙 does not contain a size-𝑞 certificate for 𝒊 wrt 𝑋 ∩ 𝐵] ≥ 1 − 𝑂(𝛾√𝑛 ⋅ 𝑞/𝑛).

Pick 𝛾 such that this probability is at least 0.9. That is, with probability 0.9 for a pair (𝒙, 𝒊) ∼ (𝑋∩𝐵)×[𝑛]
we have by Theorem 2.10 that 𝐴𝒙 + 𝑒𝒊 (where 𝑒𝑖 = 0𝑖−110𝑛−𝑖) is a 𝑞-limit of the set 𝐴(𝑋 ∩ 𝐵). In order
to invoke Theorem 2.4 we need to find many 𝑞-limits in 𝐷−1(0), i.e., outside of 𝐴(𝑋).

Now suppose that 𝐴𝑥 + 𝑒𝑖 ∈ 𝐴(𝑋) for some (𝑥, 𝑖) ∈ (𝑋 ∩ 𝐵) × [𝑛]. Equivalently 𝑥 + 𝐴−1𝑒𝑖 ∈ 𝑋.
Then in particular 𝑥 + 𝐴−1𝑒𝑖 ∈ ( [𝑛]

𝑛/2). Since 𝑥 ∈ 𝑋 ⊆ ( [𝑛]
𝑛/2), this implies that ⟨𝑥, 𝐴−1𝑒𝑖⟩ = 0, otherwise

𝑥 and 𝑥 + 𝐴−1𝑒𝑖 have different parity and thus can not both belong to ( [𝑛]
𝑛/2).

Now consider the affine subspace 𝐵′
𝑖 ≔ {𝑦 ∈ 𝐵 ∣ ⟨𝑦, 𝐴−1𝑒𝑖⟩ = 0}. If 𝐴−1𝑒𝑖 ∈ 𝐵⊥ ≔ {𝑥 ∈ {0, 1}𝑛 ∣

∀𝑦 ∈ 𝐵, ⟨𝑥, 𝑦⟩ is fixed} (𝐵⊥ is the span of all linear constraints defining 𝐵), then 𝐵′ = 𝐵 or 𝐵′ = ∅,
otherwise 𝐵′

𝑖 has co-dimension 1 in 𝐵. Let 𝐸 be the event when 𝐴−1𝑒𝒊 is in 𝐵⊥. We then have

Pr[𝐴𝒙 + 𝑒𝒊 ∈ 𝐴(𝑋)] ≤ Pr[𝐴𝒙 + 𝑒𝒊 ∈ 𝐴(𝑋) ∣ ¬𝐸] + Pr[𝐸].

Since the co-dimension of 𝐵 (equivalently the dimension of 𝐵⊥) is at most 2(𝑛𝛾 + log𝑛) and
𝐴−1𝑒1, … , 𝐴−1𝑒𝑛 are linearly independent, Pr[𝐸] ≤ 2(𝛾√𝑛 + log𝑛)/𝑛 = 𝑜(1). On the other hand since
𝐴𝒙+𝑒𝒊 ∈ 𝐴(𝑋) implies that 𝒙 ∈ 𝐵′

𝒊 and 𝑋∩𝐵 is 𝜃-spread in 𝐵 we get Pr[𝐴𝒙+𝑒𝒊 ∈ 𝐴(𝑥) ∣ ¬𝐸] ≤ 1/
√

2.
Therefore Pr[𝐴𝒙 + 𝑒𝒊 ∉ 𝐴(𝑋) ∧ 𝐴𝒙 + 𝑒𝒊 is a 𝑞-limit of 𝐴(𝑋 ∩ 𝐵)] ≥ 0.9 − 1/

√
2 − 𝑜(1), so there are

Ω(|𝑋 ∩ 𝐵|) 𝑞-limits to 𝐴(𝑋 ∩ 𝐵) outside of 𝐴(𝑋), hence by Theorem 2.4 we get that

|𝐷| = Ω(|𝑋 ∩ 𝐵|)/2𝑛−5𝛾√𝑛 = Ω(2𝑛−2(𝛾√𝑛+log𝑛)/2𝑛−5𝛾√𝑛) = Ω(2𝛾√𝑛).

3.2 Affine Disperser

Theorem 3.3

Let 𝛾 be any constant in (0, 1/3). Let 𝑓 : {0, 1}𝑛 → {0, 1} be an affine disperser for dimension
𝑘 ≔ 𝑛𝛾 such that |𝑓−1(1)| ≥ 2𝑛−𝑛𝛾 and 𝐶 be a circuit of the form 𝐶 ≔ 𝐶1 ∨ 𝐶2 ∨ … ∨ 𝐶𝑁 , where
𝐶𝑖 is a composition of a CNF 𝐷𝑖 and a linear transformation 𝐴𝑖 of full rank. If 𝐶 computes 𝑓 , then
the total size of 𝐶1, … , 𝐶𝑁 is at least 2Ω(𝑛𝛾).

Proof. We show that either 𝑁 ≥ 2𝑛𝛾 or one of the CNFs 𝐶1, … , 𝐶𝑁 has size at least 2𝑛𝛾 , which yields the
claim. Suppose 𝑁 < 2𝑛𝛾 . Then there exists 𝐶𝑖 = 𝐷𝑖 ∘ 𝐴𝑖 such that |𝐶−1

𝑖 (1)| ≥ |𝑓−1(1)|/2𝑛𝛾 ≥ 2𝑛−2𝑛𝛾 .
Let 𝑋 ≔ (𝐷𝑖 ∘ 𝐴𝑖)−1(1). For the set 𝐴𝑖(𝑋) we apply Theorem 2.9 with the following parameters:
• the density loss 𝑡 = 2𝑛𝛾 ;
• the size of certificate 𝑞 = 𝛼𝑛𝛾 ;
• the size of the unpredictable block 𝑟 = 𝛽𝑛𝛾 .
The constants 𝛼, 𝛽 are to be chosen later. It follows that with probability 1 − 𝑂(𝑛3𝛾−1) = 1 − 𝑜(1) for

𝒙 ∼ 𝑋 and 𝑹 ∼ ([𝑛]
𝑟 ) there is no certificate of size 𝑞 in 𝐴𝑖𝒙 for 𝑹. Hence, by Theorem 2.10 all elements of

𝐿𝒙,𝑹 ≔ {𝑦 ∈ {0, 1}𝑛 ∣ 𝑦[𝑛]∖𝑹 = 𝒙[𝑛]∖𝑹}

are 𝑞-limits of 𝐴𝑖(𝑋) with probability 1 − 𝑜(1). Let 𝐸 be the set of pairs 𝑥, 𝑅 ∈ 𝑋 × ([𝑛]
𝑟 ) for which this

holds.
For (𝑥, 𝑅) ∈ 𝐸 consider the set 𝐴−1

𝑖 (𝐿𝑥,𝑅). 𝐿𝑥,𝑅 is an 𝑟-dimensional affine subspace of {0, 1}𝑛, thus
𝐴−1

𝑖 (𝐿𝑥,𝑅) is as well. As 𝑓 is an affine disperser, there is an input 𝑦 ∈ 𝐴−1
𝑖 (𝐿𝑥,𝑅) ∩ 𝑓−1(0), hence 𝐴𝑖 ⋅ 𝑦

is not in 𝑋 and is a 𝑞-limit of 𝑋.
Now we need to count the number of 𝑞-limits we got in order to invoke Theorem 2.4. Let 𝑔 : 𝐸 →

{0, 1}𝑛 be the function mapping (𝑥, 𝑅) to 𝐴𝑖 ⋅ 𝑦 (to an arbitrary one, if there are several). Let us upper
bound |𝑔−1(𝑧)| for an arbitrary 𝑧 ∈ {0, 1}𝑛. Suppose 𝑔(𝑥, 𝑅) = 𝑧, let 𝑦 = (𝐴𝑖)−1𝑧, then 𝑥[𝑛]∖𝑅 = 𝑦[𝑛]∖𝑅,
hence, there are at most 2𝑟 ⋅ ([𝑛]

𝑟 ) such preimages. Thus we get |𝐸|/(2𝑟([𝑛]
𝑟 )) = |𝑋|/2𝑟 𝑞-limits in total.

Therefore byTheorem 2.4 we get that |𝐷𝑖| ≥ (1−𝑜(1))2𝑛−2𝑛𝛾/(2𝑟 ⋅2𝑛−𝑞) ≥ 2𝑞−𝑟−2𝑛𝛾−1 ≥ 2(𝛼−𝛽−2)𝑛𝛾−1.
Hence for any 𝛼 > 𝛽 + 2 we get the desired bound.
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3.3 Inner Product

In this section, we give an exponential lower bound for OR ∘ (Π0 ∘B)-circuit size required to compute the
inner product. Our proof is a combination of bottom-up techniques with one top-down-like step.

Theorem 3.4

Let 𝐶 be a circuit of the form 𝐶 ≔ 𝐶1 ∨ 𝐶2 ∨ … ∨ 𝐶𝑁 where each 𝐶𝑖 is a composition of a 𝑑-depth
circuit 𝐷𝑖 composed with a full-rank affine mapping 𝐴𝑖.

Suppose that 𝐶 computes IP𝑛. Then the total size of circuits 𝐷1, … , 𝐷𝑁 is at least 2𝑛Ω(1/𝑑) .

Proof. Suppose for contradiction that the total size of all 𝐷𝑖 is at most 2𝑛𝜀 for 𝜀 = 𝑜(1/𝑑). Then let us
pick 𝜶 ∼ {0, 1}𝑛 and apply the restriction 𝑦 = 𝜶 to 𝐶 . Then 𝐶|𝑦=𝜶 computes the function XoR𝜶 ≔
⨁𝑖∈[𝑛]: 𝜶𝑖=1 𝑥𝑖 and has the same form as before, disjunction of compositions of constant-depth circuits
with affine transformations. Let 𝐷′

𝑖, 𝐴′
𝑖 be such that 𝐶|𝑦=𝜶 = ⋁𝑖∈[𝑁] 𝐷′

𝑖 ∘ 𝐴′
𝑖. Since XoR𝜶 is balanced,

there exists 𝑖0 ∈ [𝑁] such that |(𝐷′
𝑖0

∘ 𝐴′
𝑖0

)−1(1)| ≥ 2𝑛−1−𝑛𝜀 . On the other hand (𝐷′
𝑖 ∘ 𝐴′

𝑖)−1(0) ⊇
XoR−1

𝜶 (0) for all 𝑖 ∈ [𝑁]. Then applying (𝐴′
𝑖0

)−1 to 𝐷′
𝑖0

∘ 𝐴′
𝑖0

and to XoR𝜶 on the right we get that
the circuit (𝐷′

𝑖0
)−1(0) ⊇ XoR𝜶′ where 𝜶′ = 𝜶 ⋅ (𝐴′

𝑖0
)−1 and since 𝐴′

𝑖0
has full rank |(𝐷′

𝑖0
)−1(1)| =

|(𝐷′
𝑖0

∘ 𝐴′
𝑖0

)−1(1)| ≥ 2𝑛−1−𝑛𝜀 .
Now observe that

Pr[|𝜶′| ≤ √𝑛] = Pr[𝜶 is a linear combination of ≤ √𝑛 rows of (𝐴′
𝑖0

)−1] ≤ 𝑁 ⋅ ( 𝑛√𝑛)/2𝑛 = 𝑜(1).

Hence, there exists a depth-𝑑 de Morgan circuit 𝐷 = 𝐷′
𝑖0

that computes parity XoR𝛼0
on

√𝑛 bits correctly
on all 0-inputs and on at least 2−𝑛𝜀-fraction of 1-inputs. Then let 𝒚1, … , 𝒚𝑀 ∼ XoR−1

𝛼0
(0) be independent

random variables. Then the depth-(𝑑+1) circuit 𝐸𝒚(𝑥) ≔ ⋁𝑖∈[𝑀] 𝐷(𝑥⊕𝒚𝑖) computes the value of XoR𝛼0

correctly on an input 𝑥 with probability 1−(1−2−𝑛𝜀)𝑀 , which exceeds 1−2−𝑛 for 𝑀 > 3𝑛⋅2𝑛𝜀 , hence,
there exists a setting of 𝑦 = 𝑦1, … , 𝑦𝑀 such that 𝐸𝑦 computes XoR𝛼0

. Thus by [Hås86] the size of 𝐸𝑦 is
at least 2𝑛Ω(1/𝑑) which means that 𝜀 = Ω(1/𝑑) which is a contradiction.

3.4 Proof of Theorem 1.3

A DNF ∘ XoR circuit computing 𝑓 is equivalent to a covering of 𝑓−1(1) by affine subspaces 𝑓−1(1) =
⋃𝑖∈[𝑁] 𝐴𝑖. Consider an arbitrary 𝐴𝑗 ⊆ {0, 1}𝑛×3. Affine spaces over F2 are closed under sums of three
elements, so let 𝑎, 𝑏, 𝑐 ∈ 𝐴𝑗. Then 𝑑 = 𝑎⊕𝑏⊕𝑐 ∈ 𝐴𝑗. For 𝑥 ∈ 𝑓−1(1) we have that for every 𝑖 ∈ [𝑛] among
𝑥𝑖,1, 𝑥𝑖,2, 𝑥𝑖,3 exactly one value is 1 and the other two are zeroes. For 𝑥 ∈ 𝑓−1(1) we can define ̄𝑥 ∈ [3]𝑛
be such that for every 𝑖 ∈ [𝑛] we have 𝑥𝑖,�̄�𝑖

= 1 and 𝑥𝑖,𝑗 = 0 if 𝑗 ≠ ̄𝑥𝑖. Then since 𝑑 ∈ 𝐴𝑖 ⊆ 𝑓−1(1)
for every 𝑖 ∈ [𝑛] we have |{ ̄𝑎𝑖, �̄�𝑖, ̄𝑐𝑖}| < 3, since otherwise 𝑑𝑖 = (1, 1, 1) which contradicts 𝑓(𝑑) = 1.
Since this is true for any 𝑎, 𝑏, 𝑐 ∈ 𝐴𝑗 we get that there exists 𝛽 ∈ [3]𝑛 such that for every 𝑥 ∈ 𝐴𝑗 and for
every 𝑖 ∈ [𝑛] we have 𝑥𝑖,𝛽(𝑖) = 0. Since for every 𝑥 ∈ 𝑓−1(1) we have 𝑥𝑖,1 + 𝑥𝑖,2 + 𝑥𝑖,3 = 1 we get that
|𝐴𝑗| ≤ 2𝑛. Since |𝑓−1(1)| = 3𝑛 we get that 𝑁 ≥ (3/2)𝑛, which completes the proof.

4 Discussion and Open Problems
In the results above, having an extra OR on top of the circuit, and only fixing the linear transformation
in the subcircuits, can be interpreted in the following way. When implementing the top-down strategy,
the first choice of the subcircuit (and the subset of 1-inputs, respectively), does not depend on the specific
linear forms used in the circuit.

In other words, let 𝐴 = 𝑓−1(1) and 𝐵 = 𝑓−1(0) for one of the hard functions considered in the
main section. Informally, we prove that for any covering of 𝐴 by no more 2𝑛𝜀 sets 𝐴1, … , 𝐴2𝑛𝜀 (for some
𝜀 = Ω(1)) there is a choice of 𝐴𝑖 such that for any affine map 𝐿 there is a 𝑘-limit for 𝐴𝑖 in 𝐵 with respect
to that map. Note that for different affine maps, we might find different 𝑘-limits. For proving lower bounds
for ∨ ∘ ∧ ∘ ∨ ∘ XoR, we would need to prove a statement where the last two quantifiers are in a different
order: there is a 𝑘-limit that works for any affine map. Or, at least, for any affine map in a large enough
collection of such. As mentioned in section 2, this corresponds to making two “oblivious” steps down the
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circuit, where we do not use the knowledge of specific parity gates, while in our lower bound, we make
one “oblivious” step.

Note that this is not true for the affine extractors in general, as there is an affine extractor computable
by ∨ ∘ ∧ ∘ ∨ ∘ XoR circuits [HIV22]. The middle slice function, however, could still be a good example for
honing the top-down techniques.

The first natural step could be finding the same 𝑘-limit with respect to an arbitrary pair of affine maps.
This corresponds to the lower bounds in the following computational model.

Open Problem. Prove top-down lower bounds for the class of (2-DNF) ∘ (CNF ∘ B) circuits.

In fact, that would already be a step towards another elusive circuit class .Another motivation for this
open question comes from the Mod6 perspective. A Mod6 gate can be seen as a conjunction of Mod2 and
Mod3 gates. After appropriately expanding the brackets, DNF ∘ Mod6 can be transformed to a 2-DNF of
conjunctions such that in each conjunction there are only Mod2 or only Mod3 gates. So a first related
problem would be to adapt the technique for Mod3.

Open Problem. Prove top-down lower bounds for subclasses of AC0 ∘ Mod3.

The next step would be combining the two last problems together. Let L ⊆ {𝑓 : {0, 1}𝑛 → {0, 1}𝑛}
be the union of linear maps over F2 (B) and maps 𝑥 ↦ (1[(𝐴𝑥)𝑖=𝑎𝑖])𝑖∈[𝑛] where 𝐴 ∈ F𝑛×𝑛

3 and 𝑎 ∈ F𝑛
3 . In

other words, we can choose a transformation of the inputs that either uses only XoR operations, or only
Mod3 operations.

Open Problem. Prove lower bounds for (2-DNF) ∘ (CNF ∘ L) circuits.

Solving this problem would imply lower bounds for DNF ∘ Mod6.

Claim 4.1

Let 𝑓 : {0, 1}𝑛 → {0, 1} be such that it is computable by 𝑘-DNF ∘ Mod6-circuit 𝐷 of size 𝑠. Then
it is computable by (2-DNF) ∘ (CNF ∘ L) of size 𝑂(𝑠 ⋅ 2𝑘 ⋅ 𝑘).

Proof. See appendix A.

When proving the results of this form, it all essentially boils down to finding a 𝑘-(parity) limit. The
two known techniques for this are (robust) sunflowers or spreadness [HJP95; GRSS23] and unpredictability
[MW19; GRSS23]. They both have certain downsides. For starters, these techniques only find 𝑘-limits that
are close to the set in Hamming distance (or, in the case of our result, they are close in Hamming distance
after a certain affine transformation). In principle, this might not be the case.

Open Problem. Let 𝐴 ⊆ {0, 1}𝑛 be a subset of a code with minimum distance 𝑑 = Ω(𝑛/ log𝑛). Can you
find a log2(𝑛)-limit of 𝐴?

When looking for a 𝑘-limit, we can also ask for some structure of the considered set. Let us say that
our set 𝐴 is a half of a

√𝑛-wise independent set. From the results of Bazzi [Baz09], Razborov [Raz09], and
Braverman [Bra11], we know that roughly half the points of the whole boolean cube should be 𝑛𝜀-limits
of the set 𝐴. However, current techniques do not allow us to find some explicit 𝑘-limit, assuming the
knowledge of 𝐴. One of the reasons for this is that the size of such sets can be as small as 2𝑂(√𝑛 log𝑛)

[ABI86].

Open Problem. Prove a top-down lower bound 2𝑘Ω(1) for separating two disjoint 𝑘-wise independent sets
by depth-3 AC0 circuits.
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A Proof of theorem 4.1
Consider a term of 𝐷. We rewrite it as a 2-CNF using MOD2 and MOD3 gates:

⋀
𝑖∈[𝑘]

⎡⎢
⎣

( ∑
𝑗∈[𝑛]

𝛼𝑖
𝑗𝑥𝑗) mod 6 = 𝑎𝑖⎤⎥

⎦
∧ ⋀

𝑖∈[𝑘]

⎡⎢
⎣

( ∑
𝑗∈[𝑛]

𝛽𝑖
𝑗𝑥𝑗) mod 6 ≠ 𝑏𝑖⎤⎥

⎦
=

⋀
𝑖∈[𝑘]

⎡⎢
⎣

( ∑
𝑗∈[𝑛]

𝛼𝑖
𝑗𝑥𝑗) mod 2 = 𝑎𝑖 mod 2 ∧ ( ∑

𝑗∈[𝑛]
𝛼𝑖

𝑗𝑥𝑗) mod 3 = 𝑎𝑖 mod 3⎤⎥
⎦

∧ ⋀
𝑖∈[𝑘]

⎡⎢
⎣

( ∑
𝑗∈[𝑛]

𝛽𝑖
𝑗𝑥𝑗) mod 2 ≠ 𝑏𝑖 mod 2 ∨ ( ∑

𝑗∈[𝑛]
𝛽𝑖

𝑗𝑥𝑗) mod 3 ≠ 𝑏𝑖 mod 3⎤⎥
⎦

Here 𝛼, 𝛽 ⊆ Z𝑘×𝑛
6 , 𝑎, 𝑏 ∈ Z𝑘

6 . A 2-CNF with 𝑘 terms can be transformed into a DNF of size 2𝑘 ⋅ 𝑘. Now,
any term of that DNF has the following form:

⋀
𝑖∈[𝑘]

⎡⎢
⎣

( ∑
𝑗∈[𝑛]

𝛾𝑖
𝑗𝑥𝑗) mod 2 = 𝑎𝑖⎤⎥

⎦
∧ ⋀

𝑖∈[𝑘]

⎡⎢
⎣

( ∑
𝑗∈[𝑛]

𝛿𝑖
𝑗𝑥𝑗) mod 2 ≠ 𝑏𝑖⎤⎥

⎦
∧

⋀
𝑖∈[𝑘]

⎡⎢
⎣

( ∑
𝑗∈[𝑛]

𝜀𝑖
𝑗𝑥𝑗) mod 3 = 𝑐𝑖⎤⎥

⎦
∧ ⋀

𝑖∈[𝑘]

⎡⎢
⎣

( ∑
𝑗∈[𝑛]

𝜑𝑖
𝑗𝑥𝑗) mod 3 ≠ 𝑑𝑖⎤⎥

⎦
=

⋀
𝑖∈[𝑘]

𝐴(𝑥)𝑖 ∧ ⋀
𝑖∈[𝑘]

𝐵(𝑥)𝑖

Here 𝐴 and 𝐵 are transformations from L, 𝛾, 𝛿 ⊆ F𝑘×𝑛
2 ; 𝜀, 𝜑 ∈ F𝑘×𝑛

3 and 𝑎, 𝑏 ∈ F𝑘
3 , 𝑐, 𝑑 ∈ F𝑘

3 . Overall,
𝑓 is then computable by a circuit of the following form:

⋁
𝑡∈𝐷

⋀
𝑖∈[𝑘]

𝐴𝑡(𝑥)𝑖 ∧ ⋀
𝑖∈[𝑘]

𝐵𝑡(𝑥)𝑖

This is a (2-DNF) ∘ (CNF ∘ L) circuit of size no more that 𝑂(𝑠 ⋅ 2𝑘 ⋅ 𝑘).
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